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Abstract The structural reliability analysis in presence of mixed uncertain vari-
ables demands more computation as the entire configuration of fuzzy variables
needs to be explored. Moreover the existence of multiple design points plays an
important role in the accuracy of results as the optimization algorithms may con-
verge to a local design point by neglecting the main contribution from the global
design point. Therefore, in this paper a novel uncertain analysis method for esti-
mating the failure probability bounds of structural systems involving multiple
design points in presence of mixed uncertain variables is presented. The proposed
method involves weight function to identify multiple design points, multicut-high
dimensional model representation technique for the limit state function approxi-
mation, transformation technique to obtain the contribution of the fuzzy variables to
the convolution integral and fast Fourier transform for solving the convolution
integral. In the proposed method, efforts are required in evaluating conditional
responses at a selected input determined by sample points, as compared to full scale
simulation methods. Therefore, the proposed technique estimates the failure prob-
ability accurately with significantly less computational effort compared to the direct
Monte Carlo simulation. The methodology developed is applicable for structural
reliability analysis involving any number of fuzzy and random variables with any
kind of distribution. The accuracy and efficiency of the proposed method is dem-
onstrated through two examples.
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1 Introduction

Reliability analysis taking into account the uncertainties involved in a structural
system plays an important role in the analysis and design of structures. Due to the
complexity of structural systems the information about the functioning of various
structural components has different sources and the failure of systems is usually
governed by various uncertainties, all of which are to be taken into consideration
for reliability estimation. Uncertainties present in a structural system can be clas-
sified as aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty
information can be obtained as a result of statistical experiments and has a prob-
abilistic or random character. Epistemic uncertainty information can be obtained by
the estimation of the experts and in most cases has an interval or fuzzy character.
When aleatory uncertainty is only present in a structural system, then the reliability
estimation involves determination of the probability that a structural response
exceeds a threshold limit, defined by a limit state/performance function influenced
by several random parameters. Structural reliability can be computed adopting
probabilistic method involving the evaluation of multidimensional integral [1, 2]. In
first- or second-order reliability method (FORM/SORM), the limit state functions
need to be specified explicitly. Alternatively the simulation-based methods such as
Monte Carlo techniques requires more computational effort for simulating the
actual limit state function repeated times. The response surface concept was
adopted to get separable and closed form expression of the implicit limit state
function in order to use fast Fourier transform (FFT) to estimate the failure prob-
ability [3]. The High Dimensional Model Representation (HDMR) concepts were
applied for the approximation of limit state function at the MPP and FFT technique
to evaluate the convolution integral for estimation of failure probability [4]. In this
method, efforts are required in evaluating conditional responses at a selected input
determined by sample points, as compared to full scale simulation methods.

In addition, the main contribution to the reliability integral comes from the
neighbourhood of design points. When multiple design points exist, available
optimization algorithms may converge to a local design point and thus erroneously
neglect the main contribution to the value of the reliability integral from the global
design point(s). Moreover, even if a global design point is obtained, there are cases
for which the contribution from other local or global design points may be sig-
nificant [5]. In that case, multipoint FORM/SORM is required for improving the
reliability analysis [6]. In the presence of only epistemic uncertainty in a structural
system, possibilistic approaches to evaluate the minimum and maximum values of
the response are available [7]. All the reliability models discussed above are based
on only one kind of uncertain information; either random variables or fuzzy input,
but do not accommodate a combination of both types of variables. However, in
reality, for some engineering problems in which some uncertain parameters are
random variables, others are interval or fuzzy variables, using one kind of reliability
model cannot obtain the best results. To determine the bounds of reliability of a
structural system involving both random and interval or fuzzy variables, every
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configuration of the interval variables needs to be explored. Hence, the computa-
tional effort involved in estimating the bounds of the failure probability increases
tremendously in the presence of multiple design points and mixed uncertain vari-
ables. This paper explores the potential of coupled Multicut-HDMR (MHDMR)-
FFT technique in evaluating the reliability of a structural system with multiple
design points, for which some uncertainties can be quantified using fuzzy mem-
bership functions while some are random in nature. Comparisons of numerical
results have been made with direct MCS method to evaluate the accuracy and
computational efficiency of the present method.

2 Multi-cut High Dimensional Model Representation

High Dimensional Model Representation (HDMR) is a general set of quantitative
model assessment and analysis tools for capturing the high-dimensional relation-
ships between sets of input and output model [4, 8]. Let the N dimensional vector
x ¼ fx1; x2; . . .; xNg represent the input variables of the model under consideration,
and the response function as gðxÞ: Since the influence of the input variables on the
response function can be independent and/or cooperative, HDMR expresses the
response gðxÞ as a hierarchical correlated function expansion in terms of the input
variables. The expansion functions are determined by evaluating the input-output
responses of the system relative to the defined reference point c along associated
lines, surfaces, subvolumes, etc. in the input variable space. The first-order
approximation of gðxÞ is as follows:

~gðxÞ ¼
XN
i¼1

g c1; . . .; ci�1; xi; ciþ1; . . .; cNð Þ � N � 1ð ÞgðcÞ ð1Þ

The notion of 0th, 1st, etc. in HDMR expansion should not be confused with the
terminology used either in the Taylor series or in the conventional least-squares
based regression model. It can be shown that, the first order component function
giðxiÞ is the sum of all the Taylor series terms which contain and only contain
variable xi: Hence first-order HDMR approximations should not be viewed as first-
order Taylor series expansions nor do they limit the nonlinearity of gðxÞ:

The main limitation of truncated cut-HDMR expansion is that depending on the
order chosen sometimes it is unable to accurately approximate gðxÞ; when multiple
design points exist on the limit state function or when the problem domain is large.
In this section, a new technique based on MHDMR is presented for approximation
of the original implicit limit state function, when multiple design points exist. The
basic principles of cut-HDMR may be extended to more general cases. MHDMR is
one extension where several cut-HDMR expansions at different reference points are
constructed, and the original implicit limit state function gðxÞ is approximately
represented not by one, but by all cut-HDMR expansions. In the present work,
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weight function is adopted for identification of multiple reference points closer to
the limit surface. Let d1; d2; . . .; dmd be the md identified reference points closer to
the limit state function based on the weight function. The original implicit limit
state function gðxÞ is approximately represented by blending all locally constructed
md individual cut-HDMR expansions as follows:

gðxÞ ffi
Xmd

k¼1

kk xð Þ gk0 þ
XN
i¼1

gki ðxiÞ þ � � � þ gk12���N ðx1; x2; . . .; xNÞ
" #

ð2Þ

The coefficients kkðxÞ determine the contribution of each locally approximated
function to the global function. The properties of the coefficients kkðxÞ imply that
the contribution of all other cut-HDMR expansions vanish except one when x is
located on any cut line, plane, or higher dimensional (≤l) sub-volumes through that
reference point, and then the MHDMR expansion reduces to single point cut-
HDMR expansion. As mentioned above, the lth order cut-HDMR approximation
does not have error when x is located on these sub-volumes. When md cut-HDMR
expansions are used to construct a MHDMR expansion, the error free region in
input x space is md times that for a single reference point cut-HDMR expansion,
hence the accuracy will be improved. Therefore, first-order MHDMR approxima-
tions of the original implicit limit state function with md reference points can be
expressed as

~gðxÞ ffi
Xmd

k¼1

kkðxÞ
XN
i¼1

gk dk1; . . .; d
k
i�1; xi; d

k
iþ1; . . .; d

k
N

� �� N � 1ð Þgk dk
� �" #

: ð3Þ

3 Weight Function for Identification of Multiple Reference
Points

The most important part of MHDMR approximation of the original implicit limit
state function is identification of multiple reference points closer to the limit state
function. The proposed weight function is similar to that used by Kaymaz and
McMahon [9] for weighted regression analysis. Among the limit state function
responses at all sample points, the most likelihood point is selected based on
closeness to zero value, which indicates that particular sample point is close to the
limit state function. In this study two types of procedures are adopted for identi-
fication of reference points closer to the limit state function, namely: (1) first-order
method, and (2) second-order method. The procedure for identification of reference
points closer to the limit state function using first-order method proceeds as follows:
(a) nð¼3; 5; 7 or 9Þ equally spaced sample points li � ðn� 1Þri=2; li � ðn�
3Þri=2; …, li; …, li þ ðn� 3Þri=2; li þ ðn� 1Þri=2 are deployed along each of
the random variable axis xi with mean li and standard deviation ri; through an
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initial reference point. Initial reference point is taken as mean value of the random
variables; (b) The limit state function is evaluated at each sample point; (c) Using
the limit state function responses at all sample points, the weight corresponding to
each sample point is evaluated using the following weight function,

w0 ¼ exp � g c1; . . .; ci�1; xi; ciþ1; . . .; cNð Þ � gðxÞjmin

gðxÞjmin

�� ��
 !

: ð4Þ

Sample points d1; d2; . . .; dmd with maximum weight are selected as reference
points closer to the limit state function, for construction of md individual cut-
HDMR approximations of the original implicit limit state function locally. In this
study, two types of sampling schemes, namely FF and SF are adopted.

4 Estimation of Failure Probability in Presence of Mixed
Uncertain Variables

Let the N-dimensional input variables vector x ¼ fx1; x2; . . .; xNg; which comprises
of r number of random variables and f number of fuzzy variables be divided as,
x ¼ fx1; x2; . . .; xr; xrþ1; xrþ2; . . .; xrþf g where the subvectors fx1; x2; . . .; xrg and
fxrþ1; xrþ2; . . .; xrþf g respectively group the random variables and the fuzzy vari-
ables, with N ¼ r þ f : Then the first-order approximation of ~gðxÞ can be divided
into three parts, the first part with only the random variables, the second part with
only the fuzzy variables and the third part is a constant which is the output response
of the system evaluated at the reference point c, as follows

~gðxÞ ¼
Xr
i¼1

g xi; ci
� �þ XN

i¼rþ1

g xi; ci
� �� ðN � 1ÞgðcÞ ð5Þ

The joint membership function of the fuzzy variables part is obtained using
suitable transformation of the variables fxrþ1; xrþ2; . . .; xNg and interval arithmetic
algorithm. Using the bounds of the fuzzy variables part at each a-cut along with the
constant part and the random variables part, the joint density functions are obtained
by performing the convolution using FFT in the rotated Gaussian space at the MPP,
which upon integration yields the bounds of the failure probability. The steps
involved in the proposed method for failure probability estimation as follows:

(i) If u ¼ fu1; u2; . . .; urgT 2 <r is the standard Gaussian variable, let uk
� ¼

uk
�
1 ; u

k�
2 ; . . .; u

k�
r

� �T
be the MPP or design point, determined by a standard

nonlinear constrained optimization. The MPP has a distance bHL which is
commonly referred to as the Hasofer–Lind reliability index. Note that in the
rotated Gaussian space the MPP is v� ¼ f0; 0; . . .; bHLgT : The transformed
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limit state function gðvÞ therefore maps the random variables along with the
values of the constant part and the fuzzy variables part at each a-cut, into
rotated Gaussian space V. First-order HDMR approximation of gðvÞ in

rotated Gaussian space V with vk
� ¼ vk

�
1 ; v

k�
2 ; . . .; v

k�
r

� �T
as reference point

can be represented as follows:

~gkðvÞ �
Xr
i¼1

gk vk
�
1 ; . . .; v

k�
i�1; vi; v

k�
iþ1; . . .; v

k�
r

� �� ðr � 1Þgðvk� Þ ð6Þ

(ii) In addition to the MPP as the chosen reference point, the accuracy of first-
order HDMR approximation may depend on the orientation of the first r − 1
axes. In the present work, the orientation is defined by the matrix. The terms
gk vk

�
1 ; . . .; v

k�
i�1; vi; v

k�
iþ1; . . .; v

k�
r

� �
are the individual component functions and

are independent of each other. Equation (6) can be rewritten as,

~gkðvÞ ¼ ak þ
Xr
i¼1

gk vi; vk
�i

� �
ð7Þ

(iii) New intermediate variables are defined as

yki ¼ gk vi; vk
�i

� �
ð8Þ

(iv) The purpose of these new variables is to transform the approximate function
into the following form

~gk vð Þ ¼ ak þ yk1 þ yk2 þ � � � þ ykr ð9Þ

(v) Due to rotational transformation in v-space, component functions yki are
expected to be linear or weakly nonlinear function of random variables vi:

(vi) The global approximation is formed by blending of locally constructed
individual first-order HDMR approximations in the rotated Gaussian space
at different identified reference points using the coefficients kk

~gðvÞ ¼
Xmd

k¼1

kk~g
kðvÞ ð10Þ

(vii) Since vi follows standard Gaussian distribution, marginal density of the
intermediate variables yi can be easily obtained by transformation.

(viii) Now the approximation is a linear combination of the intermediate variable.
Therefore, the joint density of ~gðvÞ; which is the convolution of the mar-
ginal density of the intervening variables can be expressed as follows:
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p~G ~gð Þ ¼ pY1 y1ð Þ � pY2 y2ð Þ � � � � � pYr yrð Þ ð11Þ

(ix) Applying FFT and inverse FFT on both side joint density of ~gðvÞ is
obtained.

(x) The probability of failure is given by the following equation

PF ¼
Z0
�1

p~G ~gð Þd~g: ð12Þ

(xi) The membership function of failure probability can be obtained by repeating
the above procedure at all confidence levels of the fuzzy variables part.

5 Numerical Examples

5.1 Four Dimensional Quadratic Function

This example considers a hypothetical limit state function of the following form:

gðxÞ ¼ �x21 � x22 � x23 � x24 þ 9x1 þ 11x2 þ 11x3 þ 11x4

� x25 � 4:6x5 þ x26 þ 4:7x6 þ 11
ð13Þ

where x1; x2; x3; x4 are assumed to be normal variables with mean value as 5.0 and
standard deviation value as 0.4, and x5; x6 are assumed to be fuzzy variables with
triangular membership function having the triplet [4.96, 5.0, 5.04]. Figure 1 shows

Fig. 1 Membership function
of failure probability
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the estimated membership function of the failure probability PF by the proposed
methods, as well as by using direct MCS. The failure probability estimated by the
proposed MHDMR approximation with FF sampling scheme requires significantly
less computational effort than direct MCS for the same accuracy.

5.2 80-Bar 3D-Truss Structure

A 3D-truss, shown in Fig. 2, is considered in this example to examine the accuracy
and efficiency of the proposed method for the membership function of failure
probability estimation. The loads at various levels are considered to be random
while the cross-sectional areas of the angle sections at various levels are assumed to
be fuzzy. The maximum horizontal displacement at the top of the tower is con-
sidered to be the failure criterion, as given below.

Fig. 2 80-bar 3D-truss
structure
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gðxÞ ¼ Dlim � DðxÞ ð14Þ

The limiting deflection Dlim is assumed to be 0.15 m. The limit state function is
approximated using first-order HDMR by deploying n = 5 sample points along each
of the variable axis and taking respectively the mean values and nominal values of
the random and fuzzy variables as initial reference point. The two reference points
closer to the function producing maximum weights, 1.0 and 0.977 are identified.
After identification of two reference points, local first-order HDMR approximations
are constructed at the reference points. The bounds of the failure probability are
obtained both by performing the convolution using FFT in conjunction with linear
and quadratic approximations and MCS on the global approximation. Figure 3
shows the membership function of the failure probability PF estimated both by
performing the convolution using FFT, and MCS on the global approximation, as
well as that obtained using direct MCS. In addition, effects of SF sampling scheme
and the number of sample points on the estimated membership function of the
failure probability PF are studied.

6 Summary and Conclusion

This paper presented a novel uncertain analysis method for estimating the mem-
bership function of the reliability of structural systems involving multiple design
points in the presence of mixed uncertain variables. The method involves MHDMR
technique for the limit state function approximation, transformation technique to
obtain the contribution of the fuzzy variables to the convolution integral and fast
Fourier transform for solving the convolution integral at all confidence levels of the
fuzzy variables. Weight function is adopted for identification of multiple reference
points closer to the limit surface. Using the bounds of the fuzzy variables part at
each confidence level along with the constant part and the random variables part,

Fig. 3 Membership function
of failure probability
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the joint density functions are obtained by (i) identifying the reference points closer
to the limit state function and (ii) blending of locally constructed individual first-
order HDMR approximations in the rotated Gaussian space at different identified
reference points to form global approximation, and (iii) performing the convolution
using FFT, which upon integration yields the bounds of the failure probability. As
an alternative the bounds of the failure probability are estimated by performing
MCS on the global approximation in the original space, obtained by blending of
locally constructed individual first-order HDMR approximations of the original
limit state function at different identified reference points. The results of the
numerical examples indicate that the proposed method provides accurate and
computationally efficient estimates of the membership function of the failure
probability. The results obtained from the proposed method are compared with
those obtained by direct MCS. The numerical results show that the present method
is efficient for structural reliability estimation involving any number of fuzzy and
random variables with any kind of distribution.

References

1. Breitung K (1984) Asymptotic approximations for multinormal integrals. ASCE J Eng Mech
110(3):357–366

2. Rackwitz R (2001) Reliability analysis—a review and some perspectives. Struct Saf 23(4):365–
395

3. Sakamoto J, Mori Y, Sekioka T (1997) Probability analysis method using fast Fourier transform
and its application. Struct Saf 19(1):21–36

4. Rao BN, Chowdhury R (2008) Probabilistic analysis using high dimensional model
representation and fast Fourier transform. Int J Comput Methods Eng Sci Mech 9(6):342–357

5. Au SK, Papadimitriou C, Beck JL (1999) Reliability of uncertain dynamical systems with
multiple design points. Struct Saf 21:113–133

6. Der Kiureghian A, Dakessian T (1998) Multiple design points in first and second order
reliability. Struct Saf 20(1):37–49

7. Penmetsa RC, Grandhi RV (2003) Uncertainty propagation using possibility theory and
function approximations. Mech Based Des Struct Mach 81(15):1567–1582

8. Rabitz H, Alis OF, Shorter J, Shim K (1999) Efficient input-output model representations.
Comput Phys Commun 117(1–2):11–20

9. Kaymaz I, McMahon CA (2005) A response surface method based on weighted regression for
structural reliability analysis. Probab Eng Mech 20(1):11–17

2524 A.S. Balu and B.N. Rao


	193 Confidence Bounds on Failure Probability Using MHDMR
	Abstract
	1 Introduction
	2 Multi-cut High Dimensional Model Representation
	3 Weight Function for Identification of Multiple Reference Points
	4 Estimation of Failure Probability in Presence of Mixed Uncertain Variables
	5 Numerical Examples
	5.1 Four Dimensional Quadratic Function
	5.2 80-Bar 3D-Truss Structure

	6 Summary and Conclusion
	References


