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Abstract Outliers are exceptions when compared with the rest of the data. Outliers
do not have a clear distinction with respect to regular samples in the dataset. Analysis
and knowledge extraction from data with outliers lead to ambiguity and confused
conclusions. Therefore, there is a need for detection of outliers as a pre-processing
stage for data mining. In a multidimensional perspective, outlier detection is a
challenging issue as an object may deviate in one subspace and may appear perfectly
regular in another subspace. In this paper, an ensemble meta-algorithm has been
proposed to analyze and vote the samples for outlier identification in multidimen-
sional subspaces. Cook’s distance, a regression based model has been applied to
detect the outliers voted by the ensemble meta-algorithm. Extensive experimentation
on real datasets demonstrates the efficiency of the proposed system in detecting
outliers.

Keywords Outlier detection � Outlier ensemble � Multidimensional subspace
analysis � Cook’s distance

1 Introduction

Data mining task aims to find the general patterns applicable to majority of the data,
but due to occurrence of abnormal behaviour of the data, the valuable knowledge
hidden behind may be suppressed and aid in ambiguous or confused conclusions.
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Abnormal behaviour of data are outliers. In practise, however there is not always a
clear distinction between outlier and regular data as data have different roles with
respect to different attribute sets in a multidimensional space. Therefore, outlier
detection in a multidimensional subspace is a challenging issue.

Detection of outliers in an unsupervised environment makes the problem more
complex as the basic knowledge about the number of clusters and the behaviour
would not be available. Thus, to ensure robustness and generality of outlier
detection across variety of data, an outlier ensemble with diverse outlier factor
analysis is required.

In this paper, an outlier detection method has been proposed by devising an
ensemble meta-algorithm. The ensemble meta-algorithm is based on three diverse
factors. Each factor analyses the data in different perspective in a sub-space. Mul-
tidimensional subspace is a permutable combination of attribute set. The number of
sub-spaces depends on the number of the attributes considered for analysis. The
three factors considered are: Distribution based factor, depth based factor and
proximity based factor. Distribution based factor uses the Mahalanobis distance
measure to model the data distribution and portray the occurrence of the samples to
the centre of the distribution. Depth based factor utilizes the Mahalanobis depth
function which gives the outward ordering of the data points from the deepest point
among the data samples. Proximity based factor utilizes the k-nearest neighbour
distances that shows the proximity of the samples in the local neighbourhood.

Based on the analysis of the dataset by every factor, each sample is scored by
1 or 0. Score 1 indicates the rise in voting level where as 0 indicates no change. The
cumulative scores indicate the number of votes gained by every sample. This may
not suffice in declaring the samples as outliers as it is just the cumulative rise in
number. To assimilate the voted samples of subspace to declare outliers into
multidimensional level, a regression based Cook’s distance has been adapted to
analyze the slope deviation of the regression due to change in membership
occurrence of voted samples as outliers. If the slope deviation is within the specified
threshold computed dynamically, the sample is not an outlier else it is considered as
outlier.

The rest of this paper is organized as follows. Section 2 signifies the state-of-art,
in Sect. 3, a detailed description of the proposed methodology is given. Section 4
depicts experimental analysis and results. This paper is concluded in Sect. 5.

2 State-of-Art

Detecting and eliminating outliers is of great significance to knowledge extraction.
Various techniques have been proposed for outlier detection. Available techniques
vary from single conceptual model [1–10] to multiple conceptual models [11–17].
Single conceptual models build detection strategies based on single outlier factor
for analysis whereas multiple conceptual models build the detection strategies with
a set of outlier factors.
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In literature, outlier detection methods with single outlier factors can be clas-
sified as statistical [1–3, 7, 10] and non-statistical [4–6, 8, 9] methods. Statistical
methods depend on statistical reasoning of the data distribution and prominent
categories include distribution-based [1, 10, 18] and depth-based [2, 19, 20]
approaches. Distribution-based approaches indicate those observations that are
located relatively far from the center of the data distribution as outliers. Depth-
based approaches are non-parametric and do not assume any underlying distribution
for the data. They indicate that an observation is an outlier based on its “center-
outward” ordering in the data. Non-statistical or proximity-based methods focus on
detecting outliers based on compactness of the samples in the local neighborhood.
Prominent approaches for non-statistical outlier detection include distance-based
[4, 5], density-based [14, 15] and clustering-based [6, 9] approaches.

Single conceptual models for outlier detection make specific assumptions about
the data to define what constitutes an outlier. They may not be effective if those
assumptions do not hold for the given data. Multiple conceptual models, also called
outlier ensembles have been proposed to overcome this problem [11–13, 16, 17,
21–25]. Outlier ensembles can be classified into those that involve multiple detection
factors [12, 13, 17], those with multiple executions of a single outlier factor using
different parametric values each time [14, 15] and those which perform single outlier
factors in multiple feature subspaces [11, 22–24]. The ensembles that explore single
factors in multiple subspaces are also called data-centered ensembles [26].

Data-centered outlier ensembles analyze the outliers from various perspectives.
These methods select random subspaces [11, 23] or use statistical methods for
selection of relevant subspaces [22, 24, 25] for outlier analysis. OutRank [21] is one
technique which performs outlier detection in all subspaces. Majority of the work that
use feature bagging, use single factor for analysis. There is very limited work in
literature that uses a combination ofmodel centered and data centeredmodels [12, 13].

In any form of outlier ensemble, an important aspect is the combination and
interpretation of results from different runs. Prominent approaches for combining
the scores are model averaging [22], best fit [14], aggregation [11] and product of
scores [12]. For final interpretation of outlier scores, user specified information such
as number of outliers L [12] or threshold [13] is the usually adopted method. There
are certain methods proposed to overcome such static cut-off. Gao [17] use cali-
bration approaches to fit outlier scores provided by different detectors into proba-
bility values. The probability estimates are then used to select the appropriate
threshold for declaring outliers using a Bayesian risk model. Papadimitriou et al.
[15] introduce a new definition of density-based outliers. The outlier score of each
data sample is used to compare against the normalized deviation of its neighbor-
hood’s scores and standard-deviation is employed in the outlier detection. However,
above techniques are limited to specific outlier ensembles.

It is evident from survey that for a robust detection of outliers, outlier ensembles
have been widely used. The existing methods for outlier ensembles can be classified
into data-centered methods and model-centered methods. Data-centered methods

Detection of Outliers in an Unsupervised Environment 565



use the concept of feature bagging and model-centered methods use different
detection strategies in full data space. The methods that use both the concepts,
concentrate on the selection of relevant subspaces for outlier detection. But these
are considered weak guesses and the true subsets of attributes relevant for outlier
analysis in an unsupervised environment may not be accurately identified [26].
Therefore, there is a need for an ensemble meta-algorithm with outlier factors at
multidimensional subspace level.

3 Proposed Methodology

Multidimensional subspace analysis explores the data in different subspaces. All
permutable combinations of attributes are considered to analyze the abnormal
behavior of outliers. The abnormality of a sample is due to its occurrence, neigh-
borhood relationship and nearness to the deepest point in the data clutter. To
measure all these factors, an ensemble meta-algorithm is devised with three factors
such as distribution based outlier factor to measure the occurrence based on dis-
tribution, depth based outlier factor to measure the nearness and proximity based
outlier factor to measure the nearest neighborhood relationship.

3.1 Distribution Based Outlier Factor

Distribution based factor uses Mahalanobis distance measure to model the data
distribution and portray the occurrence of the samples to the center of the distri-
bution. The samples that are highly deviating from the center of the data distribution
are outliers. For multidimensional data, the distance of sample from the center or
the mean of the data can be obtained by using multivariate distance measures.
Mahalanobis distance measure is a multivariate distance measure which has been
used for the distribution based factor in the proposed ensemble meta-algorithm.
Mahalanobis distance calculates the distance of a sample from its mean considering
the variance and the covariance of the features.

Mahalanobis distance [1] is defined as follows. Consider a d-dimensional mul-
tivariate dataset with n samples, x1; . . .; xn 2 Rd . The Mahalanobis distance for
each multivariate sample xi ¼ ðx1i; . . .; xidÞT is given by

MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi� lÞTC�1

q
ðxi� lÞ ð1Þ

where, l ¼ ðl1; . . .; ldÞT denotes the overall sample mean and C = variance-
covariance matrix given by,
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C ¼
c11. . .c1d

. . .

. . .
cd1. . .cdd

2
664

3
775 ð2Þ

and each term is a covariance between two features A and B given by

CAB ¼
Xn
i¼1

ðxiA� lAÞðxiB� lBÞ=ðn� 1Þ ð3Þ

Distances obtained follow the Chi-squared distribution with d-degrees of free-
dom. Cut-off value for the distribution is obtained from the Chi-squared distribution
table at 97.5th percentile. Distance values above the cutoff are selected as outliers.

3.2 Depth Based Outlier Factor

The depth factor in the ensemble provides an outward ordering of the data points or
samples from the deepest point in the data. This ordering of the points does not
depend on the distribution of the data. Mahalanobis depth function [2] is used and is
defined as follows.

Consider a d-dimensional dataset with n samples x1; . . .; xn2Rd . The depth
function for each multivariate sample xi ¼ ðx1i; . . .; xidÞT is given by

MDEi ¼ 1=ð1þ SMDiÞ ð4Þ

where, SMDi = squared Mahalanobis distance of the sample given by

SMDi ¼ ðxi� lÞTC�1ðxi� lÞ ð5Þ

where, l and C are the overall sample mean and the variance-covariance matrix
respectively.

The depth values (distances) obtained shows bigger values for samples nearer to
the deepest point in the data clutter and smaller values for the samples far away.
Samples with smaller values are considered outliers. Through trial and learning
process, a threshold of 0.15 is set to identify the outliers.

3.3 Proximity Based Outlier Factor

The proximity based outlier function is the distance between a sample and its
k-nearest neighbors [5]. For every sample, the average distance is computed to the
corresponding k-nearest neighbors considered.
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For a d-dimensional multivariate dataset with n samples x1; . . .; xn2Rd , the
distance function for a sample xi ¼ ðx1i; . . .; xidÞT is given by,

AvgDisti ¼
Xk
j¼1

Euclidean Disti; k=k ð6Þ

where, k = number of neighbors,
Euclidean_Dist i,k = Euclidean distance between sample xi and its jth neighbor is

given by,

EDij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxij� xj1Þ2 þ � � � þ ðxid � xjdÞ2

q
ð7Þ

The distance of the samples obtained is sorted and the samples with bigger
values are considered outliers. The threshold to declare outliers is based on the
average of the number of outlier samples obtained in the above two factors.

3.4 Interpretation of Outlier Scores

The outliers identified in each factor vary depending on the metric utilized. Due to
the abnormal behavior, a sample may be voted as outlier by a factor in a subspace
and may not be true in another factor in the same space. If there are n dimensional
attributes, then the total number of subspaces considered are 2n – n − 1, where n is
the number of single feature subspaces and 1 is an empty subspace. Single feature
subspaces are eliminated which drastically reduces the computational complexity
by n without eliminating any permutable combination of attribute sets.

To assimilate the analyses of every subspace of every factor, cumulative voting
record is generated. In the cumulative record, there is a rise in value by 1 if any
sample is voted as outlier. The cumulative record is the additive value of every
sample in the dataset voted outlier in a subspace by a factor. There is a rise in value
by 1 if the sample is voted as outlier else the numeric value remains unchanged for
non-outliers. The samples which are never voted always have the value zero.

The comprehensive outlier scores obtained for the data samples do not provide a
direct indication of whether the samples are outliers in the cumulative record.
Outlier scores that not only have high values but also have a large deviation from
the rest of the scores are to be identified dynamically. To analyze the voted samples
on a single plot, the cumulative records of all the samples are assimilated by a
regression based model called Cook’s distance [27]. Based on the observation,
when the outlier scores are plotted, a majority of the outlier scores (representing the
weak outliers) form a linear band and can be represented by a linear model. Those
samples with high scores affect the linearity of the data. To identify such scores,
regression analysis using Cook’s distance has been adapted.
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For a regression Y on the outlier scores ðy1; y2; . . .; ynÞ, the Cook’s distance for
a point yi is given by,

Di ¼
Xn
j¼1

ðŷj� ŷjðiÞÞ2=ðk þ 1Þs2 ð8Þ

where,

ŷj is the predicted value of the jth observation.
ŷjðiÞ is the predicted value of the jth observation with the ith point removed and
s2 is the mean squared error or the variance from the fit based on all the
observations (variance is the squared difference between the predicted value ŷ
and observed value y).

The predicted value of y from a regression i.e. ŷ is given by

ŷ ¼ Hy ð9Þ

where, H is called the Hat matrix [28] given by,

H ¼ XðX 0XÞ�1X 0 ð10Þ

Here, X is the predictor variable for the response variable Y (vector of outlier
scores).

The point i is treated as an outlier if

Di� 4=ðn� ðk þ 1ÞÞ ð11Þ

where, k is the number of predictor variables which is equal to 1 as the outlier score
is a single vector.

4 Experimental Analysis and Results

In this section, an experimental study is presented to evaluate the efficacy of the
proposed method in detecting true outliers. Experiments are conducted on four real
world datasets from the UCI Machine Repository [29]. The real world datasets used
for experimental analysis are Wisconsin breast cancer dataset, New Thyroid dataset
1 (with class 2 as rare class), New Thyroid dataset 2 (with class 3 as rare class) and
Pima Indian diabetes dataset. The datasets selected are binary class sets with the
larger class being the normal data and the smaller class being the rare class data.
Datasets with multiple classes are converted to binary class sets.

In the following section, a brief overview of all the datasets used for experi-
mental analysis is provided along with the results achieved using the proposed
method. The details of the datasets are as follows:
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Wisconsin breast cancer dataset: The original Wisconsin breast cancer data
consists of 699 records with nine attributes each. The records are labeled either
benign (458 records, 65.5 %) or malignant (241 records, 34.5 %). For experimental
purpose, 444 benign records and 39 malignant records are chosen. This leads to
92 % normal records and 8 % abnormal or rare class records.

New Thyroid dataset 1: The New thyroid dataset gives information about the
thyroid disease. The task is to detect whether a given patient is normal or suffers
from hyperthyroidism or hypothyroidism. The original dataset consists of 215
records out of which 150 records are normal, 35 records denote hyperthyroidism
and 30 records denote hypothyroidism. For experimental purpose, 150 normal
records and 15 records from class 2 are considered to form 90 % normal records and
10 % abnormal or rare class records.

New Thyroid dataset 2: The New thyroid dataset is used with another combination
of binary class set. 150 normal records and 15 records from class 3 are considered
to form 90 % normal records and 10 % abnormal or rare class records.

Pima Indian diabetes dataset: The original Pima Indian Diabetes dataset consists
of 500 ‘tested negative’ records and 268 ‘tested positive’ records. For experimental
purpose, 150 normal records and 15 records from class 2 are considered to form
90 % normal records and 10 % abnormal or rare class records.

Precision and Recall are used for measuring the quality of outlier detection by
the proposed method. Precision, also called the Positive predictive rate, is the
percentage of the reported outliers, which turn to be true outliers. Recall, also called
True Positive Rate (TPR), is the percentage of the true outliers that have been
reported as outliers at a given threshold. False Positive Rate (FPR) is also shown,
which is the percentage of falsely reported outliers out of the true inliers.

From Table 1, it is evident that the recall values for the majority of the datasets
are high indicating that the proposed system can detect outliers effectively (high
percentage of outliers are detected). High values of precision and low values of FPR
indicate that true outliers are more likely to be detected as compared to false
outliers. Hence the quality of outlier detection is high for the proposed system.

The overall expected performance of the proposed method is evaluated using the
well-established Receiver Operating Characteristics (ROC) curve. ROC curve is
obtained using the plot of TPR against the FPR rate. The ROC curve characterizes
the trade-off between the TPR and FPR values. It is preferred that the outlier
detection method has high TPR and low FPR values. This will have an ROC curve

Table 1 Precision, recall and FPR metrics for the proposed meta-algorithm

Dataset Precision (%) Recall (TPR) (%) FPR (%)

Wisconsin breast cancer data 74 94.87 2.92

New thyroid data 1 91.67 73.3 0.67

New thyroid data 2 92.3 80 0.67

Pima Indian Diabetes data 27.3 24 6.4

570 M. Ashwini Kumari et al.



that is closer to the upper left corner of the graph indicating high TPR and low FPR.
The ROC curves for the datasets are shown in the Figs. 1 and 2. Results obtained
for the proposed model with multidimensional subspaces are compared with full
dimensional space with the same factors. The ROC curves in the plots demonstrate
the improvement in performance due to multi-dimensional subspace analysis.

Fig. 1 ROC curves for wisconsin breast cancer and new thyroid 1 datasets using the proposed
meta-algorithm as against full-space outlier detection

Fig. 2 ROC curves for new thyroid 2 and pima Indian diabetes datasets using the proposed meta-
algorithm as against full-space outlier detection
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It is evident from the ROC curves that that overall expected performance of the
proposed system is high compared to full-dimensional space analysis.

The area under the ROC curve (ROC AUC) is a summary statistic used to
describe the overall expected performance numerically. AUC values closer to one
indicate better outlier detection. The ROC AUC values for the datasets for the
proposed system and ensemble with full-dimensional space analysis are given in
Table 2. It can be seen that the ROC AUC values for the proposed multi-dimensional
subspace analysis performs better than full-space analysis.

5 Conclusion

Outlier detection is a preprocessing stage for knowledge extraction. Analysis of
data which is free of outliers reduces ambiguity and fuzziness in the conclusion.
The proposed ensemble meta-algorithm with diverse factors, aims at identifying
outliers in unsupervised environment. Compared to the existing outlier detection
methods, the proposed model identifies outliers more accurately. Experimental
analysis with real world datasets demonstrates the efficacy of the proposed method
in detecting true outliers. An enhancement to the proposed model would be to
dynamically set the threshold for outlier identification in every factor. Presently, the
threshold is predefined by the knowledge of literature and training.
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