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Abstract Scour is caused by the erosive action of flowing water. Although, dif-
ferent researchers have proposed various empirical models to predict the equilib-
rium local scour depth around bridge abutment, these are suitable to a particular
abutment condition. In this study, an integrated model that combines genetic
algorithms (GA) and multilayer perceptron (MLP) network, a class of artificial
neural network (ANN), is developed to estimate the scour depth around vertical
bridge abutment. The equilibrium scour depth was modeled as a function of four
affecting parameters of scour, abutment length, median grain size, approaching flow
depth, and average approach flow velocity, and these parameters are considered as
input parameter to the MLP model. The efficiency of the developed models is
compared with the empirical equations over a dataset collected from literature. The
MLP is found to outperform the empirical equations for the dataset considered in
the present study. The performance of the best case MLP is further improved by
applying GA for weight initialization. The results indicate that the GA-based MLP
is more effective in terms of accuracy of predicted results and is a promising
approach compared to MLP as well as the previous empirical approaches in pre-
dicting the scour depth at bridge abutments.
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1 Introduction

Scour is the process of removing underwater sediment from the base of a structure
by waves and currents [1]. Due to the scouring action of the flow, bridge failures
occur and a large amount of money is spent every year to repair or replace those
bridges. The number of abutment is much more than the numbers of piers, as most
of bridges are of single span, and hence, most of the repairing amount is spent
toward abutment scour [2]. According to the report published by the Department of
Scientific and Industrial Research of New Zealand [3], 50 % of total expenditure
was made to repair and maintain bridge damage, out of which 70 % was spent to
repair abutment scour. Thus, estimation of the depth of local scour around bridge
abutments is an important issue in the design of bridges.

The empirical formulae [4–7] developed through experimental investigation for
predicting scour depth around abutment are suitable to particular abutment
instances and the results of each formula significantly differ with each other.
Artificial Neural Networks (ANNs) are alternative method to overcome the varia-
tion of physical modeling and is a good function approximator. ANNs have been
widely applied in modeling complex problems in civil engineering. A review shows
that the available literature on the application of ANN to the scour at abutments is
limited. Kheireldin [8] applied the ANN to predict the maximum local scour depth
around bridge abutments. Begum et al. [9] developed Multilayer perceptron (MLP)
to predict scour around semicircular abutment. It is reported that MLP performs
better than the empirical formulae as well as the radial basis function network.
Begum et al. [10] also developed genetic programming model to predict the depth
of scour around vertical abutment. It is observed from the available literatures that
the soft computing models provide more accurate results than the empirical
formulae.

The main objective of this paper was to investigate the performance of GA-based
MLP (GA-MLP) relative to MLP and empirical formulae. In this paper, MLP and
GA-MLP networks are applied to existing experimental data for local scour.

The remainder of this paper is organized as follows: A brief introduction about
equilibrium scour depth is given in Sect. 2. Section 3 includes the empirical for-
mulae for local scour at bridge abutments. Methodology is given in Sect. 4. The
MLP and GA-MLP models developed for scour depth prediction around abutment
are introduced in Sects. 5 and 6, respectively. Section 7 concludes the paper.

2 Equilibrium Local Scour Depth Around Bridge
Abutment

Local scour is caused by the erosion of bed material from the base of abutment. It
can be either clear-water or live-bed scour. Clear-water scour occurs where there is
no movement of bed material into a scour hole during the time of scour. On the
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other hand, live-bed scour occurs when the scour hole is continuously fed with
sediment by the approaching flow [11]. The dataset used in the present study
involves clear-water condition.

Maximum equilibrium local scour depth around an abutment in a steady flow of
uniform, cohesionless sediment depends on the fluid, flow, bed sediment, and
abutment characteristics. Thus, the maximum equilibrium scour depth may be
represented by the following functional relationship [12]:

dse ¼ f1 U; q; qs; g; l; m; h; d50ð Þ ð1Þ

where U = average approach flow velocity, ρ = mass density of the fluid, ρs = mass
density of the sediment, g = gravitational acceleration, l = abutment length,
ν = kinematic viscosity, h = approaching flow depth, d50 = median sediment size,
and dse = equilibrium scour depth.

For a given fluid condition, ρ, ρs, g, and ν are constant and thus the relationship
between dse and its dependent variables can be expressed as follows:

dse ¼ f2 l; d50; h;Uð Þ ð2Þ

3 Empirical Formulae for Local Scour at Bridge Abutment

Four empirical formulae considered for evaluation in the present study are tabulated
in Table 1.

In the above cases, abutment shape factor, Ks, is considered as 1 (one), which is
the shape factor of vertical wall abutment.

Table 1 Empirical formulae for scour depth prediction around vertical bridge abutment

Author Formula

Froehlich [4] dse
h ¼ 0:78KsKh

l
h

� �0:63
F1:16
r

h
d

� �0:43
r�1:87
g þ 1

where Ks = abutment shape factor, Kɵ = abutment alignment factor,
Fr = approaching flow Froude number, rg = geometric standard
deviation, and d = median diameter of sediment particles

Kandasamy and Melville [5] dse ¼ KsK hnl1�n

where Ks is the shape factor, K and n are coefficients that are
determined as follows: K = 5 and n = 1 for h/l ≤ 0.04; K = 1 and
n = 0.5 for 0.04 < h/l < 1; and K = 1 and n = 0 for h/l > 1

Melville and Coleman [6] dse ¼ KhlKIKd50KsKhKG

where Khl represents the effects of flow depth and abutment length,
KI is the flow intensity factor, Kd50 is abutment length and sediment
size effects factor, KG represents the approach channel geometry
factor, and Ks and Kɵ are as defined in the previous equations

Dey and Barbhuiya [7] dse
l ¼ 7:281F0:314

e
h
l

� �0:128 l
d50

� ��0:167

where Fe = excess abutment Froude number.
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4 Methodology

The ANN model development for scour depth prediction consists of 5 steps:

Step 1. The dataset for vertical wall abutment considered in the present study was
collected from the literature [7, 12, 13]. It contains four independent
parameters: length of the abutment, median grain size, depth of the flow,
and average approaching flow and one dependent parameter, that is, depth
of the scour. The dataset consists of 227 samples, out of which nine
samples are removed as outlier.

Step 2. For effective training of the network, all data values were normalized
within the range 0.1–0.9 with the following equation:

xN ¼ 0:9� 0:1
xmax � xmin

ðx� xminÞ þ 0:1 ð3Þ

where x is the data value, xN is the normalized value of x, xmax is the
maximum, and xmin is the minimum value in the original dataset. Next, the
dataset was divided randomly into a training set and a testing set to train
the network and assess the performance of the network, respectively. The
training set consists of 80 % and the testing sets consists of 20 % data
points.

Step 3. Network architectures and learning methods are selected. In the present
study, MLP with single hidden layer is used which is shown in Fig. 1.
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Fig. 1 MLP network
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Step 4. Weights and other parameters, viz. learning rate (LR), momentum constant
(MC), number of neuron in the hidden layer, and epochs are initialized.
These parameters are modified with learning algorithms to get better
performance of the network. Since there are four independent parameters
that affect the extent of scour, the number of node in the input layer is four.
There is only one output node that corresponds to the depth of scour. The
networks have been trained several number of times to obtain the suitable
number of nodes in the hidden layer, momentum values, learning rate, and
number of iteration.

Step 5. Optimum network models are identified based on root mean square error
(RMSE) and correlation coefficient (CC) between target and predicted
values. The RMSE and CC are evaluated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

oi � tið Þ2
s

ð4Þ

CC ¼
Pn

i¼1 oi � �oð Þ ti ��tð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 oi � �oð Þ2Pn

i¼1 ti ��tð Þ2
q ð5Þ

where oi and ti are network and target output for the ith input pattern, �o and
�t are the average of network and target outputs, and n is the total number of
events considered.

To select the optimum architecture, each network is evaluated with testing
dataset. The models with minimum RMSE and maximum CC during testing are
selected as optimum.

5 Multilayer Perceptron

MLP is an important class of ANN. The schematic diagram of the implemented
MLP models is shown in Fig. 1. The values of the independent parameters l, d50, h,
and U are fed in the network through the nodes in the input layer. The network is
trained with Levenberg–Marquardt optimization algorithm and produces an
expected result (dse) in the output layer. The hidden layer of neurons enables the
network to learn complex tasks by extracting meaningful features from the input
patterns. The number of nodes in hidden layer is determined by trial and error
method.

In Fig. 1, w11, w21,…, wh4 are the weights between hidden and input layer and
w1, w2, …, wh are weight between hidden and output layer. The initial weights are
generated by Nguyen–Widrow [14] method.

The network includes various activation functions in the hidden and output layer
with different values of number of neurons, epochs, LR, and MC. The combinations
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of different network parameters are tabulated in Table 2. The activation functions
used in the present study are as follows:

f ðxÞ ¼ 1
ð1þ expð�axÞÞ ; log-sigmoidð Þ ð6Þ

f ðxÞ ¼ ð1� expð�axÞÞ
ð1þ expð�axÞÞ ; hyperbolic tangent sigmoid (tan-sigmoid)ð Þ ð7Þ

f ðxÞ ¼ x; ðlinearÞ ð8Þ

where a is the slope parameter of the sigmoid function which is considered as one.
The output (yj) of the jth hidden node is given by

yj ¼ f
Xn
i¼1

wjixi

 !
ð9Þ

where xi’s are the input values, n is the number of input nodes, wji is the weight
between ith input node and jth hidden node, and f is the activation function asso-
ciated with jth hidden node.

The output of the network is derived by

dse ¼ f
Xh
j¼1

wjyj

 !
ð10Þ

where wj is the weight between the jth hidden node and output unit and h is the
number of hidden nodes.

Some training and testing cases of MLP for scour depth prediction around
vertical bridge abutment are shortlisted in the Table 3. The shortlisting is done from
330 tested cases of MLP.

The best case of MLP is highlighted in Table 3. It was found with logistic
sigmoid transfer function in the hidden as well as in the output layer with Nguyen
and Widrow weight initialization method. The selected model of MLP had seven
number of neurons in hidden layer, Epoch = 2,500, LR = 0.5, and MC = 0.6. It had
very small RMSE during testing, that is, 0.0256, strong correlation value, that is,
0.9829 RMSE, and CC values of the corresponding training case are 0.0249 and
0.9834, respectively. The best case is graphically represented in the Fig. 2.

Table 2 MLP architectures

Activation function No. of hidden
neuron

Learning
rate

Momentum Epochs

Hidden layer Output layer

Log-sigmoid Log-sigmoid 5–10 0.1–0.9 0.1 –0.9 1,000–
7,000Tan-sigmoid Linear
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Table 3 Training and testing
results of MLP (Neuron = 7,
MC = 0.6)

Epoch LR Training Testing

RMSE CC RMSE CC

2,000 0.1 0.0272 0.9807 0.0270 0.9792

0.2 0.0262 0.9832 0.0259 0.9825

0.3 0.0264 0.9820 0.0320 0.9694

0.4 0.0280 0.9792 0.0280 0.9785

0.5 0.0265 0.9819 0.0340 0.9677

0.6 0.0292 0.9770 0.0343 0.9662

0.7 0.0257 0.9820 0.0356 0.9620

0.8 0.0252 0.9842 0.0337 0.9653

0.9 0.0263 0.9811 0.0367 0.9697

2,500 0.1 0.0247 0.9841 0.0383 0.9557

0.2 0.0262 0.9811 0.0340 0.9708

0.3 0.0310 0.9751 0.0342 0.9673

0.4 0.0257 0.9825 0.0272 0.9794

0.5 0.0249 0.9834 0.0256 0.9829
0.6 0.0284 0.9781 0.0308 0.9776

0.7 0.0280 0.9788 0.0328 0.9734

0.8 0.0262 0.9815 0.0356 0.9660

0.9 0.0249 0.9835 0.0322 0.9730

3,000 0.1 0.0278 0.9812 0.0290 0.9746

0.2 0.0277 0.9792 0.0354 0.9623

0.3 0.0256 0.9834 0.0257 0.9826

0.4 0.0264 0.9815 0.0309 0.9719

0.5 0.0253 0.9840 0.0377 0.9685

0.6 0.0279 0.9802 0.0361 0.9627

0.7 0.0276 0.9803 0.0356 0.9642

0.8 0.0268 0.9809 0.0274 0.9805

0.9 0.0267 0.9817 0.0347 0.9676

Fig. 2 ANN predicted versus experimental scour depth for vertical wall abutment
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The results of selectedMLPmodel and empirical formulae are tabulated in Table 4.
The table shows that the neural network models are capable of predicting scour depth
more accurately than the empirical formulae. The performance of MLP is further
enhanced by initializing the weights with GA which is discussed in the next section.

6 Weight Optimization Using GA

GAs are computerized search and optimization algorithms based on the mechanics
of natural genetics and natural selection [15]. GAs start with a random population of
possible solutions to a problem called chromosomes. The individual components
within a chromosome are referred to as genes. All chromosomes are then evaluated
according to a fitness function. In this study, the average deviation between target
and predicted values of scour depth is considered as the fitness function. Once the
fitness values are calculated, new chromosomes are created by selecting two
chromosomes and applying crossover and mutation operations. The process is
repeated until some predefined termination criteria are satisfied [16, 17].

The application of genetic algorithm for weight optimization in MLP consists of
three major phases. In the first phase, connection weights of each neuron are
represented as gene segments.

In the next step, fitness of these connection weights is evaluated by constructing
the corresponding neural network. The inverse of the error function as shown below
is considered as the fitness function.

E ¼ 1
2

XN
p¼1

tp � ypð Þ2 ð11Þ

where tp and yp are target and network output for pth training pattern and N is the
total number of training patterns.

The third phase is to apply the genetic operators such as selection, crossover, and
mutation. The process of selection, crossover, and mutation is repeated until the
error is smaller than a predefined value.

The hybrid network learning process consists of two stages: Firstly, GA is
employed to search for sub-optimal connection weights for the MLP network. Next,

Table 4 ANN versus
empirical formulae Method RMSE CC

MLP 0.0256 0.9829
Froehlich [4] 0.1732 0.7047

Kandasamy and Melville [5] 0.0991 0.8802

Melville and Coleman [6] 0.0843 0.9136

Dey and Barbhuiya [7] 0.2078 0.7530
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MLP with backpropagation algorithm (BP) is used to adjust the final weights. Some
training and testing cases are tabulated in Table 5.

From Tables 4 and 5, it is observed that hybrid GA-MLP model provides more
accurate result than the empirical as well as MLP model. The best case of GA-MLP
is highlighted in Table 5 and graphically represented in Fig. 3. The initial popu-
lation size was 60, and MLP was run by one iteration for each individual chro-
mosome (i.e., weights). Based on the fitness value, the GA operations were
performed and the process is repeated by 80 numbers of times. Finally, MLP was
run with BP for 200 iterations. In the above table, epoch represents the number of
iterations. MLP was run after applying the GA operations.

7 Conclusion

In the present study, MLP have been implemented to predict the maximum equi-
librium scour depth around bridge abutment and found to be suitable for prediction
of scour depth around bridge abutment. It is observed that the neural network

Table 5 Training and testing
results of GA-MLP Epoch Training Testing

RMSE CC RMSE CC

170 0.0317 0.9685 0.0351 0.9653

180 0.0292 0.9715 0.0305 0.9697

190 0.0268 0.9796 0.0291 0.9754

200 0.0203 0.9875 0.0213 0.9864
210 0.0231 0.9857 0.0239 0.9843

220 0.0218 0.9860 0.0227 0.9851

Fig. 3 GA-MLP predicted versus experimental scour depth
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prediction of scour depth is much more accurate than the existing empirical for-
mulae. The performance of best MLP model has further been improved by com-
bining with GA which performed network connection weight optimization. In the
dataset under consideration for vertical wall abutment, the hybrid models provide
better result compared to MLP model.

The present study has been carried out using MLP with a single hidden layer and
hybrid genetic algorithm-based MLP. Further experimentation needs to be carried
out with other soft computing models like neuro-fuzzy model over different datasets.
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