Model-Based Control for Moisture
in Paper Making Process
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Abstract This project deals with the performance evaluation on the comparison of
model-based control for drying process of paper industry. The dryer section is the
last part of the paper machine and consists of a large number of rotating steam-
heated cast iron cylinders by adjusting the set point of the stream pressure controller
to the cylinders. In the design of model reference adaptive control, schema is used,
in which the adaptive law has been developed by MIT rule. Similarly, design of
PID and MRAC controller is used. This paper presents a nonlinear dynamic control,
based on heat and mass balance for steam, cylinder, and paper. The control was
performed to the combined drying process system using both the adaptive control
algorithm and MPC controller method and its results were analyzed. A simulation is
carried out using MATLAB. Simulation results reveal clear benefits of the model
reference adaptive control over traditional controller and MPC controller methods.
Thus, by controlling, this process proves real incentives for industrial
implementation.
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1 Introduction

The function of a paper machine is to form the paper sheet and remove the water
from the sheet. A paper machine is divided into three main parts as wire section,
press section, and drying section. Nonlinear modeling of moisture control of drying
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process in paper machine has been proposed an approach to define that the paper
machine is modeled for designing moisture content control loop using DCS which
is available in the paper plant. A transfer function to validate the moisture control
process is obtained with the real-time data [1]. MPC as control strategy for pasta
drying processes has been proposed an approach to MPC that produces high per-
formance and accuracy, with relatively small computational rate and gives better
results than PID [2, 3]. Model predictive control of an industrial dryer has been
proposed an approach to its high performance due to the use of the direct control of
the product moisture content based on a state observer, to updating the model of the
process on which MPC relies [4, 5]. Direct model reference adaptive control of
linear systems with input/output delays has been proposed an approach to Direct
Model Reference Adaptive Tracking Controller for linear systems with unknown
time varying input delays [8]. MRAC using observers with unknown inputs has
been proposed a new solution for MRAC, based on the design of a state observer
with unknown inputs has been proposed [8].

A multivariable MRAC scheme with sensor uncertainty compensation has been
proposed a crucial step, the derivation of a properly parameterized error model in
terms of the system and sensor parameter errors and the output tracking errors.
Based on the developed error model, stable adaptive laws have been derived for
updating the parameter of the compensator and feedback controller [10].

2 System Identification

System identification is a procedure to build a mathematical model of dynamics of a
system from measured data. System identification is a process of obtaining models
based on a data set collected from experimental setup as well as the real-time
models.

2.1 Identification

The design of a control system requires a mathematical model of the dynamics of
the process. Different types of identification model structure based on early prin-
ciples model parameters are estimated from measured data. If the physical laws
governing the behavior of the system are known, we can use these to construct so-
called white-box models of the system. In a white-box model, all parameters and
variables can be interpreted in terms of physical entities and all constants are known
a priori. At the other end of the modeling scale, we have so-called black-box model
or identification.
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Fig. 1 Data set of input and output

2.1.1 Experiment Design

Collecting data is a very essential step. The data set Z" should be as informative as
possible to fully identify the model. Their pressure and moisture data were collected
by using ABB DCS in TNPL. A total of 2,000 data were collected that are shown in
Fig. 1.

Model sets or model structures are families of models with adjustable parame-
ters. Parameter estimation amounts to conclude the “best” values of these param-
eters. The system identification complication amounts to find both the good models.
Model Validation is the process of gaining confidence in a model. Crucial this is
achieved by “twisting and turning” the model to scrutinize all attitude of it. Of
particular importance is the model’s ability to reproduce the behavior of the vali-
dation data sets. Thus, it is important to review the properties of the residuals from
the model when applied to the validation data.

3 PID Controller

A PID controller calculates an “error” value as the difference between a measured
process variable and a desired set point. The controller experiments to minimize the
error by adjusting the process control inputs. Be able to use common methods of
analysis for a system with a PID controller in order to predict the behavior of the
system and controller, and to be able to choose PID parameters. Defining u() as the
controller output, the final model of the PID algorithm is
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u(t) = Kpe(t) + Ki/e(r)dr + kd%e(t) (1)
0

3.1 Ziegler—Nichols Tuning

This procedure is only valid for open loop stable plants, and it is carried out through
the following steps. Set the true plant under proportional control, with a very small
gain, and increase the gain until the loop starts oscillating. Note that linear oscil-
lation is needed and it should be detected at the controller output. Record the
controller critical gain K, = K. and the oscillation period of the controller output P,.

4 Model Predictive Control

Future values of output variables are predicted using a dynamic model of the
process. The control calculations are based on both future predictions and current
measurement. Inequality, equality constraints, and measured disturbances obtain
including the control calculations. The calculated manipulated variables obtain
implemented set point for lower level control loops. A discrete-time implementation
of model-based control algorithm is called as model predictive control.

4.1 MPC Design

The first step in the design is to load a plant model. Its dimensions and signal
specifically set the context for the remaining steps. The model can be loaded
directly or indirectly by importing a controller or a saved design. To import from
MATLAB workspace, radio button should be selected by default. The dialog
section labeled in the workspace lists the LTI models. They select the state space
model for the process. The dialog section labeled the properties and then displays
the number of input and output—their names, signal types, etc (Fig. 2).

5 Model Reference Adaptive Control

The MRAC is one of the main adaptive control approaches. When the system
specifications are in terms of a reference model, it tells how the process output
should ideally respond to command signals. It is then possible to use MRAC.
Model reference adaptive system is to create a closed loop controller with
parameters that can be updated to change the response of the system. The output of
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the system is compared toward a desired response from a reference model. The
control parameters will update based on this error. By adjusting, the mechanism
parameters in a model reference adaptive system can be obtained using gradient

method (Figs. 3, 4, 5 and 6) (Tables 1 and 2).

5.1 Gradient Method—MIT Rule

Capture error : e = Yplantouput — Ymodeloutput

1
Regardingcost function : J(0) = §e2(9)
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Table 1 Comparison of Models MSE for real-time data Fitness (%)
process model
PID 0.0508 83.42
P2D 0.0471 84.04
P3D 0.0353 86.17
P2DU 0.00872 93.13
P3DU 0.00512 94.74
P1DZ 0.0508 83.42
P2DZ 0.0471 84.04
P3DZ 0.0371 85.82
P2DZU 0.0471 86.48
P3DZU 0.0371 87.45
P1DIZ 0.0285 87.62
P2DIZ 0.0194 89.76
P3DIZ 0.0184 90.03
P2D1ZU 0.00551 94.54
P3DIZU 0.011 92.28
Table 2 Comparision Controller performance PID MPC MRAC
between PID, MPC, and —
MRAC controller response Rise time 3s 22 135
Settling time 22's 4.6 s 44 s
Peak overshoot 1.118 0 35
2 = (a5 + an)e (©
From % and % we get updating controller parameter 61 and 62 are
91:w(9s2+7s+1|s3+9s2+7s+1) (7)
02:%(9s2+7s+1|s3+9s2+7s+1) (8)
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6 Result and Discussion

From system process model identification, we get third-order transfer function for
the model P3DU which is given by,

Tf = 1/(s* +9s* +7s + 1) 9)

7 Conclusion

The proposed controllers are tested by using MATLAB simulinkprogram. The
simulation shows that MPC provides better performance then MRAC and PID
controller. The proposed model-based control system increases its efficiency and
quality of the product. This will reduce the production cost by controlling the
moisture.
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