
Sliding-Window Based Method
to Discover High Utility Patterns
from Data Streams

Chiranjeevi Manike and Hari Om

Abstract High utility pattern mining is one of the emerging researches in data
mining. Mining these patterns from the evolving data streams is a big challenge,
due the characteristics of data streams like high arrival rate, unbounded and gigantic
in size, etc. Commonly there are three window models (landmark window, sliding
window, time fading window) used in data streams. However, in most applications,
users are interested in recent happenings. Hence, sliding window model has
attracted high interest among three. Many approaches have been proposed based on
the sliding window model. However, most of the approaches are based on level-
wise candidate generation and text approach. In view of this, we propose an effi-
cient one pass, tree based approach for mining high utility patterns over data
streams. Experimental results show that the performance of our approach is better
than the level-wise approach.

Keywords Data streams � Sliding window � High utility pattern � Frequent pattern
mining � Data mining

1 Introduction

Utility pattern mining was introduced in 2003 to discover patterns based on the
quantitative databases [1] Traditional frequent pattern mining was based on the
support measure, where support is defined over the binary domain 0, 1, which is
based on the occurrence frequency of items [2]. Frequent pattern mining considers
purchased quantity of every item as 1. But in real time scenario a customer may
purchase multiple items of different quantity. Let us consider a query of a sales

C. Manike (&) � H. Om
Indian School of Mines, Dhanbad 826004, Jharkhand, India
e-mail: chiru.research@gmail.com

H. Om
e-mail: hariom.cse@ismdhanbad.ac.in

© Springer India 2015
L.C. Jain et al. (eds.), Computational Intelligence in Data Mining - Volume 3,
Smart Innovation, Systems and Technologies 33, DOI 10.1007/978-81-322-2202-6_15

173



manager in a supermarket, “set of itemsets contributing more to the total profit?”.
To give response to such queries frequency of an itemset is not adequate measure
[3]; we need to consider the purchased quantities of itemsets and their corre-
sponding unit profits. Thus, high utility patterns are more significant in practical
applications than frequent patterns. Utility pattern mining consider other useful
measures of an itemset, they may be its purchased quantity, profit, cost, etc. [2].
Patterns having utility more than the user specified minimum utility threshold are
called as high utility patterns. High utility pattern mining is the process of dis-
covering patterns where the actual utility of the pattern is more than the user
specified minimum utility threshold. Unlike frequent patterns, high utility patterns
do not follow downward closure property [4], and it needs several utility calcula-
tions. Hence, high utility pattern mining is more complex than traditional frequent
pattern mining. Liu et al. [5, 6] has observed an efficient pruning strategy among the
transaction weighted utilities of itemsets, which is named as transaction weighted
utility (TWU) downward closure property. Many algorithms have been developed
based on the above efficient pruning strategy.

On the other hand pattern mining over data stream is a big challenge due to the
evolving nature and requirements of data streams [7], as the data arriving contin-
uously, the utilities of an itemsets may vary irregularly from one instance to other
[8–10]. There are mainly three window models used in mining data streams, those
are: landmark window, sliding window, and time fading window. Selecting par-
ticular window model is based on the type of knowledge to be discovered and the
application domain [7, 11, 12]. Landmark window holds the information of itemsets
from landmark time to current time, sliding window holds the recent information of
itemsets like last 3 h, last 1,000 instances etc. Time fading window holds the
information same as landmark window, in which the importance of an itemset
decreases with time. Among these three models sliding window model gives the
information of most recent occurred events and also many users are interested in
this [13]. Especially in credit card fraud analysis, network intrusion detection,
wireless sensor networks [7] where the event might last for a few milliseconds, or a
few hours, or even a few days.

Unlike traditional databases, data streams do not allow algorithms to visit the
data more than once. Hence, one pass algorithms are more suitable in these envi-
ronments. Especially in sliding window model capturing incoming data as well as
removing old data within window is main issue. In this paper, we have proposed an
efficient approach, based on sliding window model, to effectively update the
information of utility patterns and to efficiently discover high utility patterns.

2 Problem Definition

Let I ¼ fi1; i2; . . .; ing be a finite set of n distinct items. A data stream DS ¼
fT1; T2; . . .; Tmg be a stream of transactions, where each transaction Ti is a subset
of I. An itemset X is a finite set of items X ¼ fi1; i2; . . .; ikg 2 I, where kð1� k� nÞ

174 C. Manike and H. Om



is the length of the itemset. An itemset with length k is also called as k-itemset. Each
item or an itemset in a transaction associated with a value (For example, purchased
quantity) called internal utility of an itemset, denoted as iu(ij). Each item ij ϵ I asso-
ciated with a value (profit, price, etc.) outside the transaction data stream called
external utility and it is denoted as eu(ij). Definitions in this section are adapted
from the previous works [2, 5].

Definition 1 Utility of an item ij in a transaction Ti is the product of its internal
utility and external utility, denoted as u ij; Ti

� � ¼ iu ij; Ti
� �� eu ij

� �
. For example,

utility of an item in T1 is 12 (i.e., 2 × 6), in Tables 1 and 2.

Definition 2 Utility of an itemset X in a transaction Ti is the sum of the individual
utilities of items belongs to the itemset X, u X; Tið Þ ¼ P

ij2X2Ti uðij; TjÞ. For example,

u abc; T1ð Þ ¼ 2� 6þ 3� 4þ 2� 10 ¼ 44, in Tables 1 and 2.

Definition 3 Transaction utility of a transaction Ti is the sum of all its items
utilities, denoted as tu(Ti). For example, tu T2ð Þ ¼ u að Þ þ u bð Þ þ u cð Þ þ u eð Þ ¼ 52,
in Tables 1 and 2.

Definition 4 Transaction weighted utility of an itemset X is defined as the sum of
all transaction utilities of transactions in which itemset X exists. For exam-
ple; twu cdð Þ ¼ tu T1ð Þ þ tu T5ð Þ þ tu T6ð Þ ¼ 195, in Tables 1 and 2.

Definition 5 Minimum utility threshold is defined as the percentage of total
transaction utility values of the data stream, defined as, minUtil ¼ d�P

Ti2DS
tuðTiÞ.

Table 1 Example transaction
data stream Item/Tid a b c d e f g

T1 2 3 3 1 0 0 0

T2 1 4 1 0 1 0 0

T3 0 2 2 0 0 1 0

T4 3 4 2 0 0 0 0

T5 2 3 1 2 0 0 0

T6 4 2 1 2 0 0 0

T7 2 0 0 0 0 0 1

T8 2 5 3 0 0 0 0

Table 2 Utility table
Item a b c d e f g

Profit($) 6 4 10 15 20 30 40

Sliding-Window Based Method to Discover High Utility … 175



Definition 6 High utility pattern mining can be defined as the process of finding set
of patterns, where utilities of those patterns are more than the minUtil.

3 Related Works

Chan et al. [14], introduced high utility pattern mining in the year 2003. Theoretical
model and basic definitions are given in [2] MEU (Mining with Expected Utility),
two efficient strategies are also been introduced based on the utility and support
values of itemsets. However, these strategies reduced candidate patterns effectively,
it depends on the level-wise candidate generation-and-test problem and. The utility
bound set by the property overestimating many patterns again filtering these huge
set of patterns becomes complex task. Hence, same authors introduced two new
algorithms namely UMining and UMining_H by incorporating above strategies [3].
Though, MEU, UMining, and UMining_H algorithms reduced candidate patterns,
still depends on level-wise candidate generation and-test approach. Above algo-
rithms are tried to reduce the search space using support and utility values of
itemsets those are not efficient as Apriori anti-monotone property.

In 2005, Liu et al. [5, 6] has discovered an efficient heuristic pruning strategy
called transaction weighted utility downward closure property. An efficient two
pass algorithm was proposed by incorporating above property, which is called Two-
Phase. The property says that TWU of an itemset is high then its subsets TWU
values are also high. Even though, this property does not exist among the actual
utilities of itemsets, it effectively used in finding potential patterns. The main
drawback in this approach is this property allows some false itemsets, where the
actual utilities of these itemsets are not high. Again filtering exact patterns from
these potential set of patterns becomes main barrier in most of the cases. After-
wards, many approaches were proposed based on TWU downward closure prop-
erty. But in data stream environment it may not possible to apply such an anti-
monotone properties because the requirements of stream processing different from
traditional databases. Moreover, low utility patterns may become high utility pat-
terns when a new transaction arrives.

First approach that was proposed to mine the high utility patterns over data
stream is THUI-Mine [15], called THUI-Mine. THUI-Mine is mainly integrates the
tasks of Two-Phase [5, 6] algorithm for processing items in pre-processing pro-
cedure, and SWF [13] to use the concepts of filtering threshold in incremental
procedure. THUI-Mine decomposed the problem of mining high utility patterns into
two procedures: (1) Pre-processing procedure, (2) Incremental procedure. First, pre-
processing procedure calculates the TWU of each item and discards the items
whose TWU is less than the filtering threshold. Next generate the candidate 2-
itemsets from the remaining items, and record their appeared partition number and

176 C. Manike and H. Om



TWU value respectively. After processing each partition, candidate 2-itemsets with
TWU value above filtering threshold value will be considered in next partition.
Even THUI-Mine find complete set of high utility patterns, there is no pruning
strategy incorporated in it to filter overestimated patterns.

To overcome the limitations in THU-Mine, two efficient algorithms were pro-
posed in [16], called MHUI-TID and MHUI-BIT. These algorithms represent
transaction information in two formats that is TIDlist and Bitvector respectively.
For example, consider Table 1, in which item a encountered in transactions T1, T2,
T4, T5, T6, T7 and T8; this can be represented in the form of Bitvector, that is
〈11011111〉 (assume window size is set to 8). Above information is also repre-
sented in the form of TIDlist that is {1, 2, 4, 5, 6, 7, 8}. This is a three-phase
method, in first phase it builds information of items using either TIDlist or Bitvector
representation. This algorithm processes the items as it was done by pre-processing
procedure of THUI-Mine. In next phase it uses level-wise approach to generate the
candidate itemsets of length more than 2. In second phase it builds a lexicographic
tree structure to maintain the information of potential itemsets (k—itemsets, k < 3)
and updates the information of newly identified itemsets when window slides.
Third, high utility itemsets generation phase in which high utility patterns are
generated based on the user queries. MHUI algorithms effectively reduced the
number of potential candidates and optimal utilization of memory with these two
representations. Hence, it achieved better performance over the THUI-Mine, but
still need more than one database scans. MHUI keeps the information of itemsets
with length 2, so remaining itemsets of length more than 2 will be processed in
level-wise manner.

From the above discussion on related work of high utility pattern mining from
data streams, we have identified two motivating factors to design a new algorithm
which need at most one database scan and better runtime efficiency. In this paper
we have designed a new one pass algorithm based on the prefix-tree structure and
we did not consider the TWU values of an itemsets to disqualify items before
starting the process.

4 Proposed Work

In this Section we present our proposed algorithm, in addition, in this section we
briefly describe our method with example. Our method basically consists of three
steps: (1) transactions processing: capturing information and storing in tree, (2)
incremental: updating the information in tree when window is sliding, and (3)
mining: tracing tree to produce output to the user query.

First step comprises of two subtasks, when the transactions arrives continuously
in the data stream each transaction is processed one by one. After arriving trans-
action T1, set of all possible patterns will be generated and utilities corresponding to

Sliding-Window Based Method to Discover High Utility … 177



those patterns are also being calculated in parallel. Second subtask is updating all
generated patterns in sliding window tree called RHUISW-Tree by calling a
procedure namely RHUISW-Tree-Update. For each transaction there will be 2n � 1
(n is the number of items) number of patterns generated. While updating all these
patterns procedure RHUISW-Tree-Update follows lexicographical order, because
order of processing significantly affects the execution time. Patterns which are
sharing prefix will be updated first that is a, ab, ac, ad, abc, acd, abcd will appear
along the same path of RHUISW-Tree, so redundant moves for each node from root
node is avoided.

While updating patterns in tree the utility value of pattern is added to total utility
and also enqueue to pattern utility queue. Figure 1, represents the RHUISW-Tree
after updating transaction T1. Same procedure will be followed for next and sub-
sequent transactions, until we reach the window size limit, once we exceed the limit
then sliding window phase will enter. Let us assume sliding window size is set to 4,
so window accommodate first four transactions T1, T2, T3, and T4. During the
above process updated patterns of all transactions will also be stored in a table
called PTable (Pattern Table) that is Table 3, this table will be used as lookup table
while deleting the information of obsolete transactions from the sliding window.
Whenever the total count of processed transactions exceeds the window size limit,
RHUISW-Tree-IncUpdate procedure will be invoked. RHUISW-Tree-IncUpdate
updates the patterns and corresponding utilities of T1 from the RHUISW-Tree with
the help of PTable. PTable helps to remove all patterns corresponding to the
transaction T1 without revisiting all nodes. Next RHUISW-Tree-IncUpdate invokes
the RHUISW-Tree-Update procedure to process first transaction of next window W2

that is T5. For instance, in incremental phase to delete all patterns of a transaction T1

we need to find patterns and utilities of transaction T1, and have to visit corre-
sponding nodes in tree to delete. The cost of first step is reduced by maintaining
those patterns in PTable and cost of traversing completed tree is also minimized by
maintaining node links.

Last step is tracing RHUISW-Tree, when user queries the system algorithm trace
the tree to produce high utility patterns. To visit all nodes generally we follow either
top-down or bottom-up approach, in this case both approaches are unsuitable
because no need to visit all nodes. To improve the query response time at this stage,
we used another table called, HTable (Table 4) to keep information of nodes whose
pattern total utility is more than the minimum utility threshold. While updating
patterns if pattern total utility crosses utility threshold that corresponding node like
immediately stored in HTable, Table 4 shows the status of HTable after processing
each transaction from T1 to T5.

178 C. Manike and H. Om



a
12 0 0 0

12 b
12 0 0 0

12 c
20 0 0 0

20 d
15 0 0 0

15

c
32 0 0 0

32 d
27 0 0 0

27 d
35 0 0 0

35

d
47 0 0 0

47

c
32 0 0 0

32 d
27 0 0 0

27

d
39 0 0 0

39

b
24 0 0 0

24

Root

c
44 0 0 0

44 d
47 0 0 0

47

d
59 0 0 0

59

Fig. 1 RHUISW-Tree after updating transaction T1

Table 3 PTable
T1 T2 T3 T4

a a b a

b b c b

c c f c

d e bc ab

… … … …

Table 4 HTable
T1 T2 T3 T4 T5

abcd abcd abcd abcd abcd

bc bc bc bc

abc abc abc abc

abce abce abce abce

c c c

… … …

Sliding-Window Based Method to Discover High Utility … 179



180 C. Manike and H. Om



5 Experimental Results

The experiments were performed on a PC with processor Intel(R) CoreTM i7 2600
CPU @ 3.40 GHZ, 2 GB Memory and the operating systems is Microsoft Windows
7 32-bit. All algorithms are implemented in Java. All testing data was generated by
the synthetic data generator provided by Agrawal et al. in [4]. However, the IBM
generator generates only the quantity of 0 or 1 for each item in a transaction. In
order to adapt the dataset into the scenario of high utility pattern mining, the
quantity of each item is generated randomly ranging from 1 to 5, and profit of each
item is also generated randomly ranging from 1 to 20. To fit in the real time
scenario we have generated the profits by following lognormal distribution (Fig. 2).
In simulation of results we have fixed the sliding window size to 1,000 for all the
experiments. Different data sets are used to compare the performance of our pro-
posed algorithm against THUI-Mine, MHUI-TID.

5.1 Performance of RHUIMSW with Varying Minimum
Utility Threshold

In this section, we show the performance of our proposed algorithm RHUIMSW

over the dataset D50KT5N1000, parameters D, T and N represents the number of
transactions, average number of items per transaction and total number of distinct
items respectively. We have considered minimum utility threshold range from 0.5
to 1.5 %. From Fig. 3, we can observe that the performance of all algorithms
increasing with minimum utility thresholds, because when the utility threshold is
high then the number of high utility patterns is very low. From Fig. 3, we can

Fig. 2 Performance with
varying minimum utility
threshold

Sliding-Window Based Method to Discover High Utility … 181



observe that proposed algorithm consumed less amount of memory than the
remaining algorithms. There is some correlation in the amount of memory con-
sumed by the MHUI-TID and proposed algorithm that we can observe in Fig. 3.
The reason behind that is both the algorithms are using tree structure to maintain all
the potential patterns. Even though, the execution time is very less among the three
algorithms; our proposed algorithm does not give much better performance over
MHUI-TID.

5.2 Performance of RHUIMSW with Varying Number
of Transactions

In this section, we compare the performances of algorithms over the dataset
DxKT5N1000, where x takes the values from 50 to 600. For all experiments we
have set the minimum utility threshold to 0.9 %. In this experiment we have shown
the scalability performance of algorithms with varying number of transactions.
From Fig. 4, we can observe that the scalability of MHUI-TID and our proposed far
better than the THUI-Mine algorithm.

5.3 Performance of RHUIMSW with Varying Parameters

In this section, the performance of our proposed algorithm is compared against
MHUI-TID and THUI-Mine algorithms with varying average number of items per
transaction and number of items. From Fig. 5, we can observe that execution time
exponentially increasing with parameter especially from 6 and above values. From
these results, we have understood that when the data set becomes dense the

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
100

200

300

400

500

600

700

Minimum Utility Threshold (% )

C
on

su
m

ed
 M

em
or

y 
(M

B
) MHUI-TID

THUI-Mine
RHUIM(SW)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

100

200

300

400

500

600

700

Minimum Utility Threshold (%)

E
xe

cu
tio

n 
T

im
e 

(S
ec

.)

MHUI-TID
THUI-Mine
RHUIM(SW)

(b)
(a)

Fig. 3 Performance with varying minimum utility threshold. a Consumed memory. b Execution
time

182 C. Manike and H. Om



performance completely worst. In this case, MHUI-TID and our algorithm per-
formance is somewhat better than the THUI-Mine algorithm. This is achieved due
to patterns prefix sharing in used tree structure. From Fig. 5, we can observe that the
parameter, number of distinct items, will not make any significant effect on all
algorithms.

6 Conclusions

In this paper, we have proposed an algorithm based on sliding window called,
RHUIMSW for mining recent high utility itemsets over data streams. We have build
PTable and HTable including the RHUISW-Tree to keep the information captured
from sliding window and to make incremental update and tracing process faster. We
have compared the performance against MHUI-TID and THUI-Mine. Experimental
results shown that our approach is achieved good performance over THUI-Mine
and MHUI-TID in terms of execution time and memory consumption.

100 200 300 400 500 600
0

500

1000

1500

2000

2500

Number of Transactions (k)

C
on

su
m

ed
 M

em
or

y 
(M

B
) MHUI-TID

THUI-Mine
RHUIM(SW)

100 200 300 400 500 600
0

500

1000

1500

2000(a) (b)

Number of Transactions (k)

E
xe

cu
tio

n 
T

im
e 

(S
ec

.)

MHUI-TID
THUI-Mine
RHUIM(SW)

Fig. 4 Performance with varying number of transactions. a Consumed memory. b Execution time

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

Avg. no of Items per Transaction

E
xe

cu
tio

n 
T

im
e 

(S
ec

.)

MHUI-TID
THUI-Mine
RHUIM(SW)

600 800 1000 1200 1400
100

140

180

220

260

(a) (b)

Number of Items

E
xe

cu
tio

n 
T

im
e 

(S
ec

.)

MHUI-TID
THUI-Mine
RHUIM(SW)

Fig. 5 Performance with varying parameters. a Avg. no of items per transactions. b No of items

Sliding-Window Based Method to Discover High Utility … 183



References

1. Shen, Y.D., Zhang, Z., Yang, Q.: Objective-oriented utility-based association mining. In:
Proceedings of 2002 IEEE International Conference on Data Mining, 2002, IEEE. ICDM
2002, pp. 426–433 (2002).

2. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from
databases. In: The 4th SIAM International Conference on Data Mining, pp. 482–486 (2004)

3. Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data Knowl. Eng.
59(3), 603–626 (2006)

4. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of
20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499
(1994)

5. Liu, Y., Liao, W.K., Choudhary, A.: A two-phase algorithm for fast discovery of high utility
itemsets. In: Ho, T., Cheung, D., Liu, H. (eds.) Advances in Knowledge Discovery and Data
Mining, pp. 689–695. Springer, New York (2005)

6. Liu, Y., Liao, W.K., Choudhary, A.: A fast high utility itemsets mining algorithm. In:
Proceedings of the 1st International Workshop on Utility-Based Data Mining, ACM,
pp. 90–99 (2005)

7. Jiang, N., Gruenwald, L.: Research issues in data stream association rule mining. ACM
Sigmod Rec. 35(1), 14–19 (2006)

8. Cheung, D.W., Han, J., Ng, V.T., Wong, C.: Maintenance of discovered association rules in
large databases: an incremental updating technique. In: Proceedings of the Twelfth
International Conference on Data Engineering, IEEE, 1996, pp. 106–114 (1996)

9. Deypir, M., Sadreddini, M.H., Hashemi, S.: Towards a variable size sliding window model for
frequent itemset mining over data streams. Comput. Ind. Eng. 63(1), 161–172 (2012)

10. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Moment: maintaining closed frequent itemsets over
a stream sliding window. In: Fourth IEEE International Conference on Data Mining, 2004,
IEEE. ICDM’04, pp. 59–66 (2004)

11. Golab, L., Ozsu, M.T.: Issues in data stream management. ACM Sigmod Rec. 32(2), 5–14
(2003)

12. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM Sigmod
Rec 34(2), 18–26 (2005)

13. Lee, C.H., Lin, C.R., Chen, M.S.: Sliding-window filtering: an efficient algorithm for
incremental mining. In: Proceedings of the Tenth International Conference on Information and
Knowledge Management, ACM, pp. 263–270 (2001)

14. Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: Third IEEE International
Conference on Data Mining, 2003, IEEE. ICDM 2003, pp. 19–26 (2003)

15. Chu, C.J., Tseng, V.S., Liang, T.: An efficient algorithm for mining temporal high utility
itemsets from data streams. J. Syst. Softw. 81(7), 1105–1117 (2008)

16. Li, H.F., Huang, H.Y., Chen, Y.C., Liu, Y.J., Lee, S.Y.: Fast and memory efficient mining of
high utility itemsets in data streams. In: Eighth IEEE International Conference on Data
Mining, 2008, IEEE. ICDM’08, pp. 881–886 (2008)

184 C. Manike and H. Om


	15 Sliding-Window Based Method to Discover High Utility Patterns from Data Streams
	Abstract
	1 Introduction
	2 Problem Definition
	3 Related Works
	4 Proposed Work
	5 Experimental Results
	5.1 Performance of RHUIMSW with Varying Minimum Utility Threshold
	5.2 Performance of RHUIMSW with Varying Number of Transactions
	5.3 Performance of RHUIMSW with Varying Parameters

	6 Conclusions
	References


