
Implementation of Generative Crossover
Operator in Genetic Algorithm to Solve
Traveling Salesman Problem

Devasenathipathi N. Mudaliar and Nilesh K. Modi

Abstract The research work aims to solve symmetric traveling salesman problem
more efficiently. In this research paper, a different crossover operator is proposed,
which produces 18 valid offsprings from two parents. The performance of proposed
crossover operator is compared with three other existing crossover operators by
maintaining the selection technique, mutation technique, and fitness function
identical. This crossover operator is tested with data from TSP dataset. The intercity
distance table of cities in which distance is measured with L1 norm formed the
input to the coded C program that implemented the proposed crossover operator.
The same dataset was used to compare the performance of this crossover operator
with other three crossover operators. The comparative study indicates that proposed
crossover operator performs well compared to other crossover operators in solving
traveling salesman problem.

Keywords Symmetric traveling salesman problem � Multiple offspring producing
crossover operator � Performance of crossover operator � Intercity distance table �
Fitness function

1 Introduction

Traveling salesman problem is an NP hard, combinatorial optimization problem,
where a salesman must visit all the cities in his territory exactly once by covering
least total distance. The distance between any two given cities (to and fro) is same,

D.N. Mudaliar (&)
MCA Department, SVIT, Vasad, India
e-mail: devas_mca@yahoo.co.uk

D.N. Mudaliar
R & D Centre, Bharathiar University, Coimbatore, India

N.K. Modi
MCA Department, SVICS, Kadi, India
e-mail: drnileshmodi@yahoo.com

© Springer India 2015
L.P. Suresh et al. (eds.), Artificial Intelligence and Evolutionary Algorithms
in Engineering Systems, Advances in Intelligent Systems and Computing 324,
DOI 10.1007/978-81-322-2126-5_6

47

and so the traveling direction is not a hindrance. There exist many problems such as
student group formation problem, genome sequencing, and vehicle routing that
have traveling salesman problem structure [1–3]. Efficiently solving traveling
salesman problem would solve many other problems related to it as no polynomial
time algorithm can be formulated for this. Considering a bruteforce approach to
solve this problem is infeasible.

Exact algorithms, tour construction, and tour improvement are some of the
approaches to solve traveling salesman problem. Linear programming and branch
and bound form the types of exact algorithms, while insertion heuristics, closest
neighbor heuristics, and greedy heuristics are types of tour construction approach.
Finally, tour improvement approach consists of genetic algorithms, ant colonization
algorithms, tabu search, etc. However, the above-mentioned approaches and their
types have their own set of opportunities and challenges.
Many researchers have applied genetic algorithm to solve the traveling salesman
problem or problems having traveling salesman problem structure. Three operators,
viz. selection, crossover, and mutation, are used in solving a problem by genetic
algorithm. As the first step, some defined number of random feasible solutions
(called population) is generated by the genetic algorithm. The selection operator in
the genetic algorithm then selects the most fittable solutions (of some defined
proportion from the randomly generated population using some fitness function)
through various selection techniques such as tournament selection and roulette
wheel selection. The filtered (or selected) solutions are now paired to produce new
breed of chromosomes. A pair of parent solutions cross over to produce another set
of offspring solutions. This process called crossover has various techniques to
achieve the task. In case of traveling salesman problem, famous crossover tech-
niques called partially mapped crossover, order crossover, cycle crossover, etc.,
exist. To bring variation in the offspring population (so that the solutions do not get
trapped in the local minima), mutation operator is executed, which randomly
changes a gene or two of offspring solutions. The above process from selection to
mutation is repeated till a definite number of times or for the time indicative
improvement occurs in the population set [4].

In this research work, the authors have tried to present a different crossover
operator in genetic algorithm that is able to solve traveling salesman problem. The
significance of this crossover operator is that it takes two valid parent solutions and
produces 18 valid offspring solutions. Even though published research work exists
for crossover work in genetic algorithm that produces more than two offspring
solutions, they did not focus to solve the traveling salesman problem. In addition to
this, it has to be brought to notice that traditional crossover operators cannot be
applied to solve traveling salesman problem as they may end up with invalid
solutions. The next section of the paper represents the work done by different
researchers in connection with solving traveling salesman problem or its variants
through different approaches. The third section details on the actual implementation
of the research work. The fourth section elucidates on the results obtained and
comparison of the results. The last section concludes the research paper with
achievable future directions.

48 D.N. Mudaliar and N.K. Modi

2 Proposed Methodology

Most of the two-point crossover operator in genetic algorithm takes in two parent
chromosomes as input and produces two valid offspring chromosomes as output.
Additionally, the two offspring chromosomes contain the features of both the
parents. The authors propose a two-point crossover approach that produces 18 valid
offspring chromosomes and all the offspring chromosomes contain the features of
both the parents.

2.1 Example of M-Crossover Operator

We try to solve the Traveling Salesman Problem with 9 cities using two-point
crossover operator.
First cut point—after third gene (even though a different value less than second cut
point can be set).

Second cut point—after sixth gene

Parent 1—1 2 3 4 5 6 7 8 9
Parent 2—9 1 2 8 7 4 5 6 3

Using the given cut points, the parent chromosomes can be cut into three parts, viz.

Parent 1—[1 2 3] [4 5 6] [7 8 9]
Parent 2—[9 1 2] [8 7 4] [5 6 3]

2.2 Creating the First Offspring Chromosome

Inserting the first part of Parent 2 before the first part of Parent 1, we get
[9 1 2] [1 2 3] [4 5 6] [7 8 9]
Striking the matching chromosomes of Parent 2 part from Parent 1 parts, we get
[9 1 2] [��1 ��2 3] [1 2 3] [4 5 6] [7 8 ��9]
Deleting the striked genes and grouping the rest of the genes according to the cut

points, we get
[9 1 2] [3 4 5] [6 7 8]
By simply removing the partition, we get the first valid offspring—9 1 2 3 4 5 6 7 8.

Implementation of Generative Crossover Operator … 49

2.3 Creating the Second Offspring Chromosome

Inserting the first part of Parent 2 after the first part of Parent 1 and before the
second part of Parent 1, we get

[1 2 3] [9 1 2] [4 5 6] [7 8 9]
Striking the matching chromosomes of Parent 2 part from Parent 1 parts, we get
[��1 ��2 3] [9 1 2] [4 5 6] [7 8 ��9]
Deleting the striked genes and grouping the rest of the genes according to the cut

points, we get
[3 9 1] [2 4 5] [6 7 8]
By simply removing the partition, we get the second valid offspring—3 9 1 2 4 5

6 7 8.

2.4 Creating Other Offspring Chromosomes

In the above manner, we create the remaining 7 more chromosomes with the help of
our proposed crossover. The change that is to be followed in getting the remaining
chromosomes is identifying which part of Parent 2 chromosome is to be put before
which part of Parent 1 chromosome. This is illustrated with the help of Fig. 1.

Figure 1 represents that the first part of Parent 2 be inserted before the first part
of Parent 1 and we get the first chromosomes after following the above steps.
Following the above steps, the remaining 7 offspring chromosomes are as follows:
345 691 278, 874 123 569, 123 874 569, 123 568 749, 563 124 789, 125 634 789,
and 124 563 789.

To obtain the next set of 9 offspring chromosomes, just interchange the contents
of Parent 1 and Parent 2 and perform the above-mentioned steps. The following
offspring chromosomes will be obtained by performing this step:

123 987 456, 912 387 456, 987 412 356, 456 912 873, 912 456 873, 912 874
563, 789 124 536, 127 894 563, and 124 789 563.

Once all 18 valid offspring chromosomes are obtained, two best chromosomes
with respect to fitness value are selected and sent for further stage and the remaining
chromosomes are simply ignored.

Fig. 1 Part of Parent 2 (P2) to be kept before part of Parent 1 (P1)

50 D.N. Mudaliar and N.K. Modi

3 Actual Experiment

The proposed crossover operator was tested with test data from TSPLIB dataset.
Four different C programs were developed to implement and compare the proposed
crossover operator in genetic algorithm. All contents of the C programs were same
except the crossover operator implementation part. We coded the following func-
tions in C language to accomplish the above tasks.

1. Random initialization of population
2. Selection of chromosomes
3. Cloning of chromosomes
4. Crossover of chromosomes
5. Mutation of chromosomes.

The following steps describe C program coded to implement the experiment.

1. Initialize a random population of 100 valid chromosomes and perform steps 2–8
for 50 iterations.

2. Obtain the fitness value of each chromosome of population by the fitness
function.

3. Select the best 50 % of chromosomes with to respect fitness value.
4. Clone the selected chromosomes by merely creating a copy of those chromo-

somes and add them to the population.
5. Randomly create pairs of chromosomes and send them for crossover.
6. The crossover results in two new valid offspring chromosomes for every pair of

chromosomes sent for crossover.
7. Send 2 % of the entire newly obtained offspring chromosome for mutation (in

our case, displacement mutation).
8. Obtain the fitness value of each chromosome and return to step 2.

The developed C programs were tested for test dataset (fri26_d.txt) which
provides the intercity distance table for 26 cities. The TSP test data in intercity
distance table of the dataset obtained from TSPLIB formed the input to the C
programs [5]. The different crossover techniques were proposed: crossover (dis-
cussed in methodology section), order crossover, partially mapped crossover, and
cycle crossover. The output and results of the experimental work are discussed in
the next section.

4 Results and Discussion

As stated in the previous section, we have tried to evaluate the efficiency of our
proposed crossover operator by comparing the results of the experiment with the
existing crossover operators. Roulette wheel selection technique was used to select
the chromosomes. Crossover rate was set to 0.9, and mutation rate was set to 0.02.
The initial population was set to 100 valid chromosomes.

Implementation of Generative Crossover Operator … 51

Table 1 represents the best fitness value obtained up to a given number of
iterations (generations) for 26-city problem (fri26_d.txt). It could be noted that
output given by the C program of our proposed crossover approach gives best
results quickly. The shortest distance for the 26-city problem (for this test data)
obtained till now by researchers is 937, and within 50 iterations (generations), our
proposed crossover approach is better close to the optimal solution compared to the
other crossover techniques.

The obtained optimal path by m-crossover operator for 26-city problem (FRI26)
is as follows: 8-7-5-6-4-2-3-14-15-12-13-11-10-16-9-19-20-18-17-21-26-22-24-23-
25-1. The length of this path is 937 km according to the values given in the dataset.

5 Conclusion and Future Work

In this research paper, the authors have tried to propose a new crossover operator of
genetic algorithm to solve symmetric traveling salesman problem. Alternately, the
performance of the proposed work is compared with other existing crossover
operators that aid to solve symmetric traveling salesman problem. C programs were
coded to implement and compare the performance of proposed crossover operator
and other three crossover operators. A test data from TSPLIB (fri26_d.txt 26-city
problem) were considered for the same. The results of the experiment positively
proved our proposed crossover approach to solve symmetric traveling salesman
problem.

As part of the future work, we plan to implement the proposed crossover
operator for more number of cities for symmetric traveling salesman problem. In
addition to this, the same crossover approach can be used to solve asymmetric
traveling salesman problem as well.

Table 1 Comparison of performance of proposed crossover with other crossover operators for
26-city traveling salesman problem

Number of
iterations
(generations)

Best fitness
value obtained
by proposed
crossover C
program

Best fitness value
obtained by par-
tially mapped
crossover C
program

Best fitness
value obtained
by order
crossover C
program

Best fitness
value obtained
by cycle
crossover C
program

0–10 1,261 1,857 1,724 1,802

11–20 1,144 1,674 1,665 1,721

21–30 1,054 1,606 1,602 1,871

31–40 937 1,616 1,567 1,849

41–50 1,051 1,541 1,549 1,790

52 D.N. Mudaliar and N.K. Modi

References

1. R. Agarwala, D.L. Applegate, D. Maglott, G.D. Schuler, A.A. Schäffer, A fast and scalable
radiation hybrid map construction and integration strategy. Genome Res. 10, 350–364 (2000)

2. D.N. Mudaliar, N.K. Modi. Evolutionary algorithm approach to pupils’ pedantic accomplish-
ment, in Proceedings of the International Conference on Frontiers of Intelligent Computing:
Theory and Applications (FICTA), Advances in intelligent systems and computing, vol. 199
(Springer, Berlin, 2013), pp. 415–423

3. R. Matai, S.P. Singh, M.L. Mittal, in Traveling salesman problem: an overview of applications,
formulations, and solution approaches, Traveling Salesman Problem, Theory and Applications
(InTech, Croatia, 2010), pp. 1–24

4. N. Bansal, A. Blum, S. Chawla, A. Meyerson, Approximation Algorithms for Deadline-TSP
and Vehicle Routing with Time-Windows, in Proceedings of ACM STOC (2004), pp. 166–174

5. M. Ünal, Ak. Ayça, V. Topuz, H. Erdal, Genetic algorithm optimization of PID controllers
using ant colony and genetic algorithm, Studies in computational intelligence. vol. 449
(Springer Berlin, 2013), pp. 19–29

Implementation of Generative Crossover Operator … 53

	6 Implementation of Generative Crossover Operator in Genetic Algorithm to Solve Traveling Salesman Problem
	Abstract
	1 Introduction
	2 Proposed Methodology
	2.1 Example of M-Crossover Operator
	2.2 Creating the First Offspring Chromosome
	2.3 Creating the Second Offspring Chromosome
	2.4 Creating Other Offspring Chromosomes

	3 Actual Experiment
	4 Results and Discussion
	5 Conclusion and Future Work
	References

