
Chapter 2
Harmonic Univalent Mappings and Minimal
Graphs

Zach Boyd and Michael Dorff

2.1 Introduction

In this chapter we will discuss some topics about planar harmonic mappings. These
functions can be thought of as a generalization of analytic maps, and so we will first
present a brief background of analytic univalent mappings. Then we will discuss
harmonic mappings with an emphasis on three topics: the shearing technique, inner
mapping radius, and convolutions. Finally, we will discuss the connection between
planar harmonic mappings and minimal surfaces.

2.1.1 Analytic Univalent Maps

Harmonic maps naturally generalize analytic functions by relaxing the requirement of
analyticity while still retaining some important features. We begin with an overview
of the relevant properties of analytic functions to make clear the analogy with har-
monic maps. In both cases, we focus entirely on functions which are univalent, or
one-to-one, although much interesting work has been done on multivalent functions
as well.

Definition 1.1 Let F : D ⊂ C → C. The function F (x, y) = u(x, y)+ iv(x, y) is
analytic if:

• F is continuous;
• u and v are real harmonic in D; and
• u and v are harmonic conjugates (that is, ux = vy and uy = −vx).
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In this context, a function u(x, y) : R
2 → R is called real harmonic if uxx+uyy = 0.

While analytic functions may map from any open, connected set in general, the
following theorem allows us to restrict attention to the unit disk in many cases.

Theorem 1.2 (Riemann Mapping Theorem) Let G �= C be a simply-connected
domain with a ∈ G. Then there exists a unique univalent, onto analytic function
F : G→ D such that F (a) = 0 and F ′(a) > 0.

Thus, if D is a simply-connected, proper subset of the complex plane, we may
replace the function f : D → C by the function f ◦ φ : D → C, where the
existence of φ : D → D is guaranteed. Therefore, in the study of univalent (one-
to-one) analytic functions, we may restrict our attention to the following class of
functions.

Definition 1.3 The family of analytic, normalized, and univalent functions denoted
by S is

S = {F : D → C |F is analytic, univalent with F (0) = 0,F ′(0) = 1}.
This family of functions is also known as schlicht functions. Note that F ∈ S implies
F (z) = z+ a2z2 + a3z3+ · · · . The following are two essential examples that will be
used throughout the chapter.

Example 1.4 (The Analytic Right Half-Plane Mapping)

Fh(z) = z

1− z
=

∞∑
n=1

zn = z + z2 + z3 + · · · ∈ S.

Example 1.5 (The Koebe Function)

Fk(z) = z

(1− z)2
=

∞∑
n=1

nzn = z + 2z2 + 3z3 + · · · ∈ S.

Observe that Fk maps to the entire complex plane minus a slit from −1/4 to ∞
(Fig. 2.1).

Some important properties of the family S include

• The uniqueness condition in the Riemann Mapping Theorem.
• (de Branges’ Theorem) For F ∈ S, |an| ≤ n, for all n.
• (Koebe 1

4 -Theorem) If F ∈ S, then F (D) contains the disk G = {w : |w| < 1
4 }.

See [14] for more background in univalent analytic functions.

2.1.2 Harmonic Univalent Maps

Complex-valued harmonic functions are a generalization of the analytic functions in
which one of the requirements is relaxed.
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Fig. 2.1 The image of D

under Fk(z) = z
(1−z)2 ∈ S

Definition 1.6 Let f : D ⊂ C → C. The function f (x, y) = u(x, y)+ iv(x, y) is
a (complex-valued) harmonic function if:

• f is continuous; and
• u and v are real harmonic in D.

This definition views harmonic functions as being composed of real and imaginary
parts. If D is simply-connected, we have a more useful characterization ([3]).

Theorem 1.7 If f = u + iv is harmonic in a simply-connected domain G, then
f = h+ g, where h and g are analytic.

Note that f = h + g is equivalent to f = Re{h + g} + iIm{h − g}. Also, one
consequence of this theorem is that a harmonic function f is represented by a power
series of the form

f (z) = h(z)+ g(z) =
∞∑
n=0

anzn +
∞∑
n=1

bnzn.

In particular, every harmonic function with domain D is just the sum of analytic
and coanalytic parts, represented by h and g, respectively. To see the geometric effect
of including g, we recall that an analytic map is called conformal if its derivative
never vanishes. The conformal property means that intersecting curves in the domain
are mapped to intersecting curves in the image, and the angle of intersection is
preserved. A harmonic map is the sum of two maps, one which preserves angles,
and another which reverses them. After some reflection, it should be clear that if
|h′(z0)| > |g′(z0)|, then the map is sense-preserving at z0, meaning that positive angles
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Fig. 2.2 The image of D under Fp

remain positive, and negative angles remain negative under the map f . Equivalently,
we say that a function is sense-preserving if the left-hand side of a curve is mapped
to the left-hand side of its image. The following theorem formalizes this intuition.

Theorem 1.8 (Lewy [22]) f (z) = h(z) + g(z) is locally univalent and sense-
preserving if and only if |ω(z)| = |g′(z)/h′(z)| < 1, for all z ∈ D.

The function ω = g′/h′ is known as the dilatation of f = h+ g.
Observe that in the harmonic case, terms involving z are permissible, but terms

involving zz are not. Also, the graphics highlight the fact that the images of radial and
circular lines intersect at right angles in the conformal case, but not in the harmonic
case.

The boundary of fp(D) in Fig. 2.3 consists of concave arcs and the boundary of
fh(D) in Fig. 2.5 gets mapped to just two points, w = − 1

2 and w = ∞. These ex-
amples illustrate a difference between analytic and harmonic maps and an important
fact about the boundary behavior of certain harmonic functions.

Theorem 1.9 Let f = h+ g be a sense-preserving harmonic map with dilatation
ω = g′/h′. If |ω(z)| = 1 for almost all z in an arc γ of ∂D, then the image of γ
under f is either a concave arc or a stationary point.

Example 1.10 In the following pages, graphs of functions are usually the image of
the unit disk under the function in question. Also, many of these images have been
created by the online applet ComplexTool [9] (Figs. 2.2–2.5)

Example 1.11 The uniqueness part of the Riemann mapping theorem fails in the
harmonic case, since both maps, Fh and fh, send the disk to the same right half-plane.

Open Problem 1 What is the analogue of the Riemann mapping theorem for
harmonic mappings?

As a final point in this section, we note that, in analogy to S, we define the classes
SH and SOH as follows.
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Fig. 2.3 The image of D under fp

Fig. 2.4 The image of D under Fh

Fig. 2.5 The image of D under fh

• Analytic polynomial map: Fp(z) = z − 1
2 z2

• Harmonic polynomial map: fp(z) = z + 1
2 z2

• Analytic right half-plane map: Fh(z) = z
1−z

• Harmonic right half-plane map: fh(z) = Re( z
1−z )+ iIm( z

(1−z)2 )
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Definition 1.12 Let SH be the family of complex-valued harmonic, univalent
mappings that are normalized on the unit disk, that is,

SH = {f : D → C | f is harmonic, univalent with

f (0) = a0 = 0, fz(0) = a1 = 1}.
SOH = {f ∈ SH | fz(0) = b1 = 0}.

Thus, S ⊂ SOH ⊂ SH . Other important classes includeK ,KH , andKO
H , which are the

subclasses of S, SH , and SOH containing only the convex functions, which are exactly
those whose image is a convex domain in C.

We now introduce some major unsolved problems in the field that have obvious
analogues in the theory of analytic functions. For years, the biggest problem in the
theory of univalent analytic functions was the Bieberbach Conjecture, now known
as DeBrange’s Theorem. Solving this problem allows us to know the sharp bounds
on growth and distortion of harmonic maps, among other things. In the nonanalytic
case, we have the following.

Conjecture 1 (Harmonic Bieberbach Conjecture) Let

f (z) =
∞∑
n=0

anzn +
∞∑
n=1

bnzn ∈ SOH .

Then

• |an| ≤ 1
6 (n+ 1)(2n+ 1),

• |bn| ≤ 1
6 (n− 1)(2n− 1),

• ||an| − |bn|| ≤ n.

Currently, the best bound is that for all functions f ∈ SOH , |a2| < 49 ([15]). The
conjecture is that |a2| ≤ 5

2 .

Open Problem 2 Prove a bound on |a2| that is lower than 49.
Recall that for analytic functions we have the Koebe 1

4 -Theorem, which expresses
bounds on the distortion of the unit disk under normalized analytic maps. In the
harmonic case, we have

Conjecture 2 If f ∈ SOH , then f (D) contains the disk G = {w : |w| < 1
6 }.

Currently, the best result is that the range of f ∈ SOH contains the disk {w : |w| < 1
16 }.

Open Problem 3 Prove that the radius can be increased to K where 1
16 < K ≤ 1

6 .

2.2 Shearing

In their paper, Clunie and Sheil-Small introduced the shearing technique that provides
a procedure for constructing harmonic maps f = h + g that are univalent. Before
describing the shearing technique, we need the following definition.
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Definition 2.1 A domain Ω is convex in the horizontal direction (CHD) if every
line parallel to the real axis has a connected intersection with Ω .

We can now state the shearing theorem.

Theorem 2.2 (Clunie and Sheil-Small, [3]) Let f = h+ g be a harmonic function
that is locally univalent in D (i.e., |ω(z)| < 1 for all z ∈ D). The function F = h− g

is an analytic univalent mapping of D onto a CHD domain if and only if f = h+ g

is a univalent mapping of D onto a CHD domain.

Summary of the Shearing Technique: To use the shearing technique we start with

• an analytic function F that is CHD, and
• an analytic function ω such that |ω(z)| < 1 for all z ∈ D.

Then we

• write F as F = h− g and ω as ω = g′/h′, and
• explicitly solve for h and g.

The resulting harmonic function f = h+ g is guaranteed to be univalent.
Notice that it is easy to reformulate Clunie and Sheil-Small’s shearing theorem

for functions which are convex in other directions. In particular, consider the case of
convex in the vertical direction (CVD) which we will use in this chapter.

Definition 2.3 A domain Ω is CVD if every line parallel to the imaginary axis has
a connected intersection with Ω .

Theorem 2.4 Let f = h + g be a harmonic function that is locally univalent in
D (i.e., |ω(z)| < 1 for all z ∈ D). The function F = h + g is an analytic univalent
mapping of D onto a CVD domain if and only if f = h+ g is a univalent mapping
of D onto a CVD domain.

Example 2.5 Consider the analytic function

Fp(z) = z − 1
2 z2.

This is the analytic polynomial map Fp given in Example 2.10. It is CHD. Now
choose a dilatation. We will choose

ω(z) = g′(z)/h′(z) = z.

Note that |ω(z)| < 1 ∀z ∈ D. Next, set h(z) − g(z) = Fp(z) = z − 1
2 z2. Taking

the derivative of both sides, yields h′(z) − g′(z) = 1 − z. Since g′(z) = zh′(z),
we substitute g′(z) into the previous equation to get h′(z) = 1. Integrating this and
normalizing it so that h(0) = 0, yields h(z) = z. Because g′(z) = zh′(z), we can
solve for g to get g(z) = 1

2 z2. Hence, by the Shearing Theorem

fp(z) = h(z)+ g(z) = z + 1
2 z2 ∈ SOH .

Thus, we have constructed a harmonic function fp that is univalent and CHD. Note
that this is the harmonic polynomial function fp in Example 2.10.
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Example 2.6 Consider

Fk(z) = h(z)− g(z) = z

(1− z)2
with ω(z) = z.

Using the same approach as above, we get

fk(z) = h(z)+ g(z) = Re
( z + 1

3 z3

(1− z)3

)
+ iIm

( z

(1− z)2

)
∈ SOH .

The harmonic function fk is a slit mapping which maps D onto C minus a slit on
the negative real axis with the tip of the slit at− 1

6 . There is considerable evidence that
fk can fill a role in harmonic function theory similar to that of the Koebe function
in analytic function theory, and for this reason, fk is called the harmonic Koebe
function.

To help explore how shearing affects the geometry between analytic and harmonic
mappings, one can use the online applet ShearTool [9]. The image below demon-
strates the functionality of this applet, which simultaneously plots both h − g and
h+ g (Fig. 2.6).

Almost all examples of shearing have used dilatations that are finite Blaschke
products. One important type of mappings that are not finite Blaschke products is a
singular inner function. We give a brief description of this topic. For more details,
see [21].

Definition 2.7 A bounded analytic function f is called an inner function if
| lim
r→1−

f (reiθ )| = 1 almost everywhere with respect to Lebesgue measure on ∂D.

If f has no zeros on D, then f is called a singular inner function.
Every inner function can be expressed in the form

f (z) = eiαB(z) exp

(
−
∫

eiθ + z

eiθ − z
dμ(eiθ )

)
,

where α, θ ∈ R, μ is a positive measure on ∂D, and B(z) is a Blaschke product, i.e.,

B(z) = eiθ
∞∏
j=1

( z−aj
1− aj z )mj , for some series of constants |aj | < 1 satisfying

∞∑
n=1

(1 −
|an|) <∞.

The function f (z) = e
z+1
z−1 is an example of a singular inner function. Weitsman

[29] provided the following example.

Example 2.8 Shear

h(z)− g(z) = z

1− z
+ 1

2
e

z+1
z−1 with ω(z) = e

z+1
z−1 .

By a result by Pommenke [27], it can be shown that h−g is convex in the direction
of the real axis. Shearing h− g with ω(z) = e

z+1
z−1 and normalizing yields

h(z) =
∫

1

(1− z)2
dz = z

1− z
.
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Fig. 2.6 The image of D under the f = h+ g is shown in the bottom right, where f is constructed
from shearing h(z)− g(z) = 1

2 log
(

1+z
1−z

)
with ω(z) = −z2

Solving for g we get

g(z) = − 1
2e

z+1
z−1 .

The image given by the map is similar to the image given by the right half-plane
map z

1−z except that there are an infinite number of cusps (Fig. 2.7).
A technique to find harmonic mappings whose dilatations are singular inner

functions involves using a theorem by Clunie and Sheil-Small [3].

Theorem 2.9 Let f = h+ g be locally univalent in D and suppose that h+ εg is
convex for some |ε| ≤ 1. Then f is univalent.

To develop the technique, we let ε = 0 in Theorem 9. This means that if h is
analytic convex and if ω is analytic with |ω(z)| < 1, then f = h+ g is a harmonic
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Fig. 2.7 Image of D under f (z) = z
1−z − 1

2 e
z+1
z−1

univalent mapping. To establish that a function f is convex, we will use the following
theorem ([14]).

Theorem 2.10 Let f be analytic in D with f (0) = 0 and f ′(0) = 1. Then f is
univalent and maps onto a convex domain if and only if

Re
[
1+ zf ′′(z)

f ′(z)

]
≥ 0, for all z ∈ D.

Example 2.11 Let

h(z) = z + 2 log (z + 1) with ω(z) = g′(z)/h′(z) = e
z−1
z+1 .

Using Theorem 10, we can show that h is convex. Then solving for g we get g(z) =
(z + 1)e(z−1)/(z+1).

Hence,

f (z) = h(z)+ g(z) = z + 2 log (z + 1)+ (z + 1)e
z−1
z+1 .

By Theorem 9, f = h+ g is univalent. The image of D under f is shown in Fig. 2.8.

Open Problem 4 Construct examples of harmonic univalent functions whose
dilatation is a singular inner function and determine properties of these functions.

2.3 Inner Mapping Radius

The analytic Koebe function Fk is an important function. It is extremal (or maximal)
in several important senses. It is the function inS that gives equality for the coefficient
bounds in deBranges’Theorem. It is the function that maps the unit disk to a domain
that contains the largest possible disk centered at the origin as described in the Koebe
1
4 -Theorem. It is the function that exhibits both the largest and smallest possible
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Fig. 2.8 Image of D under f (z) = h+ g in Example 2.11

growth possible. It is the function for which the complement of its image is closest
to the origin. It is conjectured that the harmonic Koebe function fk from Example
2.6 has analogous properties in the class SOH although these properties have not been
proven (see Conjectures 1 and 2).

Recall that the tip of the slit of the harmonic Koebe function is at − 1
6 while the

tip of the slit for the analytic Koebe function is at− 1
4 . Notice that if we multiply the

analytic Koebe function by 2
3 , then the images of the unit disk under 2

3Fk and under
fk , the harmonic Koebe function, would be the same. That is,

2
3Fk(D) = fk(D).

This multiplier factor of 2
3 is known as the inner mapping radius for fk(D). For other

functions in SOH , the inner mapping radius may be different. For example, using the
analytic and harmonic versions of the right half-plane maps from Example 1.11, the
inner mapping radius for fh(D) is 1 since fh(D) = Fh(D).

Let’s define this idea of inner mapping radius precisely.

Definition 3.1 For f ∈ SOH , the inner mapping radius, ρO(f ), of the domain f (D)
is the real number F ′(0), where

• F is the analytic function that maps D onto f (D)
• F (0) = 0
• F ′(0) > 0.

Notice that the existence of such a functionF is guaranteed by the Riemann Mapping
Theorem. The functions in S are normalized by requiring that F ′(0) = 1. The
Riemann Mapping Theorem does not guarantee that there is a schlicht mapping
to any simply-connected domain but does guarantee that we can multiply a schlicht
function by some positive real number in order to map onto that domain. This positive
real number is the inner mapping radius.

In the example above with the Koebe functions, F (z) = 2
3Fk(z), and the inner

mapping radius ρO(k0) = F ′(0) = 2
3 . Because of the extremal nature of the analytic

Koebe function, it was conjectured that 2
3 ≤ ρO(f ) ≤ 1. This conjecture was shown

not to be true in the following examples by Dorff and Suffrdge [10].
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Example 3.2 This example demonstrates that the conjectured upper bound of ρO <

1 was too low. Consider the family of functions fα = h+ g constructed by shearing

h(z)− g(z) = z

1− z
with ω(z) = z2 + αz

αz + 1
,

where α ∈ R. It can be shown that if |α| ≤ 1, then fα(z) ∈ SOH .
Let |α| ≤ 1 and α �= −1, then fα(D) is a slit domain consisting of the complex

plane minus a slit along the negative real axis with the tip of the slit at 1
6α − 1

3 .
Hence, the tip can vary from− 1

6 to− 1
2 + ε. If α = −1, then f−1(D) is the half plane

Re(w) > − 1
2 . Thus, for this family of functions,

2
3 ≤ ρO(fα) < 2.

Example 3.3 This example demonstrates that the conjectured lower bound of ρO <

1 was too high. Consider the family of functions ft = h+ g constructed by shearing

Ft (z) = h(z)− g(z) = z − tz2

(1− z)2
with ω(z) = z,

where t ∈ [0, 1]. For 0 < t < 1, Ft (D) is the exterior of the parabola u > − 1−t
t2

v2 −
t+1

4 while ft (D) is the exterior of the parabola ũ > − 1
t
ṽ 2− 1

6− t
12 . It can be computed

that when t = 1
4 , ρO(ft ) is smallest, and we obtain that for 0 < t < 1,

1
2 ≤ ρO(ft ) ≤ 2

3 .

It has been proven that

1
4 ≤ ρO(f ) ≤ 8π

√
3

9 < 4.837.

Because of the way these bounds were determined, they are probably not the tightest
bounds, and it is likely they can be improved. There are no known functions in SOH
that have an inner mapping radius equal to either of these extreme values. On the
other hand, from the previous two examples, we know there are specific functions
that have ρO(f ) = 1

2 and ρO(f ) = 2. The result of ρO(f ) = 1
2 in Example 3.3 was

very surprising because this value did not come from a slit mapping. It is not known
if there is a function in SOH whose inner mapping radius is less than 1

2 or larger than 2.

Open Problem 5 Prove 1
2 ≤ ρO(f ) ≤ 2 or find a harmonic map f ∈ SOH such that

ρO(f ) < 1
2 or ρO(f ) > 2.

The definition of the inner mapping radius can be extended to functions in SH .
Let us denote the inner mapping radius of f ∈ SH by ρ(f ). It is known that

0 < ρ(f ) ≤ 2π

([4]). In [10] an example is constructed for which 0 < ρ(f ) ≤ 4.
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Open Problem 6 Prove ρ(f ) ≤ 4 or find a harmonic map f ∈ SH such that
ρ(f ) > 4.

2.4 Convolutions

The shearing technique given in Theorem 2.2 provides a way to construct harmonic
functions that are univalent. This approach requires certain conditions in order to ap-
ply the technique. Convolutions is another approach to construct harmonic univalent
functions. It also requires certain conditions in order to guarantee that the resulting
functions are univalent. In addition, the study of convolutions is an interesting topic
on its own.

The convolution of harmonic functions is a generalization of the convolution of
analytic functions which is an important area in the study of schlicht functions ([28]
for more information about the convolution of analytic functions). However, many
of the nice theorems in the analytic case do not carry over to the harmonic case.
For example, the Polya–Schoenberg conjecture which was proved by Ruscheweyh
and Sheil-Small states that convexity is preserved under analytic convolution. This
convexity preserving property does not hold for harmonic convolutions. But there are
several open areas related to harmonic convolutions to investigate. In this section we
will explore some of these. For more details about harmonic convolutions, see [6].

Let’s begin with the definition of the convolution for analytic functions.

Definition 4.1 (Analytic Convolution) Given F1,F2 ∈ S represented by

F1(z) =
∞∑
n=0

Anzn and F2(z) =
∞∑
n=0

Bnzn,

their convolution is defined as

F1(z) ∗ F2(z) =
∞∑
n=0

AnBnzn.

As mentioned above, the analytic convolution preserves convexity since F1,F2 ∈
K ⇒ F1 ∗F2 ∈ K . The algebra of convolutions is also simplified by viewing certain
functions as operators. For instance, F (z) = z

1−z is the convolution identity because
its power series is z + z2 + z3 + · · · .

We define an analogous operation for harmonic functions as follows:

Definition 4.2 Given

f1 = h1 + g1 = z +
∞∑
n=2

anzn +
∞∑
n=1

bn zn and

f2 = h2 + g2 = z +
∞∑
n=2

cnzn +
∞∑
n=1

dn zn,
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define harmonic convolution as

f1 ∗ f2 = h1 ∗ h2 + g1 ∗ g2 = z +
∞∑
n=2

ancnzn +
∞∑
n=1

bndn zn.

Harmonic convolutions involve difficulties not present in the analytic case. For
instance, it is not difficult to find f1, f2 ∈ KO

H such that f1 ∗f2 /∈ KO
H . In fact, f1 ∗f2

may even fail to be univalent. The example below illustrates this.

Example 4.3 Let fh = h1 + g1 ∈ KO
H be the harmonic right half-plane map in

Example 1.11, where

h1(z) = z − 1
2 z2

(1− z)2
, g1(z) = − 1

2 z2

(1− z)2
,

and let f2 = h2 + g2 ∈ KO
H be the canonical regular 6-gon map, where

h2(z) = z +
∞∑
n=1

1
6n+1 z6n+1, g2(z) =

∞∑
n=1

−1
6n−1 z6n−1.

Then fh ∗ f2 is not univalent, because

|(g1(z) ∗ g2(z))′/(h1(z) ∗ h2(z))′| = |z4(2+ z6)/(1+ 2z6)| ≮ 1, ∀z ∈ D.

Open Problem 7 Let f1, f2 ∈ KO
H . Since f1 ∗ f2 is not necessarily univalent, what

additional conditions can we impose upon f1, f2 so that f1 ∗ f2 ∈ SOH ?
Several researchers have recently published results related to this question [2,

5, 12, 17, 23, 24]. Let’s look at some of these results. Theorem 4.4 ([5]) gives
conditions under which local univalence of the convolution is enough to establish
global univalence.

Theorem 4.4 Let f1 = h1+ g1, f2 = h2+ g2 ∈ SOH such that hi(z)+gi(z) = z
1−z .

Let ω̃ be the dilatation of f1 ∗ f2. If |ω̃(z)| < 1 for all z ∈ D, then f1 ∗ f2 ∈ SOH and
is CHD.

Theorem 4.4 has been used to determine specific cases in which harmonic
convolutions preserve univalence. In [12], the following result is proved.

Theorem 4.5 Consider the right half-plane map

fh(z) = h1(z)+ g1(z) = z − 1
2 z2

(1− z)2
−

1
2 z2

(1− z)2
,

and let f = h + g ∈ KO
H with h(z) + g(z) = z

1−z and ω = g′/h′ = eiθ zn (n ∈
Z
+, θ ∈ R). If n = 1, 2, then fh ∗ f ∈ SOH and is CHD.

The proof of this theorem relies on properties on analytic convolutions and results
about the location of zeros of symmetric polynomials. If n > 2 in the above theorem,
then fh ∗ f fails to be univalent. In [2], we get the next theorem.
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Theorem 4.6 Let fθ = hθ + gθ , fρ = hρ + gρ ∈ SOH such that hθ (z) + gθ (z) =
hρ(z)+gρ(z) = z

1−z , g′θ /h′θ = eiθ z, and g′ρ/h′ρ = eiρz (θ , ρ ∈ R). Then fθ ∗fρ ∈ SOH
is CHD.

The following theorem was proved in [24]

Theorem 4.7 Let f = h+ g ∈ SOH with h(z)+ g(z) = z
1−z and ω(z) = z+a

1+az with
|a| < 1. Then fh ∗ f ∈ SOH and is CHD if and only if

(Re a)2 + 9 (Im a)2 ≤ 1.

There are other convolution problems that remain to be investigated. In many
theorems, the canonical harmonic right half-plane function fh is convoluted with
other harmonic functions. Can similar theorems be proven if fh is replaced with
a different function? For example, consider the harmonic mapping f1 formed by
shearing h1(z) + g1(z) = z

1−z with other dilatations such as ω(z) = eiθ z+a
1+az with

|a| < 1 or ω(z) = z.

Open Problem 8 Let f = h + g ∈ SOH with h(z) + g(z) = z
1−z and ω = g′/h′ =

eiθ zn (n ∈ Z
+, θ ∈ R). Determine the values of n for which f1 ∗ f is univalent.

Many of the harmonic convolution results, given above, require that one of the
functions be a sheared half-plane. In [12] and [17], results are proven about the
harmonic convolutions of strip mappings and polygons.

Open Problem 9 Determine more results about the convolutions of harmonic
functions that are shears of vertical strips or polygons.

2.5 Harmonic Maps and Minimal Surfaces

Planar harmonic mappings with certain properties are related to minimal surfaces in
R

3, and it is possible to use results from one area to prove new results in the other
area. Before discussing this further, we need to present some background material
about minimal surfaces.

Minimal surfaces are one solution to the problem of finding the minimal surface
area required to span a given curve. Minimal surfaces are guaranteed to minimize
area only locally but often they provide the globally-minimal solution as well. One
consequence of the area-minimizing property is that all minimal surfaces look like
saddle surfaces at each point, and the bending upward in one direction is matched by
the downward bending in the orthogonal direction (This equal-but-opposite bending
property will be defined later as “zero mean curvature.”).



36 Z. Boyd and M. Dorff

2.5.1 Background

In order to explore minimal surfaces more fully, we introduce three important con-
cepts from differential geometry, which is the study of differentiable surfaces in
space. For more details on the material from this section, [7].

A surface, M ∈ R
3, can be parametrized by a smooth function x : D → R

3

if x(D) = M and x is one-to-one. Parameterizing a surface with smooth functions
allows us to do calculus with the surface and gives us a way to translate geometric
concepts into rigorous analytic language. Isothermal parameterizations are essential
for the study of minimal surfaces. Basically, such parametrizations map small squares
to small squares. Every minimal surface in R

3 has an isothermal parametrization.
Next, we need to discuss the idea of normal curvature. At each point p on the

surface M , there is a unit normal n. The normal curvature measures how much the
surface bends toward n as you travel in the direction of the tangent vector w at p.
Specifically, given the normal vector n at each point p ∈ M , we can find a plane P
containing n that intersects M in some curve c, which has a curvature value k. As
the plane P revolves around the unit normal n at p, we get a continuous function of
curvature values k(θ ). Let k1 and k2 be the maximum and minimum curvature values
at p. The mean curvature of a surface M at p is H = 1

2 (k1 + k2).

Definition 5.1 A minimal surface is a surface M with H = 0 at all p ∈ M .
Recall that the intuition behind vanishing mean curvature is that M is a saddle

surface with positive curvature in one direction being matched by negative curvature
in the orthogonal direction.

Just as the shearing theorem links analytic function theory to harmonic function
theory, the Weierstrass Representation links harmonic function theory to minimal
surface theory.

Theorem 5.2 (General Weierstrass Representation) If we have analytic functions
ϕk (k = 1, 2, 3) such that

• φ2 = (ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 0
• |φ|2 = |ϕ1|2 + |ϕ2|2 + |ϕ3|2 �= 0 and is finite,

then the parametrization

x =
(

Re
∫
ϕ1(z)dz, Re

∫
ϕ2(z)dz, Re

∫
ϕ3(z)dz

)

defines a minimal surface.
We also have the following converse.

Theorem 5.3 Let M be a surface with parametrization x = (x1, x2, x3) and let
φ = (ϕ1,ϕ2,ϕ3), where ϕk = ∂xk

∂z .

x is isothermal ⇐⇒ φ2 = (ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 0.

If x is isothermal, then

M is minimal if and only if each ϕk is analytic.
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Fig. 2.9 The MinSurfTool applet

We can apply the above theorems to planar harmonic mappings. First, recall
f = h + g = Re(h + g) + iIm(h − g). In Theorem 5.2, choose ϕ1 = h′ + g′
and ϕ2 = −i(h′ − g′). Then we find ϕ3 that will satisfy the requirements of the
Weierstrass representation. That is,

0 = (ϕ1)2 + (ϕ2)2 + (ϕ3)2

= (
h′ + g′

)2 + [−i(h′ − g′)
]2 + (φ3)2.

Solving for ϕ3 yields (ϕ3)2 = −4h′g′, so ϕ3 = −2i
√
h′g′.

Notice that
√
h′g′ may not always exist as an analytic function, but whenever it

does, the Weierstrass representation applies. Since
√
h′g′ = h′

√
ω, it is enough for

the dilatation to have an analytic square root. Thus, we have the following result.

Theorem 5.4 (Weierstrass Representation - (h,g)) Let the harmonic mapping f =
h + g be univalent with g′/h′ being the square of an analytic function. Then the
parametrization

X =
(

Re (h+ g) , Im (h− g) , 2 Im
∫ √

h′g′
)

defines a minimal graph whose projection is f (D).
MinSurfTool [9] is another applet available online that allows for quick and easy

visualization of minimal surfaces (Fig. 2.9).

Example 5.5 Consider the harmonic map

f (z) = h(z)+ g(z) = Re
[ i

2
log

( i + z

i − z

)]
+ iIm

[1

2
log

(1+ z

1− z

)]
.
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Fig. 2.10 The image of D under f , the harmonic square map

It can be constructed by shearing h(z)− g(z) = 1
2 log

(
1+z
1−z

)
with g′(z)/h′(z) = −z2

and is therefore univalent. Note that f (D) is a square region (Fig. 2.10).
Since the dilatation is the square of an analytic function, we can apply Theorem

5.4. Then x3(z) = 2 Im
∫ √

h′g′ = 1
2 Im[i log ( 1+z2

1−z2 )].
By the Weierstrass representation, we have the parametrization of a minimal graph

given by

x =
(

Re (h+ g) , Im (h− g) , 2 Im
∫ √

h′g′
)

=
(

Re
[ i

2
log

( i + z

i − z

)]
, Im

[1

2
log

(1+ z

1− z

)]
, Im

[ i
2

log
(1+ z2

1− z2

)])
.

This minimal surface is Scherk’s doubly periodic surface. In Fig. 2.11 Scherk’s
doubly periodic surface is shown along with the corresponding harmonic map (it is
the projection of the minimal surface onto the complex plane).

We might wonder if the integrals found in the Weierstrass representations are
well-defined. In certain cases, they may indeed be multi-valued. But in such cases,
the ill-definedness reflects the fact that surface is periodic in one or more of the
coordinates, as is the case with the Scherk surfaces.

With the background we just discussed, we are ready to explore applications of
harmonic maps to minimal surface theory. Our goal is to help the reader get a sense
of some important techniques and to suggest some research areas.

2.5.2 Connecting Harmonic Maps to Specific Minimal Graphs

The Weierstrass Representation allows us to take an harmonic univalent function with
an appropriate dilatation and lift it to a minimal graph. Several recent papers have
used this technique [11, 13, 16, 18, 25, 26]. However, it is often difficult to identify
the resulting minimal graphs. One approach to recognizing the minimal surface is to
use a change of variable ([8]).
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Fig. 2.11 Scherk’s doubly periodic minimal surface

Example 5.6 Shearing h(z) − g(z) = z
(1−z)2 with ω(z) = z2 yields the univalent

harmonic slit-map

f (z) = z − z2 + 1
3 z3

(1− z)3
+

1
3 z3

(1− z)3
.

The parametrization of the corresponding minimal graph is

x =
(

Re

{
z − z2 + 2

3 z3

(1− z)3

}
, Im

{
z

(1− z)2

}
, Im

{
2z2 − 2

3 z3

(1− z)3

})
.

This is not a standard form for a known minimal surface. However, using the sub-
stitution z → z̃+1

z̃−1 and interchanging the second and third coordinate functions, we
derive the parametrization

x̃ = (− 1
4 Re

{̃
z + 1

3 z̃3
}

, 1
4 Im

{̃
z − 1

3 z̃3
}

, 1
4 Im

{̃
z 2
})
.

This is Ennepers surface. Thus, the original surface x is the part of Ennepers surface
formed by using a right half-plane as the domain instead of the standard unit disk.

Open Problem 10 Determine the minimal graphs formed by lifting harmonic
univalent mappings in any of the following papers [11, 13, 16, 25, 26].

Open Problem 11 Use the shearing technique to generate a univalent harmonic
map with a dilatation that is a perfect square and use the Weierstrass representation
to construct the minimal graph. Then determine what surface it is.
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2.5.3 Using Harmonic Maps to Find Curvature Bounds
on Minimal Graphs

Geometric function theory and Clunie and Sheil-Small’s shearing theorem allow us to
find sharp bounds on growth and other important properties of harmonic maps. Using
the Weierstrass representation we can translate these bounds to minimal graphs. In
particular, recall that at each point p of a surface S, we let k1 and k2 be the maximum
and minimum curvature values and defined the mean curvature to beH = 1

2 (k1+k2).
H is useful for characterizing minimal surfaces, but in other connections we use K ,
the Gauss curvature.

The Gaussian curvature at p is given by

K = k1k2.

The theorema eggregium of Gauss states that K is invariant under any deformation
without stretching and is thus a good intrinsic measure of curvature. The Gaussian
curvature may be put in terms of the dilatation of harmonic maps. If we denote the
dilatation byω(z) = g′(z)/h′(z), we can express the Gaussian curvature of a minimal
graph with ω2(z) = b(z) by

K(z) = −4|b′(z)|2
(1+ |b(z)|2)4|h′(z)|2 .

We can find a bound for K in terms of h and g. By the Schwarz–Pick lemma,

|b′(z)| ≤ 1− |ω|2
1− |z|2 .

Hence

|K(z)| ≤ 4

(|g′(z)| + |h′(z)|)2(1− |z|2)2
.

This last inequality can be used to find bounds over the origin of minimal graphs
over specific planner domains. In particular,

|K(0)| ≤ 4

(|h′(0)| + |g′(0)|)2
≤ 4

|h′(0)|2 + |g′(0)|2 .

If M is a minimal graph above the unit disk D and f (0) = 0, then Hall showed that

|h′(0)| + |g′(0)| ≥ 27

4π2
.

Thus for any minimal graph above the unit disk,

|K(0)| ≤ 16π2

27
.

Several papers have considered such a situation for arbitrary points on minimal
graphs over various domains. In [18], the authors considered minimal graphs over
half-planes, strips, and 1-slit domains. Papers considering minimal graphs over other
domains include [19, 20], and [26].
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Open Problem 12 Find curvature bounds over arbitrary points for minimal graphs
over domains not investigated in [18–20, 26].

2.5.4 Connecting Results About Harmonic Maps with Results
About Minimal Surfaces

Since certain types of harmonic univalent functions are related to minimal graphs, it
should be true that theorems and concepts from one field should relate to theorems
and concepts from the other field.

One example of this concerns a harmonic convolution theorem and Krust Theorem
about conjugate minimal surfaces.

Definition 5.7 Let x and y be isothermal parametrizations of two minimal surfaces
such that their component functions are pairwise harmonic conjugates. Then, x and
y are called conjugate minimal surfaces.

The helicoid and the catenoid are conjugate surfaces. Any two conjugate minimal
surfaces can be joined through a one-parameter family of associated minimal surfaces
by the equation

z = (cos t)x+ (sin t)y,

where t ∈ R.
An important theorem in minimal surface theory is Krust Theorem.

Theorem 5.8 (Krust) If an embedded minimal surface X : D → R
3 can be

written as a graph over a convex domain in C, then all associated minimal surfaces
Z : D → R

3 are graphs.
Now consider the following less well known theorem about harmonic convolu-

tions [3].

Theorem 5.9 (Clunie and Sheil-Small) If f = h+ g ∈ KH and ϕ ∈ K , then the
functions

h ∗ ϕ + αg ∗ ϕ
are univalent and close-to-convex, where (|α| ≤ 1) and ∗ denotes harmonic
convolution.

Open Problem 13 Determine theorems and properties of harmonic maps that relate
to theorems and properties of minimal surfaces.

As a second example, we will prove a result about minimal surfaces using results
from harmonic univalent mappings. In particular, we will consider a family of mini-
mal surfaces known as Scherks dihedral surfaces and determine the parameter values
for which these surfaces are embedded. First, some background information.

While minimal surfaces can be parametrized by the Weierstrass representation,
there is no guarantee the surface will not have self-intersections. Minimal surfaces
that have no self-intersections are known as embedded minimal surfaces, and they
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Fig. 2.12 Two examples from
the family of Scherks dihedral
surface

 = 4n
ϕ = π

2 ϕ = π
3

= 4n

Fig. 2.13 The projection onto
C of one piece from each
examples in Fig. 2.13

n = 4 n = 4
ϕ ϕ= π

2 = π
3

are a major interest in minimal surface theory. The family Fn(ϕ) of singly periodic
Scherk surfaces with higher dihedral symmetry have n number of vertical planes
that extend to infinity. The smallest angle, ϕ, between these symmetric planes varies
(Fig. 2.12).

We can look at the projection of one piece of these surfaces onto C which is also
the image of the unit disk under the corresponding harmonic univalent mappings
(Fig. 2.13).

These minimal surfaces are embedded, provided that

π

2
− π

n
<
n− 1

n
ϕ <

π

2
.

We can prove this inequality using results planar harmonic mappings. We
summarize the proof below.

Proof Consider the following family of harmonic maps: fn(z) = hn(z) + gn(z),
n ≥ 2, ϕ ∈ [0, π2 ], where

h′n(z) = 1

(zn − eiϕ)(zn − e−iϕ)
, g′n(z) = z2n−2

(zn − eiϕ)(zn − e−iϕ)

(Fig. 2.14).
It is known that fn = hn + gn maps D onto a 2n-gon, and in [25] it was shown

that fn is univalent and convex for every ϕ ∈ ( n
n−1 (π2 − π

n
), π2 ]. Using the Weierstrass

representation, we can lift fn to an embedded minimal surface X. Since X is over a
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Fig. 2.14 Images of the unit
disk under f = hn + gn

n = 4 n = 4 n = 4 n = 4
ϕ = π

2 ϕ = π
3 ϕ = π

6 ϕ = 0

convex domain, Krust theorem guarantees that the conjugate surfaces Y are embed-
ded. These conjugate surfaces Y are Scherk surfaces with higher dihedral symmetry
and this establishes the inequality.

Open Problem 14 Use theorems and properties about harmonic univalent map-
pings to prove results about minimal surfaces.

2.5.5 Using Harmonic Maps to Construct New Minimal Surfaces

In this section we show an example in which a harmonic univalent function is lifted
to form a minimal graph that appears to be new. The construction is outlined below.
Complete details are found in [1].

Let f = h+ g, where

h (z) = 1

2
log

(
1+ z

1− z

)

and let ω = (e
z+1
z−1 )2. Since g′ = h′ω = 1

1−z2 e
2 z+1

z−1 , we know that

g (z) = −1

2
E1

(
z + 1

−z + 1

)
+ 1

2
E1 (1) ,

where E1 (z) is the exponential integral function. By a result by Clunie and Sheil-
Small, f = h+ g is univalent. The image of f (D) is shown in Fig. 2.15.

By the Weierstrass representation f = h+ g lifts to an embedded minimal surface
(Fig. 2.16).

This surface is constructed from a harmonic univalent map that has a dilatation
being a singular inner function (i.e., a function which never equals zero and which has
modulus equal to one on the unit disk). One consequence of having such a dilatation
is that there is no (finite) point where the function is approximately analytic. This
corresponds to the idea that the minimal surface never has zero Gauss curvature. The
surface also has an infinite number of cusps and a singularity with unusual behavior.
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Fig. 2.15 The image of f (D) and a close up of that image

Fig. 2.16 Images of the minimal surface constructed from f

Open Problem 15 Construct other minimal surfaces from harmonic univalent maps
with dilatations that are singular inner functions.

Open Problem 16 Determine the necessary and sufficient conditions for a harmonic
function to have a singular inner function as its dilatation. Specifically, determine
the kind of growth and boundary behavior exhibited by such harmonic functions.
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