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Foreword

Growing world population is expected to cause a “perfect storm” of food,

energy and water shortages by 2030 as demand for food and energy will jump

by 50 % and for fresh water by 30 %, as the population tops at 8.3 billion. The

overarching challenge before the policy makers and agricultural scientists is

how to ensure food and nutrition security for an ever-increasing population

from limited and fast depleting resources under climate change scenario,

especially in countries like India where sizeable population is still suffering

from the triple burden of malnutrition. To meet the future demand of agricul-

tural production, we need to develop more productive and nutritious varieties

of agricultural crops which incorporate both high intrinsic yield potential and

resilience under climatic stresses. This requires discovery and deployment of

superior but complex traits from the vast germplasm resources being held in

various gene banks to agronomically superior varieties efficiently and

precisely.

Traits of breeders’ interest such as grain yield, plant growth and resistance

to biotic and abiotic stresses are complex as these are controlled by many

genes of minor effects and highly influenced by environmental factors and

their multi-dimensional interactions. In the past, plant breeders were success-

ful in selecting desirable varieties empirically on the basis of visual

observations, more so for qualitative traits; but empirical selection remains

elusive and less effective for traits essential for meeting the current

challenges such as underground, physiological and biochemical traits.

Recent advances in genomics have created enormous genomic resources in

several crop species which have the potential to increase harvestable yield
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manifolds. However, available gene sequences and molecular markers could

not be mainstreamed in crop improvement programs mainly due to the lack

of precise phenotyping data. Therefore, it is imperative to phenotype the

available germplasm precisely and efficiently in various crop species.

The current knowledge and voluminous information generated on

phenotyping tools and techniques available in literature need to be

consolidated so that researchers and scholars have access to such vast

knowledge at one place. The present book, Phenomics of Crop Plants:

Trends, Options and Limitations, which is a meticulously edited volume, is

an attempt in this direction to bring together information on precision

phenotyping under controlled versus natural environments, digital and

image based phenotyping, phenomics of biotic and abiotic stresses and

functional traits, and precision nutrient management. This book also covers

experimental designs and biometrical approaches suitable for precision

phenotyping of complex traits, and how phenomics can help to harness

potentiality of genomics. Various chapters in this book have been contributed

by renowned scientists whose research contributions are acknowledged

globally. I am quite hopeful that the information contained in this book

will boost research efforts of plant scientists to bring about a major break-

through in agricultural production and will serve as a resource material for

those who are involved in teaching and research in agricultural crops. I

congratulate the editors Jitendra Kumar, Aditya Pratap and Shiv Kumar for

bringing out this book timely on such an important and emerging aspect and

hope that it would be widely read by scholars and researchers.

Secretary, DARE and Director General, ICAR

Krishi Bhavan, New Delhi, India

S. Ayyappan
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Preface

It has been estimated that agricultural production must be doubled by 2050 in

order to meet the predicted demand of growing world population. Achieving

this goal poses a serious challenge to plant breeders as the current agricultural

production growth rate of 1.3 % per annum is below the population growth

rate. In the recent past, research advances have been made in the develop-

ment of genomic tools and techniques which have the potential to increase

the rate of genetic improvement. The whole genome studies have the poten-

tial to greatly facilitate genetic dissection of complex traits such as yield

and stress tolerance by using technological advances in genotyping and

sequencing. However, successful application of genomics towards the

genetic improvement of crop plants depends upon our ability of precision

phenotyping of these complex traits. Low cost and high-throughput

genotyping has paved the way for the development of large mapping

populations and diversity panels of thousands of recombinant inbred lines.

These genetic resources require precise phenotyping. Marker-assisted recur-

rent selection (MARS) and genome-wide selection require phenotypic data,

although conceptually selections are made on the basis of genetic informa-

tion. A single phenotyping cycle is used to identify markers for subsequent

selection through generations. In transgenic studies also, phenotyping is

necessary for identification of promising events. Molecular breeding

populations sometimes include up to 5,000 lines and their accurate charac-

terization simultaneously is a challenging task. Also phenotyping of such

complex traits are labor intensive, and many other interesting traits involved

in biological processes are currently not suitable for genetic mapping due to

the lack of approach to efficient and reliable measurement. The success

in development of improved varieties relies on the ability to identify the

best genetic variation for advancement. Because breeding is essentially a

numbers game, more crosses and environments are required to identify

superior variation with greater probability. Therefore, plant breeders want

to phenotype a large number of lines rapidly and accurately to identify the

best progeny. Advances in phenotyping are essential to capitalize on the

developments in conventional, molecular, and transgenic breeding and

ensure genetic improvement of crops for future food security.

In recent years, there has been increased interest in development of high-

throughput phenotyping tools and techniques for screening of agronomic,

physiological, and biochemical traits expressing especially under biotic and
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abiotic stresses. These techniques have become much more advanced and

have now entered the era of high-throughput field phenotyping. Several

phenotyping platforms have been developed around the world, which are

fully automated facilities in greenhouses or growth chambers with robotics,

precise environmental control, and remote sensing techniques to assess plant

growth and performance. Consequently, voluminous literature has been

generated on different aspects of phenotyping which is scattered in numerous

journals and books. However, no single publication is available to provide a

comprehensive insight into this literature with a focus on phenomics of crop

plants. This book, Phenomics of Crop Plants: Trends, Options and

Limitations, is an attempt in this direction to bring together various high

throughput, advanced phenotyping tools, techniques and platforms for

directed genetic improvement in crop plants.

The present book comprises 19 chapters contributed by renowned

scientists in their fields of expertise. The first chapter presents an overview

on the recent developments in phenotyping. The second chapter deals with

traits that require precise phenotyping. Chapter 3 discusses various issues

related to phenotyping under controlled and natural environments while the

subsequent three chapters (Chaps. 4, 5, and 6) deal with the imaging tools in

phenotyping agronomic and physiological traits in crop plants. Chapters 7, 8,

and 9 focus on phenotyping tools available for heat and drought related traits

and soil problems. Chapter 10 deals with screening methods for diseases and

possibility of using the recent developments in the field of phenomics. The

subsequent three chapters (Chaps. 11, 12, and 13) discuss the advances in

phenotyping of functional traits, role of florescence approaches for under-

standing the functional traits of photosynthesis and use of NMR in identifi-

cation of subcellular structural and metabolic challenges. The next two

chapters are on precision nutrient management and identification of

nutritional and anti-nutritional factors of seeds (Chaps. 14 and 15). The

subsequent two chapters (Chaps. 16 and 17) discuss the role of experimental

designs for precision phenotyping and use of biometrical approaches in data

analysis of the complex traits. As vast amount of genomic resources are now

available in several crop plants, precision phenotyping can harness the

potentiality of these genomic resources for accelerating the genetic improve-

ment through mainstreaming them in the ongoing breeding programs. There-

fore, the next two chapters (Chaps. 18 and 19) deal with how the available

genomic resources can be utilized in a better way by using the available

phenomics platforms worldwide for precise phenotyping of agronomic and

physiological traits. Each chapter of this book has focused on the current

trends, available options for phenotyping the target traits and limitations in

their use for phenomics of crop plants.

The review of entire published work was neither possible in a single

volume nor was the aim of this book. However, the contributors of individual

chapters have provided exhaustive list of references on significant work done

so far on different aspects of phenomics. Keeping in view the scope of the

book, a little overlap in the subject is possible albeit all chapters have been

dealt in depth by various experts. We are extremely grateful to all the authors
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who despite being busy with their research and academics completed their

chapters with a professional approach and great care.

We are highly indebted to Dr. S. Ayyappan, Secretary, Department of

Agricultural Research and Education (DARE), Government of India, and

Director General, Indian Council of Agricultural research (ICAR); and

Dr. Mahmoud Solh, Director General, International Centre for Agricultural

Research in the Dry Areas (ICARDA) for encouragement and inspiration in

bringing out this publication. We are also thankful to Prof. Swapan Datta,

Deputy Director General (Crop Science), ICAR; Dr. Maarten van Ginkel,

Deputy Director General (Research), ICARDA; Dr. Michael Baum, Director

of BIGM, ICARDA and Dr. B. B. Singh, Assistant Director General (Oilseed

and Pulses), ICAR, for providing support and state-of-the-art facilities to

carry out research on pulses. Dr. N. P. Singh, the present Director and

Dr. N. Nadarajan, Ex-Director of IIPR, Dr. S. K. Chaturvedi, Head, Crop

Improvement Division, IIPR, have been the source of encouragement for the

present endeavor. Several people have rendered invaluable help in bringing

this publication to life and they deserve our heartfelt appreciation and

gratitude: Dr. Sanjeev Gupta, Project Coordinator, MULLaRP, IIPR, for

technical comments and scientists of Crop Improvement Division, IIPR, for

their valuable technical inputs during the course of editing the chapters;

Mr. Ramesh Chandra, Senior Technical Assistant; Mr. Rohit Kant,

Miss Nupur Malviya and Rakhi Tomar, Senior Research Fellows, for helping

in compilation of references and voluminous correspondence, and Springer

International for bringing the book through printing process with a thorough

professional approach. Last but not least, our kids Neha, Gun and Puranjay

and our better halves, Mrs. Renu Rani, Dr. Rakhi Gupta and Dr. Pankaj Rani

Agrawal, deserve special thanks for their unstinting help, patience and

emotional support during the course of this book.

Kanpur, Uttar Pradesh, India Jitendra Kumar
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Abstract

Precise and accurate measurement of traits plays an important role in the

genetic improvement of crop plants. Therefore, a lot of development has

taken place in the area of phenomics in the recent past. Both forward and

reverse phenomics have been evolved, which can help in identification of

either the best genotype having the desirable traits or mechanism and

genes that make a genotype the best. This includes development of high

throughput non-invasive imaging technologies including colour imaging

for biomass, plant structure, phenology and leaf health (chlorosis, necro-

sis); near infrared imaging for measuring tissue and soil water contents;

far infrared imaging for canopy/leaf temperature; fluorescence imaging

for physiological state of photosynthetic machinery; and automated

weighing and watering for water usage imposing drought/salinity. These

phenomics tools and techniques are paving the way in harnessing the

potentiality of genomic resources in genetic improvement of crop plants.

These techniques have become much more advanced and have now

entered the era of high throughput integrated phenotyping platforms to

provide a solution to genomics-enabled improvement and address our

need of precise and efficient phenotyping of crop plants.
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1.1 Introduction

Worldwide demand for crops is increasing rap-

idly due to rising global population, rising

demand for biofuel and feed stocks and changing

food preferences. Meeting future demand of agri-

cultural production poses the greatest challenge

to agricultural scientists and policy makers
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(Bruinsma 2003) because demand for cereals,

biofuels and feed stocks has already surpassed

the current supply and is expected to rise further

in the near future (Furbank et al. 2009; Sticklen

2007). Therefore, there is a competition among

crops for arable land in order to increase their

production. Rising global mean temperature by

0.8 �C since the 1850s, which is expected to

increase further by 1.8–4.0 �C by the end of this

century, will have further impact on agricultural

production due to changing climate (Solomon

et al. 2007) and prevalence of abiotic stresses

with more intensity and frequencies (Tester and

Langridge 2010). It has been estimated that in

future average crop yields may decline across

Africa and South Asia by 8 % by the 2050s

(Knox et al. 2012). These declines in yields

have been predicted about 17 % in wheat, 5–16

% in maize, 11–15 % in sorghum, and 10 % in

millet across above regions under regimes of

climate change (Wheeler and von Braun 2013).

Therefore, development of ‘climate-smart’

germplasm would be a priority to tackle these

future challenges of climate change (Ziska and

Bunce 2007; Leakey et al. 2009).

The use of conventional plant breeding

methods has made substantial gain in crop yield

worldwide. However, researchers are now

observing that current breeding methods will

not be sufficient to meet the projected future

demand of foods (Furbank et al. 2009; Tester

and Langridge 2010; Sticklen 2007). Therefore,

this has shifted our focus towards the use of

genomics and gene technology advances for

assisting the current breeding programs in order

to increase grain yields. These developments are

being utilized in trait discovery, genetic dissec-

tion of complex traits and discovery of associated

genes and their deployment in varieties. This has

resulted so far in more than 5,000 publications on

mapping of quantitative trait loci (QTL) and their

isolation during the past years (Zamir 2013). In

spite of these efforts, the identified QTLs/genes

could not be deployed in mainstream breeding

programs because identification of most of these

QTLs/genes was not based on the precise and

accurate phenotyping data of targeted traits.

Hence, association of these QTL/genes with the

phenotype in a ‘real world’ environment remains

elusive as many false positive QTL have been

reported earlier.

Although a large collection of germplasm of

different crop species are available worldwide,

phenotypic descriptions of these genome wide

knockout collections are still limited. As a result,

it restricted the use of genomic resources for

identifying the allelic variation for a promising

candidate gene in natural germplasm collection

(see Miyao et al. 2007). The poor utilization of

genomic resources could also be due to the lack of

analysis of invisible traits and sometimes com-

plex phenotypic effects of genetic modification.

Therefore, identification of a candidate germ-

plasm that carries genes for targeted traits is

only possible when we will have the precise and

accurate phenotyping profile of the germplasm.

Phenotyping of valuable agricultural traits such

as grain yield, abiotic stress tolerance, and

nutritional quality is widely recognized as the

most laborious and technically challenging

because replicated trials are necessary across

multiple environments over a number of seasons.

Some of the current phenotyping tools also

require destructive harvesting at fixed time

intervals or at a particular phenological stage

and are slow and costly. These bottlenecks in

field phenotyping have driven intense interest

over the past decade and hence efforts have

been made on development of new high through-

put phenotyping tools and techniques such nonin-

vasive imaging, spectroscopy, image analysis,

robotics and high-performance computing for

phenotyping. These tools can not only be used

in laboratories but also in field leading to high-

throughput analysis of phenotypes in natural

conditions as well as under controlled-

environment conditions. Now, field evaluation

of plant performance is much faster, and

facilitates a more dynamic, whole-of-lifecycle

measurement less dependent on periodic destruc-

tive assays. The dedicated high throughput

controlled-environment facilities have also

improved the precision in recording the data and

reduce the need for replication in the field. Thus

these advances have revolutionized the field of

the accurate and precise phenotyping for
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important traits and bring us to the age of

‘phenomics’ and overview of these developments

have been presented in this chapter.

1.2 Origin of Plant Phenotyping

Plant phenotyping has been a part of crop and

variety selection since the time of human civili-

zation when humans selected the best individuals

of a crop species for domestication (Diamond

1997). Subsequently it has become common

practice in plant breeding for selecting the best

genotype after studying phenotypic expression in

different environmental conditions and also

using them in hybridization programs in order

to develop new improved genotypes (Pearson

et al. 2008; Fisher 1925; Annicchiarico 2002).

Ecologists used phenotyping to study phenotypic

plasticity of genotypes during the middle of the

twentieth century and suggested the role of the

genotype and environmental conditions in the

expression of plant phenotypes under which it

develops (Suzuki et al. 1981). Subsequently,

developments in ecology in relation to

phenotyping are the trait-based approaches, in

which phenotypic characteristics of a wider

range of different species are evaluated either in

the field (Reich et al. 1992) or under laboratory

conditions (Grime and Hunt 1975; Poorter et al.

1990). They were used to derive different

strategies by which the ecological niche of spe-

cies could be described (Grime 1979) and to

analyze the interdependence of various traits

(Wright et al. 2004).

1.3 Phenomics

The word ‘phenome’ refers to the phenotype as a

whole (Soul 1967) i.e., expression of genome for

a trait in a given environment while in phenomics

we get high-dimensional phenotypic data on an

organism at large scale. Actually phenomics is

used as analogy to genomics. However it differs

from genomics. In genomics, complete charac-

terization of a genome is possible while in

phenomics, complete characterization of

phenome is difficult due to the change in the

phenotypic expression of traits over the environ-

mental conditions (Houle et al. 2010).

1.4 Phenotype vs Phenomics

Phenotype of a plant can be described on the

basis of morphological, biochemical, physiologi-

cal and molecular characteristics. Different

parameters are measured to describe these

characteristics. Johannsen (1911) has coined the

terms ‘genotype’ and ‘phenotype’. He

demonstrated substantial variation in quantita-

tive traits to which he called ‘phenotypical’ in

genetically-identical material and thus proved

that variation in a given observed traits is not

controlled entirely by genetics. Therefore, use

of statistical analysis has been suggested for

identifying the differences among genotypes

because phenotypic variation within a genotype

can obscure phenotypic differences among

genotypes. This leads to origin of pheno- word.

After 1950, ‘phenotyping’ as a noun, ‘to pheno-

type’ as a verb and ‘phenome’ as the collective

noun were introduced, which have been accepted

scientifically and are being utilized commonly in

literature.

1.5 Forward and Reverse Plant
Phenomics

Plant phenomics is the study of plant growth,

performance and composition. Figure 1.1

showed the use of forward and reverse

phenomics in genetic improvement. Forward

phenomics uses phenotyping tools to discrimi-

nate the useful germplasm having desirable traits

among a collection of germplasm. This leads to

identification of the ‘best of the best’ germplasm

line or plant variety. Use of high-throughput,

fully automated and low resolution followed by

higher-resolution screening methods have

accelerated plant breeding cycle by screening a

large number of plants at seedling stage. Thus

interesting traits can be identified rapidly at early

stage and there is no need to grow plants up to the
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maturity stage in field. Now it is possible in

forward phenomics to screen thousands of plants

in pots running along a conveyor belt, and

travelling through a room containing automated

imaging systems such as infra-red or 3D

cameras. The pots are labelled with barcodes or

radio tags, so that the system can identify which

pots contain plants with interesting traits. The

selected plants can then be grown up to produce

seed for further analysis and breeding.

The reverse phenomics is used where the best

of the best genotypes having desirable trait(s) is

already known. Now through reverse phenomics,

traits shown to be of value to reveal mechanistic

understanding are dissected in details and subse-

quently the identified mechanisms are exploited

in new approaches. Thus in reverse phenomics,

we discover mechanisms which make ‘best’

varieties the best. This can involve reduction of

a physiological trait to biochemical or biophysi-

cal processes and ultimately a gene or genes. For

example, in case of drought tolerance,

researchers try to work out the mechanisms

underlying the drought tolerance and find out

the gene or genes that are responsible for

it. These genes are screened in germplasm or

the gene can be bred into new varieties.

1.6 Genes and Phenes

To describe phenotype is more challenging than

genotype because it changes over the

environments. Therefore, the term ‘phenotype’

is not completely straight forward (Mahner and

Kary 1997) and it varies among the various sub

disciplines of biology. Ecologists traditionally

define phenotype as trait when they refer to a

phenotypic variable of a plant such as the specific

leaf area (SLA). However, some ecologists also

refer to traits in relation to characteristics of

vegetation, such as the leaf area index (LAI).

Like gene, ‘trait’ has been designated as

‘phene’. However it can be over simplification

for a one-to-one relationship between gene and

phene because one gene can have a range of

pleiotropic effects and many genes can control

a trait. The term ‘phenome’ is being utilized as a

counterpart to ‘genome’. Thus as total constella-

tion of all genes (alleles) present in an individual

is known as genome. Therefore, similarly the

phenome would be the aggregate of all the

expressed traits of an individual. Actually, use

of various terminology may overlap as they ful-

fill various and different needs for different

niches of the scientific community. A clear and

singular definition throughout the full domain of

biology is desirable but probably unreachable

(Mahner and Kary 1997).

1.7 Advances in Phenomics

Morphological, physiological and biochemical

traits are important to breeders for making

genetic improvement for yield, quality and toler-

ance to biotic and abiotic stresses. These traits

have been discussed in details in Chap. 2.

Fig. 1.1 Forward and reverse phenomics for genetic improvement in crop plants
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Conventionally, phenotyping data on these traits

are recorded either visually or manually, which is

time-consuming and required a lot of efforts.

This also increases chance of errors in measure-

ment of traits. As a result, it increases chance to

identify the false positive alleles, which leads to

slow gain in genetic improvement. Therefore

during the past few years, focus has been shifted

on precise, accurate and rapid phenotyping of

traits on a large scale. High-throughput

phenotyping using non-invasive imaging

technologies is a rapidly advancing field (www.

plantphenomics.org.au; Furbank et al. 2009;

Finkel 2009; Jansen et al. 2009; Berger et al.

2010). These techniques are based on colour

imaging for biomass, plant structure, phenology

and leaf health (chlorosis, necrosis), near infrared

imaging for measuring tissue water content and

soil water content, far infrared imaging for can-

opy/leaf temperature, fluorescence imaging for

physiological state of photosynthetic machinery

and automated weighing and watering for water

usage imposing drought/salinity conditions.

These advanced phenotyping techniques have

been discussed in details earlier in a number of

reviews (see Furbank and Teste 2011; Walter

et al. 2012). The genotypes capable of

maintaining stomatal conductance under salt

induced osmotic stress have been selected suc-

cessfully at the young seedling stage in wheat

and barley using infrared thermography (Sirault

et al. 2009). This technique has also been

suggested to use for high-throughput seedling

screening for drought tolerance in the vegetative

stages of crop development and has great poten-

tial for low-cost, high-throughput field

phenotyping. The genotypes having better pho-

tosynthetic capability and higher water use effi-

ciency in field can be screened by measuring the

canopy temperature using handheld hermopile

based infrared thermometers (i.e. canopy temper-

ature ‘guns’). Chlorophyll fluorescence analysis

has been used to test the maintenance of photo-

synthetic function under biotic and abiotic

stresses leading to identification of resistance

and susceptible genotypes. For this purpose, a

commercial instrument namely pulse amplitude-

modulated (PAM) or fluorometry has been

developed which is based on fluorescence param-

eter measured in stress (Baker 2008). It can be

used on whole leaves or small plants. It used

successfully for abiotic stresses screening in

Arabidopsis and tobacco (Nicotiana tabacum)

or seedlings of dicots such as canola (Brassica
napus) or cotton (Gossypium ssp.) (Baker 2008;

Woo et al. 2008). It can also be used to determine

projected leaf area and hence the growth rate if

measurements are taken regularly over time

(Barbagallo et al. 2003). The chlorophyll fluores-

cence images of the affected area of the leaf

allow the early detection of disease symptoms

caused by the pathogens. These infected areas

can be quantified leading to identification of the

susceptible and resistant response to pathogen

attack, at least in the case of mildew on barley

leaves (Swarbrick et al. 2006; Chaerle et al.

2009). Leaf spectroscopy or hyperspectral reflec-

tance spectroscopy using radiometric or, more

recently, imaging sensors are another established

optical techniques related to chlorophyll fluores-

cence, which have been developed to study the

stress related phenomics (Jones and Vaughan

2010). However, its use in plant breeding is lim-

ited due to difficulties in interpreting canopy

temperature data.

Digital imaging is one of the least compli-

cated but useful methods for quantitatively deter-

mining the stress tolerance. It is popular

approach for in situ crop phenotyping in con-

trolled environment facilities. It uses to take the

digital images of growth over a period of plant

development and measures quantitative changes

in images caused by the sum of stress response

mechanisms. In addition to this, taking digital

images in visible wavelength regions also give

opportunity to identify color of the plants. As a

result, it enables to quantify senescence arising

due to nutrient deficiencies or toxicities, or path-

ogen infections. It has been used successfully to

quantify toxicity of germanium (as a toxic ana-

logue of boron) in a mapping population of bar-

ley (Schnurbusch et al. 2010) and identified a

QTL at the same locus as previously identified

for boron tolerance using a visual score of

symptoms (Jefferies et al. 1999). The attempt

was also made to measure the water use
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efficiency in plants (Harris et al. 2010). Use of

non-destructive imaging using fluorescence

and hyperspectral reflectance offers great prom-

ise in quantitative scoring of such adult plant

resistance phenotypes. However use these

techniques for screening biotic stresses is still

limited.

1.7.1 Development Towards the
Phenotyping Machines

ring the past one decade, vast amount of genomic

resources have been developed and rapid devel-

opment in genome sequencing has increased the

genomic data bases such as, e.g. GABI DB or

TAIR DB in model plant species and crop plants

(Meinke et al. 1998; Riano-Pachon et al. 2009;

Huala et al. 2001). High throughput genotyping

platforms have increased the speed of genotype

selection in breeding programs (Langridge and

Fleury 2011). However phenotyping for complex

traits related to anatomy, morphology, physiol-

ogy and development is still less advanced,

although high-throughput phenotyping

techniques have increased our detection ability

substantially at subcellular level for protein

interactions or metabolism (Houle 2010;

Kolukisaoglu and Thurow 2010). For plant

breeders, screening component traits

contributing to yield under field conditions at

large scale is more important for making genetic

improvement, but it is still lacking (Furbank and

Tester 2011). However significant efforts have

been made towards the development of

automated phenotyping platforms during the

past years (Granier et al. 2006; Jansen

et al. 2009; Furbank and Tester 2011; Delseny

et al. 2010; see Chap. 18) by taking advantages of

throughput phenotyping facilities developed in

the field of drug discovery, development, and

animal behavior (Mayr and Bojanic 2009;

Noldus et al. 2001). In brief, these platforms are

equipped with sensor or image based systems

under the controlled growth leading to establish-

ment and implementation of the non-destructive

imaging approaches for phenotyping (Furbank

and Tester 2011; Fiorani et al. 2012). In these

platforms, we can measure the plant size and leaf

area of large germplasm collections using 2D

color images and dense canopy by using 3D

image technology and magnetic resonance imag-

ing (MRI) (Poorter et al. 1988; Dornbusch

et al. 2012). The fluorescence and hyperspectral

analysis allow evaluation of various plant traits

in a fast and non-destructive manner to charac-

terize the leaves and roots at physiological or

biochemical level. However, only specific

aspects of plant functioning can be evaluated in

this way. An exciting new development is the

robotised sensor-actor for destructive sampling

of relevant plant parts has widen the phenotyping

capabilities by automated measurement of cellu-

lar processes and/or gene expression at specific

time points (Alenyà et al. 2012). Relevance of a

laboratory and greenhouse phenotyping tech-

nique is actually tested in field because traits

considered critical in the greenhouse may be

less important in the field. For example, the can-

opy of a stand is more relevant than of a single

plant under field conditions. Therefore, mobile

platforms such as a tractor equipped with specific

sensors enabled larger spatial flexibility have

been developed for the mechanistic field

phenotyping measurements with high accuracy

and repeatability in given plots, while drones or

airborne platforms can cover vast agricultural

areas. Though multi- and hyperspectral

technologies (Rascher and Pieruschka 2008;

Comar et al. 2012) can be used to analyze physi-

ological process, only few robust techniques such

as the laser-induced fluorescence transient

(LIFT) approach are available to estimate photo-

synthetic efficiency in the field (Pieruschka

et al. 2010). Dedicated field sensors are already

applied in precision agriculture for nutrient man-

agement (Scotford and Miller 2005) and may

become important tools for sensing of plant dis-

ease in the near future (Mahlein et al. 2012).

Establishment of wireless sensor networks

enables continuous monitoring of the environ-

ment and crop properties and will provide valu-

able information for agricultural management

(Ruiz-Garcia et al. 2009).

6 J. Kumar et al.

http://dx.doi.org/10.1007/978-81-322-2226-2_18


1.8 Harnessing the Potentiality of
Genomics Through Phenomics

Vast amount of genomic resources are available

in public domain but these could not be utilized

with their potentially due to the lack of precise,

accurate and high throughput phenotyping tools

and techniques. Therefore, efforts have been

made for the development of high throughput

phenotyping tools and techniques for screening

of morpho-physiological traits related to biotic

and abiotic stresses. The genomic resources

developed in a plant species can be linked with

physiological and morphological data collected

using current phenotyping approaches available

at automated phenotyping platforms worldwide.

These high throughput phenotyping tools collect

the precise and accurate observations and allow

analysis of data for understanding the whole

phenome of the plant under a wide range of

environmental conditions. Thus like genomic

platforms, phenotyping platforms develop

databases such as the plant meta-phenomics data-

base (Poorter et al. 2010) or the Plant Trait data-

base TRY (http://www.try-db.org, accessed

September 2012) which bring together pheno-

typic responses to the environment for a wide

range of plant traits and parameters. These

phenotyping database along with available inter-

national genomic databases (TAIR, TIGR and

NCBI, and with other ‘omics’ information such

as metabolomic, proteomic and transcriptomic

data) have now become important to understand

the genetic architecture of complex traits.

Phenomics has not only allowed to dissect the

complex traits through genomics but also helped

to use genomic resources in discovering new

genes/QTL, identification of function of a gene

sequence and helped to increase the genetic gain

for traits having low heritability (see chap. 17 for

details). This understanding will allow us to sim-

ulate and predict plant properties in particular of

complex traits such as yield or biomass, the most

important challenge to address future needs of a

growing human population. Both forward and

reverse phenomics approaches can be used to

harness the potentiality of genomic resources.

The accurate, cost-effective, high-throughput

phenotyping is pivotal to fine mapping of traits,

regardless of the genetic approach for producing

allelic recombination or assessing variation by

re-sequencing technologies. Phenomics can be

used in reverse genetic studies and can help to

identify the function of a particular gene(s) in

growth and development of crop plants and can

be used to identify the allelic variation to target

the associated genes (Fig. 1.2).

1.9 Conclusion

For making successful genetic improvement in

crop plants, plant breeders first identify the desir-

able genotypes having target traits by screening a

collection of germplasm accessions. These target

traits then are combined together through

hybridization. This cycle of selection-

hybridization-selection has been implementedon

the basis of visual observation since

Identification of  related traits

Screening the genetic resources 

Develop high throughput robust screening tools & techniques

Genetic dissection of individual traits

Validation and use of markers associated with trait to yield in the field 

yield, quality, tolerance to biotic and  abiotic stresses
etc.

color imaging, infrared thermography,
chlorophyll inflorescence etc.

markers, gene sequences etc.

genotypes having desirable traits.

Fig. 1.2 Flow chart

of application of

non-destructive

phenotyping in genetic

dissection of trait
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domestication of crop plants. Though visual

screening is easy and precise for qualitative and

highly heritable traits, its use is less precise for

quantitative traits and those traits, which are dif-

ficult to observe visually (physiological and bio-

chemical traits). Moreover, vast amount of

genomic resources have been developed in a

number of crop species in the past. The available

gene sequences and molecular markers could still

not be associated with any traits due to the lack of

phenotyping of germplasm collections. For

utilizing these genomic resources and identifica-

tion of desirable plants, the precise phenotyping

of germplasm accessions for challenging traits is

required in various crop species.

In the recent past, various techniques and

methodologies have been developed for screening

biotic, abiotic, physiological and biochemical

traits in crop plants. These technologies have

become very advanced in the era of digital sci-

ence. These plant phenomics developments are

actually helping to make simply plant physiology

in ‘new clothes’. Thus this trans-disciplinary

approach promises significant new breakthroughs

in plant science. Phenomics provides the opportu-

nity to study previously unexplored areas of plant

science, and it provides the opportunity to bring

together genetics and physiology to reveal the

molecular genetic basis of a wide range of previ-

ously intractable plant processes. The challenges

ahead in plant-based agriculture will require the

scale of quantum advances we have seen in infor-

mation technology in the past 20 years and we

need to build on these advances for security of

global food, fiber and fuel.
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Traits for Phenotyping 2
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Abstract

The term plant phenotyping has been regenerated with the contribution of

sensors, system technologies, and algorithms. This new plant describing

concept allows multi-trait assessment with automatic measurements.

Uniform structure, nondestructive measurements, precise results, and

direct storage are the advantages of digital phenotyping. The hyper-

spectral spectroradiometers and imaging technologies lead the way of

new plant phenotyping applications. This high-throughput technique

therefore requires lots of traditional and novel traits to present new

characterization. Digital-based phenotyping in plants is new and still a

developing area of research. The most often used traits of digital

phenotyping are canopy temperature, chlorophyll fluorescence, stomatal

conductance, chlorophyll content, leaf water potential, leaf area, fruit

color, carbon isotope discrimination, light interception, senescence, and

root traits which have been discussed in this chapter together with their

advantages, limitations, and plant breeding potentials.

Keywords

Trait • Characterization • Phenomics • Phenotyping • Imaging • Plant

breeding

2.1 Introduction

Plants are fundamental to life, providing the

basic and immediate needs of humans for food

and shelter. Domestication of plant species is an

important step in the human history for food uses

and diversification. Three steps were proposed for

plant domestication: (i) collecting seeds from their

native habitat and planting them in areas where

they were perhaps not adapted as well,

(ii) inhibiting certain natural selection pressures

by growing the plants in a field under cultivation,

and (iii) applying artificial selection pressures by

choosing characteristics that would not have nec-

essarily been beneficial for the plant survival

(Xu 2010). Selection pressure includes changes

in allele frequency, gradations within and between
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species, fixation of major genes, improvement of

quantitative traits (Tanksley and McCouch 1997;

Xu et al. 2010), and resulting in selection of desir-

able traits (Harlan 1975).

Identification of plant characteristics

contributes to germplasm utilization and thereby

characterization is an important step in genetic

resource management (Bioversity 2009). Traits

are the most important tool for describing

accessions and these plant characteristics are

used for diagnostic objective to depict the crops

as accession and discriminate them from one

another (Bioversity 2009). Traditionally, crops

are characterized by measuring phenotypic traits

such as color of plant parts and quantitative traits

like seed yield, drought tolerance, etc. (Rao

2004). Crop phenotypic traits can be quickly,

easily, cheaply, and nondestructively observed

or measured in field (Torres and Pietragalla

2012).

Although agronomic traits have been used

extensively in agriculture and biochemical,

molecular, and also high-throughput

phenotyping, regardless of background of traits,

all must have critical features such as simple to

score, specific to species, precise and uniform,

universal, easy, and quick discriminative.

2.2 Traditional Phenotyping

Till the last decade, plant phenotyping was done

with traditional methods using agro-

morphological traits which have been used in

characterization and interpreted to two major

data as qualitative and quantitative. Qualitative

data is used for diagnosis of highly heritable

traits that is not influenced by environmental

fluctuations. The traits are scored easily,

providing fast discrimination between germ-

plasm, and are generally regulated by major

genes (Bioversity 2007). The other data is quan-

titative, used for traits, which are expressed by

the gene interactions and also highly affected by

genotype and environment interactions (G � E).

Both qualitative and quantitative data are scaled

to degree of traits expression. These scales

should be nominal, ordinal, continuous, and

binary. In qualitative traits, nominal scales are

numbered to define the traits by names or labels

(color, shape). Ordinal scales are similar to nom-

inal type but have order. Binary scales have only

two types of diagnosis as yes/no or absent/

present. On the other hand, quantitative traits

are recorded by measuring, counting or

weighing, and using continuous scales (count-

able data, such as “1,000-seed weight”)

(Bioversity 2007). Some traits can be expressed

in degrees, which are then recorded on a scale

(from 1 to 9). This is valid especially for resis-

tance or susceptibility to different types of biotic

and abiotic stresses (Jaramillo and Baena 2002).

Although many of qualitative and quantitative

traits have been identified for different crops,

general concept of plant breeding has focused

some major traits. Improvement of agronomic

performance, tolerances or resistances to biotic

and abiotic stresses and quality traits are main

instruments in plant breeding (Riley et al. 1996).

The traits related to agronomic performance con-

tain yield and yield components. Yield concept

may change according to crops and aim of utili-

zation. Seed quantity in cereals and legumes is

assessed as a yield trait. Fiber is evaluated as a

yield trait in fiber crops, although it requires

manipulation for industrial uses. Vegetable oil

quantity is a yield criterion in oilseed crops.

Vegetative parts are evaluated as yield trait in

forage crops. Yield is therefore not only seed

yield but also different part of plants and pro-

cesses of seed in certain crops. Quality

parameters may contain nutritional and flavor

traits such as high oil content in oilseed crops,

high oleic acid level in vegetable oils, high pro-

tein content in legume crops, and smell, color,

and flavor in fruits and vegetables. Tolerance or

resistance to biotic stresses includes traits

imparting disease and insect resistance. Disease

resistance occurs against fungi, viruses, bacteria,

and phytoplasmas. Tolerance or resistance to

abiotic stresses is generally related to drought,

heat, cold, salt, soil conditions, and light. Resis-

tance and tolerance to biotic and abiotic stresses

are explained with scales. However, identifica-

tion of tolerance level is highly variable and

requires experience.
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Agro-morphological traits should be univer-

sal. If not, different and inconsistent characteri-

zation might lead to misunderstanding for

breeding studies. One type of characterization

in a population is therefore better than the indi-

vidual plant assessment. Plant traits have been

catalogued by International Plant Genetic

Resources Institute (IPGRI) and different inter-

national plant research organizations for success-

ful characterization of plant genetic resources.

This definitive scheme was named as “descrip-

tor” to provide “one language” understanding

about plant characteristics. It contains passport

data and descriptive features such as genus, spe-

cies names, sowing date, leaf and flower color,

and intensity of coloration and pre and posthar-

vest traits. Four categories viz., passport

descriptors, management descriptors, characteri-

zation descriptors, and evaluation descriptors

have been generated to recognize plant genetic

resources. Passport descriptors provide informa-

tion on systematic and provenance, whereas

management descriptors include data on where

the material is stored, quantity of a material

stored, and its condition. Characterization

descriptors are related to heritable traits which

are independent of the environment

(Summerfield et al. 1996). Hundreds of crop

plants have been catalogued by the group of

Bioversity International. Research centers of

FAO such as ICRISAT in India and ICARDA

in Syria and national institutes such as NIAS in

Japan, GENBANK.AT in Austria, NCGR in

Indonesia, and CIRAD in France have also

published descriptors for different plants.

2.3 Modern Phenotyping

Genotype in plants includes all of genes. Pheno-

type is a combination of genotype and environ-

ment. Phenome is gene and environment

interaction or the expression of the genes thanks

to characteristics in existing conditions (Furbank

and Tester 2011). Phenomics is a biological term

that is related with the measurement of phenomes

(Bilder et al. 2009). Plant phenotyping is a rap-

idly evolving concept that the phenotype

develops while the plant growing from the asso-

ciation between the plant genetic background

and the environment in which the plant develops

(www.fz-juelich.de).

The scientific accuracy of molecular breeding

is strongly related to phenomics and therefore

phenotyping (Xu and Crouch 2008). The main

aim of phenomics is to connect between genetic,

plant function, and agricultural characteristics

(Furbank and Tester 2011). Phenomics is an

important concept because only agro-

morphological or molecular data are inadequate

for analysis of plant natural structure due to the

fact that the connection between genes and

phenotypes is particularly weak in studies of

crop � environment. Phenotyping provides asso-

ciation among genotype-phenotype-environment

to enable sustainable and efficient crop produc-

tion by taking into consideration the climate

change and changing agricultural production

conditions (Tardieu and Schurr 2009). Plant

phenotyping is therefore necessary to elucidate

the functional role of gene networks under real

(natural) conditions and understand the impact of

biological diversity in adaptation of plants to

heterogeneous and fluctuating environments and

devise strategies to anticipate global climate

changes (www.fz-juelich.de).

Phenotyping offers opportunity for functional

studies on special genes, forward and reverse

genetic analyses, and development of new crops

with beneficial characteristics (Berger and Tester

2009). In the last decade, high-throughput

phenotyping platforms have gained popularity,

which are capable of handling several thousand

of plants in a single study under controlled envi-

ronmental conditions and allowing high-

accuracy phenotyping (Tardieu and Schurr

2009). Using advanced technology, many traits

are assessed with high-throughput phenotyping.

Large scale and large amounts of data can there-

fore be obtained in high-throughput analysis

which allows phenotyping mutants, mapping

and breeding populations, and germplasm

collections under different growth conditions.

Large numbers of proteins and metabolites

could be analyzed with high-throughput

phenotyping without any necessity of tissue

2 Traits for Phenotyping 13

http://www.fz-juelich.de/
http://www.fz-juelich.de/


extraction. Physiological measurements such as

photosynthesis, nutrient uptake, plant growth and

development process, and measurements in fields

can be made possible via high-throughput

phenotyping (NIFA-NSF Phenomics Report

2011). Recently, field phenotyping platforms

have been developed and they can control grow-

ing period, gas transmission, and status of

canopies with large number of plants and

genotypes, by using imaging techniques with

sensors placed on field vehicles or flying

platforms (Tardieu and Schurr 2009).

2.4 Techniques for Phenotyping:
Trends

Plant phenotyping has been carried out by

farmers and breeders for ages. In the traditional

phenotyping, morphological traits are assessed

with statistical analysis which has to be done

manually. It needs human efforts, time, and

resources to measure plant characteristics.

Performing of sensor technologies and algorith-

mic applications for automatic phenotyping are

being handled to overcome the defect of the

manual techniques (Klose et al. 2009). These

digital techniques provide multi-trait assessment

with automatic measurements and saving time.

Uniform structure, nondestructive measure-

ments, precise results, and direct storage are

also the advantages of digital phenotyping.

The hyper-spectral spectroradiometers is one

of the digital techniques which allows to formu-

late different indices and then to infer a wide

array of morphological and physiological traits

of plants (http://maizephenotyping.cimmyt.org/

index.php).

Spectral reflectance of plant architecture

enables monitoring of several dynamic complex

traits in phenotyping. Field spectrometers (and

spectroradiometers) are used to measure spectral

reflectance in ranges of 350–2,500 nm

(Nasarudin and Shafri 2011). The physiological

changes of a crop canopy including chlorophyll

content, photosynthetic capacity, nitrogen and

plant water status, and carotenoid content are

measured with spectral reflectance. These values

obtained by spectral reflectance allow estimation

of the green biomass, photosynthetic area of

the canopy, measurement of photosynthetic

radiation absorbed by the canopy, and canopy

architecture. Grain yield has also been estimated

using spectral reflectance indices during dif-

ferent developmental stages of crops (Fender

et al. 2006; Yazdanbakhsh and Fisahn 2012;

O’Shaughnessy et al. 2011; Mullan and Mullan

2012).

Digital imaging analysis provides a rapid way

of precisely measuring plant features (Tuberosa

2011). This technique is the most significant

technology of plant phenotyping. Different imag-

ing systems have been developed up to date.

Spectral imaging is one of the important

imaging systems which provide reliable spectral

information under chaotic outdoor conditions. A

video camera is used for plant detection (http://

maizephenotyping.cimmyt.org/index.php). An

on-the-screen-display generates a video

sequence and includes the measured data. As a

consequence, the data can be interpreted together

with an image and a clear correlation (http://

maizephenotyping.cimmyt.org/index.php). Plant

height is an important trait for imaging technol-

ogy as plant shape is well characterized with this

method (Fender et al. 2006).

In three-dimensional (3D) imaging, digital

photos of the top and sides of plants are com-

bined into a 3D image. Technically, pots of

plants move on a conveyor belt through an imag-

ing chamber and 3D models are automatically

generated by a computer program (http://www.

plantphenomics.org). Obtained images are trans-

ferred to the software and required editions as

color improving and optimization are made. Dig-

ital images have advantages such as simple

recording, transmitting, and storing in a database.

However, algorithms are necessary to gather and

analyze the huge amount of data (Tsaftaris and

Noutsos 2009). Arabidopsis thaliana has been

used as a model plant for development of imag-

ing systems.

Thermal imaging is a practical alternative to

specific measurements, because temperature of

canopy of the field can be analyzed in a short

time and outlines can be produced for the traits in

the field (Cohen et al. 2005). Thanks to thermal

imaging techniques, the water status at variety
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level can be defined under different environmen-

tal and greenhouse conditions (Grant et al. 2006).

The thermal measurements mostly rely on evap-

oration, with high and low level of temperature

reflecting stomatal structure as closing and open-

ing, respectively (Chaerle et al. 2007). In thermal

imaging, closing stomata is an early and sensitive

reaction of plants facing drought stress which is a

cause of reduced transpiration. Leaf temperature

locally rises and produces a spatial temperature

pattern that can be visualized by thermography

(http://maizephenotyping.cimmyt.org/index.php).

Thermal imaging systems enable fast and rapid

collection of data on a single leaf or a canopy area

(Grant et al. 2007). This system also provides

great number of crop measurement with low cost.

In fluorescence imaging, plant health and pho-

tosynthetic activity can be characterized. Fluo-

rescence occurs when an object absorbs light of

one wavelength and gives off light of a different

wavelength, which a computer program converts

the resulting fluorescence into false-color signals

to allow instant analysis of plant health (http://

www.plantphenomics.org). Magnetic resonance

imaging (MRI) allows studying plant roots. It

enables the 3D geometry of roots to be viewed

just as if the plant was growing in the soil (http://

www.plantphenomics.org). Near-infrared (NIR)

imaging provides detailed data on the watering

status of leaves (Eberius 2008). Phenonet sensor

network, phenomobile, phenotower, and blimp

are important tools which allow plant

phenotyping in the field to study lots of plants,

simultaneously (http://www.plantphenomics.

org).

2.5 Traits for Phenotyping: Trends
and Options

In current plant phenotyping, digital-based

systems and sensor technologies (highly sensi-

tive imaging, spectral imaging, robotics, and

high-algorithmic calculation) allow a wide

range of evaluation of complex traits such as

yield, growing period, tolerance/resistance to

diseases, architecture, and the fundamental quan-

titative parameters (http://www.lemnatec.com/

plant-phenotyping.php). It is known that adap-

tive traits are complicate and multigenic, and

understanding of their genetic structure is not

completely known (Salekdeh et al. 2009). How-

ever, this complexity can be understood with new

traits by evaluating their responses to environ-

ment. As plant phenomics is still a developing

study area, new and most often used traits in

phenomics are evaluated in this section, while

other traits are described in Table 2.1.

2.5.1 Canopy Temperature

It is an important parameter detected by thermal

imaging. In photosynthesis, stomata open to

admit carbon dioxide and simultaneously vapor

moves away from leaves, which cool the leaf

surface (Roth and Goyne 2004). Under water-

stress conditions, crop temperatures rise due to

insufficient transpiration. Canopy temperature

therefore affects water-use efficiency, stomatal

conductance, photosynthesis activity, transpira-

tion rate, leaf area index, sink strength, vascular

capacity, and crop yield (Fischer et al. 1998;

Pietragalla 2012). The measurement of canopy

temperature can change according to canopy

traits and stress tolerance. Thermal infrared

thermometers are noninvasive and reliable for

crop temperature measurements. Canopy tem-

perature has been identified by canopy tempera-

ture devices and infrared thermometers, easily

and at no extra cost. They may make non-

homogenous measurements as dimensional

between leaves, but they would be improved

with replications, without damaging natural

structure of the leaves (Grant et al. 2007). Other

system is remote thermal imaging which supplies

information as spatial of surface temperature and

hence makes it possible to recognize of canopy

temperature variation on wider areas (Alchanatis

et al. 2010). Wireless infrared thermometer sys-

tem is useful method for identification of canopy

temperature. This measurement type was devel-

oped by O’Shaughnessy et al. (2011) who

designed a model for field observation with wire-

less thermographic camera. Satellite and air-

borne imaging are also used for field trials.
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Airborne imagery has advantages compared to

satellite system and it can screen the fields

about 6,000–9,000 ft above horizontal area of

field (Roth and Goyne 2004). Lastly, trees

analyzed with frontal images by automatic sys-

tem were able to detect canopy temperature,

remotely (Jimenez-Bello et al. 2011). This tech-

nique was tested and canopy temperature

indicated good correlation with plant water sta-

tus. Also, the system is not required to control a

reference image and cameras can take thermal

and normal scenes, simultaneously. In different

plants, canopy temperature imaging studies have

conducted. Canopy and leaf imaging were tested

for grapevine to test stress responses in various

water regimes (Grant et al. 2007). Canopy water

status and canopy temperature in different stress

conditions were analyzed with high-throughput

phenotyping in maize (Romano et al. 2011;

Winterhalter et al. 2011; Zia et al. 2012).

Infrared thermal imaging technology was used

for identifying water-stress-tolerant maize

genotypes of different phenology (Zia et al.

2012). As a result, selected spectral indices

and IR-temperature indicated positive relation-

ship with canopy water mass under different

Table 2.1 Other traits used in plant phenotyping

Trait Reference

Biomass accumulation Montes et al. (2007)

Internode length http://www.lemnatec.com/plant-phenotyping.php

Osmotic adjustment Pierre and Arce (2012)

Plant width Phenofab (2012) (http://www.phenofab.com/)

Plant roundness Phenofab (2012) (http://www.phenofab.com/)

Plant height Fender et al. (2006)

Plant compactness Phenofab (2012) (http://www.phenofab.com/)

Plant orientation Phenofab (2012) (http://www.phenofab.com/)

Fruit shape Scott (2010)

Fruit size Phenofab (2012) (http://www.phenofab.com/)

Fruit netting Phenofab (2012) (http://www.phenofab.com/)

Fruit cracking Phenofab (2012) (http://www.phenofab.com/)

Leaf tracking Phenofab (2012) (http://www.phenofab.com/)

Leaf relative water content Mullan and Pietragalla (2012)

Leaf rolling http://www.lemnatec.com/plant-phenotyping.php

Leaf angles Phenofab (2012) (http://www.phenofab.com/)

Leaf length Phenofab (2012) (http://www.phenofab.com/)

Leaf pigment content Matsuda et al. (2012)

Leaf color Phenofab (2012) (http://www.phenofab.com/)

Panicle color Phenofab (2012) (http://www.phenofab.com/)

Panicle position Phenofab (2012) (http://www.phenofab.com/)

Panicle area Phenofab (2012) (http://www.phenofab.com/)

Germination rate Phenofab (2012) (http://www.phenofab.com/)

Germination consistency Phenofab (2012) (http://www.phenofab.com/)

Germination off-types Phenofab (2012) (http://www.phenofab.com/)

Disease resistance Phenofab (2012) (http://www.phenofab.com/)

Water-use efficiency Pierre et al. 2012

Drought resistance Phenofab (2012) (http://www.phenofab.com/)

Drought recovery Phenofab (2012) (http://www.phenofab.com/)

Nitrogen status Berger et al. (2013)

Nutrient-use efficiency Phenofab (2012) (http://www.phenofab.com/)

Salinity tolerance James and Sirault (2012)

Total mineral content Benamar et al. (2013)
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drought stresses. Phenotyping supported by non-

destructive high-throughput technology is there-

fore beneficial for identification of canopy water

status. Canopy temperature has also been used

for crop water status in cotton (Alchanatis et al.

2010), peach trees (Wang and Gartung 2010) and

vineyard (Orbegozo 2012). There was a strong

correlation between canopy temperatures and

stomatal conductance and stem water potential.

Other study about association of canopy temper-

ature and stomata was conducted by Stoll et al.

(2008) to image Plasmopara viticola effect in

grapevines under various water availability

regimes.

2.5.2 Stomatal Conductance

It is a trait related to leaf and canopy gas

exchange. It responds rapidly to soil water status

and controls photosynthetic activity and growth

(Munns et al. 2010). Higher density, size, and

degree of opening of the stomata allow greater

conductance, and thus photosynthesis and tran-

spiration rates are potentially higher (Pietragalla

and Pask 2012). Stomatal conductance has high

breeding value due to showing high heritability

and providing high correlation with yield; greater

leaf conductance under warmer temperatures has

been associated with cooler canopy temperatures

(Pietragalla and Pask 2012). The connection of

stomatal conductance and yield in wheat was

identified as positive in a 6-year study (Fischer

et al. 1998). Stomatal conductance is also related

to water deficits by the fact that as stomata close,

leaf temperatures rise (Grant et al. 2007). The

handheld porometer provides rapid measurement

of leaf stomatal conductance in irrigated trials,

though it is not a recommended measurement

under water stress (unless very mild) as the sto-

mata are generally close (Pietragalla and Pask

2012). Genetic diversity and stomatal changes

to water deficit in field conditions can also be

screened by infrared thermography (Munns et al.

2010). Stomatal conductance and canopy tem-

perature were used to evaluate soil water

potential in cotton (Padhi et al. 2012). The natu-

ral oxygen isotope composition (18O) was used

for observing stomatal conductance in leaves and

seeds (Barbour et al. 2000). Measuring 18O in

plant material offers four advantages: (i) it

provides an integrated measure of stomatal con-

ductance and leaf temperature over the period

that the analyzed tissue was formed; (ii) it avoids

a number of experimental problems typical of

measuring stomatal conductance; (iii) it allows

for the collection of a large number of samples;

and (iv) it requires very little labor in the field

(Tuberosa 2011).

2.5.3 Chlorophyll Fluorescence

It is commonly used in phenomics to see the

effect of different genes or environmental

conditions on the efficiency of photosynthesis

(http://www.plantphenomics.org). It is related to

photosynthetic activity under stresses like salin-

ity and drought. Imaging system is crucial

because suitable fluorescence imaging provides

information about the causes of the heterogene-

ity. The most common measurement was made

with determining the photochemical activity of

light harvesting in photosystem II. It was

formulated as Fv/Fm. Fv is variable fluorescence

from leaves adapted to darkness and indicates

PSII ability to present photochemistry. Fm is

maximal emission of electromagnetic radiation

from dark- and light-adapted leaf and

demonstrates level of fluorescence when primary

quinone electron acceptor of PSII is maximally

reduced (Baker 2008). Fv/Fm generally

decreases when plants are exposed to stress in

the light, and this event provides an easy and fast

tool for observing stress (Baker 2008). This

method is able to carry out whole-plant average

measurements or to target leaves with high-

throughput technology (Furbank and Tester

2011). Chlorophyll fluorescence can be

measured by using hyper-spectral spectrora-

diometers like that radiometric and imaging

sensors.
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2.5.4 Chlorophyll Content

Leaf chlorophyll content has a positive relation-

ship with dry root biomass (Songsri et al. 2009),

seed yield (Puangbut et al. 2009), and tolerance

to iron-deficiency chlorosis (Samdur et al. 2000).

Nodulation and nitrogen fixation status could be

identified by leaf chlorophyll measurements

(Vollmann et al. 2011). It can be quickly

measured using a portable optical meter (absor-

bance of red light at 650 nm and infrared light at

940 nm) (Mullan and Mullan 2012). A handheld

portable SPAD chlorophyll meter has been used

widely to estimate chlorophyll content (Dwyer

et al. 1991). Using SPAD data, grain protein

content; the alveogram parameters W, L, and

P/L; and dry gluten content were predicted by

Poblaciones et al. (2009). In St. Augustine grass,

SPAD values had positive correlation with chlo-

rophyll content, visual ratings, and total nitrogen

(Rodriguez and Miller 2000). Image analysis

should also be used for chlorophyll content deter-

mination after standardization in a field, which is

important application area for high-throughput

phenotyping (Vollmann et al. 2011). Leaf hue

measurement was performed with image analysis

by Majer et al. (2010) who found a significant

correlation between leaf hue and chlorophyll

content. In sugar beet, chlorophyll content was

identified with “neural-network model” which is

compact system based on RGB (red-green-blue)

components of the color image taken by classic

camera (Moghaddam et al. 2011). Chlorophyll

measurement was supported by SPAD reading

that was evident of neural-network model

accuracy.

2.5.5 Leaf Water Potential

It is a trait related to plant water energy. Water in

plants is transported within the xylem system

under negative pressure which is positively

related to the amount of water stress (Pierre and

Gonzlez 2011). The water potential can be

measured with chamber pressure method (War-

ing and Cleary 1967). With spatial thermal imag-

ing, water potential can also be identified by

canopy temperature. In cotton, Cohen et al.

(2005) identified leaf water potential and crop

water status by thermal images and spatial anal-

ysis, respectively. Spectral reflectance and can-

opy temperature were combined to evaluate leaf

water potential in grapevine by Vila et al. (2011).

The maps from the spectrometric techniques

were similar to the maps of the observed leaf

water potential in this study. The other study in

grapevine was conducted by Lang et al. (2000)

who used global positioning system (GPS) and

digital remotely sensed images to map full spec-

trum leaf reflectance in vineyards. This work

suggested that remote-image and leaf spectral

reflectance analysis may be a strong tool for

monitoring changes in metabolism associated

with plant stress. Differently, near-infrared

(NIR) spectroscopy technique is used as remote

sensing study to predict plant water status in

grapevine (De Bei et al. 2011). NIR spectroscopy

was a new approach for fast and low cost of

analysis of water potential. In Satsuma Manda-

rin, leaf water potential was exhibited with image

analysis (Kriston-Vizi et al. 2003). Technically,

an absolute reflection of mandarin leaf surface

was calculated by comparing with known refer-

ence target reflectance and thus leaf water poten-

tial was estimated in this study. A study to

measure leaf water potential of field-grown

potato was conducted by Zakaluk and Ranjan

(2008). Artificial neural-network (ANN) model

was used to imaging with RGB digital camera.

As a method, plants were selected randomly in

plots and images from plots were classified fol-

lowing to calibration to isolate young green

leaves from older ones. The obtained images

and vegetation indices were converted with

using PCA (principal components analysis).

According to Zakaluk and Ranjan (2008), the

ground-based digital camera is adequate to pre-

dict leaf water potential of potato plants in the

frame of high-throughput plant phenotyping.
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2.5.6 Leaf Area

All green surfaces, e.g., leaf lamina, sheath,

stem, and spike of crops, relate to the light inter-

ception and photosynthetic potential, the surfaces

for transpiration/water loss, and the above

ground biomass (Pask and Pietragalla 2012).

Leaf area measurements therefore have impor-

tance in studies of plant growth (Cristofori

et al. 2007). Some instruments and prediction

models such as drawing, blueprinting,

photographing, conventional planimeter, and

electronic leaf area meter can be used to measure

leaf area (Gao et al. 2012). Image analysis with

software should also be assessed as an alternative

method (Cristofori et al. 2007). Digital camera

imaging is fast and provides accurate analysis

using appropriate software (Bignami and Rossini

1996). Leaf area index (LAI) is also a leaf area

related trait indicating radiation intercepted by

the canopy, and therefore it defines crop canopy

photosynthetic activity (Xu et al. 2010). LAI is

also a fine character enabling to determine plant

transpiration and CO2 exchange which are

important to understand energy exchanges

(Wu et al. 2008).

2.5.7 Fruit Color

The fruit color trait has commercial value in

many crops. It should elucidate quality, texture,

size, and flavor in many horticultural crops

(Picha 2006). Many breeding programs have

conducted to understand the genetic and physio-

logical mechanisms of fruit color (Yoshioka and

Fukino 2010). Traditionally, phenotyping of fruit

color has been assessed visually; however, this

type of evaluation might lead to variable results

depending upon experience and training. Com-

puter-based analysis of objects from digital

images presents high-quality data and character-

ization (Darrigues et al. 2008). Different plant

parts have been analyzed with digital

phenotyping. The most popular color

phenotyping studies have conducted in tomato

and software (Tomato analyzer) was used by

Darrigues et al. (2008) and Gonzalo et al.

(2009). In this technique fruits are scanned

and images are sent to software. In analyzing of

color measurements, RGB colors are assessed as

essential colors. Color test module is used to

obtain RGB data and after then it is converted

to the CIELAB color space which uses L, a, b

codes to determine colors difference (Rodrı́guez

et al. 2010). In fruit color phenotyping of melon,

each fruit was scanned with full flatbed scanner

with a black material cloth to hinder out-lighting

and to enable homogeneous background

(Yoshioka and Fukino 2010). Color signature

method was used in this system and the obtained

images were transformed to a statistical image

data. The petal color of Begonia � tuberhybrida

Voss was also evaluated by image analysis

(Lootens et al. 2007). Petals were firstly

photographed, and then according to flower

color comparisons, varieties were divided into

color groups as proposed by the manual of the

RHS Colour Chart (Yoshioka et al. 2006).

2.5.8 Carbon Isotope Discrimination

Carbon isotope discrimination (Δ) is a trait

implying the amount of 13C used by photosyn-

thetic activity (Khazaie et al. 2011). In photosyn-

thesis, heavy isotope of carbon is discriminated

which causes reduction of the dry matter in 13C

(Merah et al. 2001). It has positive correlation

with the ratio of inner leaf CO2 concentration

to circumfused CO2 concentration (Ci/Ca),

therefore gives transpiration efficiency (TE)

and long-range Ci/Ca ratio (Monneveux

et al. 2005). In wheat (Triticum aestivum L.),

high negative relation with TE and carbon iso-

tope discrimination (Δ) proposed that low Δ
increased TE and biomass under stress

conditions (Rebetzke et al. 2002). In different

crops, 13C can be used for estimation of stomatal

conductance and water-use efficiency under

water-stress conditions (Tambussi et al. 2007).
13C and seed yield had negative correlation in

drought conditions, and therefore when biomass

production is limited, low stomatal conductance
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adds to drought tolerance (Turner 1997).

Near-infrared reflectance spectroscopy (NIRS)

was used to predict 13C in wheat seeds by Ferrio

et al. (2007). There were significant correlations

between NIRS-predicted 13C and measured
13C. Δ has therefore been used as a monitoring

machine for identifying variations in water-use

efficiency (WUE) and the development of

varieties with improved WUE and drought toler-

ance (Lopes and Mullan 2012).

2.5.9 Light Interception

It is an important function in photosynthesis

processes (Sarlikioti et al. 2011) and has strong

relationship with plant growth in agricultural

crops and forest trees (McCrady and Jokela

1998). This trait is related to light-use efficiency

model which includes two conceptual

components: (i) photosynthetically active

radiation (PAR) and (ii) light-use efficiency

(LUE) (Tharakan et al. 2008). PAR interception

is generally determined with a 0.8-m light rod

and a reference sensor (Sarlikioti et al. 2011).

Measurements are repeated for 5–7 weeks.

Generally, light interception varies on crop

development and dry matter accumulation and

it generally decreases exponentially from top to

bottom of canopy (Liu et al. 2012). It is usually

Beer’s law that has been generally used to deter-

mine the amount of light intercepted by a plant at

canopy level and this method is on the basis of

the use of leaf area index (Chenu et al. 2007).

However, this method is inadequate because

plant and canopy heterogeneity is ignored in

light interception. In recent years, to analyze the

genotype-environment interactions, several

techniques have been developed for functional-

structural plant models which combine physio-

logical processes with three-dimensional struc-

ture of crop plants (Sarlikioti et al. 2011). This

model was used by Chenu et al. (2007) that was

expressed as a new procedure to enhance light

interception which has a strong relation with

biomass production and yield.

2.5.10 Senescence

It is an essential part of a plant’s lifecycle related to

physiological processes while the plants mature

(Edwards et al. 2012). It can be observed in differ-

ent parts of a plant: roots, germinating seeds, and

reproductive organs. Leaves are used for senes-

cence studies. Generally, leaf senescence should

be evaluated at organ level; however, it is also

associated with cellular or organismal death

(Lim et al. 2007). Leaves loose chlorophyll during

senescence as chloroplasts differentiate into

pigmented plastids (Thomas 2012). For identifica-

tion of crop senescence, regular assessment of the

proportion of the canopy that is green and non-

green is important and can be determined by visual

assessment. Spectral reflectance, visual imaging

(Howarth et al. 2011), and nuclear magnetic

resonance (NMR) methods (Leport et al. 2011)

have also been developed for phenotyping of leaf

senescence.

2.5.11 Roots

Roots play a critical role in plant growth and

development. Water and nutrients, which are

indispensible for plant’s life, are absorbed by

the roots. They store carbohydrates and other

substances and enable biosynthesis of hormones

which are required for growth (Zhu et al. 2011).

Root has a three-dimensional complex system

which contains lots of standard traits (root length

density, amount of root, root size, total root sur-

face, root length, root growth response, average

root radius and root length, number of lateral

roots, etc.) and new traits (network perimeter,

solidity, convex area) (Weitz 2009). This archi-

tectural structure shows differences according to

species and environmental effects. Age is also

important for root structure; mature crops have

more complicated root system than the young

crops. Therefore, changes in root structure

might affect yield and stress-tolerant traits

(Iyer-Pascuzzi et al. 2010). Excavation of roots

or washed soil cores has been used for
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measurement of root traits to understand the root

architecture. However, these measurements

show differences due to environmental

conditions (Hund 2010). On the other hand,

high-resolution phenotyping provides new

techniques to analyze root structure in laboratory

and greenhouse conditions (Topp and Benfey

2012). Nondestructive imaging techniques and

analysis systems provide automatic phenotyping

of root architecture (Iyer-Pascuzzi et al. 2010).

Plant root monitoring platform (PlaRoM – soft-

ware application) which includes noninvasive

video image technique has been developed to

examine root profiles in different genotypes

(Yazdanbakhsh and Fisahn 2012). The other

imaging and software platforms were improved

for three-dimensional root observing for differ-

ent traits in seedling stage (Clark et al. 2011). In

this system, rotational image sequences are taken

with optical system and 3D root architecture are

generated by using the software, RootReader3D.

High-throughput visual scoring technique

permits fast selection of root structure especially

in extreme areas (Trachsel et al. 2011). Semi-

hydroponic phenotyping system with 240 L plas-

tic mobile bins covered by black cloth and man-

ageable watering system has been developed by

Chen et al. (2011). Monitoring genotypes with

this system was designed to host lots of plants in

a small area and significant differences were

observed for the traits of root length, branching,

and density. X-ray computed tomography is a

new nondestructive technique which provides

detailed 3D root structure in smooth soils

(Tracy et al. 2010). The other system is X-ray

micro-tomography providing important informa-

tion about root growth and root and soil

interactions (Gregory et al. 2003). Wheat and

rapeseed were imaged with the X-ray micro-

tomography system at different periodic times.

High-quality 3D images were acquired in devel-

opmental processes of the root parts. According

to Gregory et al. (2003), this imaging technology

is cheap and provides repeated scanning of live

root systems compared with other tomographic

techniques. In situ root phenotyping system in

rice and soybean was developed by Fang

et al. (2009). 3D images of roots were captured

using 3D laser scanner. Generated 3D root struc-

ture had meaningful similarity with biomass and

phosphorous content in rice and soybean. This

approach by Fang et al. (2009) has therefore been

evaluated as a new model for assessment of plant

root growth processes in different environmental

conditions. Magnetic resonance imaging (MRI)

with positron emission tomography (PET) was

used to study root/root parts in different soil

types, with regard to their architecture, and trans-

portation of water and nutritional elements

(Jahnke et al. 2009). This noninvasive analysis

provides information about root structures and

transportation processes.

2.6 Limitations

Plant phenomics with high-throughput, state-of-

art technologies has a great scope to advance

plant science, thanks to interdisciplinary net-

working. Soil researches (environment), crop

analysis, data researches with modeling, and sen-

sor technologies are integrated into field and

laboratories. This interdisciplinary network

brings in a great speed, accuracy, efficiency to

breeding, and optimized timing to crop manage-

ment enabling non-biased and faster assessment

of traits (Post 2011). However, plant phenomics

has some limitations and/or disadvantages such

as quality of measurable data, data regeneration

costs, data collection technology, and availability

of algorithms. In addition, phenotyping

techniques are dependent on some factors such

as simulations, sensors, active mechanisms, and

high-throughput and field-based platforms (Post

2011). Further, most of the traits in plant

phenotyping have some handicaps; for example,

canopy temperature is an essential trait due its

use for identification of certain physiological

factors such as stomatal conductance, transpira-

tion rate, plant water status, water use, leaf area

index, and crop yield. However, trait expression

shows interaction with both developmental phase

and time of the day (e.g., pre-heading and/or

morning readings are usually lower due to

lower incident of solar radiation and air tempera-

ture) (Pietragalla 2012). Furthermore, weak
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signals from plants in phenotyping confine to

correct assessment of phenological stages

(Furbank and Tester 2011). Measurement

techniques such as measurement angle during

the photoperiod also negatively affect proper

canopy temperature identification (Jones and

Vaughan 2010). The trait of stomatal conduc-

tance is very important to exhibit transpiration

and gas traffic, especially in leaves. Some

difficulties may emerge in measurement time

for gas activity. Because stomata are susceptible

to external influences and stomatal conductance,

these may indicate different reaction to different

leaves. Chlorophyll fluorescence is useful to

exhibit drought resistance and it is one of the

most used traits in phenomics. Even though fluo-

rescence parameters can be determined easily,

prediction values may change during the photo-

synthesis. Especially, in estimation of the PSII

operating efficiency, several inaccurate

measurements occur due to changes of fluores-

cence (Furbank and Tester 2011). Chlorophyll

content is also important trait to identify photo-

synthetic activity; however, it is highly affected

by environmental conditions. Solar angle, time,

and leaf surface status might be obstructive

factors for measuring chlorophyll content. In

addition, leaf position in plant and calibration

errors in chlorophyll meter have negative effects

to chlorophyll content measurement. Canopy

light interception provides highly useful infor-

mation about crop growth and productivity and

for crop modeling (Rosati et al. 2001). However,

its measurement in field conditions is not simple

and mostly affected by environmental

fluctuations. Carbon isotope discrimination is

beneficial in estimation of water status and tran-

spiration capability; however, phenotyping of

this character is very complicated. Other

disadvantages of carbon isotope discrimination

are its cost and needs for data transformation.
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High-Precision Phenotyping Under
Controlled Versus Natural Environments 3
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Priyanka Porwal, Rohit Kant, and Jagdish Singh

3.1 Introduction

Multiple abiotic stresses such as drought, heat,

cold, frost, salinity, high light intensity,

adversely affect the growth and yield of agricul-

turally important crops. These stresses are recur-

rent and are becoming more serious under the

current scenario of climate change. In order to

develop climate-resilient crops with improved

yield using various conventional and genomic

approaches, primary strategies have to be made

in establishing fast, precise and easy pheno-

typing for assessing available germplasm for

tolerance to various abiotic stresses. The under-

lying physiological, biochemical, and molecular

mechanisms responsible for tolerance to the

above abiotic stresses are well characterized,

and many morphophysiological traits have been

identified which impart tolerance to these abiotic

stresses. These traits are either constitutive or

adaptive. The focus has given in the past years

for harnessing the potentiality of adaptive traits

indirectly towards the development of abiotic

stress-tolerant genotypes. Currently, genetic

diversity for both type traits is available in

exiting germplasm of diverse crop species.

Therefore, it provides enormous opportunities

for developing stress-tolerant cultivars. How-

ever, it is required effective phenotyping

methods that are rapid and reliable to screen the

large number of genotypes. These traits can be

screened under both natural and controlled

conditions. Under field conditions, traits are

highly influenced by environmentals factors,

therefore stability of the traits of interest is

often difficult to correlate with stress tolerance

or yield. To create such complex situation of field

in controlled conditions is practically impossible.

The traits of interest measured under controlled

environment and have reasonably good repeat-

ability across different years of study should

be evaluated under complex environmental

conditions of field for confirming the stability

of the traits. It is also equally important to

know the underlying reasons why important

traits for stress tolerance and yield do not hold

good for different crops or why crops are differ-

ent types of stress tolerant mechanisms. For

example, The water-use efficiency measured

through carbon isotope discrimination is well

correlated with yield in groundnut but has less

relevance to chickpea in terms of grain yield.

Although high-precision phenotyping can be

done for many traits related to abiotic stresses

under natural conditions, there are many other

traits that are only screened under controlled

conditions. Moreover, certain traits are essential

to screen because they are positively associated
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with yield or tolerance to abiotic stress and their

measurement can only be possible in controlled

conditions. Because the environment plays an

important role in the growth and development

of crop plants, crop plants face two different

conditions during the phenotyping of interested

traits. As a result each environmental condition

has its own limitations. In this chapter, the preci-

sion phenotyping of traits of agronomic impor-

tance under the controlled and natural

environments is discussed.

3.2 Environment and Genotype �
Environment Interactions

Environmental conditions in which plants are

grown play a vital role in generating the quality

of phenotyping data through experiments. Con-

sequently, it increases the efficiency of breeding.

However, field variation increases error

variances, thereby masking important genetic

variation for key traits and reducing repeatabil-

ity, regardless of the cost and precision of a

phenotyping platform (Masuka et al. 2012). Soil

heterogeneity even in relatively uniform experi-

mental sites always has a possibility to mask the

genetic effects, when a larger number of

genotypes are phenotyped using high-throughput

phenotyping. In that case it is difficult to find an

area with minimum soil heterogeneity. There-

fore, information on field variability can be

incorporated into field designs by avoiding

areas of high spatial variation (Jones 2007).

These issues that have been discussed in the

chapter for the “noise” factors are held constant,

whereas the factor of interest (“signal”) is

allowed to vary. Environmental variability

inconsistently affects phenotypic observation

over both space and time and must be accounted

during the phenotyping of traits. In modern high-

throughput platforms, the implementation of

environmental characterization is essential to

facilitate data interpretation, metadata analysis,

and, in the case of drought phenotyping, under-

standing patterns of water availability (Masuka

et al. 2012). For screening of drought-resistant

genotypes, the knowledge of soil moisture

availability is a must to ensure that the field

environment and the type of drought imposed

are representative of the target environment

(Romer et al. 2011). The development of wire-

less sensor networks to characterize both climatic

and soil moisture conditions should enable real-

time monitoring of environmental conditions

(Fig. 3.3).

The genetic makeup of crop plants determines

the physiological and behavioral responses of

individuals under different environmental

conditions. For quantitative complex traits,

same genotype can produce a wide range of

phenotypes in different environments. These

phenotypic variations are attributable to the

effect of the environment on the expression and

function of genes influencing the trait. Changes

in the relative performance of genotypes across

different environments are referred to as geno-

type � environment interactions (GEI). During

the past many years, many phenotyping

platforms are emerging internationally and are

being utilized in the screening of complex traits

under controlled environments. However, many

times, some specific traits showing large genetic

variation in controlled conditions have a changed

expression in the field. This is especially true for

the techniques which are still limited to labora-

tory (Staedler et al. 2013) or glasshouse (Shi

et al. 2013). In such situations it is essential to

study GEI in multiple environments for

harnessing the potential of high-precision

phenotyping tools. The recent advances in crop

phenotyping technologies have started to over-

come this limitation (White et al. 2012).

3.3 High-Precision Phenotyping
in the Field Under Natural
Conditions

Pot experiments under controlled environment

often cannot be extrapolated in natural field

environments. The moisture extraction pattern

under field is rather slow as compared to limited

soil volume in pot culture which may lead to

faster depletion of moisture (Poorter et al.

2012). Therefore, field conditions have been
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used to phenotype the genotypes for different

traits. However, those traits are more reliable

which are stable and less influenced by environ-

mental factors. One of the important physiologi-

cal traits is water-use efficiency. This can be

measured using leaf sampling for carbon isotope

discrimination. The photosynthesis, stay green,

chlorophyll content through nondestructive

SPAD value, thermal imaging of canopy, tran-

spiration, canopy cooling by infrared thermome-

try, stomatal conductance and root depth and

mass measured indirectly through stable oxygen

isotope 18O are the parameters directly or

indectly determine the plant water status and

normal functional ability of the plant under stress

environment. Field-based evaluation may be

more pertinent for those characters which

involve a combination of multiple traits such as

canopy cooling which could be due to high root,

stomatal conductance, and hormonal regulation.

In the case of screening for drought tolerance,

yield performance and flowering are evaluated

under irrigated and rainfed conditions (Fischer

and Maurer 1978). In this screening technique,

yield under drought plots (rainfed/rainout shel-

ter) and the potential yield under irrigation are to

be compared for each genotype. The genotypes

which showed low yield under drought relative

to its irrigated counterpart had higher drought

susceptibility index (DSI). The lower the DSI,

the greater is the drought tolerance of the line. In

chickpea, several genotypes such as RSG 143-1,

RSG 888, Phule G5, Vijay, and ICC 4958 have

been identified as having lower DSI using the

above phenotyping techniques. Other traits used

in phenotyping of drought-tolerant genotypes are

exclusively associated with productivity such as

dry matter, harvest index, and water-use effi-

ciency and other drought resistance mechanisms

comprising morphophysiological traits confer-

ring resistance to drought (Passioura 1977).

For drought tolerance, high-precision

phenotyping is being done using different

approaches. For example, it can be done in dug-

out plots which are designed to create a moisture

gradient, and different genotypes can be grown

across the slope having different moisture

gradients with minimum moisture on the top

and maximum at the bottom. Genotypes tolerant

to drought are expected to grow better in terms of

biomass and grain yield with minimum availabil-

ity of moisture at the top. Phenotyping for

drought can also be done in rainout shelter. An

automatic movable rainout shelter prevents

raindrops to reach the plot where the material

has been grown. A set of diverse germplasm are

grown under rainout shelter, and the same are

concurrently grown under rainfed and irrigated

fields for comparison. This facility has widened

the scope to identify genotypes tolerant to

extreme drought conditions based upon their per-

formance under moisture stress conditions.

3.3.1 Stage of Phenotyping in Field
Conditions

Stage of the crop plant for phenotyping of a trait

is most important for establishing a positive

correlation between the targeted trait and the

grain yield. For example, genotypic differences

in the leaf ABA concentration in field-grown

maize were maximum at the time of flowering.

Therefore, in this case, ABA quantification is

important at this stage for establishing a perfect

genetic difference and its relationship with stress

tolerance (Landi et al. 1995). Another example is

the use of infrared thermography for measuring

canopy temperature. In this case, the most appro-

priate strategy is to measure the temperature

differences between treatments under the

conditions of high evapotranspiration demand

because genotypes can be differentiated by their

ability to avoid stress. An additional factor to be

considered when measuring canopy temperature

is the effect of leaf wilting, folding, or rolling

under stress condition (Grant et al. 2007). For

instance, plant canopy architecture will influence

leaf temperature not only through the angle of

leaves to the light source but also through the

degree of self-shading in the canopy (Zheng et al.

2008). The influence of self-shading can be

reduced to certain extent if the most suitable

view angle is used (Grant et al. 2006). Similarly,

phenotyping is often biased if tested genotypes

differ considerably in flowering time and/or the

time of maturity. In such cases, phenotyping all
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genotypes on the same date will actually repre-

sent data from plants at different physiological

stages, which could introduce significant bias in

the interpretation of cause–effect relationships

between traits and yield. A partial solution is to

sow the accessions on two or three dates based on

the maturity group information (e.g., early

and late).

3.3.2 Traits for Phenotyping
in the Field

Development of cultivars especially for abiotic

stress conditions required phenotyping of differ-

ent morphological and physiological traits. These

traits can be screened in the field or laboratory

condition, sometimes in both conditions, which

have been summarized in Table 3.1.

3.3.2.1 Simple Traits for Visual
Observation

There are many traits in crop plants which are

easy to observe, do not require any specialized

instruments to measure them, and have been

scored traditionally by plant breeders visually in

the field. Many of such traits have been found to

be associated with tolerance to biotic and abiotic

stresses and hence can be used indirectly to select

the tolerant/resistant genotypes. These traits

include flowering time, improved plant type,

leaf senescence, etc. For example, flowering

time is considered as the most critical factor to

optimize adaptation and grain yield under water-

limiting condition (Richards 2006). Positive

associations between plasticity of yield and

flowering time across different levels of water

availability have been reported in different

crops (Sadras et al. 2009). Hence, phenology

per se, plasticity of phenological development

is considered to be a distinct trait influencing

crop adaptation (Pinto et al. 2010; Sabadin et al.

2012). Selection of genotypes with shorter time

to flowering has been reported highly successful

for escaping the drought conditions in annual

crops (Subbarao et al. 1995). For improving

drought resistance in maize, a valuable selection

target of intermediate heritability is provided by

the anthesis–silking interval (ASI), which is

usually negatively correlated with grain yield

under drought conditions (Monneveux and

Ribaut 2006). ASI can be phenotyped quite eas-

ily and effectively under the right experimental

conditions, and substantial breeding efforts have

targeted this trait through conventional breeding

(Chapman and Edmeades 1999).

Sometimes improved plant type may give

higher yield under water-limiting environments,

although it may not have specific traits for

drought tolerance. Thus, primary field level

phenotyping for drought tolerance could be a

simple function of genotype ability to perform

well under water-limiting environments. The

several interlinked traits that are considered as

indirect estimates of photosynthetic potential are

chlorophyll concentration, stay green, and

delayed senescence (Shukla et al. 2004). Delayed

leaf senescence maintains transpiration and

increases cumulative photosynthesis over the

crop life cycle (Vadez et al. 2011). Stay-green

traits in maize correlate closely to grain yield,

and multiple intervals of stay-green QTLs over-

lap with yield QTLs (Zheng et al. 2009). In

sorghum it has been related to the maintenance

of a more favorable water status as related to root

features (Mace et al. 2012). In sorghum, four

major QTLs that control stay green and grain

yield have been identified (Harris et al. 2007),

and near isogenic lines (NILs) for these QTLs

have been derived, providing an opportunity for a

detailed analysis of stay-green physiology and

positional cloning of the underlying genes

(Vadez et al. 2011).

3.3.2.2 Instrument-Based High-Precision
Phenotyping

For high-precision phenotyping, several

instruments have been developed that can be

used directly to measure a trait in the field.

These traits are early vigor, stomatal mechanism

and transpiration, osmotic adjustment, leaf water

potential, canopy temperature, plant and canopy

features, etc. (see Chap. 2 for details). The leaf

area index (LAI) and early biomass accumulation

are important parameters to determine early

growth vigor in crop plants. Leaf area meter

can be used to measure leaf area of any geometry

in laboratory followed by measurement of leaf
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Table 3.1 Traits for phenotyping under field and laboratory conditions

Traits Condition Phenotyping requirements Magnitude of labor Remarks

Drought/heat

susceptibility

index

Field Moisture gradient dugout plot/

rainout shelter/hot spots

Simple/slow Yield variation

can be

explained

under stress

Phenology Field Experimental field Simple/rapid Yield variation

can be

explained

under stress

Root vigor/mass/

depth/

architecture

Field core sampling/

lysimeter/PVC tube/

pot culture/controlled

greenhouse

Low-cost structure/facilities

involved

Cumbersome Yield variation

can be

explained

under stress

Water-use

efficiency

Controlled/field

conditions

Pots for gravimetric

determination/carbon isotope

discrimination (Δ) through
isotope mass spectrometer

Cumbersome for

gravimetric and

expensive for Δ.
Rapid and precise

Yield variation

can be

explained

under stress

ABA

accumulation

Controlled

environment

Immuno-linked

radioimmunoassay

Tedious/slow Yield variation

can be

explained

under stress

Canopy

temperature

depression

Field condition Infrared thermometer Rapid/needs

cautious attention

Yield variation

can be

explained

under stress

Stay green Field condition SPAD chlorophyll meter/visual

observation/pigment analysis

Simple and feasible/

rapid

Yield variation

debatable

under stress

Photosynthesis/

stomatal

conductance

Field condition Infrared gas analyzer Tedious/slow/

variable

Yield variation

debatable

under stress

Leaf area index/

leaf orientation/

leaf reflectance

Field condition Canopy analyzer Feasible/

cumbersome/slow

Yield variation

can be

explained

under stress

Thermal imaging Field condition Thermal image analyzer Slow Yield variation

can be

explained

under stress

Specific leaf area Field cum laboratory Weighing balance/leaf area meter Slow Yield variation

debatable

under stress

Leaf waxiness Field cum laboratory Chemical analysis Slow Yield variation

debatable

under stress

Osmotic

adjustment

Field cum laboratory Osmometer Cumbersome Yield variation

debatable

under stress

Membrane

stability

Field cum laboratory Conductivity meter Cumbersome Yield variation

debatable

under stress

Proline
accumulation

Field cum laboratory Chemical analysis Cumbersome Yield variation

debatable

under stress

Lethal leaf water

potential

Field cum laboratory Pressure chamber Cumbersome Yield variation

debatable

under stress

(continued)
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area index (LAI) using canopy analyzer under

field conditions. This can precisely monitor LAI

(total canopy area covered per unit ground cov-

erage) during progressive growth of the crop. It

has been shown that higher initial LAI correlates

positively with grain yield under water-limiting

environments. Thus, this trait can be easily

phenotyped under field conditions. The early

extensive biomass accumulation and setting of

reproductive organs before onset of terminal

drought has been important for identifying the

genotypes escaping drought. Early vigor under

low evapotranspiration conditions helps to opti-

mize water-use efficiency (WUE) and limits

water loss due to direct evaporation from the

soil surface. As a result, more stored water is

available for later developmental stages when

soil moisture becomes depleted to a great extent

and limits yield (Rebetzke et al. 2007; Richards

et al. 2007). The reduction in the stomatal density

and an increase in the leaf reflectance through

production of glandular hairs in chickpea are

considered to be adaptive traits through which

leaves reduced water loss and intercepted non-

photosynthetic radiation. Isotope ratio mass

spectrometer (IRMS) in leaf samples is very sim-

ple and can be applied for large-scale screening

of crops for higher water-use efficiency with less

time and more precisely under field condition.

Tissue samples in large numbers may be

harvested from the field and oven dried and

analyzed through IRMS (isotope ratio mass

spectrometer).

The loss of water through stomatal aperture

called transpiration is severely affected when

crop is subjected to water stress. The transpira-

tion rate can be measured nondestructively by

using infrared gas analyzer or porometer.

Osmotic adjustment (OA) is considered as an

important physiological trait for adaptation to

drought. The OA in chickpea has been reported

to range from 0 to 1.3 MPa. The OA increases

water absorption; maintains cell turgor, photo-

synthesis, and leaf area duration; helps stomatal

opening; delays senescence and death; reduces

flower abortion; and improves root growth as

water deficit develops (Basu et al. 2007b). The

greater osmotic adjustment leads to higher

growth rate and dry matter production under

drought. The degree of OA has also been shown

to be correlated with yield under dryland

conditions in chickpea (Basu et al. 2007a).

Leaf water potential can be measured either by

using thermocouple psychrometer or pressure

chamber. The detached leaf is sealed in a steel

chamber with only the cut end (petiole) protruding

out. Pressure is applied to the chamber (from a

pressure source such as a compressed nitrogen

Table 3.1 (continued)

Traits Condition Phenotyping requirements Magnitude of labor Remarks

Relative water

content/leaf

water potential

Field cum laboratory Pressure chamber Cumbersome Yield variation

can be

explained

under stress

Pollen fertility Field cum laboratory Specific stains and microscope Moderately fast Yield variation

can be

explained

under stress

Remobilization

of water-soluble

carbohydrates

Controlled

environment

Radio tracer/mass spectrometer/

scintillation counter

Slow and time

effective

Yield variation

can be

explained

under stress

Chlorophyll

fluorescence

imaging and

allied parameters

Field cum laboratory

condition

Fluorescence imaging system/

fluorometer

Slow and precise Yield variation

can be

explained

under stress

Antioxidant

enzyme activities

Laboratory condition Biochemical analysis Slow and variable Yield variation

debatable stress
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cylinder). When the sap meniscus appears at the

xylem surface, the pressure is recorded and taken

as the xylem (leaf water) potential. Normally

�0.2 to �0.5 MPa value of the leaf tissue is

considered as that of a non-stressed leaves hav-

ing almost full turgidity, although crop species

show different LWP at full turgidity. If the LWP

of a crop species declines below�0.5 MPa, it is a

sign of stress which increases with water deficit.

Infrared gas analyzer or chlorophyll fluores-

cence by pulse amplified fluorometer provides a

nondestructive probe of photosynthetic activity.

It has been used to investigate effects of stress on

photosynthesis. Canopy temperature is related to

the amount of dehydration occurred during the

growth of development of plant canopy under the

stress conditions, and hence, it is an important

selection criterion to identify high-yielding

genotypes under drought (Olivares-Villegas

et al. 2007). It can be measured using infrared

thermometry in the field, which is a simple

instrument for rapid indirect phenotyping for

drought tolerance. For precise measurement of

the plant features and crop growth, digital image

analysis and video image analysis are cheap and

rapid and nondestructive methods (Fiorani et al.

2012; White et al. 2012). Remote sensing

through spectral reflectance and near-infrared

spectroscopy of crop canopy-based sensors are

being utilized in high-throughput phenotyping

platforms for collecting integrated traits with

high temporal resolution (Montes et al. 2007;

Gutierrez et al. 2010). Remote sensing has

advanced our understanding of changes in leaf

reflectance and leaf remittance according to

species, leaf thickness, canopy shape, leaf age,

nutrient status, and, more importantly, water

status (Hatfield et al. 2008). Using these

informations, various vegetative indices for crop

canopies have been formulated in order to quan-

tify agronomic parameters such as leaf area, crop

cover, biomass, yield, etc. The spectral reflectance

is a powerful tool that has been used to monitor

plant photosynthetic pigment composition, water

status assessment, and the early detection of abi-

otic stress in field conditions (Gray et al. 2010).

Recently, a high-throughput technique known as

“shovelomics” has been deployed to investigate

several root architectural features in field-grown

maize (Trachsel et al. 2011).

3.3.2.3 High-Precision Phenotyping
Based on Laboratory Techniques

Advances in high-throughput phenotyping have

led to development of several laboratory-based

tools and techniques which have been used to

screen physiological traits, especially those

related to abiotic stresses. These techniques use

plant samples including leaf and other parts

grown in the field. The traits include stomatal

conductance, water-use efficiency, osmotic

adjustment, abscisic acid concentration, chloro-

phyll content, pollen germination, etc. (see Chap.

2 for details). The stomatal conductance helps to

regulate the water balance of the plant. It can be

measured on basis of Δ13C in laboratory and has

been used successfully to identify a number of

bread wheat cultivars released by CIMMYT

from 1962 to 1988 that showed a strong positive

correlation between stomatal conductance and

grain yield (r ¼ 0.94; Fischer et al. 1998). How-

ever, fluctuating environmental conditions

(wind, solar radiation, humidity, etc.) during the

day actually affect accurate measurement of

stomatal conductance of a reasonably large

number of plants. It can be measured using

natural oxygen isotope composition (d18O) in

leaf and grain materials for large number

of samples with very little labor in the field

(Ferrio et al. 2007).

Water-use efficiency (WUE) is the main lim-

iting factor to crop production. Therefore, it is an

important physiological trait for screening

drought-tolerant plants growing in the field. It

can be estimated precisely in laboratory by

using carbon isotope discrimination technique

and has already been used to identify the geno-

typic differences among genotypes of groundnut

and chickpea lines (Kashiwagi et al. 2006). The

concentration of ABA in the leaf tissue and guard

cells of stomata influences leaf temperature via

an effect on transpiration through stomatal
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conductance (Wasilewska et al. 2008). There-

fore, ABA plays major role in regulating the

water demand and supply and to optimize growth

and survival in response to short-and long-term

environmental fluctuations (Xiong et al. 2007). It

has been used as a trait to identify genotype

tolerance to drought and other abiotic stresses

(Setter 2006) in several crops including maize

(Sharp et al. 2004; Hose et al. 2001), pearl millet

(Kholova et al. 2010a, b), and chickpea (Zaman-

Allah et al. 2011a, b). In cereals, an accumulation

of ABA influences reproductive fertility (Zhang

et al. 2009) and endosperm development (Seiler

et al. 2011). Genetic variability for sensitivity to

ABA has been reported in maize also (Frascaroli

and Tuberosa 1993).

Heat stress at reproductive stage has become a

serious constraint for many crops due to climate

change, and the critical temperature ranging from

35 to 40 �C damages reproductive organs leading

to drastic yield losses. It has been shown that

pollen germination and the degree of pollen

tube growth are reduced significantly at high

temperatures (Kakani et al. 2005). However, sen-

sitivity for higher temperature has been shown to

be variable among genotypes. Therefore, pollen

viability in respect to heat stress has formed a

strong basis of phenotyping for identifying

genotypes having tolerance to high temperature.

It is very simple to detect pollen viability from

the unopened flowers collected from field-grown

crops by staining with acetocarmine solution or

1 % TTC (Triphenyl-tetrazolium chloride) solu-

tion. The viable pollens will take deep stain,

while sterile, nonviable pollen grains will remain

unstained. However, for testing absolute fertility,

i.e., in vivo pollen germination on stigma, heat-

treated flowers are collected and processed with

Alexander’s stain to validate pollen tube growth

on stigma tips (Pratap et al. 2014). In chickpea,

tolerant chickpea genotype ICCV 92944 showed

maximum percent pollen germination at critical

35 �C temperature (Fig. 3.1). Similarly, Pratap

et al. (2014) identified one accession each of

V. umbellata and V. glabrescens insensitive to

higher temperatures.

3.4 High-Precision Phenotyping
in Controlled Conditions

Development of improved genotypes through

breeding requires phenotyping of a large number

of genetic resources. Phenotyping for secondary

morphological traits such as plant height, leaf

number, flowering date, and leaf senescence is

simple and easy in the field. However, traits

associated with stresses are required to be

phenotyped under controlled conditions for a

better understanding of the stresses (Weber

et al. 2012). Therefore, it requires managed envi-

ronment facilities for increasing the accuracy in

measurement of traits (Rebetzke et al. 2013;

Blum 2011a). There are many traits which can

only be screened in controlled conditions

(Table 3.1). For example, photosynthetic effi-

ciency can be rapidly and accurately measured

under laboratory controlled environment using

chlorophyll fluorescence imaging system. Many

of the traits like roots mass/vigor, high mem-

brane stability, high photosynthetic efficiency,

etc. are commonly addressed to multiple stress

tolerance such as drought, heat, cold, and salin-

ity. Hence, phenotyping of these traits should be

done with utmost accuracy in either condition.

For root-based traits, phenotyping is difficult

in field conditions and hence requires controlled

lysimetric facility/rhizotron and rainout shelter

or greenhouse for screening large number of

germplasm. Since stress tolerance is a complex

metabolic and regulatory functions, many

methods have been developed for estimation of

such traits in controlled environment. But some

of them are too time-consuming, cumbersome,

expensive, or requires high technical efficiency

for large-scale phenotyping. Controlled

conditions are required to those traits, which are

highly influenced by environmental factors in

the field. For example, plant growth is highly

variable under field conditions, and hence,

natural conditions are required to simulate in

the controlled conditions for measurements of

target traits related to plant growth (Izanloo

et al. 2008). The controlled environment

facilities such as greenhouse, growth chamber,
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etc. control the major environmental parameters

like temperature, light, drought, and relative

humidity leading to precise monitoring of traits

of interest. For example, exposing test plants to a

solution with a known concentration of polyeth-

ylene glycol (PEG; molecular weight >6,000)

with good aeration of the solution to avoid hyp-

oxia provides uniform conditions in terms of

water stress. Thus, exposing different genotypes

to a given level of dehydration under similar

environmentally controlled conditions allows

phenotyping of germplasm for drought tolerance

more precisely unlike field conditions where they

are likely to experience different stress

intensities (Ruta et al. 2010). Other stress-

adaptive traits such as osmotic adjustment, mem-

brane stability, pollen fertility and remobilization

of carbohydrates, expression of antioxidant

enzyme complex and chlorophyll fluorescence,

etc. are required in controlled environment for

precise phenotyping. Fluorescence imaging sys-

tem has been used to assess response to photo-

synthesis among genotypes of chickpea. Effects

of stress modify photosynthesis, which can be

precisely monitored through change in the chlo-

rophyll fluorescence patterns leading to change

in Fv/Fm (Fig. 3.2). Light response of ETR (elec-

tron transport rate) as a measure of proxy photo-

synthesis showed high ETR values in drought-

tolerant chickpea genotypes under water stress at

Fig. 3.1 Pollen germination in chickpea in response to high temperatures

Drought
Tolerant
Chickpea
ICC 4958

Drought 
sensitive
Chickpea
JG 315

RWC 78% : Fv/Fm(Qy)=0.65 RWC 58% : Fv/Fm(Qy)=0.46

RWC 78%: Fv/Fm(Qy)=0.68 RWC 58%: Fv/Fm(Qy)=0.11

Non-
stressed
leaves

Stressed
leaves

Non-
stressed
leaves

Stressed
leaves

Fig. 3.2 Image of

quantum yield indicating

irreversible damage of

photosynthetic system in

leaf subjected to stress

(RWC 58%) in comparison

to non-stressed condition

(RWC 78 %)
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high irradiance levels as compared to the sensitive

lines (Fig. 3.2). Thus, fluorescence imaging and

allied parameters allow high-precision pheno-

typing under controlled environmental conditions.

Environmental factors markedly influence

transpiration efficiency (TE) as measured

through gas exchange system under field condi-

tion; therefore, it is difficult to assess real genetic

variation in TE through gas exchange. However,

measuring gas exchange parameters and CER/gs

(Carbon dioxide exhange rate/Stomatal conduc-

tance) in controlled conditions may considerably

limit the effect of environmental variation

(Poorter and Farquhar 1994; Kalapos et al.

1996; Fischer et al. 1998).

Root traits are important traits that can be

screened in controlled environmental conditions.

Root scanner with Delta-T root scanning soft-

ware is used to measure total root length, perim-

eter, thickness, and total surface area. However,

few systems have been developed to screen

genotypes with higher root profile using 18 cm

diameter polypropylene PVC tubes (Fig. 3.3). In

such experiments, the soil in tubes was tightly

packed, and compactness almost similar to the

field condition was maintained. The soil inside

the tubes was irrigated at first instance to its field

capacity level, and thereafter sprinkler irrigation

was applied. When the plants reached a stage of

25–30 days, tubes were taken out and were cut

longitudinally. The soil surrounding the roots

was washed out with mild flow of water to

extract intact roots. This system was used to

screen a large number of chickpea genotypes,

for example, ICCV 92944, ICC 4958, BG 256,

Phule G 5, ICCV 94916, and RSG 143-1 which

were identified as ideal donors for high root

mass.

Canopy temperature depression measured by

thermal imaging is the difference in temperature

between the canopy surface and the surrounding

air. It is a highly integrating trait involving sev-

eral biochemical and morphophysiological

features acting at the root, stomata, leaf, and

canopy levels. Higher canopy temperature

depression under field conditions is related with

a cooler canopy temperature under drought

stress, and genotypes having higher canopy tem-

perature depression use more of the available

water in the soil to avoid excessive dehydration

(Reynolds et al. 2009). Infrared thermometry

data is used to measure close differences in leaf

temperature in both field and controlled

conditions (Winterhalter et al. 2011). Thermal

imaging measures this trait indirectly and used

for detecting changes in stomatal conductance

and leaf water status in a range of plant species

(grapevine, bean, and lupin) under greenhouse or

controlled environment conditions. The absolute

leaf temperature has been found to be related

with thermal indices of plant stress, stomatal

conductance, and water potential.

3.5 Limitation of Using High-
Precision Tools in Controlled
and Natural Conditions

High-throughput techniques noninvasively cap-

ture information throughout the plant life cycle in

Fig. 3.3 Screening for root traits in PVC tubes (Left IIPR, Kanpur Research station and Right Lysimeter facility at

ICRISAT, Patancheru, India)
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a carefully controlled environment, which are

used to identify quantitative trait loci and candi-

date genes. However, genes identified within

controlled environments are generally not trans-

lated into gains in grain yield in the field (Araus

et al. 2008; White et al. 2012; Von Mogel 2013).

This is because of the notorious heterogeneity of

field conditions and our inability to precisely

control environmental factors. This makes results

difficult to interpret. The controlled environ-

ments are far removed from the situation that

plants will experience in the field and, therefore,

are difficult to extrapolate to the field (Blum

2011a, b; Passioura and Angus 2010; Passioura

2012). The following are the limitations which

are associated with high-precision phenotyping

under the controlled conditions:

• The volume of soil used within a pot is con-

siderably smaller as compared to the field.

Consequently, it limits the availability of

water and nutrients to plants (Passioura

2006; Poorter et al. 2012; Reynolds et al.

2012).

• The soil environment, which plays a crucial

role in plant growth and development, is diffi-

cult to simulate in controlled conditions

(Whitmore and Whalley 2009).

• Screening against drought stress is challeng-

ing because declining soil moisture content is

associated with increased mechanical imped-

ance in the field, which is an effect that is

difficult to replicate within pots (Cairns et al.

2011).

• Traditionally, genetic improvement for varie-

tal development commonly depends upon

multilocation screening within the target envi-

ronment (Cairns et al. 2013). Consequently,

plants experience a range of stresses or envi-

ronmental variations throughout their life

cycle. Usually, in many cases, the environ-

mental characteristics are not monitored and,

hence, are poorly understood. In those

situations, it becomes difficult to control

such environmental conditions under con-

trolled environments.

The recent developments in wide array of

advanced tools and techniques have led to devel-

opment of several high-throughput phenotyping

tools for different morphological–physiological

traits under the field conditions. Although these

tools are now allowing phenotyping of a number

of traits, implementation is still slow due to the

following reasons (Cobb et al. 2013; Costa

et al. 2013):

• The phenomic platforms use the advanced

phenotyping tools and techniques to generate

the volumes of phenotypic data and their man-

agement and analysis becomes difficult (Maes

and Steppe 2012; Pieruschka and Poorter

2012). Therefore, advanced analysis tools are

required beyond even the usual statistical

tools (White et al. 2012).

• Much of the data generated in high-through-

put phenotyping platform are just mathemati-

cal transformations of numbers, and hence, it

is difficult to understand them (White et al.

2012). We do not even have a physical con-

cept of what some of the numbers obtained by

high-throughput phenotyping platforms mean

in terms of plant or crop performance (Cobb

et al. 2013).

• Pyramiding all levels of information (differ-

ent categories of traits measured at different

times, spatial variability, environmental infor-

mation) in a coherent manner requires the

setting down of a strong modeling foundation

based on a wide but deep understanding of the

ecophysiological and genetic factors deter-

mining crop performance.

• More user-friendly post-processing of the raw

data generated is needed. Improved software

tools to optimize automation and speed up

robust data analysis should support such a

trend (Fuentes et al. 2012).

3.6 Conclusion

Phenotyping under field conditions still remains

a bottleneck for future breeding advances

(Cabrera-Bosquet et al. 2012; Cobb et al. 2013;

Araus et al. 2008; Cairns et al. 2012a, b). Besides

the above considerations, the choice of

phenotyping under controlled conditions versus

field environments largely depends on the pur-

pose of phenotyping and the heritability of the
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trait, together with the logistical considerations

of collecting the data (Cobb et al. 2013). For

example, there are no feasible spatial or temporal

options for testing high atmospheric CO2 in the

field (Gleadow et al. 2013). However, efforts are

being made to manage the same environmental

conditions of field under controlled conditions.

Few platforms have been developed for studying

the genotype and environment interactions.

However, focus is required to develop the

models and bioinformatics facility to analyze

huge amount of phenotypic data generated

through high-throughput phenotyping tools

and techniques and their easy understanding.

In recent years, rapid progress has been made in

the development of a wide array of technologies

including novel sensors, image analysis and

modeling, robotics, and remote control and data

mining. These tools now allow phenotyping of a

number of traits faster, i.e., within seconds under

field conditions. Use of these developments is

required on large scale under both field and con-

trolled conditions as per the requirement.
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Toward Digital and Image-Based
Phenotyping 4
Arno Ruckelshausen and Lucas Busemeyer

Abstract

Manually performed measurements in field phenotyping are labor- and

time-consuming, often destructive and not objective. Moreover, the com-

plexity and variability of crop plants under field conditions require high-

resolution data and filtering. As a consequence, there is a need for

spatially and temporally differentiated data, objective data acquisition,

and high-throughput technologies. Image-based systems, selective on

morphological and spectral crop characteristics, are adequate sensors for

further interpretation of raw data in terms of crop properties. In particular

multi-sensor and data fusion has a potential to compensate the varying

influences of sunlight, dust, moisture, or uneven land in the field. Due to

the high-resolution data of image-based systems – such as digital color

cameras, spectral imaging, laser scanning devices, or 3D cameras –

detailed crop properties have become available, even individual plant

phenotyping is an option. Autonomous field robots have a high potential

for field phenotyping as well as new sensor technologies and virtual

phenotyping. Data management is of relevance for field phenotyping,

starting from storing the large amounts of raw data up to artificial intelli-

gence algorithms for trait determination. Interdisciplinary cooperation is

crucial for the implementation of digital phenotyping into practice.

Keywords

Digital phenotyping • Image-based sensors • Sensor fusion • Virtual

phenotyping • Field robot

4.1 Introduction

The increasing world population related with

growing demands for food and energy, limited

resources, environmental impacts from agricul-

tural processing, or climate changes has
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generated new challenges in crop farming. Since

the number of influencing parameters on most of

the agricultural and environmental processes is

very high and not completely understood, there is

a strong need for increasing the knowledge in

order to find sustainable as well as practical

solutions. This is in particular true for plant

breeding, where genomic approaches have been

improved significantly while phenomics in crop

fields has changed little in the last decades. The

resulting lack of phenotyping information

together with comparably low-cost genomics

has resulted in the recent focus on plant

phenomics. However, the complexity for plant

phenome analysis is very high due to the large

variability of interactions between the environ-

mental factors (such as soil properties or

weather) and agricultural operations (such as fer-

tilization or crop protection) with the genome of

the plants. Moreover, dynamic effects of these

parameters and others (such as crop rotation) are

also of importance. As compared to this com-

plexity, the state-of-the-art phenotyping does

not supply sufficient information. Moreover,

most of the manually performed measurements

are labor- and time-consuming, often destructive

and not objective (Montes et al. 2007). As a

consequence there is a need for much more spa-

tially and temporally differentiated data, objec-

tive data acquisition, and high-throughput due to

the large number of field plots to be evaluated.

Consequently, information and communication

technologies are key components to solve the

bottleneck in plant phenotyping (Fiorani and

Schurr 2013).

Developments in electronics, robotics, com-

puter science, and sensor systems have already

offered new options in agriculture during the last

25 years (Mulla 2013). This tendency is

summarized as “precision farming”

(Auernhammer 2001). Technologies such as

GPS, sensors, embedded and communication

systems, human-machine interfaces, and

mechatronic systems are dominating innovations

in agriculture. All these technologies are also

needed for crop phenotyping; thus in particular,

the application of sensors in agricultural

environments is not new. For agricultural

applications, a deterministic (“online”) data

handling is of utmost importance. Examples are

the usage of online sensor data for direct fertil-

izer control (Link and Reusch 2006) or the online

detection of crop properties for adjusting the

cutting height during maize harvesting (Egbers

et al. 2006). The corresponding data have to be

collected, interpreted, and used for open- or

closed-loop control interaction for online

applications. As compared to the sensor applica-

tion for agricultural processes, although the

demands for crop phenotyping have similarities,

the focus is different with respect to the follow-

ing aspect. The data are not used for the control

of mechanical systems; thus, there is no need for

a real-time system, excluding the storage of the

data. Moreover, for phenotyping, the

requirements with respect to the spatial resolu-

tion of measurements are typically higher.

It is interesting to notice that a kind of

“phenotyping systems” has already been devel-

oped for other agricultural processes several

years ago. These systems have used imaging

systems for crop-weed detection in order to

apply mechanical weeding or chemical weeding

with a reduced amount of herbicides (Zhang and

Chaisattapagon 1995; Gerhards et al. 1998).

Since the crop-weed detection or identification

on the go needs data with a high spatial and

temporal resolution, image-based systems –

such as a cameras or light curtains – as well as

sensor fusion concepts have already been used in

1998 (Ruckelshausen et al. 1999). For typical

crop phenotyping applications, the demands are

similar to the weed control examples; thus, the

amount of raw data is typically higher as com-

pared to state-of-the art agricultural processes,

for example, sensor-based fertilization.

The key components of digital phenotyping

for nonsubjective measures (Darrigues et al.

2008) thus include the real-time data storage

with a high spatial and temporal resolution and

a subsequent (offline) data analysis. Due to these

boundary conditions and the expected quality,

imaging systems are in focus for phenotyping

as, for example, distinguishing between crop

and soil is extremely complex or even impossible

without imaging data. The offline data analysis
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includes models and calibrations to extract crop

and trait parameters from the raw data, while

sensor data itself do not give direct information

about the crop status.

The development of the technologies can be

performed – similar to industrial applications – in

the laboratory or in greenhouse environments.

However, the phenotyping for crop plants has to

be performed under agricultural application

conditions, on the field. Moreover, due to strong

variations of soil, crop, weed, and environmental

conditions, typical industrial systems, such as

machine vision technology, cannot be directly

applied for outdoor applications. The influence

of sunlight, wind, dust, humidity, rain, or

vibrations is a challenge for sensor systems in

agriculture; thus, the availability of commercial

sensors or imaging systems for crop analysis in

agriculture is very limited. Considering both

aspects, the complexity of crop property

measurements on the field itself and the

challenges of imaging under outdoor conditions,

this chapter focuses on digital and image-based

systems for field phenotyping. Next to the data

acquisition and analysis, application-oriented

aspects of digital field phenotyping have to be

added, in particular, in the physical system for

hardware integration, a carrier for positioning the

system in or above the field. The major aspects,

options, and limitations of digital phenotyping

are described in this chapter, including image-

based systems (Sect. 4.2), data management

(Sect. 4.3), and the phenotyping process in crop

fields (Sect. 4.4). Future trends are given in

Sect. 4.5.

4.2 Image-Based Systems for Crop
Phenotyping

Technology and equipments are applied to mea-

sure crop or environmental properties in manual

phenotyping. For nondestructive investigations,

height measures or spectrometers are the typical

tools. In the case of nonimaging devices (such us

spectrometers for NDVI measurements), the

selection of the material is done by the user,

and typical examples are selected on the basis

of human experience and image selection. Thus,

the raw material for phenotyping is based on a

subjective selection, a kind of human image

processing. Even when a camera is used, the

selected image of field view depends on the

user. As a consequence, there is a need for objec-

tive measurements based on sensor systems and

its corresponding analysis. However, for a fully

technological solution, there is the challenge to

find representative images – previously selected

by the user – automatically. Due to the fast

increasing progress in image processing

technologies (Davies 2012), as a cross-section

discipline, digital phenotyping can adapt existing

algorithms to the specific application, in particu-

lar to the varying conditions of crop plants and

environmental conditions (see Sects. 4.3 and

4.4).

The idea of applying imaging to agriculture

goes along with the technological progress of

image capturing and processing technologies.

Long before integrated circuit CCD or CMOS

image sensors became available in the 1980s,

while remote sensing for agricultural

applications was already a research topic in the

1960s (Landgrebe and Phillips 1967) and in the

1970s (Haralick 1976). The availability of digital

imaging had a strong impact to the exponentially

growing number of applications, including

machine vision technologies in agriculture

(Chen et al. 2002). However, imaging under

dynamic varying measurement conditions in an

outdoor field (Hellebrand et al. 2002) is much

more complex as compared to quasi-static

conditions for indoor industrial production pro-

cesses. As a consequence, first commercially

available products of digital image processing

have become available for defined environmental

conditions, such as greenhouses, indoor produc-

tion lines, or capsulated devices on machines, for

example, the inspection of cereal grains (Davies

2012). Under outdoor conditions, driver assis-

tance systems have become available in the past

years based on laser scanning or digital cameras;

however, the detection of crop properties under

outdoor conditions is still a challenge.

In contrast to driver assistance applications,

non-destroyable sensors for crop analysis under
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agricultural field conditions are still nonimaging

devices. Most of these commercially available

sensors are used for detecting green structures

on soil or measuring spectral crop properties for

fertilizer control (Oerke et al. 2010 and

references therein). However, the complexity

and interpretation of the agricultural processes

are very high, such as the technical complexity

of the fertilizer technology itself. As mentioned

above, the varying influence of environmental

and other parameters strongly effects the devel-

opment of robust systems. For example, the

interpretation of nonimaging sensor information

of an area partly covered by crops and soil is very

hard or even impossible to solve, the same is true

for varying environmental impacts. For optical

measurements as, for example, changing sunlight

intensities have to be taken into account. For this,

uses of active light sources are most robust with

shading devices or at night from a sensor point of

view measurement.

The nonimaging devices available in the mar-

ket do not fulfill the typical quality requirements

for digital phenotyping. The spatial resolution

implies the usage of images in the very first

phenotyping step of data collection on the field.

The sensors for raw data capturing are thus key

components for digital phenotyping. While on a

first glance classical color cameras are in focus,

there are several options to obtain an image with

other technologies, for example, images at

selected spectral ranges or 3D distance informa-

tion. It is even possible to generate an image out

of individual point-wise sensor data, such as a

light curtain image sensor (Ruckelshausen

et al. 1999; Fender et al. 2005). Thus, in this

chapter, the terms image-based sensors and

image-based phenotyping will be used. More-

over, image is used in an abstraction where for

each coordinate pair (x, y), an intensity informa-

tion is given. Coordinates could be the spatial

position or the wavelength. Examples for the

intensity are the distance or the light intensity.

The resolution of the intensity information is

ranging from 1 bit (binary image) up to

commercially available 16-bit camera systems.

The number of coordinate pairs – for cameras,

these are picture elements (“pixels”) – can vary

from a few hundred up to several millions.

Moreover, an integrated vision system is

affected by a large number of influences, ranging

from technological parameters via application-

specific aspects up to costs (Davies 2012).

Motion and real-time data acquisitions – better:

a deterministic behavior – are of high relevance

for dynamic field measurements where the loss

of information is not acceptable and can result in

the misinterpretation of plant breeding processes.

In this section, we will focus on the contributions

of digital imaging to digital phenotyping, while

in Chap. 5 further information is given about

specific aspects of imaging methods for trait

determination.

For understanding the options and restrictions

of image-based sensors for digital phenotyping in

the field, there is a need for looking at the specific

basic functionality, selectivity, and possible dis-

turbance variables of the different devices. The

categories of image capturing can be structured

in several ways; examples are ranging from

physical parameters (such as reflection or travel

time measurement) up to the final interpreted or

even modeled data (such as plant height, mois-

ture content, or biomass). However, it is of high

relevance to clearly distinguish between the

image capturing process with raw data as a result

and the final model-based phenotyping result

with crop properties or trait determination (as

described in Sect. 4.4). Using the same raw

data, different models will typically lead to

variations in crop properties as the final result.

Sensors are categorized with respect to the image

capturing process, while the phenotyping process

(Sect. 4.4) results in crop characteristics. Major

measurement signals for field phenotyping

applications refer to spectral and morphological

signals, while other image-based methods are

usable for indoor phenotyping and have still

been developed further for being applied under

outdoor conditions.
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4.2.1 Spectral Selectivity

Classical cameras are based on silicon sensors

and can thus detect light in the visible (VIS) and

near-infrared (NIR) range up to about 1,100 nm.

Depending, optical filtering cameras can be

designed as gray value systems (without filter

and thus a higher spectral sensitivity) or color

cameras (with typically red, green, and blue

filters) for further color analysis. Both types are

integrating a broad range of wavelengths (in the

order of 100 nm or more) in one or three individ-

ual output channels. Digital color cameras have

broadly been applied in research for measuring

crop properties (e.g., Pan et al. 2007 or Li et al.

2010). By using several image sensors with opti-

cal splitting, so-called multispectral cameras can

supply one or more additional NIR channels for

advanced image processing with higher selectiv-

ity and higher spatial resolution.

Hyperspectral imaging can be applied if a

higher spectral resolution is needed (for details,

see Chap. 6). While for static applications

mechanically rotated or programmable optical

filters can be used, outdoor phenotyping

applications typically apply line sensors where

for each position a complete optical spectrum is

supplied. By storing the two-dimensional posi-

tion, wavelength-matrix point-wise spectral anal-

ysis can be performed (Mulla 2013 and

references therein). The continuous spatial

image in dynamic measurements is generated

by integrating line by line, thereby resulting in

a three-dimensional cube (x and y position versus

wavelength).

4.2.2 Morphological Selectivity

While the image-based systems described above

are reducing the information from a three-

dimensional world to a two-dimensional plane,

the 3D information is of high interest for

analyzing distances, geometric or morphological

structures. In the recent years, different

technologies have been developed and are avail-

able as commercial products. Laser distance

measurements have already been applied for

crop plant measurements; 2D- and 3D-laser scan-

ning devices are used in agriculture for a few

years and support point-wise distance information

for further image processing (Preckwinkel et al.

2004; Gebbers et al. 2011; Claas 2013). By

using a laser line as active light source, image-

based distance information can be determined by

triangulation. Such systems based on the laser

light sheet method are already available for

crop phenotyping (Lemnatech 2013). The impact

of varying sunlight conditions is still a challenge

for such systems, which is also true for 3D time-

of-flight cameras, which have become available

in the last few years (Klose et al. 2012). There is

also a high potential in phenotyping for low-cost

consumer imaging systems such as the Kinect

camera (Fossati et al. 2013); however, the

disturbances of the projected light pattern by

sunlight still hinder field phenotyping

applications. An interesting image-based tech-

nology for phenotyping is the measurement of a

two-dimensional shadow of crop plants, which

can be generated by placing optical sensors and

emitters opposite to each other with the plants in

between. For this purpose, an individual laser

line or an LED can be used as light source on

one side, while CCD or CMOS image sensors

(for high resolution) or individual photo diodes

(for lower resolution) are placed on the other

side. Such systems have already been applied in

the field for crop-weed detection long ago

(Ruckelshausen et al. 1999) but have come into

focus for phenotyping applications more recently

(Busemeyer et al. 2013a).

4.2.3 Other Selectivity

There are a large number of specific imaging

systems which might come into focus for

phenotyping applications in the future; however,

their impact on state-of-the-art research and

development in field phenotyping is still low.

All sensor principles and technologies might be

applied to digital field phenotyping; however, the

complexity or the robustness of new technologies

is not yet suitable for these applications. For
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indoor or greenhouse phenotyping, some of the

technologies have already been applied or are

addressed in research projects.

Magnetic resonance images (MRI) are

broadly used in medical applications and have a

high selectivity, in particular with respect to the

complete volume of an object as compared to

VIS/NIR systems detecting the surface region.

These systems are applied for to plant root anal-

ysis (Schulz et al. 2013) and even have the poten-

tial for mobile imaging applications, such as

analyzing the growing process of pear fruit

(Geya et al. 2013; Windt and Blümler 2013).

The multiple reflection of an individual ultra-

sonic pulse by crop plants and soil can be

interpreted in terms of crop levels, and first field

experiences are available (Reusch 2009; Makeen

et al. 2012).

During the past few years, significant progress

has been made in developing terahertz

technologies for material analysis. The first

applications on measuring crop properties, espe-

cially the leaf water content, have been

performed (Breitenstein et al. 2011; Gente et al.

2013). Applying radar for crop detection has

always been a topic for research, including the

extraction of features for crop classification

(Anys and He 1995). The application of wide-

band radar is also a selective option for detection

of crops or plant roots within the soil (see e.g.,

Konstantinovic et al. 2007). X-ray technologies

(such as computer tomography) have already

been applied for indoor crop root analysis and

showed future potential (Fiorani and Schurr

2013). For top soil mapping, passive γ-ray
measurements (van Egmond et al. 2010) have

already reached a commercial product level

(Medusa 2013).

4.3 Data Management

The collection and storage of phenotyping sensor

data are still a challenge, no matter if digital or

manual phenotyping is applied. In particular if

data from different users are integrated or previ-

ous phenotyping data are combined with newer

ones, detailed information about the

measurement conditions and data formats are

necessary to support an efficient data interpreta-

tion (Billiau et al. 2012). In digital phenotyping,

several sensors are typically used for the collec-

tion of phenotyping information (such as

described in Sect. 4.2) and its interpretation (as,

e.g., GPS, plot data). Consequently, a systematic

data acquisition is crucial from the beginning in

order to supply the input data for crop property

interpretation. Thus, on one hand, the handling of

“big data” on the field makes the phenotyping

process technologically complex; on the other

hand, a systematic data management supports

the generation of a transparent data structure for

further processing and multiuser purposes.

The first step in the data management process

of phenotyping platforms is the raw data collec-

tion and storage. Typically, each sensor can sup-

ply a data package within a given time; one data

package can be named a frame (as typically used

in imaging), and the corresponding data rate is

correspondingly designated as frame rate. Frame

sizes and frame rates typically vary strongly. For

example, a GPS sensor supplies a few bytes in a

second, while a hyperspectral imaging system

supplies a few megabytes with frame rates up to

a few hundred Hz or a laser distance sensor with

a few bytes in the range of kHz. These data have

to be stored in relation to the field position. The

technological challenges strongly depend on the

phenotyping application (Busemeyer 2013):

• If the interpretation of raw data is related to a

larger area, such as a field trial plot of a few

square meters, at a first view it seems that

there is no need for a higher local accuracy

as enabled by image-based systems. As an

example we have a look at a nonimage-

based spectrometer with a top-view measure-

ment of a field plot including crop gaps. In this

case, the spectrometer is detecting mixed

spectra including crop as well as soil

components. Thus, the average value does

not represent crop properties. It is important

to notice that this way of data collection can

limit the data analysis or even lead to wrong

phenotyping results. As a consequence,

image-based systems are even of high rele-

vance when larger areas are averaged, since

46 A. Ruckelshausen and L. Busemeyer



they allow a sophisticated filtering of raw data

in order to obtain robust and high-quality crop

information.

• If the interpretation is related to a very small

local area (a square meter or less) or even an

individual plant, the corresponding data have

to be stored extremely precisely in the online

data acquisition process in order to match the

data of one or more sensors to the same field

position in the offline data analysis. If the

technical accuracy is higher as compared to

the distance between the individual plants,

there is even an option for “individual plant-

related” phenotyping. An example is the

maize where a combination of sensors and

high-resolution GSP sensors has been used

for individual plant phenotyping (Fender

et al. 2006). In plot-related method, an

image-based spectrometer included in a posi-

tion-sensitive data structure allows the detec-

tion of crop and soil and thus a phenotyping

interpretation. Moreover, selective options as

necessary for disease detection or exclusion of

plot edge sections are open.

To take into account the variations in frame

size and frame rate, spatial and temporal infor-

mation have to be stored related to each sensor.

The position could be supplied by a GPS system,

an encoder, or landmarks, while the time could

be supplied by an internal clock signal supplied

within the system. The position and timing infor-

mation consequently allow the matching of sen-

sor data to a field position, thereby taking into

account the different mounting positions of the

sensors. Figure 4.1 shows an example of a system

architecture for multisensory phenotyping (Klose

et al. 2010; Busemeyer et al. 2013a). On the left

side, different sensors are shown, typically with

different electronic data interfaces, such as

“Ethernet” or “Analog.” In the example

computers or embedded systems are used for

converting all data to a Gigabit Ethernet network.

Fig. 4.1 System architecture for data collection and analysis of a multi-sensor phenotyping platform (Busemeyer et al.

2013a)
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All raw data with corresponding time stamps and

positioning data are stored online in a database

serving as the input data for the offline data

analysis.

The goal of the complete data interpretation

for phenotyping is the conversion of raw data to

crop parameters for trait determination. Thus,

digital phenotyping is a strongly interdisciplinary

task with respect to the application-oriented

knowledge of crop plants (such as from plant

breeders or biologists) on one side and engineer-

ing- or mathematical-oriented methods on the

other side with topics ranging from

mechatronics, electronics, communications to

algorithms, or artificial intelligence.

In particular, this interdisciplinary aspect is of

highest relevance for the conversion of sensor

raw data to crop parameters. For example,

while taking the crop height, it is obvious that

there will never be a universal “crop height sen-

sor.” The large variety of crop heights, morpho-

logical plant structures, growth stages, or field

conditions will lead to specific solutions based on

sensor technologies shown in Sect. 4.2. The

selectivity of each sensor signal varies with

respect to a given plant characteristics; more-

over, each sensor is effected by specific

influences from the environment. As a conse-

quence, an individual sensor might lead to

misinterpretations, whereas the combination of

different sensors typically results in a higher

selectivity. This concept of a multi-sensor system

for crop detection has already been proposed in

the late 1990s (Ruckelshausen et al. 1999) and

has been continuously applied for field

phenotyping (see, e.g., Montes et al. 2007;

Comar et al. 2012; Busemeyer et al. 2013a). For

breeding for novel traits, the concept of digital

phenotyping based on sensor fusion including

new technologies is a key component to measure

the large number of plants and its parameters

(Fiorani and Schurr 2013).

The initial idea is the correlation of different

parameters extracted from individual sensor raw

data with individual crop properties, whereas a

sensor can support more than one parameter.

Looking at an image of a color camera, for

example, several parameters such as the number

of pixels in a given color space range (correlated

with the crop surface coverage) up to an object

identification of a leaf or an ear can be used. As

essential for phenotyping in general, sensor-

specific field calibrations have to be carried out.

In a “sensor-crop matrix” (Dzinaj et al. 1998), all

parameters (both from sensors and crops) can be

correlated, and promising options in combining

sensor data can be established on a manual base.

If test measurements are available, mathematical

algorithms suitable for sensor and data fusion

(Mitchell 2007) can be applied to select the

most robust combination of sensors for trait

determination or exclude sensors with low selec-

tivity in order to reduce complexity or costs.

Already existing data or information (a priori

information) is combined with sensor data and

can thereby increase the robustness of the

algorithms.

The extraction of parameters – relevant for

phenotyping – out of digital image-based infor-

mation is strongly supported by a huge number of

algorithms (Davies 2012), which can be applied

by commercial or open-source image processing

libraries. In a low-level data analysis of images,

statistical data can be extracted and used for crop

property correlation. An example is the measure-

ment of the area (or percentage) of a field, which

is covered by plant material or earth. The image

processing is very fast in this case and can be

used for online actuator control; however, for

phenotyping, the information is typically limited

and does not exploit the potential of the data

available. Using image processing algorithms

for image segmentation and object detection

offers a high potential for detecting crop

properties. The image processing for indoor

phenotyping with individual crop plants is com-

plex however, as compared to outdoor

phenotyping which is comparably straightfor-

ward. In a laboratory or greenhouse, the individ-

ual plants can be separated from each other like

in an industrial production environment, and trig-

gered image capturing with ideal light conditions

can be performed. Going to field phenotyping,

there are many disturbing influences. The major
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problem for individual plant detection is to know

where the plant is located; in particular the situa-

tion of overlapping plants strongly limits

applications. The disturbances related to the

measurement process can be addressed in terms

of the two following categories (Busemeyer

2013).

4.3.1 Factors Having a Direct Influence
on the Sensor Raw Data
Generation

Environmental impacts, for example, sunlight,

dust, or moisture, can strongly influence the sen-

sor signal or even prevent any reasonable data

analysis. The selectivity for the different

influences strongly depends on the sensor mea-

surement principle, the housing, and the system

integration in the phenotyping platform. By

adapting the mechanical construction (e.g., by

reducing the influence of direct sunlight) or the

inclusion of additional redundant sensors the

robustness can be increased. For the phenotyping

process an online detection of the data quality is

recommended in order to avoid measurements

without collecting high-quality data. Traffic

light information systems for nonfunctioning

(red), problematic (yellow), or functioning

(green) can be used for the human-machine

interface.

4.3.2 Factors Which Temporally
Change the Condition
of the Plants

This category contains factors like strong wind,

heavy rain, or mechanical influences of the

phenotyping platform itself. The latter ones

should be avoided by a corresponding design of

the platform matching to the crop structures. The

ground clearance should be sufficient, and

variations of the soil level should not cause

strong vibrations of the platform or

misalignments. The automatic detection of plot

damages could be helpful. Information might be

included via a human-machine interface.

4.4 Digital Phenotyping in Crop
Fields

Image-based sensors and data fusion concepts

are applied widely under laboratory or green-

house conditions. The growth conditions for

crops and its disturbances in the field (mentioned

in the previous section) are strong needs for

outdoor experiments and robust digital

technologies. Aspects related to control versus

natural environments are discussed in detail in

Chap. 3. However, this section has focused on

digital field phenotyping for the development of

the digital imaging technologies and system

architecture laboratory test setups. Examples

are robotic arms, carousels, or test vehicles.

Figure 4.2 shows a conveyor belt, where crop

Fig. 4.2 Laboratory setup for multi-sensor phenotyping

development. A conveyor belt with defined (variable)

speed represents the field, while fixed sensors are

evaluated with respect to their raw data and sensor fusion

options in the follow-up data analysis (Photo: University

of Applied Sciences, Osnabrück 2013)
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plants or test structures are moved with defined

(variable) speed which offers the opportunity to

evaluate the usability of new or existing sensor

technologies for different application scenarios.

Moreover, the quality of sensor and data fusion

algorithms can be evaluated under ideal

conditions as well as the accuracy of the

measurements by repeating measurements.

In digital field phenotyping, we focus on the

sensor-based raw data acquisition for the usage in

field platforms up to the data analysis resulting in

crop properties, ranging from crop height up to

complex parameters like biomass (Thomas 2006).

The interpretation of the digital phenotyping

results to assess the dynamic genetics of complex

traits and setting up field trials with respect to a

statistical point of view have been discussed else-

where in various chapters of this book.

It is possible to install sensors permanently in

the field or at fixed outdoor frames (like a rain-

out shelter). However, in this chapter, we focus

on dynamic platforms serving as sensor carriers

for nondestructive dynamic field measurements.

While existing technologies in agriculture such

as satellite remote sensing (see Chap. 13) or

tractors can in principle be used as phenotyping

platforms, they typically do not fulfill quality

requirements for plant breeding processes.

Therefore, phenotyping-specific platforms have

been designed in the last years and applied to

various crops (see Chap. 18). These platforms are

required to fulfill the following conditions:

• The mechanical concept includes the sensor

systems, data management, power supply,

communication technologies, and human-

machine interface.

• The sensor positions are flexible and/or

adapted to crop properties.

• The platform is robust with respect to field

conditions and environmental impacts.

• The speed of the platform compromises high-

throughput demands with big data acquisition

rates.

• Failure of technological components, such as

sensors, is automatically detected and

communicated to the user in order to avoid

mistrials.

• The platform does not damage crop plants.

Next to these phenotyping-related aspects, the

platform has to fulfill legal requirements and

safety aspects. The latter ones could be complied

by the integration of a human being (at the plat-

form or a remote control place) or by using

certified automation systems.

The recently developed phenotyping

platforms are mainly ground-based systems,

driving through the outdoor field or experimental

plots and scanning small crop regions or individ-

ual plants (Montes et al. 2011; Wunder et al.

2012). Typical concepts for state-of-the-art

developments of dynamic field-based

phenotyping platforms are shown in Fig. 4.3.

• A phenotyping carrier is attached to a stan-

dard tractor for field trials (Mistele and

Schmidhalter 2010; Busemeyer et al. 2013a).

• A specific human driver-based vehicle is

designed for phenotyping (Kipp et al. 2014;

Comar et al. 2012).

• The systems are integrated in an autonomous

field robot platform (Griepentrog et al. 2010;

Ruckelshausen et al. 2009).

The phenotyping platforms collect and store

raw data for experimental plots, small regions, or

even individual crop plants. As described in

Sect. 4.3, the spatial and temporal resolutions of

the raw data have a strong impact on the data

management concept. Thus, the selection of

sensors and the statistical models for crop param-

eter extraction strongly depend on the planned

interpretation in terms of a complete field, a site-

specific view, a plot-related interpretation, or an

individual plant treatment. If high-resolution

imaging tools are used, the high-volume infor-

mation can be filtered and averaged for a larger

region, thereby typically resulting in reduced

data of high quality. If the raw data are already

integrated and thus averaged, for example, for a

nonimaging spectrometer, the filtering options

are strongly limited and thus the quality is typi-

cally lower. Another important aspect in digital

field phenotyping is related to the sampling pro-

cess. Is it necessary to measure all positions

along the platform path, or would it be sufficient

to collect samples along the way? The latter
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sampling version is by far easier to realize, while

for a complete sensor tracking, the frame rates

for each sensor have to be adapted to the speed of

the phenotyping platform or vice versa. High

spatial and temporal resolutions and high speed

are conflicting targets.

The integration of sensors into the mechanical

platform has to take into account the variability

of crop and field conditions. For detecting mor-

phological structures, the size range of a crop, for

example, dominates the selection and positioning

of a sensor. For optical image-based systems like

camera variations of the distances from the sen-

sor to the object are relevant with respect to

focusing the optics to get interpretable raw data.

Figure 4.4 shows the field phenotyping platform

for triticale ranging from heights of a few

centimeters up to about 2 m (Busemeyer et al.

2013a). The sensor fusion concepts include light

curtains, placed left and right of the selected

measurement area, while most of the other

sensors are positioned for a top view. Sensors

like spectral imaging devices or 3D time-of-flight

cameras are based on active (in some cases

synchronized) illuminations, thus cross

sensitivities have to be taken into account in the

phenotyping platform design phase. As can be

seen in Fig. 4.4, the sensor region is partly shaded

to reduce the impact of sunlight variations.

Moreover, it is important to take care about

Fig. 4.3 Realized concepts of digital field-based

phenotyping platforms. On the left side, the multi-sensor

phenotyping BreedVision carrier is attached to a tractor

(Photo: University of Applied Sciences Osnabrück,

Germany 2012), the human-based special purpose vehicle

PhenoTrac 4 is shown in the middle (Photo: Technical

University Munich, Germany), and the autonomous field

robot for phenotyping applications BoniRob is shown on

the right side (BoniRob; Photo University of Applied

Sciences Osnabrück, Germany)

Fig. 4.4 Tractor-mounted phenotyping platform BreedVision from rear view (a) and the mounting layout of multi-

sensor attachments (b). The light curtains are designed to pick up in case of soil contact (Busemeyer et al. 2013a)
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humidity or even rain as well as long-term effects

of dust. In particular the effects of these environ-

mental impacts could be crucial for optical

sensors. As typical for all sensor applications,

there should be a clear information to the user

in case of a failure; however, it would be very

helpful to receive a warning prior to loosing data.

Using the time available between experimental

plots or in a headland area, algorithms can be

performed to generate warnings for the user. For

example, in the case of a light curtain, dust-cov-

ered light barriers can be detected and the user

can react. Since all data are available in a digital

format, they can be used during the data analysis

for interpreting possible inconsistencies.

The phenotyping platform for generating

field-based raw data is the key component for

the digital phenotyping. The platform typically

includes several sensors, in particular image-

based devices. As compared to a human in the

role of a “classical phenotyping platform,” the

data are generated continuously with the same

quality if the abovementioned measures for

robust data acquisition are taken into account.

There should be no variations as in the case of

comparing one human expertise with the other;

moreover, human experts might get tired and

quality might change during data capturing. Nev-

ertheless, the accuracy of a technical system has

to be evaluated in order to avoid overinterpreta-

tion of measurement results in terms of crop

parameters while it is only a noise signal due to

variations of data acquisition and algorithms. As

a consequence, a new procedure, called “techni-

cal repeatability” is proposed by Busemeyer

et al. (2013b). As compared to the agronomic

repeatability, where, for example, experimental

plots with the same genetic crop variation are

repeated within a field, the technical repeatability

includes a double measurement for a selected

number of experimental plots (or field regions).

The variations of these measurements represent

the precision of the entire phenotyping proce-

dure. Figure 4.5 (left side) shows an example of

a series of measurements during three harvesting

periods. The height of triticale is measured with a

technical repeatability resulting in an R2 of 0.99.

This number does not replace the calibration for

the plant height with an independent method but

serves as a selective tool for interpreting

differences in crop traits. An example for com-

paring human phenotyping (using a mechanical

scale) with digital phenotyping (using light cur-

tain data) is shown in Fig. 4.5 (right side). The

correlation is very good (R2¼0.96), however –

due to the human repeatability – somewhat lower

as compared to the technical repeatability.

Except the aspect of the technical repeatabil-

ity and the availability of high-resolution digital

data, the agronomic principles of the

phenotyping procedures are still similar. This

includes trait calibration procedures which have

to be carried out trait-specific as well as sensor-

specific. The calibrations are applied to the trait

determination procedures. As usual, the effects

of the environment to the habit of the plants have

to be taken into account by accumulating data for

validation and calibration at different locations.

The experimental design for precision in

phenotyping and further information about

screening plant canopy parameters are described

in Chaps.17 and 6, respectively.

Figure 4.6 (left side) shows the results for the

correlation of observed and predicted dry bio-

mass yield for three harvests (Busemeyer et al.

2013b). The measurement data for the digital

phenotyping are based on light curtains and

laser sensors. The potential of sensor and data

fusion is demonstrated by the inclusion of spec-

tral imaging as an additional image-based sensor

(Fig. 4.6, right). By using a moisture index (a

ratio of selective wavelength), the relative mois-

ture content can be determined point wise and a

more appropriate number of the dry biomass can

be determined. The resulting correlation with a

R2¼0.92 shows a significant improvement as

compared to R2 ¼ 0.77 without this sensor fusion

component.

4.5 Future Trends in Digital
Phenotyping

The introduction of digital phenotyping to the

practice is still on the go. In research and devel-

opment, there is a tremendous increase of
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activities and projects on this topic as indicated

by various networks, workshops, and

conferences (see, e.g., IPPN 2013 and links

therein). However, having a look at products or

services, only few options are available. More-

over, most of them still have a major focus for

Fig. 4.5 The technical repeatability of a digital crop

height measurement with image-based light curtains for

a series of field tests (Triticale) is shown on the right side.
Two measurements of the same plot show a correlation of

R2¼0.99, which represents the technical accuracy of the

digital phenotyping platform. On the left side, the digi-

tally measured crop height is correlated with a human

one, resulting in an R2 of 0.97, thereby reflecting the

lower human repeatability (Busemeyer et al. 2013a)

Fig. 4.6 For a set of three harvests, the biomass

predicted by digital phenotyping is correlated with the

observed values obtained by harvesting, drying, and

weighing (left side). The data processing is based on

light curtain and laser distance measurements and thus

ignores the moisture portion. On the right side, the image-

based data of a spectral imaging system have been taken

into account to correct for the moisture content. The

sensor and data fusion significantly increases the correla-

tion (Busemeyer et al. 2013b)
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indoor or greenhouse phenotyping, while field

phenotyping is still in the beginning (see, e.g.,

LemnaTec 2013; PhenoFab 2013). On a first

view, this appears unexpected, since the pros of

digital field phenotyping are generally accepted:

the uniformity and objectivity of the

measurements, the availability of digital data

for further data analysis and documentation, a

high automation level thereby reducing labor

and time consumption, and the availability of

spatial and temporal high-resolution selective

data, in particular of image-based devices. How-

ever, the complexity of the technologies for data

acquisition as well as analysis is very high and

has thus limited the spread of digital phenotyping

(Eberius and Lima-Guerra 2009). The costs of

the technology modules are high, and there is still

a lack of robust (good) algorithms for outdoor

measurements under interfering variable

influences. Moreover, the knowledge about

plant growth strongly limits the interpretation of

phenotypic data. Innovative and robust image-

based technologies in field measurements can

support the finding of correlations between vari-

ous influencing factors and thereby the develop-

ment of analytical models for plant growing

(Poorter et al. 2010; Eberius and Lima-Guerra

2009). At the moment, the complex answer to the

question “How does a plant grow?” is typically

answered by plant breeders, biologists, and

farmers with “It depends on. . ..” Due to the

increase in the understanding of the processes

in nature on one side and the improved digital

phenotyping technologies on the other side, there

is the potential to give more analytical answers in

the future.

4.5.1 Sensor and Data Fusion

The sensor and data fusion (see Sect. 4.3) is the

most promising approach in digital phenotyping

since varying selectivities of an individual sensor

can be compensated to a large extent. The

algorithms, however, become complex and rely

on a large number of crop- and sensor-specific

calibration data from field measurements. Thus it

is of high relevance to separate data acquisition

of raw data from the transformation algorithms

for crop trait determination. The quality and res-

olution of the raw data will always be a topic for

improvements in digital phenotyping. Recent

developments for new sensor concepts will find

their way to field phenotyping applications.

Examples are the terahertz technology, magnetic

resonance, radar technology, and multi-reflection

ultrasonic sensors or multifocus cameras (for

supplying focused images for different camera-

crop distances for a single image capturing).

Moreover, multiview cameras, in particular 3D

devices, offer the opportunity to measure details

of individual plants. The subsequent algorithms

have to take into account the unlimited

variability of crop and field situations. Solutions

for robust algorithms are applied for artificial

intelligence methods; the attachment of quality

attributes to algorithms or semiautomatic data

analysis including a human:

• Algorithms: For instance, probabilistic

algorithms – for example, used in probabilis-

tic robotics (Thrun et al. 2005) – are suitable

for the problem.

• Attributes: For image analyses, quality

parameters can be defined and transferred

into a brief traffic light information, where

“green” represents a high quality. The

attributes can weigh the influence of an indi-

vidual algorithm within the sensor fusion

concept.

• Semiautomatic analysis: The database

containing the raw data can be semiauto-

matically used for analyses. For example, a

user can select individual crops or field

sections for the subsequent automatic

analysis.

Typically, the raw data are analyzed and

calibrated in terms of crop traits in a direct way

as shown in the example of determining the crop

height in Fig. 4.5. However, for more complex

parameters, indirect options can support parame-

ter extraction. Examples could be screening

methods for phenotyping diseases (see Chap. 9).

The local detection of very small spots (in the

range of square millimeters) in the field as

indicators for diseases is a high challenge, in

principle spectral imaging technologies are
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suitable for such a procedure, but the small size

and the corresponding field of views are disad-

vantageous. If indirect parameters – such as the

plant height, the number of plants, or the relative

biomass – are easier to access, the areas suspi-

ciously infected can be marked in a digital map,

and a human expert can evaluate the field situa-

tion. By iterative human-machine interaction, the

quality and degree of automation of these pro-

cesses can be increased.

4.5.2 Individual Plant Phenotyping

The need for robust digital phenotyping does not

only affect the sensors and algorithms but also

the mechanical platform and in particular the

data management. The need for high-throughput

platforms with reasonable costs and high quality

is a major requirement for digital phenotyping.

While ground-based platforms are used in pres-

ence, the availability of unmanned autonomous

aerial platforms (UAV), in particular low-speed

and height quadro- or octocopter devices, has

become of great interest (Zude 2013 and

references therein) and offers future options in

phenotyping. Due to the limited top view and

additional disturbances caused by the flying plat-

form, ground-based systems still are in favor. For

high-throughput plant phenotyping, autonomous

or remote-controlled field robots (see Fig. 4.3,

right) can be of high relevance in the future (see

also Chap. 7). With sensor and data fusion

including high-resolution GPS information,

even individual plant phenotyping is an option.

In this case, crop growth behavior can be

evaluated for selected single plants or regions

(Wunder et al. 2012). Figure 4.7 shows raw

data of light curtain measurement in maize. The

data show the side view of the crop plants like a

shadow. Together with an RTK-DGPS, it was

possible to redetect the individual plant several

times. The positions as well as the modeled

height of the individual plants are marked in

Fig. 4.7. For further data analysis and visualiza-

tion, existing GIS tools – meant for site-specific

applications in precision farming – can be used;

in this case, the “site” corresponds to an individ-

ual plant. Measurement data, images, or statisti-

cal data of field regions can be viewed and used

for further processing and evaluation (see

Fig. 4.8).

4.5.3 Virtual Phenotyping

As in many other disciplines, simulation can play

an important role with respect to understanding

Fig. 4.7 Measured raw data (green) of a light curtain in

maize (Wunder et al. 2012). Based on sensor fusion with

an RTK-DGPS, it is possible to redetect the individual

crop plants and model crop properties such as the height

(red). The technology demonstrates the potential of indi-

vidual plan phenotyping with an autonomous field robot
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processes or develop new ones. This aspect has

not yet been focused intensively; however, most

likely, it will be a topic of high relevance in the

future. Due to the infinite options of sensor selec-

tion, sensor positioning, crop states, and environ-

mental conditions, it could be very helpful to

evaluate the quality of image-based sensors and

sensor fusion concepts prior to the field trial. For

example, the options of integrated simulation

environments – such as ROS (Robotics

Operating System, ROS 2013) – have already

been applied for simulating the data acquisition

for different sensors in a field-like situation

(Tsukor et al. 2012). For such a virtual

phenotyping, the sensor characteristics have

been implemented, and the simulated measure-

ment data are stored in a database which is iden-

tical to the real one for the field measurements.

Figure 4.9 shows the schematic process of virtual

phenotyping, where sensors are implemented in a

carrier, such as the autonomous field robot

BoniRob or a tractor-mounted device. Due to

the infinite possibilities of sensor characteristics

or positioning, the simulation has the potential

for optimizing sensor acquisition. Moreover, the

robustness of algorithms for crop traits can be

evaluated prior to field measurements. Since sen-

sor and data fusion has a high complexity, virtual

phenotyping can be applied to remove sensors

with low selectivity and thus reduce complexity

as well as costs for sensors and system

technologies. On the other hand, the benefit of

new sensors can be evaluated.

The idea of virtual phenotyping has already

come up in clinical therapy (Perez-Elias et al.

2003), where the genetic information is

transformed into the most likely associated phe-

notype. In crop science, the expression virtual

Fig. 4.8 GIS map of three maize rows as measured with

the autonomous phenotyping platform BoniRob. The data

and images of individual crop plants can be visualized;

moreover, statistical analysis of regions can be performed

(Wunder et al. 2012)
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phenotyping has been used first referred to real

measurements based on near-infrared reflectance

spectroscopy (NIRS) and Fourier transform

infrared spectroscopy, while the virtual character

is interpreted in contrast to the biochemical anal-

ysis (Donnison et al. 2009). Having a look at

state-of-the-art digital phenotyping, however,

the interpretation of virtual phenotyping in

terms of a complete simulation of data acquisi-

tion appears appropriate.

4.5.4 Multiuser Digital Phenotyping

The future challenges with respect to sensors,

platforms, algorithms, and simulation have been

addressed above. In particular for digital

phenotyping, the application of several (image-

based) sensors results in a huge amount of raw

data in the range of gigabyte per plot. These raw

data from different locations, diverse platforms

and users, different time points, and various

crops have a high value, which can be potentiated

if the data are available for multiuser

applications. Moreover, using earlier date data

for applying new algorithms or generating a

broader base for interpretation is of high interest.

As a consequence, data management is of highest

interest in digital phenotyping. In the first step,

the conversion of different data formats or steps

toward more standardized data is in focus. If the

data are available in a database various

algorithms and target directions can be applied,

for example, by looking at the measurements in

terms of a data warehouse concept (Billiau

et al. 2012).

4.6 Conclusion

In nutshell, the phenotyping and genotyping

databases have to be linked together (Cobb et al.

2013; Perez-Elias et al. 2003). This tremendous

task can only be solved by strongly interdisci-

plinary approaches with experts from different

disciplines. The technological tools for getting

reliable field data or the data management and

interpretation concepts have similar complexity

as the genotypic interpretation. Taking into

account the complexity of crops and nature, digi-

tal phenotyping – including image-based

sensors mounted on platforms – robust multi-sen-

sor and data fusion, and simulated-based methods

are key components for today’s and future

field phenotyping.
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Fig. 4.9 The concept of virtual phenotyping is shown

(Tsukor et al. 2012): the phenotyping platform attached

with several sensors is simulated within the ROS frame-

work (Robotics Operating Systems, ROS 2013). The

virtual crop plants can be “measured” with the simulated

sensors, and the data can be stored in the same database as

the real measurement data
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Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K,

Hahn V, Maurer HP, Reif JC, Würschum T, Müller J,
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Klose R, Möller K, Vielstädte C, Ruckelshausen A (2010)

Modular system architecture for individual plant

phentotyping with an autonomous field robot. In:

Proceedings of the 2nd international conference on

machine control & guidance, Bonn, pp 299–307

Klose R, Scholz C, Ruckelshausen A (2012) 3D time-of-

flight camera-based sensor system for automatic crop

height monitoring for plant phenotyping. In:

Proceedings CIGR-AgEng 2012 conference, automa-

tion technology for off-road equipment, Valencia,

pp 55–60
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Imaging Methods for Phenotyping
of Plant Traits 5
David Rousseau, Hannah Dee, and Tony Pridmore

Abstract

This chapter introduces the domain of image analysis, both in general and

as applied to the problem of plant phenotyping. Images can be thought of

as a measurement tool, and the automated processing of images allows for

greater throughput, reliability and repeatability, at all scales of measure-

ment (from microscopic to field level). This domain should be of increas-

ing interest to plant scientists, as the cost of image-based sensors is

dropping, and photographing plants on a daily or even minute-by-minute

basis is now cost-effective. With such systems there is a possibility of tens

of thousands of photographs being recorded, and so the job of analysing

these images must now fall to computational methods. In this chapter, we

provide an overview of recent work in image analysis for plant science

and highlight some of the key techniques from computer vision that have

been applied to date to the problem of phenotyping plants. We conclude

with a description of the four main challenges for image analysis and plant

science: growth, occlusion, evaluation and low-cost sensor vision.

5.1 Introduction

In plant phenotyping, large cohorts of plants are

measured, to determine characteristics of the way

in which the plants’ phenotypes are expressed.

Imaging techniques could become tools of choice

in this context, since they allow non-destructive

and non-invasive measurements capable of

reproducing the eye of experts and can even

overcome human eye performances when gazing

outside of the visible spectrum, for example, into

the infrared part of the spectrum or investigating

microscopic scales. Measurements can be made

for different purposes (genetics, plant breeding,
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aesthetic matters when considering ornamental

plants), in different environments (controlled

and uncontrolled, single plants or plots) and

with a wide variety of sensors (X-ray tomogra-

phy, fluorescence imaging, visible light, infrared,

magnetic resonance imaging, terahertz imaging).

In some systems, sensors are integrated into the

surrounding infrastructure (moving field, moving

camera, drones); in others the sensors may be

portable (e.g. handy cameras and smartphone-

embedded sensors). All these systems generate

digital images which contain information on

plant structure, function and growth. Whilst

there is a real sense in which an image is a

measurement, the more interesting task lies in

extracting quantitative measurements from

images which have intrinsic value for biologists.

When such a procedure becomes fully automatic,

the throughput of plant phenotyping systems will

leap up, enabling large-scale monitoring of plant

growth, escaping the current phenotyping bottle-

neck involving hand measurement of individual

plants.

This chapter focuses on the automatic recov-

ery of quantitative data on plant structure, func-

tion and growth from image data. This is a large

area and we restrict discussion to images

acquired in controlled environments under illu-

mination in the visible spectrum. Though more

than one plant may be visible in any given image,

we assume that the plants are separable, i.e. we

consider plant, not canopy, phenotyping. Several

reviews of related areas from a biological point

of view have been published in recent years

(Furbank and Tester 2011; Fiorani et al. 2012).

It is important to emphasise from the outset

that we believe computer vision for plant science

should be a two-way relationship benefitting both

parties. There are plant science questions which

can only be answered with large-scale automatic

measurement of phenotypes, and there are vision

questions posed by such systems that will require

development within the field of computer science

too. We therefore propose a review of the

top-level questions facing the designer of an

image-based phenotyping system, before

introducing some of the specific image analysis

challenges to be overcome and then concluding

with some open questions in computer vision for

plant science. In this way we hope to introduce

the concepts and questions from image analysis

that will enable plant scientists to work well with

vision scientists, bringing progress to both fields.

5.2 Image Capture: Designing
a Phenotyping System

Image-based phenotyping methods share com-

mon structure and components. This includes

the fundamental acquisition components of a

computer vision system: lighting, optics and

imaging technology. In this section we cover

some basics concerning the choice of these

components and discuss their interrelations with

respect to the targeted phenotyping traits.

The current technologies available for

lighting in computer vision are given in Table

5.1. Halogen and fluorescent lights are mainly

used in growth chambers. These techniques are

modulated at the frequency of the electrical net-

work (50–60 Hz) and cannot be used in pulsed

mode. As a consequence, fluorescence imaging

techniques well known in plant science (see

Papageorgeou and Govindjee 2004 for a review)

can only be developed with LED technologies.

The choice of the wavelength of lighting is

important since it affects the contrast observed in

Table 5.1 Overview of lighting technologies used in plant science

Technology Advantages Drawbacks

Halogen High intensity Short life cycle, high volume, high cost, works

in continuous mode

Fluorescent Very diffused light Short life cycle, high volume, high cost, works

in continuous mode

LED Low volume, low energy consumption, long life cycle,

continuous and pulse mode

High cost on large surface

62 D. Rousseau et al.



the acquired image. For illustration, let us imag-

ine a scene containing green and red leaves,

where the informational task would be to sepa-

rate, automatically through the use of computer

vision, the green leaves from the red leaves.

Choosing a white light would send the contrast

between the two populations into the colour

domain requiring a trichromatic RGB sensor,

whilst choosing a green light could enable the

discrimination of the green leaves (appearing

bright) from the red leaves (appearing dark)

with a simple monochromatic grey-level sensor.

Halogen and fluorescent lights have large

wavelength bandwidths covering the visible

spectrum, whereas LED lighting can either have

a large bandwidth or it can instead be constructed

with a narrow bandwidth restricted to ranges as

narrow as 10–30 nm. It is therefore easy to select

adapted wavelength bands with LED

technologies. However, there are also bandpass,

short-pass or long-pass filters that can be

mounted on large bandwidth lighting systems

(see, e.g. http://www.edmund.com) which can

perform similar restrictions on the light that

reflects from the biological sample or plant.

Wavelength choices adapted to plant imaging

have been reported for various domains of plant

science including the monitoring of plant growth

or of abiotic and biotic stresses (Sankaran et al.

2010; Fiorani et al. 2012).

The design of optimal light sources for given

applications of plant imaging is an open ques-

tion, but reference to previous applications in this

domain may guide choice. For unreported

applications of plant imaging, it is possible to

determine the optimal wavelength of lighting by

using hyperspectral imaging. This imaging tech-

nique acquires, like a spectrometer but in 2D,

multiple (typically some hundreds of)

wavelengths covering the entire visible spectrum

and possibly the near-infrared spectrum with a

spectral resolution of a few nanometers,

i.e. much larger than any light source shown in

Table 5.1. Hyperspectral imaging hence

produces images of the spectral reflectance of

the observed scene. The hyperspectral reflec-

tance of leaves can be also simulated with

numerical models. This has recently been made

available online with the website http://opticleaf.

ipgp.fr/. From analysis of the reflectance spec-

trum in those areas to be separated within the

visual scene, it is possible to determine the best

wavelengths in the sense of the theory of detec-

tion (Kay 1998). It is then only necessary to light

the scene with these best wavelengths to consti-

tute optimal lighting systems. For illustration, we

give the reflectance of a control leaf and a leaf

suffering from a loss of chlorophyll in Fig. 5.1. In

this case, the optimal wavelengths for discrimi-

nating between the two spectra are located in the

range 500–700 nm, and lighting these samples

with wavelengths within this range will greatly

simplify later vision tasks.

The geometry of light is another important

parameter that can be optimised. This geometry

corresponds to the dimension and position of the

lighting system(s), in relation to the observed

scene and camera. It influences the homogeneity

of contrast expected from the choice of the wave-

length in the light source. A bad choice of light

geometry causes shadows in the acquired image;

dealing with shadows in computer vision is a

research topic in and of itself (Sanin et al. 2012;

Dee and Santos 2011), and if this can be avoided

at the capture stage, it greatly simplifies further

processing steps.

Various lighting geometries are used in com-

puter vision as given in Table 5.2. Some of these

techniques are already used in plant imaging. For

Fig. 5.1 Reflectance spectrum of a control leaf in dash-
dotted line and of a leaf with a loss of chlorophyll in solid
line
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instance, backlights are used to monitor seedling

growth (French et al. 2009; Subramanian et al.

2013; Benoit et al. 2013) and diffused light is

used in the imaging cabinet (http://www.

lemnatec.com/). The techniques given in Table

5.2 are of interest when it is possible to position

the lighting system in relation to the observed

plants. This might not be the case when imaging

has to be done in the growth chamber or even in

the field. In these cases, time-gated lighting can

be a good solution to get rid of the ambient light.

This involves sending a brief and intense flash-

light onto the scene in synchronisation with the

shutter of the camera. The sensor of the camera is

relatively less sensitive to ambient light during

the flashlight.

Various parameters influence the choice of

optics like the magnification, the depth of view

and the minimal distance to the object, which are

all accessible from Descartes’ law on lenses (see

Bass et al. 2009 for a tutorial). In short, the

equation of the lens gives

1

f
¼ 1

u
þ 1

v
;

where f is the focal length of the lens, u is the

distance between a point P on the object to the

optical centre of the lens and v is the distance

between the optical centre of the lens and the

focalisation point associated with P. The focal

length of a lens is expressed in millimetre. The

choice of this parameter is linked to the

dimensions of the scene to visualise. Each focal

distance corresponds to an angle α

α ¼ 2a tan
d

2f

� �
;

with d being the diagonal size of the sensor

(in millimetres). A large scene is acquired with

a short focal length, whilst a small scene requires

a large focal length. Considering this in the spe-

cific context of plant imaging, if multiple plants

are to be imaged at the same time, the focal

distance f governs the throughput of the

phenotyping system. For a given size of sensor

associated with the lens, the larger the scene

imaged, the larger the throughput but also the

smaller the number of pixels to be associated

with each plant. As discussed by Belin

et al. (2011a), there is a trade-off between the

throughput and the accuracy of the measurement,

and ideally this should be addressed by consider-

ing the final phenotypic trait to be extracted.

Another parameter, particularly important

when considering adult plants, is the depth of

field (DOF). This corresponds to the distance in

the object space for which the point P appears

focused on the sensor plane. For a lens of diame-

ter D, the DOF depends on the focal length f, the
relative aperture of the diaphragm A ¼ f=D, the

distance u between the object and the lens and

Pix the length of a pixel (assumed square here):

DOF ¼ 2A � Pix � f 2 � u � u� fð Þ
f 4 � A2 � Pix � f 2 � u� fð Þ2 :

The final decision in terms of capture is the

choice of the sensor. This should take into

account its spatial resolution, numerical dynamic

(number of bits) and spectral sensitivity with

respect to the choice of the light source spectrum.

Some companies offer expertise to guide these

choices in integrated solutions dedicated to plant

phenotyping. It is however worth mentioning a

move towards low-cost systems, such as

Tsaftaris and Noutsos (2009), Chene

et al. (2012), de Vylder et al. (2012) and Wang

et al. (2012), which use consumer cameras and

open-source software. It is also interesting to

note from this perspective the recent initiative

Table 5.2 Main geometries for lighting systems and corresponding applications

Geometry Typical applications

Annular: ring fixed on the camera For high intensities

Backlight: object placed between light and camera For shape recognition from transparency

Diffuse: reflectors placed around the observed scene To produce uniform diffuse light

Scattering: lights scatter on the edges of the scene To enhance edges
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to list open-source software on the web for plant

image analysis which can be found at http://

www.plant-image-analysis.org/.

The description of the constitution of machine

vision system in this section may seem very

linear. However, the interrelations between

task, environment and method complicate the

design of image-based plant phenotyping tools.

It is often not immediately obvious, particularly

to the non-specialist, how to identify what the

assumptions made by an image analysis method

are or how well they match the key features of

the object of interest and viewing environment.

Construction of a plant phenotyping tool is typi-

cally an iterative process in which the method

and the environment are both tuned until satis-

factory and predictable performance is achieved.

The tuning process should be informed by an

understanding of the assumptions made by the

method and ideally driven by sample data from

which the degree of fit between object, environ-

ment(s) and data can be assessed. One might

change the illumination, look at a histogram of

grey values to check that it has become closer to

the assumed normal distribution and then alter

the parameters of the software to deal with, e.g. a

general increase in brightness caused by the new

lighting configuration. The universal plant

phenotyping machine therefore does not exist.

To design a plant phenotyping system is to look

for a synergy between method, task and environ-

ment: the environment needs to be set up in such

a way to support the image analysis methods, and

the image analysis methods need to be chosen

from those which will work in that particular

environment.

5.3 Feature Selection: Translating
Biology to Image Geometry

Images are sources of information concerning the

phenotypic traits to be analysed: if a trait is

visible to us, in a captured image, then it should

also be possible to extract it algorithmically.

Traits could be something as simple as leaf area

(which correlates highly with the amount of

“green” in a captured, top-down image) or it

could be something more technical, like angle

between leaves or some measure of the

serratedness of a leaf edge. Image processing is

thus a matter of information extraction. Various

informational tasks can be targeted including

object detection, object counting, shape analysis

from object segmentation and motion tracking.

For instance, a detection task has to decide if

an object is present or not in the image of the

scene. This final information can be coded on a

single bit: 1 if the object is present and 0 if there

is no object. This is very small in comparison

with the initial storage necessary to code the

acquired images, which often requires megabytes

for standard cameras. Image processing can

therefore be understood as a reduction of data

size whilst preserving salient information, that is,

a question of compression. To achieve this, it is

necessary to define “the information-carrying fea-

ture” to be extracted from the images. These

features will come from the expertise of the biolo-

gist in charge of the phenotyping. However,

biological features (cell, stem, leaf, fruit, branches,

etc.) are not trivially understandable in terms of

image processing: it is possible to design systems

which can extract these features, but they are in no

way primitive. An important step, therefore, in the

design of plant phenotyping computer vision tools

consists of the translation into geometrical terms

of the biological features. Since no universal

biology-geometry glossary exists, this step has to

be approached as a synergy between computer

scientists and plant scientists. This section presents

an overview of the main geometrical features that

can be computed so as to provide plant scientists

with the basic vocabulary of image processing.

Objects in image processing are typically

described in terms of features. These can be

separated into three broad families of features:

edges, regions and keypoints. The detection of

objects in images is realised by the detection of a

set of features characterising the object. For

instance, the face detection algorithm (Viola and

Jones 2001) now implemented in all basic cameras

can be roughly summarised as a system which

detects the coexistence of a vertical edge (the

nose), a horizontal edge (the two eyes) and then

further edges which are found on faces. (Note that
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the impressive performance of this face detector is

attributable not to the features it uses but to theway

in which these features are combined and to the

way in which this combination and arrangement of

features are learned from observation.)

Edges constitute the boundaries of homoge-

neous areas corresponding to regions, or they

correspond to creases and wrinkles in other-

wise homogeneous surfaces, like the ribs of a

leaf. Keypoints are points in the images with

some predefined local environment; these

features are often chosen to maximise the pos-

sibility of finding the features again. Hence

they can be thought of as representing unusual

or visually distinct image areas. Region-based

features aim to identify not the boundaries

between types of object in the scene but

instead to concentrate on finding the (often

homogeneous) regions that make up the objects.

With respect to usage, when objects are delineated

with sharp variations in colour or brightness from

their background, edges are a priori more appro-

priate features to describe the object(s). When the

distinction between object and background is more

spatially diffused, region-based features may be

more likely to constitute good descriptors.

Keypoints are particularly useful when occlusions

are likely to perturb the detection of the entire

contour of an object. In such cases, it is more

robust to base the detection of an object on

keypoints, as each keypoint only represents part

of the object, so it matters less that the object is

partially hidden. In practice, it is often the case that

a real-world vision problem can be addressed most

efficiently with some combination of edges,

regions and keypoints.

5.3.1 Edges

Let us consider a grey-level intensity image I(x, y).

Edges are extracted by using the gradient in the

image. One can define the derivative operation for

images along axes x and y:

Dx x; yð Þ ¼ I xþ 1, yð Þ � I x; yð Þ;

and

Dy x; yð Þ ¼ I x, yþ 1ð Þ � I x; yð Þ:

The amplitude of the gradient, illustrated in

Fig. 5.2, is then expressed as

D x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx x; yð Þ2 þ Dy x; yð Þ2

q
;

and the direction of the gradient is given by θ(x,y)

cos θ x; yð Þð Þ ¼ Dx x; yð Þ
D x; yð Þ , sin θ x; yð Þð Þ

¼ Dy x; yð Þ
D x; yð Þ :

The derivative operation amplifies small

fluctuations which may be caused by noise. To

be less sensitive to this noise, it is possible to

perform local smoothing before or after the

derivative operation.

It is also possible to detect the edges by

detecting the zero crossing of the second deriva-

tive in x and in y in the images, and

Lx x; yð Þ ¼ 2I x; yð Þ � I x� 1, yð Þ � I xþ 1, yð Þ;

Fig. 5.2 (a) An image of leaf; (b) the gradient image of leaf; (c) a thresholded version of (b)
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and

Ly x; yð Þ ¼ 2I x; yð Þ � I x, y� 1ð Þ � I x, yþ 1ð Þ:

Once the edges are extracted in binary images

(such as in Fig. 5.2c), there are several different

ways we can choose to represent these contours:

– A Cartesian coding in a table where the coor-

dinate of the pixels in the edges is

successively set.

– A Freeman coding of the coding listing the

relative angular movement amongst eight pos-

sible directions to pass from one pixel in the

contour to the next neighbour.

– A parametric representation via a Hough trans-

form or the Fourier coefficients of a Fourier

transform of the contour coded as a complex

signal xþ jy. The choice of encoding depends

in part upon the informational task to follow.

For example, if the aim is finding shapes such

as circles (such as when looking for seeds in

images), a Hough transform could be useful,

but if the aim is to detect or extract repeating

features (like the serrated edge of a leaf), a

Fourier analysis may be more appropriate.

Edges have been extensively used to character-

ise the shape of leaves and to extract the skeleton

of simple plants like seedlings (see, e.g. Du et al.

2007; French et al. 2009; Belin et al. 2011b;

Soares and Jacobs 2013; Gwo et al. 2013).

5.3.2 Region

A homogeneous region can be associated either

with areas of uniform colour or with a texture.

The concept of texture corresponds broadly to

basic patterns, deterministically or randomly

repeated in space. A great variety of numerical

attributes have been proposed in the literature to

characterise textures (Mirmehdi et al. 2008). The

simplest region-based approach consists of con-

sidering the histogram of the image as in Fig. 5.3.

This shows the binarisation into regions based

upon a grey-level histogram; the generalisation

of this technique to colour histograms (e.g. using

three dimensions for red, green and blue) is easy

to imagine.

To take the idea of regions further into the

texture domain, we present a few other

descriptors, for a region R including N pixels in

a grey-level image I(x,y):
– The moments of degree n: mn ¼ 1

N

X
RI

n x; yð Þ
where m1 is the average grey-level value on R,

or the centred moments of degree n,

μn ¼ 1
N

X
R I x; yð Þ � m1½ �n where μ2 is the vari-

ance of the grey-level values on R and
ffiffiffiffiffi
μ2

p
the

standard deviation of the grey levels on

R. Broadly speaking, the first moment is the

mean intensity; the second moment is the vari-

ance (which measures how similar the region’s

intensities are); the third moment is known as

skew, which describes how symmetrically

distributed the values are about the mean inten-

sity value; and higher-order moments are

harder to describe intuitively but still capture

some characteristics of the region’s texture.

– The autocorrelation function

C t
!� �

¼ 1
N

X
RI r

!� �
I r

! þ t
!� �

where

r ¼ x; yð Þ and r
! þ t

!
belong to R, being a

translation vector. Autocorrelation functions

are a measure which can detect repetitive

texture patterns.

– The autocovariance function

Γ t
!� �

¼ 1
N

X
R I r

!� �
� m1

h i
I r

! þ t
!� �

� m1

h i

where r
! þ t

!
belongs to R; this is in a sense an

un-normalised version of the autocorrelation.

– The power spectrum S u; vð Þ ¼ TF I x; yð Þ½ �j j2.
– Fractal parameters: for the pixels in R, one

counts the average numberN(r) of pixels closer

than a distance r and satisfying a given criteria.

On can, for instance, consider the criterion I(x,
y), grey-level intensity greater than a given

threshold. A fractal signature is recorded

when the representation of log(N(r)) as a func-
tion of log(r) shows a linear behaviour with a

non-integer slope. An integer slope of 1, 2 or

3 corresponds to a repartition of the valid

pixels homogeneously positioned on a mono-,

bi- or three-dimensional curve.
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– The co-occurrence matrix: for a translation t
!

for all pairs of intensity

a; bð Þ∈ 0, 1, 2, . . . , L� 1ð Þ2, L being the

number of possible grey levels, the

co-occurrence matrix is the table containing

M
t
!

a;bð Þ ¼ card r
!
, r
! þ t

!� �
∈R� R I r

!� �
¼ a; I r

! þ t
!� �

¼ b
���n o

:

Often, to limit the computations associated with

the construction of the co-occurrence matrix, the

images are requantised on L¼8 or 16. One can

then extract numerical features from this

co-occurrence matrix such as the homogeneity H

H ¼ 1

N2
c

XL�1

a¼0

XL�1

b¼0

M
t
!

a;bð Þ

h i2

where, Nc is the number of couples or also the

contrast C

C ¼ 1

Nc L� 1ð Þ
XL�1

k¼0

k2
X
a�bj j¼k

M
t
!

a;bð Þ

or the directivity

D ¼ 1

Nc

XL�1

a¼0

M
t
!

a;að Þ:

Grey-level co-occurrence matrices are a very

popular texture representation, which can capture

details of texture that are difficult to represent

with simpler, more parametric measures.

The segmentation of an image into homoge-

neous regions is made by applying some criterion

of homogeneity on a domain R based on the

numerical value of attributes like the ones

presented above. If these attributes share the

same value up to a given tolerance on R, then

the region is decided to be homogeneous. Two

approaches can be followed:

– Segmentation by fusion: the image is explored

from the most basic homogeneous regions,

i.e. the pixel. Two adjacent pixels are

associated if they satisfy the homogeneity cri-

terion. This approach can be unsupervised or

it can be supervised by the manual selection of

pixels located in the regions to be extracted.

This is called region growing.

– Segmentation by separation: in this case we

start with the entire image. If the homogeneity

criterion is not satisfied, the image is divided

in four subregions (quadtree) and the process

is iterated in the subregion up to the

stabilisation of the criterion of homogeneity.

Texture attributes can be defined on grey-

level intensities or on colour. The recent intro-

duction of depth imaging at a low cost provides

access to range intensities (Biskup et al. 2007;

Omasa et al. 2007; Klose et al. 2009; Kraft et al.

2010; Fiorani et al. 2012; Chene et al. 2012).

 

a b c

Fig. 5.3 (a) An image of leaf; (b) histogram of image (a); (c) binarised version of (a) with pixels set to 1 for grey levels
between the two arrows in (b) and pixels set to 0 elsewhere

68 D. Rousseau et al.



Information from depth can be of great value

when characterising structures like the shoots of

plants, which can be more textured in 3D than in

grey-level intensity or colour. The adaptation of

the state-of-the-art attributes of texture,

presented in this chapter, to depth maps when

applied to plants constitutes a research topic of

current interest.

5.3.3 Keypoints

Keypoints, also known as interest points, are a

more recent concept in computer vision. Instead

of describing the entire object, these extract only

points which have a specific local environment or

image neighbourhood. This can be expressed in

terms of local edges or local texture. The recog-

nition of an object is then based on the detection

of a set of keypoints, with a low sensitivity to a

partial occlusion of the object as long as a subset

of the keypoints is still observed. A variety of

keypoint detectors have been developed in the

literature including corner features, blobs, ridges,

edges and more (see Schmid and Mikolajczyk

2005 for a comprehensive comparison and eval-

uation). These keypoints have not yet seen with

much use in plant imaging. However, there could

be room for the development of specific environ-

ment defining keypoints of interest for plants like

nodes in a branching structure and local orienta-

tion on a leaf. Figure 5.4 shows an illustration of

the type of output produced by two different

keypoint extraction methods.

5.4 Open Challenges for Computer
Vision in Plant Sciences

The elements of imaging and image processing

presented in the previous sections are standard

approaches. They have been applied with success

in other domains of applied computer vision,

such as industrial vision and biomedical imaging.

We believe, therefore, they constitute a good

basis for the design of plant phenotyping

systems. However, there are some properties of

plants, encountered rarely in industrial vision and

biomedical imaging, which make imaging for

plant phenotyping a specific field of application

for computer vision. We propose to discuss in

this section those areas we consider as open

challenges for imaging and computer vision in

plant sciences with optical technologies.

5.4.1 Growth

The longitudinal follow-up of leaving organisms

during their development is an important issue in

life sciences (see Spalding and Miller 2013 for a

recent review on the link with image analysis).

The very early development is morphogenesis,

i.e. the process during which the forms and

shapes of the organism change continuously

over time to reach a functional adult stage. Imag-

ing this process in plant science is easier than in

the biomedical domain for multiple reasons,

including ethics, the absence of movement of

the embryo in plants and the possibility of

Fig. 5.4 (a) An image of leaf; (b) in green keypoints extracted from Lowe’s SIFT or “scale invariant feature transform”

(Lowe 2004); (c) the same leaf but with maximally stable extremal regions (Matas et al. 2002) highlighted

5 Imaging Methods for Phenotyping of Plant Traits 69



constituting larger cohorts monitored at high

sampling rates.

An open challenge in plant imaging, of utmost

importance to the characterisation of plant mor-

phogenesis, is the 3D quantitative monitoring of

growth of an entire plant at a cellular resolution.

This is possible for young plants at the seedling

stage, for which there exists imaging techniques,

such as X-ray tomography (Wells et al. 2012) or

confocal microscopy (Fernandez et al. 2010),

capable of giving access to the entire seedling

at a cellular resolution. However, these

techniques have some intrinsic limitations with

the use of contrast agent and 3D aberrations in

confocal microscopy or the relatively high cost

of microtomography and possible mutagenesis of

the early stages of plant development due to

X-ray radiation. However, the recent introduc-

tion of new sources of light (synchrotron, femto-

second lasers, etc.) and the progress in the

domain of biomarkers and in the performances

of sensors (GaAs, CMOS, etc.) are triggering a

huge amount of development in microscopy

(Anonymous 2012). Taking advantage of these

advances, other imaging techniques compatible

with the acquisition of entire seedlings at a cellu-

lar resolution are emerging tools producing new

data to be processed for plant image analysis

(see, e.g. Sena et al. 2011 for light sheet micros-

copy, Cloetens et al. 2006 for synchrotron imag-

ing or Lee et al. 2006 for optical projection

tomography).

In addition to the consideration of the cellular

level, growth implies morphological changes in

the plant domain which simply do not happen in

many other arenas: if one were to try and model

the growth of an animal, it would be necessary to

deal with the shape change, but only within cer-

tain parameters. Unlike plants, which develop

more leaves and change shape entirely, most

other growing organisms keep the same broad

architecture. Modelling the growth of baby

humans, for example, does not require one to

take into account the development of extra legs

in the same way that young plants require the

modelling of the appearance of new leaves. The

regularity of architecture has been exploited

within vision, for example, when detecting

flowers (Nilsback and Zisserman 2010). Thus it

is not only growth at the microscopic level that is

of interest. And once one is modelling growth at

more than one scale, the question arises of

whether it is possible to align models derived

from imaging at multiple scales (registration).

5.4.2 Occlusion

The shoots of adult plants form complex three-

dimensional structures which produce multiple

occlusions. As a marker of this complexity, the

shoots of plants have been shown to display

fractal properties with scale invariance in 2D

projections (Ruderman and Bialek 1994;

Chene et al. 2013) or in 3D (Boudon et al.

2006). The detection and segmentation of

objects (fruit, single leaves, branches, etc.) in

these complex scenes constitute challenging

tasks for computer vision. The keypoints men-

tioned in the previous section could constitute

interesting tools for such detection and segmen-

tation of self-similar occluded objects. For some

other applications, the full reconstruction of the

shoot is necessary. The development of cost-

effective 3D optical scanners to reconstruct the

shoot of the plant is receiving increasing interest

(Biskup et al. 2007; Omasa et al. 2007; Klose

et al. 2009; Kraft et al. 2010; Fiorani et al. 2012;

Chene et al. 2012). Up until now these 3D opti-

cal scanners have used existing devices, but

there could be interest in designing new sensors

optimising the optics, lighting wavelength,

especially for plant phenotyping applications

such as those recently proposed in van der

Heijden et al. (2012) and Billiot et al. (2013).

Also for a given 3D optical scanner, there are

open questions like the minimum number and

the optimal positions of the pose for a 3D recon-

struction of the shoot of the plant at a deter-

mined spatial resolution. Similar questions

exist in robotics within the field of simultaneous

localisation and mapping (SLAM), and there

could be interest in considering the application,

transposition or adaptation of such techniques to

the mapping of plants.
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5.4.3 Ground Truth and Public
Data Sets

The fact that imaging techniques for certain key

biological questions are still under discussion

demonstrates that imaging for plant phenotyping

is still in its infancy. The diversity of plant spe-

cies together with their various possible observa-

tion scales (cell, seed, seedling, meristems,

leaves, branching structure, fruit, entire plant,

canopy) calls for the design of a variety of

machine vision systems dedicated to plant

phenotyping. There are however some generic

problems in plant science such as the monitoring

of growth and the 3D reconstruction of the shoot.

Also there are some plant models like

Arabidopsis thaliana or Medicago truncatula

which serve as reference in the scientific commu-

nity of plant scientists. Such generic problems

and model organisms help in fixing observation

scales and in defining constraints for the design

of machine vision.

Efficient practices in terms of light, choice of

optics and imaging technology are progressively

disseminated with the recent development of a

network of phenotyping centres at an interna-

tional scale (http://www.plantphenomics.com/).

If common geometries of machine vision have

been developed by distinct research groups for

generic problems [e.g. concerning seedling

growth, the machine visions discussed earlier

are similar in terms of geometry (Subramanian

et al. 2013; French et al. 2009; Benoit et al.

2013)], there is a diversity of image processing

algorithms (Wang et al. 2009; Kimura and

Yamasaki 2003; Subramanian et al. 2013; French

et al. 2009) which have been proposed, but the

comparison of the performances of these

algorithms is still lacking. The validation of

image processing algorithms in plant sciences

requires comparison with ground truth which

can be based on numerical real physical

phantoms, annotated images by experts (with

recording of expert variability), or numerical

simulations of plants. Such ground truth data

sets, which are common practice in biomedical

engineering, could help in identifying hard

problems likely to trigger the interest of com-

puter scientist coming from outside the field of

phenomics. Also, since plant phenotyping is

likely to produce large data sets, the publication

of annotated data sets could constitute a new

domain of application for supervised image

processing based on machine learning

techniques.

When we have large, public, plant

phenotyping data sets, the question of evaluation

is still not settled. Segmentation evaluation itself

is an open-research question; even when consid-

ering the relatively simple question of

identifying which pixels in an image correspond

to a plant and which to background, the judge-

ment of whether one algorithm performs better

than another is a difficult question. Measures

such as ROC analysis (Fawcett 2006) which

deal with measures of true positive rate against

false positive rate fail to capture some intuitive

characteristics of segmentation quality. For

example, do segmentation errors near the object

boundary count more or less than segmentation

errors at the edge of the image? Moves towards a

more nuanced model of goodness of fit for seg-

mentation in turn need to trade-off against the

computational complexity of metric calculation,

in particular in low-cost low-power systems

(Minervini et al. 2013).

5.4.4 Phenotyping with Low-Cost
Imaging Devices

Plants develop through a complex interaction of

genotype and environment. Working in con-

trolled environments is helpful from the perspec-

tive of scientific investigation, which reduces the

variability resulting from these interactions.

However, to gain impact and to be able to apply

the ideas from image-based phenotyping to real-

world problems such as agriculture, we need to

also consider plant phenotyping under the

variability of field conditions. In these situations,

the measurement system has to come to the plant.

Different instrumentation approaches can be pro-

posed including phenomobile vehicles embed-

ding sensors, air drones, networks of wireless
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sensors installed in the field, cheap webcam-

based approaches or handy cameras to be carried

by the breeder.

The handy camera approach is not the highest

throughput but embeds the unvaluable expertise

of the breeder in the measurement phase. The

development of such systems can be very low

cost if one considers the fact that high-resolution

and high-sensitivity cameras are embedded in

many current smartphones. An optical probe

added on a smartphone can turn a simple tele-

phone into a high-performance and low-cost sci-

entific camera. Only simple optical probes need

to be developed to produce a new phenotyping

handy imaging system. Images acquired by such

equipped smartphones can be directly transferred

to a server to be processed. Similar approaches

have already been successfully tested in various

domains including microscopy (Zhu et al. 2011),

biomedical engineering (see Ozdalga et al. 2012

for a review and Pamplona et al. 2011 for an

impressive 1 dollar camera to diagnose

cataracts). Practically all optically based mea-

surement shown useful in agriculture in the liter-

ature could be transformed into such an

embedded version. These optical measurements

could be complemented by GPS localisation as

well as environmental information: exploiting,

for example, weather information from the Inter-

net services. We believe this is a particularly

promising avenue of research, which could

develop communities of breeders contributing

to plant phenotyping.

5.5 Conclusion

This chapter has presented an overview of com-

puter vision for plant science, highlighting key

computational concepts, progress made and

open-research questions. For imaging technology

to play a full role in the development of

phenotyping systems, automated analysis is

vital: a large Lemnatec installation, for example,

can capture upwards of 4,000 images of

800 plants in a day. Time-lapse photography,

photographing plants once per minute, is not a

new thing – but cost-effective time-lapse

photography with a camera per plant is certainly

within reach now. Opening up plants to this

level of scrutiny may well expose traits that

have never before been measurable. It is easy to

understand that the vast majority of these images

will never be looked at by a human being, and so

without automated measures of plant

characteristics, the potential for these systems

will never be realised.

Image analysis and computer vision for plant

science are not without pitfalls and drawbacks;

however, as with any interdisciplinary work, it

works best when both parties (biologists and

computer scientists) work together on a solution

from the outset, considering image capture setup

(light, geometry, technology) as well as the spe-

cific scientific questions in terms of phenotypic

measurement. This is an exciting domain to work

in, which should prove fruitful for both computer

science and for plant biology, but for real prog-

ress, it is important that both disciplines under-

stand each other.

References

Anonymous (2012) Focus on bioimage informatics. Spec

Issue Nat Methods 9(7):627–763

Bass M, DeCusatis C, Enoch J, Lakshminarayanan V,

Li G, MacDonald C, Mahajan V, Van Stryland E

(2009) Handbook of optics, vol I, 3rd edn, Geometri-

cal and physical optics, polarized light, components

and instruments. McGraw-Hill Professional, New

York
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Screening for Plant Features 6
Gerie W.A.M. van der Heijden and Gerrit Polder

Abstract

In this chapter, an overview of different plant features is given, from (sub)

cellular to canopy level. A myriad of methods is available to measure

these features using image analysis, and often, multiple methods can be

used to measure the same feature. Several criteria are listed for choosing a

certain (set of) image descriptor(s) to measure a plant feature. The choice

is dependent on a variety of reasons, including accuracy, robustness,

recording time, throughput, costs and flexibility. We conclude that

hyperspectral imaging can provide a powerful set of image descriptors,

which can be used to measure numerous plant features using multivariate

statistical models. However, care should be taken that the estimates

obtained with these statistical models provide the right measurement for

the plant feature under all circumstances of interest.

6.1 Introduction

When breeding for new plant varieties, the

breeder first creates new genotypes and then

selects the best performing ones from the pool of

newly generated genotypes. For a well-informed

selection, he/she needs to observe a large number

of features. The features can bemolecular markers

(including genetic, protein or metabolomic) or

morphological markers including seed/seedling

traits (e.g. related to germination and vigour),

but most features will probably be based on the

plant phenotype. Plant phenotype features can be

assessed on individual plants or on a plot basis and

range from early vegetative development to a

more mature generative stage.

Over the last century, tremendous gains have

been achieved in plant breeding. For example, in

Kansas, wheat yield increased by 26 % over 26

years due to genetic improvement (Barkley

et al. 2013). However, since most “low hanging

fruit” has been picked by now, breeders need to

make still larger efforts to further gains. For this,

they are investing heavily in biotechnology as

well as advanced phenotyping techniques.

Recent biotechnological approaches are not

only a powerful tool in finding genes and
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generating new genotypes, they are also of great

help in selecting genotypes which contain the

positive alleles of certain genes. For example,

for disease resistance, it is often quite cumber-

some to conduct an experiment to establish

which genotypes are (slightly) more resistant.

By using marker-assisted selection for alleles

that are known to have a positive effect, the

chances of selecting a genotype that expresses a

positive effect are considerably increased. How-

ever, in the end, it is always the phenotype that

counts and not its genetic marker pattern. Thus, it

is important to use advanced phenotyping

technologies to face the challenges of modern

breeding. Plant phenotyping can be defined as

the set of methodologies and protocols used

to measure plant growth, architecture and

composition with a certain accuracy and preci-

sion at different scales of organisation, from

organs to canopies (Fiorani and Schurr 2013).

The term is generally restricted to plant breeding

purposes, and not used for plant production, like

sorting. Digital plant phenotyping refers to the

use of computers for plant phenotyping where

digital sensors are used to measure plant

characteristics. One of the most common digital

phenotyping methodologies is image analysis,

where cameras are used to record images and

software is used to automatically extract the

measurements from the images, in a reproducible

and accurate way (please see Chap. 4 for digital

phenotyping).

There are several approaches that can be taken

to measure plants using image analysis. The most

obvious way is to use it as a digital ruler mimick-

ing hand measurements for specific plant

features. This is done in plant variety testing,

where the aim is to assess whether a candidate

variety is sufficiently distinct from all other

varieties of common knowledge in order to

grant the plant breeder’s rights. The assessment

is made on a character (plant feature) by charac-

ter basis, where the characters are defined

and described in international guidelines of

UPOV (http://www.upov.int/test_guidelines/). It

requires reliable, objective and reproducible

measurements of distinctive plant parts. Image

analysis has therefore been used in plant variety

testing since early 1990s, to automate the mea-

surement process. Examples include the mea-

surement of the size and shape of wheat kernels

(Keefe and Draper 1986) and various other plant

parts of other crops such as beans and onions

(van der Heijden et al. 1996). In plant variety

testing, the aim is to have a single image descrip-

tor that serves as a measurement for a well-

specified plant feature. Here, an image descriptor

is loosely defined as some image property, which

is expressed in a digital number using a computer

algorithm.

In plant breeding, the purpose is generally

aimed at meeting specific breeding targets,

e.g. having increased yield under certain stress

conditions. Components of breeding target are

often necessary since the final target, like yield,

is the result of so many interacting genes and

varying environmental factors that its heritability

is very low. Dissecting the breeding target in

several constituent physiological features with a

hopefully simpler genetic basis is therefore an

interesting strategy (Hammer et al. 2006; Alimi

et al. 2013).

One approach to dissect yield in plant

parameters is used in crop growth models. Crop

growth models aim to increase the understanding

of crop behaviour by explaining crop growth and

development in terms of the underlying physio-

logical mechanisms (Bouman et al. 1996). The

advantage of this approach is that it is an integral

approach that would allow the prediction of yield

from the underlying components over a range of

(untested) environments. The approach is how-

ever rather ambitious, as it may involve estima-

tion per genotype of rather difficult to acquire

parameters, which can only be extracted from

measurements over a range of conditions.

Messina et al. (2006) showed that it was possible

to develop a gene-based model to simulate soy-

bean development and yield of different

genotypes. The crop growth model

‘CROPGRO-Soybean’ was combined with linear

models that predict genotype-specific parameters

as functions of six so-called “E” loci. The results

suggest that gene-based approaches can effec-

tively use agricultural genomics data for the pre-

diction of genotype performance.
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Using molecular markers in combination with

automated phenotyping to estimate the most

important parameters in order to calibrate the

crop growth model for individual genotypes is a

very interesting approach, which certainly

requires further research, although it is not an

easy task. Another less ambitious approach is to

look at a selected set of experiments and

treatments (lab assays, greenhouse screens or

field trials) and measures only those plant

features that capture the most important aspects

of the breeding target in these experiments and

heavily automate the phenotyping for these

features using sensors like cameras.

This chapter aims to give an overview of

various relevant plant features and corresponding

image descriptors that can be used to estimate the

features using digital plant phenotyping.

6.2 Criteria for Measuring Plant
Features

For measuring plant features using digital imag-

ing, several criteria have to be taken into consid-

eration depending on the type of feature. A

non-exhaustive list of criteria is:

• What is the scale at which we want to mea-

sure? Is the plant feature expressed at a micro-

scopic scale (at or below the level of cells) or

a macroscopic scale (examining different

plant parts), or is it measured at the total

plant level (e.g. total leaf area) or even at the

crop/plot level (e.g. yield)? For microscopic

images, we generally work at a more destruc-

tive level and at a low-throughput rate

(although some processes can be automated).

Because of the limitations in throughput, this

scale is not frequently used as a standard

phenotyping method, but mainly for specific

research purposes. It can provide interesting

information, e.g. on cell size, cell wall thick-

ness or specific chromosome arrangement.

The macroscopic and plant scales are the

most frequently used scales, and a large vari-

ety of methods exist, which will be discussed

in more detail later in this chapter. Sensing at

the crop/plot level can be done in the field

with manually operated platforms. Of late,

unmanned ground or aerial vehicles (UGV

and UAV, respectively) also offer great poten-

tial and are currently the topic of research

(Perry et al. 2012). One can also use remote

cameras in aeroplanes or even satellites, but

generally, they have a limited resolution and

can only give information on crop level dur-

ing the season. This may be a limitation for

breeding purposes. Further, the possible

disturbances and fluctuations of atmospheric

conditions and, for satellites, the strict

intervals of recording may cause limitations

on their applicability.

• Some plant features may be better discernible

under specific illumination conditions with

special sensors. For example, anthocyanins

can be observed in the visible part of the

electromagnetic spectrum, but may be more

reliably measurable in the ultraviolet part of

the spectrum. Other compounds like fatty

acids are better assessed in the (near) infrared

part of the electromagnetic spectrum. The

plant response to stress can be measured

with thermal imaging cameras or by using

special light and cameras using the fluores-

cence property of chlorophyll (Pieruschka and

Poorter 2012). Hyperspectral imaging offers

great potential to measure water content or

specific compounds like carotenoids (Polder

et al. 2004).

• Closely related to this is the question whether

the feature is visible from the outside of the

plant (reflectance imaging can be used) or if it

requires information from within the plant. In

the latter case, we may have to revert to trans-

mission imaging techniques like X-ray or

nuclear magnetic resonance (NMR; please

see Chap. 12 for more details).

• Can the features be recorded on individual

plants, or are the plants standing in plots,

overlapping and intertwining with other

plants? If plants are in individual pots, they

can be put on conveyer belts and transported

to a special recording cabinet, which are

equipped with specific cameras and lighting
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arrangements and, e.g. turntables, allowing

detailed and controllable phenotyping. If

plants cannot be individualised but are stand-

ing in plots, either in a growth chamber,

greenhouse or in the field, it generally

becomes more complicated. For example,

the illumination is less well controlled, the

plants may be intertwined, and plants cannot

be easily imaged from all sides, which

increase the probability of occlusion and ham-

per the possibility of 3D imaging. On the other

hand, imaging the plants in plots has

advantages as it is more closely related to

their standard growing environment.

• Can the trait of interest be measured with

image descriptors in a 2D image, or is 3D

information required? In many situations, the

size and shape of 3D objects can reliably be

measured in 2D, and these features are much

easier automated. But in some cases, 3D infor-

mation is required, e.g. when the scene is

more complex and contains different objects

at different distances from the camera. A vari-

ety of 3D camera systems are entering the

market, offering great potential to automate

more complex measurements.

• Is the image descriptor a direct measurement

of a plant feature, is it a proxy for a certain

feature or is it otherwise useful in its own

right? The image descriptor is a direct mea-

surement if, for example, we measure the

length of a seed by means of image analysis

in the same way as we would do manually by

a ruler. In this case, the aim is to have the

same results with both the manual and

automated methods (after proper calibration),

irrespective of the phenotypic expression.

• Is the plant feature observable above ground

(e.g. leaf length or number of stems) or below

ground (e.g. root length)? This is a straight-

forward distinction, and it is important as in

general, it is less complicated to examine

plant parts above ground than below ground.

In some cases, below-ground observations can

be made easier by growing plants on special

systems, such as hydroponic systems or even

transparent soils (Downie et al. 2012). This

has influence on the plant root system in

comparison to its default growing conditions,

and it should be verified how the features in

this system translate to the normal growing

conditions. We refer to Chap. 8 for a more

detailed description of underground features

especially root traits.

Image descriptors are closely linked to the

method of recording. The recording method

poses restrictions on the time needed for a

recording (it can range from milliseconds for a

normal colour image to several minutes for

nuclear magnetic resonance or for certain photo-

synthesis parameters), the level of automation

(conveyer belt systems, robots or satellites), the

level of control of the environment (e.g. active or

passive illumination) and the operating costs.

These aspects are not further considered in this

chapter but have been discussed elsewhere in

this book.

Once the images are recorded, many image

descriptors can be measured quickly and reliably

without any human operator, which is a require-

ment for high-throughput phenotyping. In some

instances, we can allow a certain level of user

interaction to verify and adjust the image analy-

sis step. Finally, in some instances, e.g. during

the development phase, descriptors in the image

are totally measured by a human being, where the

user has to indicate by a mouse or other pointing

devices the feature to be measured.

In Table 6.1, an overview of various plant

features is given with a list of image descriptors

and other criteria. The list is not meant as an

exhaustive list, but only as an indication of the

various approaches available to measure certain

plant features.

6.3 Assessing the Performance
of Image Descriptors

6.3.1 Comparison with Manual
Measurements

In many situations, image descriptors are aimed

to replace manual measurements of plant

features. The standard approach is to make a

direct comparison between the image descriptor
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and the hand measurements over the range of

expression (different genotypes) of the plant fea-

ture of interest. The hand measurements are then

used as ground-truth data, and the correspon-

dence can be modelled with a regression model.

A simple regression model can correct for offset

and slope, but more complicated models can be

used to model a curvilinear relation over the

range of expression. Another aspect that is often

overlooked is the error in the hand measurements

by the human expert. There may be some

variations for repeated measurements even by

the same expert, as well as variation between

measurements of the same object by different

crop experts. When building the ground truth,

these aspects need to be taken into account.

Often, the approach of one image descriptor

for one plant feature requires rather precise

image segmentation, dividing the image in rele-

vant clusters (objects and background). If proper

illumination can be provided under standardised

conditions, segmentation can be as simple as a

threshold value, where pixels in the image below

the threshold are assumed to be foreground

pixels (belonging to the object of interest) and

the others background (or vice versa). If the

imaged scene is more complex, segmentation

can be rather cumbersome. A range of more or

less sophisticated segmentation algorithms exist

(Gonzales and Woods 1993), as there is no single

segmentation algorithm that works under all

circumstances. Each algorithm has its

assumptions, and if these are not met in practice,

the effect is often not predictable. If conditions

allow for simple thresholding, this is preferred,

due to its simplicity and robustness. Therefore it

is generally worthwhile to invest time in trying to

optimise the image recording, to allow for easy

and robust (threshold-like) segmentation.

If the object (e.g. leaf or fruit) can be seg-

mented in the 2D image, many descriptors of this

object can be extracted from the image, such as

perimeter length, Feret diameters, area, round-

ness, eccentricity, the average and standard devi-

ation of the grey value or colour (Gonzales and

Woods 1993). It should be noted that even a

correct segmentation of the object in the image

may yield descriptors which do not provide a

good measurement for the plant feature of inter-

est, as generally the original object is a 3D object

and only a 2D projection of the object is available

in the image. For example, the measured

projected leaf area is strongly dependent on the

angle of the leaf with respect to the camera. Thus

the feature must be measurable from the projec-

tion in the 2D image. If this is not the case, one

may try to use information from 3D images or

other statistical approaches. In any case, the

image needs to be adequately calibrated to estab-

lish the relation between the pixel size and the

real world dimensions.

6.3.2 Direct or Indirect Measure
of a Plant Feature

It can be difficult and tedious to develop an

algorithm for an image descriptor to properly

measure the feature of interest. Therefore, in

many cases, one will not try to develop an

image descriptor that exactly mimics the manual

measurement process. Often, a suitable approach

is to develop an image descriptor that serves as a

proxy for the feature, showing a good correlation

over the range of expression in the set of

genotypes. This correlation has to be tested

from time to time, especially if new genotypes

are introduced which may have an expression of

the feature, out of the tested range.

If the translation of an image descriptor to a

plant feature needs calibration for each specific

genotype, it is not really suitable for breeding

purposes as is discussed for leaf area (Gao

et al. 2012). An example of a proxy is the mea-

surement of leaf area index or total leaf area,

simply by counting the number of green pixels

in an image. This count is not the same as the

area of all individual leaves, but it generally

shows good correlation (van der Heijden

et al. 2012).

It may be hard to find a single image descrip-

tor to estimate the feature of interest in plants. In

that case, one may still be able to estimate the

plant feature by measuring a collection of image

descriptors, like statistics over a certain image

region (mean, standard deviation, histogram
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distribution, etc.), and use these in a statistical

model. An example of such a feature and its

corresponding set of image descriptors is the

estimation of total leaf area using colour

histograms by means of principal components

regression. Another example is the use of

hyperspectral data to measure concentrations of

plant compounds like chlorophyll or carotenes in

a spatial preserving way (Polder et al. 2004). A

large toolkit of statistical models or machine

learning tools is available to combine a set of

image descriptors to estimate a plant feature,

such as multiple linear regression, Lasso, partial

least squares, neural network, support vector

machine and regression trees (Hastie et al. 2009).

In the above cases, the criterion for an image

descriptor is the correlation with a plant feature,

but one of the powers of image analysis is to use

the computer to generate descriptors for plant

features that we cannot easily assess or quantify

ourselves, but which still bear useful informa-

tion. An example is the measurement of texture,

which can be quantified by a set of image

descriptors like Gabor features (Gonzales and

Woods 1993).

6.3.3 Criteria for an Image Descriptor

A criterion for an image descriptor is its accu-

racy, i.e. the image descriptor should correspond

with the plant feature of interest in such a way

that there are no systematic differences (bias) for

different genotypes. A nice example of bias is the

height of onion bulbs (van der Heijden

et al. 1996). The computer-determined height

corresponded well with the hand measurement

for many genotypes, but not for genotypes with

a broad neck. This is due to another definition of

the top of the bulb by the computer (at the inflec-

tion point), compared with the visually assessed

top. If it is acceptable that a new definition of

bulb height is used and that there is a possible

break with traditional manual measurements, the

breeder can apply this new definition and in the

future rely on the objective measurement of the

image descriptor. If not, one can include extra

terms in the calibration model, for example, the

neck thickness, to try to correct for the bias.

Another example is to use projected leaf area

instead of leaf area index or total biomass.

Clearly, projected leaf area is not the same as

total leaf area, but, depending on the application,

it might be sufficient. This can be tested in a

validation experiment with a representative sam-

ple of the genotypic variation, sufficiently cover-

ing the range of expression of the feature.

Especially with correlative models, we have

to be aware of their limitations. For example, the

projected area and length of an ear are all highly

correlated, so one can simply use projected area

instead of ear length. But it might be that we are

more interested in genotypes with ears having the

same projected area, but a shorter length. In this

case, it is trivial to measure both features, but in

the case of hyperspectral imaging, such relations

are much more complex. Therefore, care should

be taken for holding the relationship between the

plant feature of interest and the image

descriptors.

Besides accuracy, an image descriptor should

also be precise (low variation) and reproducible

(same value if the measurement is repeated). For

example, van der Heijden et al. (1996) compared

the variation of a new image analysis method

with that of the existing (visual/manual) method

by making multiple (independent) measurements

of the same object and looked at the means and

standard deviation for the different genotypes.

The means should be on a straight line y¼x,
and the standard deviations should preferably

be lower for image analysis than for hand

measurements.

A third criterion is the heritability of the

image descriptor. Heritability is a measure for

the fraction of phenotype variability that can be

attributed to genetic variation. If the genetic var-

iation (differences between the genotypes) is

high compared to the other sources of variation,

then the feature offers good possibilities for

selection. A simple method, rather equivalent to

heritability, is to look at the F-ratio statistic of the

mean squared error of genotypes over the mean

squared error of samples in an analysis of
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variance. If this F-ratio is highly significant, this

is an indication that the heritability is high.

Another criterion for an image descriptor is to

examine whether quantitative trait loci (QTL) can

be found for the descriptor. A QTL is a segment of

DNA that contains or is linked to genes that

underlie a quantitative trait. If we have a popula-

tion of genotypes, either a broad (association)

panel of diverse genotypes with different

backgrounds or an offspring of a crossing between

two homozygous inbred lines (i.e. a population of

recombinant inbred lines), we can look at

associations between molecular markers on the

genome and the descriptor. If we find high

correlations, it indicates that the descriptor has

some genetic basis that can be used in marker-

assisted selection. This approach was used by van

der Heijden et al. (2012), where they were able to

find the same QTLs for several image descriptors

and for their corresponding plant features, like

leaf size, total leaf area and plant height.

6.3.4 Composite Plant Features

Many plant features are composite features that

cannot be measured with a single descriptor. For

example, the shape of a leaf is a feature that

cannot be captured on a unidirectional scale,

and it requires multiple descriptors for the differ-

ent aspects of shape. Also, the colour of a leaf is

not just a single value or even the simple combi-

nation of the three colour components red, green

and blue (or another colour transformation).

Since colour can vary over the leaf, one can

have average colour, main colour, secondary

colours as well as colour variation, colour

patterns, etc. In general, a set of image

descriptors is then required to capture the plant

feature or an aspect of it.

An example of a combination of image

descriptors that provide shape information that

is difficult to quantify in plant features is the

shape of elongated, symmetrical objects like

carrots. The shape of a carrot can be described

using an array of width values as a function of the

relative position along the length axis (Fig. 6.1).

By averaging this width array over multiple

carrots of the same plot, the average width as a

function of its position along the length axis can

be obtained per genotype, hence creating a visual

representation of the average carrot of that plot.

An example is shown in Fig. 6.2. This local width

array per plot can be compared with the average

Fig. 6.1 The shape of elongated objects like carrots can

be described using the local width as a function of the

length axis. First- and second-order derivatives of the

width array can be used to locate specific points, like the

start and end of the neck
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array of another plot by calculating a shape dis-

tance index between the plots, e.g. by using a

Euclidean distance, which is the square root of

the squared differences over the entire length

axis. The thus obtained distance matrix for each

pair can be analysed using multidimensional

scaling methods like principal coordinates

analysis to visualise the (dis)similarity of

genotypes in a multivariate sense (Fig. 6.3).

Combined with the length of the carrot, it gives

a rather complete information-preserving

impression of the average size and shape of a

genotype. Another example to describe the

shape of a 2D object in an information-
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Fig. 6.3 A multivariate

distance (in this case,

Euclidean) can be

calculated between every

pair of average carrot shape

descriptions, and these

distances can be shown in a

two-dimensional graph

using multidimensional

scaling techniques like

principal coordinates

analysis. Points that are

closest together in the

multidimensional space are

connected together as a

so-called minimum

spanning tree. The colour
markers next to points refer
to the same colour in Fig.

6.2. The same colour

indicates multiple plots

(replications) of the same

genotype

Fig. 6.2 The local width

array can be averaged over

multiple carrots of a plot or

genotype, hence creating a

visual representation of the

average shape of a plot/

genotype. Carrots with the

same colour represent

different plots

(replications) of the same

genotype
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preserving way is by Fourier descriptors or cur-

vature along the contour (van Otterloo 1991).

Often, it will not be possible or necessary to

develop an information-preserving description of

the shape, texture or colour of an object. In that

case, a set of descriptors that together capture the

most important aspects of the composite feature

can be used. For example, the shape of the carrot

could be reduced to a few shape descriptors, like

overall average width, maximum width, position

of the maximum width along the length axis, and

the width near the bottom (5 % from the low end)

and top (5 % from the top), and their difference

which can provide an indication if the carrot is

tapered or cone like. These descriptors for certain

aspects of shape can be more useful than the

complete shape description, since it is concise

and each descriptor can be used in its own right.

Of course, the complete (information-

preserving) shape description can be used to

extract these parameters and other ones, if

needed. Therefore, it is advisable to store a com-

plete object description for later use. The easiest

information-preserving description of the object

is the original image.

6.3.5 Exact or Statistical Descriptors

If the recording conditions can be well con-

trolled, often a suitable projection of the object

can be obtained in the 2D image such that it is

possible to find an image descriptor which

corresponds well to the feature of interest,

e.g. the area of a leaf.

If we cannot fully control the recordings, and

the distance between camera and object varies, or

the orientation of the object with respect to the

camera is unknown, it is more difficult to get a

good estimate of the feature. Ideally, the image

should contain information required to calibrate

the object, like the orientation of the leaf and its

distance to the camera to measure leaf area. This

information may be obtained using 3D imaging

techniques. A wide variety of 3D techniques for

plant imaging exists, including stereo-based

imaging, laser triangulation, volumetric intersec-

tion, structured light, time-of-flight and light-

field technology, each with their own strengths

and weaknesses. By using a 3D recording tech-

nique, it may be possible to segment the leaf in

the 3D image, calculate its orientation and mag-

nification and measure its surface correctly. van

der Heijden et al. (2012) used the combination of

a time-of-flight and stereo approach to create 3D

images of pepper plants and automatically

extract the leaf surface for plant phenotyping.

The rather complex 3D reconstruction approach

was needed to correct for distance and orienta-

tion of the leaves. Paulus et al. (2013) used a

laser-scanning method to measure the ear volume

of wheat. Fang et al. (2012) have given an over-

view of different systems to quantify the 3D root

architecture in situ.

There are limitations to a 3D approach also.

When the plant structure is complex and the plant

has a large number of leaves, it will be hard to

discern the full 3D structure with all individual

stems and leaves with most 3D imaging

techniques, due to occlusion. Exceptions are

transmission methods like NMR and X-ray com-

puter tomography, but they are expensive, slow

and complex, and generally not well suited for

reasonable throughput plant phenotyping. There-

fore, generally the 3D method works best with

plants that are reasonably open or if the features

can be reliably assessed at plant parts not ham-

pered by occlusion.

If a 3Dmodel is too complex, a statistics-based

approach can be a good solution. For example,

total leaf area could not be measured in the 3D

reconstruction of a crop of pepper as the leaves

were overlapping occluding each other. By using

a multivariate method (principal components

regression) based on colour histograms, it was

possible to estimate total leaf area (van der

Heijden et al. 2012). The QTLs found were simi-

lar to those found by a time-consuming and

destructive manual measurement of total leaf area.

6.4 Hyperspectral Measurements

Hyperspectral imaging can be used to measure

many of the features listed in Table 6.1. Clearly,

it is one of the most powerful imaging methods
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for plant phenotyping. In hyperspectral imaging,

every single pixel consists of an array of values,

corresponding with the reflectance, emission or

transmission at a certain wavelength. Since a

spectrum is available per pixel (Fig. 6.4),

hyperspectral imaging not only allows for stan-

dard measurements of objects regarding size and

shape, but it also offers more information for

correct segmentation of the object as well as

the application of statistical models like partial

least squares to measure plant features like

dry matter content, nitrogen status or sugar con-

centration (Schut et al. 2006), or concentration

of lycopene or chlorophyll (Polder et al. 2004).

Two approaches are often used to process

the hyperspectral images. One is using multi-

variate methods like partial least squares to

build statistical models to map the hyperspectral

data to concentration data. The other method is to

use the ratio of two or three specific bands

to construct an index. PLS-based models can

outperform index-based methods as more infor-

mation can be used for the calibration (Polder

et al. 2010). However, for such multivariate

methods, the set of images used for the calibration

of the model is very critical, and care should

be taken to use a sufficient large set of images

and genotypes to build the model; otherwise

poor and unreliable prediction results may be

obtained.

Disadvantages of hyperspectral imaging are

the amount of light needed for a good recording,

the time needed to acquire a full-spectral image

and the amount of data generated and processing

power needed to process the large images as well

as the possible complexity of combining multiple

images together (especially if plants are moving).

Instead of using the full spectrum, one can use

a selected number of wavelength bands. Cameras

exist that can acquire three to nine bands using

special filters in real time. This technique is

known as multispectral imaging. A best-of-

both-worlds approach may be to use

hyperspectral imaging in the research and devel-

opment phase to do the band selection, while the

selected wavelengths are subsequently

implemented in a multispectral camera, resulting

in fast acquisition and processing for obtaining

meaningful plant features for high-throughput

phenotyping. Strictly speaking, a colour RGB

camera is a form of a three-band multispectral

camera, where the sensitivity of the three filters is

tailored to match the human eye. Four-band mul-

tispectral images with an NIR band added to the

Fig. 6.4 A hyperspectral image consists of a 2D spatial

image with a third spectral axis representing the

wavelengths of a part of the electromagnetic spectrum,

e.g. the visible part (400–700 nm) or the infrared part

(700–2,300 nm). Each pixel in the image thus contains

information over the spectrum recorded. This spectral

dimension can be used to extract multiple features, like

concentrations of compounds
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RGB bands are used for detection of the Tulip

breaking virus (TBV) in tulip fields (Polder

et al. 2013).

6.5 Conclusions

In this chapter, an overview of different plant

features and image descriptors to automatically

assess these features has been given. A multitude

of methods is available and there are multiple

ways to measure the same feature. In general,

the choice is dependent on a variety of reasons,

including accuracy, robustness, recording time,

throughput, costs and flexibility. Correlative

measurements based on composite descriptors,

such as can be obtained with hyperspectral imag-

ing, are very powerful, but care should be taken

that the estimates obtained with multivariate sta-

tistical methods provide the right measurement

for the plant feature under all relevant

circumstances.
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Phenotyping Crop Plants for Drought
and Heat-Related Traits 7
Shiv Kumar, Priyanka Gupta, Jitendra Kumar,
and Aditya Pratap

Abstract

Frequent drought and heat spells especially after the onset of flowering are

common events causing substantial yield losses to agricultural production.

Researchers lay emphasis on improving the yield potential and stability of

crop genotypes by incorporating genes/QTLs for drought and heat toler-

ance through large-scale phenotyping of germplasm, segregating

populations, and elite lines using conventional and modern phenotyping

tools. Field screening at different moisture and temperature regimes

provides an empirical way of evaluating germplasm and elite progenies

for drought and heat tolerance at desired crop stage. The methodologies

currently in use for screening germplasm/improved materials for tolerance

to heat stress include delayed sowing with supplemental irrigation to let

the flowering period of the crops coincide with the period of high-

temperature shocks, while for drought tolerance, late planting on receding

soil moisture and at low rainfall sites is commonly adopted. In the recent

past, modern tools and techniques have been developed for precision

phenotyping of drought and heat-related traits. Recent advances in imag-

ing technologies have allowed the estimation of biomass and growth

parameters nondestructively and rapidly. This includes easy-to-use tools

of spectral reflectance, digital imagery, thermal imagery, and stable

isotopes which have been instrumental for large-scale phenotyping of

morphological and physiological traits in crop plants. In this chapter, we

discuss various phenotyping methods available for breeding climate-

smart varieties for adaptation to drought and heat stress conditions.
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7.1 Introduction

Drought and heat are the two important abiotic

factors limiting crop yield in rainfed ecology.

With climate change, these stresses are predicted

to be extreme and frequent. The current trends in

climate change have already begun to adversely

influence the world agriculture (Lobell et al.

2011). Global temperature is rising steadily,

which is likely to have severe impact on the

growth and development of crops, especially

those grown in tropical and subtropical

conditions (Hatfield et al. 2011). It is predicted

that the annual maximum temperature will

increase by about 1–3 �C by 2050 (IPCC 2012).

Recent and potential future increases in global

temperatures are likely to be associated with

impacts on the hydrologic cycle, including

changes to precipitation and increases in extreme

events such as droughts and heat waves (Gregory

et al. 1997; Wetherald and Manabe 1999; Wang

2005; Seneviratne et al. 2006; Sheffield and

Wood 2008). Plant response to water deficit

depends on the amount and rate of water lost,

duration of drought stress, plant variety/species

under consideration, developmental stages of the

plant, and other environmental variables such as

temperature, relative humidity, etc. Adaptation

to heat stress is defined as tolerance to

temperatures above a threshold level that results

in irreversible damage to crop growth and devel-

opment (Cairns et al. 2012). Many studies have

concluded that this threshold is lower for repro-

ductive development than for vegetative growth

period.

In general, the earliest growth parameter

reacting to water and heat stresses is the photo-

synthetic activity. Various crops have been

evaluated for their response to drought and heat

stresses using agronomic, phenological, morpho-

logical, and physiological traits (Pressman

et al. 2002; Weerakoon et al. 2008; Cottee

et al. 2010; Kumar et al. 2012a, b; Kaushal

et al. 2013). Drought and heat not only cause

phenological changes but also affect floral organs

and fasten the grain-filling period. Legumes are

highly sensitive to these stresses during the

reproductive phase resulting in substantial loss

of flowers and pods with consequent grain yield

loss. A number of studies have implicated devel-

opment and function of pollen as the most sensi-

tive stage to heat stress (Sato et al. 2002;

Devasirvatham et al. 2012; Li et al. 2012;

Kaushal et al. 2013). High temperatures during

reproductive development often negatively

impact pollen viability and fertility (Hall 2004),

floral bud development (Prasad et al. 1999),

seed-filling period (Boote et al. 2005), and seed

composition (Thomas et al. 2003). Though many

studies have been conducted on the terminal

drought and heat stresses in crop plants, effect

of these stresses at early developmental stages is

less well studied. Therefore, how to maintain

plant growth and yield under drought and heat

stresses remains the major challenge for plant

breeders. Though many efforts have been made

to improve crop productivity under drought and

heat stress, unfortunately, precise phenotyping of

germplasm under reliable conditions remains the

most limiting factor.

7.2 Traits Imparting Tolerance
to Drought and Heat

Traits that help improve the yields in drought-

and heat-prone environments are related to either

plant survival or reproductive organ viability or

yield expression under the stress. In general,

breeders study the genotypic variation for

whole plant response to the imposed water and

heat stress or identify genotypic variation for

specific traits associated with tolerance to

drought and heat. Recently, emphasis is also
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placed on traits associated with water-saving

mechanism under nonstressed conditions

(Vadez et al. 2012). These traits are related to

lower transpiration rate under well-watered

conditions which may result from lower leaf

area, lower canopy conductance, and high leaf

abscisic acid (Kholova et al. 2010; Ratnakumar

and Vadez 2011; Zaman-Allah et al. 2011).

Some of the traits which have direct or indirect

manifestations under these stresses are as

follows, and more detailed discussion has been

given in Chaps. 2 and 3.

7.2.1 Morphophysiological Traits

There are several traits which help to make

appropriate use of water when it is available

and ensure adequate availability to plants during

the sensitive phase of floral development and

grain growth. In legumes, early plant vigor, fast

ground cover and large seed size besides high

root biomass, long and deep root system, high

leaf water potential, and small leaflets are some

of the attributes showing significant association

with drought tolerance, whereas high harvest

index, large number of pods per unit area, and

high seed mass along with early maturity are

associated with drought escape (Passioura

1982). In lentil, root length has shown positive

correlation with early vigor and SPAD value and

therefore can be used as selection criteria for

identifying drought-tolerant genotypes (Sarker

et al. 2005; Kumar et al. 2012a). Thus genotypes

with rapid ground cover, early phenology, a

prolonged reproductive phase leading to

increased dry-matter production, more pods,

high harvest index, efficient water use, and

large seeds are targeted in breeding lentil

varieties to adapt to drought stress.

In cereals, morphological traits, such as root

architecture (Hammer et al. 2009; Lopes and

Reynolds 2010; Trachsel et al. 2011) and reduc-

tion in unproductive tillers (Mitchell et al. 2013)

and physiological ones, such as the translocation

of pre-anthesis assimilate to the grain (Bidinger

et al. 1977; Blum 1998), are important for breed-

ing drought-tolerant genotypes. A number of

other traits including fast seedling establishment

(long coleoptiles), rapid ground cover, leaf archi-

tecture, root vigor, transpiration efficiency,

remobilization to the grain of stem

carbohydrates, glaucousness to deflect heat, leaf

rolling, and buffering against reproductive fail-

ure have been used for improving yield in wheat

under drought conditions (Reynolds and

Tuberosa 2008; Salekdeh et al. 2009). Stay-

green trait and maintaining cool canopies during

grain filling also look promising (Jordan

et al. 2012; Lopes and Reynolds 2012). Vigorous

growth of seedlings is strongly beneficial in

cereals as well as legume crops for avoiding the

terminal heat and drought (Watt et al. 2005;

Kumar et al. 2012a). Deep roots in rice are evi-

dently beneficial (Henry et al. 2011), and in

maize better buffering of floret fertility and

early grain filling against water stress are likely

traits for drought tolerance (Campos et al. 2006).

Some of these traits are constitutive and can be

selected for in well-watered plants (Richards

et al. 2010). In maize, change in color of leaf

from green to green-gray and rolling of the lower

leaves are important for phenotyping the drought

tolerance. Drought-affected ears typically have

fewer kernels that will be poorly filled if drought

extends throughout grain filling (Edmeades

et al. 2000).

Under water and heat stress situation, physio-

logical changes are manifested due to changes in

relative water content, water-use efficiency, har-

vest index, total dry matter, crop duration, tran-

spiration efficiency, etc. Water productivity can

be defined at different levels (Condon et al.

2002). At plot level, it can be defined as water-

use efficiency (WUE), i.e., total biomass divided

by evapotranspiration. At plant level, it is defined

as transpiration efficiency (TE), i.e., biomass

divided by water transpired, whereas at the leaf

level, it is defined as the intrinsic WUE, i.e., the

ratio of instantaneous CO2 assimilation to tran-

spiration. These definitions illustrate that water

productivity can be approached from different

perspectives, broadly in terms of agronomic and

genetic aspects. Regulation of cellular turgor

pressure and hydration through osmotic adjust-

ment have shown to increase yield potential
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under water-deficit environments. Therefore,

analyzing the responses of the physiological

determinants of yield to water and heat stresses

can be very useful in breeding for high yield and

stability in stress-prone environments. Cooler

canopy temperature is strongly associated with

yield, deeper root system, and stomatal conduc-

tance under both drought and heat stress

environments (Cossani and Reynolds 2012).

Therefore, selection for canopy temperature cou-

pled with early vigor and delayed senescence to

improve light interception as well as membrane

thermostability and photoprotective pigments

and wax to improve radiation use efficiency are

desired for heat tolerance screening. However,

physiological traits, in general, have seldom

been used successfully as selection criteria in

breeding programs because of the lack of a sim-

ple repeatable large-scale screening technique.

7.2.2 Floral Fertility Traits

Floral fertility can be markedly reduced by water

and heat stresses. These stresses can affect the

viability of both pollen and ovules (Saini and

Westgate 1999; Boyer and McLaughlin 2007;

Parish et al. 2012) and may lead to the mistiming

of anthesis and silking in maize (Campos et al.

2006). The resulting poor seed set leads to low

yields despite vegetative growth being normal.

For example, in maize abortion of ovules during

water stress depends on the duration of the stress,

carbohydrate metabolism, and the induction of

senescence genes. Therefore, good survival of

pollen among genotypes has been used for

drought and heat tolerance in crop plants.

7.2.3 Metabolic Pathways

Drought and heat stresses also affect many meta-

bolic pathways and structures. One commonly

observed response of the plant to water stress is

the accumulation of metabolically compatible

solutes such as proline, glycine betaine, pinitol,

carnitine, mannitol, sorbitol, polyols, trehalose,

sucrose, oligosaccharides, and fructans in large

quantities. Accumulation of these compounds

results in decreased water potential, thus

facilitating water movement in the cell and

helps in maintaining the turgor, which might

contribute to sustaining physiological processes

such as stomatal opening, photosynthesis, and

expansion of growth. However, field studies

examining the association between osmolyte

accumulation and crop yield have tended to

show no consistent benefit under severe water

deficit. At cellular level, heat stress leads to

membrane damage, denaturation of proteins,

inactivation of enzymes in mitochondria and

chloroplasts, impaired carbohydrate and protein

synthesis, degradation of proteins, synthesis of

new proteins, and impaired carbon metabolism

(Hasanuzzaman et al. 2013). Heat stress affects

the production of sucrose and impairs its trans-

port to influence the developing reproductive

organs (Li et al. 2012; Kaushal et al. 2013).

High temperature and drought stress can cause

denaturation and dysfunction of many proteins

such as heat shock proteins and molecular

chaperones, as well as late embryogenesis abun-

dant (LEA) protein families, which are involved

in plant abiotic stress tolerance.

There is increasing evidence that tolerances to

drought and heat are under independent genetic

control and can be treated as two distinct traits.

Understanding of key genetic controls of root

morphology, stay-green trait, and key processes

affected by stresses is relatively incomplete. It is

generally agreed that drought tolerance from a

breeding viewpoint is a complex trait that shows

a high level of genotype-environment interaction

(Cooper et al. 2006) though from the physiologi-

cal viewpoint, it can be dissected into several

clear processes (Blum 2011). Heat tolerance

appears to be less complex, but there is little

published evidence to date confirming this asser-

tion (Blum 2011).

7.3 Methods for Phenotyping
Drought and Heat Tolerance

The efficiency of a screening technique depends

on its ability to reproduce the most probable
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conditions of the stress in the target environment

(Wery et al. 1994). It requires characterization of

the most probable stress in its actual position in

the plant cycle and its reproduction in conditions

where screening of a large number of genotypes

can be made. These two steps are essential for

representativeness and reproducibility of screen-

ing technique. For example, the terminal drought

and heat stress frequently occur at reproductive

stage. Therefore, germplasm must be planted at

appropriate time in the target location so as to

coincide the stress with critical crop growth

stages. In addition, the identification of plant

traits required for a target environment before

screening test is a must. Various approaches

have been or are being developed to breed

crops for water and heat stress environments

with the help of conventional and novel

phenotyping methods.

7.3.1 Field Screening

To develop drought- and heat-tolerant germ-

plasm, experiments are conducted either at dif-

ferent dates of planting at a single location or at

many locations that cover wide range of water

and heat gradients. At ICARDA, the locations for

drought and heat screening include Tel Hadya

(with a long term average rainfall of 350 mm)

and Breda (250 mm rainfall) in Syria and

Kfardan (300 mm rainfall) and Terbol (550 mm

rainfall) in the Bekaa Valley of Lebanon. Sowing

of heat screening trials is delayed to late March in

Tel Hadya to allow the flowering and pod devel-

opment stages to be exposed to high temperature

(>35 �C) without any water stress as the crop is

irrigated on alternate days or screening of germ-

plasm at the hot spot in Sudan where daily maxi-

mum temperature always remains above 35 �C
during the reproductive stage. Another strategy

adopted for developing drought- and heat-

tolerant genotypes is to test elite lines across an

artificially created water and heat gradients in

fields with rainout shelters. The test entries are

planted with repetitive checks (local, susceptible,

and tolerant) under well-watered and water-

deficit conditions and scored for tolerance using

scale 1 (highly tolerant) to 9 (highly susceptible).

Evaluation of lentil lines under wooden boxes in

plastic house has also been practiced for identifi-

cation of tolerant genotypes for heat and drought.

Recently, lysimeter facilities that provide soil

volumes equivalent to field conditions are

established with rainout shelters to study varia-

tion in water-use pattern and root depth/density

and their relationship to yield under fully

irrigated and terminal drought stress (Vadez

et al. 2008). Lysimeters which consist of long

and large PVC tubes filled with natural soils

mimic a real soil profile from the standpoint of

volume of soil available and aerial space avail-

able for plants. Lysimetric method is used for a

yield-based evaluation of genotypes for drought

tolerance as this approach allows the monitoring

of plant water use and biomass accumulation

(both vegetative and grain) from very early

plant stages until maturity, and it allows

extremely robust TE assessments to be

conducted with very low experimental error

(Ratnakumar et al. 2009).

7.3.2 Glasshouse Experiments

For drought screening, experiments are

conducted in glasshouse under well-watered

and stress treatments. Plants are grown in plastic

containers/pots in a regular greenhouse and

watering is performed manually to allow optimal

germination and seedling establishment. Subse-

quently, the pots are transferred to the “smart

house” where each pot is placed onto a cart on

a conveyor belt. Every second day, pots are

weighed and watered automatically to 22 %

gravimetric water content for the well-watered

treatment and 15 % for the stress treatment.

Based on the experience, we can adjust the

drought stress in subsequent experiment. The

experiments are carried out under natural

lighting with the temperature in the greenhouse

kept at a range between 15 �C (night) and 22 �C
(day). With the onset of the stress treatment,

plant images are captured using a LemnaTec

3D Scanalyzer (LemnaTec, GmbH, Wuerselen,

Germany). Every day, three RGB pictures
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(2,056�2,454 pixels) are taken with a 90� hori-
zontal rotation. Images of other traits like caliper

length, height, color and shoot area top view, and

convex hull area can also be calculated to esti-

mate the compactness of plant. At the end of the

experiment, above-ground biomass, number of

branches, and plant height are also determined.

Fresh biomass is weighed and subsequently oven

dried to constant weight to determine dry weight

to calculate water-use efficiency and specific

plant weight. In addition, simple stress indices

(SSI) are calculated as follows: SSI¼Ts/Tc,

where Ts and Tc are the average trait

performances of a genotype under stress and

control conditions, respectively.

7.4 Tools and Technologies for
Phenotyping Drought
and Heat Tolerance

7.4.1 Tools for Measuring Root Traits

Root systems are inherently difficult to study due

to their underground environment, the complex-

ity of dynamic interactions between roots and its

environment, and the diversity of their functions.

This trait has been discussed as underground trait

in Chap. 8. Harper et al. (1991) classified avail-

able methods to study roots into two groups:

destructive and nondestructive methods. The

main criterion determining the selection of a

method to study roots depends on whether the

focus is on changes in root traits over time or

space. For the study of changes of root traits over

time, nondestructive methods are recommended.

A cubic section of soil that contains roots (i.e.,

monolith) is dug out from the soil or obtained

from a container in which the plant has been

grown. Afterward, the monolith is washed to

remove soil and separate roots. Although the

root system may be damaged during sampling,

a representative characterization of its morphol-

ogy can be obtained. Predictive techniques pro-

vide insight about root systems by extrapolating

root information from soil cores and root crowns

of field-grown plants (Trachsel et al. 2011) or

from plants grown in controlled growth systems

including hydroponic, pouch, pots, and plate

systems. In situ methods involving rhizotron,

magnetic resonance, and compound tomography

techniques have also been developed to facilitate

nondestructive spatial and temporal

investigations (Taylor et al. 1990; Gregory et al.

2003; Tracy et al. 2010); however, the current

scale, resolution, throughput, and cost-efficiency

of these techniques limit their utility (Clark et al.

2011). Additionally, simulation and modeling

studies that integrate rhizosphere and growth

data help form links between predictive

techniques and field studies, allowing researchers

to strategically predict, evaluate, and target ben-

eficial root traits or genotypes for specific growth

environments.

As a complimentary tool to other predictive

techniques, gellan gum growth systems with

superior optical clarity (Clark et al. 2011) have

been introduced to facilitate noninvasive

two-dimensional (Iyer-Pascuzzi et al. 2010) and

three-dimensional (Fang et al. 2009) imaging and

temporal studies of plant root systems while also

allowing reproducible control of the rhizosphere.

In the two-dimensional (light, X-ray, neutron

radiography) and three-dimensional (X- or

NMR-based tomography) rhizotrons, plants are

grown in a flat container with side walls made of

a transparent material such as glass. Optical

scanners can also be used to process samples

obtained by soil coring or by burying them in

the soil to study roots in a similar way as with 2D

rhizotrons. Minirhizotrons are small-diameter

transparent tubes inserted into the soil for root

observation. X-ray, γ-ray, thermal neutron, and

magnetic resonance tomography (computed

tomography methods) allow roots growing in

the soil media to be imaged noninvasively (John-

son et al. 2001; Tracy et al. 2010). The total root

length per segment can be determined using the

WinRHIZO Tron MF software (Regent

Instruments Inc., Canada). Direct selection for

roots is not yet feasible at a breeding scale due

to high cost and low throughput of current

methodologies. Recently, ground penetrating

radar (GPR), a remote-sensing technology, has

been successfully used in evaluation of coarse

tree root biomass (Butnor et al. 2003).
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Incorporating GPR (SIR-20 GPR) into current

crop phenotyping methodologies could poten-

tially provide a long awaited solution to high-

throughput phenotyping for roots under realistic

field conditions.

7.4.2 Spectral Reflectance

Phenotyping tools based on spectral reflectance

provide fast, nondestructive measurements of

green biomass, canopy chlorophyll content,

leaf and canopy senescence (or stay green),

and plant water status (see Chaps. 4 and 5).

Portable leaf chlorophyll meters such as the

SPAD meters measure optical density

differences between two wavelengths within

the red and the near-infrared regions (650 and

940 nm) and have been used as an indirect

measurement of leaf N and chlorophyll content.

The SPAD chlorophyll meter readings (SCMR)

are recorded at equivalent cumulative thermal

times. After recording the SCMR, the leaves are

processed by soaking in water to bring to full

turgor for specific leaf area (SLA) measure-

ment. The leaf area can be measured with a

leaf area meter (LI-COR Area Meter). However,

SPAD measurements are taken on individual

leaves, with a very small measurement area

(2 mm�3 mm). At the canopy level, the

normalized differential vegetation index

(NDVI) of the light reflected by the canopy has

been used to quantitatively assess plant growth

and senescence (Aparicio et al. 2000; Marti

et al. 2007). Fast measurements of NDVI can

be performed using spectroradiometers

provided with active sensors. This is the case

of the GreenSeeker (from N-Technologies)

which is a relatively low-cost spectroradiometer

designed to allow fast measurements of NDVI.

7.4.3 Imaging Technologies

With noninvasive imaging of plant growth, it is

now possible to quantify growth-related

parameters, detect stress symptoms and their

timing, as well as estimate the recovery of

growth after the stress (see Chaps. 4 and 5 for

details). Several types of plant images can be

taken, e.g., with infrared, near-infrared, fluores-

cent, and visible light. Scanning with infrared

light gives information on plant or leaf tempera-

ture, while near-infrared imaging sheds light on

the plant water content and fluorescent pictures

enable conclusions on plant health status. High-

resolution color picture (RGB picture), taken

from the top and two side views, is used to

determine the projected shoot area of the plant.

The projected shoot area serves as a measure for

biomass. Hence, from RGB images taken at sev-

eral time points, growth curves as well as growth

rates can be calculated. Digital imagery can be

used for estimating leaf nitrogen content, early

biomass, and response to water-limited

conditions. Its low cost and the small amount of

technical experience required make it very useful

for phenotyping drought tolerance and other

complex traits (Rorie et al. 2011).

Measurement of chlorophyll fluorescence is

another simple and reliable technique for screen-

ing germplasm for drought traits and has long

been used to examine various photosynthetic

parameters in leaves (Baker 2008). The chloro-

phyll fluorescence can be measured by the dark-

adapted test of the modulated chlorophyll fluo-

rometer OS1-FL (Opti-Sciences, Tyngsboro,

MA, USA). With this system, chlorophyll fluo-

rescence is excited by a 660 nm solid-state light

source with filters blocking radiation longer than

690 nm. The average intensity of this modulated

light is adjusted from 0 to 1 mE. Detection is in

the 700–750 nm range using a PIN silicon photo-

diode with appropriate filtering to remove extra-

neous light. The clamps of the instrument are

installed on the leaves to keep them in the dark

and to stop the light reaction of photosynthesis

for 45 min. After this, the clamps are attached to

the optic fiber of the device and the valves of the

clamps are opened. After starting the device, the

695 nm modulated light is radiated through the

optic fiber toward the leaf. Subsequently, the

chlorophyll fluorescence expressed as Fv/Fm

ratio is recorded. The leaves tested for chloro-

phyll fluorescence are also used for measurement

of chlorophyll content.
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Infrared thermography (IRT) provides a pow-

erful imaging tool for rapid, noninvasively, and

remotely measuring leaf temperature as a surro-

gate for stomatal conductance. Plant temperature

also allows the calculation of the crop water

stress index (CSWI). Water stress and CSWI

have been linked to soil water availability, leaf

water potential, stomatal conductance, and yield

(Romano et al. 2011). The use of thermography

to determine stomatal conductance has been

optimized through the development of standard

protocols which take into account the

surrounding environment and even the distribu-

tion of stomata between the two leaf surfaces

(Guilioni et al. 2008). Stomatal conductance

and leaf temperature of fully expanded leaves

can be measured using a portable leaf porometer

(model SC1; Decagon Devices, Pullman, WA,

USA). Leaf temperature can be recorded with

infrared sensor (Oakton Instruments, Vernon

Hills, IL, USA). Thermography has become a

standard technique to determine stomatal con-

ductance in both glasshouse (Grant et al. 2006)

and field environments (Grant et al. 2007).

A novel imaging system that incorporates

measurements of chlorophyll fluorescence and

thermal imaging under controlled gaseous

conditions is developed which offers a noninva-

sive, high-throughput, high-resolution tool to

screen intrinsic water-use efficiency (McAusland

et al. 2013). This new imaging system generates

images of assimilation rate (A), stomatal conduc-

tance (g s), and intrinsic water-use efficiency

(WUEi) from whole plants or leaves under con-

trolled environmental conditions. A major

advantage of the combined imaging approaches

is the ability for multiple samples to be measured

at any one time and the fact that spatial heteroge-

neity within plants and leaves can be readily

identified.

7.4.4 Stable Isotopes

Traditional methods of determining WUE are

unsuitable for rapid screening for several

reasons. These agronomic techniques are not

only destructive but also rely on an integrated

measurement of biomass/yield at the end of the

growing season relative to the amount of water

used over the growing period. Carbon isotope

discrimination has been successfully used to

identify crop cultivars with greater WUE

(Farquhar et al. 1982; Condon et al. 2004); how-

ever, this technique also relies on an integrated

measure of WUE over a period of plant growth.

Additionally, the technique does not provide an

indication of whether differences in WUE are

driven by CO2 assimilation (A) or water loss,

although the incorporation of oxygen isotope

measurements can provide an indication of rates

of evaporation from the leaf surface (Farquhar

et al. 1998; Barbour 2007). Leaf-level gas

exchange measurements of the rate of CO2

assimilation relative to transpiration provide an

immediate and nondestructive measure of instan-

taneous WUE (Penman and Schofield 1951) or

intrinsic water-use efficiency (WUEi), when sto-

matal conductance (gs) is used instead of transpi-

ration as a measure of water loss. Although this

approach is flexible in terms of the timescale of

when measurements can be made, an infrared gas

analyzer (IRGA) can only take singular measure-

ment on one plant or leaf at one point of time.

The natural variation in plant N isotope compo-

sition (Δ15N) is potentially useful for genotypic

screening under drought (Cernusak et al. 2009;

Tcherkez 2011). For a large-scale phenotyping,

the above isotopic signatures may be estimated in

a fast and low-cost manner by near-infrared

reflectance spectroscopy (NIRS) (Ferrio et al.

2007; Cabrera-Bosquet et al. 2011). This tool

has also been reviewed in Chap. 3.

7.4.5 Integrated Automatic
Phenotyping Platform

Great efforts have been made in recently

established plant phenotyping facilities for

developing rapid phenotyping techniques. These

facilities aim to explore traits postulated to

improve resistance to a given stress or to discover

new ones. First these traits are often explored

initially in controlled laboratory environments

and may not be well connected to the way plants
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behave season-long in the field (Passioura 2010).

In fully automated greenhouses, plants can be

delivered via conveyor belts to watering,

weighing, and imaging stations. In these high-

throughput phenotyping (HTP) facilities, several

hundred individual plants can be imaged per day

in a fully automated manner. HTP facilities of

this type are currently in use in various research

institutes (The Plant Accelerator, Adelaide,

Australia; CropDesign, Gent, Belgium; IPK

Gatersleben, Germany; PhenoArch, Montpellier,

France) and separately discussed in Chap. 19.

Such phenotyping facilities are ideal to combine

controlled irrigation and phenotyping protocols.

Canopy temperature is an ideal HTP field screen

for heat tolerance as it allows rapid estimation of

difficult phenotype traits such as transpirational

flux and root depth (Lopes and Reynolds 2010).

In addition, infrared and other remote spectral-

sensing platforms are being continually refined,

allowing canopy temperature, pigment composi-

tion, hydration status, and ground cover to be

measured on a breeding scale (Cossani and

Reynolds 2012). More direct procedures for

HTP of root structure are also under investiga-

tion, including ground penetrating radar, X-ray,

γ-ray, thermal, neutron, and magnetic resonance

tomography (Tracy et al. 2010). Integrated use of

spectral reflectance spectroscopy and other

remote-sensing HTP methods with simulation

models, incorporating field, and environmental

data will make extensive screening of genetic

resources more feasible for drought and heat

stresses.

7.5 Conclusions

To date, breeding for drought and heat tolerance

has been based principally on empirical selection

for yield per se. However, this approach is far from

being optimal since yield is characterized by

low heritability and high genotype-environment

interaction. Therefore, rapid progress directly

depends on our ability to precisely target key traits

and to identify and locate genes/QTLs controlling

them. Physiological traits that contribute to

improved productivity under drought and heat

conditions need to be the focus of the future

research.Many new promising tools for evaluating

physiological traits are now available. Current

physiological tools used for high-throughput

phenotyping with focus on field-based

methodologies are based on remote-sensing

techniques designed to assess plant performance

in a fast and nondestructive manner and holds

great promise.
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Root system architecture determines crop capacity to acquire water and

nutrients in the dynamic and variable soil environment. Increasing atten-

tion is paid to searching for optimal root traits to improve resource uptake

efficiency and adaptation to heterogeneous soil conditions. This chapter

summarises genetic variability and plasticity in root traits relevant to

increased efficiency of soil resource acquisition. Approaches available

for high-throughput phenotyping of root architecture traits at both labora-

tory and field scales are critically assessed. The advent of several novel

imaging technologies such as X-ray computed tomography coupled with

image-analysing software packages offers a great opportunity to

non-invasively assess root architecture and its interactions with soil

environments. The use of three-dimensional structure–function simula-

tion root models is complementary to phenotyping methods, providing

assistance in the crop breeding programmes. We also discuss applications

and limitations of these novel visualisation technologies in characterising
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8.1 Introduction

Root system is a fundamental component of

plants. Apart from mechanical support to the

above-ground parts, root system is also the

major organ for foraging and acquiring nutrients

and water from the surrounding soil. Root system

is a complex three-dimensional (3D) structure

exhibiting a specific spatial and temporal config-

uration of root types. Root system architecture

(RSA) refers to in situ spatial distribution of the

root system within the rooting volume (Hinsinger

et al. 2011; Lynch 1995, 2007; Manschadi and

Manske 2013). RSA plays a vital role in the

exploration of soil zones and acquisition of soil

water and nutrients (Gregory et al. 2009;

Hammond et al. 2009; Lynch and Brown 2012).

It is plastic and dynamic, allowing plants to

respond to their environments in order to opti-

mise acquisition of important soil resources (Zhu

et al. 2011).

Studies of RSA are concerned typically with

an entire root system of an individual plant,

rather than just fine details of the root structure

(Lynch 1995). The root architectural traits

include three general categories: topological

properties (describing the pattern of root

branching), geometric properties (the presence

of roots in a spatial framework, such as the

growth angle of root axes) and physiological

properties (such as root growth rate, root exuda-

tion and root water and nutrient use efficiency)

(Chen et al. 2011a; Gregory 2008; Manschadi

et al. 2008). Crop adaptation to suboptimal soil

conditions is dependent on RSA, and thus crop

survival and fitness are determined by the RSA

(Eshel and Beeckman 2013; Fitter et al. 2002;

Lynch 1995). However, as ‘the hidden half’ of a

plant, root system is often underappreciated

largely due to the inherent difficulty of accessing

it for studies (Eshel and Beeckman 2013; Smith

and De Smet 2012).

Exploiting genetic diversity in root traits

associated with acquisition of scarce soil resources

and adaptation to edaphic stresses can significantly

enhance resource use efficiency in crop plants and

thus lead to improved productivity. It might be

advantageous for a plant to have the root system

with architectural traits specifically adapted to the

prevailing soil conditions (Trachsel et al. 2013).

The identification of relevant root traits offers the

potential to increase the grain yield of not only

crops growing soil resources but also crops grow-

ing with optimal water and nutrient supply by

revealing physiological traits associated with the

partitioning of dry matter.

The identification of optimal root traits under

stress environments depends on targeting the

probable stresses that the crop may face during

the growing season. Targeted development of

crop genotypes with increased efficiency of

nutrient capture (Rengel 2005; Wu et al. 2005)

and water use (Kamoshita et al. 2000; Liu

et al. 2007; Manschadi et al. 2006; Ober

et al. 2005; Rengel 2013) relies on a better under-

standing of root structure and functions and the

exploration of optimal root traits for specific

growth environments (Wang and Smith 2004).

It has been demonstrated that modification of

root architectural traits could contribute to

improved grain yield, drought tolerance and

resistance to nutrient deficiencies (Beebe et al.

2006; Steele et al. 2006; Tuberosa et al. 2002a).

Quantitative genetic studies require efficient

phenotyping protocols (Trachsel et al. 2013).

However, the inability to efficiently and accu-

rately phenotype large mapping populations has

been a key impediment to wide-scale use of root-

related genetic information in breeding (Chen

et al. 2011a; De Dorlodot et al. 2007). Hence,

accurate phenotyping of root-related traits is one

of the most important practices for translating

into breeding programmes the recent physiologi-

cal and genetic advances in understanding the

role of root systems in improving crop yield

and productivity in dry environments. However,

phenotyping of root traits requires multidisci-

plinary analysis because the root structure and

function and their responses to heterogeneous

soil environments are dynamic and complex

(Doussan et al. 2003; Hodge 2004; Pierret

et al. 2006; Valizadeh et al. 2003). Hence,

phenotyping for optimal root traits is often

conducted under controlled environmental

conditions, whereas systematic phenotyping for

root traits in the field remains challenging

(Fiorani and Schurr 2013; Trachsel et al. 2011).

102 Y.L. Chen et al.



In the recent decade, some novel non-invasive

and high-throughput phenotyping technologies

have been developed for fast, accurate and robust

analyses of root structure and function. In addi-

tion, current simulation computer models offer a

promise in characterising intrinsic genetic

properties and phenotypic plasticity of root traits

in large-scale phenotyping required in breeding

for improved productivity (Dunbabin et al. 2013;

Struik and Yin 2007).

This chapter discusses genetic variability and

plasticity in root traits relevant to increased soil

resource use efficiency and better adaptation to

specific soil environments, followed by an over-

view of recent developments in high-throughput

phenotyping methods. This review also

highlights applications and limitations of some

novel visualisation technologies and modelling

simulations in characterising root growth and the

root–soil interactions.

8.2 Root Trait Variability

Genotypic variability and phenotypic plasticity

are the two general types of variability in root

architectural traits. These are derived from two

different developmental pathways, namely,

genetically determined intrinsic pathway

(governing the basic architecture and the limits

of plasticity) and environmentally triggered

responsive pathway (Malamy 2005). These two

pathways combine in intricate ways to create a

highly complex 3D root structure influenced by

genetics as well as the availability of resources in

the heterogeneous soil environment (Baddeley

et al. 2007).

8.2.1 Genotypic Variability in Root
Traits

Variation in root architectural traits critically

influences the capacity and efficiency of a plant

in foraging and taking up water and nutrients

from soil. For example, changes in the root sys-

tem architecture in response to low phosphorus

(P) availability may enhance P uptake (Nielsen

et al. 2001). Shallow rooting is beneficial for P

uptake because in many soils, most of the avail-

able P is retained in the topsoil layers. In soybean

(Glycine max) genotypes, increased yield poten-

tial was linked to increased capacity to take up

water from deep (1.1 m) soil horizons in the field

(Ober et al. 2005); similar connection was

established for upland rice (Oryza sativa) in

Laguna, Philippines (Kamoshita et al. 2000;

Kondo et al. 1999), and wheat (Triticum
aestivum) in Western and Southern Australia

(Wong and Asseng 2006; Manschadi et al.

2010). Understanding the role of and

manipulating root length branching at depth and

seminal root angles have been flagged as key

factors likely to underpin further increases in

wheat yield (Manschadi et al. 2010).

Our recent studies examined genotypic

variability in a large germplasm collection of

narrow-leafed lupin. Wild genotypes with

contrasting root architecture differed in root

growth, root distribution in the profile and P

acquisition in response to localised P supply

(Chen et al. 2013a). Selected genotypes differed

in root length density (root length in a unit soil

volume).

Specifically selecting for improved root traits,

such as root proliferation at depth, may contrib-

ute to increased productivity in crops, especially

in dry soil conditions, and in soils with high

strength because of natural settling or formation

of a shallow hardpan due to vehicle movement

(Hall et al. 2010). This is particularly important

because attempts to increase root density at depth

using agronomic approaches (e.g. deep fertiliser

placement and ripping) have been largely unsuc-

cessful (e.g. Baddeley et al. 2007).

There is little knowledge on genotypic

variability in root function related to the archi-

tecture. For example, wild genotypes of narrow-

leafed lupin (Lupinus angustifolius) exhibited

genetic variation in exudation of organic acid

anions into the rhizosphere (Chen et al. 2013b).

We observed that, at optimal P, the large-rooted

genotype exuded citrate, acetate and malate,

whereas the other two genotypes with smaller

root systems only released citrate in significant

amounts. The significance of these findings in a

relationship between root architecture and

functions is yet to be assessed.
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8.2.2 Phenotypic Plasticity in Root
Traits

Several mechanisms may be involved in

regulating root architecture alteration in response

to heterogeneous nutrient availability. Examples

of such mechanisms are root proliferation in

localised nutrient-rich patches, changes in

rooting depth or the relative length of different

root diameter classes (e.g. Dunbabin et al. 2001a;

Ho et al. 2005; Paterson et al. 2006; Smith and

De Smit 2012). Plant changes in root morphol-

ogy in response to changes in P availability are

an essential strategy for efficient P acquisition

(Chen et al. 2013b; Lambers et al. 2011).

Crop genotypes often exhibit variable capac-

ity to alter the growth, number, size and distribu-

tion of the root systems in order to optimise

resource capture when exposed to heterogeneous

environmental conditions. Phenotypic plasticity

was evidenced in root length density in the lupin

genotypes in response to varying P supplies

(Fig. 8.1; see also Chen et al. 2013a). For exam-

ple, in comparison with the nil-P treatment, the

large-rooted genotype produced significantly

more branches in the top 30 cm of the soil profile

when P was placed in a band 10 cm below the

soil surface. Such developmental plasticity is

based on the capacity of plant cells either to

remain undifferentiated until the root-growth

response is initiated or to dedifferentiate into

cells that can grow into new roots.

In terms of root mass allocation, many

Lupinus species with a high capacity to acquire

P exhibit low root-growth plasticity at low P

supply (Pearse et al. 2006). On the other hand,

some Lupinus species increase root–shoot bio-

mass ratio during water stress (Carvalho et al.

2004).

8.3 Phenotyping Systems

Crop breeders and researchers are showing

increased interest in phenotyping for root

architecture traits as part of their breeding

programmes. High-throughput phenotyping for

root architecture traits requires fast, reliable and

accurate root observations and measurements.

Recent progress in the development of root-

related methodologies, from traditional excava-

tion to modern non-destructive imaging

technologies including X-ray computed tomog-

raphy (CT), has significantly enhanced our

capacity to visualise, quantify and conceptualise

root architecture and its relationship to (1) crop

adaptation to variable growth environments and

(2) plant productivity (Gregory et al. 2009; Iyer-

Pascuzzi et al. 2010; Lynch 1995). It is still a

challenge to elucidate the genetic and develop-

mental basis of the root system architecture, and

a combination of laboratory- and field-based

approaches should be considered (Clark et al.

2011). In this section, we overview current

phenotyping systems employed in the controlled

environments and the field (Table 8.1) and dis-

cuss their applications and limitations.

8.3.1 Controlled Environments

A number of phenotyping approaches are avail-

able for (1) destructive and (2) non-destructive

sampling of root systems. Destructive sampling

by excavating whole root systems from soil-filled

containers (e.g. pot, columns, boxes, tubes and

chambers) is used commonly in root studies in

the controlled environments (Table 8.1). In the

recent decades, non-destructive approaches have

been developed for high-throughput phenotyping

of root architecture traits with the support of

advanced optical recording techniques. These

include (1) soil-filled rhizotrons with clear panels

for root observations and (2) soil-free approaches

in artificial media, such as hydroponics,

aeroponics and the gel chamber or agar-plate

systems.

8.3.1.1 Soil-Filled Pots
The soil-filled pots provide environments for

crop growth that may to some extent simulate

those in the field. Various root traits can be

measured, including total root length, root mass

and root density per soil volume; also, roots at

various depths in the soil profile can be measured
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(Araki and Iijima 1998). However, this method

requires destructive sampling of roots and

involves the process of root washing out of soil

(Hund et al. 2009b). Hargreaves et al. (2009)

placed a starch-based polymer net sac in the

centre of the soil-filled plastic pot and observed

genotypic variation in root numbers, length, mass

and root angles (i.e. vertical spread) of lateral

roots in five barley genotypes. The soil sac

method could be improved to allow more sys-

tematic construction and data collection. How-

ever, this method, similar to the standard pot

method, is destructive. Despite all due care,

roots could be broken inside the netting so their

coordinates could not be taken, jeopardising

measurements of root spread.
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Fig. 8.1 Variability in root length density (cm cm�3) in

the soil profiles of two wild genotypes (a #071; b #085) of

Lupinus angustifolius grown in a glasshouse for 42 days

under three P-application treatments: nil P (no fertiliser P

application), top-dressed P (fertiliser P applied on the soil

surface) and banded P (fertiliser P placed in a narrow band

10 cm below the soil surface). Data are means +

s.e. (n?¼?3) (Modified from Chen et al. 2013a)
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8.3.1.2 Rhizotrons
Root observation rhizotrons (rhizoboxes or root

chambers) are similar to the soil-filled pot

method mentioned above, except that clear

acrylic glass panels allow visual monitoring of

root growth at the surface of the glass

(Manschadi et al. 2006, 2008; Wiese et al.

2005). Variation in root growth and morphology

among the tested crop plants can be traced on the

outside surface of the acrylic glass using a

marker pen – different colours may be used to

indicate the presence of roots at successive time

intervals, followed by photographing or scanning

for root quantification (Fig. 8.2).

Rhizotrons can be designed and constructed to

meet specific research needs, such as for deep-

rooted crops and long growth periods. For exam-

ple, Manschadi et al. (2006) used 240-cm-wide,

120-cm-deep root chambers in examining spatial

patterns of root length distribution in a drought-

tolerant wheat genotype compared with the stan-

dard wheat variety at anthesis. Rhizotron systems

artificially restrict root growth to two dimensions

only. In addition, they suffer from the general

disadvantages of pot experiments associated with

the disturbed soil structure, altered root-zone

temperatures and the limited rooting volume.

8.3.1.3 Agar (Gel, Gellan-Gum) Systems
The agar/gel method, a useful non-soil system,

allows quick and easy measurement and

visualisation of dynamics of early root growth

in seedlings. Root architecture traits can be

non-destructively recorded in two dimensions

(2D) or 3D using flatbed scanning, digital

cameras or X-ray cameras through the transpar-

ent substrate. This method has been used for

high-throughput phenotyping of root architecture

traits in various crop species, such as barley

(wild, Hordeum spontaneum; domesticated,

H. vulgare) (Bengough et al. 2004; Hargreaves

et al. 2009) and rice (Oryza sativa) (Clark et al.

2011; Iyer-Pascuzzi et al. 2010).

The agar/gel method permits detailed

characterisation of root traits and root develop-

ment; for example, the pattern and timing of

lateral root initiation were characterised in

Arabidopsis seedlings (Dubrovsky et al. 2006).

a b

Fig. 8.2 Example of two-dimensional root images of a

wild genotype of narrow-leafed lupin (Lupinus
angustifolius) grown in a soil-filled rhizotron as part of a

phenotyping experiment to determine genotypic

variability in root growth and temporal–spatial exudation

among wild and commercial varieties. (a) A rhizotron

with the acrylic glass panel removed to expose root sys-

tem for sampling root exudates around individual root tips

using the anion exchange membrane (AEM) indicated by

inserted pins and arrows. (b) Root image of the same

plant is (a) acquired by a flatbed scanner via scanning

the acrylic glass with traced root morphology at three

consecutive times: 14 (black), 20 (purple) and

26 (green) days after sowing (Bar ¼ 10 cm) (Chen and

Rengel 2014)
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A new algorithm for computational image

analysis of deformable motion at high spatial

and temporal resolution was applied to contras-

ting root growth in Arabidopsis, timothy (Phleum

pratense), tomato (Lycopersicon lycopersicum),

lettuce (Lactuca sativa) and alyssum (Aurinia
saxatilis) (van der Weele et al. 2003) using the

gel system.

By incorporating image-analysing tools,

e.g. RootTrace (see Sect. 1.4; Table 8.2), the

agar/gel method enables high-throughput, auto-

matic tracing of root growth in Arabidopsis
seedlings to quantify root length, curvature and

stimulus response parameters such as onset of

gravitropism (French et al. 2009). The gel plate

system offers a moderately rapid screening

method for seedlings, the results of which appear

to reflect angular root spread in 3D, though care

must be taken to avoid contamination problems

and use of inappropriate media. The gel plate

method is also of particular benefit for

non-destructive monitoring of seedling root

growth. Hargreaves et al. (2009) compared root

growth in gel chambers, soil sacs and X-ray

microtomography pots and arrived at similar

(albeit not identical) ranking order of angles

using the three methods.

Earlier, limitations of the gel chamber system

have been outlined (see Futsaether and Oxaal

2002; Hargreaves et al. 2009). These include

the chamber size, restricting the method to stud-

ies of young seedlings and the fact that it is an

artificial environment. Moreover, gel chambers

generate 2D data as opposed to the 3D environ-

ment encountered by most plants, and anaerobic

conditions in agar may alter plant growth (Clark

et al. 1999; Hargreaves et al. 2009).

The use of gellan-gum growth systems with

superior optical clarity also facilitates

non-invasive 2D (Iyer-Pascuzzi et al. 2010) and

3D (Fang et al. 2009) imaging and temporal

studies of root systems while allowing reproduc-

ible control of the rhizosphere. Topp et al. (2013)

employed nutrient-enriched gellan gum to grow

rice and demonstrated the capacity of a

semiautomated 3D in vivo imaging and digital

phenotyping pipeline to interrogate the quantita-

tive genetic basis of the root system. The study

phenotyped 25 root traits governing the distribu-

tion, shape, extent of exploration and the intrinsic

size of root networks at three observation times

during the seedling stage. While these recent

studies demonstrate the use of gellan-gum

systems for potential high-throughput root

phenotyping and novel trait discovery in 2D,

efforts to expand these investigations into the

3D structure remain constrained by the long

scanning times, small scanning volume and lim-

ited quantification capability (Clark et al. 2011).

Hence, the agar/gel and gellan-gum methods

work well for simple root systems, but obscure

the more complex 3D root architectures.

8.3.1.4 Hydroponics
Growing plants hydroponically is widely used in

seedling studies. The inexpensive, space-saving,

high-throughput (semi-) hydroponic system

offers the advantage of growing a large number

of plants under uniform conditions, two impor-

tant prerequisites for investigating quantitative

traits, particularly those of low heritability. Mea-

suring traits at the seedling stage in hydroponic

culture eliminates the challenges of soil contam-

ination and root loss during washing (Chen et al.

2011a).

Seedling traits of 47 commercial maize (Zea
mays) hybrids were screened using nutrient solu-

tion (Sanguineti et al. 2006). Singh et al. (2013)

reported a new hydroponic phenotyping tech-

nique in examining survivability and drought

tolerance of 15-day-old seedlings of 80 genotypes

of lentil (Lens culinaris).
A novel semi-hydroponic phenotyping plat-

form developed by Chen et al. (2011a) has the

potential in studying root response and plasticity

in morphological and physiological responses to

water and nutrients because the supply of water

and nutrients can be adjusted easily. This high-

throughput phenotyping system was designed for

characterising variability in root architectural

traits of narrow-leafed lupin (Chen et al. 2011a,

b, 2012). The system is based on a 240-L mobile

bin and allows root growth up to 1-m depth, with

repeated observations and measurements of 2D

root structure without the need for destructive

sampling (Fig. 8.3). It is notable that this system
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significantly reduces environmental stresses by

optimising water supply with the equipped auto-

matic irrigation system with a controller. Fur-

thermore, it offers the opportunity to expose

plants to abiotic stresses (e.g. acidity, salinity,

drought, nutrient deficiency, elemental toxicity,

etc.) whose evaluation under field conditions is

usually quite difficult due to environmental

variability affecting the intensity of the stress.

The semi-hydroponic/aeroponic system

permits digital mapping of growth dynamics of

taproots and lateral roots over time. This growing

system overcomes the long-standing unsolved

problem of phenotyping large sets of genotypes

for rooting traits, which is particularly important

for the identification of QTL and characterisation

of molecular markers that may be useful in

breeding. The semi-hydroponic phenotyping sys-

tem was compared with soil-filled pot

experiments, and the consistent ranking of root

traits was produced for a range of genotypes of

narrow-leafed lupin (Chen et al. 2011b).

Growth pouches developed from the hydro-

ponic method were used in characterising root

architecture traits such as growth angle and

gravitropism of basal roots in common bean

(Phaseolus vulgaris) related to phosphorus

acquisition efficiency (Bonser et al. 1996; Liao

et al. 2004). Hund et al. (2009b) improved the

pouch system for rapid measurements of lateral

root growth of maize. In this system, roots grew

on the surface of blotting paper, thus facilitating

the two-dimensional observation of root growth

over time during the early days of root growth.

However, phenotyping large sets of genotypes

beyond very early growth stages using pouch

systems remains problematic, particularly for

QTL mapping studies.

8.3.2 Field

Even though laboratory/glasshouse phenotyping

methods provide controlled environments, allow

increased throughput and require fewer

resources, they may not accurately reflect plant

performance under field conditions. Neverthe-

less, significant associations between root traits

of the seedlings grown under controlled

conditions and those of the plants grown in the

field were found in wheat (Mian et al. 1994;

Richards 1996) and maize (Landi et al. 1998;

Tuberosa et al. 2002b). However, it is challeng-

ing to extrapolate plant performance at the seed-

ling stage when grown in artificial growth media

to potential growth in the field (Iyer-Pascuzzi

et al. 2010; Sanguineti et al. 2006). Therefore,

high-throughput phenotyping in the field is

needed to complement and validate studies in

the controlled environments.

Field studies provide ground-truthing of plant

growth in a particular environment, but

phenotyping for root traits in the field conditions

a

c

b

d

e

f g

Fig. 8.3 Schematic presentation of the semi-hydroponic

phenotyping system for two-dimensional, non-destructive

measurements of root system architecture. A clear flat

acrylic panel, B supporting cloth, C lupin plant, D 240-L

bin, E extended cloth, F water or nutrient solution,

G pump. Support framework not shown (Modified from

Chen et al. 2011)
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is difficult because of the inability to visualise root

systems in situ. Traditional methods of observing

root system architecture including excavation

(followed by root washing) are commonly used

in studying roots in the soil environments

(Gregory et al. 2003; Smit et al. 2000). Root

systems are often manually excavated or augured

for quantifying root length, biomass, distribution

in soil and morphology and temporal variation of

root growth. Excavation-related methods include

excavations of (1) root system, (2) undisturbed

cores or blocks of soil and (3) installed cores

prefilled with root-free soil.

Shovelomics, an emerging term for a high-

throughput phenotyping method using root exca-

vation, was recently used for visual scoring of

excavated root crowns to assess different root

architecture traits of field-grown maize at

flowering (Trachsel et al. 2011, 2013). On aver-

age, the total time required for excavation,

soaking, rinsing and evaluation of root crowns

was 10 min for silt–loam and 5 min for sandy

soil. The root architectural traits assessed

included the number of whorls occupied by

brace roots, number of brace roots originating

from whorl 1 to whorl 2, the branching density

of brace roots and the number, angle and

branching density of crown roots. Recently, we

used shovelomics technique to evaluate geno-

typic variability in root traits of eight genotypes

of narrow-leafed lupin in response to soil com-

paction and hardpan in the wheat belt of Western

Australia (Chen et al. 2014). Application of

shovelomics in other field-grown crop species

requires further exploration.

Excavation methods are still commonly used

in field studies today simply because of a lack of

other reliable techniques. Although excavation

techniques can be valuable, they are generally

destructive, tedious and time consuming. One

of the limitations of excavation-related methods

is that they (1) often destroy the topology of the

root system, leading to an underestimation of fine

roots through breakage during excavation and

washing, and (2) make it impossible to evaluate

dynamics of root growth (Clark et al. 2011; Smit

et al. 2000). Furthermore, root growth and archi-

tectural traits in soil environments are inevitably

influenced by (1) soil heterogeneity (Lynch

1995) and (2) physical, chemical and biological

interactions in the rhizosphere (Shaff et al. 2009;

Ward et al. 2008).

To improve throughput in analysing

excavated roots, image analysis methods coupled

with data mining approaches have been devel-

oped to characterise root architecture. Transpar-

ent minirhizotron tubes can be installed

vertically, horizontally or at various angles in

the field (or in mesocosms) (Bates 1937). Roots

that grow around the outside walls of the tubes

can be imaged with cameras inserted down the

tube length. Minirhizotrons allow the observa-

tion of root traits such as elongation rate, density,

surface area, number and length at different soil

depths throughout the growing season (Ao et al.

2010; Hendrick and Pregitzer 1992; Johnson

et al. 2001). Recently, minirhizotrons were used

to study root cortical aerenchyma in maize in

response to suboptimal availability of soil

nutrients, i.e. nitrogen, P and potassium (Postma

and Lynch 2011), or water deficiency (Zhu et al.

2010). Because repeated observations can be

made over time, minirhizotrons are particularly

well suited for estimating root production and

turnover (Johnson et al. 2001) as well as for

estimating root biomass per unit of soil.

One limitation of minirhizotrons is that space

may be created around the soil–tube interface

that could influence root growth if the tubes

are not installed properly. Furthermore,

minirhizotrons only capture a fraction of the

total root architecture. In this regard, they are

better suited for measuring fine roots than coarse

roots because fine roots are imaged more fre-

quently and are more likely to be fully captured

in images.

Traditional soil coring and trench profiling

can be used as complementary techniques to

minirhizotrons (Achat et al. 2008; Watt et al.

2005, 2008; Zhu et al. 2010). Like

minirhizotrons, however, neither of these

methods provides a full description of root sys-

tem architecture, and both are tedious and time

consuming (Vamerali et al. 1999).

A DNA-based method has been established to

quantify changes in the root DNA concentration
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in soil (Huang et al. 2013; Topp et al. 2013). It

may provide fast and accurate measurements of

root biomass in soil samples as a complementary

method to root quantification.

8.4 Imaging and Analysis
Platforms

8.4.1 Imaging Techniques

Root phenotyping approaches discussed above

often require efficient imaging techniques, pref-

erably in 3D. Several 3D imaging techniques

have recently been used to non-destructively

image root systems, including stereoscopics

(e.g. Wulfsohn et al. 1999), neutron radiography

(Oswald et al. 2008), magnetic resonance imag-

ing (MRI; e.g. Rascher et al. 2011), ground-

penetrating radar (e.g. Stover et al. 2007) and

X-ray computed tomography (CT; e.g. Flavel

et al. 2012).

Stereoscopic methods using plants grown in

transparent media (Wulfsohn et al. 1999) enable

visualisation of dynamics of root growth using

RootViz FS (Phenotype Screening Corporation,

Knoxville, TN, USA). Applications of this

method are limited due to the need for manually

rotating the microscope stage to see different

parts of the root system and to image roots

horizontally.

Neutron radiography (Oswald et al. 2008),

magnetic resonance imaging (Asseng

et al. 2000; Rascher et al. 2011), nuclear mag-

netic resonance (Jahnke et al. 2009; van der

Weerd et al. 2001) and ground-penetrating radar

(Stover et al. 2007) are used in field studies,

but the current scale, resolution, throughput,

accessibility and cost efficiency of these

techniques limit their utility (Clark et al. 2011).

Neutron radiography technique has the advan-

tage in monitoring water distribution and root

growth simultaneously, making it suitable for

studying root–water relationships in soils

(e.g. Oswald et al. 2008; Stingaciu et al. 2013).

However, root images produced by neutron radi-

ography are 2D and thus require specific image-

analysing software packages (such as Root

System Analyzer, Leitner et al. 2014) to recover

root traits. Nuclear magnetic resonance is very

sensitive to the type of media used for plant

growth. Laser scanning of root systems (Fang

et al. 2009) provides precise measurements, but

requires relatively long imaging times and can be

expensive.

Ground-penetrating radar and electrical resis-

tivity imaging are low-resolution geophysical

techniques that have been adapted for

non-invasive imaging of roots in field-grown

plants. Ground-penetrating radar uses pulses of

high-frequency radio waves to image subsurface

structures based on differences in their dielectric

constants. It is rapid, but detection is generally

limited to thick roots (at least 0.5 cm) at rela-

tively shallow depths, depending on the soil type

(e.g. dry, sandy soils are optimal). These

limitations make ground-penetrating radar pri-

marily useful for measuring root biomass of

woody species (Stover et al. 2007).

Recent developments in X-ray CT (micro-

scale CT, μCT) provide a breakthrough technol-

ogy for non-invasively visualising root growth in

soil (Flavel et al. 2012; Garbout et al. 2012;

Mooney et al. 2012; Perret et al. 2007; Tray

et al. 2010). Even though many papers over the

past decades have concentrated on the method

development from visualisation of roots in soil

(e.g. Gregory et al. 2003) to automated segmen-

tation of the whole root system architecture

(e.g. Flavel et al. 2012), some of the most recent

research is using X-ray CT to address fundamen-

tal questions regarding the functioning of the

rhizosphere. Carminati et al. (2009) used X-ray

CT to observe the dynamics of air gaps at a

90-μm resolution in the white lupin rhizosphere

in response to wetting and drying cycles. Recent

work of Aravena et al. (2013) measured compac-

tion and provided new insights into soil–water

uptake in sweet pea (Lathyrus odoratus) and

sunflower (Helianthus annuus) using a 4.4-μm
resolution CT technique.

Sophisticated image processing techniques,

frequently based on the object-tracking methods,

have demonstrated a great promise in measuring

root traits of soil-grown plants at high resolution

(Mooney et al. 2012). Using synchrotron
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radiation X-ray tomographic microscopy

(SRXTM) technique, Keyes et al. (2013) uncov-

ered the 3D interactions of wheat root hairs in

soil (Fig. 8.4), leading to the development of a

model of phosphate uptake by root hairs based on

the geometry of hairs and associated soil pores.

New X-ray CT-based root imaging

approaches promise to complement and extend

screening for root traits, potentially providing

breeders with a ‘deep phenotyping’ capability

(Flavel et al. 2012; Mooney et al. 2012). For

example, crop root systems could be studied at

high resolution and in 3D to reveal which archi-

tectural features might be most readily associated

with water and nutrient uptake. The quality of

‘region of interest’ scans, i.e. zooming into a

large sample and scanning a small volume at

high resolution, has also recently improved.

The X-ray CT offers an elegant method of

studying root growth non-destructively in situ,

but would benefit from substantial hardware

and software development to obtain high-

resolution images of roots grown in relatively

large containers. To that effect, a project recently

funded by the European Research Council is

attempting to improve CT hardware, software

and genetic selection, offering a potential for

enhanced in situ studies of root systems in the

future.

8.4.2 Root Image-Analysing Software

High-throughput phenotyping platforms coupled

to non-invasive root observation technologies

acquire large numbers of root images. More

than 30 different software tools are currently

available analysing root system images

(Table 8.2; Lobet et al. 2013).

General-purpose image-analysing software,

such as WinRhizo and ImageJ, may be flexible

enough to perform many specialised tasks.

Pierret et al. (2013) confirmed the good perfor-

mance of automated measurement of scanned

root images using IJ_Rhizo in comparison with

the commercial package WinRhizo.

A number of specifically designed image-

analysing packages have also been developed

for high-throughput quantification of root archi-

tecture traits. For example, there are several soft-

ware packages for automating the analysis of

root traits in minirhizotron images, including

RootView, RooTracker, MR-RIPL and

WinRhizoTRON. French et al. (2009) described

the application of RootTrace software for high-

throughput, automatic measurements of

Arabidopsis seedling roots grown on agarose

plates. The method combines a particle-filtering

algorithm with a graph-based method to trace the

centre line of a root. The package can quantify

root length, curvature and stimulus response

parameters such as onset of gravitropism,

through tracing function. Leitner et al. (2014)

developed a novel approach for recovering root

architecture traits from 2D neutron radiography

images based on image-analysing techniques in

Root System Analyzer software. Information

about these image-analysing programs and their

applications are summarised in Table 8.2. Other

useful data are available in Clark et al. (2013)

and Lobet et al. (2013).

Fig. 8.4 Example image of X-ray computed tomography

(CT) showing approx. 3-mm section of a seminal root of

wheat (Triticum aestivum) (Keyes et al. 2013)
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8.5 Root Models and Simulations

The complex interactions between root systems

and their soil environment, and the difficulties

associated with visualising and measuring these

interactions, make studying the plant–soil con-

tinuum a challenge (Dunbabin et al. 2013). Cur-

rent development of 3D root architectural models

offers an excellent opportunity to characterise

root function in soil, determine factors governing

root–soil interactions and identify root

parameters that underpin adaptation to a particu-

lar environment. Root models can be used to

simulate (1) 3D and time-dynamic root architec-

ture; (2) biological, physical and chemical pro-

cesses occurring in soil; (3) scenarios beyond

those directly observed; and (4) these scenarios

in a dynamic environments that vary in time and

space (De Dorlodot et al. 2007). Thus, by

integrating rhizosphere and growth data, simula-

tion and modelling studies are capable of linking

predictive laboratory techniques with field stud-

ies, allowing researchers to strategically predict,

evaluate and target beneficial root traits or

genotypes for specific growth environments

(De Dorlodot et al. 2007; Ho et al. 2004).

The development of structure-function root

models and the features of six current root

models have recently been reviewed in Dunbabin

et al. (2013). These six root models are SimRoot

(Lynch et al. 1997), SPACSYS (Bingham and

Wu 2011; Wu et al. 2007), RootBox (Leitner

et al. 2010), ROOTMAP (Diggle 1988a, b;

Dunbabin et al. 2002b), RootTyp (Pagès et al.

2004) and R-SWMS (Somma et al. 1997). These

models have been used for a wide range of root

modelling studies (see Dunbabin et al. 2013).

ROOTMAP and SimRoot, the two simulation

models that differ in the structure and functional-

ity of modules, are being used to investigate

various root–soil interactions in crops.

ROOTMAP model combines the 3D growth

and structure of root systems (Diggle 1988a, b)

with root responses to spatial and temporal

patterns of mineral nitrogen concentration in the

environment (Dunbabin et al. 2001a, b) to

produce an interactive model of root structure

and function (Dunbabin et al. 2002b). So far,

ROOTMAP was used to model (1) root growth

of lupins, field peas and wheat and (2) uptake of

water and nutrients (N and P) from soils with

varying resistances to root growth and differing

water and nutrient supplies at scales ranging

from rhizosphere (Dunbabin et al. 2006) to field

(Dunbabin et al. 2002a). The SimRoot model

(Lynch et al. 1997) was previously used to select

optimal root traits for phosphorus efficiency in

beans, followed by selecting breeding lines and

developing commercial cultivars that are now

widely grown in Central and South America

(Lynch and Brown 2001; Nielsen et al. 1998).

Key strengths of SimRoot are (1) sophisticated

routines for estimating carbon costs of various

root structures and their efficiency in capturing P

from soil (Lynch and Ho 2005; Nielsen et al.

1994), (2) use of fractal geometry to estimate

3D root growth from relatively easily measurable

root parameters (Nielsen et al. 1997) and

(3) capacity to represent changes in physiology

and morphology along a root at high spatial res-

olution. Both models were recently used in

studying lupin roots via parameterising with the

root data acquired from the semi-hydroponic

phenotyping system (Sect. 8.3.1; Chen et al.

2011a). Both models simulated root growth and

responses to soil phosphorus in genotypes with

contrasting root architecture under growth

conditions similar to those of the glasshouse

experiment (Chen et al. 2011b, 2013b).

It is anticipated that the structure-function

root models will play an increasingly important

role in the rhizosphere research, providing

insights into the relationships among root archi-

tecture, morphology and functional efficiency

(Dunbabin et al. 2013). With further develop-

ment, root models have the potential to be used

as an aid in crop breeding programmes by

selecting root traits important for enhanced

plant performance and grain yield in targeted

environments.
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8.6 Conclusion

Breeders, agronomists and other researchers

recognise the significance of RSA to crop pro-

ductivity. Increasing attention is being paid to

searching for root traits conferring efficiency in

resource acquisition and adaptation to edaphic

stresses, particularly in drying soil environments.

Various technologies are being developed for

high-throughput phenotyping, non-invasive

visualisation and accurate image analysis of

root architecture traits. Together with recent

developments of the structure-function simula-

tion models, these advanced approaches will

enhance our understanding of the relationship

between root architecture and function and the

complexity of root–soil interactions, leading to

improved crop performance and productivity.
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Phenotyping for Problem Soils 9
Karthika Rajendran, Somanagouda Patil, and Shiv Kumar

Abstract

Problem soils have serious physical and chemical constraints, impose

stress on crops under cultivation and reduce its yield and productivity.

Research efforts towards the development of tolerant cultivars for prob-

lem soils have gained all the advances from research areas of genomics

but precision phenotyping still remains challenging. This chapter

illustrates different phenotyping methods which have been used to screen

genotypes against various problem soil conditions, discusses bottlenecks

in the classical methods of phenotyping and exemplifies the application of

high-throughput (HT) phenotyping in the current field of interest through

red, green, blue (RGB) imaging, infrared thermography, chlorophyll

fluorescence and hyperspectral imaging technologies. The HT

phenotyping is a useful technique, and when it is empowered with other

tools such as high-density linkage mapping and association mapping, it

can accelerate the breeding process.

Keywords

Solis • Acidic • Alkaline • Nutrient deficient • Genetic variability •

Precision screening

9.1 Introduction

Soil is the key environmental factor that affects

plant growth and development. The properties of

the soil are usually embedded in various

definitions of soil fertility. Reuler and Prins

(1993) defined soil fertility as the capacity of

the soil to provide nutrients, water and oxygen

to plants. Simply, we could define soil fertility as

the capacity of the soil to support plant growth.

The concept of problem soils does not bring

any concrete definition yet. According to Osman

(2013), soils which impose limitation in crop

cultivation and need special management

practices are called problem soils. Having a

severe limitation of certain soil physical

constraints such as dryness, wetness, steepness

and poor texture and chemical constraints such as

K. Rajendran • S. Patil • S. Kumar (*)

International Centre for Agricultural Research in the Dry

Areas, P.O. Box 6299, Rabat – Instituts, Rabat, Morocco

e-mail: sk.agrawal@cgiar.org

J. Kumar et al. (eds.), Phenomics in Crop Plants: Trends, Options and Limitations,
DOI 10.1007/978-81-322-2226-2_9, # Springer India 2015

129

mailto:sk.agrawal@cgiar.org


acidity, salinity and sodicity, these soils demon-

strate lowest priority for crop cultivation (Huq

and Shoaib 2013; Osman 2013).

Problem soils affect plant growth and produc-

tivity not only due to the presence of high toxic

minerals but also by limiting the supply of essen-

tial mineral nutrients (White and Greenwood

2013). Limited availability of macronutrients

including nitrogen (N), phosphorus (P) and

potassium (K) and micronutrients, namely, mag-

nesium (Mg), iron (Fe), zinc (B) and boron (B),

challenges crop cultivation in many regions

(Mueller et al. 2012). Problem soils also undergo

water-related stresses including restricted root

growth through mechanical impedance in drying

soils, limited porosity and waterlogging and

affect crop cultivation (Hallett and Bengough

2013).

As a result of the rising population, depleting

natural resources and unsustainable agronomic

practices, agriculture faces tremendous

challenges and it would be getting bigger further

in the near future (Cobb et al. 2013). The Food

and Agriculture Organization of the United

Nations (FAO) predicts that world food produc-

tion needs to be doubled to meet out the human

demand by 2050 (http://www.fao.org). Since a

large part of the good quality land has already

been used for agriculture in the past, it is the right

time to pay attention on increasing productivity

on the lands where crop cultivation was in prac-

tice a while ago but relinquished by farmers very

recently due to various soil-related problems

(Wild 2003).

Many agronomic practices have been devel-

oped to address various soil-related problems.

Conservation tillage and zero tillage practices

have been successfully employed by farmers to

cultivate crops in soils with more physical

impediments such as erosion and waterlogged

conditions. Application of mineral fertilisers

has been increasing the yield potential of agricul-

tural crops since the 1950s. But in other chemical

constraints, for example, soil salinity problems,

the farm management practices become unsus-

tainable and necessitate huge efforts and invest-

ment. Eventually, plant-based strategies such as

development of tolerant cultivars could provide

possible alternative solutions to address this cur-

rent issue (Abdalla et al. 2013; Hajkowicz and

Young 2005; Llewellyn et al. 2012).

The presence of genetic variability for a par-

ticular trait of interest offers the scope for further

improvement. In history, plant breeders either

utilise the genetic variability for grain yield

under specific target environments (George

et al. 2014) or look for traits associated with

grain yield; for instance, Na+ exclusion is the

key trait associated with salinity tolerance, and

the selection of genotypes with low Na+ accumu-

lation favours salinity tolerance. However, the

success of the breeding programme mainly

depends on the availability of a reliable screening

protocol that helps to differentiate the potential

lines for a particular trait of interest for further

selection and hybridisation.

Extensive research has been carried out dur-

ing the past two decades on plant genomics in

various crops. Advanced molecular marker

technologies such as single nucleotide polymor-

phism (SNPs) markers have facilitated genomic

selections by high-throughput genotyping at

DNA level. However, the phenotyping remains

a challenging task; genotype by environment

interactions (GE) plays a significant role in the

phenotypic data collected in the field as well as in

greenhouses. Further, the subjective nature of the

visual scoring of plant damage symptoms by

classical phenotyping methods more frequently

produces erratic results (Sirault et al. 2009).

Recent advances in the imaging technologies

open up new opportunities for high-throughput

(HT) phenotyping and screening of various biotic

and abiotic stresses in plants. For instance, RGB

images are useful to study changes in plant

growth and health status under salt stress

(Rajendran et al. 2009; Schilling et al. 2014)

and B deficiency (Hayes et al. 2013), thermal

images are useful to screen osmotic stress by

diagnosing leaf water status and leaf temperature

(Sirault et al. 2009) under water-stressed

conditions, chlorophyll fluorescence images are

quite useful to detect N deficiency (Antal

et al. 2010; Donnini et al. 2013), and
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hyperspectral images are useful to screen the

genotypic differences for some micronutrient

deficiencies (Shi et al. 2011, 2012a, b) in various

crops.

This chapter provides an overview of the

nature, causes and crop production constraints

under problem soil conditions, assesses the

importance of plant-based strategies in order to

address the issue in current area of interest and

reviews the genetic variability for plant tolerance

to various problem soil conditions. Further, it

demonstrates the range of classical phenotypic

methods which have been employed to screen

plant tolerance for various problem soil

conditions and discusses the practical difficulties

in classical phenotyping methods and its

utilisation in the breeding programme. Finally,

it highlights the applications of HT phenotyping

methods by RGB imaging, infrared thermogra-

phy, chlorophyll fluorescence and spectral imag-

ing techniques and its utilisation to characterise

genotypes for tolerance to various problem soil

conditions.

9.2 Nature, Causes and Production
Constraints in Problem Soils

This section discusses the nature, causes and

production constraints in some of the major prob-

lem soils such as acidic, saline, sodic or alkaline,

nutrient-deficient, contaminated or toxic and

waterlogged or flooded or poorly drained soils

as follows.

9.2.1 Acidic Soils

Soil acidification is the process of natural build-

ing up of hydrogen ions (H+), also called protons,

over time (Hajkowicz and Young 2005). The

donor can be an acid from the acid rain such as

nitric acid and sulfuric acid; sometimes many N

compounds, in the form of fertiliser, also acidify

soil over the long term. They produce nitrous and

nitric acids when they get oxidised during nitrifi-

cation process and favour the development of

soil to be more acidic in nature (Hajkowicz and

Young 2005). The degree of acidification is usu-

ally measured in terms of soil pH. Generally, the

soil with pH<7 is declared as acidic, a pH of 7 is

neutral and a pH >7 is alkaline (Slattery

et al. 1999). In acid soils at pH <5.5, aluminium

(Al) and manganese (Mn) become more soluble;

they may become toxic as their concentration in

the soil solution rises (Ring et al. 1993). Al

inhibits root growth in most plants and induces

calcium (Ca), phosphorus (P) and molybdenum

(Mo) deficiencies in plants. It reduces microbial

activity and causes poor nodulation in legumes

(http://soilwater.com.au/bettersoils/module6/6_

7.htm). Overall, soil acidity does not itself cause

growth and yield reductions usually, but it is

associated with increase of other toxic minerals

and a decrease in the availability of plant

nutrients and affects plant growth and

productivity.

9.2.2 Saline Soils

Soil salinisation is the process of accumulating

water-soluble salts such as chlorides (Cl�) and

sulphates (SO4
2�) of sodium (Na+), calcium

(Ca2+) and magnesium (Mg2+) and to a lesser

extent of salts of carbonates (CO3
2�) and

bicarbonates (HCO3
�) on the soil surface (Abrol

et al. 1988; Rengasamy 2006). Weathering of

parental rocks and deposition of oceanic salts

(by wind and water) cause the development of

saline soils in a natural way. Besides, the process

of anthropedogenesis (supported by man-made

activities), for instance, irrigating the farmland

with poor-quality water, improper drainage

structures and chemical pollution, also leads to

the development of saline soils in some agricul-

tural lands (FAO 2005). It is estimated that about

800 million ha of the world area is affected by soil

salinity, which consists of about 6 % of the global

land area (Munns and Tester 2008). Saline soils

are characterised by the concentration of soluble

salts in the soil solution (Munns and Tester 2008).

It possesses the electrical conductivity of

saturation extract (ECe) of >4 days/m (approxi-

mately 40 mM), the exchangeable sodium
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percentage (ESP) of >15 % and the soil pH <8.5

(Abrol et al. 1988).

Soil salinity induces osmotic and ionic

stresses in plants (Munns et al. 1995). Osmotic

stress affects seed germination and seedling

emergence rate (Sayar et al. 2010) and shoot

growth and reduces the number of tillers and

leaf number in cereals (De Costa et al. 2007;

Harris et al. 2010; Nuttall et al. 2006). Severe

soil saline conditions cause permanent wilting of

plants (Munns et al. 1995; Rengasamy 2006).

The high concentrations of ions such as Na+,

Ca2+, Mg2+, Cl�, SO4
2�, HCO3

�, NO3
� and K+

in the soil solution cause ion-specific toxicities

(Bernstein 1975). Particularly, Na+ is toxic to

most of the annual field crops, whereas Cl� is

toxic to perennial horticultural crops. The Na+

toxicity develops with the symptoms of marginal

chlorosis and necrosis in the leaf blade, followed

by premature leaf senescence and complete plant

death (Tester and Davenport 2003).

9.2.3 Sodic/Alkaline Soils

Sodic soils are commonly referred to soils which

have salts of the Cl�, SO4
2�, HCO3

� and CO3
2�

of mainly Na+ (Abrol et al. 1988). It is also

known as alkaline soils. Sodic soils own poor

soil structure particularly under dry

environments. They appear black in colour and

possess hard calcareous pan at 0.5–1 m depth

below from the soil surface. Sodic soils are

characterised by pH > 8.5 with the ESP >15 %

and ECe of <4 dS/m (Abrol et al. 1988). The

poor structure of sodic soil creates mechanical

impedance for roots to grow and penetrate inside

the soil column under dry condition (Masle and

Passioura 1987). The low infiltration capacity of

sodic soil often causes slow water penetration

and distribution in the soil column and allows

water stagnation in the field (Oster and

Jayawardane 1998). Further, the Na+ in the soil

particle often replaces Ca2+ and develops Na+-

induced Ca2+ deficiencies (Adcock et al. 2001;

Ehret et al. 1990). They also induce CO3
2� and

HCO3
� toxicities and K, Fe, Mn, Mg, Cu, Zn and

P deficiencies in various crops (Naidu and

Rengasamy 1993).

9.2.4 Nutrient-Deficient Soils

Nutrient deficiencies limit crop production in all

types of soil around the world (Arnon 1954). A

mineral is considered as a nutrient when without

it plants cannot complete its life cycle. A total of

16 minerals are identified as essential nutrients

for plant growth and development. It includes

carbon (C), hydrogen (H), oxygen (O), nitrogen

(N), phosphorus (P), potassium (K), calcium

(Ca), magnesium (Mg), sulphur (S), iron (Fe),

manganese (Mn), zinc (Zn), copper (Cu), boron

(B), molybdenum (Mo) and chlorine (Cl).

Except C, plants uptake all minerals from the

soil solution, whereas C enters from the atmo-

sphere, in the form of carbon dioxide (CO2).

Based on the amount of requirements in the

plant metabolic activities, nutrients are

categorised into two groups such as macro and

micronutrients. The minerals, namely, N, P, K,

Ca, Mg and S, are grouped as macronutrients;

their requirement ranges between 1 and 150 g per

kg of plant dry matter. On the other hand, Fe, Zn,

Mn, Cu, B, Mo and Cl are classified as

micronutrients because these are required at a

lesser rate than the previous group, 0.1–100 mg/

kg of plant dry matter (Marschner 1997). For

normal growth and function, plants require all

these nutrients in balanced proportions. Any

deviation from the above required quantities

affects plant growth and health and causes

nutritional disorders; for example, P deficiency

in maize causes reddened tip with stunted plant

growth (Gong et al. 2011), Mg deficiency in

broad bean causes interveinal chlorosis (Hariadi

and Shabala 2004a), Fe deficiency in soybean

results in chlorosis (Norvell and Adams 2006),

Zn deficiency in rice results in leaf bronzing

(Wang et al. 2008; Wissuwa et al. 2006), and B

deficiency in lentil causes leaf chlorosis

(Srivastava et al. 2000). However, the continuous

shortage of a nutrient or nutrients causes com-

plete plant death.
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9.2.5 Contaminated/Toxic Soils

A mineral becomes a toxin when plant uptakes

higher than the optimum level of requirement.

For example, Fe is an essential micronutrient, but

the high concentration of Fe2+ in the soil solution

causes leaf bronzing, necrotic rust leaf spots on

the leaf tips, stained leaf edges, stunted shoot

growth and poor root development, for instance,

in rice (Elec et al. 2013; Sahrawat 2004). In fact,

Fe2+ toxicity is one of the major problems of rice

cultivation under wetland conditions.

Similarly, B toxicity is one of the most impor-

tant problems of crop cultivation in the arid and

semiarid areas all over the world. B toxicity

occurs through natural process from marine

evaporates and marine argillaceous sediments

(Nable et al. 1997). Occasionally, the irrigation

water contaminated by wastes from surface

mining, fly ash and industrial chemicals

increases the soil B availability and becomes

toxic to plants. The symptoms of B toxicity

develop by yellowing of leaflets of the lower

leaf followed by the necrosis progressing

towards the base of leaflets and leaf margins.

Under severe stress, it causes dropping of leaflets

in lentil; it begins from the older leaf at the

bottom to the younger leaf at the top (Yau and

Erskine 2000).

Besides, as described in Sect. 9.2.1, Al and

Mn become toxic under acid soil conditions

(Ring et al. 1993), and the groundwater

contaminated by arsenic (As) and the use of

As-contaminated groundwater for irrigation led

to As toxicity. Arsenisation of soil in the

Gangetic alluvium of Bangladesh is one good

instance (Huq and Shoaib 2013).

9.2.6 Waterlogged/Flooded/Poorly
Drained Soils

Waterlogging is a condition in which plants get

very limited supply of oxygen with other notori-

ous gases such as methane, nitrogen, etc., and

affects crop cultivation (Huq and Shoaib 2013).

Waterlogging conditions could arise due to the

poor internal capillary drainage or high clay

composition of soils. Otherwise, cropping

systems such as rice followed by a pulse often

develop waterlogging condition to the pulse crop

grown after rice in some regions. The symptoms

of waterlogging stress appear as leaf chlorosis,

necrosis, stunting, defoliation and plant death

(Cornelious et al. 2005). Waterlogging causes

major yield reductions in wheat (Saqib

et al. 2013), maize (Tripathi et al. 2003) and

soybean (Cornelious et al. 2005).

9.3 Importance of Plant-Based
Strategies to Address
Problem Soils

Sustainable management of farmlands coupled

with the development of tolerant varieties for

particular problem soil conditions is one of the

solutions to achieve necessary increase in crop

productivity and hence the future food security

(Bakker et al. 2012; Frison et al. 2011). Applica-

tion of soil amendments including lime, organic

manures, farmyard manures and green manures

and rotation of land with grazing paddocks are

useful practices to reclaim acid soil conditions

(Bal 2001). On the other hand, plantation of

deep-rooted perennials, gypsum application,

seed priming and foliar application of growth

hormones (Rengasamy 2002) are useful to

address the soil salinity and sodicity issues. How-

ever, the impact of these agronomic practices on

crop production is influenced by many socio-

economic factors. Firstly, it needs amendments

at huge quantities and can help to improve the

conditions of the top soil only. Secondly, it takes

more efforts, for example, plantation of deep-

rooted perennials is also a difficult option; it is

hard to keep the trees survived under salt-

affected soils (Chhabra 1996). Thirdly, it is a

long-term solution and takes time to see the

results; certain treatments need repeated applica-

tion continuously for a certain period. Finally, it

all ends up with low benefit to cost ratios to the

farming community (Hajkowicz and Young

2005). Eventually, the development of tolerant

crop cultivars becomes a potential alternative
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solution to address the problem of soil acidity

and salinity.

In other cases, mineral fertilisation, the agro-

nomic practice to correct soil nutrient

deficiencies, demands high market price with

the substantial damage to the environment

(Stewart et al. 2005). In the last 40 years, the

amount of synthetic nitrogen (N) applied to crops

has risen dramatically, from 12 to 104 Tg⁄year,

resulting in significant increases in yield but with

considerable impacts on the environment such as

the development of algal blooms (eutrophica-

tion), depletion of ozone in the atmosphere due

to emission of greenhouse gases and very much

influenced global warming. In fact, much of the

N added to the soil becomes wastes, with an

average of only 30 %–50 % being taken up by

the plant, while the remnant being lost as a sur-

face run-off (Mulvaney et al. 2009). We need to

develop crop cultivars which have high N use

efficiency (NUE) in terms of N uptake efficiency

(NUpE) and N utilisation efficiency (NUtE). In

this way, we can reduce the economic and envi-

ronmental loss and achieve sustainable agricul-

tural production in the near future.

9.4 Occurrence of Genetic
Variability for Problem Soils

Occurrence of natural variation for the trait of

interest is the key to develop such crop varieties

(Koornneef et al. 2004). The presence of genetic

variability for tolerance to acidity (Camargo

et al. 1995; Foy 1996), salinity (Munns

et al. 2000; Munns and James 2003), sodicity

(Rao et al. 2008; Singh et al. 2002), toxic soils

(Hasnain et al. 2011; Yau and Erskine 2000),

nutrient use efficiency (Parentoni et al. 2010;

Zhang et al. 2009) and waterlogging tolerance

(Cornelious et al. 2005; Saqib et al. 2013) has

been confirmed across different crops at both

inter- and intraspecies levels. Past studies

identified a wide range of variations to the

corresponding soil condition based on traits

including shoot growth, symptoms of toxicities

and deficiencies and various physiological

parameters such as leaf elongation rate, relative

growth rate, tissue ion concentrations, etc., and

by comparing differential response of genotypes

in terms of plant biomass and grain yield under

low fertile and low input soil conditions with the

normal soil conditions (Table 9.1). These

identified sources of variability have already

been used to develop tolerance cultivars, for

instance, the genetic variation in Aegilops

tauschii for salinity tolerance was useful to

develop synthetic hexaploids of bread wheat

with improved salinity tolerance (Schachtman

et al. 1992) through conventional breeding

approach. On the other hand, marker-assisted

selection has facilitated to improve salinity toler-

ance of wheat cultivars, and those cultivars can

yield more than 25 % in the saline soils in

Australia (James et al. 2011).

9.5 Rationale for Appropriate
Phenotyping Methodology

Physiologists and breeders might consider using

potential variations to develop cultivars for prob-

lem soils. However, the breeder should know the

genetic control of the trait of interest and its gene

action in order to choose suitable breeding

method for the given trait of interest. If the trait

is controlled by a dominant gene, it suggests

development of hybrids in order to gain more in

the cross-pollinated crops. On the other hand, if it

is an additive gene action, the pedigree selection

is suitable to improve those traits in self-

pollinated crops.

Extensive research has been done to under-

stand the variability for the traits related to prob-

lem soil conditions. In most of the studies, the

genetic control of the tolerance mechanisms is

questioned, and it seriously limits the effort of

plant breeders to develop efficient breeding

strategies to develop tolerant varieties. Recent

reports suggest that the genetic control of toler-

ance to these problem soils is inherited by

polygenes which involve the function of many

genes with small individual effect and the

expression of these traits is highly subjected to

the environmental conditions. In one exemption,

the monogenic inheritance was observed for Al
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Table 9.1 Classical phenotyping methods used to characterise plants grown under various problem soil conditions

Nature of the

soil problem

Screening

technique/

criteria

Crops/plant

species Growth conditions Parameters used References

Acidity Root regrowth

method

Barley Nutrient solution

culture in glasshouse

Root recovery Nawrot et al. (2001),

Choudhary

et al. (2011)

Haematoxylin

root tip

staining

method

Pigeon pea Nutrient solution

culture in glasshouse

Root tip damage Nawrot et al. (2001),

Choudhary

et al. (2011)

Soil bioassays Wheat Pot culture in

glasshouse

Relative shoot and

root dry weight

Foy (1996)

Yield-based

assays

Wheat Field experimentation Grain yield Camargo et al. (1995)

Salinity Physiological

parameters

Wheat Nutrient solution

culture in glasshouse

Leaf elongation

rate

Munns and James

(2003)

Wheat, barley

and triticale

Nutrient solution

culture in glasshouse

Leaf area

expansion rate

Rawson et al. (1988)

Rice and

wheat

Nutrient solution

culture in glasshouse

Relative growth

rate

Lutts et al. (1996),

James et al. (2008)

Sugar beet Nutrient solution

culture in glasshouse

Relative water

content

Ghoulamet al. (2002)

Wheat Nutrient solution

culture in glasshouse

Stomatal

conductance

James et al. (2008)

Rice Nutrient solution

culture in glasshouse

Osmotic potential Lutts et al. (1996)

Wheat Nutrient solution

culture in glasshouse

Na+ exclusion Munns and James

(2003), Shavrukov

et al. (2009)

Wheat Nutrient solution

culture in glasshouse

K+/Na+

discrimination

Munns and James

(2003)

Wheat Nutrient solution

culture in glasshouse

Symptoms of salt

stress

Munns and James

(2003)

Salinity

tolerance

indices

Lycopersicon
species

Petri-dish culturing Germination rate Foolad and Lin

(1997)

Halophytic

plant species

Petri-dish culturing Seedling survival

rate

Ashkan and

Moemeni (2013)

Tomato NSC15 in greenhouse Plant height Caro et al. (1991)

Wheat Nutrient solution

culture in glasshouse

Shoot biomass Munns and James

(2003), Genc

et al. (2007)

Wheat Field experimentation Grain yield Houshmand

et al. (2005)

Wheat Field experimentation Tissue Na+

concentrations

El-Hendawy

et al. (2009)

Alkalinity/

sodicity

Sodicity

damage index

Rice Nutrient solution

culture in glasshouse

Symptoms of

sodic sensitivity

Singh et al. (2002)

Agronomical

parameters

Rice Field experimentation Grain yield and

yield components

Rao et al. (2008)

(continued)
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Table 9.1 (continued)

Nature of the

soil problem

Screening

technique/

criteria

Crops/plant

species Growth conditions Parameters used References

Nutrient deficiencies

N Morpho-

physiological

parameters

Barley Nutrient solution

culture in glasshouse

Chlorophyll

content

Hoffmann

et al. (2012)

Maize Field experimentation Grain yield and

yield components,

tissue N

concentrations

Cirilo et al. (2009)

P Plant damage

assessment

Maize Nutrient solution

culture and pot culture

in glasshouse

Symptoms of P

deficiency

Gong et al. (2011)

Physiological

parameters

Soybean Pot culture in outdoors Relative growth

rate and leaf

elongation rate

Qiu and Israel (1994)

K Physiological

parameters

Cotton Nutrient solution

culture in glasshouse

Leaf elongation

rate, leaf water

potential

Gerardeaux

et al. (2010)

K uptake

kinetics

Tomato Nutrient solution

culture in glasshouse

Tissue K

concentrations

Pujos and Morard

(1997)

Mg Plant damage

assessment

Broad beans Soil hydroponic

flooding system

Symptoms of Mg

deficiency

Hariadi and Shabala

(2004a)

Physiological

parameters

Broad beans Nutrient solution

culture in glasshouse

Co2 assimilation,

transpiration rate

Hariadi and Shabala

(2004b)

Fe Plant damage

assessment

Soybean Nutrient solution

culture in glasshouse

Symptoms of Fe

deficiency and

leaf Fe

concentrations

Norvell and Adams

(2006)

Fe stress

tolerance

indicator

Wheat Field experimentation Grain yield Sadrarhami

et al. (2010)

Zn Plant damage

assessment

Rice Nutrient solution

culture in growth

chamber and field

experimentation

Symptoms of Zn

deficiency and

shoot Zn

concentrations

Wissuwa

et al. (2006), Wang

et al. (2008)

Zn efficiency

ratio

Wheat Pot culture in

greenhouse

Shoot biomass Cakmak et al. (2001)

B Grain set index Barley Pot culture and field

experimentation

Number of spikes

per plant,

spikelets/spike

Jamjod and

Rerkasem (1999)

Plant damage

assessment

Lentil Field experimentation Symptoms of B

deficiency

Srivastava

et al. (2000)

Nutrient use efficiency

Nitrogen use

efficiency

(NUE)

Agro-

biochemical

parameters

Barley Nutrient solution

culture and pot culture

in growth chamber

along with field

experimentation

Seed yield and

metabolite levels

Beatty et al. (2010)

Grain quality

parameters

Wheat Field experimentation Grain yield and

grain protein

content

Anderson and Hoyle

(1999)

(continued)
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tolerance in wheat, but in barley and maize, it has

been confirmed as a polygenic trait with additive

gene actions (de Almeida et al. 2002; Ferreira

et al. 2006; Minella and Sorrells 1997). Genotype

� environment (GE) interaction causes difficulty

on phenotypic selection of traits with polygenic

inheritance (Cobb et al. 2013). Besides GE

interactions, other physiological and genetic

interactions between physiological pathways

and genes controlling various component traits

also mask the phenotype. Development of reli-

able phenotyping technique that can accurately

examine these interactions and distinguish

genotypes for these differences could help to

develop a successful tolerant cultivar.

9.6 Classical Phenotyping Methods
(from Glasshouse to Field)

Classical phenotyping methods usually involve

data collection in shoots and roots of plants

grown under stressed conditions. It quantifies

the genotypic differences of plant characters

including plant biomass (Genc et al. 2007),

grain yield (Houshmand et al. 2005), yield

components (El-Hendawy et al. 2009), plant

health (Hasnain et al. 2011) and certain morpho-

logical (Souza et al. 2000) and physiological

(James et al. 2008) parameters. It can be done

under controlled (lab/glasshouse/greenhouse/

growth chamber/phytotron) (Ashkan and

Table 9.1 (continued)

Nature of the

soil problem

Screening

technique/

criteria

Crops/plant

species Growth conditions Parameters used References

Phosphorus use

efficiency

(PUE)

Morphological

parameters

Tomato Nutrient solution

culture in glasshouse

Plant biomass and

root characters

da Silva and Maluf

(2012)

Potassium K

internal use

efficiency

(KIUE)

Agro-

physiological

parameters

Rice Nutrient solution

culture and field

experimentation

Plant biomass,

grain yield and

tissue K

concentrations

Yang et al. (2003)

Nutrient toxicities

Fe Plant damage

assessment

Rice Nutrient solution

culture in greenhouse

Symptoms of Fe

toxicity

Elec et al. (2013)

B Seedling

assays

Wheat Filter paper technique Root length Chantachume

et al. (1995)

Mung bean Petri-dish culture Germination

percentage

Hasnain et al. (2011)

Agro-

physiological

parameters

Mung bean Pot culture in

glasshouse

Symptoms of B

toxicity

Hasnain et al. (2011)

Lentil Pot culture in

greenhouse

Symptoms of B

toxicity

Yau and Erskine

(2000)

Brassica rapa Nutrient solution

culture in glasshouse

Shoot boron

concentrations

Kaur et al. (2006)

Waterlogging Plant damage

assessment

Soybean Field experimentation Symptoms of

waterlogging

Cornelious

et al. (2005)

Yield-based

assays

Wheat Nutrient solution

culture

Plant biomass and

grain yield

Saqib et al. (2013)

Agro-

physiological

parameters

Maize Field experimentation Days to 50 %

silking, plant

height, canopy

temperature,

transpiration rate

Tripathi et al. (2003)
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Moemeni 2013; Hoffmann et al. 2012; Khabaz-

Saberi et al. 2010) as well as in field environment

(El-Hendawy et al. 2009). In the controlled

conditions, phenotyping is done in petri plate

culture (Ashkan and Moemeni 2013; Foolad

and Lin 1997), filter paper technique

(Chantachume et al. 1995), hydroponic nutrient

culture (Choudhary et al. 2011), supported

hydroponic nutrient culture (James et al. 2008;

Shavrukov et al. 2009), semi-hydroponic nutrient

culture (Caro et al. 1991) and soil hydroponic

flooding system (Hariadi and Shabala 2004a).

In these methods, plant health is measured by

visual scoring of symptoms in Zadoks scale

(Khabaz-Saberi et al. 2010; Yau and Erskine

2000). Development of stress tolerance indices

and ranking of genotypes based on their germi-

nation rate, seedling survival rate, plant height,

shoot biomass, yield and yield components is a

common practice (Ashkan and Moemeni 2013;

El-Hendawy et al. 2007; El-Hendawy et al. 2009;

Genc et al. 2007). The classical phenotyping

methods are helpful to screen and identify geno-

typic differences for a wide range of problem soil

conditions across different crop species but to a

certain extent. The list of classical phenotyping

methods used to phenotype and screen genotypes

for tolerance to various problem soil conditions

is provided in Table 9.1.

However, there are several factors affecting

the efficiency of classical phenotyping methods.

Some of the classical phenotyping methods are

expensive and require a huge amount of labour

and time (Sirault et al. 2009). Hariadi and

Shabala (2004a) revealed leaf Mg nutrient anal-

ysis as an efficient way to study Mg deficiency in

broad beans. But at the same time, it was

declared as an expensive and time-consuming

technique to screen large number of genotypes

for Mg deficiency. It follows destructive

approach to estimate crop tolerance. For exam-

ple, leaf sampling and harvesting of whole plant

shoot during the time of experimentation are

widely followed by researchers as a part of salin-

ity tolerance screening (Munns et al. 1995;

Munns and James 2003). In this case, the same

plant cannot be further examined once it is dis-

turbed or harvested completely. Moreover, the

classical methods mainly focus on relative

changes in the physiological parameters includ-

ing leaf elongation rate, leaf area expansion rate,

relative growth rate, relative water content, etc.,

rather than whole plant response under stressed

environment (Table 9.1). Hasegawa et al. (2000)

opine that no single physiological observation

can contribute the whole plant tolerance to vari-

ous abiotic stresses; hence, researchers have to

consider measuring the changes in the whole

plant response rather than the individual physio-

logical observations.

Importantly, quantification of symptoms of

nutrient deficiencies and toxicities by scoring

human eye frequently produces imprecise and

unrepeatable results. The subjective nature of

visual scoring coupled with the heterogeneity of

the field environment often produces inconsistent

results (Greenway and Munns 1980; Shannon

1985). In addition, symptoms of some nutrient

deficiencies often get confused with other nutri-

ent deficiencies, plant damages caused by pests,

diseases and other related stresses. Toxicity of

Mo or Se is similar to P deficiency (Bennett

1993); Fe deficiency in mango is similar to chlo-

ride toxicity (Xu et al. 2000). As a final point, it is

hard to accurately phenotype some specific plant

traits, for instance, root characteristics of plant

growing under various soil-related problems

through classical screening methods (Fleury

et al. 2010; Richards et al. 2010; Zhu

et al. 2011). According to Roy et al. (2011),

root phenotyping needs to be considered to quan-

tify Al tolerance, B tolerance, nitrogen defi-

ciency and phosphate deficiency in various crop

species.

9.7 High-Throughput
(HT) Phenotyping
Technologies (from Glasshouse
to Field)

Recent progresses in the non-destructive imaging

technology have allowed the researchers to mon-

itor the changes in the growth, health and physi-

ological status of whole plant response over

time, non-destructively. Here these advanced
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phenotyping technologies have been discussed in

relation to phenotyping the traits associated with

various soil problems. In fact, images can capture

the large amounts of phenotypic information of

plants being photographed over time. Particu-

larly, in plant biology, images from electromag-

netic waves are quite useful in many research

areas to know the things which cannot be distin-

guishable by the human eye (Umbaugh 2005).

For instance, images taken using visible

light (RGB) infrared rays and chlorophyll

fluorescence are quite useful to detect changes

in morphological and physiological status of the

plants grown under stressed environment and

detect nutritional deficiency tolerance at early

stages of plant ontogeny. It is rapid, consumes

less labour and time and produces reliable

results. It is objective and helps to obtain

quantitative data of symptoms of plant damages

for further QTL analysis. The following

sections discuss some major applications of

RGB imaging, infrared thermography, chloro-

phyll fluorescence and spectral imaging in the

current field of interest.

9.7.1 RGB Imaging

It is the simplest and precise way of quantifying

subtle changes in the growth and health status of

plant shoots (projected shoot area) over time

(Harris et al. 2010; Rajendran et al. 2009). It

uses the visible range of electromagnetic spec-

trum (400–700 nm) with the help of CCD

(charge-coupled device) cameras to obtain

images of the plants from different angles

(Arvidsson et al. 2011; Rajendran et al. 2009).

With the help of an image analysing software, the

images are processed to extract phenotypic infor-

mation such as plant colour and some morpho-

logical parameters. After image analysis, the

colour-classified image can provide information

about the healthy (green), senescing/chlorotic

(yellow) and senesced/necrotic (brown) parts of

the leaf which is helpful to differentiate tolerant

and sensitive cultivars, for example, to salt stress

(Rajendran et al. 2009) and boron toxicity (Hayes

et al. 2013; Schnurbusch et al. 2010). The calcu-

lated projected shoot area from these colour

images has shown positive and significant

correlations with the shoot biomass taken, imme-

diately after the destructive harvest in barley and

wheat (Golzarian et al. 2011; Harris et al. 2010;

Rajendran et al. 2009). By providing the details

of projected shoot area, it is useful to monitor

changes in the growth rate of plants grown under

stressed environments (Rajendran et al. 2009;

Schilling et al. 2014).

There are many commercial RGB image-

capturing tools available to obtain dynamic and

spatially distinct parameters of plants grown

under stressed environment. For instance, the

LemnaTec Scanalyzer was useful to monitor the

changes in the growth and health status of plants

grown under salt stressed conditions

non-destructively over time. Rajendran

et al. (2009) developed a high-throughput salin-

ity tolerance screening protocol that dissects the

whole plant salinity tolerance into three major

components such as Na+ exclusion, osmotic tol-

erance and tissue tolerance. The tolerance indices

developed using this scanalyzer were used to

screen the variability in genotypes having differ-

ent combinations of each of these three major

components of salinity tolerance for further

genetic studies.

Further, the RGB imaging was found useful to

develop green vegetation indices of durum

wheats grown under stressed environments in

the field (Casadesus et al. 2007). It was also

quite useful to quantify B toxicity in wheat and

barley (Hayes et al. 2013; Schnurbusch

et al. 2010), macronutrients (N, P and K)

deficiencies in legumes (Wiwart et al. 2009)

and N deficiency in barley (Pagola et al. 2009).

In general, RGB imaging is a robust, rapid and

efficient method to phenotype plants for growth

and health status grown under stressed

conditions. Sometimes, the overlapping of leaves

in plants under specific doses of treatments

affects the relationship between projected

shoot areas with shoot biomass and produces

unrepeatable results (Golzarian et al. 2011). The

background soil noise also often affects colour
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classifications, which necessitates sound techni-

cal skills to do image analysis. Moreover, it

provides only limited information about the

physiological status of the plants (Fiorani and

Schurr 2013).

9.7.2 Infrared Thermography

Quite often, breeders use variation in the canopy

temperature as one of the selection criteria

for tolerance to drought, and selection for

canopy temperature correlates well to the grain

yield (Fischer et al. 1998; Reynolds et al. 1999).

The infrared thermography (3–14 μm) has been

useful to study canopy temperature and the

leaf water status of the plants grown under

water-stressed environment (Jones et al. 2009;

Munns et al. 2010). Plants growing under

various problem soil conditions demonstrate

similar physiological responses to drought

stress, for instance, the closure of stomata

and reduction in the photosynthetic area; it is

possible to utilise the benefits of infrared

thermography to phenotype plants grown under

various problem soil conditions (Sirault

et al. 2009).

It distinguishes genotypes based on the

occurrence of stomatal conductance and hence

the canopy temperature. Tolerant genotypes usu-

ally have high rate of stomatal conductance and

possess cooler leaves than the sensitive ones

(Berger et al. 2010). As the GE interactions

influence the results under field conditions, it is

used to detect genotypic differences in the

stomatal conductance and transpiration rate of

genotypes grown under controlled environments

rather than in the field environment (Berger

et al. 2010; Furbank and Tester 2011). However,

the physics of the heat flux is highly variable and

complicates the measurement in many times

(Fiorani and Schurr 2013). Frequently, a combi-

nation of RGB images with infrared thermogra-

phy is useful to study leaf orientation, canopy

structure and canopy temperature of plants

grown under stressed environments (Leinonen

and Jones 2004).

9.7.3 Chlorophyll Fluorescence
Imaging

Chlorophyll fluorescence has a wide application

in high-throughput plant phenotyping from lab to

field studies. It is found useful to measure the

photosynthetic efficiency, the electron transport

rate and the extent of non-photochemical

quenching. The parameters of photochemical

and non-photochemical quenching coefficients

are used to study Mg deficiency in broad beans

(Hariadi and Shabala 2004b). It is also useful to

detect N deficiency in common bean (Antal

et al. 2010) and maize (Lu and Zhang 2000), Fe

deficiency in cucumber (Donnini et al. 2013),

and NUE in maize (Corp et al. 2003). Most of

the time, portable instruments used to measure

photosynthetic status of plants create difficulties

in terms of robustness, reproducibility and data

analysis (Fiorani and Schurr 2013). Along with

RGB imaging, chlorophyll fluorescence can pro-

vide information about the leaf area, growth rate

and leaf senescence. Hence, the interpretation of

results from both RGB images and fluorescence

images could be more efficient to do early detec-

tion of nutrient deficiencies and toxicities and to

quantify plant damages.

9.7.4 Hyperspectral Imaging

Hyperspectral imaging utilises the wavelength

from 400 to 2500 nm, which falls between the

spectral range of visible and near-infrared (NIR)

regions. It has a major application in remote

sensing (Kokaly et al. 2009). Hyperspectral

reflectance measurements are useful to identify

waveband signatures that help to indicate plant

stress levels. It is useful to determine reflectance

vegetation indices and helps to estimate biomass,

healthiness, pigment composition, photosyn-

thetic status, leaf thickness, growth habit and

relative water content (Berger et al. 2010; Fiorani

and Schurr 2013). In the current field of research,

it is used to detect deficiencies caused by N (Shi

et al. 2011, 2012a), P (Shi et al. 2012b) and Ca

(Li et al. 2005) in various crops. NIR spectral
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imaging needs extensive calibration before

usage. Once calibrated, it facilitates

non-destructive quantification of water content,

protein content and other related compounds for

large-scale phenotyping.

9.8 Automated Greenhouse (AGH)
Facilities

All these high-throughput plant imaging

technologies often necessitate highly automatic

and rapid imaging of plants grown under con-

trolled environments. Greenhouse facilities set

up with the conveyor belts for delivery of plants

to the imaging system, watering and weighing of

plants in an automated way would help to do

more precision fast phenotyping. Such green-

house facilities have already been used to pheno-

type plant traits including plant height, width,

area and biomass, chlorophyll, anthocyanin and

foliar water content in corn, soybean and cotton

(Hyundae et al. 2014). It is also used to detect

deficiencies of Ca (Story et al. 2010) and Mg

(Chaerle et al. 2007) in various crops. The

AGH facilities are now available at CropDesign

in Belgium (http://www.cropdesign.com/gen

eral.php), Leibniz Institute of Plant Genetics

and Crop Plant Research-IPK in Germany

(http://www.ipk-gatersleben.de/) and Australian

Plant Phenomics Facility in Australia (http://

www.plantphenomics.org.au/). They are often

useful to do screening in germplasm and breed-

ing populations to identify QTL and candidate

gene(s) under controlled conditions; later these

results can be validated in the well-planned field

experimentation.

9.9 Concluding Remarks

The HT phenotyping technologies are useful to

study the phenotypic changes in the growth,

health and morphological changes of plants

grown under different problem soils. The

advantages of HT phenotyping are well

recognised by breeders, physiologists and soil

scientists involved in the current field of interest.

Along with the advances in plant genomic

research area, recent developments in plant

phenomics would help to do more precise mea-

surement of plant traits, identify new plant traits

and gene loci towards tolerance to various prob-

lem soils and either modify or develop new

cultivars for future need.
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Phenotyping Methods of Fungal
Diseases, Parasitic Nematodes, and
Weeds in Cool-Season Food Legumes

10

Seid Ahmed Kemal

Abstract

The productivity and production of crop plants are low in many parts of

the world due to several biotic and abiotic stresses. The major biotic

stresses are caused by foliar- and soil-borne diseases, parasitic weeds,

and parasitic nematodes. Distribution and importance of diseases, para-

sitic weeds, and nematodes of cool-season food legumes are global and

eco-regional in nature. For developing resistant germplasm, it requires

systematic screening using field- and greenhouse-based techniques

against the target biotic stresses. These phenotyping techniques have led

to the identification of many varieties and germplasm currently in use by

farmers and researchers. This chapter provides information on those

techniques that are being employed to phenotype several diseases, para-

sitic nematodes, and weeds in cool-season food legumes.

Keywords

Food legumes • Foliar- and soil-borne diseases • Resistant • Screening

methods

10.1 Introduction

Cool-season food legumes, viz., faba bean (Vicia
faba L.), field pea (Pisum sativum L.), chickpea

(Cicer arietinum L.), lentil (Lens culinaris

Medik.), and grass pea (Lathyrus sativus L.),

are important protein-rich crops. These crops

are integral parts of rainfed agriculture and play

a key role in the sustainability of cereal-based

cropping systems. The present productivity of

cool-season food legumes is constrained by sev-

eral biotic and abiotic factors. The major biotic

factors are fungal pathogens causing foliar and

root diseases, as well as parasitic nematodes and

weeds. Diseases of cool-season food legumes

have either regional or global importance, and

during epidemic periods, farmers can even lose

their entire crops (Pande et al. 2009). Owing to

the importance of diseases, one of the major

components of disease management in many

legume breeding programs is resistance breed-

ing, and consequently, major achievements
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have been made in combating the ravages of key

biotic constraints (Muehlbauer and Kaiser 1994;

Tivoli et al. 2006; Muehlbauer and Chen 2007;

Siddique et al. 2013). The identification of resis-

tance gene pools is achieved through field and

controlled screening techniques. Effective and

efficient screening techniques are very critical

in evaluating genetic materials (segregating

populations, cultivated and wild germplasm

accessions, and mapping populations).

Earlier screening techniques and their use

in the identification of resistance gene pools

from cultivated and wild genetic sources against

fungal diseases, parasitic nematodes, and weeds

have been reviewed by several workers

(Nene et al. 1981; Cubero et al. 1994; Kraft

et al. 1994; Muehlbauer and Kaiser 1994;

Porto-Puglia et al. 1994; Sharma et al. 1994;

Sillero et al. 2006; Infantino et al. 2006; Tivoli

et al. 2006; Singh et al. 2007; Pande et al. 2011).

This chapter has focused on various methods

used to screen resistance to diseases, parasitic

weeds and nematodes of cool-season food

legumes, and attempts have been made to high-

light key challenges and opportunities for

phenotyping the diseases.

10.2 Phenotyping to Foliar Fungal
Diseases

Cool-season food legumes are affected by many

economically important foliar diseases caused by

necrotrophic and biotrophic fungal pathogens.

The major emphasis in the management of foliar

diseases is mainly through resistance breeding that

deploys resistance sources from cultivated and, to

some extent, from wild relatives. The screening

techniques are based on exposing the genetic

resources of target crops to pathogen populations

(single isolate or bulk populations) under field and

controlled (greenhouse, plastic house, growth

chamber, and laboratory) conditions. These

screening techniques are discussed in the follow-

ing text for the major foliar fungal diseases of

important cool-season food legumes.

10.2.1 Chickpea

Chickpea is affected by foliar diseases like

Ascochyta blight (Didymella rabiei), Botrytis

gray mold (Botrytis cinerea), and rust (Uromyces

ciceri-arietini). Ascochyta blight is a major pro-

duction bottleneck almost in all chickpea-

growing countries, while Botrytis gray mold

(BGM) is a major problem in South Asia and

Australia (Pande et al. 2006; Kaur et al. 2013).

The National Agricultural Research Systems

(NARS), International Center for Agricultural

Research in the Dry Areas (ICARDA), and Inter-

national Crops Research Institute for the Semi-

Arid Tropics (ICRISAT) have put huge resources

and time to develop cultivars resistant to key

foliar diseases using genetic resources from

cultivated and wild gene pools.

10.2.1.1 Ascochyta Blight
The field screening for Ascochyta blight is being

done by spreading infected chickpea straws kept

from previous seasons to initiate primary

infections. If weather conditions (rainfall and

temperature) are not conducive for Ascochyta

blight development, spore suspensions of aggres-

sive/virulent isolates are sprayed, and conducive

conditions are created using sprinkler irrigation.

At ICARDA, Kabuli chickpea Ascochyta blight

nurseries (segregating populations, germplasm

accession, and fixed lines) are screened each

year at a large scale by planting susceptible

genotypes along with the resistant genotypes at

regular intervals. Inoculations are done by com-

bining the spreading of infected chickpea straw

at the seedling stage supplemented with artificial

inoculation (two to three times) by spraying

10-day-old culture of the pathogen (105 spores/

ml) using a tractor mounted sprayer, while knap-

sack sprayers are used for spraying the small

plots. In countries where weather conditions are

favorable (hot spot locations), disease nurseries

are exposed to natural pathogen populations. The

selected breeding lines from one season are usu-

ally evaluated in the subsequent season to avoid

possible escapes before they are advanced for
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yield trials following similar procedures

described above.

Controlled screening techniques are used to

confirm selections made from field screenings

and study pathogen variability/virulence. For

example, a highly virulent pathotype (pathotype

IV) of D. rabiei is identified in few locations of

Syria. This pathotype was used to expose all

ICARDA Kabuli breeding lines and wild

relatives under plastic house conditions in order

to see its reactions on these genetic resources.

Thus, such screening helps to avoid future threat

to chickpea production from new emerging

pathotypes (Imtiaz et al. 2011).

Different researchers use different seedling

ages (12–15 days), ages of pathogen culture

(7–12 days), temperature regimes (18–22 �C),
and methods in creating relative humidity

(RH) for seedling screening under controlled

conditions. At ICARDA, breeding lines planted

in pots (five seedlings of each entry/pot with a

susceptible check in the center of each pot) are

inoculated with 10-day-old culture ofD. rabiei at

105 spores/ml. Inoculation is made until runoff

and covered with plastic sheet for 72 h to create

high relative humidity (RH). After inoculation,

RH is kept above 80 % using humidifier or mist

irrigation or spraying water by hand sprayers.

The mini-dome seedling screening technique

involves spraying of 2-week-old seedling with

conidial suspension (2 � 105 spores/ml) to run

off, and seedlings are immediately covered with

an inverted translucent plastic cup in order to

produce uniformly high relative humidity for

24 h to facilitate infections (Chen and

Muehlbauer 2003; Chen et al. 2005). In

cut-twig method, 80-day-old plant twigs with a

minimum of five pinnules are collected, wrapped

with a cotton plug, and placed in test tubes

(15 � 100 mm) filled with sterilized distilled

water. The twigs are transferred to a controlled

environment facility, maintained at a tempera-

ture of 20 � 1 �C, and a photoperiod of 12/12

h light regime. Inoculum is sprayed (5 � 104

spores/ml) on to the foliage using a hand-

operated atomizer, and 100 % RH is provided

for initial 4 days after inoculation, and later 100

% RH is maintained for 6–8 h for 10 days

(Kottapalli et al. 2009; Pande et al. 2011).

10.2.1.2 Botrytis Gray Mold
In field screening, breeding lines are sown in

4-m-long rows (depending on seed availability)

with susceptible cultivar acting as a spreader row

after every two test entries. As flowering

initiates, both test entries and infector-cum-indi-

cator rows are sprayed with water through a

sprinkler irrigation system to maintain high

humidity to favor BGM development. To screen

for BGM resistance in chickpea under growth

room conditions, 10-day-old seedlings are

grown in plastic trays and inoculated with conid-

ial suspension of 3 � 105 spores/ml and

incubated in growth room maintained at 15 � 1
�C and 95–100 % RH with 12/12 h photoperiod

regime (Sharma et al. 2013). In the cut-twig

method, tender shoots of chickpea plants are cut

in tray containing water, immediately wrapped in

wet cotton plug, and placed into a test tube

(15 � 100 mm) containing fresh tap water.

Twigs are inoculated by spraying spore suspen-

sion of B. cinerea (104 spores /ml) and covered

with moist polythene covers until symptoms

develop (Kaur et al. 2013).

10.2.2 Faba Bean

Faba bean is affected by chocolate spot (Botrytis

fabae), Ascochyta blight (D. fabae), rust

(Uromyces vicia-fabae), and Cercospora leaf

spot (Cercospora zonata).

10.2.2.1 Chocolate Spot
The field screening against the chocolate spot

disease in faba bean requires humid conditions

that favor disease epidemics. Such very high

disease pressure development conditions com-

monly occur in coastal areas of Syria, Lebanon,

and other hot spots locations in Morocco, Egypt,

and Ethiopia. ICARDA faba bean breeding pro-

gram uses these locations for evaluating its

breeding materials and germplasm accessions
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(Hanounik and Maliha 1986). When disease

development is hampered by unfavorable

weather conditions, artificial inoculations

(4�5 � 105 spores/ml) are done using mixtures

of aggressive isolates, and high RH is created

using sprinkler irrigation. In addition, spores of

B. fabae can be mixed homogenously with sand,

and infected straws can be applied one or more

times at the vegetative stage of the crop

(Villegas-Fernández et al. 2012).

Seedlings and detached leaves are used to

screen faba bean germplasm accessions and

breeding lines under controlled conditions. In

the detached leaf technique, fully expanded

leaflets of similar physiological age from the

eighth node position are laid flat on a moistened

filter paper kept on sterile benches. The cut end

of each leaflet petiole is covered with moistened

cotton to maintain leaves at maximum turgor.

The upper side of the leaves is inoculated with

one droplet on each half of each leaflet (5 � 105

spores/ml). Benches are covered with polythene

sheets and incubated at room temperature

(20 � 2 �C) for 5–6 days. Petri dish (15 � 15

cm) containing water-agar (0.4 %) medium can

also be used to screen genotypes using fully

expanded leaves (Tivoli et al. 1986; Bouhassan

et al. 2004).

10.2.2.2 Ascochyta Blight
Ascochyta blight development is initiated by

spraying conidial suspension of A. fabae

(1–2 � 105 spores/ml) every 2 weeks and by

spreading infested barley seeds (10 g/m2) or

infected faba bean seeds and infected straw

immediately at planting or after seedling emer-

gence (Maurin and Tivoli 1992; Sillero et al.

2001; Rubiales et al. 2012, 2013). Artificial inocu-

lation is done using knapsack sprayer after sunset

in order to take advantage of the darkness and high

RH in the night to ensure high and uniform

infections. Relative humidity can be increased

through sprinkler irrigation several times a day.

Susceptible and resistant check entries are planted

after every two to six test entries.

Under controlled conditions, seedlings are

inoculated by spraying spore suspension

(5 � 105 spores/ml) and incubated for 24–48

h in darkness with 100 % RH and kept at 20 �C

with a 12–14/10–12 h photoperiod regime in a

growth chamber (Hanounik and Robertson 1989;

Avila et al. 2004). In a detached leaf technique,

young leaves (one to three from the top of the

plant) are inoculated with a spore suspension

(5 � 104 spores/ml) and maintained in good

conditions for more than 10 days for symptoms

development and disease scoring (Kohpina

et al. 2000).

10.2.2.3 Cercospora Leaf Spot
Phenotyping methods for screening against

Cercospora leaf blight disease under field and

controlled conditions have been developed

in Australia (Kimber and Paull 2011). Natural

disease epidemics developed from primary

inoculum existing under field condition from

straws left from previous seasons are used to

screen faba bean genetic resources. For screening

under controlled conditions, spores and/or

mycelia fragments (105 spores or fragments/ml)

from different isolates are mixed, and faba

bean seedlings at the four-leaf nodes stage

are inoculated until runoff. High RH is

maintained using overhead ultrafine misting for

30 s every 2 h and kept at 18 �C (Kimber and

Paull 2011).

10.2.3 Lentil

Lentil is affected by Ascochyta blight (D. lentis),

BGM (B. cinerea), anthracnose (Colletotrichum
truncatum), rust (U. vicia-fabae), Stemphylium

blight (Stemphylium botryosum), and downy mil-

dew (Peronospora viciae). Various approaches

are used to phenotype germplasm against these

diseases in order to identify resistant donors for

improving the host plant resistance in lentil.

10.2.3.1 Ascochyta Blight
Ascochyta blight screening nurseries are planted

in hot spot areas where environmental conditions

are conducive and inoculum sources are present

for disease development. Disease development

can be further increased using spreader rows

throughout disease nurseries that act as the sec-

ondary source of inoculum. Moreover, infected

straws and infested lentil seeds as well as spore
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suspension can be sprayed in the disease screen-

ing fields to initiate disease foci (Ahmed and

Morrall 1996), and stubble may be spread over

the test site to initiate disease epidemics. Differ-

ent researchers used different spore loads of

D. lentis ranging from 5 � 104 (Singh

et al. 1982) to 2–5 � 105 spores/ml (Ahmed

andMorrall 1996; Tar’an et al. 2003) to inoculate

lentil seedlings under controlled conditions. Ten-

day-old seedlings can be inoculated with

2 � 105 spores/ml until runoff can be incubated

for 48 h under a growth chamber at 20 �C under

100 % RH.

10.2.3.2 Anthracnose
Field screening for anthracnose resistance

depends on use of spore suspensions, spreading

infected residue from the previous cropping sea-

son and sterilized wheat grains (10 g m2 every

2 weeks) colonized with the pathogen

(Buchwaldt et al. 2003). For field inoculation of

lentil at the late vegetative or early flowering

stage, with spore suspension (4 � 104 spores/

ml), plots are first saturated with water to increase

relative humidity. Inoculated plots are covered

with polyethylene sheets overnight to maintain

high relative humidity (Buchwaldt et al. 2003).

For greenhouse screenings, breeding lines

along with susceptible and resistant checks

grown in pots (six to eight seeds/pot) are

inoculated with single isolate spore suspensions

(105spores/ml) at 10th–12th node stage or early

flowering stage and incubated for 24 h at 100 %

RH (Buchwaldt et al. 2003; Tar’an et al. 2003;

Tullu et al. 2003). After incubation, seedlings are

transferred to a greenhouse maintained at

20–24/15–19 �C day/night temperature regime

(Buchwaldt et al. 2013; Shaikh et al. 2013).

10.2.3.3 Botrytis Gray Mold
Screening for BGM resistance is conducted in

field nurseries inoculated with spore suspensions

(3 � 105 spores/ml) or by spreading infected

stubble or planting nurseries after faba bean or

lentil crop to get natural inoculum (Davidson

et al. 2004; Lindbeck et al. 2008). To favor

disease development, high seeding rate

(Lindbeck et al. 2008) and sprinkler irrigation

are recommended.

For screening under controlled conditions,

high RH and temperatures at least 20 �C and

inoculation with spore suspension (104 spores/

ml) are optimal conditions for good disease

development. Initiation of disease development

after disease infection is greatly aggravated by

the presence of senescent leaves within 2 days

from the inoculation to sporulation on the test

entries and checks.

10.2.3.4 Stemphylium Blight
The prevalence of moderate to warm

temperatures (25–30 �C) and high RH favor dis-

ease development. These conditions prevail nat-

urally in Northeastern India and west-central

Bangladesh and, hence, suitable for field screen-

ing against Stemphylium blight. Currently, field

screenings are mainly done in Canada

(Saskatchewan) and Bangladesh where disease

development is very high during most cropping

seasons (Podder et al. 2013). For screening under

controlled conditions, optimum sporulation is

initiated by incubating the pathogen for 7–10

days at 27 �C under cool fluorescent light and

16/8 h light regime. Three-week-old whole lentil

plants can be inoculated at 25–30 �C with a leaf

wetness period of 48 h (Mwakutuya and Banniza

2010).

10.2.4 Field Pea

The major foliar diseases of field pea are

Ascochyta blight complex (Didymella spp. and

Phoma medicaginis var. pinodella), powdery

mildew (Erysiphe pisi), downy mildew

(Peronospora viciae f. sp. pisi), and rust

(U. vicia-fabae and U. pisi). Ascochyta blight is

the most common disease in field pea in many

countries and is caused by a complex of

pathogens. Didymella pinodes and D. pisi are

considered to be the primary pathogens in

Ascochyta blight disease complex (Davidson

et al. 2011).
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10.2.4.1 Ascochyta Blight Complex
Many researchers use infected pea stubble,

spreading of barley or sugar beet grains infected

with various isolates or allow a natural epidemic

in hot spot areas for field screening against

Ascochyta blights in field pea. Alternatively,

spore suspensions of mixed isolates collected

from different areas are sprayed for disease

development.

Detached leaflets and stipules screening

techniques are mostly used for phenotyping

under the controlled conditions. Heath and

Wood (1969) proposed such method of screening

where short stem segments with attached stipules

from third to fourth nodes are floated lower sur-

face down on tap water in a compartmented

square Petri dish (12 cm). Inoculation with a

drop of 10 ml of spore suspension is done on

the upper surface of the stipules, avoiding the

main veins. To avoid drop evaporation, Petri

dishes are placed into large transparent plastic

boxes. Inoculated-detached stipules are

incubated in a growth chamber for an initial

period of 18 h in the dark followed by 7 days

with 14/10 h light regime at 20 �C (Onfroy

et al. 2007).

10.3 Phenotyping for Other
Diseases of Cool-Season
Food Legumes

10.3.1 Rust (Uromyces spp.)

Rust can cause up to 100 % yield loss on lentil

when environmental conditions are conducive

for disease development. Uromyces vicia-fabae
affects lentil, faba bean, grass pea, and field pea.

Field pea is also affected by U. pisi

(a heteroecious pathogen), while U. ciceri-
arietini affects chickpea. Rusts can be one of

the threats of food legumes under climate change

in many countries where the diseases are

reported to be sporadic. Hence, there is a need

to do anticipatory chickpea breeding for rust

resistance in some countries. The best way to

phenotype against rust (U. vicia-fabae) in lentil,

faba bean, and field pea is to test the germplasm

in hot spot areas. Many locations in Morocco,

Ethiopia, India, Bangladesh, and Egypt have

been identified as hot spots to screen for rust

resistance. In India, field pea rust screening is

done by planting germplasm in November to

favor disease development, and plants are

maintained in the vegetative phase by bud clip-

ping. Further, spreader rows are planted after

every ten test entries as well as around the dis-

ease plots for the epidemic development of

disease. Spore suspension (104 spores/ml) can

be applied to supplement natural inoculum and

later irrigate the field to maintain adequate

humidity for rust development (Chand et al.

2006; Rai et al. 2011). In Spain, field pea breed-

ing lines are planted in hot spot areas for U. pisi

infection and disease development and aug-

mented by spraying an aqueous spore suspension

(6 � 104 spores/ml) from a bulk pathogen popu-

lation collected from different areas (Barilli

et al. 2009a, b). Sprinkler irrigation can be used

to increase RH to create a more favorable envi-

ronment for rust infection.

Similarly, rust screening in chickpea is also

done in hot spot areas. For example, in Ethiopia,

chickpea rust appears during rainy season

(February–April), and, therefore, field screening

for rust can be done during this period under

natural infection. In order to augment natural

disease development, disease nurseries can be

inoculated by spraying with an aqueous spore

suspension (200 mg spores/l) after sunset to

benefit from the darkness and high RH at night.

For screening against chickpea rust in growth

chamber, seedlings at the fourth leaf stage are

inoculated by dusting freshly collected rust

spores (2 mg spores/plant) diluted by mixing

with pure talc of single spore or bulk population

of the pathogen and incubated for 24 h at 20 �C in

complete darkness at 100 % RH. After this,

seedlings are moved to a growth chamber at

20 �C with a 13–14/10–11 h light regime (Sillero

et al. 2012). Stuteville et al. (2010) inoculated

seedlings of chickpea and other legume species

by spraying freshly collected urediniospores of

U. ciceri-arietini at a rate of 100 mg/100 ml

distilled water containing two drops of Tween

20 until runoff and immediately enclosed
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seedlings in plastic boxes to maintain near 100 %

RH. The boxes are placed in darkness at 20 �C in

a growth chamber for 24 h and incubated growth

chamber or plastic house with 16/14 h light

regime at 25 �C. In field pea, seedlings (three to

four fully expanded leaves stages) are inoculated

by dusting freshly collected urediniospores

(0.5–2 mg spores/plant) mixed with pure talcum

powder using single spore or bulk spores of dif-

ferent isolates. Inoculated seedlings were

incubated at 100 % RH at 20 �C in darkness for

24 h under 14/10 h light regime (Emeran

et al. 2005). Herath et al. (2001) proposed

detached leaf technique for screening rust resis-

tance genotypes in faba bean. In this technique,

detached leaflets are carefully laid, adaxial sur-

face up, in Petri dishes with moistened tissue

paper with distilled water containing benzimid-

azole (1 %) and then inoculated with spore

suspension.

10.3.2 Powdery Mildew (Erysiphe pisi)

This is one of the most serious diseases of field

pea. Screening of germplasm of cool-season food

legumes is taken up in fields where powdery

mildew is a recurrent problem. Infector rows

of susceptible checks are planted to ensure

uniform spread of the disease. To augment natu-

ral disease development, artificial inoculation is

recommended by tapping conidia from heavily

infected plant parts. Genetic resources showing

resistance for two seasons in field screening can

be retested under artificial conditions against

prevalent pathogen populations. In Ethiopia and

India, field pea screening against powdery mil-

dew is done under natural epidemics (Fikere

et al. 2010; Rana et al. 2013). Similar screening

is also done for this disease in grass pea. How-

ever, highly susceptible field pea varieties are

used around the screening plots in order to spread

the disease (Vaz Patto et al. 2006).

Under controlled conditions, seedlings and

detached leaves are used by many researchers

to identify powdery mildew resistance in field

pea and grass pea. In grass pea, seedlings are

evaluated in growth chamber where disease

spreads from inoculated susceptible field pea

cultivars planted around the pots. In detached

leaf technique, cut leaves are placed in Petri

dishes on filter paper or sheets of cotton,

containing a solution of 5 % of sucrose or float-

ing them on this solution or on tap water (Smith

et al. 1996; Banyal and Tyagi 1997; Viljanen-

Rollinson et al. 1998; Rana et al. 2013).

10.3.3 Downy Mildew

Several methods have been developed to pheno-

type field pea germplasm against downy mildew

under controlled conditions (Ryan 1971;

Stegmark 1991). Soil infested with oospores is

mixed in field above the seeds. Germinated seeds

are soaked in a conidial mixture, and conidial

spores are also sprayed onto seedlings. In order

to induce sporulation, plants are placed in high

RH (100 %), either by covering with polyethyl-

ene sheets and misting with water or by placing

plants in a moist chamber at 12–15 �C for 24 h.

Automization of conidial suspension (2 � 104 to

5 � 105spores/ml) on 3–4-week-old field pea

seedlings is generally preferred (Thomas and

Kenyon 2004). After inoculation, seedlings are

kept under high RH for 24–48 h and then at

16–20 �C for 7–20 days, after which high RH is

again maintained to induce sporulation (Gill and

Davidson 2005). Systemic downy mildew infec-

tion is developed by inoculating 7-day-old

seedlings with four droplets (1 � 106 spores/

ml) of conidial mixture of pathogen on the apical

buds. These seedlings are then incubated for 4

days at 4 �C in high RH and after this, kept for 17

days at 12 �C/4 �C day/night temperature cycles.

Subsequently, low temperature and high humid-

ity are reapplied for 48 h in order to stimulate

sporulation (Davidson et al. 2004). In case of

faba bean, seedlings (four to five leaf stages)

are inoculated with P. viciae conidial suspension

(1 � 104 spores/ml). These inoculated seedlings

are enclosed in black polythene bags for 48 h at

10 �C after inoculation. After this, the seedlings

are reopened from bags, but temperature is still

maintained at 10 �C for 14–18 days and enclosed

in bags again for further 48 h in order to promote
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sporulation (Thomas and Camps 1997). In Syria,

high levels of down mildew infection occur

among the genotypes planted early (November)

under zero tillage conditions. These conditions

can be used for phenotyping lentil genotypes

against downy mildew disease in the future

(Ahmed and Morrall 2012).

10.4 Screening Techniques for Soil-
Borne Fungal Diseases

Many soil-borne pathogenic fungi causing wilt/

root rot complex affect the cool-season food

legumes leading to seed rotting as well as seed-

ling and adult plant mortality. Therefore, both

field and artificial screening techniques have

been developed against major soil-borne

diseases, especially wilt and root rots.

10.4.1 Fusarium Wilts

Field screening against Fusarium wilt is taken up

in sick plots developed by repeated planting of

susceptible genotypes (Nene et al. 1981; Kraft

et al. 1994; Infantino et al. 2006). Wilt-sick plots

for chickpea have been developed and widely

used in different international institutes

(ICARDA, ICRISAT) and countries including

India, Tunisia, Sudan, Ethiopia, and Spain.

Chickpea germplasm is planted in 2–4 m rows

(20–40 seeds/row) with susceptible genotypes

planted after every two to four test entries in

two replications. The putative wilt resistant

germplasm selected in the first year are

reevaluated in the second season to confirm

their resistance. For lentil, Fusarium wilt

(F. oxysporum f. sp. lentis) sick plots have been

developed at ICARDA, India, Ethiopia, and

Sudan. Lentil test entries are planted in rows of

2–4 m length (25–50 seeds/row) alternating with

appropriate susceptible checks after every two to

four test entries at ICARDA. It is important to

consider sowing a highly resistant line after

every tenth row (Bayaa et al. 1997). For field

pea, Fusarium wilt (F. oxysporum f. sp. pisi)

sick plot is established at Washington State

University, Spillman Research Farm near Pull-

man, WA, by depositing infested soil with the

pathogen, and genetic materials are sown in sin-

gle rows, 1.5 m long with a susceptible check at

regular intervals to monitor disease uniformity.

For artificial screening against Fusarium wilt,

chickpea and lentil test entries are planted in

pots filled with infested soil with target

pathogens, or roots of seedlings grown on sand

are dipped in known spore suspension and

planted in pots filled with sterilized soil (Nene

and Haware 1980; Kraft et al. 1994; Sharma

et al. 2005; Infantino et al. 2006). In field pea,

7-day-old seedlings are inoculated after roots

are trimmed and immersed for 5 min in a spore

suspension (5 � 106 spores/ml) of F. oxysporum

f. sp. pisi and incubated in a controlled environ-

mental condition (Bani et al. 2012) under a 16/8

h light regime at 26 � 2 �C. Selected breeding

materials are reevaluated following the same

procedure described above.

10.4.2 Root Rots

Root rots of cool-season food legumes are caused

by many pathogenic fungi, and only selected

screening techniques for those diseases where

host plant resistance have been found useful are

reviewed. Sick plots to screen faba bean against

Fusarium root rot (F. solani) have been devel-

oped in Ethiopia and Sudan where the disease is

very important under waterlogged conditions in

black soil. Breeding lines and germplasm

accessions are planted with susceptible checks

after every two to four test entries. Field screen-

ing of chickpea for Phytophthora root rot resis-

tance (Phytophthora megasperma f. sp.

medicaginis (Pmm)) is done in highly infested

plots, and in some conditions, disease pressure is

increased by inoculating aggressive mixtures of

Pmm isolates collected from different areas

(Brinsmead et al. 1985; Du et al. 2013).

Aphanomyces root rot sick plot is developed to

increase the level of resistance in field pea in the

USA, France, and New Zealand. In Canada, field

pea screening against Fusarium root rot

(F. solani f. sp. pisi) is done by multiplying the
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pathogen on sterilized wheat grains at 25 �C for 3

weeks, drying and mixing 10 g of inoculum with

15 seeds of test genotypes, and planting in a

single row of 1 m length in the field (Feng

et al. 2011).

Under controlled conditions, chickpea genetic

resources can be screened against dry root rot

(Rhizoctonia bataticola) by growing test entries

with susceptible check for 7 days in sterilized

sand. After this, seedlings are uprooted and

inoculated by macerated fungal mass for 1 min.

Inoculated seedlings are placed in folded, moist

blotting paper with the shoots left outside, then

incubated at 35 �C with 12/12 h photoperiod

(Pande et al. 2006). For Phytophthora root rot,

chickpea seedlings are grown in a glasshouse

under 27/23 �C day/night temperature at 12/12

h light regime and flooded by keeping the pots

inside watertight pots filled to the level of the soil

surface with water at 17 days of sowing

(Du et al. 2013). Seedlings are inoculated with

40 ml of zoospore of Pmm suspension produced

from 10-day-old cultures poured evenly around

the base of the plants, and saturated soil

conditions are maintained for 7 days.

10.5 Phenotyping for Parasitic
Weeds

Cool-season food legumes suffer from parasitic

weeds (Orobanche and Phelipanche spp.) in the

Mediterranean regions. As a result, faba bean

acreage and production have declined over

years, and now these weeds are spreading in

Ethiopia and Sudan. Field dodder (Cuscuta

spp.) is also reported on chickpea in Syria, Israel,

the USA, and Uzbekistan. Efforts have been

made to develop resistant/tolerant varieties

mainly in faba bean to these parasitic weeds.

Uniform distribution of the parasite weed seeds

in the soil in order to prevent escapes is required

for phenotyping against these weeds in field.

Thus, highly infested plots are used to select

potentially resistant genotypes. For small-scale

screening, plots can be artificially infested by

mixing parasitic weed seeds with sand and apply-

ing them along the rows at sowing time. It is

recommended that each test entry should be

surrounded by rows of a susceptible check as a

reference. This has been successfully applied in

faba bean breeding program at ICARDA using a

highly infested plot with O. crenata (Maalouf

et al. 2011). Similar technique has also been

followed recently in lentil for screening wild

relatives against parasitic weeds. Field

screenings reported on chickpea using highly

infested fields have been successfully used to

identify some resistance source against field dod-

der (Goldwasser et al. 2012).

Several methodologies (substrate, pot size,

etc.) are developed and used to screen cool-

season food legumes for parasitic weed resis-

tance under controlled conditions. The

phenotyping against such parasitic weeds

requires substrates that allow good plant growth

and broomrape infection. These substrates can be

easily washed from the roots and facilitate obser-

vation of parasite development. Linke

et al. (1991) suggested the use of pots mixed

with 7,500 (about 30 mg) seeds/kg substrate to

screen chickpea for broomrape resistance. The

use of Petri dishes is suggested by Sauerborn

et al. (1987) for mass screenings of grain and

model legumes under controlled conditions. Sub-

sequently, many researchers used this method

with modifications (Sillero et al. 2001;

Rodrı́guez-Conde et al. 2004; Pérez-de-Luque

et al. 2005). The mini-rhizotron technique can

be used to screen a small number of breeding

lines against Orobanche and Phelipanche spp.

(Fernández-Aparicio et al. 2012).

For screening of faba bean using the mini-

rhizotron, seeds of parasitic weeds are surface

sterilized with formaldehyde 0.2 % and 0.02 %

of Tween 20, rinsed thoroughly with sterile dis-

tilled water and dried for 1 h in a laminar air flow

over glass-fiber filter paper (GFFP, Whatman

GF/A) at a density of 50 seeds/cm2. Thirty

GFFPs are individually placed over a square

Petri dish filled with sterile perlite moistened

with sterile distilled water. Petri dishes are

placed in the dark at 20 �C for 11 days. Suscepti-

ble faba bean genotype is surface sterilized with

2 % sodium hypochlorite solution for 5 min and

then rinsed thoroughly with sterile distilled water
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and germinated in Petri dishes with moistened

filter papers placed for 4 days in a growth cham-

ber under dark warm (20 �C) conditions.

Seedlings are transferred individually to GFFP

sheets and placed into the Petri dishes, punctured

on the top so that plant foliage can develop out-

side of the dish. Petri dishes are sealed with

parafilm, wrapped in aluminum foil, and stored

vertically in a growth chamber (20 �C and 12/12

h light regime). Seedlings are supplied with

modified Hoagland’s nutrient solution at

one-quarter strength (30 ml/dish) twice per

week (Fernández-Aparicio et al. 2012). After 7

days, the GFFP is replaced by another GFFP

containing the conditioned parasitic seeds

allowing the intimate contact of parasitic seeds

with the root exudates.

Chickpea screening for dodder resistance

under controlled condition is done by removing

seeds from matured dry field dodder plants,

air-dried, threshed, cleaned and stored at 4 �C
until use. Before sowing, dodder seeds are

scarified by soaking in sulfuric acid for 1 h;

washed and air -dried. Chickpea seeds are sown

in 15-cm-diameter pots and placed in a heated

glasshouse (10 �C min and 30 �C max

temperatures). Inoculation of dodder seeds is

performed by placing about 50 seeds around

each chickpea plant stem at 0.5 cm depth

(Goldwasser et al. 2012).

10.6 Parasitic Nematodes

Parasitic nematodes (Heterodera, Pratylenchus,

Meloidogyne, and Ditylenchus spp.) are key pro-

duction problems in cool-season food legumes in

different countries (Sharma et al. 1994; Castillo

et al. 2008). Field screening against parasitic

nematodes is done using sick plots. For example,

chickpea germplasm is screened for cyst nema-

tode (H. ciceri) resistance in sick plot developed

at ICARDA, Syria. Faba bean screening against

stem nematode (D. dipsaci) is done by mixing

infected stems with soil, and after 2 weeks, the

infested soil is diluted with a nematode-free soil

until a population density of about 300 larvae per

1,000 cm3 soil is obtained. Seeds are sown in

rows 1 m long and 50 cm apart. A susceptible

cultivar row is planted after every five test rows.

All seeds are covered with infested soil to a depth

of 15 cm. Screening chickpea germplasm against

root-knot nematodes (Meloidogyne spp.) is done

on naturally infested fields which is enhanced by

growing susceptible cultivars, and then test

entries are sown in 2–4 m rows together with

highly susceptible genotypes after every ten test

entries (Sharma et al. 1994). To screen chickpea

genetic materials for resistance to root-lesion

nematodes, planting is done in highly infested

soil with Pratylenchus spp. and/or can be aug-

mented with artificial inoculations (Thompson

et al. 2011).

In controlled screening for cyst nematodes

(H. ciceri), the nematodes are reared in suscepti-

ble chickpea genotype under greenhouse condi-

tion, extracted, dried under shade, and mixed

with sterilized sand to give 4,000–6,000 eggs/g

of soil (Di Vito et al. 1996). The test entries are

planted in pots (four plants/pot) filled with

steam-sterilized soil artificially infested with

20 or more eggs and juveniles/g and incubated

in a greenhouse at 20 � 5 �C. For stem nematode

screening, inoculum is multiplied on susceptible

faba bean cultivars or on callus tissue and

extracted with the incubation or centrifuge

methods. Five-day-old faba bean seedlings are

transplanted into glass tubes or in small pots

filled with organic sterilized compost, and after

a week, seedlings are inoculated with the nema-

tode suspension in the leaf axil and incubated at

15–20 �C in a growth chamber. High RH is

required for several days to favor nematode

infection. For root-knot nematodes, chickpea

seedlings are planted in infested soil in pots,

and 5–10 day old seedlings are inoculated with

5,000–10,000 eggs/plant by pouring the egg sus-

pension into four (3–5-cm-deep) holes around

the stem base. After inoculation, pots are

irrigated lightly to assure survival and even dis-

tribution of the nematode inoculum and kept at

25 � 5 �C in a greenhouse (Sharma et al. 1994).
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10.7 Multilocation Testing
for Resistance

The evaluation of genetic resources in multiloca-

tion testing is a common phenotyping strategy in

almost all national and international breeding

programs to expose breeding materials to wide

ranges of pathogen and parasitic weed

populations. ICARDA evaluates its germplasm

in different regions through its International Dis-

ease and Parasitic Weed Nurseries platform.

These nurseries are sent to hot spot areas where

diseases and parasitic weeds are the key produc-

tion constraints appearing every cropping

seasons in epidemic proportions. Recent multilo-

cation testing of faba bean and chickpea against

Ascochyta blights (Rubiales et al. 2012; Pande

et al. 2013), chickpea against BGM (Sharma

et al. 2013), and faba bean against parasitic

weeds (Maalouf et al. 2011) were able to identify

genetic resources with good levels of resistance

across locations.

10.8 Challenges and Opportunities
for Phenotyping to Resistance
Breeding

Conventional phenotyping techniques will con-

tinue to play a vital role in developing germ-

plasm pools resistant to key biotic constraints.

Nevertheless, there are several limitations of

using conventional phenotyping techniques

against diseases under field and controlled

conditions. Firstly, field screening techniques

require time and space. The variations in patho-

gen populations lead to variable results. Environ-

mental conditions and disease measurements

also affect the observations taken on diseases.

Secondly, screening under controlled conditions

is not standardized, and replications across dif-

ferent labs do not always give similar results.

Thirdly, resistance against most diseases is quan-

titatively inherited, and hence, phenotyping is a

big challenge both under field and controlled

conditions. Fourthly, assessments of diseases,

nematodes, and parasitic weeds are largely

based on visual scoring that consumes time and

can generate bias results among different raters

and experimental repeats (Poland and Nelson

2011). Finally, weak correlations of seedling

and adult plant resistance as well as different

disease measurements do not always give accept-

able results. Moreover, phenotyping for multiple

resistances is still a daunting task for breeders

and plant pathologists (Nene 1988). In most

cases, screening for multiple resistances is done

by exposing similar genetic resources for indi-

vidual diseases. In soil-borne diseases, some

achievements have been made for wilt/roots

complex in chickpea and lentil.

The constraints of field phenotyping have

driven intense interest over the past decades to

overcome the above key challenges. Therefore,

the evolution of molecular technologies (Torres

et al. 2006; Gaur et al. 2012; Kumar et al. 2012;

Varshney et al. 2012; see Chap. 18) and remote

sensing technologies (see Chap. 14) has opened

new opportunities for phenotyping against the

diseases. Compared to genotyping, modern

phenotyping technologies (Scholes and Rolfe

2009; White et al. 2012) have limited

applications in plant resistance breeding. In this

scenario, the modern phenotyping techniques

based on imaging which have been discussed in

details in Chap. 5 can play a key role to identify

quantitatively inherited traits (Rousseau

et al. 2013). The use of new phenotyping

methods has been successfully applied in sugar

beet to identify resistant lines against Cercospora

leaf spot (Chaerle et al. 2007), Fusarium wilt in

cotton, and aphid resistance in Arabidopsis

thaliana (Chen et al. 2011). The field-based

phenotyping platforms for some host-pathogen

systems and phenomic projects (Furbank 2009;

Furbank and Tester 2012; Houle et al. 2010) will

help in the future for phenotyping against

diseases.
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Advances in Phenotyping of Functional
Traits 11
Charles Y. Chen, Christopher L. Butts, Phat M. Dang,
and Ming Li Wang

Abstract

Phenotyping is analyzing a plant’s phenotype and providing a critical

means to understand morphological, biochemical, and physiological

principles in the control of basic plant functions as well as to select

superior genotypes in plant breeding. Besides well-known classical plant

phenotyping procedures based on visual observations, measurements, or

biochemical analyses, many recent developments are target specific and

highly automated analysis procedures. Automated phenotyping

approaches are far more successful at the laboratory and greenhouse

scale than in field conditions where many other variable factors compli-

cate the retrieval of imaging data collected in the field. With respect to

plant breeding, rapid measurement procedures, a high throughput, a high

degree of automation, and an access to appropriate, well-conceived

databases are required to depict the performance of certain genotypes in

the field. This chapter will focus on destructive, nondestructive, and

automated techniques available to quantify plant morphological and bio-

mass traits, root system architecture, physiological functional traits, bio-

chemical quality and nutritional compositions, and postharvest

characteristics.

11.1 Introduction

In plants, functional traits are morphological,

biochemical, physiological, structural, phenolog-

ical, or behavioral characteristics that are

expressed in phenotypes of individual plants,

which have relevance to the plant’s function

playing ecosystem roles or affect their perfor-

mance. By themselves, functional traits govern

the organism’s effects on ecosystem processes

referring to effect traits and/or its response to
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the physical and biotic environment pressures

called response traits (Violle et al. 2007). Plant

phenotyping attempts to quantify functional

traits that involve plant quality, photosynthesis,

development, architecture, growth, and biomass

productivity of single plants using different ana-

lytical procedures. Phenotyping provides a criti-

cal means to understand morphological,

biochemical, and physiological principles in the

control of basic plant functions as well as to

select superior genotypes in plant breeding.

Besides well-known classical plant phenotyping

procedures based on visual observations,

measurements, or biochemical analyses, many

recently developed analytical methods are target

specific and are highly automated. The techno-

logical developments for laboratory or

greenhouse-based phenotyping have been dra-

matically improved, complemented by other

techniques, and brought to a platform of high

throughput. Automated phenotyping approaches

are far more successful at the laboratory and

greenhouse scale than in field conditions where

many other variable factors complicate the

retrieval of imaging data collected in the field.

With respect to plant breeding, rapid measure-

ment procedures, a high throughput, a high

degree of automation, and an access to appropri-

ate, well-conceived databases are required to

depict the performance of certain genotypes in

the field. This chapter will focus on destructive,

nondestructive, and automated techniques avail-

able to quantify plant morphological and biomass

traits, root system architecture, physiological

functional traits, biochemical quality and

nutritional compositions, and postharvest

characteristics.

11.2 Plant Morphology and Biomass
Traits

Phenotypic evaluation of crop genotypes such as

breeding lines, germplasm accessions, and

mapping populations is a fundamentally impor-

tant procedure for plant breeding and genetic

research. The widest application of advanced

phenotyping is to determine morphological

characters such as plant height, total leaf area,

leaf number, or canopy width and shape from

images taken of individual plants using platforms

that combine robotics and image analysis with

controlled environment systems (Arvidsson

et al. 2011) or with field-based phenotyping

(FBP) (White et al. 2012).

The use of greenhouses and controlled

environments to represent field environments

for certain targeted applications has proven ben-

eficial in rice research (Reuzeau et al. 2005; De

Wolf et al. 2008). Automated greenhouses, in

which plants are grown and analyzed automati-

cally using images taken at regular intervals, are

the basis for high-throughput phenotyping. In

these approaches, single plants are usually

analyzed in a static context, in which a range of

plant genotypes are exposed in a given set of

environmental conditions such as water avail-

ability, continuous lighting, and temperature

conditions. Various fully automatic high-

throughput plant growth and phenotyping

platforms have been developed. The French

National Institute for Agricultural Research

(INRA) uses an automated platform

(PHENOPSIS; Optimalog, Saint-Cyr-sur-Loire,

France) to phenotype plant responses to soil

water deficit in Arabidopsis thaliana for the iden-

tification of an accession with low sensitivity to

soil water deficit (Granier et al. 2006). Similar to

PHENOPSIS, an in-house system,

GROWSCREEN, was designed for rapid optical

phenotyping of different plant species by

quantifying the dynamics of seedling growth

acclimation in response to altered light

conditions. The Research Center Jülich adopted

GROWSCREEN to analyze phenotypes of dif-

ferent plant species (Walter et al. 2007). Both

PHENOPSIS and GROWSCREEN use a camera

which is moved over the plants. The high-

throughput platform that enables large-scale

phenotyping of plants in a fully automatic fash-

ion (TraitMill™; CropDesign, Zwijnaarde,

Belgium) has been used to identify yield-

enhancement genes for the transgenesis and

plant evaluation in rice (Oryza sativa L.)

(Reuzeau et al. 2005). Quantitative, nondestruc-

tive analysis systems have been developed using
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multiple three-dimensional camera units to

record multispectral images of plants to provide

a diversity of phenotyping information for multi-

ple crops or model plant systems in fully

automated greenhouses (Scanalyzer 3D;

LemnaTec GmbH, Aachen, Germany). The sys-

tem captures images in wavelengths from far

infrared to ultraviolet (Fig. 11.1). This system is

used in several laboratories around the world,

such as the Australian Centre for Plant Func-

tional Genomics (ACPFG) in Adelaide,

Australia; the Leibniz Institute of Plant Genetics

and Crop Plant Research (IPK) in Gatersleben;

Agrobios, Italy; KeyGene, the Netherlands;

Bayer CropScience, Belgium; DuPont Pioneer,

USA; and BASF, USA. The system called “The

Plant Accelerator” is a facility for Australian

plant scientists, built around the LemnaTec

(2013) Scanalyzer 3D platform in ACPFG in

Australia. It consists of four Smarthouses™,

fully climate-controlled greenhouses equipped

with computer-controlled conveyor belts carry-

ing up to 600 plants per room. Plants are grown

in individual carts situated on a conveyor system.

Each carrier is labeled with a radio frequency

identification (RFID) for full traceability of that

plant and the corresponding data throughout the

course of an experiment. RFID can be used to

control watering and nutrient supplementation

for single plants. Besides managing plant move-

ment and tracking, the conveyor system can

automatically rotate plant locations throughout

an experiment to reduce possible positional

effects. Each Smarthouse is connected to one of

the two imaging cabinets. There are five imaging

chambers within each of the two imaging

cabinets. Cameras in these chambers collect top

and two orthogonal side view images of plants at

multiple wavelengths and modes, including far

infrared and visible reflectance and UV fluores-

cence, providing a diversity of phenotype infor-

mation. Cameras capture images in the visible

spectrum to quantify the overall plant skeleton

analysis which is the key to growth dynamics,

morphology, and architecture such as separation

of stem and leaves, information about nodes,

length of leaves, plant color classification—key

to plant health—stress, nutrients and senescence,

shoot mass, and other physical characteristics.

Near-infrared images are used to measure water

content, distribution, and dynamics in the leaves

and soil. Far-infrared imaging provides informa-

tion about leaf temperature and transpiration

rate, while UV lighting detects chlorophyll and

green fluorescent protein (GFP) fluorescence.

The throughput of each of these imaging halls is

sufficient to record data from all the plants in one

Smarthouse in a single day. An extensive amount

of data is generated by the platform, and the total

capacity in the accelerator is up to 2,400 plants

that can be phenotyped three times a week. The

data collected from the accelerator is stored in a

Fig. 11.1 View of Scanalyzer 3D platform. Image acquisition device for images in visible, near-infrared, and

ultraviolet spectra (left), greenhouse device consisting of a conveyor belt system carrying 600 plants (right) (LemnaTec

2013)
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database system for analysis by Lemna Launcher

managing all software processes.

The Plant Accelerator offers many benefits.

Among them, high throughput is considered the

most significant. With the capacity to record

dozens of parameters on up to 1,200 plants per

day, it enables the identification of rare events

that can be studied without automation technol-

ogy. Since measurements are taken in full objec-

tive and under very controlled conditions, a high

degree of accuracy and reproducibility can be

achieved with the system.

Limited greenhouse space or chamber

volumes often inhibit the ability to allow plants

to flower and set seed due to insufficient soil

volume to supply adequate nutrients and water

for normal plant growth, making it impossible to

assess normal patterns of growth. Field-based

phenotyping (FBP) has been gradually accepted

as an appropriate approach to delivering the req-

uisite throughput in terms of numbers of plants or

populations, as well as an accurate description of

trait expression in the real-world farming envi-

ronment. A recently published paper by White

et al. (2012) comprehensively reviewed field-

based phenomics for plant genetic research, in

which key criteria, experimental approaches, and

equipment and data analysis tools required for

robust, high-throughput field-based phenotyping

(FBP) were described. White et al. (2012)

pointed out that an FBP platform requires six

components: “(1) instruments for acquiring raw

data from field plots; (2) physical systems for

integrating different instruments including

providing power, data logging or transmission,

partial or complete shading, and protection from

dust, vibration, and adverse weather; (3) vehicles

for positioning the instrument rapidly and accu-

rately in a field; (4) high-throughput analytic

capabilities to complement field measurements

(e.g., of leaf or seed samples); (5) software

systems for managing and analyzing potentially

large and complex datasets; and (6) integrated

management protocols to maximize reliability

and efficiency of the phenotyping.” The

technologies that enable FBP to characterize

multiple targeted traits include photodiodes,

high-intensity light-emitting diodes (Yeh and

Chung 2009), infrared imagery using digital

cameras and accurate infrared thermometers

(IRT, French et al. 2007), stereo image analysis

(Biskup et al. 2007; Yu et al. 2007), acoustic-

based distance sensing (Ruixiu et al. 1989;

Andrade-Sanchez et al. 2012), chlorophyll fluo-

rescence meter (Kolber et al. 2005), and laser

distance sensing and near-infrared spectroscopy.

In order to rapidly and accurately position

instruments over field plots, or even individual

plants, several vehicle options used in FBP

include high-clearance tractors (Schleicher

et al. 2003; Andrade-Sanchez et al. 2012), linear

move or central pivot irrigation systems

(Kostrzewski et al. 2003; Colaizzi et al. 2003;

Haberland et al. 2010), manned fixed- and rotary-

wing aircraft (French et al. 2007), unmanned

aircraft (Hunt et al. 2005; Hakala et al. 2010),

and tethered aerostats (Jensen et al. 2007; Ritchie

et al. 2008). Each option has its strengths and

weaknesses, and the selected option should com-

plement the research objectives. For instance,

studies that require continuous measurements

over 24 h or longer periods might use cable-

suspended robots, for example, those established

at the National Institute of Standards and Tech-

nology (NIST) in the 1980s (Albus et al. 1993),

to provide an option for a vehicle that can operate

continuously over a field but in a limited area.

However, manned helicopters represent a mature

technology capable of carrying a large payload

and supplying power to an instrument system,

but cannot be used in close proximity to plants

due to rotor downwash and country-specific

administration regulations restricting the mini-

mum flying altitude. Thus, only imaging is

appropriate to resolve plots. Unmanned

helicopters are a promising alternative to manned

aircraft since they allow flying at much lower

altitudes (Berni et al. 2009; Merz and Chapman

2011). Merz and Chapman (2011) assembled an

unmanned system that carried a 2.1-kg payload

for a 30-min flight. Zarco-Tejada et al. (2009)

imaged 0.6 ha of citrus orchards using

hyperspectral and infrared cameras. Beside

vehicles for positioning instruments, the

challenges to advance FBP include a high-

throughput analysis of plant samples,
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management of data flow and analysis, and

integrated management of FBP. While all of the

six components of an FBP system are not in

place, apparently, numerous potential solutions

are ready. However, efforts to improve FBP sys-

tem cannot rely solely on plant scientists but

must be integrated across multiple disciplines.

A prototype FBP vehicle shown in Fig. 11.2

carried sensors that measured plant height, can-

opy temperature, and spectral reflectance at three

wavelengths (Andrade-Sanchez et al. 2012).

11.3 Root System Architecture

Root systems are fundamental structures for

maintaining plant health through mechanical

support and water and nutrient acquisition. Root

systems have the potential to boost or stabilize

yields under abiotic and biotic stress conditions

such as in saline, dry, and acid soils, in disease

and pest pressure, and in unsustainable fertilizer

conditions (Tester and Langridge 2010). There-

fore, breeding targets root system traits for crop

improvement, especially in challenging

environments. Root system architecture (RSA)

refers to the complex three-dimensional structure

and describes the spatial distribution of age and

root types on a single plant (Lynch 1995). RSA

differs significantly among species, even among

different genotypes of the same species, which

allow crop adaptation and exploration in diverse

environments (Fitter 2002). Generally speaking,

dicots have a relatively simple RSA, while

monocots like rice (Oryza sativa) or maize (Zea

mays) have a more complicated RSA

(Hochholdinger and Tuberosa 2009). The growth

stage is another factor that shapes RSA; the

younger plants have less complex root systems,

but as plants mature, their root systems become

correspondingly more complicated. Modification

of root system architecture (RSA) could result in

improvements of desirable agronomic traits such

as yield, drought tolerance, and resistance to

nutrient deficiencies (Beebe et al. 2006; Steele

et al. 2007).

Traditional methods of phenotyping RSA

were excavation or washed soil cores where one

can estimate the total root length, root volume,

and average root width of the entire root system

(Ostonen et al. 2007). Other common

measurements involve measuring the root sur-

face exposed on a soil core or pressed against a

transparent surface to estimate root coverage at a

certain soil horizon. In both cases, the damage of

the topology of the root system and small

Fig. 11.2 High-clearance prototype FBP tractor in operation over young cotton plants at Maricopa, AZ, for measure-

ment of canopy height, temperature, and spectral reflectance at three bandwidths (White et al. 2012)
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numbers of basic measurements can dramatically

contribute to the source of bias. In recent years,

several newer techniques have been used to non-

destructively image root systems to avoid these

problems. X-ray computed tomography (Perret

et al. 2007) can observe roots grown in soil, but

the limitation of X-ray CT system, besides cost,

imaging time, and resolution, is the attenuation

coefficient, which is typically similar for root and

other nonspecific soil organic matters. Perret

et al. (2007) developed a protocol for nondestruc-

tive visualization and quantification of roots for

relatively large soil core using computed tomog-

raphy (CT) and computer software developed to

isolate and analyze the CT matrices. This nonde-

structive approach revealed details that are not

possible to obtain with invasive techniques.

Magnetic resonance imaging (MRI) techniques

apply the phenomenon of nuclear magnetic

resonance (NMR) to image protons of water to

convey 3D structural information in a nonde-

structive manner (Jahnke et al. 2009). Due to

the sensitivity of MRI to the soil water content,

the resulting image distortion increases the diffi-

culty in analyzing the underground root system

compared to using MRI to image the above-

ground parts. NMR is also very sensitive to the

type of media used for plant growth. Shou and

Luo (2009) indicated that, with 88.5 % water

content condition, only those portions of the

root system greater than 1 mm in diameter can

be clearly imaged by MRI. To address this prob-

lem, a method complementary to MRI called

positron emission tomography (PET) was

introduced based on detecting positron-emitting

radionuclides such as 11C. PET has the capacity

to measure and image the transport and distribu-

tion of 11C-labeled photo-assimilates in plants

in 3D as well. Jahnke et al. (2009) reported

3D maize root architecture through MRI-PET

techniques. A 3D laser scanning technique

adopted from Geosciences is described as the

best available technique for measuring the sur-

face and shape of roots. Gärtner and Denier

(2006) demonstrated a 3D laser scanning device

to acquire the structure of the whole tree root

system. However, since the laser cannot pene-

trate opaque growth media, it requires the

excavation of the root system in order to expose

the target root system. Therefore, using a 3D

laser scanner is a destructive technique where

the root systems are physically excavated and

washed; smaller roots (approx. 1 mm) can be

damaged or lost (Gartner et al. 2009) resulting

in deterioration of the accuracy of the overall

measurements. Fang et al. (2009) applied a trans-

parent 3D root growth system combined with 3D

laser scanner to nondestructively study soybean

and rice RSA without any contact or perturbation

of the root system or the growth medium, but it

requires longer imaging times and can be expen-

sive. 3D imaging methods have also been devel-

oped for plant root systems grown into

transparent gel media. Iyer-Pascuzzi

et al. (2010) described a high-throughput and

cost-effective platform for phenotyping RSA

that combines optical 3D imaging of gel-grown

plants with automated image analysis. By mea-

suring large phenotypic variation among 12 rice

varieties through the platform, the authors ranked

traits for their ability to distinguish genotypes.

Clear tubes installed in the soil at angles rang-

ing from 0 to 90� relative to the soil surface have
been used to insert cameras and capture images

below the soil surface, known as minirhizotrons.

Minirhizotrons have been used to capture root

system images over time to determine RSA

changes throughout the growing season of vari-

ous crops, including maize (Aiken 1992;

Liedgens 1998; Linsenmeier et al. 2010;

Schröder et al. 1996; Upchurch and Ritchie

1983). The difficulty however lies in the image

analysis which relies heavily on manual identifi-

cation of the roots in the image. There have been

some recent successes at automating the image

processing to characterize the RSA (Zeng

et al. 2010). Advances in phenotyping RSA

have been achieved, but the ultimate goal is the

ability to examine RSA in the field. However,

current methods for phenotyping RSA in field-

grown plants lack resolution and throughput. The

most promising approaches for high-resolution

and high-throughput RSA phenotyping as

claimed by GrassRoots Biotechnology at Duke

University (Zhu et al. 2011) are CT imaging and

gel-based imaging platforms. Since CT imaging
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has the advantage of being applicable to field-

grown plants, gel-based methods are more eco-

nomical and allow for higher throughput. Con-

current with the advances in 3D imaging and

image analysis, software are required to confine

important spatial characteristics of RSA.

11.4 Physiological Functional Traits

In crop breeding, the goal is to maintain or

increase yield under biotic or abiotic conditions.

In a classical model (Passioura 1977), crop yield

(Y) is proportional to the total amount of water

(W) transpired by the crop and lost through the

soil. Water-use efficiency (WUE) or transpira-

tion efficiency (TE) is the ratio of total dry matter

produced per unit of seasonal evapotranspiration,

and harvest index (HI) is the ratio of yield to

aboveground biomass. At the leaf scale, WUE

represents a ratio of net CO2 assimilation and

transpiration (Sinclair et al. 1984). Water stress

decreases relative water content (RWC) and

water potential, stomatal aperture and conduc-

tance, and photosynthetic rate (Lawlor and

Cornic 2002). Stomatal closure is a major limita-

tion of intercellular CO2 concentration that

reduces photosynthetic rate, with nonstomatal

limitation such as reduction in activities of pho-

tosynthetic enzymes (Galmes et al. 2011).

A common “surrogate” trait to identify

drought tolerance in crops with reproducible

indicator of transpiration efficiency in plant

physiology is carbon isotope discrimination

(D13C) measurements (Hall et al. 2010). D13C

or stable C isotope ratio (13C/12C) in plant

represents the photosynthetic efficiency of CO2

diffusion into intercellular space and the bio-

chemical machinery that actively uptake CO2

(O’Leary 1988). Plants discriminate against the

incorporation of heavier isotope (13C), and this

difference is the basis for the sorting of plant

photosynthetic efficiency (Farquhar et al. 1989).

Isotope ratio mass spectrometry (IRMS) has been

the conventional method for measuring isotope

ratios, with accuracy that can reach better than

0.1o/oo for 13C/12C ratio (Vaughn et al. 2004).

Samples, such as fully expanded leaves from the

main stem, are randomly selected, frozen

dried, and ground to powder. Samples are

then subjected to a dynamic flash combustion

elemental analyzer to convert to CO2 gas,

which is introduced into an isotope ratio mass

spectrometer. Stable isotopic fractionations are

measured relative to standard (fossil belemnite)

and expressed as D13C in parts per thousand

(o/oo), where D13Co=oo ¼ 13C=12Csample

��
-13C=

12CstandardÞ= 13C=12Cstandardð Þ� ∗1, 000 (Farquhar

and Richards 1984). The international standard

of expressing stable isotope ratio is Pee Dee

belemnite (PDB), which has a 13C/12C ratio

value of 0.0112372 (Craig 1957). In plants,

D13C is a measure of transpiration efficiency

(TE) since it is directly proportional to atmo-

spheric CO2 partial pressure ( pi)/sub-stomatal

CO2 partial pressure ( pa), a ratio that is

represented by the relationship between photo-

synthetic assimilation (A) and stomatal conduc-

tance (g s) (Werner et al. 2012), and D13C values

are significantly correlated to stomatal conduc-

tance and transpiration efficiency in breeding

programs (Richards et al. 2010). The advantage

of this approach is that samples can be collected

at the end of the growing season and D13C values

represent the entire plant growth period. The

disadvantage is the relative high cost per sample

(between US $10 and $30), and D13C values

have to be normalized to “best treatment”

controls to determine the best plant selection.

Chlorophyll fluorescence measurement

methods provide powerful tools for the nonde-

structive evaluation of photochemical and

nonphotochemical function in chloroplast

systems in plants and have been utilized in crop

production as a measurement of plant photosyn-

thetic capacity in optimal development condition

and under stress. Chlorophyll content or density

in leaves represents the efficiency of the conver-

sion of light energy to stored biochemical energy

that can be utilized for growth and acclimation to

adverse environment (Carter and Knapp 2001)

and provides an indirect estimate of nutrient sta-

tus by the incorporation of nitrogen (N) (Filella

et al. 1995). The ability of plants to overcome

drought stress is a correlation of chlorophyll
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system to maintain functionality under drought

stress.

Pulse amplitude modulation (PAM)

fluorimetry along with the saturation pulse is

the method that has been used in

photosynthesis-related stress physiology studies

(Schreiber 2004). Chlorophyll fluorescence

results from light energy that is not absorbed by

the photosynthetic system, and the dissipation of

excess energy results in increased fluorescence,

such as in the case of drought. PAM fluorimeters

measure relative quantum yield of chlorophyll

fluorescence by applying a light energy with

constant pulse amplitude. Fluorescence emission

competes with a number of phytochemical

pathways, and the relative fluorescence yield

ratios of Fv/Fm between controls and treatments

indicate stress or altered function of the photo-

synthetic system (Adams and Demmigs-Adams

2004). The saturation pulse method allows the

evaluation of photochemical and nonphoto-

chemical quenching parameters as well as

estimates of quantum yield of energy conversion

in photosystem II. A short burst of saturating

radiation during induction phase results in a com-

plete saturation of the photochemical pathways

and an over-reduction of photosystem II

components (Rohacek and Bartak 1999). PAM

fluorimetry has been utilized as a noninvasive

approach to evaluate different enhanced perfor-

mance traits in Phaseolus (Rascher et al. 2011).

Hyperspectral imaging spectroscopy

(discussed in detail in Chaps. 4 and 6) can be a

very valuable tool in plant stress phenotyping

due to the availability of many affordable camera

systems (Romer et al. 2012). Hyperspectral

imaging deals with measurements of radiative

property of plant leaves and canopies which can

be used to determine plant physiological or phys-

ical traits. Leaf spectral reflectance is

characterized by low reflectance in the visible

range (400–700 nm) due to strong absorbance

properties of photosynthetic pigments, high

reflectance in the infrared range (700–1,100

nm) due to the scattering of light by leaf meso-

phyll, and high reflectance in shortwave infrared

range (1,100–2,500 nm) by reflectance properties

of lignin content, cellulose, protein, and water

(Rascher et al. 2010). Remote sensing utilizing

hyperspectral imaging provides timely assess-

ment of crop growth conditions during the grow-

ing season. A number of vegetation indices have

been developed from imaging data to detect plant

physiology status: (1) enhanced vegetation index

(EVI) with blue reflectance and sensitive to can-

opy structural variations (Huete et al. 2006), sim-

ilar to normalized difference vegetation index

(NDVI) which is sensitive to chlorophyll color

range (Myneni et al. 1995), (2) red edge inflec-

tion point (REIP) measuring the slope of red

absorption (Penuelas and Filella 1998), (3) photo-

chemical reflectance index (PRI) which detects

the epoxidation state of pigments in the xantho-

phyll cycle in the range of 531 and 570 nm

(Penuelas et al. 1995), (4) normalized difference

nitrogen index (NDNI) with nitrogen absorption

at 1,510 nm (Serrano et al. 2002), (5) normalized

difference lignin index (NDLI) with lignin

absorption at 1,754 nm (Serrano et al. 2002),

(6) cellulose absorption index (CAI) with cellu-

lose absorption between 2,000 and 2,200 nm

(Nagler et al. 2003), (7) plant senescence reflec-

tance index (PSRI) which correlates senescence

and fruit ripening (Merzlyak et al. 1999),

(8) carotenoid reflectance index (CRI1 and

CRI2) in the yellow spectrum region with CRI1

correlating with carotenoid and CRI2 with chlo-

rophyll ratio (Gitelson et al. 2002), (9) anthocya-

nin reflectance index (ARI1 and ARI2) in the

yellow and red spectrum regions with ARI1

correlating with anthocyanin and ARI2 with

chlorophyll ratio (Gitelson et al. 2001), and

(10) normalized difference water index (NDWI)

which correlates with canopy water content (Gao

1996). Since hyperspectral reflectance spectros-

copy relies on solar radiation from sunlight as a

source of measurement, hyperspectral data can

vary significantly when comparing different

plots and genotypes depending on the consis-

tency of sunlight during measurement, time of

measurement, or angle of solar energy (Jones and

Vaughan 2010).
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11.5 Phenotyping of Chemical
Traits Related to Quality
and Nutritional Value

The quality and nutritional value of grains

obtained from crop plants are related to chemical

traits that are functionally involved in the growth

and development of crop plants. Although the

phenotyping of the quality and nutritional traits

has been discussed in Chap. 15, here these traits

have been briefly discussed as functional traits in

general. Depending on the analysis technique

employed, chemical trait analysis can be classi-

fied into destructive and nondestructive. For

example, peanut seed oil content can be

measured by ether extraction (destructive) or

nuclear magnetic resonance (nondestructive). If

the method of analysis is nondestructive, the

sample extraction step can be omitted. Nonde-

structive methods not only save plant samples

(such as seeds) but also reduce the analysis cost

by eliminating the extraction step.

For the destructive method, the extraction

efficiency varies. Castor seed oil was extracted

by a hydraulic plant press (Fig. 11.3). Crude oil

was extracted by the press, but the extraction

process was very slow. On an average, four peo-

ple for 2 weeks can only process 50 samples (two

replicates for each sample). The extraction

results were also affected by room temperature

in the lab and the pressure provided by the man

power. The ether extraction using ANKOM

XT15 Extractor (Fig. 11.4) is another destructive

method. Peanut seeds (~5 g) were baked at 130
�C for 6 h and then put in a sealed jar before

extraction. Seeds were ground in a coffee bean

grinder into a fine powder. The ground powder

(1.5 g, MB ¼ mass of seeds before extraction

recorded) was transferred into an XT4 filter bag

(ANKOM Technology). The filter bag was

sealed with a heat sealer and was then inserted

into a metal coil. The ground powder was

extracted with ether at 90 �C for 30 min in the

ANKOM Extractor. The ether-extracted oil was

collected in the bottom of the extraction cylinder

with defatted seed (MA) remaining in the bag.

The oil content can be calculated using the

formula of % oil ¼ (MB�MA)/MB. Compared

with the hydraulic plant press method, the

efficiency of ether extraction method was dou-

bled. The nondestructive methods (such as

Fig. 11.3 Castor oil

extraction by hydraulic

plant press
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NMR and NIR) for oil measurement will be

desirable and have been described in the follow-

ing section.

For other compound extractions (such as res-

veratrol), some additional cleanup steps may be

required prior to analysis. Resveratrol exists or

accumulates in a low concentration in plants but

plays important roles for plant protection and

contributes to human health. For the extraction

of resveratrol, the method used was destructive

with a long process and also needed specific

attention. Under bright light, trans-resveratrol

can easily convert to cis-resveratrol; therefore,

all the procedures for sample preparation were

performed under a yellow light (Sanders

et al. 2000). Approximately, eight grams of

air-dried seeds were ground into a fine powder

in a coffee grinder. Ground seed tissue (3 g) was

transferred into 50-ml Falcon tubes and

homogenized with 9 ml of 80 % ethanol using a

PowerGen 125 homogenizer (Fisher Scientific).

The homogenized samples were centrifuged

(Eppendorf, 5415D) at 12,000 rpm for 3 min.

Two milliliters of supernatant was taken and

cleaned by solid-phase extraction using a Poly-

Prep chromatography column (0.8 � 4 cm,

Bio-Rad) packed with ~1 ml mixture (1:1 w/w)

of Al2O3 (EM Science, Gibbstown, NJ) and sil-

ica gel 60 RP-18 (EMD Chemicals Inc.,

Gibbstown, NJ). The packed column was

conditioned with 80 % ethanol. The supernatant

was applied to the equilibrated column, and the

effluent was collected into a 4-ml vial. The col-

umn was washed with an additional 2 ml of 80 %

ethanol, and the effluent was collected into the

same vial. The collected solvent was evaporated

at 50 �C to dryness with a nitrogen gas stream.

The extracted compounds were dissolved in 1 ml

of 20 % acetonitrile and filtered (at 0.45 μm
filter) prior to injection for HPLC analysis. Res-

veratrol extraction process was really labor inten-

sive. One person may only extract about

30 samples a day.

For any chemical analysis, the employed

methods have to be selected. Selectivity of a

method refers to the extent to which it can deter-

mine particular analyses in a complex mixture

without interference from the other components

Fig. 11.4 Peanut oil extraction by ether solvent using ANKOM XT15 Fat Extractor
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in the mixture. For method selection, we have to

consider and balance the following factors:

sensitivity, accuracy, precision, and repeatability

as well the cost and throughput. Sensitivity

is the difference in analysis concentration

corresponding to the smallest difference in the

response of the method that can be detected.

Detection of compounds with a low concentra-

tion in the sample may require a highly sensitive

HPLC method (such as detection of average 0.5

μg/g trans-resveratrol in peanut seeds). If the

method employed is beyond the limit of detec-

tion, the amount of trans-resveratrol may not be

detected for distinguishing different peanut

samples. Accuracy is a measure of the closeness

of the experiment value to the true amount of

compound in the sample. The method employed

should get the experiment value as close as pos-

sible to the true value. Precision is a measure-

ment of closeness of individual experiment

values to each other. Variation in individual

experiment values should be expected and per-

mitted. Repeatability is a type of precision relat-

ing to measurements made under repeatable

conditions (i.e., using the same method and

material conducted by the same operator within

the same laboratory). Precision does not neces-

sarily mean accuracy. For a good method, the

experiment value should be repeatable within

and among the laboratories.

Using known amounts of compounds to estab-

lish the standard curve is the first step for com-

pound detection and quantification. A good

linearity from five different standards is usually

sufficient for producing a calibration curve. If the

linearity is poor, more standards may be

required. The time-domain pulsed NMR method

is an AOCS (American Oil Chemists’ Society)

recommended standard method for rapid and

simultaneous determination of oil and moisture

content in oil seeds. Peanut oil content was

quantified by NMR analysis. For the measure-

ment of peanut oil content in seeds, nine

standards were prepared by weight. For each

standard, shredded paper was added to the sam-

ple tube to serve a matrix, along with a carefully

measured mass of oil. The peanut seeds in the

tube were transferred into an NMR machine with

a magnetic field. The NMR was maintained at

40 �C and operated at a resonance frequency of

9.95 Mhz. In a magnetic field, certain atomic

nuclei resonate at specific radio frequencies.

This resonance can be converted into a signal

and measured to determine the amount and

nature of the particular nuclei in a sample. Solids

and liquids containing hydrogen nuclei can easily

be distinguished in this manner. Oils and water

can be differentiated by employing specifically

timed radio pulse, provided the moisture content

is relatively low (<15 % of the total mass). For

each signal acquisition, spin-echo parameters

consisted of a 90� pulse of 10.44 μs and reading

at 50 ms followed by a 180� pulse of 21.38 μs and
reading at 7 ms. A 2-s recycle delay between

scans was used, and a total of 16 scans were

collected for each sample. Detected signal can

be calibrated against known standards and calcu-

lated into oil content. After oil content measure-

ment, the peanut seeds can still be saved or used

for other chemical analyses or field planting.

Compared with hydraulic plant press and

ANKOM Fat Extractor methods, the NMR anal-

ysis for oil content measurement is 32 times and

16 times efficient, respectively. One person can

measure 200 samples for oil content within a

week without any cost. Near-infrared (NIR) tech-

nology can also be used for measuring oil and

moisture contents, but the method has not yet

been recommended by AOCS(American Oil

Chemists’ Society) for oil seeds (Baianu

et al. 2012).

For HPLC analysis of some compounds, cer-

tain detector, column, and mobile phase may be

required. For resveratrol detection, separation of

metabolites was performed on RP-HPLC system

(Agilent 1,100 series) using a C18 column

(4.6 � 150 mm, 5 μm, Agilent Technologies) at

40 �C with a binary pump and autosampler. The

mobile phase consisted of A, filtered sterile water

containing 0.1 % formic acid at pH 2.5, and B,

HPLC grade acetonitrile. The flow rate was

1.5 ml/min with the following gradient: 10 % B

for 2 min, 10–30 % B for 8 min, 30 % B for 1

min, followed by a column wash at 95 % B for 6

min, and 10 % B for 9 min before the next

injection. The volume for sample injection was
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30 μl, and the analytes were monitored with a

diode array detector (DAD) at 310 nm absor-

bance. trans-Resveratrol in the extract of each

accession was quantified at 310 nm by

referencing the peak area of an external authentic

standard of resveratrol.

If several compounds can be detected from

the same extraction, the efficiency of extraction,

detection, and quantification will be greatly

increased. For example, daidzein (D), genistein

(G), quercetin (Q), and kaempferol (K) can be

detected from the same extraction in the guar

seeds (Fig. 11.5, Wang and Morris 2007). The

big challenge for HPLC analysis is that some

peaks are clearly identified but we may not

know for what compounds the peaks represent.

More research work (such as HPLC-mass spec-

trometry) is required to finally identify the

compounds.

11.6 Postharvest Characteristics

Objective measurements of in-season plant

responses and the resulting postharvest

characteristics are essential in identifying the

genetic control of plant response to stress. Post-

harvest characteristics such as size and maturity

distribution, nutritional and chemical composi-

tion, and flavor characteristics are strongly

influenced by a combination of genetic potential

and environmental stresses. Spectral

characteristics of seeds after harvest have been

successfully used to identify and separate geneti-

cally different seeds. Armstrong et al. (2006)

utilized near-infrared reflectance (NIR) to mea-

sure wheat and flour characteristics. Dowell

et al. (2009) utilized NIR to sort waxy wheat

from non-waxy wheat and insect-infested grain

Fig. 11.5 A chromatogram of phytochemicals separated at 260 nm on the HPLC system. X axis represents for retention

time (min), y axis for million absorbent unit (mAU),D for daidzein,G for genistein,Q for quercetin, and K for kaempferol
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from un-infested grain. The desirable trait of

high ratio of oleic to linoleic fatty acid is the

result of a double recessive gene. Determining

the ratio of oleic to linoleic fatty acids in peanut

seeds has generally been destructive

(Chamberlin et al. 2011). Dean et al. (2013)

showed that the development of oleic fatty acid

in peanuts may be related to kernel maturity as

well as genetics. Nondestructive screening of

individual seeds has been done with limited suc-

cess (Sundaram et al. 2011).

In an indeterminate crop such as peanut, a

single plant will have seeds that are at various

stages of physiological maturity due to continu-

ous flowering and fruit addition in response to

environmental conditions. In response to spa-

tially variable conditions such as soil moisture

and fertility and rainfall, there may be a consid-

erable spatial variation in peanut maturity as

well, resulting in a stochastic distribution of pea-

nut maturity at harvest (Fig. 11.6). Williams and

Drexler (1981) observed that the middle layer or

the mesocarp of the peanut hull varied in color

from white to yellow to orange to brown and

black as the peanuts matured. As a result, they

developed the method known as the hull scrape,

whereby the outer layer or exocarp of the peanut

hull was removed exposing the mesocarp of the

freshly dug peanut pods. After removal of the

exocarp, the peanuts are then sorted according

to color, and a prediction of days to harvest is

made. Various attempts have been made to

remove the human subjectivity in classifying

the peanut maturity profile using colorimeters

(Grimm et al. 1998) and computer-assisted

image analysis (Boldor et al. 2002; Colvin

et al. 2013). Other techniques such as nuclear

magnetic resonance (Tollner et al. 1998), seed-

hull weight ratio (Pattee et al. 1977), and mea-

surement of arginine (Johnson et al. 1976;

Hammons et al. 1978) have been used to deter-

mine the maturity of peanuts prior to harvest. All

of these methods require destructive sampling.

Rowland et al. (2008) indicated that changes in

the NDVI of a peanut canopy may be useful in

predicting peanut maturity prior to digging.

Fig. 11.6 Typical maturity distribution of peanuts based on the color distribution of the mesocarp
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The maturity distribution is largely controlled

by environmental conditions such as the avail-

ability of water, air temperature and humidity,

and soil temperature (Padmalatha et al. 2006);

however, the relative maturity among peanut

types (runner, Spanish, Valencia, and Virginia)

and cultivars within a market type is controlled

by genetics. For instance, Spanish-type peanuts,

generally, are more determinate in their

flowering and fruiting patterns.

Measuring seed size distribution and hull to

kernel ratio in peanut typically requires that a

sample of peanuts be shelled and the kernels

physically sized over a series of screens

(Davidson et al. 1982). However, a system

using nondestructive imaging using X-ray has

been developed and tested to accurately measure

the size distribution of peanut pods and the

kernels within the pods and the kernel to hull

ratio (USDA, ARS, National Peanut Research

Laboratory, unpublished data 2008–2013). Simi-

larly, peanut kernels must be shelled to accu-

rately measure their kernel moisture content.

Kandala and Nelson (2005) and Trabelsi and

Nelson (2006) have developed instruments to

measure the kernel moisture content while still

in the hull by measuring the dielectric constant at

radio and microwave frequencies, respectively.

Schmilovitch et al. (1996) used similar

techniques to measure the moisture content of

in-shell pecans.

Researchers have developed methods to esti-

mate the heritability of peanut flavor attributes

and then use those methods to identify parental

lines to enhance the desired attributes of roasted

peanut, sweet and aromatic, while diminishing

undesirable attributes such as bitter and astrin-

gent (Isleib et al. 2003; Isleib and Pattee 2007;

Pattee et al. 2001). However, destructive sam-

pling and highly trained taste panels have been

employed to perform these time-consuming fla-

vor analyses.

11.7 Other Functional
Characteristics

In-season measurements may consist of physio-

logical measurements such as gas exchange of

leaves or sap flow (Rowland et al. 2005); physi-

cal measurements of plant structure such as

root density profiles, internode length, and node

number; or spatial canopy measurements such

as leaf temperature and multi- and hyperspectral

images. These in-season measurements are often

destructive in nature and very labor intensive.

Therefore, various imaging techniques have

been developed and tested to measure in-season

plant characteristics. Payero et al. (2004) found

that several spectral indices, including but

not limited to the normalized difference vege-

tation index (NDVI), the infrared percentage

vegetation index (IPVI), and the transformed

vegetation index (TVI), were sensitive to

changes in the height of alfalfa, but only 4 of

11 indices were sensitive to changes in plant

height of grasses. Jones et al. (2007) used a

combination of multispectral imaging and ultra-

sonic detection of plant height to estimate chlo-

rophyll content of Spinacia oleracea (spinach)

plants. Kulkarni et al. (2008) utilized the green

normalized difference vegetation index

(GNDVI) and spatial regression to determine

the response of soybean to infestations of soy-

bean cyst nematode (Heterodera glycines). Root

growth distribution is difficult to measure using

any method; however, capturing images through

clear tubes inserted into the soil in the crop row

has been used successfully to assess in-season

root growth (Taylor et al. 1970; Vos and

Groenwol 1987).
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Role of Fluorescence Approaches
to Understand Functional Traits
of Photosynthesis

12

Henk Jalink and Rob van der Schoor

Abstract

Chlorophyll a fluorescence is a fast, non-invasive, non-destructive tool.

Plant responses of the photosynthetic apparatus of leaves and plants can

be measured in real time using digital imaging, and this gives the oppor-

tunity through analysis of the data to understand more about the growth

and developmental processes of plants as they adapt and respond to the

changes in the environment. Chlorophyll a fluorescence fulfils the criteria
to be used in high-throughput (HTP) screening, as long as fundamental

rules are being taken care of like good plant preparation and proper use of

measuring protocols. Four parameters derived from fluorescence

measurements that can be used for HTP screening of plants are being

discussed because these parameters can be used as functional traits of

photosynthesis. Selecting plants on these properties will offer possibilities

in improving the crop yield at field conditions and in greenhouses.

12.1 Introduction

Phenotyping of plants is not an easy task since

plant growth and development are dynamic pro-

cesses which are continuously changed by envi-

ronmental conditions. Plant physiology is

offering many physiological parameters to be

applied in the study of abiotic and biotic stress

effects on plants in different science fields like

horticulture, agriculture and agronomy. Today

we have the availability of high-tech instrumen-

tation which can measure many parameters

which correlate with plant growth, development

and crop yield under biotic and abiotic stresses.

These are applied as indicators in plant breeding

programmes. These parameters are mostly

derived from morphological measurements

using digital cameras in the colour and NIR

range. Recently, one physiological process has

become a lot of attention from plant breeders:

photosynthesis (Schurr et al. 2006). Plant

breeders are especially interested in this process

since the photosynthetic status of plants can be

imaged using chlorophyll a fluorescence

phenotyping technology (Woo et al. 2008;

Jansen et al. 2009). By measuring the process

of photosynthesis, physiological parameters of

the physiological status can be derived from

which information can be extracted on the ability
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of plants to deal with changes in the environment

(Baker and Rosenqvist 2004). Plants are unique

in that they are capable of converting light into

energy used in the process of photosynthesis for

synthesising starch and sugars. For this reason,

this unique property is important to characterise

and finally to understand the photosynthetic pro-

cess better. Increasing the photosynthetic effi-

ciency and the photosynthetic rate will have

great impact on the productivity of crops. Light

energy that is absorbed by chlorophyll in a pho-

tosynthetic process can be distributed into three

major different pathways: (a) it can be used in the

photosynthesis process, (b) it can be dissipated as

heat or (c) it can be emitted as fluorescence

(Misra et al. 2012). These three processes are in

competition with each other. Since the sum of the

energies of the three pathways is constant, this is

a fundamental law from physics and called “law

of conservation of energy”, any increase in the

efficiency of one pathway will result in a

decrease in the yield of the other two. Determin-

ing the intensity of chlorophyll fluorescence by

applying specially developed measuring

protocols will give information about changes

in the efficiency of the photosynthetic process

and heat dissipation (Baker 2008; Schreiber

et al. 2012). To understand better how these

measuring protocols work, one should consider

the following. The phenomenon of chlorophyll

a fluorescence from plants is an intrinsic property

of the molecule chlorophyll and not a property of

the photosynthetic apparatus. This means that

even “dead” plant material will show fluores-

cence. All processes that lower the chlorophyll

fluorescence intensity are defined by the term

“quenching”. The so-called “dead” plant mate-

rial will show relatively high fluorescence inten-

sity since no photosynthesis is occurring.

Lowering of fluorescence intensity is due to the

“quenching”: energy is transferred to the photo-

synthetic process instead of being directed to the

thermal and fluorescence pathways (Krause and

Weiss 1991). If more energy is directed into the

photochemistry pathway, the lower the fluores-

cence intensity will be. The absorption of

photons by antenna molecules is a very fast pro-

cess and occurs within femtoseconds leading to

excited chlorophyll molecules and excited

electrons (Tth 2006). These excited electrons

are passed on to the reaction centres of photosys-

tem II and used for energy production through

photochemistry. As mentioned before, a part of

the energy of the excited electron will be used for

photochemistry; a part will be released as heat

and as fluorescence. If a reaction centre is already

occupied by an electron, a new excited electron

that arrives at the reaction centres cannot be

transferred into the photochemistry pathway.

The electron falls back into its initial ground

state and the energy gained through the absorp-

tion of light is emitted as heat and fluorescence.

Heat is being generated via release of energy in

small steps through the vibrational states of the

molecule and fluorescence in a larger step when

it falls back from a higher electronic state to the

ground state. If more and more reaction centres

are occupied by electrons, more excited electrons

will fall back to the ground state. This will pro-

duce an increase in the fluorescence intensity. On

the other hand, if excited electrons can be quickly

channelled into the photochemistry process, the

fluorescence intensity will be low. However,

chlorophyll a fluorescence is a method that indi-

rectly indicates what the status of the photosyn-

thesis process is. Chlorophyll a fluorescence

correlates with CO2 photoassimilation and O2

evolution (Walker et al. 1983; Edwards and

Baker 1993; Genty et al. 1989). Not all the

energy from the absorbed photon is used for

photochemistry. In the best case for a healthy

plant, around 83 % of the solar energy is absorbed

into photosynthesis about 15 % is released as

heat and 2 % as fluorescence. It is important to

use the right measuring protocols and the right

pretreatments of the plant material. If this is

fulfilled, chlorophyll a fluorescence is a useful

tool to study the effects of environmental stresses

on plants since photosynthesis is often lowered in

plants experiencing adverse conditions, such as

drought, temperature, nutrient deficiency, pollut-

ing agents and infections by pathogens for differ-

ent plant species and within a plant species for

different genotypes (Harbinson et al. 1989;

Ögren 1990; Groom and Baker 1992; Shavnin

et al. 1999; Chaerle and van der Straeten 2001;
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Sinsawat et al. 2004). Therefore, measurement

and analysis of chlorophyll a fluorescence

parameters is considered as an important meth-

odology for evaluating the health or status of the

photosynthetic process within a leaf or the whole

plant (Krause and Weiss 1991; Clark et al. 2000).

The common method for measuring fluorescence

signals from plants is a spot measurement which

measures a small part of the leaf. Other parts of

the leaf have to be measured in a sequential

order. Furthermore, these measurements are car-

ried out by hand and this is laborious, since the

sensor has to be positioned manually onto the

plant for each position. Chlorophyll fluorescence

imaging can measure a whole plant simulta-

neously in one single measuring protocol,

remotely and without manually touching the

plant. The total measurement requires only a

few seconds per plant.

In this chapter the focus will be on the appli-

cation of chlorophyll fluorescence for high-

throughput screening systems. This yields a con-

straint on the time that can be used for the fluo-

rescent measurement. The time of measurement

should be as short as possible in order to be able

to measure large amounts of plants, in the order

of 1,000 per day, and also to minimise the influ-

ence of the measurement on the photosynthesis

and to minimise the time needed for the transpor-

tation of the plants out of the growing area to the

station where the plants are being measured. This

will maximise the time that the plants are at their

growing conditions. For this reason a fluorescent

measurement should not last more time than sev-

eral seconds per plant.

12.2 Phenotyping Plants Using
Chlorophyll a Fluorescence

An important trait of photosynthesis is the rate of

photosynthesis. This parameter is directly

correlated with the increase of biomass of plants.

Plant production could be improved by the selec-

tion of varieties and cultivars that perform

highest on the photosynthetic rate at optimal

and also at adverse climate conditions. Under

field conditions, selection of these plants has to

be made on high and low irradiance, large tem-

perature regime, tolerance to salinity and

drought. These tolerances to environmental

conditions are of high importance to be able to

maintain and increase crop productivity. Under

climatised conditions like in greenhouses, selec-

tion on plants can be made under optimised day

length, light intensity, temperature and CO2 con-

centration. Therefore, measuring the rate of pho-

tosynthesis has become an important field of

study and a real challenge to be measured in

high-throughput screening. The photosynthetic

rate can be measured as the exchange of CO2.

This is directly related to the chemical reaction

equation of photosynthesis: 6CO2 þ 6H2O ! C6

H12O6 þ 6O2 (Rabinowitch and Govindjee

1969). Under the absorption of light, the photo-

synthetic process is used solar energy to convert

carbon dioxide and water into carbohydrates and

oxygen. However, this uptake of CO2 is

quantified by measuring the uptake of CO2 as a

decrease of this gas in a small chamber that

contains a part of a leaf or in some cases the

whole plant (Ehleringer and Björkman 1977).

This measurement is time consuming, laborious,

cannot be measured at a high scanning rate per

plant and not remotely. For this reason, an alter-

native technology has to be used to fulfil the

constraint of high-throughput (HTP) screening

of plants. A parameter that correlates with the

maximum efficiency of photosynthesis of PSII is

Fv/Fm (Butler 1978). This parameter is consid-

ered as an important trait of photosynthesis,

because it gives an estimate of the highest

achievable efficiency of PSII photochemistry. It

yields the maximum value for the percentage of

absorbed light that is used for PSII photochemis-

try. Any biotic or abiotic influence or stress that

has direct or even indirect interaction with the

photosynthetic process can lower this efficiency.

A second important parameter is the parameter

that correlates with the photosynthetic rate: the

effective or ongoing efficiency of photosynthe-

sis, Fq
0/Fm

0 (Genty et al. 1989). This parameter is

used as an important trait of photosynthesis,

because it gives an estimate of the photosynthetic

rate of plants at the given irradiance and environ-

mental conditions. This yields quantitative
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information on the performance of plants at the

given conditions. The third trait of photosynthe-

sis that will be discussed in this chapter is the

non-photochemical quenching, NPQ (Bilger

and Björkman 1990). This parameter correlates

with the energy that is not used in the photosyn-

thesis but is converted into heat or thermal

energy. A higher value indicates that less energy

is going into the photochemistry and more into

the thermal pathway. The final parameter is the

relative electron transport rate, rel-ETR, and is a

better estimate of the photosynthetic rate,

because it takes into account the absorbed light

by the plant. By multiplying the effective pho-

tosynthetic efficiency by the irradiance that is

used in photosynthesis or photosynthetic photon

flux density (PPFD), a measure for rel-ETR can

be established (Walker et al. 1983; Genty

et al. 1989; Edwards and Baker 1993; Fryer

et al. 1998). The name refers to the electron

transport rate which is directly linked to the

exchange of CO2 and therefore the photosyn-

thetic rate. In the next three paragraphs, an

introduction is given on the induction curve of

fluorescence, followed by several fluorescence

signals that can be measured in a short time

interval from which these above-mentioned

parameters are calculated for high-throughput

phenotyping for plants in the dark, on so-called

dark-adapted plants, and plants that are

subjected to light, light-adapted plants

(Table 12.1).

Table 12.1 Overview of the major fluorescence parameters and equations that are usable in HTP screening using

digital imaging

Parameter Definition Physiological relevance

Measured/calculated

from equation

Fo Minimum fluorescence of dark-

adapted plants

All PSII reaction centres are open Measured

Fm Maximum fluorescence of dark-

adapted plants after a saturating

light pulse

All PSII reaction centres are closed due to the

saturation pulse

Measured

Fv Variable fluorescence of dark-

adapted plants

Shows the maximum performance of PSII on

photosynthesis

Calculated as Fm–Fo

Fv/Fm Variable fluorescence normalised

by the maximum fluorescence of

dark-adapted plants

Correlates with the maximum efficiency at

which light absorbed by PSII is used for

photosynthesis

Calculated as

(Fm–Fo)/Fm

Ft
0 Fluorescence at time point t of

light-adapted plants

Part of the PSII reaction centres are open, rest

is closed

Measured

Fm
0 Maximum fluorescence of light-

adapted plants after a saturating

light pulse

All PSII reaction centres are closed due to the

saturation pulse

Measured

Fq
0 Variable fluorescence of light-

adapted plants

Shows the effective performance of PSII on

photosynthesis at given photosynthetically

active photon flux density, PPFD

Calculated as

Fm
0–Ft

0

Fq
0/Fm

0 Variable fluorescence normalised

by the maximum fluorescence of

light-adapted plants

Correlates with the efficiency at which the

absorbed light is being used for

photosynthesis at the given PPFD

Calculated as

(Fm
0–Ft

0)/Fm
0

NPQ Non-photochemical quenching Monitors the heat loss from PSII Calculated as

(Fm–Fm
0)/Fm

0

rel-ETR Relative electron transport rate Measure for the electron flow that correlates

with the photosynthetic rate

Calculated as

((Fm
0–Ft

0)/Fm
0)*

PPFD �*αL*PSII/PSI
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12.3 Fluorescence Induction: The
Basics of the Measurement

It was already suspected for a long time that the

chlorophyll fluorescence intensity during the

induction period is a measure for the ongoing

photosynthesis of plants (Kautsky and Hirsch

1931; McAlister and Myers 1940). Kautsky and

Hirsch (1931) were the first who realised this

correlation. Their one-page article describes

that when chlorophyll is being illuminated by a

constant light, fluorescence of changing intensity

is being emitted. The intensity of the fluores-

cence as observed by their eyes first rises rapidly

from weak intensity to a maximum value and

then decreases slowly to a steady state level of

low intensity. They concluded that the slow

decrease in fluorescence from the maximum

value to low fluorescence correlated with the

observations done by Warburg (1920) on the

induction time needed to establish a constant O2

production (after about 4 min): after a first slow

increase in the rate in O2 evolution, the rate in O2

evolution became constant. This correlation

could be useful to study the photosynthetic

process by measuring the fluorescence intensity,

instead of the evolution of O2 or the uptake of

CO2. Using better equipment in the 1960s until

1980s, the induction curve was used extensively

to study the process of photosynthesis (see for

reviews: Govindjee 1995; Strasser et al. 2000). It

was soon recognised that the fast fluorescence

induction rise in the first second could be used

to measure the maximum efficiency of photosyn-

thesis (Fig. 12.1). This method uses a high inten-

sity of constant irradiance to induce

photosynthetic activity and to saturate the photo-

synthesis. At the same time, this saturating light

is used to measure the resulting fluorescence. The

resulting fluorescence is measured using a pho-

todiode or digital CCD camera. In the first 50 μs
Fo, fluorescence at the origin is being measured

and depending on the used speed of the electron-

ics, the induction curve is being measured at

different time points, ending in the maximum

intensity of the fluorescence, Fm. This method

is called direct fluorescence (Strasser et al. 2000).

In the 1980s a new measuring protocol was

developed by Schreiber et al. (1986): pulse-

amplitude modulated fluorometer, PAM

(Rohacek and Bartak 1999). This new measuring
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Fig. 12.1 Example of an

induction curve of a dark-

adapted plant using the

direct fluorescence method

measured at a measuring

light intensity of

1,500 μmol m�2 s�1 and at

a sampling rate of

380 samples/s
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device works on the principle of a modulated

weak measuring beam that is low enough in inten-

sity not to close the reaction centres of dark-

adapted plants. A modulated excitation light

results in a modulated fluorescence signal. This

fluorescence has the same frequency as the

modulated excitation light, and this information

is used to discriminate the measuring modulated

fluorescence signal from the background signal.

On dark-adapted plants Fo is first being measured.

Then a saturating pulse of constant intensity is

applied to induce photosynthetic activity in order

to close the reaction centres. In the same way as

for the direct fluorescence method, the induction

curve can be measured, but what it is used most

frequently for is the value of Fm. In the presence

of light, so-called actinic light, these

measurements can also be performed yielding

the photosynthetic parameters in the light. More

methodologies were developed; all with the pur-

pose of measuring the photosynthetic parameters.

These protocols can roughly be classified into

either direct fluorescence or modulated fluores-

cence. The main advantages of the modulated

light systems are the real-time subtraction of the

background light and flexibility in using different

light sources for the measuring and saturating

light (Schreiber et al. 1986, 2012). The main

advantages of the direct fluorescence method are

the better signal to noise and its ease of use

(Loriaux et al. 2013). Evaluating the different

methods to measure the photosynthetic

parameters, comparable results were obtained

(Koblizek et al. 1999; Suggett et al. 2003;

Röttgers 2007). However, induction curves yield

sometimes more information than static Fv/Fm

measurements. Anaerobic treated leaves of

Arabidopsis thaliana showed increasing

differences in the fluorescent transients at increas-

ing anaerobic conditions, while the Fv/Fm value

remained constant (Nellaepalli et al. 2012).

12.4 Dark-Adapted Plants:
Description of the
Fluorescence Parameters

A plant coming from the light has reaction

centres that are open for capturing new incoming

photons and reaction centres that are closed,

because they just have captured photons. As the

plant makes a transition from light to dark, no

new incoming photons are available anymore

and for the already captured photons, the photo-

synthetic process needs time to downregulate to

the state when all the reaction centres are open.

This usually takes about 30 min. Shorter adapta-

tion times can yield lower Fv/Fm values

(Schansker et al. 2005). However, if a plant has

been subjected to stress, this can take a much

longer time, up to 24 h (Rascher et al. 2000;

Maxwell and Johnson 2000; Qiu et al. 2003). It

is advisable to test a range of dark-adaptation

periods to check that the Fv/Fm value cannot be

increased by using longer dark-adaptation times.

Sometimes it is advised to measure the plants

after a dark period during the night. This is called

predawn dark adaptation. The dark-adapted state

of a plant is the state at which all reaction centres

are open (Baker and Rosenqvist 2004). Once the

plant is dark adapted, two fluorescence signals

can be measured: Fo and Fm.

Fo: the minimum fluorescence or fluorescence

at the origin is measured at measuring conditions

that do not close the reaction centres (Schreiber

et al. 1986). The direct relation of this parameter

Fo with the photosynthesis process is that when

the photosynthesis is operating at maximum effi-

ciency, the fluorescence intensity is minimised

(Duysens and Sweers 1963). When the photosyn-

thesis is not operating at full efficiency, Fo can

have a fluorescence intensity between the mini-

mum, Fo without stress, and maximum, Fm, pos-

sible values. Unfortunately, Fo has no functional

trait for photosynthesis when using fluorescence

digital CCD-camera systems. The fluorescence

intensity as measured with a digital CCD camera

depends among others on (1) the amount of chlo-

rophyll on a particular spot, more chlorophyll

will yield a higher value for Fo, (2) the intensity

of the measuring beam, which normally

decreases in intensity with the square of the dis-

tance, (3) the distance between the particular spot

and the lens of the camera that decreases the

fluorescence intensity with the square of the dis-

tance and (4) the angle of the particular spot on

the leaf with respect to the measuring beam. A

larger leaf angle will decrease the effective light
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intensity on the leaf. This implicates that it is not

clear if differences in Fo are being measured and

are the results from the status of the photosynthe-

sis, from instrumental layout or plant morphol-

ogy. For this reason, the measurements can only

be compared by taking ratios of the fluorescence

intensities. They have to be calibrated or

normalised to each other. This is accomplished

by measuring the Fm value. This Fm value is also

needed to calculate the maximum efficiency of

photosynthesis. Therefore, measurement of Fo

and Fm for all the different spots or pixels of a

digital CCD camera will yield different

intensities for Fo and Fm for the above-

mentioned reasons of instrumental layout and

plant morphology, but in the calculation of the

maximum efficiency of photosynthesis, fluores-

cence signals are being normalised on Fm values

for each pixel with absolute values ranging from

0 to a maximum of 0.83 (Björkman and Demmig

1987). By doing this, the outcome of these

calculations can be compared with other results

as long as the photosynthesis was saturated by

irradiance for closing all the reaction centres.

Fm: is measured as the intensity of fluores-

cence when all the reaction centres are closed

and photochemical quenching is zero. When all

the reaction centres are closed, the photosynthe-

sis is fully saturated and this can be accom-

plished by illuminating the plant by a short

pulse of light of high irradiance. It was

demonstrated by Schansker et al. (2011) that for

dark-adapted plants, the same values for Fv/Fm

were found for irradiances of the saturating light

pulse between 900 and 3,000 μmol/(m2s). During

this saturating pulse of light, the fluorescence is

measured by the same protocol as used for the Fo

measurement. Again, the measurement of Fm

itself has no direct functional trait with photosyn-

thesis. As mentioned for Fo, Fm depends on the

same instrumental layout and plant morphology.

However, when Fm is measured a few seconds

after the measurement of Fo with the same equip-

ment at exactly the same position, the two images

can be related on a pixel to pixel by taking the

ratio.

Fv: the variable fluorescence is a measure for

the maximal performance of the photosynthesis

for dark-adapted plants (Butler 1978). It is the

increase in fluorescence intensity from Fo to Fm.

For a healthy plant with normal operating photo-

synthesis, the intensity of Fo can increase up to a

maximum factor of 6 (Vredenberg et al. 2006).

This means that Fm ¼ 6Fo, and this yields for Fv/

Fm the value of 6ð -1Þ=6 ¼ 0:83 in agreement

with Björkman and Demmig (1987). Any lower

relative increase of Fv indicates that the photo-

synthesis is not operating at maximum effi-

ciency. However, the value of Fv itself cannot

be considered as a functional trait of photosyn-

thesis, for the same reasons as mentioned for Fo

and Fm. To use the Fv values as a functional trait

of photosynthesis, the different obtained values

have to be normalised by taking ratios. This is

explained in the next paragraph.

Fv/Fm: for this parameter the variable fluores-

cence is divided by the maximum fluorescence.

By performing this calculation, the instrumental

geometrical parameters and the morphology of

the plant mentioned before that influence the

intensity of the fluorescence values of Fo and

Fm that are being compensated for. As a first

approximation Fv/Fm depends not on instrumen-

tal parameters like the sensitivity of the camera

or the distance between the measuring beam and

the plant or the distance between the camera lens

and the plant nor on the amount of chlorophyll in

the leaves or on the morphology of the plant but

as a first approximation solely on the status of the

photosynthesis expressed as a number and is an

estimate for the maximum quantum yield of pri-

mary PSII photochemistry or in short the effi-

ciency of photosynthesis (Genty et al. 1989).

The intensity of the two measured fluorescence

parameters can be expressed as given below

(Earl and Ennahli 2004).

Fm ¼ C1 � kF
kF þ kD

F0 ¼ C1 � kF
kF þ kD þ kP

With C1 a constant that among others depends on

the intensity of the excitation light, the amount of

chlorophyll and σ the cross section of absorbance
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and instrumental layout. The rate constant, kF, is
the rate constant for fluorescence, kD the rate

constant for thermal dissipation and kP the rate

constant for photochemistry. The maximum

efficiency of photosynthesis can be derived

from the ratio of Fv and Fm as given below

(Butler 1978; Govindjee 1995; Earl and Ennahli

2004).

Fv

Fm

¼ Fm � Fo

Fm
¼

C1 � kF
kF þ kD

� C1 � kF
kF þ kD þ kP

C1 � kF
kF þ kD

¼
kF

kF þ kD
� kF
kF þ kD þ kP
kF

kF þ kD

¼ 1�
kF

kF þ kD þ kP
kF

kF þ kD

¼ 1� kF
kF þ kD þ kP

� kF þ kD
kF

¼ 1� kF þ kD
kF þ kD þ kP

¼ kF þ kD þ kP
kF þ kD þ kP

� kF þ kD
kF þ kD þ kP

¼ kF þ kD þ kP � kF � kD
kF þ kD þ kP

¼ kP
kF þ kD þ kP

This results in:

Fv

Fm

¼ kP
kF þ kD þ kP

and shows that by measuring Fo and Fm, the

maximum efficiency of photosynthesis can sim-

ply be calculated from only two fluorescence

measured intensities. This relation is true under

the assumption that the rate constants do not

change when the fluorescence signals increase

from Fo to Fm. Fv/Fm is an important functional

trait of photosynthesis. It shows that if the maxi-

mum value for healthy dark-adapted plants is not

reached, possible damage has occurred to the

photosynthetic apparatus by any biotic or abiotic

stress. The decrease in Fv/Fm can be a result to

either a decrease in Fm or increase in Fo or both.

12.5 Light-Adapted State:
Description of the
Fluorescence Parameters

For plants that experience light, the situation is

different from dark-adapted plants and more dif-

ficult to standardise, since the photosynthetic rate

depends on many factors and one of them being

the light intensity. In the light a part of the

reaction centres are closed due to the absorption

of light and the remaining reaction centres are

open and ready to receive photons. This can be

measured in the same manner as for dark-adapted

plants. Genty et al. (1989) proposed the photo-

chemical quenching and is calculated as:

F
0
q

F
0
m

¼ F
0
m � F

0
t

F
0
m

Ft
0: is the fluorescence intensity at time t and is

measured in the same way as Fo in the dark. A

prime notation used after a fluorescence parame-

ter means that the leaf/plant is exposed to light.

But as just mentioned, one has to take care of the

irradiance. To be able to compare different

plants, the irradiance on the leaves have to be

equal. If they are different it will be difficult to

compare the results. Unfortunately, Ft
0 has no

functional trait for photosynthesis, for the same

reasons as mentioned for Fo. For this reason the

measurement has to be calibrated also. This is

accomplished by measuring the maximum fluo-

rescence in the light, Fm
0.
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Fm
0: the maximum fluorescence in the light-

adapted state. Is it measured as the intensity of

fluorescence when all the reaction centres are

closed? As in the case for dark-adapted plants,

when all the reaction centres are closed, the pho-

tosynthesis is fully saturated, and this is the case

when the plant is illuminated by a short pulse of

saturating light with high intensity. The intensity

has to be higher than for dark-adapted plants

(Loriaux et al. 2013). Saturating intensities can

vary from species to species. It is important to

ensure that saturation is achieved by measuring

at increasing irradiance to test that the maximum

value for Fm
0 has been reached.

During this saturating pulse of light, the fluo-

rescence is measured by the same protocol as used

for the Ft
0 measurement. Again, the measurement

itself has no direct functional trait with photosyn-

thesis, but if compared with Fm for the same plant

and measuring set-up,Fm
0 shows a decrease com-

pared to that of the Fm value, indicating the pres-

ence of non-photochemical quenching (see

paragraph on NPQ). As mentioned before for Ft
0,

Fm
0 depends on the same instrumental layout and

plant morphology. However, when Fm
0 is

measured within a second after the measurement

of Ft
0 with the same equipment at exactly the same

position, the two measurements of images can be

related on a pixel-to-pixel basis and the Fm
0 image

is used for calibration purposes.

Fq
0: the variable fluorescence is a measure for

the effective photosynthesis for plants in the

light. However, the value of Fq
0 itself is not a

functional trait of photosynthesis, for the same

reasons as mentioned for Fo and Fm.

Fq
0/Fm

0: for this parameter the variable fluo-

rescence is divided by the maximum fluores-

cence of plants at a certain irradiance. By

performing this calculation the instrumental and

geometrical parameters mentioned before that

influence the intensity of photosynthesis are

being compensated for. At a first approximation

Fq
0/Fm

0 depends not on instrumental parameters

like the sensitivity of the camera or the distance

between the measuring beam and the plant or the

distance between the camera lens and the plant

but at a first approximation solely on the status of

the photosynthesis.

The status of the photosynthesis is greatly

affected by the irradiance (Terashima

et al. 2009). So, one has to be careful during

measurements that the plant is homogeneously

being illuminated. Furthermore, the irradiance

under natural conditions can abruptly change

and this will influence the measurements. Plants

have to adapt to the given irradiance especially

when they were first dark adapted. This takes

normally 15–20 min (Baker and Rosenqvist

2004). Fq
0/Fm

0 correlates with the effective effi-

ciency of photosynthesis in the light. It is a mea-

sure how efficient the photosynthesis is operating

in the light.

12.6 Non-photochemical Quenching
(NPQ)

Non-photochemical quenching, NPQ, can be cal-

culated by first measuring the Fm value for dark-

adapted plants followed by Fm
0 for the same plant

in the light: NPQ ¼ Fmð -Fm
0Þ=Fm

0 (Bilger and

Björkman 1990). The advantage of using this

parameter as a measure for photochemical

quenching is that it is independent of the Fo and

Ft
0 values. NPQ can be determined in time by

first measuring the Fm value for dark-adapted

plants followed by measuring the Fm
0 value

while the plant is adapting at a given irradiance

(Ralph et al. 2005). Plants will be adapted after

about 20 min to the irradiance and this will reach

the NPQ value at the steady state.

Non-photochemical quenching of chlorophyll

fluorescence is an indicator of the level of

non-radiative energy dissipation and provides

protection from photodamage. NPQ is a measure

of heat dissipation and is the total sum for the

photo-protective mechanisms, state transition

quenching and photo-inhibition (Krause and

Weis 1991; Müller et al. 2001). Since NPQ

shows increases in non-photochemical

quenching in the light-adapted state compared

to the non-photochemical quenching to the

dark-adapted state, the calculation is only valid

between plant parts having the same quenching

characteristics in the dark-adapted state. This
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implicates that plant parts can only be compared

on their NPQ value having similar values for Fv/

Fm (Baker and Rosenqvist 2004). D’Haese

et al. (2004) demonstrated that NPQ can occur

even at low irradiance. Stress conditions such as

high irradiance or photo-inhibition and low inter-

nal CO2 concentration due to drought or chilling

(low temperature) increase NPQ. Therefore,

NPQ is a functional trait of photosynthesis and

serves as an indicator of stress. Imaging of NPQ

has been demonstrated on sea grass by Ralph

et al. (2005). An important constraint on the

measurement of NPQ for imaging is that plants

and leaves should not move. An NPQ image is

calculated pixel by pixel from the Fm and Fm
0

fluorescence intensities and these pixels have to

correspond to the same positions on the leaf. This

implicates that imaging of NPQ is not easy since

it is likely that leaves will move within a 15 min

time span between the imaging of Fm and the

steady state that is reached after 15 min after the

light has been turned on when Fm
0 is being

imaged. If one detects that the leaf/plant has

moved, the only option is to average the Fm and

Fm
0 values for the whole leaf/plant. This will

yield averaged values for NPQ for the particular

leaf/plant.

12.7 Relative Electron Transport
Rate (rel-ETR)

The effective efficiency of photosynthesis, Fq
0/

Fm
0, is correlated with the photosynthetic rate.

This correlation can be improved by adding two

parameters, the irradiance and the coefficient of

absorbance of light. A higher irradiance will in

general yield a higher photosynthetic rate. A

higher value for the coefficient of absorbance of

light will mean that more light is being absorbed

and available for photosynthesis. Taking these

two parameters into account together with the

effective efficiency of photosynthesis will yield

a better trait of photosynthesis. This can be

expressed in an equation for the relative electron

transport rate. It is important to establish this

relation between the electron transport rate and

the measured fluorescence parameters. Walker

et al. (1983) found an inverse relation between

oxygen evolution and simultaneously measured

fluorescence: oxygen and fluorescence displayed

marked dampening oscillations that were anti-

parallel, meaning almost 180
�
was out of phase.

They further showed that CO2 uptake behaved

like oxygen evolution. These results indicated

that fluorescence measurements can be used to

be correlated with the photosynthetic rate. Genty

et al. (1989) found a linear behaviour between

the uptake of number (#) of CO2 molecules per

number of absorbed photons and the effective

efficiency of photosynthesis for mature maize

leaves. This can be written as:

C2

#CO2

#photons
¼ Fm

0 � Ft

Fm
0

This empirical equation demonstrates that a

simple relation exists. Seaton and Walker (1990)

showed that this relation was valid for 16 differ-

ent species with a constant C2 ¼ 8. Edwards and

Baker (1993) found for C2 a value between

11 and 13 for maize leaves. This is a different

value as Seaton and Walker (1990) observed, but

they did not correct for the absorbance of light.

Fryer et al. (1998) confirmed the relation for

maize leaves and demonstrated that a value of

C2 ¼ 12 fitted this relation well. This means that

it takes 12 electrons for the uptake of one CO2

molecule, six from PSII and six from PSI. It is

assumed that for both photosystems, this value is

equal. An equation for the relative electron trans-

port rate can be derived now from the empirical

relation:

12
#CO2

#photons
¼ C3

#CO2

PPFD � αL ¼ Fm
0 � Ft

Fm
0

where the number of photons has been replaced by

PPFD * αL with PPFD the photosynthetic photon

flux density, or irradiance, in μmol quanta of

photons per m2 per s and αL the absorption coeffi-

cient of the leaf. Since the number of CO2
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molecules directly correlateswith the relative ETR,

one can derive using C2 �#CO2 ¼ rel‐ETR:

rel‐ETR ¼ Fm
0 � Ft

Fm
0 � PPFD � αL � PSII

PSI

First, the relative electron transport rate, rel-ETR,

depends on the effective efficiency of photosyn-

thesis calculated from the fluorescence signals

and expressed as (Fm
0�Ft

0)/Fm
0, the intensity of

the irradiance capable of inducing photo-

synthesis, called photosynthetic photon flux den-

sity, PPFD, the absorption coefficient, αL, and
PSII/PSI ¼ proportion of light absorption by

PSII and PSI (Baker et al. 2007). The application

of the calculation of an image of rel-ETR has

been demonstrated for sea grass by Ralph

et al. (2005).

12.8 Fluorescence Depends on
Wavelength, Plant Species
and Cultivar

For healthy dark-adapted plants, one can find in

literature that the value of Fv=Fm ¼ Fmð -FoÞ=
Fm has a maximum value of 0.83 (Björkman and

Demmig 1987). These values can be obtained

using plants that are grown at optimal conditions,

not suffering or subjected to any stress and well

dark adapted. Practical values found in literature

are lower in value, around 0.77 (Jansen

et al. 2009). However, great care has to be

taken about the excitation wavelengths that are

being used in the measuring protocol. There

exists a slight dependence of Fv/Fm on the exci-

tation wavelengths for inducing the chlorophyll

fluorescence (Pfündel 2009; Hogewoning

et al. 2012). Not only Fv/Fm depends on the

excitation wavelength but on the fluorescence

wavelength also. This is due to the spectral

dependence of the fluorescence on the two

photosystems. Around 680 nm the fluorescence

is largely associated with PSII. At increasing

wavelengths fluorescence is also emitted by PSI

superimposed on the PSII fluorescence (Franck

et al. 2002). This results in lower Fv/Fm values

for measurements which take higher

wavelengths into account. Differences in Fv/Fm

were also observed depending on the species and

even on the phenotype (Rock et al. 1992; Pfündel

2009).

12.9 Examples of Using Chlorophyll
a Fluorescence in Phenotyping

Chlorophyll fluorescence analysis is a

non-destructive technique. This has been used

successfully to assess the resistance against

biotic and abiotic stresses in crop plants. Thus

phenotyping of traits related to photosynthesis on

the basis of the above technique has been used to

characterise the genotypes as resistant/tolerant

and sensitive/susceptible to pathogen, heat,

drought, etc. For example, heat stress is an

increasing constraint for the productivity of

wheat and also other crops due to the global

climate change. In wheat, a chlorophyll fluores-

cence protocol was standardised and used for

mass screening of 1,274 wheat cultivars of

diverse origin. The maximum quantum effi-

ciency of PSII (Fv/Fm) was used to screen the

heat-tolerant genotypes. The initial mass screen-

ing of the above genotypes with a milder heat

stress of 38 �C in 300 μmol m�2 s�1 for 2 h with

preheating at 33�35 �C for 19 h in 7�14 μmol

m�2 s�1 light showed a genetic determination of

8.5 � 2.7 % and led to identification of

138 genotypes. Further, these selected genotypes

have screened under a heat treatment of 40 �C in

300 μmol m�2 s�1 for 72 h and resulted in larger

differentiation of cultivars with an increased

genetic component (15.4 � 3.6 %). Finally it

was further increased to 27.9 � 6.8 % in the

third screening with 41 contrasting cultivars.

After this, the contrasting set of genotypes has

been compared on the basis of chlorophyll fluo-

rescence parameters in order to detect genetic

difference for heat tolerance. This has resulted

in the identification of a set of wheat genotypes

having contrast for their inherent photochemical

efficiency. This may aid future studies to under-

stand the genetic and physiological nature of heat

stress tolerance in order to dissect quantitative
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traits into simpler genetic factors (Sharma

et al. 2012).

Similarly the maximum quantum yield of

photosystem II (PSII) photochemistry

Fv=Fm ¼ Fmðð -F0Þ=FmÞ has also been shown

interesting for phenotyping disease severity. The

ratio of Fv/Fm has been used to display a robust

contrast between infected and healthy tissues.

Generally healthy tissues had Fv/Fm values

around 0.84 in several plant species, while sus-

ceptible genotypes showed this value lower than

this. In many studies, mean Fv/Fm measurements

were used to qualitatively discriminate between

diseased and healthy leaves (see Rousseau

et al. 2013 and references therein for more

details).

12.10 New Developments and Future
Perspective

On the instrumentation level, new developments

are being employed in the direction of measuring

a better estimate for the Fm
0 value. It was, several

decades ago, already observed that the measure-

ment of Fm
0 did not saturate the photosynthesis.

Not all reaction centres could be closed. Increas-

ing the irradiance yielded still an increase in the

fluorescence intensity (Markgraf and Berry

1990). Using higher irradiance for saturating the

photosynthesis would involve damage to the

photosynthetic system due to photo-inhibition

(Müller et al. 2001). One way to overcome this

dilemma is by measuring the Fm
0 intensities at

different irradiances. Markgraf and Berry (1990)

and Earl and Ennahli (2004) demonstrated that a

linear dependence exists between the fluores-

cence intensity and the inverse of the irradiance,

(PPFD)�1. Using this linear dependence and lin-

early extrapolating to infinite irradiance, a better

estimate was calculated for Fm
0. However, the

measurements at different irradiances cannot be

performed at high rate, because between each

measurement at different irradiance, there was a

time delay of several minutes. This drawback

was overcome by Loriaux et al. (2013) by devel-

opment of a novel saturation-pulse method

referred to as a multiphase flash (MPF). Within

one flash of less than 1 s, a variation of

irradiances is included. Simultaneously the fluo-

rescence is measured at each irradiance. This

yields rapidly the dependence of Fm
0 at different

irradiances and the estimation of a better Fm
0 at

infinite irradiance. This method now exists for

spot measurements, but the challenge is to apply

this method for imaging also.

Finally, all this effort on the instrumental level

is done to provide tools to characterise the status

of the photosynthesis. This enables selection of

cultivars or genotypes with the best performance

at given environmental factors. Another possibil-

ity to increase crop production is by changing the

mechanism of photosynthesis (Murchie

et al. 2008; Murchie and Niyogi 2011). Several

routes are being mentioned like improvement of

CO2 assimilation rates, decreasing photorespira-

tion and transforming C3 into C4 crops.
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Ögren E (1990) Evaluation of chlorophyll fluorescence as

a probe for drought stress in willow leaves. Plant

Physiol 93:1280–1285

Pfündel EE (2009) Deriving room temperature excitation

spectra for photosystem I and photosystem II fluores-

cence in intact leaves from the dependence of Fv/Fm
on excitation wavelength. Photosynth Res

100:163–177

Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II

efficiency and the xanthophyll cycle in the salt-

adapted halophyte Atriplex centralasiatica. New

Phytol 159:479–486

Rabinowitch E, Govindjee (1969) Photosynthesis. Wiley,

New York, p 273

Ralph PJ, Macinnis-Ng CMO, Frankart C (2005) Fluores-

cence imaging application: effect of leaf age on

seagrass photokinetics. Aquat Bot 81:69–84
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Identification of Subcellular, Structural,
and Metabolic Changes Through NMR 13
Rekha Sapru Dhar and Nupur Malviya

Abstract

Secondary metabolites are unique sources for flavors, nutraceuticals,

pharmaceuticals, and industrial bioactive molecules which are

biosynthesized in different plant tissues. These metabolites play a major

role in the adaptation of plants to the prevailing environment, in

overcoming stress conditions, and in defense to several unforeseen

invasions. Identifying the biological components and their functions and

multiple interactions between components to understand the cellular

metabolism of a cell to meet its fluctuating demand for energy and

materials has remained a challenging task. Based on traditional metabolic

analysis, mapping of intracellular fluxes in metabolic networks is only

possible with high-throughput techniques. Nuclear magnetic resonance

(NMR) spectroscopy is a powerful and versatile tool that can provide

information on the metabolites and their metabolic network. NMR has

played a dominant role in the identification of an array of compounds from

diverse environments and diverse ecogeographic domains. Plant biotic

relationships which include host plant interaction and resistance for an

eco-metabolomics have been developed with NMR approach. NMR can

also be used to determine low-resolution structures of target–ligand

complexes for natively unstructured proteins or membrane proteins that

are not amenable to crystallographic approaches.

Keywords

Metabolites • Elicitors • Profiling • Crop plants

13.1 Introduction

During the process of evolution, plants have pro-

duced a vast and rich chemical diversity. Several

other processes such as mutation and gene dupli-

cation have also led to the formation of new
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chemical structures to provide adaptability to

plants in different environments. There are

almost 200,000 known secondary metabolites

with different chemical structures, belonging to

different classifications with different functions,

which include lipids, sugars, oligonucleotides,

peptides, nucleosides, ketones, amines, etc.

Exposure of plants to various biotic and abiotic

stresses has significantly changed the synthesis

of secondary metabolites and their extensive sub-

cellular compartmentalizations. Among envi-

ronmental factors, light, water, and salinity are

important variables affecting phytochemical pro-

duction in plants (Perez-Balibrea et al. 2008). For

example, when plants are exposed to drought

stress, they exhibit a wide range of responses

both at cellular and molecular levels (Chaves

et al. 2003). Identification of a metabolic network

helps to know the pathway for sustaining the

plants in diverse environmental conditions.

Therefore, the focus has been on the high-

throughput profiling of metabolite contents as a

trait to screen genetic resources. There are sev-

eral examples of metabolo-phenotype-based

breeding programmes including carotenoid con-

tent in tomato (Liu et al. 2003), protein and oil

content in maize (Moose et al. 2004), and starch

content in rice and potato (Ferine and Willmitzer

2004). Metabolite profiling has also been applied

to identify Quantitative trait loci (QTLs) in asso-

ciation with metabolite accumulation to dissect

the genetic basis of metabolic network in

Arabidopsis, tomato, and poplar (Kliebenstein

et al. 2001, 2002; Tieman et al. 2006). In future

integrative analysis of metabolomics and geno-

mics or transcriptomics should be facilitated to

elucidate plant metabolic systems as well as to

explore key loci applicable for crop improve-

ment. Therefore, studying the metabolic pheno-

type is important to understand the genetic

changes in crop plants towards the tolerance or

resistance against both biotic and abiotic stresses.

An advanced and efficient tools have been devel-

oped in phenomics of plant metabolites for

detecting the changes undergoing in the plant

system and identifying the already existing

molecules or some novel analogues with new

functions. Monitoring of metabolites helps to

speed up the discovery of drugs, their develop-

ment and identification of new functions of genes

in order to understand the biology of plants with

the knowledge gained by genomics, proteomics,

transcriptomics, metabolomics, and the

nutritional values of plants for health care.

NMR is a tool that can provide detection and

survey of metabolites along with their associated

subcellular and cellular energetic and metabolic

fluxes under normal and stress conditions. There-

fore, in this chapter, the role of NMR technique

has been discussed in the identification of sub-

cellular, structural, and metabolic changes in

crop plants. This is a nondestructive technique,

which can be used in combination with other

complementary techniques, like GC-MS and liq-

uid chromatography.

13.2 Principal of NMR

Resonances of magnetic nuclei such as 1H, 13C,

and 15N that interact with an external magnetic

field can be measured by NMR spectroscopy.

NMR allows in vivo analysis of metabolites in

crude extracts, cell suspensions, intact tissues, or

whole organisms (Fan and Lane 2008). For each

single compound, NMR spectra are unique and

specific (Verpoorte et al. 2007, 2008) and can be

used to identify metabolites of biological origin

without prior knowledge (Fan and Lane 2008).

Metabolites which are primarily composed of

carbon, nitrogen, hydrogen, oxygen, phospho-

rous, and sulfur have magnetic isotopes which

are detectable by NMR. It identifies and

quantifies metabolites when a sample is placed

in the magnet of NMR spectrometer. The princi-

pal of NMR is based on the fact that nuclei of

atoms have magnetic properties that can be

utilized to yield chemical information. Protons,

neutrons, and electrons (quantum subatomic

particles) have spins. These spins are paired in

some atoms (e.g., 12C, 16O, 32S) and cancel

each other out so that the nucleus of the atom

has no overall spin. However, the nucleus does

possess an overall spin in many atoms (1H, 13C,

31P, 15N, 19F, etc.,). There are rules for the

determination of a spin of a given nucleus, for
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example if the number of neutrons and the num-

ber of protons are both even, the nucleus has no

spin and if the number of neutrons plus the num-

ber of protons is odd, then the nucleus has a half-

integer spin (i.e., 1/2, 3/2, 5/2). Similarly, if the

number of neutrons and the number of protons

are both odd, then the nucleus has an integer spin

(i.e., 1, 2, 3).

The resulting magnetic moment μ is oriented

along the axis of a spin and is proportional to the

angular momentum p. Thus,

μ ¼ γp

where the proportionality constant γ is the

magnetogyric ratio, which has a different value

for each type of nucleus. In quantum mechanical

terms, when a nucleus with a spin quantum num-

ber of one-half is brought into an external mag-

netic field B0, its magnetic moment becomes

oriented in one of two directions, one is �1/2

and another is +1/2, with respect to the field

depending upon its magnetic quantum state.

The magnetic moment of the lower energy

+1/2 state is aligned with the external field, and

that of the higher energy �1/2 spin state is

opposed to the external field.
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Difference in energy between the two states is

given by

DE ¼ ghB0=2p

where:

B0 – external magnetic field

h – Planck’s constant

g – magnetogyric ratio

When the energy of the photon matches the

energy difference between the two spin states,

absorption of energy occurs, that phenomenon is

known as resonance:

DE ¼ hu ¼ ghB0=2p So, u ¼ gB0=2p:

When radio frequency energy matches the

Larmor frequency at a right angle to the external

field, it would cause a transition between the two

energy levels of the spin, and the precessing

nucleus will absorb energy and the magnetic

moment will flip to its I ¼ �1/2 state.

There are several types of NMR spectra,

which are dependent on the kind of instrument

used, the type of nucleus involved, the environ-

ment of the analytic nucleus, the physical state of

the sample, and the data collection. Mostly, wide

line or high resolution constitutes the NMR

spectra.

High-resolution spectra are collected by the

instruments which have the capability of

differentiating between very small frequency

differences of 0.01 ppm or less and can resolve

two peaks into additional peaks. In the lower-

resolution spectrum for the protons in ethanol,

three peaks are observed arising from absorption

by the CH3, CH2, and OH protons. But in the

higher-resolution spectrum, two of the three

peaks can be resolved into additional peaks.

There are two main environmental effects on

NMR spectra, chemical shift and spin–spin

splitting.

The quality of an NMR analysis is not depen-

dent on the number of signals detected but on the

number of metabolites identified. The NMR

method provides simultaneous access to both

qualitative and quantitative information since the

signal intensity is directly proportional to the

molar concentration. NMR has different facets

like microscopy, spectroscopy, and imaging that

allow generating fingerprints with high qualita-

tive estimation and reproducibility with their 1D,

2D, and 3D structures and also allow visualizing

the intact tissues along with their functions. Sev-

eral imaging techniques are being utilized to

detect the early signs due to stress by monitoring

the changes in photosynthetic efficiencies, struc-

tural modifications, status of water, and accumu-

lation of secondary metabolites. Correlated

spectroscopy (COSY), heteronuclear multiple-

quantum coherence (HMQC) spectroscopy,

heteronuclear single-quantum coherence

(HSQC) spectroscopy, and heteronuclear multi-

ple-bond coherence (HMBC) spectroscopy are

also being exploited for improved metabolite

identification by providing information on the

relationship between the signals from two differ-

ent nuclei (Ratcliffe et al. 2001).

13.3 Role of NMR in Plant
Metabolite Profiling

Plant metabolism is more complex as compared

to microorganisms, because of the existence of

several subcellular compartments and metabolic

fluxes mediated by the pathways involved in the

biosynthesis of a plethora of metabolites of

diverse types. There are several factors including

genetic modifications physiological, pathophysi-

ological, and developmental stimuli which are

responsible to make changes in metabolic

profiling (metabolomics/metabonomics). The

environmental conditions such as flooding, freez-

ing, drought, salinity, and temperature ultimately

affect the metabolism of the plant to yield vari-

ous metabolites which provide adaptability to

plants against these stresses and a defensive

force against pathogens or insect invasions.

NMR plays a significant role to investigate the

impact of environmental factors (i.e., growth

conditions, exposure to metals, herbicides, and

cultural practice) on metabolic changes in plants.

It has also been applied to study the difference in

metabolites between developmental stages and

hybridized plants and also to characterize several

ecotypes with resistant property against stresses
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(see review Leiss et al. 2011). Its use in the

identification of subcellular, structural, and met-

abolic changes has been reviewed earlier

(Roberts 2000; Köckenberger 2001a, b; Bligny

and Douce 2001; Pfeffer et al. 2001; Ratcliffe

and Shachar-Hill 2001; Ratcliffe et al. 2001;

Keifer 1999; Hemminga and Visser 2000; Lens

and Hemminga 2001). NMR-based techniques

have been widely used either for the quantifica-

tion of the most abundant compounds or single

class of compounds. However, it has also been

used in the quantitative measurement of

metabolites in crop plants. Table 13.1 lists the

studies in which NMR was used to identify the

subcellular compounds and metabolic changes

occurred during stress of different kinds and

stimuli in the following text.

13.3.1 Temperature

Plants encounter different kinds of temperatures

from low to high during their life span. Plant

makes several metabolic changes for survival

against these variable temperature regimes. The

freezing temperature causes dehydration and cell

deformation in plants. The water content present

in plant starts ice formation. As a result, plant

develops a mechanism that overcomes or adapt

to that conditions. Different tissues of plants

respond differently to such harsh stimuli. For

example, bark undergoes extracellular freezing

and parenchyma cells of xylem rays show

super-deep cooling, whereas the flower buds

and leaves undergo extra-organ freezing. Using

NMRmicroscopy, all these characteristics can be

visualized and can be analyzed in detail in order

to understand the responsible regulatory

mechanisms in different plant species. At

decreasing temperature, intensity of NMR

signals also decreases leading to the identifica-

tion of intracellular freezing in the plant tissues.

In Brassica, NMR was used to analyze the struc-

ture of low temperature-induced protein (Boothe

et al. 1997). NMR spectroscopy quantifies liquid

water. However, a simple NMR cannot show the

location of ice and water formation, but NMR

microimaging (magnetic resonance imaging,

MRI) has sufficient resolution to identify

supercooled water in small organs or in tissues

of the dimension of xylem (Ishikawa et al. 1997).

Endemic seaweeds in the genus Porphyra are

Table 13.1 NMR used for metabolomic studies in different plant species

Target Species References

Fungal induced Brassica rapa Abdel-Farid et al. (2009)

Metabolomic fingerprinting Grapevine Ali et al. (2009)

Host plant interactions Allwood et al. (2008)

Metabolic profiling Avelange-Macherel et al. (2006)

Cadmium effect Silene cucubalus Bailey et al. (2003)

Changes in ferulic acids Barley Cabrera et al. (1995)

Drought stress Pisum sativum Charlton et al. (2008)

Metabolic fingerprinting Tabaccum Choi et al. (2004a)

Matabolic differentiation Cannabis sativus Choi et al. (2004b)

Metabolic discrimination Catharanthus roseus Choi et al. (2004c)

Metabolic fingerprinting Ilex spp. Choi et al. (2005)

Metabolic profile Tobacco mosaic virus Choi et al. (2006)

Fungal pathogens Bromegrass Delgado (2002)

Fungal pathogens Vitis spp. Figueiredo et al. (2008)

Elicitors Manihot esculenta Gomez-Vasques et al. (2004)

Metal ion induced Brassica rapa Jahangir et al. (2008a, b)

Plant hybrids Kirk et al. (2005)

Transformation Lycopersicum esculantum Le Gall et al. (2003)

Caesium effect Arabidopsis thaliana Le Lay et al. (2006)
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widely cultivated on a commercial scale world-

wide. Two colored mutants of Porphyra

haitanensis, namely, Shengfu 1(SF-1) and

Shengfu 2(SF-2), have shown to have good

high-temperature tolerance. NMR methods have

also been used to understand the molecular

aspects of high-temperature tolerance by study-

ing the metabolic differences between the high-

temperature-tolerant strains and wild type. It has

been observed that the high-temperature-tolerant

strains have significantly different metabolic

phenotypes from the wild type and have signifi-

cantly higher levels of a set of osmolytes

consisting of betaine, taurine, laminitol, and

isofloridoside than the wild type, indicating the

particular importance of efficient osmoregulation

for high-temperature resistance. Thus, NMR-

based metabolomics has been observed as a use-

ful tool for understanding the metabolic features

related to resistance to temperature stresses (Ye

et al. 2013).

13.3.2 Drought and Salinity

Drought stress induces a series of morphologi-

cal, biochemical, and physiological changes and

affects plant adversely for its growth and pro-

ductivity. It often causes oxidative stress and

shows an increase in the amounts of flavonoids

and phenolic acids in the leaves of some plants.

Sharma et al. (2012) identified low levels of

total alkaloids, flavonoids, and tannins when

plants were grown under drought and salin-

ity conditions. Similar results were also

reported by Murch et al. (2003) when plants of

Hypericum perforatum were exposed to nickel.

In soybean, 1H NMR-based metabolite analysis

combined with the physiological studies was

used to detect metabolic changes in drought-

tolerant (NA5009RG) and drought-sensitive

(DM50048) genotypes in order to elucidate met-

abolic adjustments in relation to the physiologi-

cal responses in the nitrogen-fixing plants

towards water limitation. The results of this

analysis demonstrated critical differences in

physiological responses between these two

genotypes and identified the metabolic

pathways that were affected by short-term

water limitations in soybean plants. The study

also highlighted pools of metabolites that play a

role in the adjustment of metabolism and physi-

ology of soybean varieties to meet drought

effects (Silvente et al. 2012).

Drought and salinity increase saponin con-

tent in plants (Hernandez et al. 2000). This

observation was in support with the results

reported by De Costa et al. (2013) that saponin

content in Quillaja brasiliensis leaves increased
significantly when exposed to salinity. El-Sayed

et al. (2008) also reported that saponin content

in Tribulus increased when subjected to water

stress. This increase was related to its protective

role against oxidative stress (Lin et al. 2009).

Quantitative analysis of Acalypha wilkesiana
showed that plants under drought and salinity

stresses produced low quantity of alkaloids,

flavonoids, and tannins whereas saponin pro-

duction was increased, such negative influence

of salinity on plants via photosynthesis inhibi-

tion, ion toxicity, and water deficit was

demonstrated (Odjegba and Alokolaro 2013).

The content of saponins in Chenopodium qui-

noa from 0.46 % dry weight (dw) in plants

growing under low water deficit conditions to

0.38 % in high water deficit plants was changed.

Flavonoids have protective functions during

drought stress. The physiological response to

drought or salt stress is due to the role of mem-

brane permeability especially during drought

stress, whether to facilitate the water transport

for the expansion or growth of the plant during

stress or to decrease the permeability for pre-

serving cellular water within tissue (Aubert et

al. 1999). It has been reported that membrane

permeability is regulated by the expression of

aquaporin genes or water channels, either the

aquaporin genes upregulated or downregulated

the permeability of membranes and hydraulic

conductance during drought. Membrane perme-

ability is frequently determined using the NMR

relaxation times of intracellular water protons

(Snaar and Van As 1992; Zhang and Jones 1996;

van der Weerd et al. 2002).
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13.3.3 Metal Toxicity

NMR is useful to identify the causes of detoxifi-

cation in plant cells. The resistance for aluminum

(Al) in signal grass and less-resistant ruzi grass

could be due to the accumulation of Al in roots

(Wenzl et al. 2002). It has been shown that

approximately two-third of the total Al makes a

complex with soluble low molecular weight

ligands, which are taken up into the root

symplasm. Later on, this conclusion was con-

firmed in another study by a 27Al NMR analysis

of Brachiaria hybrid cv. Mulato, which showed

that Al in the root symplasm was present as a

complex with ligand(s) (Watanabe et al. 2006).

Possible candidates for such ligands include

citric acid, malic acid, trans-aconitic acid, oxalic

acid, and 1,3-di-O-trans-feruloylquinic acid, a

chlorogenic acid analogue previously isolated

from Brachiaria grass roots (Wenzl et al. 2000).

These ligands may constitute a sink for Al ions in

matured roots because very little Al is

translocated to shoots (Wenzl et al. 2002).

13.3.4 Biotic Stresses

The metabolic profiles in reference to defense-

related secondary metabolism have been

detected in several studies. Carotenoid profiling

(Frasier et al. 2007), phenylpropanoid and

monoterpenoid indole alkaloid biosynthesis in

phytoplasma-infectedCatharanthus roseus

leaves (Choi et al. 2004a, b, c), and

hydroxycinnamates and glucosinolates accumu-

lation in methyl jasmonate (MeJA)-treated Bras-

sica rapa leaves (Liang et al. 2006) are some

examples. Although the use of 1H NMR for

metabolite fingerprinting in the biomedical field

is well established and extensive, than plants

(Ward et al. 2001). Leiss et al. (2009a, b)

identified the candidate compounds for the con-

stitutive host plant resistance to western flower

thrips (Frankliniella occidentalis) on the basis of

NMR in Senecio as a wild plant, chrysanthemum

as an ornamental, and tomato as a crop. They

selected thrips-resistant and thrips-susceptible

plants for NMR metabolomics and identified a

range of different metabolites involved in thrips

resistance. In the wild plant Senecio, the second

generation hybrids of S. jacobaeae and S.

aquaticus resistant to thrips contained signifi-

cantly high amount of pyrrolizidine alkaloids

(PAs), jacobine- and jaconine N-oxide, and a

flavonoid, kaempferol glucoside. Similarly in

ornamental chrysanthemum, thrips-resistant

cultivars showed significantly high amount of

phenylpropanoids, chlorogenic and feruloyl

quinic acids. In tomato, wild species resistant to

thrips contained acylsugars, which are known for

their negative effect on caterpillars, leaf miners,

whiteflies, and aphids, compared to chrysanthe-

mum, tomato contained relatively small amount

of chlorogenic acid (Mirnezhad et al. 2010).

The use of NMR in studying the metabolome

of the infected and noninfected hosts of

Catharanthus roseus, Spiroplasma citri, and

Arabidopsis thaliana has been reviewed earlier

in detail (Leiss et al. 2011). Relatively, little

attention has been given to the use of NMR to

study constitutive host plant resistance to

pathogens, though two studies have been

reported in grapes. In the first study, cultivars

resistant to mildews accumulated inositol and

caffeic acid. These compounds have reported to

confer resistance to fungi (Figueiredo et al.

2008). In another study, differentiation of grape

cultivars based on their resistance to downy mil-

dew was based on quercetin-3-o-glucoside and a

trans-feruloyl derivative (Ali et al. 2009).

13.3.5 Elicitation

Plant cell cultures have the capability to produce an

array of secondary compounds. Changes in second-

ary metabolites of plants due to the intervention of

environmental perturbation are associated with a

number of factors, out of which elicitations with

chemicals or fungi are also the key components.

Elicitations can be biotic, which involves

plant-derived compounds or microorganisms

derived (Keen et al. 1972) compounds, or abiotic,

which involves physical or chemical stress factors

affecting the production ofmetabolites (Davis et al.

1986). Proton nuclear magnetic resonance (1H

NMR) can be used to investigate the interplay

between two metabolisms, primary and secondary,
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when the cultures of plants are elicited with differ-

ent chemicals and fungi. Several elicitors are being

employed in in vitro cultures of plants for the

increased production or induced de novo synthesis

of secondary metabolites (Sudha and Ravishankar

2003a; Karuppusamy 2009). For example, 2,4-

dichlorophenoxy acetic acid (2,4-D), indole acetic

acid (IAA), and naphthalene acetic acid (NAA)

have increased the production of indole alkaloids

in cell cultures of Cinchona ledgeriana (Harkes et

al. 1985). Half-strength Gamborg’s B5 medium

supplemented with 5 % sucrose and 1 mg/l of

each of NAA and BA gave the best values in root

culture growth of Datura candida x D. aurea

(Nussbaumer et al. 1998), whereas full-strength

B5 medium supplemented with the same

concentrations of NAA and BA gave the best

results for hyoscyamine and scopolamine content.

Similarly various signaling molecules like

methyl jasmonate (MeJA), jasmonic acid (JA),

or salicyclic acid (SA) in both biotic and abiotic

stresses act as elicitors in a wide spectrum of

signaling pathways and produce several

compounds (alkaloids, phenolic phytoalexins,

taxanes, coumarins, etc.). Both molecules

(MeJa and SA) exogenously supplied in the

cultures have affected the morphology, physiol-

ogy, and secondary metabolism of the plants. For

example, MeJA increased the shikonin and its

derivatives (red naphthoquinones) in Onosma
paniculatum cultured cells (van der Fits and

Memelink 2000). Exogenously applied MeJA

has increased anthocyanin in Arabidopsis
thaliana (Perez et al. 1997) and putrescine

and spermidine in buckwheat (Horbowicz et al.

2010), whereas SA induced anthocyanin in D.
carota cultures (Sudha and Ravishankar 2003b).

13.3.6 Quantitative Analysis
of Metabolites

Metabolic profiling is becoming a quite

useful technology for microscopic and compre-

hensive phenotyping and diagnostic analysis

in plants and as a key approach to annotate

gene function and systematic evaluation of

metabolites (Schauer and Fernie 2006).

Metabolic phenotyping is applicable to the holis-

tic discovery of metabolite markers as well as

nutrition-targeted breeding programmes based

on high-throughput profiling of metabolite

contents as a trait to screen genetic resources.

There are now several examples of metabolo-

phenotype-based breeding that include caroten-

oid content in tomato (Liu et al. 2003), protein

and oil content in maize (Moose et al. 2004),

starch content in rice and potato (Fernie and

Willmitzer 2004). NMR has been used widely

to select phenotypes on the basis of oil content

in various plant species. In castor bean, a collec-

tion of 1,033 accessions from 48 countries

were screened for oil content. This analysis

revealed an average of 48.2 % oil with a range

from 37.2 to 60.6 % (Wang et al. 2011). Simi-

larly, phenotyping of oil content has been done in

Lesquerella fendleri which led to the develop-

ment of a new crop for arid regions of the South-

western United States as an alternative source of

hydroxy fatty acids (HFAs). In this study, 66

accessions from 28 species of Lesquerella col-

lected from the United States, 33 accessions from

4 species of Lesquerella from Mexico, and 41

accessions from 15 species of Physaria were

analyzed for seed oil content. It ranged from

32.2 % in Lesquerella to 35.4 % in Physaria

(Salywon et al. 2005). Metabolic profiling was

applied to identify QTLs (Quantitative trait loci)

in association with metabolite accumulations to

dissect the genetic basis of metabolic network in

Arabidopsis, tomato, and poplar (Kliebenstein et

al. 2001, 2002; Tieman et al. 2006). In

future, integrative analysis of metabolomics and

genomics or transcriptomics should be facilitated

to elucidate plant metabolic systems as well as to

explore key loci applicable for crop

improvement.

13.4 Conclusions

The increased demand of agriculture as well as

phytoceuticals globally has placed numerous

investigating tools and has pressurized to

develop more sophisticated and accurate machin-

ery to overcome limitations. The contribution of
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NMR towards the understanding of plant protec-

tive tissues at molecular level from different

sources like water and solute loss, pathogen

invasions, and UV irradiation has been well

illustrated. Therefore, NMR has proved and

would prove to be a potential means to provide

useful information with respect to essential

phytochemicals vis-à-vis subcellular comple-

mentation for future benefits to mankind by

developing targeted drugs, except for its limited

information regarding the molecular structures of

plant polymers due to their heterogeneity.

Though, challenges like sensitivity and spectral

resolution were tried to overcome by using

modified, direct, and cross-polymerization

experiments. However, challenges remained as

such due to the different swelling capabilities of

different components resulting in low represen-

tation of densely cross-linked moieties because

of their insufficient exposure to solvent.
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Precision Nutrient Management
and Crop Sensing 14
Jerry L. Hatfield

Abstract

Sensing of nutrient status in crop plants is achievable with remote sensing

techniques because the nutrient concentration affects the reflectance spec-

trum. Techniques have been developed with both active and passive

sensors engineered to detect the reflectance in specific wavebands and

applied mainly to nitrogen status in maize and wheat canopies based on

the observation that changes in spectral indices are correlated with plant

biomass in the early stages of plant development, and if these deficiencies

were due to nitrogen, then additions of nitrogen would allow the plant to

achieve potential yield, if there is no other limitation to production, e.g.,

water or pests. There has been extensive research on the use of techniques

which mainly use the normalized difference vegetative index (NDVI);

however, the management tools rely on the use of a nitrogen-rich strip in

the field. The positive aspects of improving nutrient management are the

potential for improved precision management both spatially and tempo-

rally. Although, the current approaches have been evaluated for a number

of crops in addition to maize and wheat, there remain some challenges in

application of the methods which may potentially be overcome by

evaluating other spectral methods which are more sensitive to canopy

chlorophyll content and less sensitive to biomass. Application of

technologies to improve nitrogen management has been shown to have a

positive impact on reducing nitrogen application, improving yield of grain

and sugar in sugar beets and sugarcane, increasing profitability, and

decreasing the negative effect from excess nitrogen in the environment.

14.1 Introduction

Improved nutrient management will lead to

enhanced nutrient use efficiency and reduced

environmental impacts from agricultural

systems. However, the avenues to achieve both
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improved nutrient use efficiency and environ-

mental quality have proven elusive because of

the inability to precisely predict the nutrient

needs of the crop to ensure no major excesses

in nutrients exist at the end of the growing sea-

son. Estimates of plant nutrient availability from

soil tests have not always proven reliable, and

plant tissue tests require destructive sampling of

the plant, and subsequent chemical analysis

before an assessment can be made of the

nutrients required by the plant. The development

of techniques which can nondestructively esti-

mate the nutrient status in a plant canopy rather

than a single leaf is considered to be a potential

answer to improved nutrient management. Over

the past two decades, there have been advances

in the use of various remote sensing methods to

estimate nutrient status in crops and provide

recommendations on the amount of nutrient

required to reduce the nutrient stress, if it is

present, and maximize crop productivity. These

techniques offer promise for improved nutrient

management of different crops. This chapter

presents an overview of the current status of

crop sensing and the results obtained across a

number of crops. To fully understand and appre-

ciate the potential of crop sensing and its appli-

cation to nutrient management, it is important to

present a background on the changes of crop

reflectance during the growing season and how

these relate to different vegetative indices and

finally how these are applied to nutrient sensing.

14.2 Crop Reflectance Patterns
During a Growing Season

Optical properties of plants have been studied for

a long time, and a recent review by Hatfield

et al. (2008) describes the early work of the

remote sensing pioneers that has provided the

basis for our current use of crop reflectance as a

management tool. The development of various

vegetative indices based on the reflectance of

leaves and canopies utilizes the observation that

there is a changing reflectance for different

wavelengths throughout the year as plants grow

and develop. Vegetative indices in the generic

sense are combinations of wavebands in some

form which have been related to a crop parameter

ranging from simple ratios of wavebands, e.g.,

RNIR/Rred to more complex models like the soil-

adjusted vegetative index (SAVI) expressed as

SAVI ¼ RNIRð -RredÞ 1þ Lð Þ= RNIR þ Rred þ Lð Þ.
The change in the reflectance pattern for a can-

opy throughout the growing season is necessary

for the vegetative indices to have value in

assessing a change in crop growth. The different

combinations of wavebands and the crop parame-

ter best represented by this index are shown

in Table 14.1. Hatfield and Prueger (2010) showed

the temporal distributions of many different vege-

tative indices across a growing season to demon-

strate the utility of these indices in following the

temporal patterns of plant canopy development.

The reflectance surface for a maize (Zea mays

L.) canopy from 0.5 to 1.7 μm throughout a

growing season provides a view of the changes

which occur among the wavelengths and how

different vegetative indices would potentially

provide a relationship to crop growth and devel-

opment (Fig. 14.1). The magnitude of the change

in the reflectance of the visible wavelengths

(0.5–0.7 μm) is not as large as the change in the

near-infrared (0.7–1.1 μm) wavelengths, while

the shortwave infrared (1.1–1.7 μm) wavebands

show less change throughout the season; how-

ever, these changes are all different compared to

the soil background (Fig. 14.1). Therefore, as a

canopy develops, there is a decrease in the red

reflectance because the leaves become more

effective at capturing light as the number of

total leaves present increases because the reflec-

tance of an individual leaf does not change, but

the presence of more leaves in the canopy

increases the effectiveness in absorbing incom-

ing solar radiation. Conversely, the reflectance in

the near-infrared wavebands increases as the can-

opy develops because the overall structure of the

canopy increases the near-infrared reflectance

(Fig. 14.1). These changes show why simple

ratios can be related to accumulation of biomass

by the crop during the growing season. The soil

background line is represented by a linear rela-

tionship and does not exhibit the changes in

reflectance in individual wavebands which

allows for the discrimination of plants from

soils (Baret et al. 1989).
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Table 14.1 Summary of selected vegetation indices, wavebands, and applications

Index Wavebands/formula Application Reference

R800 � R680 Biomass Jordan (1969)

R800 � R550 Biomass Buschmann and Nagel (1993)

R550 Chlorophyll Carter (1994)

R�1
700

Gitelson et al. (1999)

log(1/R737) Chlorophyll Yoder and Pettigrew-Crosby

(1995)

Simple ratio R ¼ RNIR=Rred Biomass, LAI,

cover

Birth and McVey (1968),

Jordan (1969), Tucker 1979

Photochemical reflectance

index

PRI ¼ R550 � R531ð Þ= R550 þ R531ð Þ Light capture

efficiency

Gamon et al. (1992)

Pigment-specific normalized

difference

R800 � R470ð Þ= R800 þ R470ð Þ Leaf area index Blackburn (1998)

Normalized difference

vegetation index

NDVI ¼ RNIR�ð
RredÞ= RNIR þ Rredð Þ

Intercepted PAR,

cover

Deering (1978)

Perpendicular vegetative

index

PVI ¼ RNIR � aRred�ð
bÞ= 1þ a2

� �1=2
Leaf area index Richardson and Wiegand

(1977)

Wide dynamic range

vegetation index

WDRVI ¼ 0:1RNIR�ð
RredÞ= 0:1RNIR þ Rredð Þ

LAI, vegetation

cover, biomass

Gitelson (2004)

Soil-adjusted vegetative index SAVI ¼ RNIR�ð
RredÞ 1þ Lð Þ= RNIR þ Rred þ Lð Þ

Leaf area index Huete (1988)

Transformed soil-adjusted

vegetative index

TSAVI ¼ aRNIR � aRred�ð
bÞ= Rred þ aRNIR � abð Þ

Leaf area index,

biomass

Baret et al. (1989)

Enhanced vegetation index EVI ¼ 2:5 RNIR�ð
RredÞ= RNIR þ 6Rred � 7:5Rblue þ 1ð Þ

Leaf area index Huete et al. (2002)

Green NDVI RNIR � Rgreen

� �
= RNIR þ Rgreen

� �
Intercepted PAR,

vegetation cover

Buschmann and Nagel

(1993), Gitelson and

Merzlyak (1994)

Red-edge NDVI RNIR�ð
Rred edgeÞ= RNIR þ Rred edge

� � Intercepted PAR,

vegetation cover

Gitelson et al. (1996a, b),

Gitelson and Merzlyak

(1994),

Plant senescence reflectance

index (PSRI)

PSRI ¼ r0:66 � r0:51ð Þ=r0:76 Plant canopy

senescence

Merzlyak et al. (1999)

Visible atmospherically

resistant indices
VARIgreen ¼ Rgreen�

�
RredÞ= Rgreen þ Rred

� � Green vegetation

fraction

Gitelson et al. (2002)

VARIred edge ¼ Rred edge�
�

RredÞ= Rred edge þ Rred

� � Green vegetation

fraction

Gitelson et al. (2002)

Chlorophyll indices CIgreen ¼ RNIR=Rgreen

� �� 1 LAI, GPP,

chlorophyll

Gitelson et al. (2003, 2005)

CIred edge ¼ RNIR=Rred edge

� �� 1 LAI, GPP,

chlorophyll

Gitelson et al. (2003, 2005)

Modified chlorophyll

absorption ratio index

MCARI ¼ R710 � R660ð Þ�ð
0:2 � R710 � R560Þ � R710=R660ð Þðð

Haboudane et al. (2004)

Normalized pigment

chlorophyll ratio index

(NCPI)

NCPI ¼ R660 � R460ð Þ= R660 þ R460ð Þ Fillela et al. (1995)

Triangular greenness index

(TGI)

TG ¼ �0:5 λr � λbð Þ R660 � R560ð Þ�½
λr � λgð Þ R660 � R485ð Þ�

Hunt et al. (2011)
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Changes in reflectance of leaves have been

related to changes in nutrient status of the canopy

(Filella et al. 1995; Peñuelas et al. 1994). Over

the past decade, there has been the continual

refinement in the use of leaf chlorophyll indices

to estimate nutrient status in different plants with

particular attention to maize and wheat (Triticum

aestivum L.). Chlorophyll change in plant leaves

has been one of the indicators of nutrient status,

and one example of crop sensing has been

applied to nitrogen management using the Soil-

Plant Analysis Development (SPAD) chloro-

phyll meter, color photography, or canopy reflec-

tance factors to assess nitrogen variations across

grower’s corn fields (Schepers et al. 1992, 1996;

Blackmer et al. 1993, 1994, 1996a, b; Blackmer

and Schepers 1996). These techniques were

based on comparisons with readings obtained

from an adequately fertilized strip in the same

field in order to eliminate a requirement for

establishing the relationship between nutrient

concentration and crop reflectance.

In crop sensing, we are often observing the

change in leaf or canopy chlorophyll

concentrations, and it is important to understand

how leaf chlorophyll interacts with light in

affecting the reflectance patterns of crops.

Remote sensing tools have been constructed on

the principle that pigment content strongly

affects leaf absorption spectra and is responsible

for the patterns observed in reflectance

(Fig. 14.1). As the leaf chlorophyll (Chl) content

increases, visible wavelength absorption

increases, reaching more than 90 % in the blue

(0.4–0.5 μm) region by both chlorophyll-a and

chlorophyll-b and carotenoids and the red

(~0.67 μm) region where both chlorophylls

absorb. Specific absorption coefficients of leaf

pigments are high for blue and red wavelengths

meaning there is low reflectance in these

wavebands (Lichtenthaler 1987) and the depth

of light penetration into the leaf is very low. As

a result, even low amounts of pigments are suffi-

cient to saturate absorption and cause the reflec-

tance in these wavebands to be constant even

with changes in the total amount of leaf area

(Fig. 14.1). Even in yellowish-green leaves

when Chl exceeds 100 mg/m2, total absorption

exceeds 90 %, and further increases of leaf pig-

ment content do not increase total absorption.

This creates a situation in which absorption ver-

sus total Chl reaches a plateau, and absorption

becomes virtually insensitive to further Chl

increases (Thomas and Gausman 1977; Chapelle

et al. 1992; Buschmann and Nagel 1993;

Gitelson and Merzlyak 1994; Gamon and Surfus

Fig. 14.1 Reflectance

changes in the reflectance

of a maize canopy

throughout the growing

season in the wavelengths

from 0.5 to 1.7 μm
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1999). The closer the wavelength is to the main

absorption wavelength of pigments (blue or red),

the lower the Chl content at which saturation of

absorption vs. Chl relationship appears. In the

green (0.55 μm) and red-edge (0.7 μm) regions,

the absorption coefficient of chlorophylls is very

low and seldom exceeds 6 % compared to the

blue and red wavelengths (Lichtenthaler 1987).

This causes the sensitivity of absorption to Chl

content to be much higher in these spectral

regions than for the blue and red. Reflectance in

the green and the red-edge waveband ranges is

sensitive to the whole range of Chl variation with

the largest variation in reflectance between 0.53

and 0.59 μm and in the red edge around 0.71 μm.

Reflectance varies slightly in the NIR mainly due

to leaf internal structure and thickness changes.

The observations by Chappelle et al. (1992) and

Gitelson and Merzlyak (1994) summarize the

relationship between leaf absorption and reflec-

tance as follows: (a) minimum sensitivity to pig-

ment content is in the blue between 0.4 and

0.5 μm and in the NIR; (b) both absorption and

reflectance of leaves with moderate-to-high Chl

are essentially insensitive to Chl content in the

red absorption band of chlorophyll-a near

0.67 μm; (c) the green and red-edge reflectance

values are closely related for a wide range of leaf

greenness; and (d) the highest sensitivity of

reflectance and absorption to pigment variation

is in the green from 0.53 to 0.59 μm and in the red

edge around 0.7 μm. Fundamentally, these

relationships have to be understood in order to

begin to develop more rigorous methods for the

estimation of nutrient status in crop canopies.

14.3 Crop Sensing of Nutrient
Status

One of the first comparisons of normal compared

to nutrient-deficient maize leaves was reported

by Al-Abbas et al. (1974), and they reported that

the leaf chlorophyll concentrations decreased

with any nutrient deficiency. They observed that

nitrogen, sulfur, magnesium, and calcium

deficiencies increased the near-infrared reflec-

tance compared to normal leaves in intact

maize leaves (Al-Abbas et al. 1974). This

fundamental work along with the other research

on spectral reflectance has provided the basis for

the further development and refinement of crop

sensing in precision nutrient management

(Moran et al. 1997). The discovery that these

changes in spectral reflectance could be used to

detect and correct nitrogen deficiency in wheat

by Raun and his coworkers at Oklahoma State

University has launched a continuum of research

since the mid-1990s (Stone et al. 1996; Raun

et al. 2002). Their work extended the original

observations by Schepers and his coworkers on

corn in Nebraska by moving away from the

SPAD meter for the assessment of nutrient status

into a more robust reflectance index, and this

group proposed the use of the normalized differ-

ence vegetative index (NDVI) which is expressed

as NDVI ¼ RNIR � Rredð Þ= RNIR þ Rredð Þ. There
have been other studies which have proposed

the use of a green NDVI (GNDVI) expressed

as RNIR � Rgreen

� �
= RNIR þ Rgreen

� �
(Sripada

et al. 2005). This was a departure from earlier

use of the SPAD observations or reflectance

values related to the chlorophyll content of

leaves. It is important to understand the results

obtained by the use of the SPAD meter for

nitrogen management. Blackmer et al. (1994)

compared reflectance in the 0.4–0.7 μm range

to the SPAD meter (transmittance at 0.65 and

0.94 μm) and leaf nitrogen concentrations

and specific nitrogen content in leaves of

maize and found that reflectance at the

0.55 μm wavelength exhibited the most consis-

tent relationship to detect nitrogen differences.

They followed this work with an analysis of aerial

photography using reflectance of 0.536 μm and

found this technique was able to quantify the

variability in crop nitrogen status across maize

fields. This research team demonstrated that the

chlorophyll content corresponding to luxury con-

sumption of nitrogen is dependent on development

stage (Blackmer and Schepers 1995). They found

that under conditions of luxury consumption of

nitrogen, leaf chlorophyll content reaches an

upper limit; however, this upper limit changes

during the growing season with leaf tissue age.

The implications of this observation showed that

when nitrogen supply to maize is adequate, reflec-

tance of corn canopies changes little with any
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increase in nitrogen supply (Blackmer et al.

1996b). These observations on changes in leaf

chlorophyll content and its variation also form

the basis on why the most reliable use of reflec-

tance observations is from the comparison of a

nitrogen-rich strip to other locations in the field

(Raun et al. 2001, 2002; Flowers et al. 2003;

Hawkins et al. 2007; Shanahan et al. 2008;Kitchen

et al. 2010; Roberts et al. 2010; Solari et al. 2010;

Scharf et al. 2011; Clay et al. 2012). Scharf and

Lory (2002, 2009) used both color film and reflec-

tance measurements to predict economic optimum

nitrogen rates (EONR) for maize at the six-leaf

stage and concluded that for this method to work,

there could be no nitrogen applied at planting, a

high nitrogen strip is necessary for comparisons,

and there can be no soil background present in any

of the observations.

In the past 12 years, there has been an explo-

sion in the amount of research centered on the

use of remote sensing methods for estimating

nitrogen requirements in corn and wheat with

extension to rice (Oryza sativa L.) and sugarcane

(Saccharum officinarum L.). Raun et al. (2011)

observed that the difference in the NDVI relative

to the growing degree days (GDD) accumulated

between the two observation periods was related

to the estimated yield in wheat and there was a

strong relationship between final grain yield and

estimated yield. They found this relationship

sound unless there was an event which reduced

yield, e.g., delayed harvest to late summer rains

or lodging or shattering. Water stress is a major

factor affecting nitrogen response in crops, and

Clay et al. (2006, 2012) found that water avail-

ability affected the utility of a reflectance index

and suggested that the use of indices should be

constrained to management zones with similar

crop water status within a field. In the nitrogen

response of cereals, there has been research

which has related a change in plant growth to

yield, and these changes in growth can be sensed

as part of the detection process. One example of

this relationship between NDVI and maximum

yield in wheat is shown in Fig. 14.2 as proposed

by Solie et al. (2012), and they expanded this

relationship into a more generalized relationship

for the use of the NDVI approach for nitrogen

management for both maize and wheat. This

relationship provides the rationale for nitrogen

management in crops using a reflectance index

based on the changes in the biomass. The algo-

rithm developed by Solie et al. (2012) is based on

the comparison of the measured reflectance of an

area of the field compared to a well-fertilized

area. This follows the findings of Blackmer

Fig. 14.2 Idealized

relationship between the

seasonal course of the

normalized difference

vegetative index and the

application to evaluating

yield potential in maize and

wheat (Adapted from Solie

et al. (2012))
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et al. (1996a) in which the estimation of the

nitrogen deficiency was greatly improved when

the field area was compared to a nitrogen-rich

strip in the field. Their development of the index

which utilizes a plateau for a nitrogen-rich crop

is very similar to the results obtained by

Blackmer and Schepers (1995). The comparison

of the observations of leaf chlorophyll or reflec-

tance in the field compared to a nitrogen-rich

strip has become a standard operating procedure

for utilizing different indices for nitrogen man-

agement. This approach has become known as a

sufficiency index or relative index. Solie

et al. (2012) developed their algorithm for poten-

tial yield with nitrogen management, YPN, based

on the following equation:

YPN ¼ YPmax

1þ exp RINDVIFPNDVI � Infð Þ=K½ �
ð14:1Þ

where YPmax is the maximum potential yield, Inf

is the location of the inflection point of the model

where the predicted yield is one-half of the

potential yield, and K is the curvature of the

sigmoidal model. In their approach they defined

FPNDVI as the average NDVI value from an adja-

cent strip with the nitrogen fertilizer applied at

the field or the farmer rate, and RINDVI is calcu-

lated as the NRNDVI/FPNDVI where NRNDVI is the

NDVI value from a nitrogen-rich strip in the

field. This approach has been used on both

wheat and maize with acceptable results. Solie

et al. (2012) stated that their generalized model

using the NDVI approach with observations col-

lected midseason could be applied to nitrogen

fertilizer management in maize and wheat.

The relationship of crop parameters to crop

yield has been the focus of several studies

associated with improved nutrient management

(e.g., Blackmer et al. 1996b; Raun et al. 2001;

Freeman et al. 2007; Adami et al. 2010). Yin

et al. (2011) demonstrated that plant height in

maize was related to grain yield, while Freeman

et al. (2007) found there was a strong relationship

between maize plant height and biomass and

used an index based on NDVI x plant height

collected between the eight- and ten-leaf stage.

In one experiment, Yin et al. (2011) evaluated six

different nitrogen rates—0, 62, 123, 185, 247,

and 308 kg·N·ha�1—in four different maize pro-

duction systems: nonirrigated maize after maize,

nonirrigated maize after soybean (Glycine max

(L.) Merr.), irrigated maize after soybean, and

nonirrigated maize after cotton (Gossypium

hirsutum (L.)]. Maize yield was significantly

related to plant height and positive at all three

vegetative growth stages, i.e., 6-leaf (V6),

10-leaf (V10), and 12-leaf (V12). There was an

exponential relationship between plant height

and grain yield with the strongest relationship at

the V10 and V12 growth stages which was con-

sistent among the management systems (Yin et al.

2011). There was an effect of nitrogen rate on the

plant height at each of the growth stages, and these

authors suggested that the use of ultrasonic plant

height detectors could potentially be used to

improve nitrogen management in maize. In a

subsequent study, Yin and McClure (2013)

found the relationships among maize yield, plant

biomass, plant height, and leaf nitrogen combined

with NDVI for the same four management

systems used by Yin et al. (2011) varied among

years. They suggested that the use of NDVI with

plant height is variable when used in the early to

mid-season growth periods, and there were

instances when both NDVI and plant height

provided the best relationships to maize growth,

plant nitrogen requirements, and grain yield.

In wheat, tiller density responds to changes in

nitrogen availability, and Flowers et al. (2001)

related tiller density to spectral indices at the

early stage of tiller development and found tiller

density was significantly related to near-infrared

digital counts. In order to develop a consistent

relationship among the locations, relative near-

infrared counts were compared to relative tiller

density using an approach in which areas with

high tiller density were used as a normalizing

process (Flowers et al. 2001). This procedure

was verified in a subsequent experiment by

Flowers et al. (2003) using different wheat

varieties, soil colors, and weed densities, and

they found that they could provide an accurate

nitrogen recommendation 85.5 % of the time

across a wide range of environments and man-

agement systems. Utilization of the concept of
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evaluating tiller density in wheat is similar to the

biomass approach by Solie et al. (2012) because

changing tiller numbers would account for

changing biomass amounts. Mullen et al. (2003)

developed a relationship between a response

index, RIharvest, and RINDVI in which the RIharvest
values measured the responsiveness to additional

nitrogen in the grain yield and RINDVI provided a

measure of the response during the growing sea-

son. They found RIharvest was accurately

predicted (r2>0.56) by RINDVI values when rel-

ative values between a non-limiting nitrogen

strip and the actual strip were compared. For

effective nitrogen management, it is critical to

have a comparison strip which represents a

non-limiting nitrogen environment within the

same field and to avoid any water stress

conditions as suggested by Clay et al. (2012).

They expanded this comparison of well-fertilized

and well-watered wheat strips with the

underfertilized area to create a sufficiency index

expressed as ratio of NDVI values from a well-

fertilized and well-watered area (SI-NDVIwf)

compared to a ratio of NDVI from well-fertilized

water-stressed areas (SI-NDVImz). In their exper-

iment they found that water and nitrogen stress at

stem extension and flag leaf stage increased

green, red, and red-edge reflectance and reduced

the NDVI values. The use of the SI-NDVImz

values had a greater accuracy in fertilizer

recommendations than the SI-NDVIwf values

(Clay et al. 2012). Sripada et al. (2007) used a

similar approach at the end of the tillering stage

in wheat using color infrared photography and

found that when the biomass was greater than

1,000 kg·ha�1, the best indicator was based on

the comparison of measured reflectance com-

pared to a high nitrogen reference strip.

The findings by Mullen et al. (2003) suggest

that remote sensing techniques can provide a

technique for identifying environments where

responsiveness to nitrogen has provided a foun-

dation for subsequent research to improve nitro-

gen management. Sripada et al. (2008) and

Barker and Sawyer (2010) utilized active sensors

to compute the nitrogen needed to sustain maize

yields using a number of different indices. Barker

and Sawyer (2010) used a comparison as a dif-

ferential from the economic optimum nitrogen

rate (dEONR) with different sensor indices,

computed NDVI based on green wavebands,

NDVI, SPAD, and other waveband combinations

from these active sensors. Barker and Sawyer

(2010) found that the variability in prescribed

nitrogen rate was largest as the difference from

the EONR was small because when nitrogen

deficiency is small, the detectable differences in

leaf area or biomass from these spectral indices

are also small. In a subsequent study, Barker and

Sawyer (2010) used the normalized green NDVI

index to evaluate nitrogen management

strategies in maize in which there was a range

of preplant nitrogen applications from 0 to

270 kg·N·ha�1 and observations were made at

the ten-leaf stage of development. They used

the GNDVI values to determine the nitrogen

rate to apply and found that preplant nitrogen

plus the sensor-applied nitrogen created the max-

imum maize yield recovery from nitrogen stress.

In this study, yield recovery from deficit nitrogen

occurred when there was limited preplant nitro-

gen applied and the GNDI values were used to

estimate nitrogen application rates (Barker and

Sawyer 2010). They concluded that the method

of preplant nitrogen with the GNDVI method for

determining additional nitrogen to apply would

provide maize producers with a management tool

to avoid nitrogen deficiency and obtain potential

yields (Barker and Sawyer 2010). Sripada

et al. (2005) used a similar approach in which

they applied different amounts of nitrogen to

maize at planting and at tasseling and then col-

lected yield and near-infrared color photography

just before the nitrogen application at tasseling.

They found they could predict EONR at the

tasseling stage using a relative GNDVI value to

a high nitrogen strip and could utilize this

method to improve nitrogen management.

Sripada et al. (2006) evaluated relative GNDVI

at the seventh leaf stage and found significant

relationships with nitrogen application rates;

however, the scatter about the linear

relationships was large. Sripada et al. (2008)

demonstrated the method of using the relative

differences in reflectance with the GNDVI and

coupled this with the ratio of nitrogen fertilizer

cost to corn price to adjust the EONR for maize.

There are advantages to using these techniques to
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improve nitrogen management during the grow-

ing season for use by producers.

The current methodology to estimate nitrogen

response has been the direct comparison between

a nitrogen-rich strip and the other areas of the

field. Raun et al. (2008) proposed the use of a

ramp calibration method for preplant nitrogen

application rates as a method to determine the

crop responsiveness over a range of application

rates using 16 different incremental nitrogen

rates from 0 to 225 kg·N·ha�1 over a 55 m strip

in the field. Observations of NDVI would be

collected over different treatments to determine

the nitrogen rate where the NDVI values are

maximum across the ramp calibration strip.

Using this approach allowed for the determina-

tion of nitrogen response at the Feekes growth

stage 5 in wheat and the eight-leaf growth stage

in maize. This system may provide a more reli-

able indication of nitrogen response than the

nitrogen-rich strip because of the lack of

responsiveness observed when the rates are near

the EONR (Barker and Sawyer 2010). Scharf

et al. (2011) compared the sensor-based nitrogen

application rates relative to the producer’s

selected nitrogen rates across 55 replicated

on-farm trials in Missouri and found the use of

the sensor-based rates based on a relative visible/

near-infrared index compared to a nitrogen-rich

strip increased the profit by $42 ha�1, increased

yield by 110 kg·ha�1, and reduced the nitrogen

application by 16 kg·ha�1. They concluded that

the use of the sensor-based methods for nitrogen

management was superior to the producer’s

selected nitrogen rates (Scharf et al. 2011). The

use of reflectance indices of different forms using

either active or passive sensors has proven to be a

reliable method for determining nitrogen appli-

cation rates to maximize yields provided that the

observations obtained within a field are com-

pared to a nitrogen-rich strip within the same

field. The recent results by Arnall et al. (2013)

obtained from 261 site years of long-term wheat

and maize studies across the Midwestern United

States the nitrogen responsiveness or the

response index by dividing the actual grain

yield from high nitrogen rate plots with either

the 0 nitrogen fertilizer check or the medium

nitrogen rate plots. They found that nitrogen

responsiveness and yield potential were indepen-

dent of each other and a necessary step for the

development of more accurate sensing of deter-

mination of fertilizer rates to be adjusted at

mid-season will need both potential yield and

the response index as independent variables.

The relationships developed between differ-

ent indices based on reflectance observations

show promise in being able to detect nitrogen

deficiency with sufficient accuracy to allow for

improved nitrogen management. The

relationships reported by the different studies

show a wide range in the strength of the

relationships; however, the continual refinement

over the course of the past decade has made these

techniques a viable management tool for wheat

and maize production.

14.4 Application to Other Crops

The vast majority of the research and application

of remote sensing to nitrogen management has

been conducted and evaluated on maize and

wheat production systems; however, there have

been many studies conducted on other crops as

well. Bronson et al. (2005) evaluated the NDVI

approach for cotton in the Texas High Plains and

found that NDVIs were poorly related to leaf

nitrogen content, plant biomass, and lint yield.

They concluded that for this approach to work,

there must be a use of the well-fertilized areas

and the sufficiency index. Zhao et al. (2005)

found that leaf chlorophyll was closely related

to reflectance ratios using either R708/R915 or

R551/R915 wavebands and there was a linear rela-

tionship between leaf nitrogen content and the

reflectance ratio of R517/R413. In a subsequent

study based on the observations from their origi-

nal study, Bronson et al. (2011) found that when

NDVI values in the field decreased below a

nitrogen-rich area and nitrogen was added to

the treatment areas, there was a reduction in the

amount of nitrogen applied by 33 % with no

impact on lint or seed yield. They also found

that the EONR varied from 23 to 75 kg·N·ha�1

among the 3 years of their study suggesting that

the nitrogen response will differ among years due

to growing conditions. There are differences in
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the results obtained from these studies on cotton;

however, the overall conclusion is that

reflectance-based approaches provide a viable

method for nitrogen management in cotton

(Raper et al. 2013).

In rice (Oryza sativa L.), Turbaña et al. (2011)
found that NDVI and a simple ratio of RNIR/Rred

varied in their relationship to biomass and grain

yield depending upon the viewing angle of the

sensor. At panicle differentiation, there was no

difference in the relationship across viewing

angles; however, at 50 % heading the off-nadir

angles viewed more green vegetation. Both the

NDVI and simple ratio method produced a large

variation in the goodness of fit among years

indicating that without a reference method for

nitrogen, single measurements will not produce

reasonable results. When they utilized a

nitrogen-rich strip as part of the observational

procedure and then compared a relative NDVI

with a relative yield, then there was a significant

linear relationship between relative NDVI and

relative yield values (r2 ¼ 0.63) for the

observations collected at panicle differentiation

plus 1 week (Turbaña et al. 2012). Lee

et al. (2008) had previously observed that the

ratios of different wavebands and the NDVI did

not provide as reliable indicator of leaf N con-

centration or accumulations as compared to a

derived spectral model based on the reflectance

at 0.735 μm. They concluded from their studies

that the use of this approach coincides with the

current schedule for sidedress applications of

nitrogen in the southern United States and could

provide a valuable management tool.

Lofton et al. (2012) applied the same

approach of using a relative NDVI and a relative

yield response for sugarcane and found a strong

relationship between the response index and cane

tonnage (r2 ¼ 0.92) and sugar yield (r2¼ 0.81).

They concluded that this approach is a method

for evaluating sugarcane response to nitrogen

fertilizer management and the adaptation of

methods developed for other crops are applicable

to sugarcane (Lofton et al. 2012). Gehl and Bor-

ing (2011) found a similar response in sugar

beets (Beta vulgaris L.) when the NDVI

approach was used and could be used as a tool

to estimate yield and recoverable sugar. Flowers

et al. (2010) evaluated the NDVI approach for

seed production in perennial ryegrass (Lolium
perenne L.), and relative values of NDVI or

near-infrared were comparable to the relation-

ship between seed production and tissue testing

of leaf nitrogen concentration. The application of

the methods of using relative NDVI or relative

GNDVI values between a nitrogen-rich strip and

the treatment area performs equally well for

crops other than maize and wheat; however,

each crop requires the development of the rela-

tionship between crop yield and biomass to

determine the nitrogen management response

relationships.

14.5 Development of New Methods
of Crop Sensing

Bélanger et al. (2005) proposed the use of a

multivariate indicator to detect nutrient

deficiencies in crops and proposed for potato

(Solanum tuberosum L.) that a multivariate indi-

cator of nitrogen imbalance (MINI) based on

reflectance and fluorescence indices would be

useful. They used reflectance indices based on

combinations of wavebands and simple ratios

and found that MINI could correctly detect

70 % of the nitrogen-deficient plants and 90 %

of the nitrogen-sufficient plants, and this method

would be more rapid than the current method of

tissue testing. This approach has been utilized in

a nitrogen management system but demonstrates

the utility of remote sensing indices to quantify

nitrogen deficiency in crops. However, this type

of approach may require extensive calibration to

assess its utility at the canopy scale. The original

research on nutrient deficiency focused on the

chlorophyll content in the leaf, and the utilization

of the NDVI or GNDVI has replaced leaf chloro-

phyll to focus more on remote sensing

parameters more closely related to canopy bio-

physical properties, e.g., canopy biomass or

potential crop yield. One example of utilizing

additional portions of the light spectrum was

shown by Adami et al. (2010) in which they

linked the NDVI values with absorption
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parameters of a wheat canopy at 1.025 μm to

obtain improved estimates of leaf area index

and grain yield.

There have been several chlorophyll indices

developed to directly estimate the chlorophyll con-

tent of plant canopies. These range from the simple

ratio index proposed by Gitelson et al. (2003, 2005)

as CIgreen ¼ RNIR=Rgreen

� �� 1in which the value

of 1 in the relationship is the soil background

offset. This value will vary among soils, and for

Ames, Iowa, on a Nicollet soil with 4 % organic

matter in the surface, the value is 1.6. There are

other chlorophyll indices which have been

developed including the modified chlorophyll

absorption ratio index (MCARI) developed by

Fillela et al. (1995), the normalized pigment

chlorophyll ratio index (NPCI) developed by

Haboudane et al. (2004), and the triangular

greenness index (TGI) by Hunt et al. (2011)

with their equations shown in Table 14.1.

There may be more value in exploring the use

of alternative remote sensing methods for esti-

mating nitrogen response compared to the NDVI

method. A comparison of these four methods for

a nitrogen study on corn is shown in Fig. 14.3 as

an example of the seasonal variation in two dif-

ferent nitrogen management practices of no

nitrogen fertilizer and 150 kg·ha�1 of preplant

nitrogen. During the period in which the NDVI

method is used, the NDVI method is one of

the least responsive to differences in nitrogen

supply compared to any of the other three

indices (Fig. 14.3). Eitel et al. (2008) focused

on chlorophyll-a and chlorophyll-b and nitrogen

status in wheat in Idaho and Oregon using a

number of simple indices which are currently

being used for nitrogen management assessment

and found that NDVI, GNDVI, and simple

ratio using green, red, or near-infrared-

reflectance were poorly related to leaf

nitrogen concentration or to SAPD readings

because these indices were extremely sensitive

to changes in leaf area index. This confounded

the ability to detect nitrogen status in the

crop and found the MCARI/ MTV12,

as proposed by Eitel et al. (2007) where MTV12

is the modified triangular vegetation index

ðMTV12 ¼ 0:5½120ðR700 � R550Þ � 200ðR670 � R550Þ,
to provide themost consistent relationship to either

SPAD or leaf nitrogen tissue concentration.

An alternative index for chlorophyll was pro-

posed by Cammarano et al. (2011) in which they

used the normalized difference red edge (NDRE)

computed as (R790–R720)/(R790–R720) and the

crop canopy chlorophyll index (CCCI) expressed

as the (NDRE–NDREmin)/

(NDREmax–NDREmin). Their approach is similar

in function to previous work in using a nitrogen-

rich strip as the basis of the comparison but still

utilizes remote sensing information of the can-

opy. In their studies the goodness of fit for the

nitrogen management model was good with a

RMSE of 0.2 g·N·m�2 in the model (Cammarano

et al. 2011). Delegido et al. (2011) used a

detailed reflectance data to derive a normalized

area over reflectance curve (NAOC) expressed as

follows:

NAOC ¼ 1�

Z
795

643
Rdλ

152R795

ð14:2Þ

where R is the reflectance between the two

wavelengths and 152 represents the maximum

reflectance at R795. They used this model to

obtain chlorophyll observations closely related

to SPAD readings across a number of crops

growing in the Iberian region of Spain (Delegido

et al. 2011). Adams et al. (2000) used a

yellowness index (YI) based on a graphical

method to determine the concavity or convexity

of concentrations of leaf chlorophyll induced by

different nutrients which quantifies leaf chloro-

sis. The approach is based on the wavelength

range between 0.55 and 0.67 μm and is the sec-

ond derivative of the reflectance spectrum

between these two wavelengths. This has only

been evaluated on single leaves in controlled

systems but does offer the potential to provide a

different method to quantify leaf chlorosis.

There continues to be the development of

techniques which provide different methods of

utilizing remote sensing for the detection of crop

nitrogen status. The current methods rely heavily
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upon a nitrogen-rich strip, and as found by

Barker and Sawyer (2010), the ability to resolve

differences may be limited when only minimal

amounts of nitrogen are needed. The findings of

Clay et al. (2012) suggest that comparisons to a

nitrogen-rich strip may require isolating these

comparisons to the same management zone

within the field because of the differences in

soil water availability creating problems in accu-

rately detecting nitrogen stress. However, Inman

et al. (2008) demonstrated that the inclusion of

soil management zones based on color along

with NDVI across fields resulted in only mar-

ginal improvement in their ability to assess

maize yields. Addressing the problems of

heterogeneous fields will offer a challenge to

being able to effectively develop nitrogen man-

agement strategies (Zillmann et al. 2006). The

development of methods to continue to refine and

improve nutrient management would be of agro-

nomic benefit.

14.6 Application of Crop Sensing
and the Impact

The ultimate goal of the crop sensing techniques

is to improve agronomic management in differ-

ent crops. There have been several metrics which

include increased yield, decreased nitrogen
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Fig. 14.3 Comparison of normalized difference vegeta-

tive index (NDVI), chlorophyll index, modified chloro-

phyll adsorption ratio index, and normalized pigment

chlorophyll index over the growing season for maize

grown in Ames, Iowa, under two different nitrogen

management regimes. The period from day of year

169–183 represents the V6–V10 period of phenological

development

218 J.L. Hatfield



input, or increased nitrogen use efficiency. Hong

et al. (2006) demonstrated agronomic and envi-

ronmental benefits with the utilization of the

remote sensing methods to determine nitrogen

needs of the crop. They found there was a reduc-

tion in nitrate-N (NO3-N) while reducing nitro-

gen inputs and increasing the harvest nitrogen

ratio in both maize and wheat. This system was

more efficient than the best management practice

recommended for this region of North Carolina.

These observations support the conclusions of

Ferguson et al. (2002) that utilization of remote

sensing methods for site-specific management of

maize would reduce residual NO3-N and would

be a potential method to reduce groundwater

contamination from NO3-N. Kitchen

et al. (2010) found the value of using the canopy

reflectance method to obtain NDVI values and a

sufficiency index increased as the price of nitro-

gen fertilizer increased and the profits increased

between $25 and $50 ha�1.

In a different approach to using remote sens-

ing information, Kyveryga et al. (2010) used

aerial imagery to guide the late season fall nitrate

test in maize as a means of evaluating the effec-

tiveness of different nitrogen management

practices. This methodology offers a method for

quantifying the value of adaptive management

strategies in agricultural systems. Overall, the

utilization of crop sensing provides a framework

for the improvement of nitrogen management

both spatially and temporally across fields.

14.7 Challenges

There have been great advances in the past

10 years in the development, evaluation, and

refinement of the approaches used to detect nutri-

ent deficiency in the field with crop sensing

techniques. These efforts have focused primarily

on nitrogen because of the variable response and

the potential for environment impacts from

excess nitrogen; however, with continued

research the detection of deficiencies of other

nutrients is feasible. Although, there have been

advances in the evaluation of both the SPAD and

NDVI or GNDVI approaches, the challenge

remains to demonstrate that these techniques

can be incorporated into precision agricultural

management systems. The current research

results show success at the small field scale

with advantages in improving profit, reducing

nitrogen application amounts, improving nutrient

use efficiency, and enhancing environmental

quality. Nevertheless, these methods have yet to

be extended to an operational scale where the

effectiveness could be determined over large

land areas.

The current methods use either SPAD meters,

simple ratios of wavebands, or the NDVI or

GNDVI methods as the foundation and require

the use of a reference strip within a field for the

direct comparison between a nitrogen-rich area

and the area to be managed. The SPAD system is

based on leaf chlorophyll; however, many of the

other spectral methods are more closely related

to leaf biomass or leaf area and build their

relationships to nutrient management on a com-

parison of changes in these canopy properties

rather than leaf or canopy nitrogen concentration.

The challenge should be to continue to develop

spectral models for potential use in precision

agriculture which are more closely linked to

changes in chlorophyll than biomass. This will

create systems which may rely less on a compar-

ison strip in the field and more on actual plant

response to nutrient deficiencies.

Agriculture faces many challenges to increase

the efficiency of production, and further devel-

opment of techniques to improve management

will pay large dividends from both a production

and an environmental endpoint. Addressing these

challenges will provide a more robust agricul-

tural system, and the progress made in the past

10 years offers the promise for continued

advances in the next decade.
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Phenotyping Nutritional and
Antinutritional Traits 15
Dil Thavarajah, Casey R. Johnson, Rebecca McGee,
and Pushparajah Thavarajah

Abstract

Evolution of nutrient-rich food systems to calorie-focused production

agriculture has created serious agricultural and human health issues:

marginalization of traditional agricultural crops, greater dependence of

agricultural inputs, and creation of both energy and micronutrient malnu-

trition. To date more than half of global human populations are suffering

numerous health problems associated with excess calories and lack of

essential micronutrients. Pulse crops, in particular lentils, are promising

crops not only to improve human health but also to reduce agricultural

inputs toward greater agricultural sustainability. In this book chapter,

human micronutrient malnutrition issues, suggestions to reduce micronu-

trient deficiencies, promise of pulse crops using lentil as an example,

lentil’s micronutrient and antinutrient profiles, nutrient analytical

procedures, and the needs to shift our thinking from calorie-focused to

nutrient-focused approaches are also presented.

Keywords

Micronutrients • Malnutrition • Biofortification • Fe • Zn • Foliates •

Methods of analysis

15.1 Introduction

Millions of people around the world suffer from

appalling nutrition. To combat global malnutri-

tion, novel ways to produce nutritious foods,

beyond calorie-focused approaches, are required.

Intensive agricultural practices resulting from the

“green revolution” increased production of

cereal crops, mainly rice (Oryza sativa L.),

wheat (Triticum spp.), and maize (Zea mays L.),

and have enabled most Asian and African
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populations to get enough calories from their

staple foods. However, while cereal staples are

a good source of carbohydrates and can satisfy

daily caloric requirements, they do not provide

daily requirements of protein and a range of

micronutrients including iron (Fe), zinc (Zn),

iodine (I), vitamins A and C, riboflavin, selenium

(Se), copper (Cu), calcium (Ca), folates, and

carotenoids. Proteins and micronutrients are not

only essential for general well-being; they are

also being increasingly recognized as important

for human health and disease prevention.

Continuing to follow intensive cereal- or

“calorie”-only food production practices may

further increase the number of malnourished peo-

ple around the world. Malnourished populations

have weak physical and mental growth potential,

have reduced work productivities, and continue

to suffer from other health problems (Welch and

Graham 1999, 2004). The inability to find a solu-

tion to micronutrient malnutrition or “hidden

hunger” could have irreversible impacts on

human health and lives into the future.

During the green revolution, calorie-focused

cereal crop production practices replaced a range

of traditional food crops, including legumes,

tubers, fruits, and vegetables; these are the

foods that provided micronutrients to many

populations of Southeast Asia and Africa

(Welch and Graham 2005). The global popula-

tion continues to increase, with more than 90 mil-

lion people to feed each year; global food

demands are expected to double by 2050. With

limited arable lands, decreasing soil fertility, and

declining water resources, the present food

systems are already challenged with respect to

providing sufficient micronutrients to most

global populations. Dependence on animal

products for daily nutrients is not an option for

most populations in the developing world and is

becoming more difficult in most developed

countries. Therefore, investigating the potential

of traditional food crops may be necessary to

provide better nutrition solutions toward

improved human health.

Food legumes could be a central part of future

sustainable food systems. Development of whole

grain legumes and other nutritious crops may

address malnutrition epidemics in both develop-

ing and developed countries. To this end, lentil

(Lens culinaris Medik), a cool season food

legume, has been a central part of biofortification

research efforts due to its superior nutritional

profile and short cooking time. This chapter

focused on nutritional and antinutritional traits

and their phenotyping. Nutritional traits include

levels of minerals (e.g., Fe), antinutrients (phytic

acid and phenolics), prebiotic carbohydrates, and

folates. Lentil is discussed as an illustrative

example of pulse crop in the context of recent

scientific literature.

15.2 Present Status of
Micronutrient Malnutrition

Approximately 40 % of the world’s population is

currently facing hidden hunger due to diets that

are deficient in essential micronutrients. World-

wide, 40 % of women and 50 % of pregnant

women are Fe deficient; these are staggering

statistics when combined with evidence that

approximately 40 % of total childbirth deaths

could be prevented by adequate Fe status

(Welch and Graham 2005). Severe vitamin A

deficiency blinds approximately half a million

children in Southeast Asia and Africa each year.

Zinc and Se deficiencies reduce the body’s abil-

ity to fight off malaria, diarrhea, pneumonia, and

HIV. Rickets, a forgotten skeletal disorder due to

vitamin D or calcium deficiency that results in

the inadequate mineralization of the bone, has

reemerged as a public health problem in

Bangladeshi infants and children. To address

these nutritional problems through food systems,

the world may need a second revolution: a

“greener” revolution to provide not just food

but more nutritious foods, including grain

legumes. The measureable outcomes would be

healthy communities instead of crop production

per capita.

Micronutrient malnutrition is defined as a

deficiency in one or more vitamins or minerals

essential for human health, of which more than

50 have been identified. The three most com-

monly studied micronutrient deficiencies in the
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world are anemia (related to dietary Fe),

vitamin A, and iodine (I). Other common micro-

nutrient deficiencies, including zinc (Zn), sele-

nium (Se), and vitamin B12, are equally

important for human health (Welch and Graham

2005). The global prevalence of iron-deficiency

anemia among children is nearly 47.8 %, and for

vitamin A and iodine deficiencies, it is 30.7 and

30.3 %, respectively (WHO 2008). Welch and

Graham (2005) argued that this alarmingly

increasing micronutrient malnutrition trend is

due to the decreased production of

micronutrient-rich foods, including pulses

(lentils, field peas, chickpea, and common

beans) (Welch and Graham 2005). For

thousands of years, farmers adopted simpler

rotations of high-yielding and more profitable

cash crops, i.e., wheat, maize, and rice, with

nutritionally rich legume crops to sustain their

livelihoods and their societies. However,

present-day calorie-centric agriculture is devoid

of these traditional or more diverse cropping

systems, leading to never-before-seen nutrition

transitions that are linked with increased rates of

noncommunicable diseases in both developing

and developed countries.

Micronutrient deficiencies have been

addressed through food fortification and mineral

supplementation; however, these efforts have not

resulted in reduction of micronutrient epidemics

in most parts of the world. Expert

recommendations suggest improving human

nutritional status through the following efforts:

(1) biofortification, i.e., breeding micronutrient-

enriched staple food crops through conventional

plant breeding and modern biotechnology;

(2) diet diversification (includes more pulses,

fruits, tubers, small fish, and vegetables);

(3) reduction of micronutrient losses from post-

harvest and food processing through increased

food utilization and accessibility; (4) changing

of the combination or mix of food choices to

increase micronutrient bioavailability (nutrient

absorbance promoters and inhibitors); and

(5) recycling of food waste and water (Welch

et al. 1997; Bouis and Welch 2010; WHO 2008).

15.3 Biofortification

Past attempts to address hidden hunger have

included dietary supplements, food fortification,

and, more recently, “biofortification” (breeding

crops for increased micronutrient content and bio-

availability using conventional breeding and mod-

ern biotechnology). Unlike supplementation and

fortification, which add ongoing costs to

consumers, biofortification offers a unique oppor-

tunity to change crop nutritional value within the

food system and in ways that have minimum

impact on consumer cost. For this reason, bioforti-

fication is seen as having great potential as a sus-

tainable, food-based solution to global

micronutrient malnutrition (HarvestPlus 2013).

Biofortification programs, such as HarvestPlus,

BioFORT Brazil, and HarvestPlus-China, have

been a tremendous success in Africa, South Amer-

ica, and Asia. These programs collaborate with

many scientific institutions, government agencies,

and nonprofit agencies around the world. Target

crops include rice, wheat, maize, common bean,

sweet potato, cassava, and pearl millet for phase

one; many other crops are included in phase two.

The targeted nutritional traits include Fe, Zn, and

provitamin A (Table 15.1). The HarvestPlus pro-

gram impact pathway has discovery, development,

and delivery as its three major phases (Fig. 15.1;

Saltzman et al. 2013; Bouis et al. 2011). The dis-

covery phase includes identification of target

populations, setting required nutrient targets,

validating nutrient targets, and then screening the

appropriate germplasm for possible micronutrient

traits. The next step is the development of

micronutrient-enriched varieties, improving and

evaluating these varieties, testing nutritional effi-

cacy, and studying social aspects including farmer

adaptation and consumer acceptance. Finally, the

new varieties are delivered by release in target

countries with concurrent dissemination of infor-

mation to promote consumption (Fig. 15.1).

The biofortification (nutrient density) and bio-

availability of micronutrients are equally impor-

tant for achieving the optimal micronutrient
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status of a diet to combat global hidden hunger.

Nutrient density is a measure of nutrients in a

food per calorie or per unit weight. In contrast,

bioavailability is the proportion of an ingested

nutrient that is absorbed and utilized for essential

metabolic functions. Therefore, bioavailability is

a far more important concept with respect to

achieving biofortification program goals (Welch

2002; Miller and Welch 2013). The bioavailabil-

ity of a mineral micronutrient is governed by

many factors, including the host, digestive

environments, and the presence of mineral

absorption promoters and inhibitors in a food.

Absorption promoters, such as ascorbic acid,

carotenoids, prebiotic carbohydrates, certain

fibers, sulfur amino acids, and meat factors,

increase Fe absorption in the human digestive

system; phytic acid and polyphenols in plant-

based food are the major inhibitory factors of

Fe and Zn bioavailability (Table 15.2).

15.4 Nutritional Traits for
Phenotyping

15.4.1 Fe Bioavailability in Lentils

As presented in Table 15.2, determining the total

amount of Fe in seeds is not enough to predict the

impact of consumption with respect to meeting

human dietary requirements. The bioavailable Fe

is the only true measure of the nutritional impact

of any Fe-rich food crop. Measurement of human

Table 15.1 Biofortified crops, target nutrition/agronomic traits, and country-release schedule

Target crop Nutritional trait Agronomic trait Countries

Release

schedule

Sweet

potato

Provitamin A Disease/drought/acid soil

tolerance

Uganda, Mozambique, Brazil,

China

2002–2010

Bean Fe, Zn Virus/heat/drought tolerance Rwanda, DR Congo, Brazil 2008–2012

Pearl millet Fe, Zn Mildew/drought/disease

tolerance

India 2012

Wheat Zn Disease/lodging resistance India, Pakistan, China, Brazil 2011–2016

Maize Provitamin A Disease resistance Zambia, Nigeria, Brazil, China 2012–2015

Rice Fe, provitamin

A

Disease/pest/cold/submergence Bangladesh, India, China 2010–2013

Cassava Provitamin A Disease tolerance Nigeria, Kenya 2017

Lentil Fe, Zn Disease/heat/drought tolerance Nepal, Bangladesh, Ethiopia,

India

2012

Cowpea Fe, Zn Disease India, Brazil 2008

Banana Provitamin A,

Fe

Unknown Uganda 2019

Pumpkin Provitamin A Unknown Brazil 2015

Irish potato Fe Unknown Rwanda, Ethiopia Unknown

Adapted from Saltzman et al. (2013), Miller and Welch (2013), Bouis et al. (2011)

Fig. 15.1 HarvestPlus impact pathway (Adapted with

permission from Saltzman et al. (2013))
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bioavailability of Fe from plant-based foods is a

complex process because numerous factors influ-

ence the final Fe bioavailability in the gut:

(1) crop genetic selection and production

practices; (2) other meal composition; (3) indi-

vidual characteristics; (4) processing, cooking,

and preparation of foods; and (5) individual

ingestion, absorption, and utilization of bioavail-

able Fe. As a result of this complexity, the data

obtained from bioavailability models are unclear

(Welch and Graham 2005; House 1999; Van

Campen and Glahn 1999). Human efficacy trials

are the most appropriate way to test for true Fe

bioavailability; however, it is impractical to test

the bioavailability of Fe of thousands of

genotypes that can be generated from breeding

programs.

Lentil breeding and nutritional quality

programs in the USA and ICARDA together

developed a robust model to select appropriate

lentil germplasm for Fe biofortification based on

food matrix factors. First, Fe bioavailability in

lentil germplasm is screened based on food

matrix factors, including Fe bioavailability

promoters (ascorbic acid, prebiotic

carbohydrates, phytoferritin, and carotenoids)

and inhibitors (phytic acid, kaempferol, gallic

acid, and chlorogenic acid). Once appropriate

breeding efforts are carried out, based on the

phenotyping data and nutritional quality, Fe bio-

availability studies are conducted using an

in vitro Caco-2 cell model for selected advanced

breeding lines only. Finally, these selected

varieties are used in human trials to test the true

Fe bioavailability of lentils.

Phenotyping of lentil for true Fe bioavailabil-

ity is an expensive process, as bioavailability is

governed by many food matrix factors. Available

data on lentil Fe biofortification are based on the

total Fe concentration and the direct measure-

ment of Fe bioavailability using Caco-2 cell cul-

ture models (Table 15.3; Thavarajah et al. 2009a;

Boum et al. 2008; Della Valle et al. 2013a, b) in

the seeds and do not consider food matrix factors

or regular household cooking methods that can

govern the true Fe bioavailability. Some studies

report phytic acid concentration but other food

matrix factors are not considered. A recent study

reports lentil genotypes with superior Fe

concentrations with phenolic and phytic acid

profiles for enhanced Fe bioavailability

(Table 15.3; Johnson et al. 2013a). Ten lentil

commercial cultivars grown in two locations

and years were tested for total Fe, phytic acid,

ascorbic acid, gallic acid, and chlorogenic acid.

Total lentil seed Fe concentration across

genotypes was 56–70 mg/kg with low

concentrations of phytic acid (6.3–8.7 mg/kg).

Table 15.2 Micronutrient bioavailability promoters and inhibitory substances in foods

Nutrient Promoter substances Antinutrients (inhibitors)

1. Fe

and Zn

1. Organic acids (ascorbic acid, malate, citrate, fumarate) 1. Phytic acid

2. Amino acids (methionine, cysteine, histidine, lysine) 2. Polyphenols (kaempferol, gallic

acid, chlorogenic acid)

3. Beta-carotene 3. Tannins

4. Meat factors 4. Certain fibers

5. Prebiotic carbohydrates (fructooligosaccharides,

galactooligosaccharides, sugar alcohols, raffinose family

oligosaccharides)

5. Heavy metals

6. Some phenolic acids-quercetin and ferulic acid

7. Hemoglobin (only for Fe)

8. Long-chain fatty acids (palmitate; only for Zn)

2. Se 9. I

3.

Vitamin

A

10. Beta-carotene

11. Fats and lipids

Adapted from Welch and Graham (2005), Johnson et al. (2013a)
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Overall, lentil cultivars Pennell and Rivel may

have higher Fe bioavailability based on food

matrix factors; however, the true Fe bioavailabil-

ity has yet to be tested.

Iron is divided into two categories from a

nutritional point of view: heme and nonheme.

The heme form absorbs as a stable porphyrin

complex that is unaffected by antinutrients

including phytic acid, tannins, and phenolics.

However, nonheme Fe from plant-based diets

is easily transformed by antinutrient

compounds. For example, antinutrients are

capable of binding nonheme Fe and producing

insoluble Fe complexes in the intestinal lumen,

resulting in inhibition of Fe absorption. Two

Fe-binding proteins occur naturally in foods—

lactoferrin (animal foods) and phytoferritin

(plant foods)—in which Fe is separated from

chelates by a protein coat and made less sensi-

tive to antinutrient factors present in the food

matrix. Legume phytoferritin contains

1,800–2,200 atoms of Fe per molecule

depending on the growing location and environ-

ment (Zhao 2010). Therefore, delivering con-

siderable amounts of bioavailable Fe is

possible by enhancing the phytoferritin levels

in food legumes.

15.4.2 Lentil Prebiotics

Prebiotics are an important nutritional compo-

nent of foods. The concept of prebiotics is

based on dynamic processes of the microbiota

in the intestinal tract, which comprises over

1,000 known species. These commensal

microbes can be manipulated to benefit

(or worsen) human health via the substrates that

are made available for fermentation (undigested

food components). A prebiotic is selectively

fermented when consumed, altering the compo-

sition and/or activity of the microbiota to yield

health benefits to the human host. A variety of

health benefits may be provided from prebiotics,

including immunostimulation (Guigoz

et al. 2002), prevention of intestinal infections

(Bosscher et al. 2006), increased bioavailability

of minerals (Mg, Ca, Fe, and others) (Franck

2006), and reduced risk of osteoporosis (Abrams

et al. 2005) and metabolic diseases.

Table 15.3 Seed Fe (mg/kg), phytic acid (PA; mg/g), ascorbic acid (AA; mg/kg), gallic acid (GA; mg/kg), and

chlorogenic acid (CLA; mg/kg) concentrations as well as Fe bioavailability (using Caco-2 cell culture model; ng

ferritin/mg protein) of lentils grown in the USA and Canada

Genotype Fe PA AA GA CLA Fe bioavailability Reference

CDC Greenland 56.7 8.7 69.4 24.4 20.9 – Johnson et al. (2013a)

61.0 6.1 – – – 12.2 Della Valle et al. (2013a)

CDC Lemay 67.9 8.5 67.2 24.4 12.1 – Johnson et al. (2013a)

75.3 – – – – 3.4 Della Valle et al. (2013a)

CDC Red Rider 56.3 8.4 62.4 22.8 16.8 Johnson et al. (2013a)

53.4 – – – – 2.5 Della Valle et al. (2013b)

CDC Redberry 56.8 7.3 71.5 22.2 14.8 – Johnson et al. (2013a)

68.8 6.6 – – – 7.8 Della Valle et al. (2013a)

CDC Richlea 56.3 6.8 69.7 27.1 18.8 – Johnson et al. (2013a)

CDC Rosetown 62.3 6.8 62.3 24.8 19.0 – Johnson et al. (2013a)

71.8 6.5 – – – 8.4 Della Valle et al. (2013a)

CDC Rouleau 61.3 6.7 75.7 22.2 12.7 – Johnson et al. (2013a)

86.2 – – – – 3.0 Della Valle et al. (2013b)

CDC Viceroy 61.3 7.7 76.6 24.4 18.6 Johnson et al. (2013a)

74.4 – – – – 3.5 Della Valle et al. (2013b)

Pennell 69.5 7.5 81.8 27.7 18 – Johnson et al. (2013a)

Riveland 62.3 6.3 87.4 29.5 22.2 – Johnson et al. (2013a)

Data from Johnson et al. (2013a), Della Valle et al. (2013a, b)
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Many carbohydrates that are now considered

prebiotics were documented in lentil decades

ago; however, discoveries of putative health

benefits have cast their presence in a new light.

Some prebiotic carbohydrates, such as raffinose

family oligosaccharides (RFO) and resistant

starch (RS), had been viewed as antinutrients.

Breeders and food processors sought to remove

RFO due to its implication in flatulence (Frias

et al. 1999) and RS to enhance the available

energy from food (Vidal-Valverde and Frias

1992). However, researchers have now begun to

see prebiotic carbohydrates as a breeding trait not

only for potential plant health and protection

(Peters et al. 2007) but also for human health

(Huynh et al. 2008).

In addition to RFO and RS, prebiotic

carbohydrates in lentil include sugar alcohols

and small quantities of fructooligosaccharides

(FOS) (Bhatty 1988; Wang et al. 2009;

Biesiekierski et al. 2011; Johnson et al. 2013b).

Variation in seed RFO concentrations ranges

from 1.8 to 7.5 % (Martinez-Villaluenga

et al. 2008). Results of a 2-year replicated field

study reveal genetic variability across ten com-

mercial lentil genotypes (Johnson et al. 2013b).

This variation is also observed in concentrations

of two sugar alcohols, sorbitol (1,036–1,349 mg/

100 g) and mannitol (158–294 mg/100 g), across

genotypes (Johnson et al. 2013b). The varietal

range in RS concentration in cooked lentil ranges

varies from 3.7 to 5.1 g/100 g dry matter (Wang

et al. 2009). FOS compounds nystose and kestose

have been reported in lentil but at low

concentrations and without significant genetic

variation (Biesiekierski et al. 2011; Johnson

et al. 2013b). A common finding accompanying

genetic variation of expression of prebiotic

carbohydrates is the influence of environmental

factors on their concentrations in lentil seeds

(Tahir et al. 2011; Johnson et al. 2013b). While

the literature clearly suggests that the accumula-

tion of these compounds in lentil can be

manipulated through breeding efforts and by

adapting plants to diverse locations, the potential

effects of doing so have not been studied.

Prior to the development of effective breeding

strategies to optimize prebiotic concentrations in

lentil, a thorough understanding of changes that

these compounds undergo during post-harvest

storage, processing, and cooking procedures is

required. RS and RFO (and FOS and sugar

alcohols; unpublished data) all accumulate pri-

marily in the cotyledon (Wang et al. 2009). The

traditional consumption of lentil, either as a

whole seed or dehulled and split, may have

nutritional importance. Removal of the seed

coat will concentrate prebiotic carbohydrates in

the prepared food. Moreover, the fraction of

starch that is resistant to human enzymes is

highly sensitive to preparation procedures

(Hoover and Zhou 2003). Cooling of boiled

lentils nearly doubles the RS concentration, a

phenomenon that is not reversed with reheating

(Fig. 15.2).

15.4.3 Lentil Folates

Folate is another important micronutrient with

respect to the prevention of preterm delivery,

low birth weight, fetal growth retardation, and

developmental neural tube defects (NTDs).

Folate fortification and supplementation

approaches have been attempted, but conflicting

results regarding the ability to prevent NTDs and

to increase the folate status at population levels

in different countries have raised doubts about

the continuous use of folic acid. The inability of

folic acid to prevent NTDs and safety concerns

with respect to too much folate in vulnerable

population groups (e.g., children) demands alter-

native approaches to supply daily folates.

Biofortification of staple crops with highly bio-

available folates might be a solution to folate

deficiency. Lentils are naturally rich in folates,

with levels in selected Canadian- and US-grown

commercial lentil genotypes, quantified as folic

acid equivalents, ranging from 275 to 622 μg/
100 g (data not shown).

A recent study indicates that there is potential

for genetic biofortification of lentils with bio-

available folates, quantified as tetrahydrofolate

(Sen Gupta et al. 2013). Folate concentration in

ten commercial lentil cultivars grown in North

Dakota, USA, ranged from 216 to 290 μg/100 g,
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which would provide 54–73 % of the

recommended daily allowance of dietary folate

for adults (Sen Gupta et al. 2013). In addition,

lentils have a higher folate concentration than

chickpeas (42–125 μg/100 g), yellow field peas

(41–55 μg/100 g), and green field peas

(50–202 μg/100 g) (Sen Gupta et al. 2013). Fur-

ther increases in folate levels and, more specifi-

cally, increases in bioavailable folate forms are

possible through accurate identification and

selection of genetic material and location sourc-

ing. Overall, this limited set of data shows that a

significant genetic effect could be further

enhanced by careful selection of growing loca-

tion (Sen Gupta et al. 2013).

15.5 Phenotyping Method for
Micronutrient Analysis

15.5.1 Minerals

Mineral profiles of plant seeds can be analyzed

by previously described modified HNO3-H2O2

method (Thavarajah et al. 2009a). Finely

ground seed sample (500 mg) digestion

with nitric acid (70 % HNO3) and hydrogen

peroxide (30 %) leads to release of mineral

micronutrients to the digested solution. The

minerals in the digested solution can be

carried out by atomic absorption spectroscopy

or inductively coupled plasma emission

spectroscopy.

15.5.2 Phytic Acid (PA)

PA involves prior PA extraction from sample

prior to analysis (Thavarajah et al. 2009b). Sim-

ply, 0.5 M hydrochloric acid (HCl) addition to

finely powdered sample and then heating in a

boiling water bath enable PA extraction. The

extracted PA could be decomplexed by addition

of stronger acid (12.0 M HCl). For accurate PA

identification and quantification, high-

performance anion exchange (HPAE) with a con-

ductivity detector was found to be a better

method. In this procedure, an OmniPac Pax-100

anion exchange column with an OmniPac

Pax-100 (8 μm) guard column (Dionex,

Sunnyvale, CA, USA) with gradient mobile

phase consisting of sodium hydroxide, deionized

water-isopropanol, and water provide very good

resolution of PA from other phytates. However,

this method needs a strong anion suppressor

because of higher conductivities of alkaline

mobile phase.
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15.5.3 Phenolics

Extraction and quantification of phenolic

compounds could be carried out by the previ-

ously described method (Duenas et al. 2002).

Phenolic compounds were extracted using meth-

anol/water/acetic acid. The extracted phenolic

can be analyzed by high-performance liquid

chromatography (HPLC) system with photodi-

ode array detection.

15.5.4 Folates

A finely ground sample needs to be dispersed in

an extraction buffer consisting of potassium

phosphate with sodium ascorbate and

2-mercaptoethanol. For foliate analysis,

tri-enzyme treatment method is used. In this

method, the homogenized seed samples need to

be treated with enzymes -amylase, protease, and

conjugase to release the folates from sample

matrixes. The extracted folates can be analyzed

on RP-HPLC (reversed-phase high-performance

liquid chromatography) with fluorescent or mass

detectors. This method has been described earlier

(Sen Gupta et al. 2013).

15.6 Future Direction on Nutritional
and Antinutritional
Phenotyping

Both caloric and micronutrient malnutrition are

important health concerns in developing

countries. A lack of micronutrients in daily

diets is a cause of many of the devastating health

impacts felt by billions of people worldwide.

Food systems based on a calorie-focused

approach need urgent changes to control both

malnutrition and associated diseases.

Past approaches to prevent micronutrient defi-

ciency, including fortification, supplementation,

and dietary diversification, have been met with

limited success. However, biofortification of

crops with micronutrients appears to be a sustain-

able solution to reduce micronutrient

deficiencies. As such crops are developed and

disseminated and become available to common

consumers, biofortified foods could become a

source of daily micronutrient requirements. To

this end, pulse crops provide great promise. In

particular, lentil is a protein-rich, medium-

energy crop with a range of micronutrients. It

has a high iron concentration with low levels of

phytic acid and other iron bioavailability

inhibitors and, hence, greater iron bioavailabil-

ity. In addition, it is a rich source of prebiotics

including fructose family oligosaccharides and

resistant starches. While lentil may be an ideal

crop for increasing bioavailable iron content, it is

also a medium-energy food source that would

serve to also reduce caloric malnutrition. Recent

research clearly shows that certain lentil varieties

have superior nutrient profiles, providing further

opportunities for increased biofortification and

bioavailability efforts. To seize these

opportunities, extensive characterization of

nutritional and anti-nutritional traits in different

cultivars, including wild genotypes, may be

required. This would be a fundamental step

toward a systematic and cost-effective way to

advance biofortification/bioavailability efforts.

Lentil is a pulse crop with several advantages:

superior iron and prebiotic carbohydrate profiles,

short cooking time (~10–20 min), and nitrogen-

fixing abilities. Therefore, incorporation of lentil

into future food systems may provide benefits

beyond a food-based solution to malnutrition.

Other crops, including other pulse crops, also

need to be studied to provide greater diversity

to food systems and consumer choices. Thus,

intensive phenotypic characterization is essen-

tial. Resource allocation and shifting of

“calorie”-focused thinking are urgently needed

toward the development of food systems that

will have sustainable human and environmental

health benefits.
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Experimental Designs for Precision
in Phenotyping 16
Murari Singh and Khaled El-Shama’a

Abstract

Precision phenotyping is the evaluation of a genotype’s expression in a

given environment with minimum influence of experimental error. This

chapter presents the basic principles of experimental designs and lists

commonly used experimental designs for phenotyping crop genotypes.

Experimental designs include unreplicated designs, incomplete block

designs, and variable replication block designs which can also be

generated using some selected software. This chapter illustrates some of

such experimental designs and key directives of the software which can be

used to generate and analyze these designs have also been included.

Keywords

Phenotyping • Experimental designs • Statistical analysis

16.1 Introduction

Phenotyping stands for observing or evaluating a

genotype in an environment, with least effect due

to experimental error, while genotyping stands

for observing and describing primarily the

genetic makeup of the genotype which is done

in terms of using various molecular markers such

as amplified fragment length polymorphism

(AFLP), simple sequence repeats (SSR), and sin-

gle nucleotide polymorphism (SNP). A pheno-

type is an expression of the molecular construct

of a genotype in a given environment and

depends on the various sources that govern the

expression. Thus, if a genotype is to be pheno-

typically evaluated in a specified factor-con-

trolled/designated environment, for example, a

drought-stressed environment, effort should be

made to eliminate the effects of all other factors

which influence the phenotypic expression. We

will discuss designs commonly used for

phenotyping in crop plants or for crop variety

evaluation in general. The experimental designs

may depend on the nature of genetic material and

its availability.

The selection of the traits for phenotyping is

important from various perspectives. Tuberossa

(2011) has discussed key concepts, issues, and

approaches for phenotyping for drought-stressed

crops. The role of phenotyping of drought-

adaptive traits and use of germplasm resources
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and genomic methods have been emphasized to

improve drought resistance, and important

elements of field plot techniques for obtaining

phenotypic data under water-limited conditions

have been listed. Recent interests have been

found in identifying traits that can be used to

identify genotype for climate change using cli-

matic and agroecological information (Bari et al.

2012). The field-based precision phenotyping

may be used to generate high-quality and large-

scale datasets under managed stressed

environments providing valuable guidance for

drought screening (Campos et al. 2011).

Depending on the trait, the mechanism of

phenotyping could vary. Phenotyping can take

place in Petri dishes in a temperature-controlled

room, pots in a greenhouse, or plots in a field at a

location with known biotic, abiotic, and edaphic

conditions/factors. The phenotypic expression of

the traits of interest of an object being

phenotyped, for example, the genetic material,

requires the identification of the population of

the responding units, for example, the field plots

under an environment with known stress levels.

The objective of this chapter is to briefly dis-

cuss basic principles of experimental designs and

provides examples of various experimental

designs used in phenotyping the crop genotypes

at various stages of plant growth. We give main

features of statistical analysis of data generated

using such designs. We also overview some main

statistical software which are used to generate

these designs.

16.2 Design of Experiments

Experimental design for phenotyping will

depend on the experimental material and sources

of variation therein which are likely to distort the

genotypic value of the genotypes. Experimental

design is a mechanism to generate scientific

evidences for collecting statistically valid and

reliable pieces of evidence on the phenotype of

the underlying genotype and is guided by the

level of variability within the experimental mate-

rial and size and shape of the experimental unit

(e.g., a pot in a greenhouse and a plot in a field),

operational convenience, and cost. The experi-

mental material may be seeds of a genotype kept

in Petri dishes for studying dormancy and germi-

nation, seedlings grown in tubes for tolerance to

salinity levels, and plants in pots kept in the

greenhouse for studying their response to con-

trolled application of stress – moisture stress,

insect, disease infection, or field plots for yield

and yield components evaluation.

An experimental unit is the smallest division

of the experimental material to which a genotype

is assigned recognizing the fact that any neigh-

boring experimental units may be assigned to

different genotypes. A set of all the experimental

units form the experimental material. In simplest

terms, an experimental design is an assignment

of treatments to the experimental units and is

implemented using the principles of randomiza-

tion, replications, and local control of experi-

mental error or reduction of errors with a view

to obtain a valid and precise evaluation of the

treatments under investigation. These three basic

principles of experimental designs are also

known as 3Rs of Sir R.A. Fisher (1990). Ran-

domization is a random assignment of genotypes

(treatments) to the experimental units. It is a key

element for assigning validity to the information

on phenotype and forms the basis for describing

the phenotype using a statistical model. Replica-

tion, the number of experimental units assigned

to a given genotype, is essential for estimating

the experimental error or experimental error var-

iance which is a variation arising from the

responses of the same genotypes on homoge-

neous experimental units. In reality, experimen-

tal material is not homogenous; the effort is made

to eliminate the effect of any systematic factor

using proper field plot management techniques

and/or by accounting for these systematic

factors, which helps in reducing the experimental

error variance. The experimental error variance

also depends on the size and shape of the experi-

mental units determined by the nature of the

experimental material required for phenotyping

and the treatments applied.

The precision of the treatment performance or

effect depends on the variability in the experi-

mental material and number of replications and
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can be increased by reducing the error variability

and/or by increasing the replication. When the

error variability cannot be reduced further, the

number of replications (r) can be chosen to

achieve estimates with a given precision using

the following commonly used expression

r ¼ 4θ2

ε2

where θ is the coefficient of variation of the trait

of interest for the population or the experimental

material after eliminating the effects of every

systematic factors, and ε is the relative absolute

difference in the observed treatment mean from

the r replications and the true treatment mean.

The basics of the principles of experimental

designs are described in standard texts by

Federer (1955), Cochran and Cox (1957),

Kempthorne (1983), Cox and Reid (2000),

Mead et al. (2002), Hinkelmann and Kempthorne

(2005, 2008) among others. A number of specific

situation-related experimental designs are given

in Hinkelmann (2012). We also refer to a check-

list of questions, that experimenters are advised

to answer, provided by Jeffers (1978).

There are primarily two types of effects

assumed for the treatments (genotypes) which

form the basis for developing the criterion for

which the designs are constructed. Under geno-

type effects assumed as fixed, designs are devel-

oped by minimizing the average variance of

estimated difference between effects of pairwise

treatments, and the resulting designs are called

A-optimal (Kiefer 1959). Under this setup, one

evaluates the phenotypes in the form of best

linear unbiased estimates (BLUEs). The crop

variety trial process comprises of selecting a

number of desired genotypes from a much larger

number under evaluation, and therefore, the

genotypes keep varying with time and the predic-

tion of future performance of a genotype is

needed. In this situation, genotypes are seen to

have been randomly drawn from a population or

a process resulting from a breeding strategy, and

the genotype effects may more appropriately be

assumed as random. Maximization of a genetic

gain or heritability is the parameters of interest.

These lead to developing experimental designs

which could optimize for average variance of

predicted difference between the best linear

unbiased predictors (BLUPs) (Cullis et al. 2006).

At various stages during plant development,

observations are recorded on the expressions or

responses in the field books or in an electronic

form using handheld or other electronic devices.

The data are then subjected to transformation, e.

g., yields recorded at plot basis are transformed

to yield per hectare, before using them in statisti-

cal analysis.

16.2.1 Software for Generating
Experimental Designs

There are several statistical packages such as

GenStat (Payne 2011), SAS (SAS Institute Inc.

1989), CycDesigN (Whitaker et al. 2002),

AGROBASE (Agronomix Software Inc. 1999),

etc. that can be used to generate randomized

plans. The design for partial replications can be

generated using codes of DiGGer, an R-package

(Coombes 2009).

16.3 Data Analysis Procedures

Statistical analysis is a procedure to draw infer-

ence on the genotypes by searching pattern in the

phenotypic evidences and assessing the strength

of the pattern relative to the noise arising from

experimental errors. The power of evidence on

the genotype effects can be enhanced by

incorporating any features inherited in the exper-

imental material at the design and analysis

stages. The data or response values are generally

modeled using the following representation:

Data or function of ðDataÞ ¼ Pattern ðexperimental factors; environmental patters; any other

systematic feature in the experimental materialÞ þ random error:

16 Experimental Designs for Precision in Phenotyping 237



The total variability in the data is then

partitioned into that due to various components

of the patterns and errors. The error variance,

measured by error mean squares, is used to assess

the significance or contribution of the

components of interest in the pattern. Often we

use analysis of variance (ANOVA) and estimate

means with standard errors and perform multiple

comparisons, and residual plot analysis is used to

examine the validity of assumptions underlying

the ANOVA. We will now discuss a number of

commonly used experimental designs for

phenotyping in a wide range of disciplines, such

as plant breeding and genetics, physiology,

pathology, and entomology.

16.4 Experimental Designs for
Phenotyping of Crop
Genotypes

For phenotyping of improved genetic material

generated through collection-selection missions

or crossing and for its evaluation in field

conditions, experimental designs are needed for

preliminary screening, advanced yield trials,

multi-locational trials, international nurseries,

etc. as described below. The necessary codes

and steps for using GenStat menus and R-pack-

age DiGGer are given in the Appendix.

16.4.1 Preliminary Screening/
Unreplicated Trials

At the preliminary stage of genetic material

development or the early generation testing, the

number of genotypes is often quite large with

limited seeds which are sufficient for only one

or a few replications. Further, seeds of a number

of genotypes, called checks with similar maturity

level, are available in sufficient number for

required number replications for evaluation of

experimental errors. A number of experimental

designs that are available include reinforced

block designs (Das 1958) and augmented designs

in one-way blocks (Federer 1961) and two-way

blocks (Federer and Raghavarao 1975; Lin and

Poshinsky 1983). A randomized plan for 45

unreplicated test genotypes in 9 incomplete

blocks of size 8, comprising 3 checks and 5 test

entries, is given in Table 16.1.

The statistical analysis model accounts for the

effects of incomplete blocks or row and column

effects and genotype effects. Interest lies in

estimates of adjusted means for the genotypes

and their standard errors, along with the estimate

of error variance, coefficient of variation (CV%),

standard errors of comparisons of two test

entries, test and check entries, and two check

entries. The software that could be used includes

GenStat (REML command), SAS (PROC

MIXED), and ICARDA programs using GenStat

software codes.

16.4.2 Advanced Yield Trials

Considerable research has been undertaken on

developing experimental designs for situations

in crop variety evaluations where sufficient

seeds are available to conduct replicated trials.

Designs with high efficiency are available for

almost any number of genotypes to be evaluated

in practice. Our experience indicates that the

following types of designs are generally used,

although these are not our recommendations.

16.4.2.1 Small Number of Genotypes
(V < 8)

Often the experimental units within small-sized

blocks can be expected to be homogeneous. For

Table 16.1 Layout of an augmented design in blocks

containing test entries numbered from 1 to 45 and check

entries numbered from 46 to 48

Blocks 1 2 3 4 5 6 7 8 9

Plots

1 47 23 41 43 14 36 25 21 22

2 46 35 26 48 47 13 48 48 1

3 9 47 46 47 16 4 47 3 5

4 28 46 33 15 31 47 12 47 47

5 48 48 47 29 48 48 32 24 48

6 38 19 6 46 34 46 46 46 44

7 7 45 48 17 46 20 11 18 46

8 39 10 30 37 2 40 27 8 42
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phenotyping a relatively small number of

genotypes in trays or pots in a greenhouse or in

plots in the field, one may use randomized com-

plete block (RCB) designs with larger number of

replications resulting into error degrees of free-

dom around 30. For controlling experimental

error variation in two directions, for example, in

the field, Latin square (LS) designs and Youden

square designs are found suitable. In LS designs,

the number of replications is equal to the number

of genotypes, while in RCB designs, they can be

chosen at will. An example is given in

Table 16.2.

16.4.2.2 Moderate Number of Genotypes
(V � 15)

While scope lies in having a better control of

variability, with moderate number of genotypes,

frequent use of randomized complete block

(RCB) designs can be found with three or more

replications. An example is given in Table 16.3.

16.4.2.3 Large Number of Genotypes
(V > 15)

In field trials, the plot-to-plot variability within

block increases with the size of the block. If a

large number of genotypes are experimented

using complete blocks, then plot-to-plot

variability within the large-sized blocks could

be perceived to be considerably high, and thus

RCB design may not give precise estimates

unless replications are increased at added cost.

Experimentation in relatively smaller-sized

blocks, i.e., use of an incomplete block design,

seems to be a favorable alternative. Further, it is

possible to find designs in incomplete blocks

such that if we rearrange the incomplete blocks

in a way that the group of incomplete blocks

placed physically together on the layout also

form full replicates. Such designs are called

resolvable block designs. An advantage of

resolvable block design is that the effectiveness

of incomplete blocks can be assessed in relation

to complete blocks. Literature contains several

classes of resolvable incomplete block designs:

balanced incomplete block designs, square lat-

tice designs, rectangular lattices, and α-designs
(also called α-lattices), which are based on the

structure of the number of genotypes, e.g., it may

be a square number or a rectangular number. The

α-designs (Patterson and Williams 1976) are

available for almost every practical number of

genotypes, with a small difference in block sizes,

and suit most of the field configurations (see

details below). The number of replications can

also be chosen at will.

16.4.2.4 a-Designs: A Class of Resolvable
Incomplete Block Designs

Patterson and Williams (1976) introduced a class

of resolvable incomplete block designs for any

number of varieties (v) and block sizes (k) such

that v is a multiple of k, i.e., v ¼ ks where s is the

number of incomplete blocks of the same size as

k. Thus the square lattices, rectangular lattices,

and resolvable cyclic designs are the special

Table 16.2 A randomized plan of a Latin square design

in six genotypes numbered 1–6

Columns 1 2 3 4 5 6

Rows

1 1 2 4 5 6 3

2 4 5 1 2 3 6

3 6 4 3 1 2 5

4 2 3 5 6 4 1

5 5 6 2 3 1 4

6 3 1 6 4 5 2

Table 16.3 A randomized plan for a randomized com-

plete block design in four replications and 12 genotypes

numbered 1–12

Blocks 1 2 3 4

Plots

1 3 11 7 3

2 2 2 12 8

3 11 12 4 2

4 4 3 2 7

5 9 7 9 10

6 1 6 10 12

7 7 4 6 1

8 12 1 3 6

9 10 9 11 9

10 5 5 5 11

11 6 8 8 5

12 8 10 1 4
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cases of α-designs. Construction of these designs
requires knowledge of generation array, a

combinatoric concept and the methods have

been given by Patterson and Williams (1976),

Patterson et al (1978), and John and Williams

(1995). However, these can be obtained by

using CycDesigN software (Whitaker et al.

2002) and GenStat (Payne 2011) for a number

of genotypes less than 100. These computer-

generated methods have shown to provide high

efficiency factors within their comparable class

of designs for a wide range of parameter values.

There may also be situations where the number

of genotypes is not a multiple of block sizes, i.e.,

v 6¼ ks. Suppose the number of treatments v is

represented by v ¼ k1s1 þ k2s2; k1, k2 and s1, s2
being positive integers. Every replication has s1
blocks of size k1 each and s2 blocks of size k2
each. In such situations, it is possible to develop

designs with two block sizes k1 and k2 where k1
and k2 are very close, say, they have a difference

|k1 � k2| equal to 1 or 2. The small difference

in the block size may still support the homogene-

ity of experimental error variances within

such blocks. For example, for

evaluating v ¼ 23 genotypes, one may use

v ¼ 23 ¼ 4� 5þ 3� 1 ¼ k1 � s1 þ k2 � s2,
thus using 5 blocks of size 4 and 1 block of size 3

in each replicate. Such designs are derived by

omitting one or more varieties of the α-designs
with v ¼ ks. Two examples of α-designs are

given in Tables 16.4 and 16.5. In the case of the

designs in Table 16.5, the empty cell need not be

retained or if required for keeping the planting

machinery or any other logistics, then it could be

filled by a filler check genotype.

16.4.2.5 Designs Eliminating
Heterogeneity in Two Directions

When the direction of soil fertility is unknown or

if variability exists in two perpendicular

directions in the field, it is often helpful to use

two-way blocks in the field to reduce the experi-

mental error. There are several designs

controlling variability in two directions. Some

of the frequently discussed designs are row-

columns (Pearce 1975), Youden squares

(Youden 1940), lattice squares, (Yates 1940;

Cochran and Cox 1957), lattice rectangles

(Federer and Raktoe 1965), row-columnα-
designs (John and Eccleston 1986), and incom-

plete block designs with nested rows and

columns (Singh and Dey 1979).

In recent years, a more realistic approach has

been suggested for searching experimental

designs using a criterion which maximizes

genetic gain due to selection (Kempton 1984).

Another related criterion, minimizes average

pairwise prediction error variance, is presented

by Cullis et al. (2006). These designs were

obtained for an early generation variety trials

(EGVTs), called p-rep designs, which are alter-

native to the augmented designs in blocks

(referred as grid plots). Simulation studies,

based on 1,000 runs and 12 different

combinations of genetic variance ratio and spa-

tial autocorrelation parameters along rows and

columns, have shown that p-rep designs resulted

in higher genetic gain. In variety evaluation, a

more practical situation shows that different sets

Table 16.4 A randomized plan for an alpha design in 40

genotypes, incomplete blocks of size 5 and 3 replications

Replicates

Plots 1 2 3 4 5

Blocks

1 1 7 40 12 30 36

2 39 34 33 29 1

3 26 32 4 31 14

4 9 2 21 20 10

5 25 17 6 23 19

6 24 8 11 3 22

7 15 37 13 5 28

8 16 35 38 18 27

2 1 36 38 11 5 32

2 3 13 16 39 30

3 40 31 6 20 1

4 27 8 25 28 33

5 17 9 26 34 37

6 2 29 24 23 15

7 21 35 7 19 14

8 12 22 10 4 18

3 1 33 2 17 16 32

2 9 40 27 15 14

3 20 8 26 23 30

4 35 12 24 31 34

5 11 4 19 39 28

6 25 29 13 36 10

7 37 22 6 7 38

8 21 3 1 18 5
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of genotypes could have seeds available for vary-

ing replications. Further, in the field layout, the

spatial variability exists and the plot errors are

generally correlated (Singh et al. 2003). To gen-

erate experimental designs incorporating the

need of variable replications and correlated

errors, Coombes (2009) has developed an R-pro-

gram package called DiGGeR. An example of

p-rep design is in Table 16.6 for 20 test

genotypes with no replications and 10 test

genotypes with 2 replications and 3 check

genotypes. To generate randomized plans for

p-rep designs, DiGGeR package in R-language

programs has been developed by

Coombes (2009).

16.4.3 Multi-environment Trials

Multi-environment trials (MET), normally

designed in replicated designs, e.g., RCB or

α-design, are conducted over multi-locations

and multi-years to obtain information on the

variety responses to the environments and study

the nature of the genotype � environment

(G � E) interaction. Main objectives of METs

are selection of varieties for high and stable yield

and their adaptability to specific zones (clusters)

of the environments. The number and variability

due to the locations, years, and experimental

error may be used to determine the number of

replications per trial. However, for moderately

large number of locations and years, two

replications per trial have been found to be opti-

mal (Kempthorne 1983). Several methods of

analyses can been found in literature and in sev-

eral review papers (Lin et al. 1986; Westcostt

1986; Smith et al. 2005). The methods for analy-

sis of G � E interaction studies have been used

based on extracted patterns in the form of multi-

plicative models for G � E interaction (Gauch

1988), multiplicative model for G + G � E

interactions, and factor analytic representations

of G � E interactions using fixed genotype

effects and random environmental effects

(Piepho 1997) as well as fixed environmental

effects and random variety effects (Smith et al.

2001). Smith et al. (2005) have reviewed mixed

models used in multi-environment variety trials.

Singh et al. (1996) using information on geno-

type means and standard errors in multi-location

trials assessed these varieties using indices mea-

suring inter-site transferability of varieties. The

combined analysis at plot levels used to be under

similar designs and under the assumption of

homogeneous error variances, primarily due to

Table 16.5 A randomized plan for an alpha design in 29

genotypes, incomplete blocks of sizes 4 and 5 and 3

replications

Replicates

Plots 1 2 3 4 5

Blocks

1 1 17 15 18 5 29

2 3 8 1 9 16

3 28 12 # 22 7

4 2 26 23 19 24

5 11 21 27 4 25

6 10 14 6 20 13

2 1 29 10 25 7 8

2 # 21 15 1 26

3 3 4 23 28 14

4 5 22 19 20 9

5 2 16 13 27 17

6 12 6 11 18 24

3 1 16 6 15 25 22

2 23 8 # 11 17

3 18 26 20 7 4

4 14 27 19 12 1

5 28 13 9 29 24

6 3 21 2 5 10

#the empty plot need not be retained or, if required, could

be filled by a suitable filler check

Table 16.6 A randomized plan, on an 8 � 8 layout, of a

p-rep design in 33 genotypes numbered 1–20 have no

replications, 21–30 have two replications, and 31–33 are

checks with 8 replications

Rows/columns 1 2 3 4 5 6 7 8

1 4 33 20 29 24 5 31 32

2 31 9 25 23 1 32 19 27

3 14 30 21 10 31 18 33 28

4 32 13 33 17 21 27 24 31

5 6 28 23 32 12 26 30 33

6 31 16 22 3 33 11 32 15

7 7 32 26 33 22 31 8 32

8 33 29 31 25 32 2 33 31
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limitations of computational software, but in

the recent years, much more complex models,

can be fit at the plot-level data with complex

structures of variance-covariance matrices

using GenStat, ICARDA modules in GenStat,

SAS, AGROBASE, and ASReml (Gilmour

et al. 2009).

A large number of phenotyped data are

obtained through the international nurseries,

with specific purposes, which facilitate screening

and evaluation of genetic material across a wide

range of environments. Experimental designs

such as RCB, α-designs, and augmented designs

are used. Trials should have independent

randomizations. CGIAR (Consultative Group

for International Agricultural Research) centers

use an ICIS (International Crop Information Sys-

tem) for generating randomizations and storage

and retrieval of crop information in terms of

genotype pedigree and response data.

Inheritance studies form a part of the genetics

of the traits used in phenotyping through the use

of specific mating designs such as complete/par-

tial diallel crosses and line � tester to generate

information on the gene actions controlling the

traits in terms of genetic ratios, genetic variance,

and its components (such as additive, dominance,

and allelic interactions of various orders).

Embedding of mating and environmental designs

derived from incomplete crosses, and blocks are

discussed and reviewed by Singh et al. (2012).

Appendix

Some key codes used in generating the experi-

mental designs under various tables.

A.16.1 GenStat Code for Table 16.2
(Geno Stands for Genotypes)

AGLATIN [PRINT¼design; ANALYSE¼Yes]

NROWS¼6; NSQUARES¼1;\

TREATMENTFACTORS¼!p(Geno);

ROWS¼Rows; COLUMNS¼Columns;

SEED¼27257

A.16.2 GenStat Code for Table 16.3
(Rep, Plots, and Geno Stand for
Replications or Complete Blocks, Plots
Within Block and Genotypes
Respectively)

AGHIERARCHICAL [PRINT¼design;

ANALYSE¼Yes;SEED¼2534]\

BLOCKFACTORS¼Rep,Plots;

TREATMENTFACTORS¼*,!p(Geno);

LEVELS¼4,12

A.16.3 R Language Code
for Table 16.6

library(DiGGer)

trep<- rep(c(1, 2, 8), c(20, 10, 3))

design<- DiGGer(33, 8, 8,

TreatmentRep ¼ trep)

design <- run(design)

getDesign(design)

layout <- getDesign(design)

des.plot(layout, seq(1, 20),

col¼ 5, new¼ TRUE)

des.plot(layout, seq(21, 30),

col¼ 6, new¼ FALSE)

des.plot(layout, seq(31, 33),

col ¼ 7, new ¼ FALSE)

A.16.4 Further Details on GenStat Menu
and R-Program

A.16.4.1 Generate an a-Design Using
GenStat
To generate randomizations using GenStat statis-

tical package (Payne 2011), go to its “Stats”

menu, “Design” sub menu, and then “Select

Design . . .” item (see the screenshot below):
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This will pop-up the dialog box listing several

special analyses (see the screenshot below):

Select “alpha designs” option, then click

“OK” button, and answer the series of questions

on number of treatments (within the range

20–100), number of blocks per replication, num-

ber of replications, and the labels that should be

assigned to the factors. Using the “Spread” menu

and further “Data in GenStat” and item from

“New” sub menu, one can obtain the randomized

plan in the GenStat spreadsheet as shown in the

following screenshot. For more than 100
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genotypes, one may use CycDesigN software

(Whitaker et al. 2002).

The plan in Table 16.4, in 40 genotypes in

blocks of size 5 and 3 replications, can be

obtained by running the following code:

AGALPHA [PRINT¼design]

LEVELS¼40; NREPLICATES¼3;

NBLOCKS¼8;\

TREATMENTS¼Geno;\

REPLICATES¼Rep;\

BLOCKS¼Blk;\

UNITS¼Plot;\

SEED¼1592654

A.16.4. 2R-Package DiGGer Codes for
Table 16.6.
Generate Design for Partial Replications

Using DiGGer and R Language:

To use DiGGer tool, one needs to carry out

required installation for the R package and

download the following zip files “R.

methodsS3_*.zip”,1 “R.oo_*.zip”,2 and “DiG-

Ger_*.zip”3 where “*” in the filenames denotes

the current version available. Then one may

start the R program, go to the “Packages”

menu, and select “Install package(s) from local

zip files. . .”. Find the downloaded files and let R

install them.

Once DiGGer packages are installed, the fol-

lowing codes are used to generate the experimen-

tal design in the Table 16.6.

1 http://cran.rstudio.com/web/packages/R.methodsS3/

index.html
2 http://cran.rstudio.com/web/packages/R.oo/index.html
3 http://www.austatgen.org/files/software/downloads
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# load required package
library(DiGGer)

# 20 genotypes with no replications [1 - 20]
# 10 genotypes with 3 replications [21 - 30]
# 3 genotypes with 8 replications [31 - 33]
trep <- rep(c(1, 2, 8), c(20, 10, 3))

# in total we have 33 genotypes (i.e. 20 + 10 + 3)
# in total we have 64 plots (i.e. 20*1 + 10*2 + 3*8)
# field layout set as 8 rows x 8 columns
design <- DiGGer(33, 8, 8, TreatmentRep = trep)

# once the design search object has been created
# we can produce the design
design <- run(design)

# extracting matrix of design numbers
layout <- getDesign(design)

# draw colored field layout
# or you may simply use plain plot(design) function in this case
des.plot(layout, seq(1, 20), col = 5, new = TRUE)
des.plot(layout, seq(21, 30), col = 6, new = FALSE)
des.plot(layout, seq(31, 33), col = 7, new = FALSE)

# export into CSV file
write.csv(design$dlist, "Variable Replications.csv")
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Biometrical Approaches for Analysis
of Phenotypic Data of Complex Traits 17
Huihui Li and Jiankang Wang

Abstract

Phenotype (or phenotypic value) is the performance of a trait in interest,

which can be observed in the field and then used in estimating the

unknown genotypic value (or the phenotypic mean). In this chapter, we

introduced statistical approaches to analyze three types of phenotypic

observation, i.e., (1) replicated observations of one genotype in one

environment, (2) replicated observations of multiple genotypes in one

environment, and (3) replicated observations of multiple genotypes in

multiple environments. The principle of analysis of variance (ANOVA)

was applied on each kind of phenotypic data. From the results of ANOVA,

we can further estimate genotypic value, genetic effects, variance

components, heritability, etc., which can be further used in genetic studies

and breeding applications. In the end, we present a computer tool

implemented in the integrated genetic software QTL IciMapping, which

includes the biometrical approaches introduced in this chapter and can be

readily used in phenotyping complex traits.

Keywords

Phenotype • Analysis of variance (ANOVA) • Genotype • Genetic

variance • Heritability

17.1 Introduction

For making genetic improvement, plant breeders

collect huge amount of phenotypic data on

various populations. The phenotype of traits par-

ticularly quantitative traits is controlled by geno-

type and environments, and thus raw phenotypic

data measured for various complex traits include

the combined effect of both the genotypic value

(G) and the environmental deviation (E): P ¼
G + E. However, for making genetic improve-

ment in trait, genotypic value is more important

than the phenotypic value that is the combined

effect of all the genetic effects, including nuclear

genes, mitochondrial genes, and interactions
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between the genes. Therefore it is essential to

know the contribution of heritable variation in

total phenotypic variation of a quantitatively

inherited trait. For this purpose, different statisti-

cal approaches have been used to study the inher-

itance of quantitative traits which is known as

biometrical genetics. Therefore, this chapter has

described the different approaches developed in

biometrical genetics for analysis of phenotypic

data for finding out the genotypic value of traits.

17.2 Basic Statistics Theory

17.2.1 Random Variable and Normal
Distribution

If a random variable X has the following proba-

bility density, X is stated to have a normal distri-

bution with mean μ and variance σ2, where μ and

σ2 are known constants or unknown but estima-

ble parameters:

f X ¼ xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e
x�μð Þ2
2σ2 ð17:1Þ

The function given in Eq. (17.1) is called the

probability density (PDF), and the random vari-

able X is normally denoted by X � N(μ, σ2).
When the normal distribution has a mean of

0 and a variance of 1, the distribution is also

called a standard normal distribution, denoted

by N(0, 1). For any normal distribution,

X � N μ; σ2ð Þ, Xð -μÞ=σ � N 0; 1ð Þ, where σ is

the square root of variance σ2.
Assuming a random variable X has the PDF

f(x) and the possible value of X is any real num-

ber, mean (also called expectation) and variance

of the random variable X are defined as follows:

E Xð Þ ¼
Z þ1

�1
x f xð Þdx; ð17:2Þ

V Xð Þ ¼
Z þ1

�1
x� E xð Þ½ �2f xð Þdx

¼
Z þ1

�1
x2f xð Þdx� E xð Þ½ �2 ð17:3Þ

The two statistics defined in the above two

equations are also called mean and variance of

the distribution of the random variable X. For a
normal distribution X � N(μ, σ2), it can be

proved that E(X) ¼ μ and V(X) ¼ σ2. This is

the reason why the normal distribution N(μ, σ2)
is stated to have a mean of μ and a variance of σ2.
Or equally, if X � N(μ, σ2), the random variable

X is stated to have a mean of μ and a variance

of σ2.

17.2.2 Distributions Derived from the
Standard Normal Distribution

From the standard normal distribution, we can

define other distributions commonly used in sta-

tistical inference. If random variables X1, X2, . . .,

Xn are independent and identical to the standard

normal distribution N(0, 1), the sum square of

these variables is defined to follow a χ2(chi--
square) distribution with the degree of freedom

of n, i.e.,

Y ¼ X2
1 þ X2

2 þ � � �X2
n � χ2 nð Þ ð17:4Þ

Random variable X� N(0, 1), random variable

Y � χ2(n), and the two variables are independent,

and then Xffiffiffiffi
1
nY

p is defined to follow a t distribution

with the degree of freedom of n, i.e.,

Xffiffiffiffiffi
1
nY

q � t nð Þ ð17:5Þ

Figure 17.1 shows PDFs of the standard nor-

mal distribution N(0, 1) and some t and

χ2 distributions. As N(0, 1), t distribution is sym-

metrical. But, t distribution has much longer tails

compared with N(0, 1). With the increase in the

degree of freedom, t distribution can quickly

approach to the standard normal distribution

(left of Fig. 17.1). In practice, when the degree

of freedom is greater than 30, t distribution will

be viewed to be the standard normal distribution.

χ2 distributions can only have positive values, by
definition. With the increase in the degree of

freedom, χ2 distribution becomes much flatter

250 H. Li and J. Wang



and has much longer tail to the right side (right of

Fig. 17.1).

Assuming that two random variables Y1 � χ2

n1ð Þ and Y2 � χ2 n2ð Þ are independent,
1
n1
Y1

1
n2
Y2

is

defined to follow an F distribution with the two

degrees of freedom of n1 and n2, i.e.,

1
n1
Y1

1
n2
Y2

� F n1; n2ð Þ ð17:6Þ

17.3 One Genotype in One
Environment

17.3.1 Mean and Variance of a
Phenotypic Distribution
of Trait in Interest

It is assumed that we can repeatedly observe the

phenotype (P) of a given genotype for a trait in

interest in a given environment, and each obser-

vation is independent. True genotypic value in

the environment is represented by G, which is an

unknown parameter. Error in phenotypic mea-

surement is a normally distributed random vari-

able, having a mean of 0 and a variance of σε
2.

Error variance is unknown as well or has been

estimated from previous experiments. Therefore,

the observation will be independently and nor-

mally distributed around the true genotypic value

G, and variance of the phenotypic distribution

will be equal to the error variance σε
2 in the

environment. In statistics, we say these

phenotypic observations have independently

identical distributions (iid), that is,

Pk � N G, σ2ε
� �

, k ¼ 1, 2, . . . , r for replicationð Þ, iid

ð17:7Þ
In practice, we do not know the true genotypic

value G and the true error variance σε
2. However,

they can be estimated from the replicated pheno-

typic observations Pk (k ¼ 1, 2, . . ., r), as the

observation contains the information about these

true values. This can be seen more clearly when

distribution model (17.7) is represented in the

following equivalent linear model:

Pk ¼ Gþ εk, εk

� N 0, σ2ε
� �

, k ¼ 1, 2, . . . , rð Þ, iid ð17:8Þ

Using the replicated observations, we can cal-

culate the sample mean (represented by P) and

sample variance (represented by MSε) and use

them as the estimates of the unknownG and error

variance, respectively. Sample mean and the esti-

mate of the genotypic value and their

distributions are

Ĝ ¼ P ¼ 1

r

X
k

Pk, and Ĝ ¼ P

� N G,
σ2ε
r

� �
ð17:9Þ

So, expectation of the estimated effect Ĝ is equal

to the true genotypic effect. In statistics, we say

the sample mean is an unbiased estimate of the
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Fig. 17.1 Probability density functions (PDF) of the standard normal distribution N(0, 1) and some t and

χ2 distributions
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true genotypic effect. Variance of the estimate Ĝ is
1
r of the error variance. So, more observations

give more precise estimate of the true effect.

With the increase in sample size, the sample

mean will asymptotically approach to the true

genotypic value G. For this reason, the true geno-

typic value G is also called phenotypic mean. In

statistics, it can also be proved that, among all

possible unbiased linear combinations of

observations (k ¼ 1, 2, . . ., r), the estimate given

in Eq. (17.9) has the least variance. So the sample

mean given in Eq. (17.9) is also called the best

linear unbiased estimate (BLUE) of the

phenotypic mean.

Sample variance (represented by MSε) and the

estimate of the error variance (represented by σ̂ 2
ε )

are

σ̂ 2
ε ¼ MSε ¼ 1

r � 1

X
k

Pk � P
� �2 ð17:10Þ

For each observation, Pkð -PÞ is the deviation of

the observation from the sample mean, which

can be used to measure random error effect in

the observation. The sum square (SS) of each

deviation is represented by SSε, i.e.,

SSε ¼
X
k

Pk � P
� �2 ð17:11Þ

Under the assumptions in distribution model

(17.7) or equally in linear model (17.8), we can

prove the following relationship between the

expectations of SSε and σε
2:

E SSεð Þ ¼ E
X
k

Pk � P
� �2 ¼ E

X
k

Pk � Gð Þ � P� G
� �� �2

¼
X
k

E Pk � Gð Þ2 � 2E P� G
� �X

k

Pk � Gð Þ
" #

þ rE P� G
� �2

¼
X
k

E Pk � Gð Þ2 � 2E P� G
� �

r P� G
� �� �þ rE P� G

� �2
¼
X
k

E Pk � Gð Þ2 � rE P� G
� �2

¼ rσ2ε � r
σ2ε
r
¼ r � 1ð Þσ2ε

ð17:12Þ

The coefficient (r � 1) before error variance in

Eq. (17.12) is called the degree of freedom of the

error effects. From Eqs. (17.10) and (17.11), it

can be easily seen that

σ̂ 2
ε ¼ MSε ¼ SSε

r � 1
, E σ̂ 2

ε

� �
¼ E MSεð Þ ¼ σ2ε ð17:13Þ

Therefore, sample variance is an unbiased esti-

mate of the unknown error variance.

17.3.2 An Example on Plant Height in
Four Genetic Populations

Table 17.1 gives observations of plant height

(cm) in two inbred lines A and B and their F1

and F2 populations. Using Eqs. (17.9)

and (17.10), we can estimate that inbred

A has the a mean height of 160 cm, inbred

B of 103 cm, F1 hybrid of 149 cm, and F2

population of 140 cm. Mean plant height in F1

or F2 population is between the two inbred

parents. The two parents and their F1 have sim-

ilar variance, but variance of F2 population is

much greater. The larger variance in F2

indicates the presence of genetic variance in

plant height. If we can assume random error

effects are homogeneous in the three

non-segregating populations, we can combine

the three sum squares to have one estimate of

the error variance, i.e.,
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SST ¼ SSP1
þ SSP2

þ SSF1
¼ 720,

DFT ¼ DFP1
þ DFP2

þ DFF1

¼ 27, σ̂ 2
ε ¼

SST

DFT
¼ 26:67 ð17:14Þ

Assuming the height of inbred B has the

normal distribution N(100, 30), based on the

observed height in Table 17.1. Therefore, as a

random variable, the height has a mean of

100 and a variance of 30. Figure 17.2 shows the

distribution curves of sample means for several

sample sizes. It is clear that larger sample size

results in smaller variance in the sample mean.

Each curve in Fig. 17.2 represents how the sam-

ple mean will be distributed if we can repeat the

sampling procedure infinitely. In practice, we

normally have one set of samples. In Table 17.1,

we only have one set of 10 phenotypic height

values. Therefore, that is no guarantee that the

sample mean of inbred B (i.e., 103 cm) is equal to

the true genotypic height.

The unbiased sample mean to the true value,

as given in Eq. (17.9), is a statistical property

from the large number of sampling. The same is

true for the sample variance. In statistics, the

unknown parameters can be estimated from

samples drawn from their population. But this

does not indicate that the estimated value will

be equal to the unknown parameter. Instead, each

sample drawn from a population in interest is

viewed as a random variable. Any estimate

from a set of samples is also a random variable.

Unknown parameters are normally assumed to be

constants. Therefore, it does not make sense to

say that a random variable is equal to a constant.

But, to know the distribution of a sample,

statistics is good enough for conducting statisti-

cal inference and test. Say, we can tell how likely

the true height is located in a given interval, how

likely the true height is different from another

genotype or genetic population, and so on. For

example, using Table 17.1, we can tell the prob-

ability that the true height of inbred B is from

95 to 105 cm. We can calculate the significance

probability between inbred A and inbred B,

where t distribution will be used. We can test

whether the genetic variance of F2 population is

significant, where F distribution will be used.

In addition, if we can assume random errors in

F2 populations have equal variance as estimated

in Eq. (17.14), we are able to estimate the genetic

variance of F2 by subtracting the error variance

from the phenotypic variance. That is,

σ̂ 2
G ¼ σ̂ 2

P � σ̂ 2
ε ¼ 692:21� 26:67 ¼ 665:54

And the heritability in the broad sense in the F2

population can be estimated,

H ¼ σ̂ 2
G

σ̂ 2
P

¼ 665:54

692:21
¼ 0:96

17.3.3 Calculating Sample Mean
and Sample Variance
from Frequency Data

In many cases, the raw data with large sample

size are grouped and the frequency of each group

is given instead. Table 17.2 shows the number of

samples falling in each group represented by the

mid-group value of ear length (cm) in four

genetic populations (East 1911). Taking inbred

Table 17.1 Plant height (cm) in two inbred lines and their F1 and F2 population. There are 10, 10, 10, and 30

observations in the four genetic populations

Population Individual plant height (cm)

Sample

mean DF SS

MS

(¼sample

variance)

Inbred A 155, 161, 150, 164, 165, 161, 160, 158, 166, 164 160.40 9 222.40 24.71

Inbred B 97, 109, 92, 103, 109, 104, 98, 106, 102, 110 103.00 9 314.00 34.89

F1 156, 148, 140, 150, 148, 147, 146, 155, 148, 150 148.80 9 183.60 20.40

F2 89, 157, 149, 169, 123, 158, 151, 83, 167, 154, 152, 167,

116, 146, 97, 147, 162, 159, 111, 143, 144, 124, 137,

156, 80, 169, 157, 152, 157, 116

140.00 29 20074.00 692.21
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A as an example, among the 57 ears, 4 have ear

length between 4.5 and 5.5, 21 have ear

length between 5.5 and 6.5, 24 have ear length

between 6.5 and 7.5, and 8 have ear length

between 7.5 and 8.5. Let xk be the mid-value of

the kth group and f k ¼ nk
n be the relative fre-

quency, estimates of the population mean and

variance are, therefore,

μ̂ ¼
X
k

f kxk, and σ̂ 2
ε

¼
X
k

f kx
2
k � μ̂ 2 ð17:15Þ

One may find that the sample mean and

variance given in Eq. (17.15) are similar to the

distribution mean and variance given in

Eqs. (17.2) and (17.3). From the above equation,

means and variances of the four populations can

be estimated. That is,

PA ¼ 6:63, PB ¼ 16:80, PF1
¼ 12:12, PF2

¼ 12:68
σ̂ 2

A ¼ 0:65, σ̂ 2
B ¼ 3:53, σ̂ 2

F1
¼ 2:28, σ̂ 2

F2
¼ 3:97

Assuming that errors have the same variance

in these populations, we may use average of

variances in the three non-segregating

populations to estimate the true error variance

and estimate the genetic variance and heritability

in the F2 population. That is,

σ̂ 2
ε ¼ 2:15, σ̂ 2

G ¼ σ̂ 2
F2

� σ̂ 2
ε ¼ 1:82, H ¼ σ̂ 2

G

σ̂ 2
F2

¼ 1:82

3:97
¼ 0:46

In addition, if the multifactorial hypothesis in

classical quantitative genetics is applicable, we

could estimate the number of loci (l ) affecting

ear length in these populations from the Castle-

Wright formula. That is,
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Fig. 17.2 Distribution of

the sample mean of inbred

B plant height. As a

random variable, the height

of inbred B is assumed to

be normally distributed,

having a mean of 100 and a

variance of 30

Table 17.2 Frequency of ear length (cm) in four genetic populations

Ear length 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Size

Inbred A 4 21 24 8 – – – – – – – – – – – – – 57

Inbred B – – – – – – – – 3 11 12 15 26 15 10 7 2 101

F1 – – – – 1 12 12 14 17 9 4 – – – – – – 69

F2 – – 4 5 22 56 80 145 129 91 63 27 17 6 1 – – 646

Adapted from East (1911)

F1 is the hybrid between the two inbred lines, and F2 is the selfing generation of the F1 hybrid
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l ¼ PA � PB

� �2
8 σ̂ 2

F2
� σ̂ 2

ε

� � � 7 ð17:16Þ

The multifactorial hypothesis mentioned above

is fundamental in classical quantitative genetics.

Major content in the hypothesis is that quantita-

tive traits are controlled by a large number of

Mendelian genes having smaller effects and can

be easily modified by environments. In addition

to the multifactorial hypothesis, when calculat-

ing the number of loci affecting ear length in

Eq. (17.16), we also assume that the genes have

equal additive effect on ear length, inbred A has

all the alleles reducing the ear length, and inbred

B has all the alleles increasing the ear length.

17.4 Multiple Genotypes in One
Environment

17.4.1 Assumptions and Models

It is assumed that we make the field phenotyping

experiment with r replications for a set of

g genotypes in a given environment. The

phenotypic means are represented by μi (i ¼ 1,

2, . . ., g), which are unknown parameters. Error

effects are normally distributed with a mean of

0 and an unknown variance σε
2. Randomization

of genotypes in the field will assure that the

observations are independent. So the observed

phenotype for the ith genotype and kth replica-

tion is

Pik � N μi; σ
2
ε

� �
, i ¼ 1, 2, . . . , g; k ¼ 1, 2, . . . , rð Þ

ð17:17Þ
Therefore, we are having g normal distributions,

corresponding to the g genotypes. The popula-

tions may have different means, but they should

have the equal variance, which is actually the

random error variance.

Given the phenotypic means of g genotypes,

we can define an overall phenotypic mean, that

is, μ¼̂ 1
g

X
i

μi. By defining the deviation of each

phenotypic mean to the overall mean as the geno-

typic effect, represented by Gi, we can have the

following linear model:

Pik ¼ μi þ εik ¼ μþ Gi þ εik,
where μ¼̂ 1

g

X
i

μi, and εik � N 0, σ2ε
� �

i ¼ 1, 2, . . . , g; k ¼ 1, 2, . . . , rð Þ and iid

ð17:18Þ

Genetic variance can be defined from the

g phenotypic means:

σ2G¼̂
1

g� 1

X
i

G2
i ð17:19Þ

17.4.2 Estimation of Genotypic Effect
and Genetic Variance

As we could see, there are two major purposes

when making field experiment. The first one is to

estimate the phenotypic means of a set of

genotypes, as defined in distribution model

(17.17) or in linear model (17.18). Based on the

estimation of phenotypic means, we can conduct

further genetic study, say QTL mapping. In the

perspective of breeding, we can decide which

genotypes have better performance and should

be selected and advanced to the next season or

which genotypes should be grown in this envi-

ronment. The second one is to estimate error

variance as defined in linear model (17.18) and

genetic variance as defined in Eq. (17.19). From

the estimation of the two variances, we can esti-

mate heritability, which has been seen in the

previous section.

Now we will show how the genotypic effects

Gi i ¼ 1, 2, . . . , gð Þ, genetic variance σG
2,

and error variance σε
2 can be estimated

by using observations Pik i ¼ 1, 2, . . . , g;ð
k ¼ 1, 2, . . . , rÞ. First, we define the overall

sample mean ( P:: ), i.e., the mean across the

g genotypes and the r replications. Second, we
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define sample mean for each genotype (Pi:), i.e.,

the mean across the r replications for each geno-

type. Based on the distribution model (17.17) of

each observation, we have

P:: ¼ 1

gr

X
j, k

Pjk � N μ,
σ2ε
gr

� �
, and Pi:

¼ 1

r

X
k

Pik � N μi,
σ2ε
r

� �

By defining the overall mean and sample

mean of each genotype, the phenotype can be

decomposed as:

Pik ¼ P::þ Pi:� P::
� �

þ Pik � Pi:
� �

orequally ð17:20Þ

Pik � P:: ¼ Pi:� P::
� �þ Pik � Pi:

� � ð17:21Þ
In Eq. (17.20), the first term is the overall sample

mean. The second term is the deviation of the

sample mean of each genotype to the overall

mean. The third term is the residual deviation.

The three terms in Eq. (17.18) can be used to

estimate the three parameters defined in the dis-

tribution model (17.18). That is,

μ̂ ¼ P::, Ĝ i ¼ Pi:� P::
� �

, ε̂ ik

¼ Pik � Pi:
� � ð17:22Þ

Given the observed phenotypic values

Pik i ¼ 1, 2, . . . , g; k ¼ 1, 2, . . . , rð Þ, we can use

Eq. (17.20) to estimate the overall mean, geno-

typic effect, and residual effect (if we want). To

estimate genotypic variance and error variance,

we have to consider the sum of the squared

deviations. Total sum square (SST) is defined

from the left side of Eq. (17.21). Total sum

square can be further decomposed into two

parts, which are represented by SSG and SSε,

corresponding to the two terms in the right side

of Eq. (17.21). That is,

SST ¼
X
i, k

Pik � P::
� �2 ¼X

i, k
Pik � Pi:
� �þ Pi:� P::

� �� �2
¼
X
i, k

Pik � Pi:
� �2 þ r

X
i

Pi:� P::
� �2 ¼ SSε þ SSG

We have a total of g � r independent

observations. Total sum square (SST) has a

degree of freedom of gr � 1. The one degree of

freedom can be understood as being used in the

estimation of the overall sample mean. Without

the overall sample mean, we are unable to esti-

mate the deviations on the left side of

Eq. (17.21). Sum square of the estimated geno-

typic effects, i.e., SSG, has a degree of freedom of

g � 1. There are g estimated genotypic effects

(Eq. 17.22), but the sum of these effects is equal

to 0. So, the degree of freedom of g � 1 can be

understood as the number of independent

estimated genotypic effects. There are gr

estimated residual effects (Eq. 17.20), but they

are not completely independent. The degree of

freedom of g(r � 1) can also be understood as

the number of independent estimated residual

effects. Of course, it can also be found by

subtracting g � 1 from the total degree of free-

dom gr � 1.

Mean square (MS) is defined as the sum

square divided by its degree of freedom. That is,

MSG ¼ SSG

g� 1
, and MSε ¼ SSε

g r � 1ð Þ
Intuitively, mean square of estimated genotypic

effects reflects the magnitude of genotypic vari-

ance defined in Eq. (17.19). Mean square of the

residual effects reflects the magnitude of error

variance defined in distribution model

Eq. (17.18). In statistics, we can prove
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E SSGð Þ ¼ g� 1ð Þσ2ε
þ g� 1ð Þrσ2G, E SSεð Þ

¼ g r � 1ð Þσ2ε ð17:23Þ
Therefore,

E MSGð Þ ¼ σ2ε þ rσ2G, E MSεð Þ ¼ σ2ε ð17:24Þ
From Eq. (17.24), we can see that the expectation

of MSε is equal to the error variance and there-

fore is the unbiased estimate of error variance. In

addition to genetic variance, error variance is

also included in the expectation of MSG. There-

fore, 1
rMSG cannot be an unbiased estimate for

genotypic variance. Instead, we can have the

following unbiased estimates for error variance

and genotypic variance:

σ̂ 2
ε ¼ MSε, σ̂ 2

G ¼ 1

r
MSG �MSεð Þ ð17:25Þ

The above procedure is called analysis of

variance (ANOVA) in statistics and can be

summarized in Table 17.3. An F-statistic can be

constructed to test the significance of the geno-

typic variation compared with error, i.e.,

F ¼ MSG

MSε
� F g� 1, g r � 1ð Þ½ � ð17:26Þ

In many cases, each replication of the

g genotypes may be arranged in one relatively

homogeneous block. Variation between blocks

can occur. The use of block is another important

concept in experimental design, which can

reduce the random error variance and improve

the precision when comparing genotypes. In this

case, the deviation of the block mean to the

overall sample mean estimates the block effect

(represented by Bk), i.e.,

B̂ k ¼ P:k � P::
� �

, k ¼ 1, 2, . . . , rð Þ ð17:27Þ
And linear model (17.21) becomes

Pik � P:: ¼ P:k � P::
� �þ Pi:� P::

� �
þ Pik � Pi:� P:k þ P::
� � ð17:28Þ

Similarly, ANOVA can be done based on the

above model. It can be seen that including the

block effect will not affect the estimation of

genotypic effects and the genotypic variance

but will affect the estimation of residual effects

and the error variance. When the block effect is

significant, estimated error variance will be

lower than that from linear model (17.21). The

reduced error variance allows more precise com-

parison of phenotypic means. In practice, other

options are to estimate the block effect using

Eq. (17.27), adjust the raw data by the block

effect, and apply linear model (17.21) on the

adjusted phenotypic observations.

17.4.3 Estimation of Heritability
in the Broad Sense

As represented by the linear model (17.18), in

single environment, phenotype of a quantitative

trait for a given genotype or line or family can be

decomposed into three parts: (1) overall mean

across genotypes and replications, (2) genotypic

effect of the specific genotype, and (3) random

residual error. That is,

P ¼ μþ Gþ ε ð17:29Þ
where overall mean and genotypic effect are

assumed to be unknown parameters, and residual

error is assumed to be random variable. When

residual error has a normal distribution, the phe-

notypic variance σP
2 is equal to the sum of geno-

typic variance σG
2 and error variance σε

2. In

session 3.2, we have seen that ANOVA can

acquire the unbiased estimates of genotypic vari-

ance and error variance. Therefore, we can have

Table 17.3 ANOVA of single-environmental phenotyping trials of multiple genotypes

Source of variation Degree of freedom (DF) Sum square (SS) Mean square (MS) Expected mean square (EMS)

Genotype g � 1 SSG MSG σ2ε þ rσ2G
Error g(r � 1) SSε MSε σε

2

Total gr � 1 SST
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the unbiased estimate of phenotypic variance as

follows:

σ2P ¼ σ2G þ σ2ε ð17:30Þ
In quantitative genetics, proportion of genetic

variance over phenotypic variance is defined as

the heritability in the broad sense, represented by

H2, i.e.,

H2 ¼ σ2G
σ2P

¼ σ2G
σ2G þ σ2ε

ð17:31Þ

Therefore, applying the estimates of genotypic

and error variances in Eq. (17.31), we can esti-

mate the heritability in the broad sense of quanti-

tative traits.

The heritability estimated by the formula

(17.31) is based on single observations. In many

cases, genetic analysis is based on phenotypic

mean across replications, i.e., Pi:. In this case,

we may want to estimate the heritability based on

Pi:, and Eqs. (17.29), (17.30), and (17.31)

become

P ¼ μþ Gþ ε ð17:32Þ
σ2
P
¼ σ2G þ 1

r
σ2ε ð17:33Þ

H2 ¼ σ2G
σ2
P

¼ σ2G
σ2G þ 1

rσ
2
ε

ð17:34Þ

Obviously, a higher heritability will be achieved,

when phenotypic mean is used.

17.4.4 An Example on Yield of Ten
Maize Inbred Lines in One
Environment

To investigate the yield performance of ten

maize inbred lines, randomized block design

(RBD) is used, where each replication of the ten

lines is arranged in one homogenous field block.

Yield is measured on each plot, and raw data is

given in Table 17.4. By raw data, we first calcu-

late the mean for each row and mean for each

column. The mean for each row is the phenotypic

mean of the three replications of each inbred, and

the mean for each column is the block mean. The

result is respectively given in column 5 and row

13 in Table 17.4. Then we calculate the overall

mean, i.e., Pik ¼ 2:80, in Table 17.4. Finally we

can calculate the genotypic effect and the block

effect. Genotypic effect is the deviation of the

phenotypic mean to the overall mean, and block

effect is the deviation of the block mean to the

overall mean. The result is respectively given in

column 6 and row 14 in Table 17.4.

From the estimated block effect in the last row

in Table 17.4, we can see that block effect may

not be important. If we can ignore the block

effect and use linear model (17.20), the

ANOVA result is given in Table 17.5. It can be

seen that the ten inbred lines show significant

difference on yield. From the two mean squares,

the error variance is estimated at 0.0473, and the

genotypic variance is estimated at 0.4941. From

Table 17.4 Yield performance of ten maize inbred lines in three replications

Genotype

Replication

Phenotypic mean Pi:
� �

Estimated genotypic effect (Ĝi)I II III

RIL1 2.56 2.66 2.43 2.550 �0.247

RIL2 2.66 2.50 2.75 2.637 �0.160

RIL3 2.93 2.97 2.70 2.867 0.070

RIL4 2.57 2.21 1.80 2.193 �0.604

RIL5 3.06 2.61 2.72 2.797 0.000

RIL6 1.94 2.16 2.14 2.080 �0.717

RIL7 1.85 1.69 2.25 1.930 �0.867

RIL8 3.83 3.58 3.80 3.737 0.940

RIL9 4.32 4.12 4.14 4.193 1.396

RIL10 2.81 3.33 2.81 2.983 0.186

Block mean P:k
� �

2.853 2.783 2.754 Pik ¼ 2:797

Estimated block effect B̂ k

� �
0.056 �0.014 �0.043
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estimated variances, heritability in the plot level

is estimated at 91.27 %, and heritability in the

phenotypic mean level is estimated at 96.91 %.

17.5 Multiple Genotypes in Multiple
Environments

17.5.1 Assumptions and Models

It is assumed that we make the field pheno-

typing experiment with r replications for

a set of g genotypes in a set of e environ-

ments. The phenotypic means of the

g genotypes in e environments are represented

by μij i ¼ 1, 2, . . . , g; j ¼ 1, 2, . . . , eð Þ, which

are unknown parameters. Error effects are

normally distributed with a mean of 0 and

an unknown variance σε
2. So the observed

phenotype for the ith genotype, jth environment,

and kth replication is

Pijk � N μij, σ2ε
� �

, i ¼ 1, 2, . . . , g; j ¼ 1, 2, . . . , e; k ¼ 1, 2, . . . , rð Þ ð17:35Þ

Therefore, we are handling a total of g � e nor-

mal distributions, corresponding to the

g genotypes and e environments. The

populations may have different means, but they

should have the equal variance, which is actually

the random error variance across environments.

However, unequal error variances may occur if

environments are highly heterogeneous. The

unequal error variances between environments

will be discussed in session 4.5.

Given the phenotypic means of

g genotypes and e environments, we can define

an overall phenotypic mean μ¼̂ 1
ge

X
i, j

μij, phe-

notypic mean across environments

μi:¼̂ 1
e

X
j

μij, and environmental mean

across genotypes μ:j ¼ 1
g

X
i

μij. We then define

the genotypic effect (Gi) as the deviation of

each phenotypic mean to the overall mean,

environmental effect (Ej) as the deviation of

each environmental mean to the overall mean,

and genotype by environment interaction

(GEij) as follows:

Gi¼̂ μi:� μð Þ, Ej¼̂ μ:j � μ
� �

,GEij¼̂ μij

� μi:� μ:j þ μ

ð17:36Þ
Therefore, we can have the following linear

model of phenotypic observations:

Pijk ¼ μij þ εijk ¼ μþ Gi þ Ej þ GEij þ εijk,
εijk � N 0, σ2ε

� �
i ¼ 1, 2, . . . , g; j ¼ 1, 2, . . . , e; k ¼ 1, 2, . . . , rð Þ and iid

ð17:37Þ

Table 17.5 Yield performance of ten maize inbred lines in three replications

Source DF SS MS Estimated variance F value P value

Genotype 9 13.768 1.530 0.494 32.346 0.000

Error 20 0.946 0.047 0.047

Total 29 14.714

R2 (%) 93.571

H2 per plot 0.913

H2 per mean 0.969
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Variances corresponding to the three kinds of

effects indicated in Eq. (17.36) can be defined

as well, i.e.,

σ2G¼̂
1

g� 1

X
i

G2
i , σ

2
E¼̂

1

e� 1

X
j

E2
j , σ

2
GE¼̂

1

g� 1ð Þ e� 1ð Þ
X
i, j

GE2
ij ð17:38Þ

17.5.2 Estimation of Effects
and Variances

The purpose of multi-environmental trials is to

estimate the effects defined in distribution model

(17.37) and variances defined in Eq. (17.38), so

as to compare the performance of genotypes

across environments. Now we will show how

the genotypic effect Gi i ¼ 1, 2, . . . , gð Þ, envi-
ronmental effectEj j ¼ 1, 2, . . . , eð Þ, and interac-
tion effect GEij i ¼ 1, 2, . . . , g; j ¼ 1, 2, . . . , eð Þ
can be estimated from observations

Pijk i ¼ 1, 2, . . . , g; j ¼ 1, 2, . . . , e; k ¼ 1, 2, . . . , rð Þ.
First, we define the overall sample mean P . . .

� �
,

i.e., the mean across the g genotypes,

e environments, and r replications. Second, we

define sample mean for each genotype and

environment Pij:
� �

, i.e., the mean across the

r replications for each genotype and each envi-

ronment. Third, we define sample mean for each

genotype Pi::
� �

, i.e., the mean across the

e environments and r replications for each geno-

type. Forth, we define sample mean for each

environment P:j:
� �

, i.e., the mean across the

g genotypes and r replications for each environ-

ment. By calculating the above sample means,

the deviation of phenotype to the overall sample

mean can be decomposed as the following

linear model:

Pijk � P . . . ¼ Pi::� P . . .
� �þ P:j:� P . . .

� �þ Pij:� Pi::� P:j:þ P . . .
� �þ Pijk � Pij:

� � ð17:39Þ

The left side of Eq. (17.39) is the deviation

of each phenotypic observation to the overall

sample mean. On the right side of Eq. (17.39),

the first term is the deviation of the genotypic

sample mean to the overall mean, which can be

used to estimate the genotypic effect defined in

Eq. (17.36) or linear model (17.37). The second

term is the deviation of the environmental sample

mean to the overall mean, which can be used to

estimate the environmental effect. The third term

quantifies the interaction between genotype and

environment, and the last term quantifies the

residual random effect. So the effects defined in

Eq. (17.36) or linear model (17.37) can be

estimated as:

μ̂ ¼ P . . . , Ĝ i ¼ Pi::� P::
� �

, Ê j ¼ P:j:� P . . .
� �

,

Ĝ Eik ¼ Pij: � Pi::� P:j:þ P . . .
� � ð17:40Þ

Total sum square (SST) corresponds to the

deviation on the left side of the model (17.39).

Sum square of genotype (SSG) corresponds to the

first term on the right side of the model (17.39).

Sum square of environment (SSE) corresponds to

the second term on the right side of the model

(17.39). Sum square of interaction (SSGE)

corresponds to the third term on the right side

of the model (17.39). Sum square of error (SSε)

corresponds to the forth term on the right side of

the model (17.39). That is,
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SST ¼
X
i, j, k

Pijk � P . . .
� �2 ¼ SSG þ SSE þ SSGE þ SSε,

SSG ¼ er
X
i

Pi::� P . . .
� �2

, SSE ¼ gr
X
j

P:j:� P . . .
� �2

,

SSGE ¼ r
X
i, j

Pij:� Pi::� P:j:þ P . . .
� �2

, SSε ¼
X
i, j, k

Pijk � Pij:
� �2

ð17:41Þ

We have a total of g � e � r independent

observations. Total sum square (SST) has a

degree of freedom of ger � 1. The lost one

degree of freedom can be understood as being

used in the estimation of the overall sample

mean. Sum square of the estimated genotypic

effects, i.e., SSG, has a degree of freedom of

g � 1, which is equal to the number of indepen-

dent estimated genotypic effects. Sum square of

the estimated environmental effects, i.e., SSE,

has a degree of freedom of e � 1, which is

equal to the number of independent estimated

environmental effects. Sum square of the

estimated interaction effects, i.e., SSGE, has a

degree of freedom of (g � 1)(e � 1), which is

equal to the number of independent estimated

interaction effects. There are g � e � r
estimated residual effects (Eq. 17.39), but they

are not completely independent. The degree of

freedom of ge(r � 1) can also be understood as

the number of independent estimated residual

effects. Of course, it can also be found by

subtracting g � 1, e � 1, and (g � 1)(e � 1)

from the total degree of freedom ger � 1.

Mean square (MS) is defined as the sum

square divided by its degree of freedom. That is,

MSG ¼ SSG

g� 1
,MSE ¼ SSE

e� 1
,MSGE ¼ SSGE

g� 1ð Þ e� 1ð Þ, and

MSε ¼ SSε

ge r � 1ð Þ
ð17:42Þ

Intuitively, mean square of estimated genotypic

effects reflects the magnitude of genotypic vari-

ance defined in Eq. (17.38). Mean square of

estimated environmental effects reflects the mag-

nitude of environmental variance. Mean square

of estimated interaction effects reflects the mag-

nitude of interaction variance. Mean square of

the residual effects reflects the magnitude of

error variance. In statistics, we can prove

E SSGð Þ ¼ g� 1ð Þσ2ε þ g� 1ð Þerσ2G,
E SSEð Þ ¼ e� 1ð Þσ2ε þ g e� 1ð Þrσ2E,

E SSGEð Þ ¼ g� 1ð Þ e� 1ð Þσ2ε þ g� 1ð Þ e� 1ð Þrσ2GE, and
E SSεð Þ ¼ ge r � 1ð Þσ2ε

Therefore,

E MSGð Þ ¼ σ2ε þ erσ2G, E MSEð Þ ¼ σ2ε þ grσ2E,
E MSGEð Þ ¼ σ2ε þ rσ2GE, and E MSεð Þ ¼ σ2ε

ð17:43Þ

From Eq. (17.43), we can see that the expec-

tation of MSε is equal to the error variance and

therefore is the unbiased estimate of error

variance. In addition to genetic variance, error

variance is also included in the expectations of

MSG, MSE, and MSGE, respectively. After some
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algebra manipulations, we can have the follow-

ing unbiased estimates for the four variances

defined in model 17.37 and Eq. (17.38):

σ̂ 2
G ¼ 1

er
MSG �MSεð Þ, σ̂ 2

E ¼ 1

gr
MSE �MSεð Þ,

σ̂ 2
GE ¼ 1

r
MSGE �MSεð Þ, and σ̂ 2

ε ¼ MSε

ð17:44Þ
The above procedure can be summarized in

Table 17.6. The following three F-statistics can

be calculated to test the significance of the geno-

typic variation, environmental variation, and

interaction variation compared with error vari-

ance, respectively:

FG ¼MSG

MSε
� F g� 1, ge r � 1ð Þ,½ �

FE ¼MSE

MSε
� F e� 1, ge r � 1ð Þ½ �, and

FGE ¼MSGE

MSε
� F g� 1ð Þ e� 1ð Þ, ge r � 1ð Þ½ �

When each replication of the g genotypes is

arranged in one relatively homogeneous block in

each environment, the block effect in each envi-

ronment can also be estimated and included in

the linear model (17.39). Same as single-

environmental trials, the use of block can reduce

the random error variance and improve the preci-

sion when comparing genotypes. In this case, the

deviation of the block mean to the environmental

sample mean estimates the block effect

(represented by Bk( j )), i.e.,

B̂ k jð Þ ¼ P:jk � P:j:
� �

j ¼ 1, 2, . . . , e; k ¼ 1, 2, . . . , rð Þ ð17:45Þ

It should be noted that the block effects have to

be defined in each environment. It does not make

any sense to talk about the block effects across

environments, as field blocks in one environment

are totally different from blocks in other

environments. Block is not a factor across envi-

ronment, and block effects are nested in each

environment. When the block effects are

included, linear model (17.39) becomes

Pijk � P . . . ¼ P:jk � P:j:
� �þ Pi::� P . . .

� �þ P:j:� P . . .
� �þ Pij:� Pi::� P:j:þ P . . .

� �
þ Pijk � P:jk þ P:j:� Pij:
� �

ð17:46Þ

Therefore, ANOVA can be done based on the

above model. It can be seen from linear model

(17.46) that including the block effect will not

affect the estimation of genotypic effects, envi-

ronmental effects, and interaction effects and

will not affect the estimation of genotypic vari-

ance, environmental variance, and interaction

variance, either. However, it will affect the esti-

mation of residual effects and therefore the error

variance. When the block effect is significant,

estimated error variance will be lower than that

from linear model (17.39). The reduced error

variance allows more precise comparison of phe-

notypic means. In practice, other options are to

estimate the block effect using Eq. (17.45),

adjust the raw data by the block effect, and

apply linear model (17.39) on the adjusted phe-

notypic observations.

Table 17.6 ANOVA of multi-environmental phenotyping trials of multiple genotypes

Source of variation Degree of freedom (DF) Sum square (SS) Mean square (MS) Expected mean square (EMS)

Genotype g � 1 SSG MSG σ2ε þ erσ2G
Environment e � 1 SSE MSE σ2ε þ grσ2E
Interaction (g � 1)(e � 1) SSGE MSGE σ2ε þ rσ2GE
Error ge(r � 1) SSε MSε σε

2

Total ger � 1 SST
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17.5.3 Estimation of Heritability
in the Broad Sense

As represented by the linear model (17.37), in

multiple environments, phenotype of a quantita-

tive trait for a given genotype or line or family

can be decomposed into five parts: (1) overall

mean across genotypes, environments, and

replications; (2) genotypic effect of the specific

genotype; (3) environmental effect of the specific

environment; (4) genotype by environment inter-

action effect; and (5) random residual error. That

is,

P ¼ μþ Gþ Eþ GEþ ε ð17:47Þ
where overall mean, genotypic effects, environ-

mental effects, and interaction effects are

assumed to be unknown parameters (or fixed

effects), and residual error is assumed to be a

random variable. When random error has a nor-

mal distribution, the phenotypic variance σP
2 is

equal to the sum of genotypic variance σG
2, envi-

ronmental variance σE
2, interaction variance

σGE
2, and error variance σε

2. In session 4.2, we

have seen that ANOVA can give the unbiased

estimates of those variances. Therefore, we can

have the unbiased estimate of phenotypic vari-

ance as follows:

σ2P ¼ σ2G þ σ2E þ σ2GE þ σ2ε

In genetics, we are more concerned about the

genetic variance and genotype by environment

interaction. So environmental variance is nor-

mally excluded from phenotypic variance, i.e.,

σ2P ¼ σ2G þ σ2GE þ σ2ε ð17:48Þ
Similar to single-environmental trials, propor-

tion of genetic variance over phenotypic variance

is defined as the heritability in the broad sense,

represented by H2, i.e.,

H2 ¼ σ2G
σ2G þ σ2GE þ σ2ε

ð17:49Þ

Therefore, in applying the estimates of geno-

typic, interaction, and error variances in

Eq. (17.49), we can estimate the heritability in

the broad sense of quantitative traits.

The heritability estimated by the formula

(17.49) is based on single observations. When

genetic analysis is based on phenotypic mean

across environments and replications, i.e., Pi::,

Eqs. (17.47), (17.48), and (17.49) become

P ¼ μþ Gþ ε ð17:50Þ
σ2
P
¼ σ2G þ 1

er
σ2ε ð17:51Þ

H2 ¼ σ2G
σ2
P

¼ σ2G
σ2G þ 1

erσ
2
ε

ð17:52Þ

17.5.4 An Example on Yield of Ten
Maize Inbred Lines in Three
Environments

Ten maize recombination inbred lines (RILs)

were evaluated across three environments, and

the randomized block design (RBD) was used in

each environment. In each environment, three

replications of the ten lines are arranged in

three homogenous field blocks. Yield was

measured on each plot of replication, and raw

data is given in Table 17.7. Please be noted that

Table 17.4 actually shows the results from envi-

ronment I. Let’s first ignore the issue of hetero-

geneous environments and assume that the three

environments have equal error variance. The

issue of heterogeneous environments will be

discussed in session 8.5.

Row mean represents the phenotypic mean of

each RIL, which is shown in the second last

column in Table 17.7. Column mean across the

three replications represents each environmental

mean, which is shown in the fourth last row in

Table 17.7. Mean across the ten RILs, three

environments, and three replications is the over-

all mean, which is equal to 3.13 (Table 17.7). The

deviation of phenotypic mean to the overall mean

is the genotypic effect, which is shown in the last

column in Table 17.7. The deviation of environ-

mental mean to the overall mean is the environ-

mental effect, which is shown in the last third

row in Table 17.7. Obviously, the ten genotypic

effects have a sum of 0 and so have the three

environmental effects. The interaction effects

can be calculated by the formula (17.40) (not

shown). Interaction effects have a total number
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of g � e, with a sum of 0. Additionally, the

g effects for each environment have a sum of

0, the e effects for each genotype have a sum of

0, and therefore the number of independent

effects is equal to the degree of freedom of

(g � 1) � (e � 1).

Column mean across the ten genotypes

represents the block mean, which is shown in

the second last row in Table 17.7. The deviation

of block mean to the environmental sample mean

is the block effect, which is shown in the last row

in Table 17.7. So we have block effects for the

three replications and the three environments.

Obviously, the three block effects in each envi-

ronment have a sum of 0.

When block effects are also ignored,

Table 17.8 shows the combined ANOVA across

the three environments. Actually, SS of genotype

is equal to e � r times of the sum of the squared

genotypic effects. SS of environment is equal to

g � r times of the sum of the squared environ-

mental effects. SS of interaction is equal to

r times of the sum of the squared interaction

effects. It can be seen from Table 17.8 that the

ten RILs show significant difference on the yield.

In addition, environmental effects and interac-

tion effects are highly significant as well. From

the four mean squares, error variance is

estimated at 0.165, environmental variance at

0.094, genotypic variance at 0.312, and interac-

tion variance at 0.220. From estimated variances,

heritability in the plot level is estimated at

44.8 %, and heritability in the phenotypic mean

level is estimated at 94.5 %.

17.5.5 Estimation of Genotypic Value in
Heterogeneous Environments

In multiple-environmental trials, it is generally

assumed that different genotypes in a specific

environment have the same error variance. This

assumption may be unrealistic when environ-

mental conditions are heterogeneous or when

the data span a long time period. Several sources

of heterogeneous variances are identified to make

the environments heterogeneous, including tem-

perature, water, soil, pest, etc. There are several

useful tests of the homogeneity of variance

assumption. Here we show how to use Bartlett’s

test to check if variances are homogenized. Let

σ̂ 2
εj
and df εj be error variance for the jth environ-

ment and its degree of freedom, respectively, and

then null hypothesis and alternative hypothesis

are

H0 : σ2ε1 ¼ σ2ε2 ¼ � � � ¼ σ2εe , and

HA : at least two of σ2ε1 , σ
2
ε2
, . . . and σ2εe are not equal:

Under null hypothesis, the combined error

variance σε
2 can be obtained by individual error

variances of the e environments, that is,

σ2ε ¼
1X

j

df εj

X
j

df εj � σ2εi ð17:53Þ

Bartlett’s statistics approximately follows χ2 dis-
tribution with degree of freedom e � 1, that is,

χ2 ¼
X

j

df εj

 !
ln σ2ε
� �

�
X

j

df εj � ln σ2εi

	 

� χ2 e� 1ð Þ

ð17:54Þ
Under heterogeneous environments, the mean

performance of one genotype is assumed to be μ,
error variance in the jth environment isσ2εj , and Pj

is its phenotypic value in the jth environment.

Therefore, the linear model is
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Pi ¼ μþεj, εj � N 0, σ2εj

	 

j ¼ 1, 2, . . . , eð Þ and independent

In this case, the simple meanP: ¼ 1
e

X
j

Pj is still

an unbiased estimation of μ but not the best one.

That is to say, there are other estimates having

smaller variance than the simple mean. By cal-

culating the variance of the linear combination of

Pj ( j ¼ 1, 2, . . ., e), BLUE of μ can be found as

μ̂ ¼
X

j

wjPj, where

wj ¼ crdisplaystyle

1

σ2εj
1

σ2ε1
þ 1

σ2ε2
þ � � � þ 1

σ2εe
ð17:55Þ

The variance of μ̂ ¼
X
j

wjPj can be found as

V μ̂ð Þ ¼ 1
1
σ2ε1

þ 1
σ2ε2

þ � � � þ 1
σ2εe

: ð17:56Þ

The variance given in Eq. (17.56) is the least

among all possible unbiased linear combinations

of Pj ( j ¼ 1, 2, . . ., e). If and only if environments

are homogeneous,V μ̂ð Þ andV P:
� �

are equal. That

is to say, when environments are heterogeneous,

weighted mean is a better estimate than simple

mean, in the sense of least variance. When an

environment has smaller error variance, a higher

weight should be given for this environment.

To illustrate the effectiveness of weighted

mean, we assume that there are two

environments and σ2ε2 ¼ sσ2ε1 . Then, we have

V μ̂ð Þ ¼ s

1þ s
σ2ε1 , V P

� �
¼ 1

4
1þ sð Þσ2ε1 , and

V μ̂ð Þ
V P
� � ¼ 4s

1þ sð Þ2

We can clearly see the ratio of variance of

weighted mean and simple mean in Fig. 17.3.

When s ¼ 1, that is, σ2ε2 ¼ σ2ε1 , V μ̂ð Þ ¼ V P
� �

.

When s 6¼ 1, V μ̂ð Þ is always smaller than V P
� �

.

σ2ε1 6¼ 0 and σ2ε2 ¼ 0 (s ¼ 0) are an extreme

case, which indicates that the second environ-

ment does not have any error. In this case, the

observation in the second environment is equal to

the phenotypic mean. The error variance in the

first environment is nonzero, which indicates that

the observation in the first environment may be

deviated from the phenotypic mean. In this case,

the observation in the second environment is the

best estimate of μ. Including observations from

the first environment may cause deviation from

the phenotypic mean.

σ2ε1 6¼ 0 and σ2ε2 ¼ 1 represent another

extreme case. Observations in the second envi-

ronment have nothing to do with μ. In this case,

observation in the second environment is com-

plete random error, which does not contain any

useful information about the phenotypic mean to

be estimated. Including observations from the

second environment may cause more deviation

from the phenotypic mean. Thus observations in

the first environment are the best estimate of μ.
Now, we revisit the data in Table 17.7.

Table 17.9 summarizes the ANOVA results in

the three environments. The three error variances

were estimated respectively at 0.0473, 0.1525,

Table 17.8 ANOVA of the multi-environmental trial shown in Table 17.7

Source DF SS MS Variance F value P value

Environment 2 5.996 2.998 0.094 18.219 0.000

Genotype 9 26.753 2.973 0.312 18.064 0.000

Interaction 18 21.686 1.205 0.220 7.322 0.000

Error 60 9.873 0.165 0.165

Total 89 64.308

R2 (%) 84.647

LSD (P ¼ 0.05) 1.087

LSD (P ¼ 0.01) 1.489

H2 per plot 0.448

H2 per mean 0.945
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and 0.2939, with the same degree of freedom of

20. If the null hypothesis H0 : σ2ε1 ¼ σ2ε2 ¼ σ2ε3 is

true, the combined error variance is estimated σ̂ 2
ε

¼ 0:1646 by Eq. (17.53). The Bartlett’s χ2 statis-
tic defined in Eq. (17.54) has a value of 14.86,

and its degree of freedom is 2. Hence the signifi-

cance probability can be found at P ¼ 0.0003,

which is highly significant. The high significance

from the χ2 test indicates the heterogeneity

among the three environments. In theory, it is

not appropriate to conduct the combined

ANOVA as Table 17.8, when the environments

are heterogeneous. Instead, ANOVA should be

conducted for each environment, as shown in

Table 17.9.

For comparison, Table 17.10 gives simple

means and BLUE (or weighted means) of the

ten RILs and ranks of the ten RILs from simple

mean and BLUE. Weights in BLUE are 0.68,

0.21, and 0.11 for the three environments in

calculating BLUE (last row in Table 17.10).

Environment I has the least error variance of

0.047 (Table 17.9) and therefore has the highest

weight in BLUE. Environment III has the largest

error variance of 0.294 (Table 17.9) and there-

fore has the lowest weight in BLUE. The use of

weighted mean does not change the ranks of the

two top RILs but gives quite different ranks for

other RILs. As indicated before, BLUE has the

least variance compared to any other unbiased

linear estimates. Considering the highly hetero-

geneous environments, BLUE given in

Table 17.10 is expected to be much closer to

the true phenotypic mean of each RIL and there-

fore should be used in further genetic studies,

such as QTL mapping.

The sample mean across the three replications

of each RIL has a variance at 0.016 in

environment I, 0.051 in environment II, and

0.098 in environment III (Table 17.10), which

is equal to the estimated error variance divided

by the number of replications. Therefore, vari-

ance of the simple mean and variance of BLUE

and their standard error (SE) are
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Fig. 17.3 The variance

ratio of BLUE and the

simple unweighted mean

Table 17.9 ANOVA in each environment using data in Table 17.7

Environment

Mean square

F value DF of error

Estimated variance Heritability

Genotype Error Genotype Error Per plot Per mean

I 1.530 0.047 32.346 20 0.494 0.047 0.913 0.969

II 2.044 0.153 13.404 20 0.630 0.153 0.805 0.925

III 1.809 0.294 6.154 20 0.505 0.294 0.632 0.838
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V μ̂ð Þ ¼ 1

1

0:016
þ 1

0:051
þ 1

0:098

¼ 0:011,

SE μ̂ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:011

p
¼ 0:104,V P

� �
¼ 1

3
� 0:016þ 1

3
� 0:051þ 1

3
� 0:098

¼ 0:055, SE P
� � ¼ ffiffiffiffiffiffiffiffiffiffiffi

0:055
p

¼ 0:234

Obviously, the weighted mean has much smaller

variance and SE compared with the unweighted

mean. The error variance estimated above can be

used in significance test between the ten RILs, as

normally done in ANOVA.

17.6 A Computer Tool for Analyzing
Multi-environmental Trials

QTL IciMapping (freely available from www.

isbreeding.net) was an integrated software for

linkage map construction and QTL mapping.

For multi-environmental trials, a tool called

ANOVA is implemented in the software to esti-

mate the genetic variance and heritability in

broad sense from phenotypic data. The data for-

mat can be in CSV, XLS, or XLSX. If in format

of XLS or XLSX, the sheet name must be

“ANOVA” (left of Fig. 17.4). In sheet

ANOVA, the first row is for Environment, the

second row is for Genotype, the third column is

for Replication, the forth column is for the first

trait, the fifth column is for the second trait, and

so on (left of Fig. 17.4). The first three columns

can be either number or string. Columns for traits

must be numbers. Missing trait values were

denoted as �100.00.

From output, the users can find standard

ANOVA tables for each environment and com-

bined analysis across environments for each trait

in AOV file, and the expected genotypic values

for each environment and combined analysis for

each trait in EGV file. Besides, frequency histo-

gram (FRQ file) and Q-Q plot (QQP file) can be

shown by selecting corresponding menus for raw

phenotype and expected genotype per replication,

per trait, and per environment (Right of Fig. 17.4).

17.6.1 Objectives in Phenotyping
Complex Traits

Genotypic value can be estimated by marker loci

or by known quantitative trait loci. But even if

marker loci or quantitative trait loci are not

analyzed, the relative magnitudes of additive,

dominance, and epistatic effects across unknown

loci can be estimated from an analysis of the

phenotypic value. In classic quantitative genet-

ics, the number of genes controlling the trait of

interest can be estimated by Castle-Wright for-

mula (Sect. 17.2.3). The segregation analysis can

Table 17.10 Comparison of simple mean and BLUE and using data in Table 17.7

Genotype

Environment

Simple mean Rank BLUE RankI II III

RIL1 2.55 2.28 4.10 2.976 6 2.662 7

RIL2 2.64 2.52 2.09 2.418 10 2.555 8

RIL3 2.87 2.99 3.41 3.089 5 2.954 5

RIL4 2.19 3.64 4.30 3.378 3 2.726 6

RIL5 2.80 3.29 3.75 3.279 4 3.007 3

RIL6 2.08 2.27 3.92 2.756 8 2.321 9

RIL7 1.93 2.33 3.09 2.449 9 2.141 10

RIL8 3.74 4.41 3.34 3.829 2 3.838 2

RIL9 4.19 4.40 4.08 4.224 1 4.222 1

RIL10 2.98 3.45 2.19 2.873 7 2.993 4

Variance 0.016 0.051 0.098

Weight 0.680 0.211 0.109
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be used to estimate genetic parameters of the

variation of a quantitative trait, including addi-

tive and dominance effects, additive and domi-

nance variance, and heritability for both major

genes and polygenes (Gai and Wang 1998).

Therefore, only by phenotypic data, we can dis-

tinguish the effects of major genes from

polygenes and/or environments, which is impor-

tant for understanding the expression of a major

gene in relation to its genetic background and for

predicting the segregation of a cross in breeding.

17.6.2 The Three Basic Principles of
Field Experimental Design in
Phenotyping Complex Traits

In field experiments, environmental condition

may vary from one stage of the experiment to

the next. Some factors may not be possible to

isolate from others, thus forcing the investigation

of several factors jointly. On top of that, mea-

surement errors may introduce unwanted error

into the system. Therefore, precautionary

measures need to be taken. To design the experi-

ment in a better way, R. A. Fisher has enume-

rated three principles of experimental designs

(Fisher 1926): (1) the principle of local control,

(2) the principle of randomization, and (3) the

principle of replication. These are discussed in

details in Chap. 16 and briefly described below.

The principle of local control eliminates the

variability caused by extraneous factors can be

measured. This means that we should plan the

experiment in a manner that we can perform a

three-way ANOVA, in which the total variability

of the data is divided into four components

attributed to treatments (genotype in our case),

environments (in our case), extraneous factor

(e.g., soil fertility), and experimental error. In

other words, in each environment, we first divide

the field into several homogeneous parts, known

as blocks, and then each such block is divided

into parts equal to the number of genotypes. In

general, blocks are the levels at which we hold an

extraneous factor fixed, so that we can measure

its contribution to the total variability of the data

by means of a three-way ANOVA (Eq. 17.46 in

Sect. 17.4.2). For increasing the statistical accu-

racy of the experiment, the principle of replica-

tion is required in which the experiment is

repeated more than once. Thus, each treatment

is applied in many experimental units instead of

one. For example, when considering multiple

genotypes in one environment (Sect. 17.3),

more replications give more precise estimate of

the true genotype (Eq. 17.25). Sometimes the

entire experiment can be repeated several times

for better results. It should be remembered that

replication is introduced in order to increase the

precision of a study, that is to say, to increase the

accuracy with which the main effects and

interactions can be estimated. Finally, principle

of randomization provides protection against the

effects of extraneous factors by randomization,

and each treatment has equal opportunity to get a

Fig. 17.4 Multi-environmental phenotyping data in Excel (left) and the interface of the ANOVA computing tool

(right)
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place where soil fertility is good or bad. For

instance, if we grow one variety of maize, say,

in the first half of the parts of a field and the other

variety is grown in the other half, then it is just

possible that the soil fertility may be different in

the first half in comparison to the other half. If

this is so, our results would not be realistic. In

such a situation, we may assign the variety of rice

to be grown in different parts of the field on the

basis of some random sampling technique.

Through the application of the principle of ran-

domization, we can have a better estimate of the

well-known experimental error.

17.6.3 Quality Control of Phenotype

Phenotypic values are usually measured in mul-

tiple environments/locations/years, each with

several replications. Measurement procedure is

fraught with sources of potential error, which

may arise in the observer, in the plant, or in the

overall application of the technique. Therefore

quality assurance and quality control of pheno-

type are essentially required to insure the success

of genetic study. Generally, quality control of

phenotype should be conducted right after the

phenotypic values are out of the measurements.

Maximum value, minimum value, mean, vari-

ance, histogram, variance of replications, herita-

bility in broad sense, etc. are the easiest and most

effective statistics to evaluate the raw

phenotypes.

• Outliers (or unusual values) are values that lie

outside the usual range of phenotype of the

trait of interest. They can seriously affect the

results of analyses. There are two aspects in

dealing with outliers, identifying them and

dealing with them. There are formal tests for

detecting outliers (Miller 1993; Sokal and

Rohlf 1995), but they can be easily

highlighted by the distribution of phenotype,

that is, histogram plot. Outliers would make

either maximum value or minimum value to

be anomalous and make variance abnormally

large. Once we identify outliers, we should

first check to make sure they are not a mistake,

such as an error typing in your data or in

writing values down. They often show up as

impossible values, for example, �5 cm for

plant height. If you can classify an outlier as

a mistake, it should be deleted. If you have no

reason to suspect an outlier as being a mis-

take, you can do the genetic study without the

outlier to see how much they influence the

outcome of the analysis. If the conclusions

are altered, then you should try and determine

why those values are so different. Perhaps

there was contamination during pollen; plants

were from different subpopulation, etc.

• The shape of the distribution of phenotype can

be examined by plotting a histogram. Is the

distribution symmetrical or skewed? Is it

unimodal or multimodal? We may find a

priori like biological or physiological reasons

to explain this distribution. In some cases,

genetic models for the trait of interest can be

estimated by the distributions (Gai and Wang

1998; Wang et al. 2001).

• The large variance of replications should be

argued. Replication demonstrates the results

to be reproducible, at least under the current

experimental conditions. Large variance of

replications indicated that the repetitiveness

of the experiments is poor, the precision for

estimates of genotype mean is low, and the

experimental error variance is large, which

may cause the low heritability in broad sense.

• Heritability in broad sense is low. Heritability

is a concept that summarizes how much of the

variation in a trait is due to variation in genetic

factors. We have demonstrated how to esti-

mate heritability in broad sense by phenotypic

values in previous sections. A low heritability

means that of all observed variations, a small

proportion is caused by variation in genotypes

(Visscher et al. 2008). That is to say, the

heritability of a group of individuals with

relatively similar heredities is relatively low,

and the phenotype of an individual is not

a good predictor of the genotype. In many

gene-mapping experiments, the probability

of detecting a gene of large effect increases

with heritability (Bradford and Famula 1984;

Oliver et al. 2005; Weedon et al. 2007).

Therefore, low heritability implies that

the follow-up genetic study may be not

efficient.
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17.6.4 Fixed Effect or Random Effect

Analysis based on phenotypic values in

Sects. 17.2, 17.3, 17.4, and 17.5 is under assump-

tion that all interested effects, including geno-

typic effect, environmental effect, genotypic by

environment interaction effect, and block effect,

are fixed effects. It is natural to ask when and

which explanatory variables (also called inde-

pendent variables) to give random effects.

Conceptually, effects of variables might be

treated as random if we can think of the levels

of the variable that we included in the study as a

sample drawn from some larger population of

levels that could (in principle) have been

selected. Practically, one key difference between

fixed and random effects is in the kind of infor-

mation we want from the analysis of the effects.

In the case of fixed effects, we are usually

interested in making explicit comparisons of one

level against another. For example, wewouldwant

to compare the yield mean in Beijing to that in

NewYork in an experiment. If explicit comparison

of the levels of a variable against one another is the

goal of the research, then the levels of the variable

are usually treated as “fixed.” If, on the other hand,

our primary interest is in the effects of other

variables or treatments across the levels of a factor

(e.g., the effect of block on yield, across genotypes

from three environments), that is to say, we

assumed that the block effect varies randomly

within the population of environments, and the

researcher is interested to test and estimate the

variance of these random effects across this popu-

lation. Then the block variable might be treated as

a “random” effect. In this chapter, we assumed that

all the related effects are fixed.

17.6.5 Conclusion

Phenotypic variability may be caused by geno-

type and environmental factors. Therefore plant

geneticists are interested to dissect phenotype

and to identify the genes that play important

roles in the inheritance of phenotype. They try

to explain the role of those genes in relation to

one another and in relation to the environment.

Genetic mapping correlates the phenotype with

the genotype of genetic markers, which are

expected to be located close to the genes

(or genomic regions) of interest. The

relationships between the phenotype and gene

of interest can be weakened if phenotypic

variability is underestimated or overestimated.

Therefore, traits should be measured reproduc-

ibly on a large number of samples, and biometri-

cal techniques can be useful to determine the true

genotypic value. This can help to locate, enumer-

ate, and annotate genes and to assign known or

putative biochemical functions. However, only

about two-thirds of all genes have an assigned

biochemical function, and only a fraction of

those are associated with a phenotype. Therefore

some efforts are needed on phenomics (Bochner

2003) in order to accelerate the pace of the dis-

covery of genes using advanced tools and

techniques of biometrics.
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Abstract

Plant genetics and genomics have revolutionized agricultural research,

and a vast amount of genomics resources have been developed in crop

plants. However, these genomics resources could not be utilized with their

full potential in genetic improvement of crop plants especially for the

improvement of complex quantitative traits related to biotic and abiotic

stresses and the outcome is still far from satisfactory. Among several

reasons, the lack of availability of precise and high-throughput

phenotyping tools are cited as the major one, as poor phenotyping has

led to poor results in gene/QTL discovery for genomics-assisted breeding

applications. During the recent past, high-throughput precise phenotyping

tools and techniques have been developed, which led to development of a

number of phenomics platforms. These phenomics platforms can help us

to collect high-quality accurate phenotyping data necessary for harnessing

the potentiality of genomics resources through genetic dissection of com-

plex quantitative traits including discovery of new gene/QTL, identifica-

tion of gene function, and genomics selection. This chapter focuses on

recent developments in the area of phenomics and provides an overview

on the practical use of genomics through crop phenomics.
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18.1 Introduction

Plant genetics and genomics have revolutionized

agricultural research. The genomics revolution

started after the sequencing of model weed

plant Arabidopsis thaliana in 2000. Tremendous

progress has been made in the area of genomics

since then. These advances include development

and use of molecular marker technologies, devel-

opment of molecular genetic and physical maps,

gene discovery through various approaches,

cloning of genes for agriculturally important

traits, and sequencing tools and techniques like

next-generation sequencing (NGS) (Mir and

Varshney 2013; Mir et al. 2013; Gupta

et al. 2013b). Use of advanced genomics tools

and technologies has enhanced the precision of

conventional breeding programs leading to the

development of superior cultivars with enhanced

resistance/tolerance to biotic and abiotic stresses

(Varshney et al. 2012; Mir et al. 2012). However,

the cause of concern for the scientific community

is the declining growth/stagnation in production

of major food crops in the last few decades. This

stagnation poses a huge challenge to increase

50–70 % production by 2050 (Furbank and Tes-

ter 2011) to feed the extra billion population. The

most fertile agricultural land is facing competi-

tion from the industrialization, and the present

area under cultivation faces various biotic/abiotic

stresses, viz., fungal and bacterial diseases, heat,

salinity, and drought stresses. All these biotic and

abiotic stresses exert tremendous survival pres-

sure on crop germplasm (Mir et al. 2012). Under

the prevailing conditions and available resources,

new plant varieties with desired traits and high

yield potential need to be developed. This can be

achieved through better understanding of the

genetic makeup of plants and their phenotype

and correlation between the two along with envi-

ronmental challenges. It is important to mention

here that despite the achievement of genomics

revolution during the past few decades, the out-

come is still far from satisfactory as the existing

technologies are not effective in enhancing crop

productivity. Among several reasons, one of the

possible reasons could be the lack of availability

of precise and high-throughput phenotyping

tools, which has led to poor results in gene/QTL

discovery for genomics-assisted breeding

applications. The genomics application in agri-

culture can be made more effective and meaning-

ful by laying stress on the importance of crop

phenotyping/phenomics (Pieruschka and Poorter

2012). This chapter focuses on how phenomics

can be integrated to harness the potential of vast

amount of developed genomic resources in crop

plant species.

18.2 Plant Phenotyping

Plant phenotyping considered an age-old practice

is the evaluation of agronomic characters of var-

ious cultivars to access the genotype. However,

phenotyping is considered a more tedious/time-

consuming job than genotyping owing to the

variations caused by environment interactions

and other changes (Pieruschka and Poorter

2012). To get more precise and authentic knowl-

edge of the phenotype of plant traits, a better

version of phenotyping is introduced called

“phenome,” counterpart of “genome.” If genome

is a total sum of genes present in an individual,

then phenome is all the expressed traits of the

individual (Pieruschka and Poorter 2012). Some-

times, plant phenomics is considered as “high-

throughput plant physiology” or “plant physiol-

ogy with new cloths” (Furbank and Tester 2011)

which helps on the extensive study of complete

life cycle with least destruction. The era of

phenomics is believed to help us in unlocking

the information coded in plant genomes (Finkel

2009). Phenomics initiatives have been under-

taken in several parts of the world including

Germany, France, the United Kingdom,

Australia, The Netherlands, Hungary, and Israel.

Some progress has been already made in the area

of phenomics, but much needs to be done to

achieve fruitful results in using genomics and

molecular breeding approaches like QTL interval

mapping, association mapping, genome-wide

association studies (GWAS), QTL cloning,

marker-assisted selection (MAS), marker-assisted

recurrent selection (MARS), and genomic selec-

tion (GS) or genome-wide selection (GWS) for

crop improvement programs (Cobb et al. 2013).
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18.3 Genomics for Crop
Improvement

Conventional methods of plant breeding have

made a significant contribution to crop improve-

ment, but the pace of progress has slowed down

drastically in the recent past as these methods

were less effective in targeting complex traits

like grain yield, quality traits, and abiotic stress

tolerance such as drought, salinity, heat, etc.

Conventional methods were unable to precisely

locate the position of genes controlling the phe-

notypic expression and their individual main/epi-

static effect. Genomics brings new and powerful

tools to solve difficult problems until unresolved

for a major yield breakthrough. Major advances

in genomics tools and technologies have made

gene discovery possible in crop plants and help in

better understanding/genetic dissection of gene

networks/complex quantitative traits that con-

tribute to the development of a superior geno-

type. Rapid development of the functional

genomics and gene technologies that occur over

the past decade has led to the functional analysis

of the genomes of major crops to enter into the

high-throughput stage. Dozens of key genes of

major crop species (rice, wheat, etc.) have been

cloned and characterized for their function in

controlling important agronomic traits. Molecu-

lar markers have enabled us to prepare dense

molecular maps in major crops and mapping of

QTLs/genes. Cheap and high-throughput DArT,

SNP, SFP, and GBS markers made GWS and

GWAS increasingly affordable and applicable

on a broader scale. Low sequencing cost due to

emergence of what we call NGS technologies has

provided new opportunities for gene discovery

and allele mining (Varshney et al. 2009).

Although the integration of molecular

approaches in breeding programs of several

crops still faces a number of limitations (e.g.,

lack of SNP platforms, high cost of high-

throughput phenotyping platforms, poor under-

standing of gene functions and interactions, etc.),

the role of genomics-assisted crop improvement

(GACI) will become increasingly important to

achieve the selection gains that will be required

to adequately meet the growing needs of man-

kind in the next decades. Thus, the use of molec-

ular and genomics tools in plant breeding makes

it possible to design the model plant of the crop

species having high yield, better quality, and

high resistance/tolerance to biotic and abiotic

stresses. This makes the concept called breeding

by design possible that aims to control all allelic

variations for all genes of agronomic importance.

This concept can be realized through a combina-

tion of various approaches like genetic mapping,

high-resolution chromosome haplotyping, and

extensive phenotyping (Peleman and Voort

2003). One of the challenges of genomics is its

translation into crop improvement after the dis-

covery/validation of QTLs/genes. The QTLs/

genes need to be introgressed into the most pop-

ular varieties of the crop species through modern

marker-assisted breeding (MAB) approaches,

sometimes called as GACI (Varshney and

Tuberosa 2007). Recently, a new molecular

breeding approach called GWS has been found

useful for breeding yield and other complex traits

(Bernardo 2010). The main advantage of GWS

is that it does not require any a priori informa-

tion or knowledge about the marker-trait

associations as is required for MAS, marker-

assisted backcrossing (MABC), and MARS. In

addition, GWS considers the effects of all markers

spread all over the genome thus capturing most

of the additive variation underlying complex

quantitative traits. GACI offers unprecedented

opportunities to identify major loci influencing

the targeted traits and to select for plants with

the desirable combination of alleles via MAS,

MABC, or MARS (Mir et al. 2012). The QTL

mapping techniques have been used for the dis-

covery and identification of QTLs/genes for a

number of agriculturally important traits including

yield, quality traits, and biotic and abiotic stress

resistance/tolerance in almost all the major crop

species (Gupta et al. 2013a). Therefore, genomics

tools and technological advances have enhanced

the precision in conventional breeding programs

and in several cases led to the development of

superior cultivars with enhanced resistance/toler-

ance to biotic/abiotic stresses through genomics-

assisted breeding (Varshney et al. 2012).
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However, despite these advances in genomics

tools and techniques, the information that became

available has not been adequately exploited due to

outdated and laborious phenotyping tools. It

became apparent that the high-throughput

phenotyping is an important new bottleneck in

crop breeding and plant biology.

18.4 High-Throughput Phenotyping

In the era of phenomics, high-throughput precise

phenotyping helps us to collect high-quality

accurate phenotyping data. The high-quality phe-

notypic data is very important and useful for

meaningful genetic dissection and genomics-

assisted breeding applications including (i) QTL

interval mapping, (ii) association mapping, (iii)

GWAS, (iv) QTL cloning, (v) QTL meta-

analysis, (vi) MAS, (vii) MARS, and (viii) GS

or GWS (Welcker et al. 2011; Tuberosa 2012;

Cobb et al. 2013; Fig. 18.1). Recently, an Inter-

national Plant Phenomics Initiative was launched

to address crop productivity (http://www.

plantphenomics.org/). The earlier use of invasive

or destructive methods of plant phenotyping is

now giving way to high-throughput precise non-

destructive imaging techniques. Several

phenomics platforms are now available around

the world with good facilities allowing scientists

new windows into the inner workings of living

Non-coding regions
Coding regions

DNA

EEEE I II II

Phenomics

Genomics

GWAS
PheWAS
GWS
MARS
MAS

Gene tagging
QTL mapping

AB-QTL mapping
Fine mapping
QTL cloning

Fig. 18.1 Diagrammatic representation of role of

phenomics in the genomics era. The figure shows how

phenomics in combination with genomics will help us in

gene discovery, gene mapping/tagging, cloning and

genomics-assisted approaches for crop improvement.

GWAS genome-wide association study, PheWAS
phenome-wide association study, GWS genome-wide

selection, MARS marker-assisted recurrent selection,

MAS marker-assisted selection
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plants. These facilities include (i) infrared

cameras to scan temperature profiles/transpira-

tion, (ii) fluorescent microscopy/spectroscopy to

assess photosynthesis, (iii) three-dimensional

camera to record minute changes in growth

responses after crop plants are exposed to

stresses, (iv) lidars (light detection and ranging)

to measure growth rates, and (v) magnetic reso-

nance imaging (MRI) to examine root/leaf phys-

iology (Finkel 2009; Gupta et al. 2012). Digital

imaging, considered cornerstone for measuring

quantitative phenotypes, has allowed to monitor,

measure, and track many aspects of plant devel-

opment, function, and health which was unimag-

inable using conventional techniques. A number

of software programs have been developed for

extracting data from the digital images from

roots, shoots, leaves, seeds, grains, etc. A list of

software programs and phenotyping platforms

for high-throughput precise phenotyping is avail-

able elsewhere (see Cobb et al. 2013). These

high-throughput phenotyping platforms and soft-

ware are being used in several laboratories across

the world. These phenomics facilities scans

thousands of plants in a day and generates huge

phenotypic data in the same way as high-

throughput DNA sequencing in the field of geno-

mics (Finkel 2009). In some countries, these

phenomics platforms are already being used for

a variety of phenotypic screens and developing

root imaging, for instance, Australian Plant

Phenomics Facility in South Australia, Plant

Accelerator in Adelaide, Australia; Jülich

Phenomics Centre by the Institute for

Phytosphere Research (IPR) in Jülich, Germany;

and Leibniz Institute of Plant Genetics and Crop

Plant Research in Gatersleben, Germany, to

name a few (Mir et al. 2012).

The availability of high-throughput pheno-

typing tools have although helped in obtaining a

large quantity of images and data, but to run the

data storage, handling and analysis will be

another challenge in plant phenomics. The vol-

ume of data mainly depends on the resolution of

the image detectors and the number of acquired

images from each inspection. The data analysis

methods, such as principle component analysis

(PCA) (Yang et al. 2009), support vector

machine (SVM) (Romer et al. 2011), and

artificial neural network (ANN) (Karkee et al.

2009), are often used for data dimension reduction

and efficient parameter extraction. In the future

for promoting the application of high-throughput

plant phenotyping, the less expensive, less labori-

ous, and well-sophisticated data analysis infra-

structure, such as HTPheno (Hartmann et al.

2011) and IAP (Klukas et al. 2012) incorporating

the open-source software imageJ, needs to be

developed and popularized.

Reports are also available on high-throughput

phenomics methods/platforms that have been

developed and used successfully for targeted

trait evaluation in several crop species/plants.

For instance, in case of Brachypodium

distachyon, evaluation for root system architec-

ture under differential nutrient availability was

undertaken using high-throughput plant growth

and imaging platforms (Ingram et al. 2012). In

Arabidopsis, plant responses to soil water deficit

were dissected using automated visualization and

image quantification “PHENOPSIS” platform

(Granier et al. 2006). Similarly, high-through-

put/high-resolution phenotyping was conducted

for measurement of hypocotyl growth and shape

(using HYPOTrace), and the seed-germination

analysis platform “GERMINATOR” was used

for recording data on recombinant inbred lines

(RILs) of mapping population, leading to the

discovery of several QTLs for salt tolerance

(Joosen et al. 2009; Wang et al. 2010). Several

other fully or partially automated imaging

platforms for non-destructive image-based

phenotyping were used to record data in

Arabidopsis (see Sozzani and Benfey 2011).

In higher plants like rice, automatic and non-

invasive imaging system and analysis platforms

have been used for accurate phenotyping

(Ishizuka et al. 2005). These platforms have

been also used to automatically estimate root

structure traits (RSA) of 12 rice genotypes, and

the results are believed to prove valuable for

phenotyping of individuals within mapping

populations for identification of genes/QTLs

underlying the RSA (Iyer-Pascuzzi et al. 2010).

In addition, selected platforms like

“PHENODYN” that imposes drought scenarios
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have been used to image maize and rice plants for

trait evaluation (Sadok et al. 2007). Additional

phenomics platforms are being developed for

quantification of hyphal growth rates, higher

level of automation, and expanding the host and

pathogen range (Douchkov et al. 2012).

Phenomics platforms have been developed

worldwide including Australian Plant Phenomics

Facility (APPF; http://www.plantphenomics.org.

au/); Jülich Plant Phenotyping Centre (JPPC;

http://www.fz-juelich.de/ibg/ibg-2/EN/

Research/Phenotyping/Phenotyping_article.

html?nn¼548814); Laboratory of Plant Eco-

physiological Responses to Environmental

Stresses (LEPSE; http://www1.montpellier.inra.

fr/ibip/lepse/english/), IBERS, Aberystwyth Uni-

versity, UK (http://www.aber.ac.uk/en/ibers/

facilities/new_builds_at_ibers/); PhenoPhyte

(USA; http://PhenomicsWorld.org/

PhenoPhytewebcite); and European Plant

Phenotyping Network (EPPN). These platforms

have been discussed separately in Chap. 19.

18.5 Phenomics for Harnessing
Genomics

18.5.1 Genetic Dissection of Complex
Traits

As mentioned above, most of the agriculturally

and economically important traits like yield,

quality, and some forms of abiotic stress toler-

ance are controlled by a large number of genes

having small effects. These traits are known as

quantitative or polygenic traits and sometimes

we call them complex quantitative traits owing

to their complex genetic control. These complex

quantitative traits are highly influenced by the

environment, and thus their improvement

through conventional breeding methods becomes

less rewarding. During earlier times, quantitative

traits were dealt by using several statistical

procedures based on mean, variance, and covari-

ance and were used to partition the total pheno-

typic variance into genetic and environmental

variance; also, genetic variance was further

partitioned into additive, dominance, and

epistatic variance. However, little was known

about the genes, their location, their effect on a

particular trait, and their interactions with each

other (epistasis) (Kearsey and Farquhar 1998).

With the tremendous advancements in the area

of genomics in the recent past, the situation has

changed. We can now predict the function, loca-

tion, nature, and interactions of a gene with max-

imum certainty. However, the precision of

prediction of genes and their functions through

genomics needs to be enhanced by making use of

high-throughput phenomics tools and

technologies. This will help us to harness the

full benefits/potential of genomics for crop

improvement programs. Meaningful QTL/gene

discovery programs either through QTL mapping

or association mapping need accurate and precise

phenotyping data of complex traits. It is impor-

tant to mention here that valid and applicable

results reported with non-conventional

approaches so far have not yielded expected

results, in spite of huge molecular genotypic

data generated during the last few years

(Edmeades et al. 2004; Araus et al. 2008; Collins

et al. 2008; Xu and Crouch 2008; Passioura

2010). One important reason is the slow progress

in the area of phenomics which involves a num-

ber of approaches for recording precise and high-

throughput phenotyping data. The phenotypic

data is the primary data required for the genetic

dissection of quantitative traits and should be

taken precisely. To obtain a clean set of repro-

ducible and precise phenotypic data of complex

traits like salinity tolerance from larger germ-

plasm collection remains an open challenge

even in the era of phenomics-driven technology

(Mir et al. 2012). Phenotypic data should be

taken with care because these characters are

highly influenced by environmental variations

and are thus more subjected to experimental

errors. The gap between genotype and phenotype

is reduced through proper, accurate, and precise

phenotyping of quantitative traits (Tuberosa

2012). The precision with which the relevant

QTLs or chromosomal regions are identified

and their effects are accurately estimated

depends on how precisely the phenotyping data

are recorded to establish the phenotype-genotype
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association (Tuberosa 2012). In other words, the

use of molecular approaches for crop improve-

ment depends upon how well and how accurately

the targeted trait has been assessed phenotypi-

cally in mapping population or diversity panel,

because if the phenotypic data is not taken accu-

rately there will be more false positives and false

negatives. The genomic approach called GWS

that disregards QTL identification relies on the

molecular profiling and accurate phenotyping of

each progeny (Bernardo 2008; Bernardo and Yu

2007; Heffner et al. 2009). Good phenotyping

increases accuracy, precision, and throughput at

all levels of biological organization while reduc-

ing costs and minimizing labor through automa-

tion, remote sensing, data integration, and

experimental design (Cobb et al. 2013). “Accu-

racy” and “precision” are two different terms but

often used interchangeably; accuracy involves

the degree of closeness of a measured or calcu-

lated quantity to its actual (true) value, whereas

precision, also known as reproducibility or

repeatability, means the degree to which further

measurement or calculations show the same or

similar results. Most of the quantitative

characters show low to moderate heritability,

and this low heritability impairs the probability

of detecting the presence of QTLs (Bernardo

2004), thereby increasing type II errors (i.e.,

false negatives). These type II errors can be

minimized by taking phenotypic data for the

large-sized population, over a number of years,

over a number of locations, and thus increasing

the probability of detecting the QTLs. MAS

based on those QTLs detected by analysis of

phenotypic data of a single environment could

be inadequate, and due to this situation, the QTL

main effect and QE interaction could not be

separated. As a result for developing broadly

adaptable varieties, new breeding strategies

based on QTL evaluation among a variety of

environment will be necessary to realize the

potential of MAS (Yuan et al. 2006). Simulta-

neous treatment of phenotypic data from multi-

ple environments provides a significant increase

in statistical power of QTL detection and accu-

racy of the estimates of QTL position and effect

(Jansen et al. 1995).

Biparental populations like recombinant

inbred lines, doubled haploid population, or

diverse germplasm are used to identify QTLs

and ultimately clone genes of interest under

these QTLs. This process of identification of

QTLs involves the use of two types of data:

phenotypic and genotypic data. Phenotyping of

the populations has been recognized as the most

laborious and technically challenging part of this

process. Screening of the populations for a valu-

able agricultural trait (such as biotic stress toler-

ance, abiotic stress tolerance, grain quality, or

yield potential) requires replicated trials across

multiple environments over a number of seasons.

Tools that are currently in common use for

phenotyping require destructive harvests at

fixed time intervals or at a particular phenologi-

cal stage and are slow and costly. Furthermore, if

a promising candidate gene is to be tested for

allelic variation in a mapping population, this

phenotyping work needs to be done precisely.

The labor-intensive and costly nature of conven-

tional field phenotyping have meant that many

crop breeding programs make a single measure-

ment of final yield for replicated plots in

contrasting environments over multiple seasons.

However, yield itself is one of most poorly

inherited traits in crop breeding. The bottleneck

in field phenotyping has driven intense interest

over the past decade in applying remote sensing

technologies to field crop monitoring, and in this

regard field phenomics is more advanced in

many respects than controlled-environment,

high-throughput analysis. The “phenotyping bot-

tleneck” described above can now be addressed

by combining novel technologies such as nonin-

vasive imaging, spectroscopy, image analysis,

robotics, and high-performance computing.

Phenomics could be described as simply “high-

throughput plant physiology.” As a result, field

evaluation of plant performance is much faster

and facilitates a more dynamic, whole-of-life

cycle measurement less dependent on periodic

destructive assays. Furthermore, application of

these tools in dedicated high-throughput, con-

trolled-environment facilities has the potential

to improve accuracy and precision and reduce

the need for replication in the field.
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18.5.2 Gene/QTL Discovery

Above we have discussed the role of phenomics

to dissect the complex traits using genomic

resources. Both forms of linkage mapping have

been used successfully to identify the genomic

regions underlying the complex traits. However,

cloning of the gene(s) underlying the QTL

remains time-consuming and resource intensive,

although QTL explains a substantial proportion

of the phenotypic variation (Bhattacharyya 2010;

Fan et al. 2006; Krattinger et al. 2009; Li

et al. 2010; Liu et al. 2008; Saito et al. 2010).

The poor phenotyping of targeted trait increases

the rate of discovery of false QTL. Therefore,

advances in phenomics have potential to improve

accuracy and precision of phenotyping. As a

result, both forms of linkage mapping hold

great promise for elucidating the genetic archi-

tecture of complex traits and identifying the

genes and specific alleles underlying trait varia-

tion. In barley, transient-induced gene silencing

(TIGS)-based phenomics platform has been

developed and used for testing of ~1,500 genes.

The analysis revealed identification of 70 candi-

date genes showing significantly increase in

resistance or susceptibility to fungal disease

upon TIGS. Besides this, high-throughput

phenomics platforms/tools have been used for

genetic dissection leading to discovery of

genes/QTLs for several traits including root

architecture traits, seed shape, osmotic tolerance,

and biomass traits in crops like rice, wheat, bar-

ley, and mustard (Tanabata et al. 2012; Shi

et al. 2012; Topp et al. 2013). These successful

examples suggest that phenomics holds great

promise in uncovering all the useful genes/

QTLs governing complex quantitative traits in

plants.

18.5.3 Identification of Gene Function

During the past two decades, our understanding

of genotype has improved manifold due to avail-

ability of millions or billions of nucleotides. This

has helped to determine genotypes down to the

level of individual nucleotides in whole genome.

In addition to this, other genomic tools and

techniques have made it possible to characterize

the natural genetic variation at routine basis and

to support trait-driven efforts to clone and under-

stand specific genes. Now, genome science has

been moved beyond the era of reference and

model organisms leading to identification of can-

didate genes for targeted traits (Cocuron

et al. 2007). However, the function of several

genes is still unknown due to the incomplete

knowledge of all the expressed traits of the indi-

vidual. Therefore, high-resolution and high-

throughput technologies of plant phenomics are

required for exploiting the wealth of gene

sequence information provided by the “genomics

revolution” and mine agricultural germplasm for

genetic diversity. The phenotypic database simi-

lar to genomic database can help to know the

unknown function of gene sequences following

the reverse genetic approaches of genomics. Phe-

notypic profiling of a mutant and the wild-type

plant for growth rate, growth behavior, timing of

flowering and seed set, seed shape, leaf shape,

color changes, root density, nutrient utilization,

and other deviations can generate vast amounts

of data for systemically studying the relationship

between them. The integration of phenomics data

with data sets from transcriptome, proteome,

metabolome, and genome sequences will help

to paint a comprehensive picture of mutant gene

function.

18.5.4 Precision Phenotyping for
Genomic Selection

Large-scale, rapid, and simple precision

phenotyping is significant for breeders engaged

in variety development following the genomic

selection. In recent years, the cost and efficiency

of obtaining genomic information on large num-

bers of individuals have been drastically reduced

compared to collecting the phenotyping data

over years and environments. Therefore, breed-

ing community has focused more on genomics

selection for predicting phenotypic outcomes
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(Cabrera-Bosquet et al. 2012; Heffner

et al. 2009; Heslot et al. 2012).

Besides, the use of Bayesian models

facilitates the analysis of limited individuals for

phenotypic performance sparse data (where not

all individuals or families are evaluated pheno-

typically in each environment). This has also

encouraged the use of genomic selection. If

genomic selection demonstrates a clear increase

in the rate of genetic gain per cycle of selection,

then breeders will quickly adopt the most effi-

cient strategy to accomplish their goals. For this

purpose, breeders are required to use the cost-

effective, accurate, and highly precised

phenotyping tools for genomic selection. Thus,

phenomics tools can help to make genetic

improvement in a targeted trait through genomic

selection. Moreover, next-generation

phenotyping tools and techniques can provide

the precise phenotyping data of a trait on a train-

ing population and thus allow geneticists/

breeders to dissect the complex traits into geno-

type, phenotype, and the environment. This

phenotyping data can be used to develop models

that leverage genotypic information to predict

phenotypic outcomes. Precision phenotyping is

most important for developing the genomic

selection model because phenotyping database

obtained from training population provides the

basis for developing the statistical model. This

genomic selection-based statistical model is then

used to predict phenotypic performance in

related members of a breeding population (see

Cobb et al. 2013 for details).

18.6 Conclusion

Exploitation of the potentiality of available

germplasm resources by using the genomics

approaches for development of improved

genotypes in crop plants requires a better under-

standing of physiology and genetic basis of

important traits related to yield, quality, and

biotic and abiotic stresses. Therefore, an accurate

and cost-effective phenotyping is important. In

recent years, new developments have been made

in the field of phenomics for screening the traits

more accurately and precisely. These advances

have facilitated the development of high-

throughput phenotyping platforms for screening

the germplasm. Utilization of techniques/

approaches improved the collection of pheno-

typic data more precisely and cost-effectively

with reduced experimental noise. Thus, accurate

phenotyping will help to estimate the real herita-

bility of a trait, which is essential to make genetic

improvement through genomic selection. As a

result, genomic resources can be utilized with

full potential by identifying the real QTL for

complex traits, in discovery of genes under the

QTL and identification of function of those gene

sequences which are still not known. In the

future, the phenotyping facilities will be avail-

able to plant breeders which will be utilized

routinely to screen large population for making

genetic improvement in crop plants by precise

manipulation of genes through genomics.
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Abstract

To meet the ever-increasing demand of food and feed for the burgeoning

population, we need to double our food production by 2050 with a growth

rate of about 2.4 %. This needs input-responsive, resource-use-efficient

and short-duration genotypes which are stable and can perform well in an

array of situations. For this, integrated breeding efforts connecting geno-

mics and phenomics together are required. While a giant leap has been

made in crop genotyping in the last two decades, especially with the

development of next-generation DNA sequencing, the latest

developments in automation, robotics, accurate environmental control

and remote sensing facilities have offered opportunities for precise field

phenotyping of crop plants through state-of-the-art high-throughput plant

phenotyping platforms (HTPPs). Although the initially developed

platforms had limitations with regard to accuracy, speed and ground

clearance, the latest HTPPs are capable of taking multiple trait

measurements simultaneously that have improved data acquisition as

well as provide high-throughput phenotypic data required for crop breed-

ing programmes. A number of analysis pipelines have also been devel-

oped which are equipped with high-speed computing. This chapter

describes some of the most popular HTPPs and their specific features to

achieve precision phenotypes in crop plants.
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19.1 Introduction

Crop performance and ultimately its production

depend upon the quality of seed, its agricultural

management and the environment. Plant breeders
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always aim at the development of a variety which

is characterized by improved input (nutrition and

water)-use efficiency. With the ever-increasing

food demand of the world, the exploitation of

costly natural resources including water is

bound to increase, and therefore, this requires a

comprehensive management of the crops and

monitoring of resource use across the whole

food chain (Gebbers and Adamchuk 2010). The

human population is likely to exceed nine billion

by 2050 which will pose tremendous challenges

to ensure sufficient and nutritious food supplies

for all. Achieving this goal will especially be a

challenge to plant breeders because crop yields

will need to grow at a rate of 2.4 % annually,

even though the current growth rate is 1.3 % with

yield stagnating in up to 40 % of the land under

cereal production (Ray et al. 2013). Declining

factor productivity, stagnation in net cultivated

area and an array of biotic and abiotic stresses

further pose additional constraints in increasing

the productivity of crop plants. Of late, climate

change has emerged as another potential threat

which may manifest itself in the form of

droughts, floods, tropical cyclones, temperature

extremes and heat waves which are known to

negatively impact agricultural production. The

projected increase in these events will result in

greater instability in food production and

threaten livelihood security of farmers (Singh

et al. 2013).

Over the last two decades, considerable devel-

opment has been made in the genomics of crop

plant. However, efficient phenotyping to connect

genotype with phenotype remains a constraint.

Efforts of integrating new molecular tools, espe-

cially in dissection of complex quantitative traits,

are seriously hampered by our limited ability to

phenotype the plants precisely and efficiently.

Therefore, a fundamental step forward is to dra-

matically improve the phenotypic prediction

based on the genetic composition of lines or

cultivars (White et al. 2012). A continuous flow

of advances in the phenotyping techniques avail-

able to breeders offers the potential to increase

the rate of genetic improvement (Phillips 2010).

Nevertheless, phenotype-based selections have

been continuously made by farmers and breeders

long before the systematic breeding efforts were

initiated. Plant breeding is essentially a number

game and it largely depends upon the visual

selection of the best genetic variation in a

(segregating) population. However, to meet the

demands of future food needs as well as its qual-

ity, a geometrical enhancement in breeding effi-

ciency is required which can be achieved by

integration of molecular and conventional

approaches of crop improvement. Plant Breeders

want to be able to phenotype a large number of

lines rapidly and precisely to identify the best

variant in his population. This requires precise

high-throughput phenotyping, especially of the

complex traits.

Accurate phenotyping is necessary not only in

conventional crop improvement programmes but

also for genomics-assisted breeding. Although

molecular breeding strategies, such as marker-

assisted recurrent selection and genomic selec-

tion, place greater focus on selections based on

genotypic information, they still require pheno-

typic data (Jannink et al. 2010). Similarly,

phenotypes are also required to train a prediction

model in genomic selection (Lorenz et al. 2011).

In transgenics also, phenotyping is required to

identify promising events (Gaudin et al. 2013;

Saint-Pierre et al. 2012). Advances in high-

throughput phenotyping have provided fast and

inexpensive genomic information (Araus and

Cairns 2014). Realizing the importance of

phenotyping of crop plants, advances in high-

throughput phenotyping have provided several

root and shoot phenotyping platforms which

will be described in this chapter.

19.2 High-Throughput Phenotyping

Precise phenotyping under field conditions still

remains a major bottleneck in most of the varietal

improvement programmes (Cobb et al. 2013;

Araus et al. 2008; Cairns et al. 2012). Field

conditions are highly heterogeneous with little

or no control over the environmental factors.

On contrary, experiments in the controlled

environments, such as in greenhouse, are far

from the real situations in the field and therefore
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cannot be easily extrapolated in real situations

(Araus and Cairns 2014). For example, soil

which is the most crucial factor in plant growth

and development, supplying essential nutrients

and water, always remains variable in field

conditions. Similarly, in controlled conditions

in pots, the volume of soil may be too less as

compared to the field conditions and may not

mimic the real world situation. Also, plants are

generally grown in isolation in pots under con-

trolled conditions in comparison to field where

these are grown in a plot or cluster, having a

number of plants in the periphery, and therefore,

may lead to a crucial difference in the canopy

development. Most of the varietal development

programmes rely largely on multilocation evalu-

ation, and in many such programmes, some of the

environmental variables are not monitored prop-

erly and hence are poorly understood (Araus and

Cairns 2014; Cairns et al. 2013). This further

complicates the ability to mimic the field envi-

ronment under controlled conditions. Similarly,

many stresses go unnoticed, except for the major

stresses or those which are targeted at for evalu-

ation, and, therefore, are generally reproduced in

the artificial phenotyping conditions. Objectives

of phenotyping, heritability of the trait under

consideration and available logistics also influ-

ence the method of phenotyping.

High-throughput phenotyping platforms

(HTPPs) are fully automated facilities

encompassed in growth chambers or greenhouses

and supported by robotics, precise environmental

control and remote sensing facilities to assess

overall growth and development of the plant.

Development of HTP systems for plants has

mostly focused on measuring traits of individual

plants in environmentally controlled chambers or

greenhouses. However, many of the

agronomically important traits are best expressed

when the plants are grown in population under

the relevant edaphic and environmental

conditions. Therefore, there is an increased inter-

est among researchers in field-based HTPPs.

There are a number of vehicle-based high-

throughput systems used for phenotyping of

crop plants in the fields. Initially, deployment of

single sensor-type platforms was proposed. For

example, a three-wheeled cart was used by

Ruixiu et al. (1989) to position multiple ultra-

sonic sensors around a single row of a crop.

Montes et al. (2007) proposed tractor- or

harvester-mounted reflectance sensors for collec-

tion of spectral data. Later, McCarthy

et al. (2010) used a machine vision system to

measure internode length in cotton. However,

the major restriction with these systems was the

limitation in measuring multiple traits, which is

needed most of the times in typical crop breeding

experiments. To take measurements on multiple

traits, Lan et al. (2009) devised a system which

has integrated sensors for leaf area index (LAI),

crop canopy height, NDVI, multiple spectral

imaging and hyperspectral reflectance. Comar

et al. (2012) used a platform which had a number

of instruments including a global positioning

system (GPS), an antenna, an irradiance probe,

a digital camera and a passive spectrometer.

Similarly, White and Conley (2013) used multi-

ple sensors mounted over a handcart which could

position the sensors over two rows. However, it

required continuous labour to move the carts and

also had clearance limitations. These systems

definitely provided opportunities for improving

the acquisition of phenotyping data, but these

were not capable of providing actual high

throughput needed for modern varietal develop-

ment programmes. To improve high throughput,

Andrade-Sanchez et al. (2014) used a pheno-

typing system carrying four sets of sensors to

measure canopy height, reflectance and tempera-

ture simultaneously on four adjacent rows of

cotton (G. barbadense L.) and were able to col-

lect phenotypic data at a rate of 0.84 ha/h.

19.3 Imaging and Analysis Platform
for Plant Root Systems

Plant health and survival are dependent on the

plant root system architecture (RSA) (Iyer-

Pascuzzi and Sozzani 2014) as well as the spatial

configuration of different types and ages of roots

emerging from a single plant (Lynch 1995). Root

systems are complex plant structures that have an

important role in certain plant functions
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including nutrient and water acquisition. There-

fore, RSA and its development have received

increased attention due to advances in

phenotyping capabilities and growing insights

into the genetic control of root growth (Tuberosa

and Salvi 2006; Armengaud et al. 2009). While a

number of external factors can affect the mor-

phology and architecture of roots, certain root

qualities in crop plants help them in their stability

in problem environments and also in enhancing

their productivity in resource-limited conditions.

Therefore, introgression of intrinsic and environ-

mentally responsive root architectural characters

into crop plants may help combat environmental

vagaries and result in enhanced productivity in

stress conditions.

Extreme variability and complexity of field

environments and high responsiveness of root

systems make it difficult to obtain precise infor-

mation on the genetic components of RSA and

developmental root traits under field conditions.

Therefore, elucidating the genetic and develop-

mental basis of RSA in natural conditions

presents many challenges that must be addressed

through a combination of field-, greenhouse- and

laboratory-based approaches (Clark et al. 2011)

as well as predictive practices. In situ methods

involving rhizotron, magnetic resonance and

computed tomography have been developed to

facilitate non-destructive spatial and temporal

investigations into the root system grown in soil

(Gregory et al. 2003; Tracy et al. 2010). In addi-

tion, simulation and modelling studies linking

rhizosphere and growth data help linking the

predictive and field studies. Techniques such as

gellan gum growth systems with superior optical

clarity have been developed to facilitate

non-invasive two-dimensional (2D; Iyer-

Pascuzzi et al. 2010) and three-dimensional

(3D; Fang et al. 2009) imaging and temporal

studies of plant root systems. One such high-

throughput RSA phenotyping platform using

RootReader3D Reconstruction and Analysis

Software provides a capacity to measure root

traits with high degree of spatial and temporal

resolution and facilitates novel investigations

into the development of the entire root systems

or the selected components of the root systems

(Clark et al. 2011). The 3D imaging and

RootReader3D software is a unique imaging

and analysis platform for investigating both static

and dynamic 3D RSA characteristics of plant

root systems. The software RootReader3D

utilizes a silhouette-based back projection algo-

rithm (Mulayim et al. 2003; Zhu et al. 2006)

combined with cross-sectional volume segmen-

tation to generate 3D root models (for details see

Clark et al. 2011). To assist in visualizing and

interacting with the 3D reconstructions and

automated analysis of RSAs, viewing interfaces

and commands have been incorporated into the

RootReader3D software. In general, this plat-

form provides an opportunity of enhanced quan-

tification capabilities and capacity to image over

100 root systems per day and presents many

opportunities for dissecting the genetic control

and developmental changes of RSA as well as

opportunities to explore RSA variation within

and between species grown in a range of envi-

ronmental conditions.

19.4 Field-Based High-Throughput
Phenotyping Platforms

A combination of advances in aeronautics, remote

sensing and high-performance computing has

paved the way to develop ground-based platforms

to aerial systems of HTPPs (Araus and Cairns

2014). Most of the ground-based HTPPs include

modified vehicles equipped with GPS, navigation

devices, cameras and sensors (Araus and Cairns

2014). The ground-based HTPPs enable the

data to be captured at the plot level and do not

require much post-data processing. However,

due to limitations in ground-based HTPPs, it is

not possible to take measurements in all plots

simultaneously. The other category is of aerial

HTPPs which can be used as a solution to the

problems associated with the ground-based

HTPPs. The initial aerial HTPPs employed

small aeroplanes to take measurements which

used to be a costly affair. Further, many times it

is also not possible to achieve the desired speed

and altitude to take high-resolution images. The

recent alternatives to aeroplanes in aerial HTPPs
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include ‘phenotowers’ (Rascher et al. 2011) and

‘blimps’ (Losos 2013). These also have

limitations such as they require many people to

handle and a large space for storage. The

alternatives to ‘blimps’ are unmanned aerial

platforms (UAPs) such as polycopters. UAPs

although carry less amount of weight, they

enable greater flight control and autonomy and

are comparatively more affordable. Most of the

UAPs carry a camera together with a thermal

imaging sensor.

19.5 High-Throughput Phenotyping
Platforms

In the past two decades, precision agriculture has

emerged as a major discipline for the most opti-

mum and integral use and management of natural

resources. Of late, automation, robotics, high-

speed computing, new sensors and imaging

technologies have made available a range of

applications for laboratory research and screen-

ing systems for horticultural and production

systems (Belforte et al. 2006; Grift et al. 2008;

Zude 2009; Fiorani and Schurr 2013). Conse-

quently, plant phenotyping has also changed

into precision phenotyping which requires

HTPPs. A number of automated plant

phenotyping platforms have been developed dur-

ing the last one and a half decade. These are

capable of large-scale phenotyping, although

restricted to a few select species such as

Arabidopsis (Arvidsson et al. 2011; Granier

et al. 2006; Skirycz et al. 2011), cotton

(Andrade-Sanchez et al. 2014) and some of the

major cereals (Golzarian et al. 2011; Hartmann

et al. 2011).

Most of the HTPPs currently in operation

throughout the world are fully automated, high-

speed platforms housed in greenhouses or growth

chambers. These platforms utilize robotics, pre-

cise environmental control, remote sensing

techniques, global positioning systems and

high-speed computing facilities to assess vital

parameters of plant growth and development

and dissect their genetics. These HTPPs are

mostly run by large seed companies and

advanced crop research institutes around the

world. Some of the popular HTPPs around

the world include PHENOPSIS, Arabidopsis
platform, INRA (http://bioweb.supagro.

inra.fr/phenopsis/InfoBDD.php); PhenoFab,

Wageningen (KeyGene + LemnaTec) (http://

www.phenofab.com/); Biotron, Canada (http://

www.thebiotron.ca/); IBERS, Aberystwyth Uni-

versity (http://www.aber.ac.uk/en/ibers/n);

LemnaTec (http://www.lemnatec.com/); Interna-

tional Plant Phenomics Network (http://www.

plantphenomics.com/) integrating a few of the

national HTPPs; Jülich Plant Phenotyping Centre

(JPPC) (http://www.fz-juelich.de/icg/icg-3/

jppc); LEPSE, Montpellier (http://www1.

montpellier.inra.fr/ibip/lepse/english/); Austra-

lian Plant Phenomics Facility (http://www.

plantphenomics.org.au/); Smart tools for Predic-

tion (and) Improvement of Crop Yield – peppers

(SPICY) (http://www.spicyweb.eu/) and PPHD,

INRA, Dijon (http://www.dijon.inra.fr/dijon_

eng/toute_l_actu/journees_internationales_de_

limnologie).

The most successful traits for evaluation inte-

grate in time (throughout the crop cycle) and

space (at the canopy level) the performance of

the crop in terms of capturing resources

(e.g. radiations, water and nutrients) and how

efficiently these resources are used (Araus and

Cairns 2014; Cairns et al. 2012). These traits are

evaluated using different approaches, viz.,

(1) proximal sensing and imaging, (2) laboratory

analysis of samples and (3) near-infrared reflec-

tance spectroscopy (NIRS).

19.5.1 PHENOPSIS

PHENOPSIS is a publicly available (URL: http://

bioweb.supagro.inra.fr/phenopsis/) information

system developed for storage, browsing and shar-

ing of online data generated by the PHENOPSIS

platform and offline data collected by

experimenters and experimental metadata

(Fabre et al. 2011). This system was developed

by Granier et al. (2006) for reproducible

phenotyping of Arabidopsis thaliana. It is a pro-

totype built by Apilogic (Fondettes, France) and
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is composed of a steel frame supporting 14 trays.

Each tray has 36 holes which can support a pot

and a mechanical arm able to move according

to a program developed by Apilogic on

APIGRAPH IP software. The arm can be loaded

with displacement sensors, balance, camera and

tube for irrigation. The experiment comprising

different components, viz., position of pots on

the trays, time and cycle of irrigation schedules,

time of taking a picture, etc., can be easily

programmed in a computer on APIGRAPH IP

software. The climatic regulation of the growth

chamber can also be controlled by a computer

with the software, and the computer in turn can

be connected with various kinds of sensors, viz.,

light, humidity, leaf temperature, etc., helping in

the measurement of each micrometeorological

condition. In platforms such as this, large

quantities of environmental data, plant images

and phenotypic data are produced for the study

of genotype X environment interaction effects on

different plant processes (Fabre et al. 2011).

Nevertheless, this system requires procedures

for proper handling of datasets, their extraction

and sharing with the scientific community.

19.5.2 PHENOPSIS DB

PHENOPSIS DB provides a solution to the stor-

age (database), analysis and sharing (web inter-

face and web services) of images and data

collected in the PHENOPSIS platform (Fabre

et al. 2011). This platform provides modules

coupled to a web interface for (1) the visualiza-

tion of environmental data of an experiment,

(2) the visualization and statistical analysis of

phenotypic data and (3) the analysis of

Arabidopsis thaliana plant images. The database

was developed using the MySQL 5.0 Community

Server, while the Web interface was developed

using XHTML, PHP, JavaScript, jQuery, Ajax

and CSS. The RODBC package in R version

2.9.2 was used to establish the database

connection.

All metadata on PHENOPSIS DB can be

accessed freely. The metadata include

characteristics of experiments and associated

protocols, genotype information in an experi-

ment, list of different variables under consider-

ation in an experiment and associated protocols,

micrometeorological data and comments on

experiments. The major advantages and utilities

of PHENOPSIS DB include that this is a user-

friendly Web interface and has an interoperabil-

ity with other databases. Users of this system can

download and analyse the publicly available

datasets, environmental conditions during an

experiment and various images related to an

experiment besides consulting various

experiments and genotypes.

19.5.3 Phenoscope

It is a platform having a unique feature of contin-

uously rotating 735 individual pots over a table,

adjusting watering automatically. It comprises of

an aluminium table on a steel structure

maintained in a growth room. On this structure,

up to 735 plants may be grown and phenotyped

individually. The table is equipped with

weighing and watering arrangements so that the

plants can be maintained at a given treatment

target. The table contains a closed-circuit track

and a series of buttons to hold the pots. The

individual pots, each designed to hold a single

plant, are pushed along the guiding rails by coor-

dinated pusher arms that allow the robot to move

each pot sequentially across all possible positions

on the table in a single cycle, up to six times

every 24 h (Tisn et al. 2013). The movement of

the plants is designed in such a way that every

individual plant despite the environmental het-

erogeneity experiences the same environmental

conditions on an average over time which is not

on a comparative advantage or disadvantage.

Non-destructive phenotyping can be performed

at the phenotyping station available at the right-

hand corner of the table. A digital camera takes

images of the plants on the Phenoscope and

labels and stores them on an image server for

further retrieval and analysis. The Phenoscope

makes it possible to perform large-scale
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experiments that would not have been possible or

reproducible by hand (Tisn et al. 2013).

19.5.4 HPGA

HPGA (https://www.msu.edu/~jinchen/HPGA/)

is an HTPP for plant growth modelling and func-

tional analysis (for details see Tessmer

et al. 2013). It has two components, plant area

estimation (PAE) and growth modelling and

analysis (GMA). In PAE, by taking the complex

leaf overlap problem into consideration, the area

of every plant is measured from top-view images

in four steps. In GMA, a nonlinear growth model

is applied to generate growth curves, followed by

functional data analysis.

In most of the high-throughput computational

phenotyping techniques, top-view images are

captured periodically, and consequently a growth

curve is generated using the observed value of a

plant over time (Zhang et al. 2012). However, the

observed value of a plant from top view is

affected by leaf overlap as well as leaf twisting,

curling and circadian movements, which result in

inaccurate estimates of growth patterns. This

problem becomes more severe with older plants

having too many larger and overlapping leaves.

HPGA estimates the leaf overlap percentage to

measure plant area more accurately. Unlike the

existing techniques that simply count the number

of valid pixels in an image (Harris 1989; Heinen

1999), HPGA estimates plant areas accurately

through a four-step approach: plant centre iden-

tification, leaf tip identification, leaf area estima-

tion and plant area measurement (Tessmer

et al. 2013). In HPGA, functional data analysis

is applied on growth curves for better interpreta-

tion of the plant growth scenarios. This approach

avoids the leaf segmentation problem to recog-

nize all the leaves of a plant from a top-view

image. With this high-throughput phenotyping

technique, researchers are able to generate

hundreds or even thousands of observations for

every plant automatically. However, the major

limitation with this model is that the leaf-to-area

model is genome specific, and changing from one

species to another needs to train the model again

with the new leaves.

19.5.5 The Plant Accelerator

The Plant Accelerator (http://www.plantpheno

mics.org.au/services/accelerator/?template¼print)

combines the digital imaging technologies, high-

capacity computing and robotics for automated,

high-throughput, non-destructive phenotyping of

crop plants. It is situated in a customized facility,

which comprises most modern greenhouses,

growth rooms, laboratories and seed storage

facilities. Located at the University of Adelaide’s

Waite Campus and supported by the Australian

Government under the National Collaborative

Research Infrastructure Strategy (NCRIS) and

the University of Adelaide, the Plant Accelerator

provides users an expertise in plant and soil sci-

ence. Research projects facilitated by this tech-

nology vary from large-scale screening of early

growth, salinity tolerance to water- and nutrient-

use efficiency.

This HTPP increases the speed and accuracy

of plant physiological measurements. It also

helps in carrying out projects with large

populations of plants enabling genetic studies to

be undertaken to identify the molecular basis of

complex physiological traits besides providing

a better understanding of how the environ-

mental components affect plant growth and

performance.

The Plant Accelerator uses imaging stations

(LemnaTec Scanalyzer 3D) for the non-

destructive phenotyping of plants. This system

consists of visible light images (RGB) which

allow the measurement of shoot area and

inferred mass, plant height and width, canopy

density, other morphometric data, leaf colour

and senescence. Further, steady-state fluores-

cence imaging with blue light large field excita-

tion (<500 nm) allows quantification of plant

senescence, chlorosis and necrosis and pro-

grammable watering to weight of plants to

enable large-scale experiments requiring con-

trolled watering levels.
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19.5.6 Biotron, Canada

The Biotron (http://www.thebiotron.ca/) is also a

multidisciplinary, experimental climate change

research centre situated at the University of

Western Ontario, Canada. It is a unique,

purpose-built facility having specialized environ-

mental chambers, laboratories and equipment.

Biotron facilities include separately contained

research modules for earth sciences, microbiol-

ogy, plants (including transgenics), algae and

cyanobacteria and insects. Within these modules

are laboratories and equipment providing

custom-designed controlled environments and

analytical tools. Most of the Biotron’s

equipments can be controlled or monitored over

the internet from any geographical location and

the remote users are helped by technicians and

specialists available within the Biotron. The

Biotron is equipped with an Imaging and Data

Analysis Suite, Analytical Laboratory Suite as

well as a Flow Cytometry Suite, with their

associated laboratories and imaging facilities.

The Biotron enables the integration of experi-

mental climate change and environmental

research from the molecular scale to the mini-

ecosystem scale. Many instruments, growth

chambers and imaging devices are networked to

a secure, remotely accessible central server

enabling global access.

19.5.7 LEPSE (Ecophysiology
Laboratory of Plants Under
Environmental Stress),
Montpellier

This facility located at Montpellier (http://

www1.montpellier.inra.fr/ibip/lepse/english/) is

a state-of-the-art phenotyping facility with the

capacity of high-throughput analysis of transpi-

ration, leaf expansion, reproductive develop-

ment, canopy architecture as well as soil water

content, apex temperature and other micro-

meteorological variables. Further in situ mea-

surement of cell turgor, hormones and

kinematic analysis of cell division rate and tissue

expansion rate is also possible in this facility.

The phenotype is considered via time courses of

organ expansion, plant transpiration and 3D

development of leaf surfaces, involving several

plants in different experimental contexts.

19.5.8 PhenoFab, Wageningen
(KeyGene + LemnaTec)

The PhenoFab™ (http://www.phenofab.com/) is

a high-tech phenotyping platform housed in a

greenhouse set-up. In this platform, determina-

tion of the phenotype is based on moving pots or

trays with plants through a greenhouse compart-

ment and fixed scanning areas containing image

technology to capture digital data. The plants

grow in individual containers/tray wells and are

scanned at preset time points from various angles

using VIS (visible light), NIR and fluorescent

imaging technology. The facility has climate-

controlled compartments, enabling experiments

with different growth or stress factors. Digital

trait analysis is based on visible light and NIR

(near-infrared spectrum) imaging as well as fluo-

rescent imaging. RGB images are analysed using

pixel values to identify shape, colour and other

morphological digital phenotypes. The

NIR-infrared images are specifically employed

to reveal internal structures of plants, water con-

tent or other (e.g. chemical) compositions. The

fluorescence imaging allows GFP-protein and

chlorophyll analysis to be performed.

Combinations of all imaging technologies can

be used to resolve objects that have low

variability in any one spectrum.

19.5.9 High-Throughput Phenotyping
Platform (PPHD), INRA

The PPHD platform (http://www.dijon.inra.fr/

en/Tools-and-Resources/Tools_resources_dijon_

inra/PPHD) is composed of adjustable

greenhouses, air-conditioned chambers equipped

with conveyors and high-throughput pheno-

typing chambers complete with robots and

cameras for studying the aerial and root sections
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of thousands of plants, on various wavelengths.

This platform allows various stages of plant

growth and development to be studied, along

with physiological functioning in closely moni-

tored conditions. This technique allows the

behaviour of thousands of representative and

genetically diverse plant species to be analysed

in controlled cropping conditions, in order to

identify the most suitable species. Phenotyping

thus allows plant performance to be measured in

great detail, and complementary information on

plant genes is provided by genotyping.

19.5.10 The Australian Plant Phenomics
Facility

Digital imaging technologies, high-capacity

computing and robotics are combined at the Aus-

tralian Plant Phenomics Facility (http://www.

plantphenomics.org.au/) to allow the automated,

high-throughput, non-destructive measurement

of plant growth and function (‘phenomics’).

These resources are situated in a purpose-built

facility, which also houses state-of-the-art

greenhouses, growth rooms, laboratories and

seed storage facilities.

19.5.11 LemnaTec

LemnaTec phenotyping systems (http://www.

lemnatec.com/) are stationary portal crane

systems, which can move a measurement support

platform in a height of 3–6 m over a field area of

several hundred square metres. The platform is

moved in a reproducible way with high precision

to different positions, where visible light, near-

infrared and infrared cameras take images of the

field from the top. 3D scanners can add a third

dimension to the camera information. All

components are housed and equipped with

cooling options, so that the system may even be

used in tropical and subtropical regions. For

analysing competitive systems with a similar

attention to detail and depth, this system does

not have any technical or measurement limits.

19.5.12 International Plant Phenomics
Network

The International Plant Phenomics Network

(http://www.plantphenomics.com/) connects sci-

entific institutions and companies related to

research in plant phenomics from all over the

world. Currently its partners include the

phenotyping laboratories in Australia, France,

Germany and Canada, including the Australian

Plant Phenomics Facility, Ecotron, Centre

National de la Recherche Scientifique (CNRS),

Ecophysiology Laboratory of Plants Under Envi-

ronmental Stress (LEPSE), INRA, Jülich Plant

Phenotyping Centre (JPPC) and Biotron Experi-

mental Climate Change Research Facility

(Biotron).

It aims at developing, integrating and

providing novel technologies to analyse plant

phenotypes, providing quality assurance measures

in the technologies used for plant phenotyping,

identifying gene functions and their relationship

to environmental cues and analysing the effect of

environments on plant structure and function as

well as performance of plants in specific

environments in the laboratory and in the field.

This network also promotes development of new

concepts on the interaction between plants and

their environment and transfer of novel

technologies into applications in plant production

and for the analysis of natural plant and ecosystem

performance. The major targets of the Interna-

tional Plant Phenomics Network are breeding

plants for the changing environment, prognosis

of plant performance in global change, innovative

plant production for present and future crops

based on the understanding of the complex inter-

action of plants with their environment and its

dynamics, monitoring of plant performance in

natural systems and providing a science-based

concept and technology to address major

challenges of plant performance.
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19.5.13 HTPheno: Image Analysis
Pipelines

Analysing images from high-throughput

phenotyping experiments is often time-

consuming and demands high-end computational

skills. In a single high-throughput experiment,

thousands of images are produced. There are

several tools which support image editing,

image processing and image analysis for many

biological applications (Walter et al. 2010).

HTPheno, an open-source image analysis pipe-

line, supplies a flexible and adaptable Image

plug-in which can be used for automated image

analysis in high-throughput plant phenotyping

and therefore derives new biological insights

(Hartmann et al. 2011). HTPheno is such a

plug-in which provides an adaptable image anal-

ysis pipeline for high-throughput phenotyping

(Hartmann et al. 2011). It has two built-in

functions, (1) calibration (HTPcalib) to specify

different parameters for segmentation and

(2) automatic image processing, which can be

used for analysing colour images from the side

view as well as top view. This plug-in realizes

automatic image processing for a number of

images, and finally, the results of analysis are

consolidated in tabular form and the processing

steps for each plant may be visualized in an

image stack.

19.6 Conclusions

If the crop yields are to double by 2050 to

achieve the production goals, the crop improve-

ment has to witness an unprecedented increase in

productivity as well as improved resource-use

efficiency. This becomes increasingly important

in the current scenario of decreasing land and

water resources, emerging challenges due to the

impact of climate change and decreasing factor

productivity. Development of input-responsive,

short-duration and high-yielding crop varieties

will require a better understanding of the vital

parameters of crop growth and development and

a dissection of their genetic traits which will be

possible through a comprehensive assessment of

plants’ structural parameters including their

growth and development, architecture, physiol-

ogy, ecology, tolerance/resistance to stress, yield

and an array of some of the more complex traits.

Unfortunately, the capacity to undertake preci-

sion phenotyping is currently not up to that level

which can match with the developments occur-

ring in plant genotyping. This creates major

hindrances in breeding trait-specific cultivars as

well as identification of most vital root and shoot

characteristics which could indicate a plant’s

response to input-use efficiency, stress

conditions as well as changing environments.

The modern crop breeding requires precise

phenotyping of appropriate traits. During the

last decade, progress has been made in the devel-

opment of several HTPPs which have made it

possible to come out of some of these

bottlenecks, although a major limitation still

remains with respect to real-time integration

and assessment of data generated. Cost-

effectiveness is another issue which remains

associated with the development and use of the

HTPPs. Therefore, there is a strong need for the

development of cheaper but effective and accu-

rate solutions to precision phenotyping. It must

be realized that precision phenotyping is not just

studying the physiology or genetics of plants but

it requires an interdisciplinary approach. The

underutilized phenotyping techniques need to

be appropriately integrated into regular field

phenotyping programmes. For example, there

are well-established non-invasive techniques to

target seed traits as well as their composition

which still remain underutilized. Similarly

phenotyping of root traits and their architecture

will be most crucial for studying resource-use

efficiency, and fully automated newer

technologies which can lead to automatic recon-

struction of 3D images will be required. Keeping

in view the fast-changing scenario of crop

research globally, capacity enhancement of the

existing and the newly proposed phenotyping

platforms will be one of the most important

criteria which will decide the success of our

future crop breeding programmes and bridging

the gap between the genome and phenome.
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