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Abstract Two dimensional (2D) stress analysis is performed in this paper for
functionally graded (FG) beam under the plane stress condition of elasticity by
using semi analytical approach developed by Kant et al. [6]. Modulus of elasticity is
assumed to be varied exponentially through the thickness of beam. The mathe-
matical model consists in defining a two-point boundary value problem (BVP)
governed by a set of coupled first-order ordinary differential equations (ODEs) in
the beam thickness direction. Elasticity solutions presented by Sankar [9] is used to
show the accuracy, simplicity and effectiveness of present semi analytical solution.
It is observed from the numerical investigation that the present mixed semi ana-
lytical model predicts structural response as good as the one given by the elasticity
solution, which in turn proves the robustness of the presented formulation.

Keywords Functionally graded material � Plane stress � Laminated composite �
Sandwich materials � Semi analytical method � Transfer matrix method

1 Introduction

Laminated composite/sandwich materials are being increasingly used in the aero-
nautical and aerospace industry due to their lightweight and tailor made charac-
teristic. However, the main disadvantage of layered material is the weakness at
interfaces. In the absence of any graded material at the interface, there is every
chance of delamination to occur. To overcome of interface problem associated with
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layered materials, a new class of materials named functionally graded material
(FGM) has been proposed whose physical properties vary through the thickness in a
continuous manner and are therefore free from interface weaknesses. These
advanced composite materials were first introduced by a group of scientists in
Sendai (Japan) in 1984 [7, 14].

Three dimensional (3D) elasticity solutions based on the solution of partial
differential equations (PDEs) with appropriate boundary conditions are valuable
because they represent a more realistic and closer approximation to the actual
behavior of the structures. Sankar [9] has presented a 2D elasticity solution under
plane stress condition for functionally graded (FG) beams subjected to sinusoidal
loads by assuming Young’s modulus to vary exponentially through the thickness of
beam. Further, Sankar and Tzeng [10] extended the same elasticity solutions for a
FG beams subjected to thermal loads.

Bian et al. [1] extended the Soldatos and Liu [12] plate theory for stress analysis
of FG plate under cylindrical bending. Transfer matrix method (TMM) proposed by
Thomson [13] is used to derive the shape functions. TMM approach helps to
improve the computational efficiency as compared to original model developed by
Soldatos and Liu [12]. The shear stiffness and shear correction coefficients asso-
ciated with first-order shear deformation theory were calculated by Nguyen et al. [8]
for FG simply supported plates under cylindrical bending.

A finite element (FE) model based on first-order shear deformation theory
(FOST) is developed by Chakraborty and Gopalakrishnan [2] to study the ther-
moelastic behavior of FG beam structures. The exact solution of static part of the
governing differential equations is used in the formulation to construct interpolating
polynomials, which results in stiffness matrix having super-convergent property.
Extension of the formulation to capture wave propagation behavior in a FG beam
with high frequency impulse loading is also given by Chakraborty and Gopala-
krishnan [3].

The meshless local Petrov-Galerkin (MLPG) method is a novel numerical
approach. MLPG method allows the construction of the shape functions and
domain discretization without defining elements. The use of MLPG approach to
study transient thermoelastic response of FG composites heated by Gayssial laser
beam is demonstrated by Ching and Chen [4]. Extensive parametric studies for
transient and steady-state thermomechanical responses with respect to spatial dis-
tribution, volume fraction of material constituents, rate of laser power and radius of
laser beam have been presented. Further, Sladek et al. [11] has proposed MLPG
approach for crack analysis in anisotropic FG materials for quasi-static and transient
elastodynamic problems.

An effort is put in this paper to reformulate the semi analytical model developed
by Kant et al. [6] for stress analysis of simply (diaphragm) supported FG pate under
cylindrical bending. 2D elasticity solution presented by Sankar [9] is used for the
comparison.
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2 Semi-analytical Formulation

A FG beam (Fig. 1) supported on two opposite edges, x = 0 and L, is considered.
The length of beam is L and thickness is h. The beam is assumed to be in a state of
2D plane stress in x-z plane and width in the y direction is considered as unity. The
top surface of the beam is subjected to only transverse loading, which can be
expressed as,

pðxÞ ¼
X
m

p0m sin
mpx
L

; where m ¼ 1; 3; 5; . . . ð1Þ

The bottom surface is completely free of any stresses. In Eq. (1), m is assumed to
be odd. The loading is symmetric about the center of beam and any arbitrary normal
loading can be expressed with the help of Fourier series involving the terms of the
type p0m sin mpx

L .
The 2D equations of equilibrium are,

@rx
@x

þ @sxz
@z

þ Bx ¼ 0
@szx
@x

þ @rz
@z

þ Bz ¼ 0 ð2Þ

where, Bx and Bz are the body forces per unit volume in x and z directions,
respectively and from the linear theory of elasticity, the strain-displacement rela-
tions in 2D are,

ex ¼ @u
@x

; ez ¼ @w
@z

and cxz ¼
@u
@z

þ @w
@x

: ð3Þ

It is assumed here that the FG material is isotropic at every point. Further, it is
assumed that the Poisson’s ratio is constant through the thickness of the beam. The

Beam in plane-stress condition
L

h

z

x

( )p x

Eo

Eh

0
ZE eλ

Fig. 1 FG Beam subjected to transverse loading
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variation of the modulus of elasticity through the thickness of beam is given by
EðzÞ ¼ Eoekz. Therefore, the material constitutive relations for FG beam under
plane stress condition can be written as,

rx
rz
sxz

8><
>:

9>=
>; ¼

C11 C12 0
C21 C22 0
0 0 C33

2
4

3
5

ex
ez
cxz

8><
>:

9>=
>; ð4Þ

The reduced material coefficients, Cij for a FG beam are,

C11 ¼ C22 ¼ Eoekz

1� t2ð Þ C12 ¼ C21 ¼ tEoekz

1� t2ð Þ and C33 ¼ Eoekz

2 1þ tð Þ ð5Þ

where
k ¼ � ln Eo

Eh
Gradation factor

Eo Young’s modulus at the bottom of the beam
Eh Young’s modulus at the top of the beam
t Poisson’s ratio

The Eqs. (2)–(4) have a total of eight unknowns u;w; ex; ez; cxz; rx; rz; sxz in eight
equations. After a simple algebraic manipulation of the above sets of equations, a
set of PDEs involving only four primary dependent variables u;w; szx and rz are
obtained as follows,

@u
@z

¼ sxz
C33

� @w
@x

@w
@z

¼ 1
C22

rz � C21
@u
@x

� �

@sxz
@z

¼ �C11 þ C12C21

C22

� �
@2u
@x2

� C12

C22

@rz
@x

� Bx

@rz
@z

¼ � @sxz
@x

� Bz

ð6Þ

A secondary dependent variable, rx can be expressed as a function of the pri-
mary dependent variables as follows,

rx ¼ C11
@u
@x

þ C12
@w
@z

ð7Þ

The above PDEs defined by Eq. (6) can be reduced to a coupled first-order
ODEs by using Fourier trigonometric series expansion for primary dependent
variables satisfying the simple (diaphragm) support end conditions at x = 0, L, as
follows,
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uðx; zÞ ¼
X
m

umðzÞ cosmpxL
wðx; zÞ ¼

X
m

wmðzÞ sinmpxL
ð8Þ

From the basic relations of theory of elasticity, it can be shown that,

sxzðx; zÞ ¼
X
m

sxzmðzÞ cosmpxL
rzðx; zÞ ¼

X
m

rzmðzÞ sinmpxL
ð9Þ

Substituting Eqs. (7)–(8) into Eq. (6) and using orthogonality conditions of
trigonometric functions, the following ODEs are obtained,

dumðzÞ
dz

¼ �mp
L

wmðzÞ þ 1
C33

sxzmðzÞ
dwmðzÞ
dz

¼ C21

C22

mp
L

umðzÞ þ 1
C22

rzmðzÞ
dsxzmðzÞ

dz
¼ C11 � C12C21

C22

� �
m2p2

L2
umðzÞ � C12

C22

mp
L

rzmðzÞ � Bxðx; zÞ
drzmðzÞ

dz
¼ mp

L
sxzmðzÞ � Bzðx; zÞ

ð10Þ

Equation (10) represents the governing two-point BVP in ODEs in the domain
0 < z < h with stress components known at the top and bottom surfaces (boundary
conditions) of the beam. The basic approach to the numerical integration of the BVP
defined in Eq. (10) is to transform the given BVP into a set of initial value problems
(IVPs)—one non-homogeneous and n/2 homogeneous. The solution of BVP defined
by Eq. (10) is obtained by forming a linear combination of one non-homogeneous
and n/2 homogeneous solutions so as to satisfy the boundary conditions at z = 0 and
h [5]. This gives rise to a system of n/2 linear algebraic equations, the solution of
which determines the unknown components at the starting edge z ¼ 0. Then a final
numerical integration of Eq. (10) produces the desired results.

3 Numerical Study

Numerical investigations on simply supported narrow beam with plane stress
condition are performed to establish the accuracy of the formulation presented in
the preceding sections of the paper. The elasticity solution presented by Sankar [9]
is considered as benchmark solution for comparison. Elasticity modulus at the
bottom of beam is 1.0 GPa and Poisson’s ratio is 0.3. The ratio of elasticity
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modulus at top and bottom are 5, 10, 20, and 40. Following normalizations are used
here for the uniform comparison of the results.

u ¼ Ehuð0; zÞ
p0h

; w ¼ 100Ehh3wðL=2; zÞ
p0L4

rx ¼ rxðL=2; zÞ
p0L2

; sxz ¼ sxzð0; zÞ
p0L

; rz ¼ rz
p0

The normalized inplane normal stress (rx), transverse shear stress (sxz) and
transverse displacement (w) for different aspect ratios and different gradation factors
(k = 5, 10, 20 and 40) are detailed in Table 1. Through thickness variations of
inplane displacement (u), transverse displacements (w), inplane normal stress (rx)

Table 1 Normalized inplane normal stresses (rx), transverse shear stresses (sxz) and transverse
displacement (w) of FG beam under sinusoidal transverse load with different gradation factors

L/h Eh=E0
Inplane normal
stresses (rx) (x = L/2
and z = h)

Transverse shear
stresses (sxz)
(maximum values)

Transverse
displacement (w)
(x = L/2 and z = h)

Elasticity
solution

Present
solution

Elasticity
solution

Present
solution

Elasticity
solution

Present
solution

2 5 1.1861 1.1861 0.4971 0.4971 45.7170 45.7170

(.000) (.000) (.000)

10 1.4912 1.4912 0.5246 0.5246 63.9108 63.9108

(.000) (.000) (.000)

20 1.8640 1.8640 0.5606 0.5606 88.6534 88.6537

(.000) (.000) (.000)

40 2.3138 2.3138 0.6043 0.6043 121.7450 121.7450

(.000) (.000) (.000)

5 5 1.0507 1.0507 0.4960 0.4960 30.5457 30.5457

(−.000) (−.000) (−.000)

10 1.3157 1.3157 0.5166 0.5166 43.7268 43.7268

(.000) (.000) (.000)

20 1.6429 1.6429 0.5451 0.5451 62.3710 62.3710

(.000) (.000) (.000)

40 2.0437 2.0437 0.5843 0.5843 88.3008 88.3008

(.000) (.000) (.000)

10 5 1.0343 1.0343 0.4954 0.4954 28.6816 28.6816

(.000) (.000) (.000)

10 1.2932 1.2932 0.5156 0.5156 41.1518 41.1518

(.000) (.000) (.000)

20 1.6132 1.6132 0.5441 0.5441 58.9157 58.9157

(.000) (.000) (.000)

40 2.0063 2.0063 0.5817 0.5817 83.7957 83.7957

(.000) (.000) (.000)
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and transverse shear stress (sxz) for an aspect ratio of 5 are shown in Fig. 2. It can be
concluded from the results presented in Table 1 that the present semi analytical
formulation works well for any variation of Young’s modulus and for any aspect
ratio and therefore, it is very well proved about the stability, consistency, reliability
and accuracy of semi analytical formulation.

4 Concluding Remarks

A simple semi analytical formulation presented here for 2D stress analysis of FG
beam under plane stress condition of elasticity. A two-point BVP governed by a set
of coupled first-order ODEs is formed by assuming a chosen set of primary vari-
ables in the form of trigonometric functions along the longitudinal direction of the
beam which satisfy the simply (diaphragm) supported end conditions exactly. No
simplifying assumptions through the thickness of the beam are introduced. Exact
2D elasticity solution is used for comparison and to show the effectiveness and
simplicity of the semi analytical formulation. The present mixed semi analytical
model is relatively simple in mathematical complexity and computational efforts.
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