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Abstract The modeling of electrical machine is approached as a system optimi-
zation, more than a simple machine sizing. Hence wide variety of designs are
available and the task of comparing the different options can be very difficult.
A number of parameters are involved in the design optimization of the induction
motor and the performance relationship between the parameters also is implicit. In
this paper, a multi-objective problem is considered in which three phase squirrel
cage induction motor (SCIM) has been designed subject to the efficiency and power
density as objectives. The former is maximized where the latter is minimized
simultaneously considering various constraints. Three single objective methods
such as Tabu Search (TS), Simulated Annealing (SA) and Genetic Algorithm (GA)
is used for comparing the Pareto solutions. Performance comparison of techniques
is done by performing different numerical experiments. The result shows that
NSGA-II outperforms other three for the considered test cases.

Keywords Multi-objective optimization � Induction motors � Multi-objective
evolutionary algorithms � Single objective evolutionary algorithm

1 Introduction

Three-phase induction motors have been widely used in industrial applications.
Over the past decade, there have been clear areas in motor utilization that demand
higher power density and increased energy efficiency. In many industrial
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applications, motor size and inertia are critical. Motors with high power density can
offer a performance advantage in applications such as paper machines. However,
high-power density cannot compromise reliability and efficiency. In such multi-
objective optimization (MO), it is impossible to obtain the solution with maxi-
mizing or minimizing all objectives simultaneously because of the trade off relation
between the objectives. When the MO is applied to the practical design process, it is
difficult to achieve an effective and robust optimal solution within an acceptable
computation time. The solutions obtained are known as Pareto-optimal solutions or
non-dominated solutions. The rest is called dominated solutions. There are several
methods to solve MO problems and one method of them, Pareto optimal solutions
are generally used for the balanced solutions between objectives.

Appelbaum proposed the method of “boundary search along active constrains”
in 1987 [1]. Madescu proposed the nonlinear analytical iterative field-circuit model
(AIM) in 1996 by Madescu et al. [2]. However, these techniques have many
shortcomings to provide fast and accurate solution, particularly when the optimal
solution to a problem has many variables and constraints. Thus, to deal with such
difficulties efficient optimization strategies are required. This can be overcome by
multi-objective optimization (MO) technique [3–7].

This paper aims at MO which incorporates NSGA-II algorithm for minimization
of power density and maximization of efficiency of three phases SCIM using dif-
ferent nonlinear constrained optimization techniques [8–10]. The Pareto-optimiza-
tion technique is used in order to solve the multi-objective optimization problem of
electric motor drive in a parametric fashion. It results in a set of optimal solutions
from which an appropriate compromise design can be chosen based on the pref-
erence of the designer. In addition to that various SOEA techniques such as Sim-
ulated Annealing (SA), Tabu Search (TS), Genetic Algorithm (GA) is applied to
compare among Pareto-optimal solutions [11]. Their performance has been eval-
uated by the metrics such as Delta, Convergence (C) and Spacing (S) through
simulation studies.

2 Multi-objective Optimization Design

The general formulation of MOPs as [12]
Maximize/Minimize

f ð~xÞ ¼ f1ð~xÞ; f2ð~xÞ; . . .; fMð~xÞð Þ ð1Þ

Subjected to constraints:

gjð~xÞ� 0; j ¼ 1; 2; 3. . .; J ð2Þ

hkð~xÞ ¼ 0; k ¼ 1; 2; 3. . .;K ð3Þ

where~x represents a vector of decision variables~x ¼ x1; x2; . . .; xNf gT :
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The search space is limited by

xLi � xi � xUi ; i ¼ 1; 2; 3. . .;N ð4Þ

xLi and xUi represent the lower and upper acceptable values respectively for the
variable xi. N represents the number of decision variables and M represents the
number of objective functions. Any solution vector ~u ¼ fu1; u2; . . .uKgT is said to
dominate over~v ¼ fv1; v2; . . .; vkgT if and only if

fið~uÞ� fið~vÞ 8i 2 1; 2; . . .;Mf g
fið~uÞ\ fið~vÞ 9i 2 1; 2; . . .;Mf g

)
ð5Þ

Those solutions which are not dominated by other solutions for a given set are
considered non-dominated solutions are called Pareto optimal solution.

The practical application of genetic algorithm to multi-objective optimization
problem (MOP) involves various problems out of which NSGA-II [13, 14] algo-
rithm has been implemented to find the Pareto-optimal solution between power
density and efficiency.

3 Multi-objective Evolutionary Algorithm Frameworks

A majority of MOEAs in both the research and the application areas are Pareto-
dominance based which are mostly the same frameworks as that of NSGA-II. In
these algorithms a selection operator based on Pareto-domination and a reproduc-
tion operator is used. The operator of the MOEAs guides the population iteratively
towards non-dominated regions by preserving the diversity to get the Pareto-optimal
set. The evaluate operator leads to population convergence towards the efficient
frontier and helps preserve the diversity of solutions along the efficient frontier.
Both goals are achieved by assigning a rank and a density value to each solution.
The MOEAs provide first priority to non-dominance and second priority to diver-
sity. However, the methods by which they achieve these two fundamental goals
differ. The main difference between the algorithms lies in their fitness assignment
techniques. Coello et al. Classifies the constraints handling methods into five cat-
egories: (1) penalty functions (2) special representations and operators (3) repair
algorithms (4) separate objective and constraints and (5) hybrid methods [15, 16].

4 Design Optimization of Induction Motor

In this paper the design of induction motor is formulated by MOEAs based on non-
dominated sorting, NSGA-II which does not combine the two objectives to obtain
the Pareto-optimal solution set. Here, the two objectives are taken individually and
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an attempt is made to optimize both simultaneously. The main objective is to
maximize efficiency (η) and minimize power density (ξ). The proposed NSGA-II is
suitably oriented in such a way as to optimize the two objectives. To express both
the objectives in maximization form, the first objective ξ is expressed as −ξ. In
addition to these objectives, different practical constraints mentioned are also
considered. In order to design, the problem is expressed as Maximize η and –ξ
simultaneously considering all constraints [17, 18].
The sizing equation of an induction machine is

PR IMð Þ ¼
ffiffiffi
2

p
p2

2ð1þ K/ÞKxg cos/rBgA
f
p
k20D

2
0Le ð6Þ

In terms of efficiency (η) can be written as

g ¼ PR IMð Þ2ð1þ K/Þffiffiffi
2

p
p2Kx cos/rBgA

f
p k

2
0D

2
0Le

ð7Þ

The power density of the induction machine is given by

f IMð Þ ¼
ffiffiffi
2

p
p2

2ð1þ K/ÞKxg cos/rBgA
f
p
k20

Lg
Lt

ð8Þ

where cos/r is the power factor which is related to the rated power PR(IM), the
pole pairs p of the machine, and the converter frequency f. The design variables for
induction motor are chosen as consisting of four flux densities at the teeth and yokes
for the stator and rotor, one current density in stator winding and three geometric
variables. Three geometric variables are the depth of stator slot, the ratio of the rotor
slot bottom width of rotor tooth width and the ratio of rotor slot top radius of the
rotor slot bottom radius [19, 20].

5 Performance Measure for Comparison

The final Pareto-optimal front obtained from different MOEAs techniques is
compared using performance metrics such as Spacing (S), Diversity metric (Δ),
Convergence metric (C) [17]. These performance metrics set the benchmark to
compare the results and select the best outcomes.

6 Simulation Results

The 5 kW, 4-pole, three-phase squirrel-cage induction motor is chosen as a sample
design. The rated frequency is 50 Hz and voltage is 170 V. Also, the ratio of
maximum torque to nominal torque is set 2.5 as a constraint. Lower limit of
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efficiency is 90 % and that of power density is 0.3 kW/kg. The population size is set
to be 100. The algorithms stop after 20,000 function evaluations. Initial populations
are generated by uniformly randomly sampling from the feasible search space. The
uniform Crossover rate is taken 0.8. The mutation rate is 0.10 where it is taken as
1/n, i.e. n is 10, the number of decision variables.

Table 1 shows the S metric and Δ metric obtained using all four algorithms.
Table 1 shows that the S and Δ metric value for NSGA-II is less than other three
algorithms and hence its performance is better among all.

Table 2 shows the result obtained for Convergence (C) metrics. The values
0.5988 in the fourth row, first column means almost all solutions from final pop-
ulations obtained by NSGA-II dominates the solutions obtained by SA. The values
0 in the first row, first column mean that no solution of the non-dominated popu-
lation obtained by TS, GA and NSGA-II is dominated by solutions from final
populations obtained by SA. From the result, it clear that the performance of
NSGA-II significantly outperforms the competing algorithms in the considered
optimal design of induction motor.

The comparison time computed by the CPU is shown in Table 3. The mean time
and the variance (var) of time for NSGA-II algorithm is less than other algorithms.
The Simulation statistics generated by the four algorithms NSGA-II, GA, TS, SA
respectively are illustrated from Figs. 1, 2, 3 and 4. It is shown in Fig. 5 that NSGA-
II results in wide areas of convergence and is diversified.

Table 1 The performance
evaluation metrics Algorithm SA TS GA NSGA-II

S Avg. 2.67E−5 9.73E−6 5.74E−6 4.21E−6

Std. 6.72E−6 1.44E−6 1.43E−6 1.05E−6

Δ Avg. 8.03E−1 7.86E−1 5.96E−1 5.53E−1

Std. 2.08E−1 1.93E−1 1.48E−1 1.47E−1

Table 2 The result obtained
for C metric SA TS GA NSGA-II

SA – 0.3422 0.2192 0.1932

TS 0.4443 – 0.2653

GA 0.5653 0.4922 – 0.25373

NSGA-II 0.5988 0.5911 0.3262 –

Table 3 Comparison of CPU
time (s) Algorithms NSGA-II GA TS SA

CPU time Mean Var Mean Var Mean Var Mean Var

150 25 680 35 720 40 690 45
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Fig. 1 Plots of Pareto fronts achieved by NSGA II

Fig. 2 Plots of Pareto fronts achieved by GA

Fig. 3 Plots of Pareto fronts achieved by TS
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7 Conclusion

In this paper, the multi-objective design optimization based on NSGA-II and size
equations are applied for the three phase induction motors. In order to effectively
obtain a set of Pareto optimal solutions, ranking method is applied. From the
results, we can select the balanced optimal solution between the power density and
efficiency. In case of optimized model, the efficiency increases at 80 % and the
power density is also increased 12 kW/kg, compared to the SA, TS and GA result of
the initial model. The performance metrics of NSGA-II results in best possible
Pareto solutions. The proposed method can be efficiently and effectively used to
multi-objectives design optimization of the machine cost and efficiency of electric
machines.

Fig. 4 Plots of Pareto fronts achieved by SA

Fig. 5 Pareto front at different cardinality
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