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Abstract Knowledge is the ultimate output of decisions on a dataset. Applying
classification rules is one of the vital methods to extract knowledge from dataset.
Knowledge in a very distributed approach is derived by combining or fusing these
rules. In a very standard approach this may generally be done either by combining
the classifiers outputs or by combining the sets of classification rules. In this paper,
we tend to do a new approach of fusing classifiers at the extent of parameters using
classification rules. This approach relies on the fused probabilistic generative
classifiers using multinomial distributions for categorical input dimensions and
multivariable normal distributions for the continual ones. These distributions are
used to produce results like valid/invalid data, error rate etc. Fusing two (or more)
classifiers may be done by multiplying the hyper-distributions of the parameters.
The main advantage of this fusion approach is that it requires less time to classify
the data and is easily extensible for large dataset.

Keywords Data fusion � Classification � Multinomial distribution �
Hyper-distribution

1 Introduction

In most of the data mining applications, the task of extracting knowledge (e.g.,
classification rules) from sample data is divided into a number of subtasks. Typical
examples are smart sensor networks, robot teams or software agents that learn
locally in their environment. At some point, there is the necessity to fuse or to
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combine the knowledge that is now contained in a number of classifiers in order to
apply it to new data. Probabilistic classifiers provide outputs that can be interpreted
as conditional probabilities as they model the conditional distribution of classes
given an input sample. Generative classifiers aim at modeling the processes from
which the sample data are assumed to originate. Probabilistic generative classifiers
are usually based on Bayes’ theorem [1] given by

PðcjxÞ ¼ pðxjcÞ � pðcÞ
PðxÞ : ð1Þ

where x is a (multivariate) random variable which models the input space of the
classifier (e.g., x € IRD where D € IN is the input space dimension) and c is a
random variable representing a class (e.g., c € {1…C}). In contrast to generative
classifiers, discriminative classifiers such as support vector machines, for instance,
are only expected to have an optimal classification performance on new data
(generalization). Compared to the probabilistic generative classifiers the discrimi-
native classifiers take several advantages as well as drawbacks [2, 3]. There are also
many application areas where both approaches can successfully be used in com-
bination [4, 5]. Advantages are, the class posterior probabilities p (c|x) are very
useful to weigh single decisions when several classifiers are combined, e.g., in form
of ensembles. A rejection criterion could easily be defined which allows to refuse a
decision if none of the class posteriors reaches a pre-specified threshold. Possible
drawbacks are that, these classifiers are more likely to over-fit to sample data as the
(effective) number of parameters is typically quite high. The classification perfor-
mance is sometimes worse if the data do not (at least nearly) meet the distribution
assumptions. Altogether, it depends on the type of application whether such clas-
sifiers can successfully be applied [6].

2 Related Work

Knowledge fusion means the knowledge represented by components of classifiers
fused at a parameter level. Fusion can take place at various levels or categories viz,
data (e.g., sensor measurements or observations) or information extracted from
databases can be fused to come to more certain conclusions. Models or parts of
models trained from sample data or information can be fused if the models were
constructed in a distributed fashion. The outputs of models can be fused to get more
certain decisions or as in the case of temporal and spatial data mining to derive
conclusions for certain points in space and time.

Here, two main fields can be identified: On one hand, knowledge is often
equated with constraints and there is some work focusing on fusion of constraints
discussed in [7–9]. On the other hand, knowledge is often represented by graphical
models that are subject to fusion, e.g., Bayesian networks, (intelligent) topic maps,
or the like as indicated in [10–13]. Paper [14] describes a Bayesian fusion approach
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based on hyper-parameters and it also exploits the concept of conjugate priors.
Parallelization approaches can be found in [15, 16] for instance. It could even be
shown that exact approaches are feasible in the sense that they give the same results
as if the data were not processed in distributed chunks [17]. These techniques
typically assume some shared resources and allow for an exchange of intermediate
results with the corresponding communication overhead.

3 Methodology

This paper describes the way of fusing data using one or more classifier and/or
combination steps. A classification is a task that begins with a given dataset to do
probabilistic generative classifier (CMM), generating classification rule, knowledge
fusion and classification, probabilistic classification, fusion techniques for classifi-
cation, a similarity measure for hyper-distributions and fusion training and analysis.

3.1 Probabilistic Generative Classifier and Generating
Classification Rule

A CMM classifier consists of several components each of which represents the
knowledge of the classifier about one process ‘generating’ data in the input space.
Here a new fusion classifier at the level of parameters of classification rule generates
rules namely RULE 1 and RULE 2 for grouping of real values in that dataset to find a
positioner value. In general, a classifier is a function mapping an input value x to an
output class c € {1, C} of C possible classes. A probabilistic classifier takes the form
p(c|x) which denotes the probability for class c given an input sample x.

According to [17],

P cjXð Þ ¼ P Xjcð Þ p cð Þ
p Xð Þ ¼ p cð ÞJci¼1 p jjcð Þ p xjc; jð Þ

p Xð Þ : ð2Þ

The classifier is split into C parts one for each class. Here p(c) is a multinomial
distribution specifying the prior probability of class c, the conditional densities p(x||
c, j) are called components of the classifier and p(j||c) is another multinomial
distribution whose parameters π c, j are called mixture coefficients and weight the
components in their respective part of the mixture model. The overall classifier,
which is called a classifier based on a mixture model (CMM), consists of J ¼
PC

c¼1 Jc components each of which is described by a (usually multivariate) dis-
tribution P(x|c, j). As the input data can have both, categorical and continuous
dimensions, the distributions p(x|c, j) must be chosen in a way such that both cases
can be handled by the classifier.
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3.2 Knowledge Fusion and Classification

The fusion mechanism uses the hyper-distributions obtained in the variance infer-
ence training process. Doing so, these hyper-distributions are retained throughout
the fusion process which has several advantages over a simple linear combination
of CMM parameters. The classifier resulting from all fusion and combination steps
is also called overall classifier. The following algorithm from [1] gives an overview
of the classification and describes explicitly how two CMM classifiers can be
merged (fused/combined) but, as all proposed operators are associative, multiple
CMM classifiers can easily be merged by iteratively merging pairs of classifiers
until only one overall classifier remains.

3.3 Probabilistic Classification

The main work here is to divide the classifier into four divisions based on the
probability of each classification. Probabilistic classifier provides output that are
interrupt to an conditional probabilistic that is we are going to classify data based on
the input and output of the data. This is done with different folds of probability
namely (1, 1), (1, 2), (1, 3), (1, 4). Based on the likelihood and the positioner value
the classifier gets fusion based on the formula.
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3.4 Fusion Techniques for Classification

If two classifiers model similar processes they are likely to contain many similar
components. We now want to detect such a situation in order to fuse all pairs of
similar components. When two CMM are trained separately, each with a distinct
part of the training data, we have two likelihood functions derived from the two sets
of training data and two prior distributions. We now assume that the two priors are
equal because in both cases we make use of the same prior knowledge or want to
express the same amount of uncertainty about the parameters we want to estimate.
Nevertheless, this leaves us with two posterior distributions.

Posterior1 a likelihood1:prior and Posterior2 a likelihood2:prior: ð3Þ

Each likelihood is itself a product over all data points in the respective training
set. To fuse the posteriors they simply could be multiplied to obtain one overall
posterior. This would lead to

likelihood1:Prior:
posterior1

likelihood2:Prior
posterior2

¼ likelihood1:Likelihoodd2ð Þ:prior2: ð4Þ

If we had used Eq. (4) for the overall dataset with the same prior, the result
would have been

Likelihood:Prior ¼ likelihood1:Likelihoodd2ð Þ:Prior: ð5Þ

Comparing (4) and (5) we see that there is an additional ‘prior’ factor. As the
prior is known, we can compensate for this fact by dividing by this prior which
finally leads to our new fusion approach.

likelihood1:Prior:likelihood2:Prior
prior

Posterior a =
Posterior1:Posterior2

Prior

ð6Þ

We cannot simply cancel out the prior here because it is only implicitly con-
tained in the posterior distributions which are the result of the training algorithm.
Instead, we multiply the two posteriors and then divide the result by the prior.
Finally, we can make the assumption that the resulting overall posterior has the
same functional form as the two posteriors that are fused. This is important for two
reasons: First, this allows us to easily determine the parameters of the overall
posterior and second, we can derive the parameters of the CMM classifier from the
fused posterior. This fusion technique is implemented for both classification1 and
classification2.
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3.5 A Similarity Measure for Hyper-Distributions

The similarity measure should be symmetric such that the order in which two
components are compared does not matter. A simple measure ΔH that fulfills this
restriction can be derived from the Hellinger distance [18]. The similarity measure
ΔH directly operates on the normal and multinomial distributions of the classifier.
Theoretically, it would also be possible to compute the Hellinger distance of the
hyper-distributions to evaluate the similarity of components but in that case the
integral in Equation could not be computed in a closed form.

3.6 Fusion Training and Analysis

In this module we fuse two classifiers based on the likelihood and positioner value.
The entire data is viewed and from the fusion value generated an error rate for each
classifiers with the generated value gets formulated. The conjugate prior distribution
that must be used to estimate the parameters of a multinomial distribution is a
Dirichlet distribution. In order to fuse two Dirichlet distributions their density
functions are multiplied and then divide the result by the prior. The knowledge that
we have a certain distribution type implicitly gives us a suitable normalizing factor
for the fused distribution.

4 Experimental Results

4.1 Dataset Used

This data was extracted from the census bureau database found at http://www.
census.gov/ftp/pub/DES/www/welcome.html. The above mentioned data was pre-
processed in WEKA. Convert the dataset into .arff or .csv format and extract into
WEKA. To find a classification technique such as Navie Bayes to do the followings
(Correctly classified instances, Incorrectly classified instances, Kappa statistic,
Mean absolute error, Root mean squared error, Relative absolute error, Coverage of
cases, Mean rel. region size, Total number of instances). To get detailed accuracy
by class (TP Rate, FP Rate, Precision, Recall, F-Measure, ROC Area, class) and it
formed a confusion matrix. This is depicted in Tables 1, 2 and 3.

170 E. Shanthi and D. Sangeetha

http://www.census.gov/ftp/pub/DES/www/welcome.html
http://www.census.gov/ftp/pub/DES/www/welcome.html


4.2 Results Observed

The basic idea of this work is how two or more classifier and thus, the represented
knowledge can be combined by means of several fusion and/or combination steps.

Step 1 Dataset extraction is done before we start our process.
Step 2 Generating Classification Rule

Here Probabilistic Generative Classifier is used to generate classification
rules.

Step 3 Probabilistic Generative Classifier (CMM)
For rule1 and rule2 the continuous dimensions are modeled with multi-
variate Gaussian distribution and results noted.

Step 4 Knowledge fusion and classification
Classification1 and classification2 are carried out for different dimensions
and data fusion occurs.

Step 5 Probabilistic generative classifier
The Mahalanobis distance [1] and mixture coefficient value [1] is calcu-
lated for classification.

Table 1 Evaluation on training set

Correctly classified instances 1,300 81.607 %

Incorrectly classified instances 293 18.393 %

Kappa statistic 0.5299

Mean absolute error 0.2102

Root mean squared error 0.3665

Relative absolute error 56.8115 %

Root relative squared error 85.2391 %

Coverage of cases (0.95 level) 96.108 %

Mean rel. region size (0.95 level) 71.0923 %

Total number of instances 1,593

Table 2 Detailed accuracy by class

TP
rate

FP
rate

Precision Recall F-measure ROC
area

Class

Weighted
avg.

0.85 0.29 0.901 0.85 0.875 0.881 ≤50K

0.71 0.15 0.606 0.71 0.654 0.881 >50K

0.816 0.255 0.828 0.816 0.821 0.881

Table 3 Confusion matrix
a b <– Classified as

1,023 180 a = ≤50K

113 277 b = >50K
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Step 6 Probabilistic classification1 and classification2
The classifier here is divided into various folds based on the probability of
classification. Data gets fused based on the likelihood and positioner value.

Step 7 Fusion techniques for classification1 and classification2
All pairs of similar components are fused for classification1. Similar
Fusion technique for classification2 may also be obtained.

Step 8 A Similarity Measure for Hyper-Distributions

Here two distributions namely Dirichlet distribution is applied to find parameters
namely Hellinger distance, continuous dimension and hyper Distribution, whereas
Normal-Wishart distribution is used for detecting error rate. The experiments have
shown that this new way of fusing and combining CMM classifiers can successfully
be applied in given datasets. The number of components and the classification
performance of the overall classifiers obtained with the fusion/combination algo-
rithm depend on the similarity threshold that has to be adjusted by the user
depending on the application. It is influenced by parameters such as the type of the
dimensions (categorical/continuous), the number of dimensions, or the number of
categories in the case of categorical dimensions.

5 Conclusion and Outlook

This work discusses a new technique to fuse two probabilistic generative classifiers
(CMM) into one. To identify components of two classifiers that shall be fused, a
similarity measure that operates on the distributions of the classifier is suggested.
The actual fusion of two components works one level higher on the hyper-distri-
butions which are the result of the Bayesian training of a CMM. Formulas to fuse
both Dirichlet and normal Wishart distributions which are the conjugate prior
distributions of the multinomial and normal distributions of a CMM are used to
obtain a more certain decision of a dataset. Applying data fusion approach to more
than two CMM classifiers is straight forward as it is possible to apply the technique
iteratively. It will certainly be possible to use the same parameter values (fusion
threshold) for all single fusions. While being trivial from a technical point of view,
the actual advantages for real applications have still to be pointed out in our future
work. If the number of classifiers is known in advance it would also be possible to
modify the fusion formulas accordingly. We can also generalize the approach to
other distributions, in particular members of the exponential family of distributions
and investigate how different prior distributions can be handled. We can find a more
intuitive way to parameterize the fusion threshold and we will investigate the
weighting of categorical and continuous dimensions in more detail. The proposed
techniques could be used in the field of distributed data mining, where datasets have
to be split to cope with huge amounts of data and where the communication costs
have to be low. It is also possible to use fusion in distributed environments where
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data are locally processed as they arise (e.g., in smart sensor networks). The work
can be applied for a specific application like collaborative learning and intrusion
detection.
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