
K-Strange Points Clustering Algorithm

Terence Johnson and Santosh Kumar Singh

Abstract The classical K-Means clustering algorithm yields means which can be
called the final unchanging or fixed means around which all other points in the
dataset get clustered. This is so because the K-Means clustering terminates when
either the clusters repeat in the next iteration or when the means repeat in the next
iteration. This reveals that if one is able to somehow calculate and find apriori the
final unchanging means using the dataset, then the task of clustering reduces to only
assigning the remaining points in the dataset into clusters, which are closest to these
final fixed or unchanging means based on standard distance measures. Taking a cue
from the result of the classical K-Means method, the K-Strange points clustering
algorithm presented in this paper locates K points from the dataset equaling the
number of required clusters which are farthest from each other and are hence called
K-Strange points based on the Euclidean distance measure. The remaining points in
the dataset are assigned to clusters formed by these K-Strange points.

Keywords K-Strange points clustering � Farthest points � Euclidean distance
measure

1 Introduction

Data Mining is the process of detecting patterns from extremely huge quantities
of data collection [1]. Data Mining explores large quantities of data in order to
discover hidden rules and potentially meaningful patterns [2]. Data Mining can be

T. Johnson (&)
AMET University, Chennai, India
e-mail: ykterence@rediffmail.com

S.K. Singh
Department of Information Technology, Thakur College of Science
and Commerce, Mumbai, India
e-mail: Singhsksingh14@gmail.com

© Springer India 2015
L.C. Jain et al. (eds.), Computational Intelligence in Data Mining - Volume 1,
Smart Innovation, Systems and Technologies 31, DOI 10.1007/978-81-322-2205-7_39

415



performed on various types of database and information repositories, but the kind of
patterns to be found are specified by various data mining functionalities [3].
Grouping or bunching of data into a set of categories or clusters is one of the
essential methods in manipulating and finding patterns from data [4]. Clustering is
the most common data mining process which aims at dividing datasets into subsets
or clusters in such a way that the objects in one subset are similar to each other with
respect to a given similarity measure while objects in different subsets are dissimilar
[5]. Clustering is a task that attempts to detect similar categories or groups of
objects based on the implementation of their feature dimensions [6]. One can detect
the predominant distribution patterns and interesting correlations that exist among
data attributes by clustering which can determine dense and sparse areas [7].
Clustering organizes and partitions objects into groups whose members are alike in
some way [8]. A cluster is a collection of data objects that are similar to one another
within the same cluster and are dissimilar to the objects in other clusters [9]. A good
clustering algorithm will produce high quality of clusters with high intra cluster
similarity and low inter cluster similarity [10]. The purpose of clustering is to detect
groups or clusters of similar objects where an object is represented as a vector of
measurements or points in multidimensional space. The distance measure deter-
mines the dissimilarity between objects in various dimensions in the dataset [11].
Cluster analysis is an important technique to find the similar and dissimilar groups
in data mining [12]. Clustering is commonly and heavily used in a variety of
applications such as in market segmentation, medical science, environmental sci-
ence, astronomy, geology, business intelligence and so on. It also helps users in
understanding natural groupings in a data set or structure of the data set [13].

1.1 Motivation

The classical instantiation of the K-Means algorithm begins by randomly picking K
prototype cluster centers called K-Means, assigning each point to the cluster whose
mean is closest in a Euclidean sense, then computing the mean vectors of the points
assigned to each cluster and using these as new centers in an iterative approach until
the termination criteria is reached [14]. The complexity of the K-Means method is
O(nktd) where n represents the number of data points, k represents the number of
required clusters, t represents the number of iterations the algorithm should undergo
if the cluster centers (means) do not repeat in the next iteration or if the clusters do
not repeat in the next iteration and d represents the number of attributes or
dimensions [15]. Clustering, using the classical K-Means method results in
obtaining final fixed points which we call the final unchanging means around which
all other points in the dataset get clustered. This suggests that if we are able to
somehow calculate and find apriori the final unchanging means using the dataset,
then the task of clustering reduces to only assigning the remaining points in the
dataset into clusters, which are closest to these final fixed or unchanging means
based on standard distance measures. Taking a cue from the result of the K-Means

416 T. Johnson and S.K. Singh



method the algorithm presented in this paper locates K points from the dataset
equaling the number of required clusters which are farthest to each other based on
the Euclidean distance measure. The remaining points in the dataset are assigned to
clusters formed by these K-Strange points.

2 Proposed Work

This paper presents an algorithm for clustering by finding K points in a dataset
equaling the number of required clusters which are most dissimilar to each other.
The K points are referred to as K-Strange points because these K points are located
farthest from each other or are the most dissimilar points to each other in the
dataset. The Algorithm initially randomly chooses a point from the dataset repre-
senting the first of the K-Strange points (Fig. 1). It then locates a point which lies
farthest from the first initially chosen point (Fig. 2). Then it finds a third point in the
dataset which is farthest from the two strange (maximally separated) points located
in the previous steps (Fig. 3). For k = 5 clusters, it finds the fourth point which is
maximally separated from the previous 3 farthest points (Fig. 4). And eventually the
fifth strange point from the four maximally separated farthest points is found thus
forming five points which are strangers to each other or in simple words five points
which are at maximum distance from each other (Fig. 5). If the required number of
clusters is K = 5, then the five clusters can be formed by assigning the remaining
points in the dataset into clusters formed by these 5 strange points (Fig. 6). If the
clustering requirement is of K = T clusters then continue the procedure of finding

Fig. 1 First randomly chosen
strange point

K-Strange Points Clustering Algorithm 417



the T Strange points which are the K = T points which are farthest from each other
and then assign the remaining points in the dataset into clusters formed by these
K = T Strange points based on the Euclidean distance measure.

2.1 K-Strange Points Clustering Algorithm

Input:

(i) A database containing n objects. D = {D1, D2, D3, D4, …, Dn}
(ii) The number of required clusters K = T

Output: A set of K clusters.

Fig. 2 Calculated second
strange point

Fig. 3 Calculated third
strange point

418 T. Johnson and S.K. Singh



Step 1: Select two points Dk and Dw from the dataset which are at maximum
distance from each other by finding distances between the all points in the
dataset from each other using the Euclidean distance measure. The Euclidean
distance between 2 points is defined as the square root of the sum of the squared
differences [16]. The Euclidean distance between the points i(w1,x1, y1,z1) and j
(w2,x2, y2,z2) is given by:

Fig. 4 Fourth strange point

Fig. 5 Fifth strange point

K-Strange Points Clustering Algorithm 419



dði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðw1 � w2Þ2 þ ðx1 � x2Þ2 þ ðy1 � y2Þ2 þ ðz1 � z2Þ2
q

Step 2: Locate a third point Df which is farthest from Dk and Dw such that the
sum of the distances between points Df, Dk and Dw is larger than any other
combination with Dk and Dw

Step 3: Repeat the above procedure until we locate K points equaling the
number of required clusters mentioned in the problem
Step 4: Assign the remaining points in the dataset into clusters formed by these
K-Strange (farthest) points using the Euclidean distance measure
Step 5: Output K clusters.

2.2 Implementation of the Proposed Algorithm

Consider a clustering requirement for 3 clusters of any dataset. The Euclidean
distance between all points in the dataset can be found using the piece of code (1)
given below.

Fig. 6 Five clusters formed
from the k = 5 strange points

for(int i=0;i<arrayRow;i++)
for(int j=0;j<arrayRow;j++){

double a = {d[i][0],d[i][1],d[i][2],d[i][3]};
double b = {d[j][0],d[j][1],d[j][2],d[j][3]};
double eucD = euclidDist(a,b);
ed[k] = eucD;

420 T. Johnson and S.K. Singh



On finding the Euclidean distance of all the data points from each other we find
the two points which are at maximum distance from each other using the below
piece of pseudo-code (2).

Then we locate a point which is farthest from these two points. If the nth data
item Dn−1 and the mth data item Dm−1 are these two points then we locate a third
point which is farthest from Dn−1 and Dm−1 such that the sum of the distances
between the third point, Dn−1 and Dm−1 is larger than any other combination with
Dn−1 and Dm−1. This can be done as shown in the following pseudo-code (3).

Once the third point is found using the above code, we stop finding any more
farthest points since the clustering requirement is to group the points in the dataset
into 3 clusters and as we have already found the K = 3 Strange points equaling the
number of required clusters from the dataset we stop searching for any more farthest
points. The next step is to assign the remaining points in the dataset into clusters
formed by the K-Strange points. Finally, this is implemented as shown in the
pseudo-code (4) below.

if(ed[k]>max){
max = ed[k];
Assign 1st strange point to f[][] 
Assign 2nd strange point to g[][] 
k++;

}

double de = newMax + euclidDist(v1,v2,v3,v4,u1,u2,u3,u4) + 
euclidDist(u1,u2,u3,u4,w1,w2,w3,w4);
dist[y]= de;
if(dist[y]>finalMax){

finalMax = dist[y];
Assign 3rd strange point to s[][]
y++;

}

if((euclidDist(v,p)<=euclidDist(w,p))&(euclidDist(v,p)<=e
uclidDist(t,p))) Assign p to Cluster 1
else
if((euclidDist(t,p)<=euclidDist(v,p))&(euclidDist(t,p)<=e
uclidDist(w,p))) Assign p to Cluster 2
else
if((euclidDist(w,p)<=euclidDist(v,p))&(euclidDist(w,p)<=e
uclidDist(t,p))) Assign p to Cluster 3

K-Strange Points Clustering Algorithm 421



2.3 Experimental Results

The algorithm is tested with a 2D array dataset of 10,000 points each with 4
columns randomly generated by the following pseudo-code for finding 3 clusters.

Step 1: The Euclidean distance between all points in the dataset found using the
pseudo-code (1)
Step 2: On finding the Euclidean distance of all the data points from each other
we see that the two points which are at maximum distance from each other.
Using pseudo-code (3) we locate the third farthest point Dk such that the sum of
the distances between Dk, Dn−1 and Dm−1 is larger than any other combination
with Dn−1 and Dm−1. The snapshot of the 3 strange points can be seen in Fig. 7
Step 3: Here the remaining points in the dataset are assigned into clusters formed
by the K-Strange points and this is done using the pseudo-code (4). On exe-
cution, the code gives the information on the formation of the 3 required clusters
as follows:

Fig. 7 K-Strange Clustering for a random array of size [1 0 0 0 0] [4] for 3 clusters

int arrayRow = 10000;
int arrayCol = 4;
int data[][] = new int[arrayRow][arrayCol];
for(int i=0; i<arrayRow; i++){

for(int j=0; j<arrayCol; j++){
data[i][j]= (int)(Math.random()*10 +10);

}
System.out.println();

}

422 T. Johnson and S.K. Singh



2.4 Comparison with K-Means and Inference for 3 Clusters

Table 1 shows the results of the K-Means and K-Strange points clustering algo-
rithms for a random dataset of 1,000, 5,000, and 10,000 data points each with
4 dimensions for 3 clusters. Although the K-Strange clustering algorithm executes
slower than the classical K-Means, the K-Means algorithm takes an exponential
time to converge as the number of data points and dimensionality increases. Hence
K-Means clustering algorithm uses t as the number of iterations to terminate the
clustering process if it tends to go into an infinite loop. This will result in inaccurate
clusters. Though the K-Strange Points Clustering algorithm takes a little more time
for its execution than the K-Means algorithm in lower dimensions, it performs
better than the K-Means in higher dimensions as seen from Fig. 8 and the Table 2
that follows.

We see that as the dimensions increase, the K-Strange Points Clustering algo-
rithm gives us the results as seen in Fig. 8 but the K-Means algorithm doesn’t
converge.

Table 1 Comparison of
K-means with K-strange for
4 dimensions

Algorithm Data points Execution time (ms)

K-means [1 0 0 0] [4] 16

K-strange [1 0 0 0] [4] 156

K-means [5 0 0 0] [4] 32

K-strange [5 0 0 0] [4] 546

K-means [1 0 0 0 0] [4] 202

K-strange [1 0 0 0 0] [4] 1,935

Fig. 8 K-Strange Clustering for a random array of size [1 0 0 0 0] [13] for 3 Clusters

K-Strange Points Clustering Algorithm 423



3 Conclusion

The complexity of the K-Means Clustering method being O(nktd), there is a strong
likely hood that the clusters so formed may not be accurate because according to the
K-Means method, for clustering to yield accurate results, either the cluster centers
(means) should repeat in the next iteration or the clusters should repeat in the next
iteration. As dimensions increase, K-Means takes exponential time and so, abruptly
terminating the clustering process after a certain number of specified iterations will
not yield the desired accurate clusters. This issue is addressed by finding K points in
any dataset equaling the number of required clusters which are at maximum dis-
tance from each other making them the most dissimilar or Strange points to each
other and then assigning the remaining points in the dataset into clusters formed by
these K = T strange points based on the Euclidean distance measure, and thereby
eliminating the abrupt terminations associated with t, the number of iterations.

References

1. Abbas, O.: Comparisons between data clustering algorithms. Int. Arab J. Inf. Technol. 5(3),
320–325 (2008)

2. Prabhu, P., Anbazhagan, N.: Improving the performance of k-means clustering for high
dimensional dataset. Int. J. Comput. Sci. Eng. 3(6), 2317–2322 (2011), ISSN: 0975-3397

3. Micheal, J.A.: Berry Gordon Linoff.: Mastering Data Mining. Wiley, Singapore (2001)
4. Bouveyrona, C., Girarda, S., Schmid, C.: High dimensional data clustering. J. Comput. Stat.

Data Anal. 52(1), 502–519 (2007)
5. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis.

Wiley, New York (1990)
6. Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323

(1999)
7. Alijammaat, A., Khalilian, M., Mustapha, N.: A novel approach for high dimensional data

clustering. In: Proceedings of the Third International Conference on Knowledge Discovery
and Data Mining, Phuket, Iran, pp. 264–267 (2010)

8. Johnson, T.: Bisecting collinear clustering algorithm. Int. J. Comput. Sci. Eng. Inf. Technol.
Res. 3(5), 43–46 (2013), © TJPRC Pvt. Ltd., ISSN: 2249-6831

9. Johnson. T., Lobo, J.Z.: Collinear clustering algorithm in lower dimensions. IOSR J. Comput.
Eng. 6(5), 08–11 (2012), ISSN: 2278-0661, ISBN: 2278-8727

Table 2 Comparison of K-
means with K-strange for 13
dimensions

Algorithm Data points Execution time (ms)

K-means [1 0 0 0] [13] Not converging

K-strange [1 0 0 0] [13] 203

K-means [5 0 0 0] [13] Not converging

K-strange [5 0 0 0] [13] 1,467

K-means [1 0 0 0 0] [13] Not converging

K-strange [1 0 0 0 0] [13] 5,647

424 T. Johnson and S.K. Singh



10. Singh, S.K., Johnson, T.: Improved collinear clustering algorithm in lower dimensions. In:
Proceedings of Second International Conference on Emerging Research in Computing,
Information, Communication and Applications (2014) (in press)

11. Nagi, S,. Bhattacharya, D.K., Kalita, J.K.: A preview on subspace clustering of high
dimensional data. Int. J. Comput. Technol., 6(3), 441–448 (2013). ISSN: 22773061

12. Aravinder D.J., Naganathan, E.R.: Efficient centroids based clustering algorithm with data
intelligence. J. Theor. Appl. Inf. Technol. 56(1), 126–130 (2013). ISSN: 1992-8645

13. Jahirabadkar, S., Kulkarni, P.: SCAF-An efficient approach to classify subspace clustering. Int.
J. Data Mining Knowl. Manage. Process, 3(2) (2013)

14. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining, MIT Press, Cambridge,
pp. 302–305 (2001)

15. Tan, P., Steinbach, M.K.: An Introduction to Data Mining. Wesley, London (2005)
16. A. Alfakih, A. Khandani, and H. Wolkowicz.: Solving Euclidean distance matrix completion

problems via semide¯nite programming. Comput. Optim. Appl. 12, 13–30 (1999)

K-Strange Points Clustering Algorithm 425


	39 K-Strange Points Clustering Algorithm
	Abstract
	1 Introduction
	1.1 Motivation

	2 Proposed Work
	2.1 K-Strange Points Clustering Algorithm
	2.2 Implementation of the Proposed Algorithm
	2.3 Experimental Results
	2.4 Comparison with K-Means and Inference for 3 Clusters

	3 Conclusion
	References


