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Abstract This paper deals with the geometric nonlinear bending response of
laminated composite shell panels subjected to transverse loading. The eight-noded
degenerated shell element with five degrees of freedom per node is adopted in the
present analysis to model the composite shell panels. The Green-Lagrange strain
displacement relationship is adopted to formulate the matrices. The total Lagrangian
approach is taken in the formulation. The arc-length method of solution is adopted
in tracing the equilibrium path. The results by this method are compared with the
available results and the conclusions are made.
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1 Introduction

The composite shell panels are extensively used in many modern engineering
structures in aerospace, hydrospace, automobile, missile, petrochemical and
building industries. This is primarily because of high stiffness-to-weight, high
strength-to-weight and lower machining and maintenance cost of the composite
structures. These composite structures can also be designed very effectively by
managing the volume of fibers, orientation of the fibers, volume of matrix etc.
according to the requirement. During the service life the composite shell panels are
subjected to heavy transverse load. At higher load the defection of the panels
become large compared to its thickness. At this stage the linear solutions to this
problem is not accurate. So a nonlinear analysis is preferred to trace the complete
load-deflection curve. In many cases the laminated composite shell panels becomes
unstable at some amount of transverse load. These structures may experience
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snap-through or snap-back instability during bending. So a proper solution scheme
is necessary to define the whole equilibrium path or the load-deformation path. The
Newton-Raphson method of solving the nonlinear equilibrium equation will not
work if any instability arises in the structure at any point of time or any point of
loading. Both the load-control and displacement-control fail in the snap-back type
of instability. In this situation the arc-length method is one of the best option to be
used in solving the nonlinear equation to trace the equilibrium path.

The nonlinear bending analysis of the shell panels has been carried out by many
investigators. Sabir and Lock [9] had used the strain-based finite element method to
carry out a large deflection analysis of isotropic cylindrical shells. To solve the
nonlinear equations Riks [8] proposed a new solution procedure to overcome the
limit points. Crisfield [3] modified the Riks’s approach and made it suitable for use
in the finite element. This arc length method [3] was applied in conjunction with the
Newton-Raphson method in both standard and modified forms. It is a path fol-
lowing technique where both load and displacement are independent parameters.

This method [3] can handle snap-through and snap-back type of instability during
bending. Chang and Sawamiphakdi [2] had performed the large deformation analysis
of laminated shells using finite element method. They had adopted a degenerated three-
dimensional isoparametric element in the analysis. The nonlinear geometric element
stiffness matrices were made on the basis of updated Lagrangian description. Sabir and
Djoudi [10] presented the results of geometrically nonlinear bending behavior of
shallow shells. Kim and Voyiadjis [5] studied the nonlinear bending behavior of
moderately thick plates and shells using an eight-noded shell element with six degrees
of freedom per node. It was limited to geometric imperfections that reduce the buckling
capacity. Sze et al. [11] had analyzed the popular benchmark shell problems with
geometric nonlinearity. They have solved eight benchmark shell problems by ABA-
QUS finite element software taking the effect of geometric nonlinearity and plotted the
load-deflection curves. Kundu and Sinha [6] had presented the post-buckling analysis
of transversely loaded laminated composite shells by finite element method.

In the present investigation, the nonlinear bending analysis of laminated com-
posite cylindrical panels is carried out. The eight-noded degenerated shell element
with five degrees of freedom per node is adopted in the present analysis to model
the cylindrical panels. The Green-Lagrange strain displacement relationship is
adopted and the total Lagrangian approach is taken in the formulation of the
matrices. The material behavior is assumed to be linear and elastic. The nonlinear
equilibrium equations are solved by Crisfield [3] arc-length method, explained by
Fafard and Massicotte [4] and the results are reported.

2 Formulation

The cylindrical panels are modeled with Ahmad et al.’s [1] degenerated shell
element with Green-Lagrange strain displacement relationship and laminated
composite material properties. The element contains five degree of freedom per
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node, θz is neglected. Shear correction factor of 5/6 is adopted in the stress-strain
relationship for transverse shear stresses. The formulation of the shell element is
presented below.

3 Shell Element

The formulation of the present shell element is based on the basic concept of
Ahmad et al.’s [1] shell element, where the three-dimensional solid element used to
model the shell is degenerated with the help of certain extractions obtained from the
consideration that the dimension across the shell thickness is sufficiently small
compared to other dimensions. The detail derivation of this element for isotropic
case and with linear strain displacement is available in the literature [1, 7, 13].

The element has a quadrilateral shape having eight nodes as shown in Fig. 1a
where the external top and bottom surfaces of the element are curved with linear
variation across the shell thickness. Figure 1b shows the global Cartesian and local
co-ordinate system at any node i. The geometry of the element can be nicely
represented by the natural coordinate system (ξ, η and ζ) where the curvilinear
coordinates (ξ-η) are in the shell mid-surface while ζ is linear coordinate in the
thickness direction. According to the isoparametric formulation, these coordinates
(ξ, η and ζ) will vary from −1 to +1 on the respective faces of the element. The
relationship (Eq. 1) between the global Cartesian coordinates (x, y and z) at any
point of the shell element with the curvilinear coordinates holds good. This is the
geometry of an element, which is described by the coordinates of a set of points
taken at the top and bottom surfaces, where the line joining a pair of points (itop and

y, v

, -θx, y'

, θy, x'

z, w

x, u

2 

4 

, z'

8 

7

3

6 

5

1 

η
ς

ξ

v3,

v2

v1

v3

(a)

(b)

z'

Fig. 1 a Eight-noded
quadrilateral degenerated
shell element in curvilinear
co-ordinates. b Global
Cartesian co-ordinate (x, y and
z) and local co-ordinate
system at any node i

Nonlinear Finite Element Bending Analysis … 139



ibottom) is along the thickness direction i.e., normal to the mid-surface at the ith node
point. The line joining the top and bottom points is the normal vector (V3i) at the
nodal point i.
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where Ni are the quadratic serendipity shape functions in (ξ-η) plane of the two-
dimensional element.

Equation 1 may be rewritten in terms of mid-surface nodal coordinates with the
help of unit nodal vectors (v3i) along the thickness direction as,
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where, l3i, m3i and n3i are direction cosines of the nodal vector (V3i), i.e. compo-
nents of unit nodal vectors (v3i), v3i is the unit vector along (V3i) direction, hi is the
thickness at node i.

Two orthogonal tangential vectors V2i and V1i are formed at the node i which are
normal to V3i vector. The two tangential vectors V2i and V1i not necessarily follow ξ
and η directions. The unit vectors along V2i and V1i directions are v2i and v1i. The
local co-ordinates x′, y′ and z′ are directed along V1, V2 and V3 directions respec-
tively. The directions cosines of x′, y′ and z′ and V1, V2 and V3 are same as the
components of unit vectors v1, v2 and v3. The displacement u, v and w are along the
global coordinates x, y and z directions. Similarly the local displacement compo-
nents u′, v′ and w′ are along the local coordinates x′, y′ and z′ directions. The
rotations of the mid surface normal θx and θy are taken about the local coordinates y′
and x′ or v2 and v1 directions respectively.

The displacement field (Eq. 3) of a point within the element can be defined with
the help of three mid surface nodal translational displacement (ui, vi and wi) along
the global Cartesian co-ordinates directions and two rotational components θxi and
θyi about the local coordinates y′ and x′ directions.
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where, l1i, m1i and n1i are direction cosines of the nodal vector (V1i), i.e. compo-
nents of v1i, l2i, m2i and n2i are direction cosines of the nodal vector (V2i), i.e.
components of v2i, and {d} is nodal displacement vector,
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df g ¼ ½u1v1w1hx1hy1u2v2. . .hx8hy8�T : ð4Þ

The strain displacement relationship with Green-Lagrange strain of the element
in local co-ordinate system (x′-y′-z′) can be expressed as,
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After performing number of operations using Eqs. (2) and (3) we can write,
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where, B0
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and B0
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 �
are strain-displacement matrices with respect to linear and

nonlinear strain components respectively in local co-ordinate system(x′-y′-z′). The
normal strain ez0 along z0 direction is neglected.

Knowing, the stress-strain relationship of the laminated composite material in
each layer in its material axis system (1–2–3), the stress-strain relationship in the
local co-ordinate systems(x′-y′-z′) can be found out by simple transformation. Here
material axis 3 is directed along z′ direction. The material axes 1–2 lie in x′-y′ plane
but it can be oriented at some angle θ. After transformation the stress-strain rela-
tionship in the local co-ordinate systems can be written as,
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expressed as,
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This secant stiffness matrix is not symmetric. To efficiently use the storage
scheme which is used in linear analysis, this non symmetric scant stiffness matrix
can be made symmetric [12] as,
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where, D0½ � matrix is stress-strain matrix in local co-ordinate system, and s½ � and
snl½ � are stress matrix in local co-ordinate system for linear and nonlinear parts of
the strain respectively.

The tangent stiffness matrix, which is used in the nonlinear solution of the
equilibrium equation can be written as,
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The secant and tangent stiffness matrices of all elements of the laminated
composite cylindrical panel is calculated and assembled properly to form the global
secant and tangent stiffness matrices of the structure. The load vector is calculated.
The nonlinear equilibrium equations are solved by Crisfield arc-length method as
explained by Fafard and Massicotte [4]. The tolerance is defined with respect to the
displacement criterion.

4 Results and Discussions

The validation of the formulation is tested first by taking different examples, which
are solved by earlier investigators. A hinged cylindrical panel subjected to con-
centrated load with isotropic and laminated composite material properties is taken
for this purpose.

4.1 Hinged Isotropic Cylindrical Panel Subjected
to Concentrated Load

A hinged isotropic cylindrical panel (Fig. 2) is considered for the validation of the
results. The straight edges are hinged and the curved edges are free. The curved
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edge length is 508 mm and the angle θ is 0.1 radian. The projection of the curved
edge length is 507.153 mm, but for analysis we can take it as 508 mm. The
concentrated load P is applied at the center of the panel. The Young’s modulus
(E) is taken as 3,105 N/mm2 and the Poisson’s ratio (ν) is 0.3.

The whole panel is modeled with 8 × 8 mesh for the analysis. The load
deflection curve of the present analysis is presented in Fig. 3, along with the finite
element results of Sabir and Lock [9], Crisfield [3] and Sze et al. [11].
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The cylindrical panel is showing a snap-through type of instability during the
bending process. It can be observed that the present results are matching well with
the results of Sabir and Lock [9], Crisfield [3] and Sze et al. [11] up to the limit
point. The present solution scheme is unable to trace the curve beyond the limit
point. It needs little modification in the computer programming, which is being
carried out.

4.2 Hinged Laminated Composite Cylindrical Panel
Subjected to Concentrated Load

The same cylindrical panel with same geometry and loading is taken again to
validate the present formulation with the composite material properties. The panel
consist of three layer with equal thickness of lamina with 90/0/90 lamination
scheme. The numbering of layers starts from the bottom to the top of the panel.
The layer with 0° lamination means the fibers are aligned in the longitudinal
direction (i.e. towards y-direction). The whole panel is modeled with 8 × 8 mesh
for the analysis in this case also. The material properties considered are,
E1 = 3,300 N/mm2, E2 = 1,100 N/mm2, G12 = G13 = G23 = 660 N/mm2 and
ν12 = 0.25. The panel is subjected to a concentrated load at the center. The
equilibrium path is plotted in Fig. 4 along with the finite element result of Sze et al.
[11]. In this case also the present results are matching well up to the limit point
with the results of Sze et al. [11].
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5 Summary

The findings of the present investigation can be summarized as,

1. The formulation and geometrically nonlinear analysis of laminated composite
shell panel with Green-Lagrange strain displacement relationship in total
Lagrangian co-ordinate is presented. A computer program with Fortran 90 is
developed to implement the formulation and the results are obtained.

2. The deflection results are matching well with the previous results up to the limit
point both in isotropic and composite cases.
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