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Abstract

Root system architecture determines crop capacity to acquire water and
nutrients in the dynamic and variable soil environment. Increasing atten-
tion is paid to searching for optimal root traits to improve resource uptake
efficiency and adaptation to heterogeneous soil conditions. This chapter
summarises genetic variability and plasticity in root traits relevant to
increased efficiency of soil resource acquisition. Approaches available
for high-throughput phenotyping of root architecture traits at both labora-
tory and field scales are critically assessed. The advent of several novel
imaging technologies such as X-ray computed tomography coupled with
image-analysing software packages offers a great opportunity to
non-invasively assess root architecture and its interactions with soil
environments. The use of three-dimensional structure—function simula-
tion root models is complementary to phenotyping methods, providing
assistance in the crop breeding programmes. We also discuss applications
and limitations of these novel visualisation technologies in characterising
root growth and the root—soil interactions.
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8.1 Introduction

Root system is a fundamental component of
plants. Apart from mechanical support to the
above-ground parts, root system is also the
major organ for foraging and acquiring nutrients
and water from the surrounding soil. Root system
is a complex three-dimensional (3D) structure
exhibiting a specific spatial and temporal config-
uration of root types. Root system architecture
(RSA) refers to in situ spatial distribution of the
root system within the rooting volume (Hinsinger
et al. 2011; Lynch 1995, 2007; Manschadi and
Manske 2013). RSA plays a vital role in the
exploration of soil zones and acquisition of soil
water and nutrients (Gregory et al. 2009;
Hammond et al. 2009; Lynch and Brown 2012).
It is plastic and dynamic, allowing plants to
respond to their environments in order to opti-
mise acquisition of important soil resources (Zhu
et al. 2011).

Studies of RSA are concerned typically with
an entire root system of an individual plant,
rather than just fine details of the root structure
(Lynch 1995). The root architectural traits
include three general categories: topological
properties (describing the pattern of root
branching), geometric properties (the presence
of roots in a spatial framework, such as the
growth angle of root axes) and physiological
properties (such as root growth rate, root exuda-
tion and root water and nutrient use efficiency)
(Chen et al. 2011a; Gregory 2008; Manschadi
et al. 2008). Crop adaptation to suboptimal soil
conditions is dependent on RSA, and thus crop
survival and fitness are determined by the RSA
(Eshel and Beeckman 2013; Fitter et al. 2002;
Lynch 1995). However, as ‘the hidden half” of a
plant, root system is often underappreciated
largely due to the inherent difficulty of accessing
it for studies (Eshel and Beeckman 2013; Smith
and De Smet 2012).

Exploiting genetic diversity in root traits
associated with acquisition of scarce soil resources
and adaptation to edaphic stresses can significantly
enhance resource use efficiency in crop plants and
thus lead to improved productivity. It might be
advantageous for a plant to have the root system
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with architectural traits specifically adapted to the
prevailing soil conditions (Trachsel et al. 2013).
The identification of relevant root traits offers the
potential to increase the grain yield of not only
crops growing soil resources but also crops grow-
ing with optimal water and nutrient supply by
revealing physiological traits associated with the
partitioning of dry matter.

The identification of optimal root traits under
stress environments depends on targeting the
probable stresses that the crop may face during
the growing season. Targeted development of
crop genotypes with increased efficiency of
nutrient capture (Rengel 2005; Wu et al. 2005)
and water use (Kamoshita et al. 2000; Liu
et al. 2007; Manschadi et al. 2006; Ober
et al. 2005; Rengel 2013) relies on a better under-
standing of root structure and functions and the
exploration of optimal root traits for specific
growth environments (Wang and Smith 2004).
It has been demonstrated that modification of
root architectural traits could contribute to
improved grain yield, drought tolerance and
resistance to nutrient deficiencies (Beebe et al.
2006; Steele et al. 2006; Tuberosa et al. 2002a).

Quantitative genetic studies require efficient
phenotyping protocols (Trachsel et al. 2013).
However, the inability to efficiently and accu-
rately phenotype large mapping populations has
been a key impediment to wide-scale use of root-
related genetic information in breeding (Chen
et al. 2011a; De Dorlodot et al. 2007). Hence,
accurate phenotyping of root-related traits is one
of the most important practices for translating
into breeding programmes the recent physiologi-
cal and genetic advances in understanding the
role of root systems in improving crop yield
and productivity in dry environments. However,
phenotyping of root traits requires multidisci-
plinary analysis because the root structure and
function and their responses to heterogeneous
soil environments are dynamic and complex
(Doussan et al. 2003; Hodge 2004; Pierret
et al. 2006; Valizadeh et al. 2003). Hence,
phenotyping for optimal root traits is often
conducted under controlled environmental
conditions, whereas systematic phenotyping for
root traits in the field remains challenging
(Fiorani and Schurr 2013; Trachsel et al. 2011).
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In the recent decade, some novel non-invasive
and high-throughput phenotyping technologies
have been developed for fast, accurate and robust
analyses of root structure and function. In addi-
tion, current simulation computer models offer a
promise in characterising intrinsic genetic
properties and phenotypic plasticity of root traits
in large-scale phenotyping required in breeding
for improved productivity (Dunbabin et al. 2013;
Struik and Yin 2007).

This chapter discusses genetic variability and
plasticity in root traits relevant to increased soil
resource use efficiency and better adaptation to
specific soil environments, followed by an over-
view of recent developments in high-throughput
phenotyping methods. This review also
highlights applications and limitations of some
novel visualisation technologies and modelling
simulations in characterising root growth and the
root—soil interactions.

8.2  Root Trait Variability

Genotypic variability and phenotypic plasticity
are the two general types of variability in root
architectural traits. These are derived from two
different developmental pathways, namely,
genetically  determined intrinsic = pathway
(governing the basic architecture and the limits
of plasticity) and environmentally triggered
responsive pathway (Malamy 2005). These two
pathways combine in intricate ways to create a
highly complex 3D root structure influenced by
genetics as well as the availability of resources in
the heterogeneous soil environment (Baddeley
et al. 2007).

8.2.1 Genotypic Variability in Root

Traits

Variation in root architectural traits critically
influences the capacity and efficiency of a plant
in foraging and taking up water and nutrients
from soil. For example, changes in the root sys-
tem architecture in response to low phosphorus
(P) availability may enhance P uptake (Nielsen
et al. 2001). Shallow rooting is beneficial for P
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uptake because in many soils, most of the avail-
able P is retained in the topsoil layers. In soybean
(Glycine max) genotypes, increased yield poten-
tial was linked to increased capacity to take up
water from deep (1.1 m) soil horizons in the field
(Ober et al. 2005); similar connection was
established for upland rice (Oryza sativa) in
Laguna, Philippines (Kamoshita et al. 2000;
Kondo et al. 1999), and wheat (Triticum
aestivum) in Western and Southern Australia
(Wong and Asseng 2006; Manschadi et al.
2010). Understanding the role of and
manipulating root length branching at depth and
seminal root angles have been flagged as key
factors likely to underpin further increases in
wheat yield (Manschadi et al. 2010).

Our recent studies examined genotypic
variability in a large germplasm collection of
narrow-leafed lupin. Wild genotypes with
contrasting root architecture differed in root
growth, root distribution in the profile and P
acquisition in response to localised P supply
(Chen et al. 2013a). Selected genotypes differed
in root length density (root length in a unit soil
volume).

Specifically selecting for improved root traits,
such as root proliferation at depth, may contrib-
ute to increased productivity in crops, especially
in dry soil conditions, and in soils with high
strength because of natural settling or formation
of a shallow hardpan due to vehicle movement
(Hall et al. 2010). This is particularly important
because attempts to increase root density at depth
using agronomic approaches (e.g. deep fertiliser
placement and ripping) have been largely unsuc-
cessful (e.g. Baddeley et al. 2007).

There is little knowledge on genotypic
variability in root function related to the archi-
tecture. For example, wild genotypes of narrow-
leafed lupin (Lupinus angustifolius) exhibited
genetic variation in exudation of organic acid
anions into the rhizosphere (Chen et al. 2013b).
We observed that, at optimal P, the large-rooted
genotype exuded citrate, acetate and malate,
whereas the other two genotypes with smaller
root systems only released citrate in significant
amounts. The significance of these findings in a
relationship between root architecture and
functions is yet to be assessed.
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8.2.2 Phenotypic Plasticity in Root
Traits

Several mechanisms may be involved in
regulating root architecture alteration in response
to heterogeneous nutrient availability. Examples
of such mechanisms are root proliferation in
localised nutrient-rich patches, changes in
rooting depth or the relative length of different
root diameter classes (e.g. Dunbabin et al. 2001a;
Ho et al. 2005; Paterson et al. 2006; Smith and
De Smit 2012). Plant changes in root morphol-
ogy in response to changes in P availability are
an essential strategy for efficient P acquisition
(Chen et al. 2013b; Lambers et al. 2011).

Crop genotypes often exhibit variable capac-
ity to alter the growth, number, size and distribu-
tion of the root systems in order to optimise
resource capture when exposed to heterogeneous
environmental conditions. Phenotypic plasticity
was evidenced in root length density in the lupin
genotypes in response to varying P supplies
(Fig. 8.1; see also Chen et al. 2013a). For exam-
ple, in comparison with the nil-P treatment, the
large-rooted genotype produced significantly
more branches in the top 30 cm of the soil profile
when P was placed in a band 10 cm below the
soil surface. Such developmental plasticity is
based on the capacity of plant cells either to
remain undifferentiated until the root-growth
response is initiated or to dedifferentiate into
cells that can grow into new roots.

In terms of root mass allocation, many
Lupinus species with a high capacity to acquire
P exhibit low root-growth plasticity at low P
supply (Pearse et al. 2006). On the other hand,
some Lupinus species increase root—shoot bio-
mass ratio during water stress (Carvalho et al.
2004).

8.3  Phenotyping Systems

Crop breeders and researchers are showing
increased interest in phenotyping for root
architecture traits as part of their breeding
programmes. High-throughput phenotyping for
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root architecture traits requires fast, reliable and
accurate root observations and measurements.
Recent progress in the development of root-
related methodologies, from traditional excava-
tion to modern non-destructive imaging
technologies including X-ray computed tomog-
raphy (CT), has significantly enhanced our
capacity to visualise, quantify and conceptualise
root architecture and its relationship to (1) crop
adaptation to variable growth environments and
(2) plant productivity (Gregory et al. 2009; Iyer-
Pascuzzi et al. 2010; Lynch 1995). It is still a
challenge to elucidate the genetic and develop-
mental basis of the root system architecture, and
a combination of laboratory- and field-based
approaches should be considered (Clark et al.
2011). In this section, we overview current
phenotyping systems employed in the controlled
environments and the field (Table 8.1) and dis-
cuss their applications and limitations.

8.3.1 Controlled Environments

A number of phenotyping approaches are avail-
able for (1) destructive and (2) non-destructive
sampling of root systems. Destructive sampling
by excavating whole root systems from soil-filled
containers (e.g. pot, columns, boxes, tubes and
chambers) is used commonly in root studies in
the controlled environments (Table 8.1). In the
recent decades, non-destructive approaches have
been developed for high-throughput phenotyping
of root architecture traits with the support of
advanced optical recording techniques. These
include (1) soil-filled rhizotrons with clear panels
for root observations and (2) soil-free approaches
in artificial media, such as hydroponics,
aeroponics and the gel chamber or agar-plate
systems.

8.3.1.1 Soil-Filled Pots

The soil-filled pots provide environments for
crop growth that may to some extent simulate
those in the field. Various root traits can be
measured, including total root length, root mass
and root density per soil volume; also, roots at
various depths in the soil profile can be measured
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Fig. 8.1 Variability in root length density (cm cm ) in
the soil profiles of two wild genotypes (a #071; b #085) of
Lupinus angustifolius grown in a glasshouse for 42 days
under three P-application treatments: nil P (no fertiliser P

(Araki and Ilijima 1998). However, this method
requires destructive sampling of roots and
involves the process of root washing out of soil
(Hund et al. 2009b). Hargreaves et al. (2009)
placed a starch-based polymer net sac in the
centre of the soil-filled plastic pot and observed
genotypic variation in root numbers, length, mass
and root angles (i.e. vertical spread) of lateral

application), top-dressed P (fertiliser P applied on the soil
surface) and banded P (fertiliser P placed in a narrow band
10 cm below the soil surface). Data are means +
s.e. (n?7=73) (Modified from Chen et al. 2013a)

roots in five barley genotypes. The soil sac
method could be improved to allow more sys-
tematic construction and data collection. How-
ever, this method, similar to the standard pot
method, is destructive. Despite all due care,
roots could be broken inside the netting so their
coordinates could not be taken, jeopardising
measurements of root spread.
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8.3.1.2 Rhizotrons

Root observation rhizotrons (rhizoboxes or root
chambers) are similar to the soil-filled pot
method mentioned above, except that clear
acrylic glass panels allow visual monitoring of
root growth at the surface of the glass
(Manschadi et al. 2006, 2008; Wiese et al.
2005). Variation in root growth and morphology
among the tested crop plants can be traced on the
outside surface of the acrylic glass using a
marker pen — different colours may be used to
indicate the presence of roots at successive time
intervals, followed by photographing or scanning
for root quantification (Fig. 8.2).

Rhizotrons can be designed and constructed to
meet specific research needs, such as for deep-
rooted crops and long growth periods. For exam-
ple, Manschadi et al. (2006) used 240-cm-wide,
120-cm-deep root chambers in examining spatial
patterns of root length distribution in a drought-
tolerant wheat genotype compared with the stan-
dard wheat variety at anthesis. Rhizotron systems
artificially restrict root growth to two dimensions
only. In addition, they suffer from the general
disadvantages of pot experiments associated with
the disturbed soil structure, altered root-zone
temperatures and the limited rooting volume.

8.3.1.3 Agar (Gel, Gellan-Gum) Systems
The agar/gel method, a useful non-soil system,
allows quick and easy measurement and
visualisation of dynamics of early root growth
in seedlings. Root architecture traits can be
non-destructively recorded in two dimensions
(2D) or 3D using flatbed scanning, digital
cameras or X-ray cameras through the transpar-
ent substrate. This method has been used for
high-throughput phenotyping of root architecture
traits in various crop species, such as barley
(wild, Hordeum spontaneum; domesticated,
H. vulgare) (Bengough et al. 2004; Hargreaves
et al. 2009) and rice (Oryza sativa) (Clark et al.
2011; Iyer-Pascuzzi et al. 2010).

The agar/gel method permits detailed
characterisation of root traits and root develop-
ment; for example, the pattern and timing of
lateral root initiation were characterised in
Arabidopsis seedlings (Dubrovsky et al. 2006).

Fig. 8.2 Example of two-dimensional root images of a
wild genotype of narrow-leafed lupin (Lupinus
angustifolius) grown in a soil-filled rhizotron as part of a
phenotyping experiment to determine genotypic
variability in root growth and temporal—spatial exudation
among wild and commercial varieties. (a) A rhizotron
with the acrylic glass panel removed to expose root sys-
tem for sampling root exudates around individual root tips
using the anion exchange membrane (AEM) indicated by
inserted pins and arrows. (b) Root image of the same
plant is (a) acquired by a flatbed scanner via scanning
the acrylic glass with traced root morphology at three
consecutive times: 14 (black), 20 (purple) and
26 (green) days after sowing (Bar = 10 cm) (Chen and
Rengel 2014)
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A new algorithm for computational image
analysis of deformable motion at high spatial
and temporal resolution was applied to contras-
ting root growth in Arabidopsis, timothy (Phleum
pratense), tomato (Lycopersicon lycopersicum),
lettuce (Lactuca sativa) and alyssum (Aurinia
saxatilis) (van der Weele et al. 2003) using the
gel system.

By incorporating image-analysing tools,
e.g. RootTrace (see Sect. 1.4; Table 8.2), the
agar/gel method enables high-throughput, auto-
matic tracing of root growth in Arabidopsis
seedlings to quantify root length, curvature and
stimulus response parameters such as onset of
gravitropism (French et al. 2009). The gel plate
system offers a moderately rapid screening
method for seedlings, the results of which appear
to reflect angular root spread in 3D, though care
must be taken to avoid contamination problems
and use of inappropriate media. The gel plate
method is also of particular benefit for
non-destructive monitoring of seedling root
growth. Hargreaves et al. (2009) compared root
growth in gel chambers, soil sacs and X-ray
microtomography pots and arrived at similar
(albeit not identical) ranking order of angles
using the three methods.

Earlier, limitations of the gel chamber system
have been outlined (see Futsaether and Oxaal
2002; Hargreaves et al. 2009). These include
the chamber size, restricting the method to stud-
ies of young seedlings and the fact that it is an
artificial environment. Moreover, gel chambers
generate 2D data as opposed to the 3D environ-
ment encountered by most plants, and anaerobic
conditions in agar may alter plant growth (Clark
et al. 1999; Hargreaves et al. 2009).

The use of gellan-gum growth systems with
superior  optical clarity also facilitates
non-invasive 2D (Iyer-Pascuzzi et al. 2010) and
3D (Fang et al. 2009) imaging and temporal
studies of root systems while allowing reproduc-
ible control of the rhizosphere. Topp et al. (2013)
employed nutrient-enriched gellan gum to grow
rice and demonstrated the capacity of a
semiautomated 3D in vivo imaging and digital
phenotyping pipeline to interrogate the quantita-
tive genetic basis of the root system. The study

Y.L. Chen et al.

phenotyped 25 root traits governing the distribu-
tion, shape, extent of exploration and the intrinsic
size of root networks at three observation times
during the seedling stage. While these recent
studies demonstrate the use of gellan-gum
systems for potential high-throughput root
phenotyping and novel trait discovery in 2D,
efforts to expand these investigations into the
3D structure remain constrained by the long
scanning times, small scanning volume and lim-
ited quantification capability (Clark et al. 2011).
Hence, the agar/gel and gellan-gum methods
work well for simple root systems, but obscure
the more complex 3D root architectures.

8.3.1.4 Hydroponics

Growing plants hydroponically is widely used in
seedling studies. The inexpensive, space-saving,
high-throughput (semi-) hydroponic system
offers the advantage of growing a large number
of plants under uniform conditions, two impor-
tant prerequisites for investigating quantitative
traits, particularly those of low heritability. Mea-
suring traits at the seedling stage in hydroponic
culture eliminates the challenges of soil contam-
ination and root loss during washing (Chen et al.
2011a).

Seedling traits of 47 commercial maize (Zea
mays) hybrids were screened using nutrient solu-
tion (Sanguineti et al. 2006). Singh et al. (2013)
reported a new hydroponic phenotyping tech-
nique in examining survivability and drought
tolerance of 15-day-old seedlings of 80 genotypes
of lentil (Lens culinaris).

A novel semi-hydroponic phenotyping plat-
form developed by Chen et al. (2011a) has the
potential in studying root response and plasticity
in morphological and physiological responses to
water and nutrients because the supply of water
and nutrients can be adjusted easily. This high-
throughput phenotyping system was designed for
characterising variability in root architectural
traits of narrow-leafed lupin (Chen et al. 2011a,
b, 2012). The system is based on a 240-L mobile
bin and allows root growth up to 1-m depth, with
repeated observations and measurements of 2D
root structure without the need for destructive
sampling (Fig. 8.3). It is notable that this system


http://dx.doi.org/10.1007/978-81-322-2226-2_1
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Fig. 8.3 Schematic presentation of the semi-hydroponic
phenotyping system for two-dimensional, non-destructive
measurements of root system architecture. A clear flat
acrylic panel, B supporting cloth, C lupin plant, D 240-L
bin, E extended cloth, F water or nutrient solution,
G pump. Support framework not shown (Modified from
Chen et al. 2011)

significantly reduces environmental stresses by
optimising water supply with the equipped auto-
matic irrigation system with a controller. Fur-
thermore, it offers the opportunity to expose
plants to abiotic stresses (e.g. acidity, salinity,
drought, nutrient deficiency, elemental toxicity,
etc.) whose evaluation under field conditions is
usually quite difficult due to environmental
variability affecting the intensity of the stress.
The  semi-hydroponic/aeroponic  system
permits digital mapping of growth dynamics of
taproots and lateral roots over time. This growing
system overcomes the long-standing unsolved
problem of phenotyping large sets of genotypes
for rooting traits, which is particularly important

for the identification of QTL and characterisation
of molecular markers that may be useful in
breeding. The semi-hydroponic phenotyping sys-
tem was compared with soil-filled pot
experiments, and the consistent ranking of root
traits was produced for a range of genotypes of
narrow-leafed lupin (Chen et al. 2011Db).

Growth pouches developed from the hydro-
ponic method were used in characterising root
architecture traits such as growth angle and
gravitropism of basal roots in common bean
(Phaseolus vulgaris) related to phosphorus
acquisition efficiency (Bonser et al. 1996; Liao
et al. 2004). Hund et al. (2009b) improved the
pouch system for rapid measurements of lateral
root growth of maize. In this system, roots grew
on the surface of blotting paper, thus facilitating
the two-dimensional observation of root growth
over time during the early days of root growth.
However, phenotyping large sets of genotypes
beyond very early growth stages using pouch
systems remains problematic, particularly for
QTL mapping studies.

8.3.2 Field

Even though laboratory/glasshouse phenotyping
methods provide controlled environments, allow
increased throughput and require fewer
resources, they may not accurately reflect plant
performance under field conditions. Neverthe-
less, significant associations between root traits
of the seedlings grown under controlled
conditions and those of the plants grown in the
field were found in wheat (Mian et al. 1994;
Richards 1996) and maize (Landi et al. 1998;
Tuberosa et al. 2002b). However, it is challeng-
ing to extrapolate plant performance at the seed-
ling stage when grown in artificial growth media
to potential growth in the field (Iyer-Pascuzzi
et al. 2010; Sanguineti et al. 2006). Therefore,
high-throughput phenotyping in the field is
needed to complement and validate studies in
the controlled environments.

Field studies provide ground-truthing of plant
growth in a particular environment, but
phenotyping for root traits in the field conditions
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is difficult because of the inability to visualise root
systems in situ. Traditional methods of observing
root system architecture including excavation
(followed by root washing) are commonly used
in studying roots in the soil environments
(Gregory et al. 2003; Smit et al. 2000). Root
systems are often manually excavated or augured
for quantifying root length, biomass, distribution
in soil and morphology and temporal variation of
root growth. Excavation-related methods include
excavations of (1) root system, (2) undisturbed
cores or blocks of soil and (3) installed cores
prefilled with root-free soil.

Shovelomics, an emerging term for a high-
throughput phenotyping method using root exca-
vation, was recently used for visual scoring of
excavated root crowns to assess different root
architecture traits of field-grown maize at
flowering (Trachsel et al. 2011, 2013). On aver-
age, the total time required for excavation,
soaking, rinsing and evaluation of root crowns
was 10 min for silt-loam and 5 min for sandy
soil. The root architectural traits assessed
included the number of whorls occupied by
brace roots, number of brace roots originating
from whorl 1 to whorl 2, the branching density
of brace roots and the number, angle and
branching density of crown roots. Recently, we
used shovelomics technique to evaluate geno-
typic variability in root traits of eight genotypes
of narrow-leafed lupin in response to soil com-
paction and hardpan in the wheat belt of Western
Australia (Chen et al. 2014). Application of
shovelomics in other field-grown crop species
requires further exploration.

Excavation methods are still commonly used
in field studies today simply because of a lack of
other reliable techniques. Although excavation
techniques can be valuable, they are generally
destructive, tedious and time consuming. One
of the limitations of excavation-related methods
is that they (1) often destroy the topology of the
root system, leading to an underestimation of fine
roots through breakage during excavation and
washing, and (2) make it impossible to evaluate
dynamics of root growth (Clark et al. 2011; Smit
et al. 2000). Furthermore, root growth and archi-
tectural traits in soil environments are inevitably
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influenced by (1) soil heterogeneity (Lynch
1995) and (2) physical, chemical and biological
interactions in the rhizosphere (Shaff et al. 2009;
Ward et al. 2008).

To improve throughput in analysing
excavated roots, image analysis methods coupled
with data mining approaches have been devel-
oped to characterise root architecture. Transpar-
ent minirhizotron tubes can be installed
vertically, horizontally or at various angles in
the field (or in mesocosms) (Bates 1937). Roots
that grow around the outside walls of the tubes
can be imaged with cameras inserted down the
tube length. Minirhizotrons allow the observa-
tion of root traits such as elongation rate, density,
surface area, number and length at different soil
depths throughout the growing season (Ao et al.
2010; Hendrick and Pregitzer 1992; Johnson
et al. 2001). Recently, minirhizotrons were used
to study root cortical aerenchyma in maize in
response to suboptimal availability of soil
nutrients, i.e. nitrogen, P and potassium (Postma
and Lynch 2011), or water deficiency (Zhu et al.
2010). Because repeated observations can be
made over time, minirhizotrons are particularly
well suited for estimating root production and
turnover (Johnson et al. 2001) as well as for
estimating root biomass per unit of soil.

One limitation of minirhizotrons is that space
may be created around the soil-tube interface
that could influence root growth if the tubes
are not installed properly. Furthermore,
minirhizotrons only capture a fraction of the
total root architecture. In this regard, they are
better suited for measuring fine roots than coarse
roots because fine roots are imaged more fre-
quently and are more likely to be fully captured
in images.

Traditional soil coring and trench profiling
can be used as complementary techniques to
minirhizotrons (Achat et al. 2008; Watt et al.
2005, 2008; Zhu et al. 2010). Like
minirhizotrons, however, neither of these
methods provides a full description of root sys-
tem architecture, and both are tedious and time
consuming (Vamerali et al. 1999).

A DNA-based method has been established to
quantify changes in the root DNA concentration
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in soil (Huang et al. 2013; Topp et al. 2013). It
may provide fast and accurate measurements of
root biomass in soil samples as a complementary
method to root quantification.

8.4 Imaging and Analysis
Platforms
8.4.1 Imaging Techniques

Root phenotyping approaches discussed above
often require efficient imaging techniques, pref-
erably in 3D. Several 3D imaging techniques
have recently been used to non-destructively
image root systems, including stereoscopics
(e.g. Wulfsohn et al. 1999), neutron radiography
(Oswald et al. 2008), magnetic resonance imag-
ing (MRI; e.g. Rascher et al. 2011), ground-
penetrating radar (e.g. Stover et al. 2007) and
X-ray computed tomography (CT; e.g. Flavel
et al. 2012).

Stereoscopic methods using plants grown in
transparent media (Wulfsohn et al. 1999) enable
visualisation of dynamics of root growth using
RootViz FS (Phenotype Screening Corporation,
Knoxville, TN, USA). Applications of this
method are limited due to the need for manually
rotating the microscope stage to see different
parts of the root system and to image roots

horizontally.
Neutron radiography (Oswald et al. 2008),
magnetic resonance imaging (Asseng

et al. 2000; Rascher et al. 2011), nuclear mag-
netic resonance (Jahnke et al. 2009; van der
Weerd et al. 2001) and ground-penetrating radar
(Stover et al. 2007) are used in field studies,
but the current scale, resolution, throughput,
accessibility and cost efficiency of these
techniques limit their utility (Clark et al. 2011).
Neutron radiography technique has the advan-
tage in monitoring water distribution and root
growth simultaneously, making it suitable for
studying root—-water relationships in soils
(e.g. Oswald et al. 2008; Stingaciu et al. 2013).
However, root images produced by neutron radi-
ography are 2D and thus require specific image-
analysing software packages (such as Root
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System Analyzer, Leitner et al. 2014) to recover
root traits. Nuclear magnetic resonance is very
sensitive to the type of media used for plant
growth. Laser scanning of root systems (Fang
et al. 2009) provides precise measurements, but
requires relatively long imaging times and can be
expensive.

Ground-penetrating radar and electrical resis-
tivity imaging are low-resolution geophysical
techniques that have been adapted for
non-invasive imaging of roots in field-grown
plants. Ground-penetrating radar uses pulses of
high-frequency radio waves to image subsurface
structures based on differences in their dielectric
constants. It is rapid, but detection is generally
limited to thick roots (at least 0.5 cm) at rela-
tively shallow depths, depending on the soil type
(e.g. dry, sandy soils are optimal). These
limitations make ground-penetrating radar pri-
marily useful for measuring root biomass of
woody species (Stover et al. 2007).

Recent developments in X-ray CT (micro-
scale CT, pCT) provide a breakthrough technol-
ogy for non-invasively visualising root growth in
soil (Flavel et al. 2012; Garbout et al. 2012;
Mooney et al. 2012; Perret et al. 2007; Tray
et al. 2010). Even though many papers over the
past decades have concentrated on the method
development from visualisation of roots in soil
(e.g. Gregory et al. 2003) to automated segmen-
tation of the whole root system architecture
(e.g. Flavel et al. 2012), some of the most recent
research is using X-ray CT to address fundamen-
tal questions regarding the functioning of the
rhizosphere. Carminati et al. (2009) used X-ray
CT to observe the dynamics of air gaps at a
90-pm resolution in the white lupin rhizosphere
in response to wetting and drying cycles. Recent
work of Aravena et al. (2013) measured compac-
tion and provided new insights into soil-water
uptake in sweet pea (Lathyrus odoratus) and
sunflower (Helianthus annuus) using a 4.4-um
resolution CT technique.

Sophisticated image processing techniques,
frequently based on the object-tracking methods,
have demonstrated a great promise in measuring
root traits of soil-grown plants at high resolution
(Mooney et al. 2012). Using synchrotron
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500 ym

Fig. 8.4 Example image of X-ray computed tomography
(CT) showing approx. 3-mm section of a seminal root of
wheat (Triticum aestivum) (Keyes et al. 2013)

radiation X-ray tomographic microscopy
(SRXTM) technique, Keyes et al. (2013) uncov-
ered the 3D interactions of wheat root hairs in
soil (Fig. 8.4), leading to the development of a
model of phosphate uptake by root hairs based on
the geometry of hairs and associated soil pores.

New X-ray CT-based root imaging
approaches promise to complement and extend
screening for root traits, potentially providing
breeders with a ‘deep phenotyping’ capability
(Flavel et al. 2012; Mooney et al. 2012). For
example, crop root systems could be studied at
high resolution and in 3D to reveal which archi-
tectural features might be most readily associated
with water and nutrient uptake. The quality of
‘region of interest’ scans, i.e. zooming into a
large sample and scanning a small volume at
high resolution, has also recently improved.

The X-ray CT offers an elegant method of
studying root growth non-destructively in situ,
but would benefit from substantial hardware
and software development to obtain high-
resolution images of roots grown in relatively
large containers. To that effect, a project recently
funded by the European Research Council is
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attempting to improve CT hardware, software
and genetic selection, offering a potential for
enhanced in situ studies of root systems in the
future.

8.4.2 Root Image-Analysing Software

High-throughput phenotyping platforms coupled
to non-invasive root observation technologies
acquire large numbers of root images. More
than 30 different software tools are currently
available analysing root system images
(Table 8.2; Lobet et al. 2013).

General-purpose image-analysing software,
such as WinRhizo and ImageJ, may be flexible
enough to perform many specialised tasks.
Pierret et al. (2013) confirmed the good perfor-
mance of automated measurement of scanned
root images using IJ_Rhizo in comparison with
the commercial package WinRhizo.

A number of specifically designed image-
analysing packages have also been developed
for high-throughput quantification of root archi-
tecture traits. For example, there are several soft-
ware packages for automating the analysis of
root traits in minirhizotron images, including
RootView, RooTracker, MR-RIPL and
WinRhizoTRON. French et al. (2009) described
the application of RootTrace software for high-
throughput, automatic  measurements  of
Arabidopsis seedling roots grown on agarose
plates. The method combines a particle-filtering
algorithm with a graph-based method to trace the
centre line of a root. The package can quantify
root length, curvature and stimulus response
parameters such as onset of gravitropism,
through tracing function. Leitner et al. (2014)
developed a novel approach for recovering root
architecture traits from 2D neutron radiography
images based on image-analysing techniques in
Root System Analyzer software. Information
about these image-analysing programs and their
applications are summarised in Table 8.2. Other
useful data are available in Clark et al. (2013)
and Lobet et al. (2013).
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8.5 Root Models and Simulations
The complex interactions between root systems
and their soil environment, and the difficulties
associated with visualising and measuring these
interactions, make studying the plant—soil con-
tinuum a challenge (Dunbabin et al. 2013). Cur-
rent development of 3D root architectural models
offers an excellent opportunity to characterise
root function in soil, determine factors governing
root—soil interactions and identify root
parameters that underpin adaptation to a particu-
lar environment. Root models can be used to
simulate (1) 3D and time-dynamic root architec-
ture; (2) biological, physical and chemical pro-
cesses occurring in soil; (3) scenarios beyond
those directly observed; and (4) these scenarios
in a dynamic environments that vary in time and
space (De Dorlodot et al. 2007). Thus, by
integrating rhizosphere and growth data, simula-
tion and modelling studies are capable of linking
predictive laboratory techniques with field stud-
ies, allowing researchers to strategically predict,
evaluate and target beneficial root traits or
genotypes for specific growth environments
(De Dorlodot et al. 2007; Ho et al. 2004).

The development of structure-function root
models and the features of six current root
models have recently been reviewed in Dunbabin
et al. (2013). These six root models are SimRoot
(Lynch et al. 1997), SPACSYS (Bingham and
Wu 2011; Wu et al. 2007), RootBox (Leitner
et al. 2010), ROOTMAP (Diggle 1988a, b;
Dunbabin et al. 2002b), RootTyp (Pages et al.
2004) and R-SWMS (Somma et al. 1997). These
models have been used for a wide range of root
modelling studies (see Dunbabin et al. 2013).

ROOTMAP and SimRoot, the two simulation
models that differ in the structure and functional-
ity of modules, are being used to investigate
various root-soil interactions in  crops.
ROOTMAP model combines the 3D growth
and structure of root systems (Diggle 1988a, b)
with root responses to spatial and temporal
patterns of mineral nitrogen concentration in the
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environment (Dunbabin et al. 200la, b) to
produce an interactive model of root structure
and function (Dunbabin et al. 2002b). So far,
ROOTMAP was used to model (1) root growth
of lupins, field peas and wheat and (2) uptake of
water and nutrients (N and P) from soils with
varying resistances to root growth and differing
water and nutrient supplies at scales ranging
from rhizosphere (Dunbabin et al. 2006) to field
(Dunbabin et al. 2002a). The SimRoot model
(Lynch et al. 1997) was previously used to select
optimal root traits for phosphorus efficiency in
beans, followed by selecting breeding lines and
developing commercial cultivars that are now
widely grown in Central and South America
(Lynch and Brown 2001; Nielsen et al. 1998).
Key strengths of SimRoot are (1) sophisticated
routines for estimating carbon costs of various
root structures and their efficiency in capturing P
from soil (Lynch and Ho 2005; Nielsen et al.
1994), (2) use of fractal geometry to estimate
3D root growth from relatively easily measurable
root parameters (Nielsen et al. 1997) and
(3) capacity to represent changes in physiology
and morphology along a root at high spatial res-
olution. Both models were recently used in
studying lupin roots via parameterising with the
root data acquired from the semi-hydroponic
phenotyping system (Sect. 8.3.1; Chen et al.
2011a). Both models simulated root growth and
responses to soil phosphorus in genotypes with
contrasting root architecture under growth
conditions similar to those of the glasshouse
experiment (Chen et al. 2011b, 2013b).

It is anticipated that the structure-function
root models will play an increasingly important
role in the rhizosphere research, providing
insights into the relationships among root archi-
tecture, morphology and functional efficiency
(Dunbabin et al. 2013). With further develop-
ment, root models have the potential to be used
as an aid in crop breeding programmes by
selecting root traits important for enhanced
plant performance and grain yield in targeted
environments.


http://dx.doi.org/10.1007/978-81-322-2226-2_8

8 Phenotyping for Root Traits

8.6 Conclusion

Breeders, agronomists and other researchers
recognise the significance of RSA to crop pro-
ductivity. Increasing attention is being paid to
searching for root traits conferring efficiency in
resource acquisition and adaptation to edaphic
stresses, particularly in drying soil environments.
Various technologies are being developed for
high-throughput  phenotyping, non-invasive
visualisation and accurate image analysis of
root architecture traits. Together with recent
developments of the structure-function simula-
tion models, these advanced approaches will
enhance our understanding of the relationship
between root architecture and function and the
complexity of root—soil interactions, leading to
improved crop performance and productivity.
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