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Preface

This volume contains a collection of eight survey articles and five research papers,
most of which were presented at the international workshop on ComplexAnalysis and
Its Applications held at Walchand College of Engineering, Sangli, India, during June
11–15, 2012. The topics of the articles include geometric function theory, planar
harmonic mappings, and entire and meromorphic functions. The main aim of the
workshop was to present the new developments and techniques in different branches
of complex analysis, and the articles in this volume reflect that aim.

We hope that this volume will contribute to the research being done on complex
analysis and will motivate the young generation of mathematicians to continue the
research in these areas.

We thank the organizers of the workshop, the speakers, and the authors of the
articles for their efforts. The workshop was supported by Walchand College of Engi-
neering, Sangli, through the Technical Education Quality Improvement Programme
(TEQIP) grant, and National Board for Higher Mathematics (NBHM), Mumbai. We
are grateful to these organizations for their generous support. We would also like
to thank Springer for kindly publishing this volume, and especially we appreciate
Shamim Ahmad and his team at New Delhi for their friendly and efficient coopera-
tion throughout this project. Finally, Professor Santosh Joshi would like to thank his
wife Dr. Sayali Joshi for her help and support at each stage of this project.

Editors

v



Contents

1 Boundary Behavior of Univalent Harmonic Mappings . . . . . . . . . . . . . 1
Daoud Bshouty and Abdallah Lyzzaik

2 Harmonic Univalent Mappings and Minimal Graphs . . . . . . . . . . . . . . 21
Zach Boyd and Michael Dorff

3 The Minimal Surfaces Over the Slanted Half-Planes,
Vertical Strips and Single Slit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Liulan Li, Saminathan Ponnusamy and Matti Vuorinen

4 A Survey On Some Special Classes of Bazilevič Functions
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Chapter 1
Boundary Behavior of Univalent Harmonic
Mappings
A Survey of Recent Boundary Behavior Results
of Univalent Harmonic Mappings

Daoud Bshouty and Abdallah Lyzzaik

1.1 Introduction

A harmonic mapping f of a complex region G is a complex-valued function that
satisfies Laplace’s equation

Δf ≡ fxx + fyy = 0.

This function can be written as

f (z) = u(x, y)+ iv(x, y), z = x + iy,

where u and v are real-valued harmonic functions, and as

f (z) = h(z)+ g(z), (1.1)

where h and g are analytic functions, called respectively the analytic and coanalytic
parts of f, are single-valued if G is simply-connected and possibly multiple-valued
if G is otherwise. In either case, the second complex dilatation a = g′/h′ is defined
which is either a meromorphic function or identical to infinity in G. It is known that
|a| < 1 in G if, and only if, f is open and sense-preserving, and |a| > 1 in G if, and
only if, f is open and sense-reversing.

Throughout this chapter, we denote by C, D, and T the complex plane, the open
unit disc, and the unit circle, respectively. We may identify for a given function f ∗
of T a value f ∗(eiθ ) by f ∗(θ ) for any θ ∈ [− π ,π [.
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2 D. Bshouty and A. Lyzzaik

Harmonic mappings of D may be constructed as follows. For a Lebesgue
integrable function f ∗ of T, the function

f (z) = P [f ∗] = 1

2π

∫ π

−π
P (r ,ϕ − θ )f ∗(ϕ) dϕ; z = reiθ ∈ D, (1.2)

where P (r , t) is the Poisson kernel of D, is a harmonic mapping of D whose
unrestricted limit at every continuity point eiθ0 of f ∗ is f ∗(θ0). The Rado–Kneser–
Choquet theorem [11, pp. 29–30] asserts that if |f ∗| = 1 and arg f ∗(eiθ ) is a
monotone increasing function of θ with Δ∂D arg f ∗(eiθ ) ≤ 2π , then f is a uni-
valent sense-preserving harmonic mapping of D onto the interior of the convex hull
of f ∗(T).

Sense-preserving harmonic mappings of D also arise as solutions of linear elliptic
partial differential equations of the form

fz (z) = a(z)fz(z); z ∈ D, (1.3)

where a is an analytic function from D into itself; a is indeed the dilatation of f.
Univalent harmonic mappings may also be introduced through minimal surfaces.

Let S = (u, v, s), s = G(u, v), be a nonparametric surface that spreads over a simply
connected domain Ω �= C. Then S is a minimal surface if, and only if, there exists
a univalent harmonic mapping f = u + iv from the unit disc D onto � such that
(sz)2 = −fzfz = af 2

z . Note that f is uniquely expressed in the form (1.1) where
h and g, with g(0) = 0, are analytic functions of D. Without loss of generality, we
may assume that f is sense-preserving, or else we consider f (z). It follows that the
dilatation a = fz/fz = g′/h′ is a square of an analytic function of D that satisfies
|a| < 1 on D. The function is known as the Weierstrass parameter of the minimal
surface and the Gauss map of S is given by the normal vector

N = (2�√a, 2
√a, 1− |a|)
1+ |a| .

The study of nonparametric minimal surfaces over�with a given Gauss map leads to
the problem of finding univalent harmonic maps from D onto � which are solutions
of (1.3).

For the special case where |a| < k < 1 in D, it is classical that the existence part
of the Riemann mapping theorem (RMT) of (1.3) holds; namely, for a given bounded
simply connected domain � and a fixed w0 ∈ Ω , there is a univalent solution f of
(1.3) that satisfies f (0) = w0 and fz(0) > 0 and maps D onto Ω. In addition, if � is
a Jordan domain, then f extends to a homeomorphism from D onto Ω. However, in
the case where ‖a(z)‖∞ = 1 the following theorem holds ([18], Theorems 4.2 and
4.3).

Theorem 1 Let � be a bounded simply connected domain whose boundary ∂Ω is
locally connected. Suppose that a(D) ⊂ D and w0 is a fixed point of Ω. Then there
exists a univalent solution f of (1.3) having the following properties:

(a) f (0) = w0, fz(0) > 0 and f (D) ⊂ Ω.
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(b) There is a countable set E ⊂ ∂D such that the unrestricted limits f ∗(eit ) =
limz→eit f (z) exist on ∂D \ E and belong to ∂Ω .

(c) The functions

f ∗−(eit ) = ess lim
s→t− f

∗(eis) and f ∗+(eit ) = ess lim
s→t+ f

∗(eis)

exist on ∂D, belong to ∂Ω , and are equal on ∂D\E.
(d) The cluster set of f at eit ∈ E is the straight line segment joining f ∗−(eit ) to

f ∗+(eit ).

The mapping f is termed a generalized Riemann mapping (GRM) from D onto Ω. It
is immediate that the boundary function f ∗ is continuous at every point in ∂D\E and
has a jump discontinuity at every point in E. We will use the term jump to describe
the behavior of f ∗ at every point of E.

Note that f ∗ is continuous on (f ∗)−1(V ) on every concave part V ⊂ ∂Ω. Thus,
the study of the continuity of f ∗ is of interest on convex intervals V ⊂ T and where
|a| tends to 1 on (f ∗)−1(V ) almost everywhere.

The cluster set of f on an interval I ⊂ ∂D induces a boundary positively directed
arc in ∂f (D); this arc is denoted, with abuse of notation, by f ∗(I ).

It is of interest to note that the uniqueness of the RMT is still an open question.
Nonetheless, by a consequence of a paper by Gergen and Dressel [16] (see also
[15]), the question was shown to be true by Bshouty, Hengartner, and Hossian [6] for
symmetric domains with symmetric dilatations. Moreover, it was noted by Kühnau
that it also holds true for starlike domains.

On the other hand, it is interesting to know that the uniqueness of GRMs has been
established recently for strictly starlike domains�with respect to some interior point
[7, 4]; that is, every ray through the point meets ∂Ω at one point only. Obviously,
every convex domain is strictly starlike relative to any interior point.

The purpose of this chapter is to study the interplay between the behavior of the
boundary function f ∗ of a harmonic mapping f of form (1.1) on one hand and the
boundary function of the dilatation and the analytic and coanalytic parts of f on the
other.

The chapter is organized as follows. In Sect. 2, we address the results relating
univalent harmonic mappings of the unit disc and Hardy spaces. In Sects. 3 and 4, we
present the boundary behavior results of global and local nature of univalent harmonic
mappings respectively. In Sect. 5, we introduce four open questions regarding the
subject of this chapter.

1.2 Univalent Harmonic Mappings and Hardy Spaces

The purpose of this section is to establish a relationship between univalent harmonic
mappings and Hp spaces.

Let SH denote the class of all univalent, sense-preserving, harmonic mappings f
of D normalized by
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f (0) = 0 and fz(0) = 1.

Then the analytic and coanalytic parts of f are respectively h(z) = z+∑∞
n=2 anzn

and g(z) =∑∞
n=1 bnzn. Clunie and Sheil-Small [10] proved that SH is normal with

respect to the topology of uniform convergence on compact subsets of D. Set

A = sup
SH

|a2|. (1.4)

An analytic function k of D is called Bloch if

sup
z∈D

(1− |z|2)|k′(z)| <∞.

Using the Koebe transform of f and the compactness of SH in the topology of almost
uniform convergence, Abu Muhanna and Lyzzaik [1] proved the following result:

Theorem 2 Let f = h(z)+ g(z) ∈ SH . Then logh′ is a Bloch function, that is,
∣∣∣∣h

′′(z)

h′(z)

∣∣∣∣ ≤ 2A+ 2

1− r

(
z = reiθ

)
, (1.5)

where A is as defined in (1.4). Moreover, if α > 0, then

lim
r→1−

(1− r)αh′(reiθ ) = 0

for almost all θ .
As a consequence of this result, Abu Muhanna and Lyzzaik [1] concluded that the

boundary functions of h, g, and f exist almost everywhere:

Theorem 3 Let f = h(z)+ g(z) ∈ SH . Then the integrals

∫ 1

0
|h′(reiθ )|dr ,

∫ 1

0
|g′ (reiθ) |dr , and

∫ 1

0
|fr

(
reiθ

) |dr
converge for almost all θ , and the boundary function

f̂
(
eiθ
) = lim

r→1−
f
(
reiθ

)

exists almost everywhere.
More generally, Abu Muhanna and Lyzzaik [1] established that h, g, and f belong

to Hardy spaces.

Theorem 4 Let f = h(z) + g(z) ∈ SH . Then h, g ∈ Hp and f ∈ hp for every
p, 0 < p < (2A+ 2)−2, where A is as defined in (1.4).

This result was subsequently improved by Nowak [24] by showing that h, g ∈ Hp

and f ∈ hp for every p, 0 < p < A−2.



1 Boundary Behavior of Univalent Harmonic Mappings 5

Let KH and CH denote the subclasses of SH of univalent convex and close-to-
convex harmonic mappings, respectively. It has been shown by Clunie and Sheil-
Small [10] that if f = h(z)+g(z) ∈ KH , thenh is close-to-convex and |g(z)| < |h(z)|
for z ∈ D \ {0}. Using these facts, Nowak [24] showed the following:

Theorem 5 Let f = h(z)+ g(z) ∈ SH .
(a) If f ∈ KH , then h, g ∈ Hp and f ∈ hp for every p, 0 < p < 1/2.
(b) If f ∈ CH , then h, g ∈ Hp and f ∈ hp for every p, 0 < p < 1/3.

1.3 Boundary Behavior in the Large Versus Dilatation

The purpose of this section is to present the results that affirm the interplay between
the global boundary behavior of a univalent harmonic mapping of D and its dilatation.

The next result characterizes every univalent harmonic mapping whose dilatation
is a finite Blaschke product and which is a GRM onto a bounded convex domain.

Theorem 6 Let � be a bounded convex domain. Then a univalent harmonic map-
ping f of D is a GRM onto � whose dilatation is a finite Blaschke product of order
n, n = 1, 2, · · · , if, and only if, f ∗ is a step function given by f ∗(eit ) = cj ∈ ∂Ω ,
tj−1 < t < tj , 1 ≤ j ≤ n+ 2, tn+2 = t0 + 2π and [c1, c2, · · · , cn+2, c1] is a
positively-directed convex (n+ 2)-gon. In this case, f (D) is the inner domain of the
convex polygon whose vertices are the points cj .

The “if” part of this result is due to Sheil-Small [26] and “only if” part is due to
Hengartner and Schober [17].

The next theorem of Laugesen [21] demonstrates the global nature of the re-
lationship between the boundary values of a univalent harmonic mapping and its
dilatation.

Theorem 7 Let f = P [f ∗], where f ∗(θ ) is a Lebesgue integral function on [0, 2π [
be a sense-preserving harmonic mapping of D whose dilatation is a. Assume that
f ∗(θ ) has bounded variation on a subinterval I of [0, 2π ].

(a) For almost every θ ∈ I , we have

df ∗(θ )

dθ
= 0 ⇒ |a(eiθ | = 1. (1.6)

(b) Suppose that for almost all θ ∈ I whenever df ∗(θ )/dθ �= 0, f (D) lies strictly to
the left of the directed tangent line through f ∗(θ ) in the direction of df ∗(θ )/dθ ,
then for almost all θ ∈ I we have

|a(eiθ )| = 1 ⇒ df ∗(θ )

dθ
= 0. (1.7)

The proof of this theorem involves showing that, under the given assumptions the
nontangential limits of h′ and g′ exist and are finite for almost all eiθ ∈ I. Note also
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that the proof of (b) depends on a formula for the Jacobian on the boundary which
may be found in Martio [23, p. 6].

The hypothesis in (b) holds at once if f (D) is a bounded convex region. Note that
in this case, df ∗(θ )/dθ cannot be absolutely continuous on I or else it is identically
zero and consequently constant there; see Bshouty and Hengartner [3]. Duren and
Khavinson [12] have presented a geometric proof of a version of (1.7) where they
require C1-smoothness of f ∗(θ ) to get a result for all θ instead of the same result for
almost all θ.

Laugesen [21] also showed that part (a) of the theorem holds under other assump-
tions which allow us to examine dilatations of sense-preserving harmonic mappings
that do not admit Poisson integral representations.

Theorem 8 Suppose that f is a sense-preserving harmonic mapping of D that
extends continuously to D ∪ I for a subinterval I of T and that f ∗(θ ) has bounded
variation on I , then Theorem 7 (a) holds.

This chapter uses Blaschke products and, more generally, inner functions. Let
{ζn} be an infinite sequence of points in D with the first m terms, say ζ1, ζ2, . . . , ζm,
assume the value zero. Then the Blaschke product associated with the values {ζn} is
defined as the infinite product

B(z) = eiαzm
∞∏

n=m+1

|ζn|
ζn

ζn − z

1− ζ nz
. (1.8)

It is well known that B belongs to the class B of analytic functions on D bounded
by one there if, and only if,

∑
(1− |ζn|) converges.

An inner function is a function h ∈ B for which the radial limits exist and have
modulus 1 almost everywhere. A striking relationship between Blaschke products
and inner functions is the following result of Frostman [14].

Theorem 9 If h is an inner function, then for all k ∈ D but possibly a set of zero
capacity the function

hk(z) = h(z)− k

1− kh(z)

is a Blaschke product.

Laugesen [21] raised a problem to study the boundary behavior of a GRM f

from D onto a bounded convex domain � whose dilatation a is an inner function.
This problem becomes more relevant knowing that such a mapping is unique [4].
By using Theorem 9, it was concluded by the authors [8, p. 264] that the study of
this problem can be reduced to the case where the dilatation a of f is a Blaschke
product. Another conclusion on the same page answers in the negative a problem of
Laugesen [21] which was motivated by Theorem 5 of his paper; Laugesen’s problem
may be formulated here as follows: “Must the boundary function f ∗ of a GRM f

from D onto a bounded convex domain have a jump if the dilatation of f is an infinite
Blaschke product?”
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Laugesen [21] used Theorem 7 to characterize inner dilatations at once as follows.

Theorem 10 Let f = P [f ∗], where f ∗(θ ) is a function of bounded variation in a
neighborhood of almost every θ ∈ [0, 2π [, be a sense-preserving harmonic mapping
of D whose dilatation is a. Then

df ∗(θ )

dθ
= 0 a.e. ⇒ a is inner.

Moreover, if f (D) is convex, then

a is inner ⇒ df ∗(θ )

dθ
= 0.

The next result of Laugesen [21] illustrates the previous theorem and provides a
sufficient condition on the boundary values of a univalent harmonic mapping of D

for its dilatation to be a Blaschke product.

Theorem 11 Let E ⊂ T be a closed and countable set, and let f = P [f ∗], where
f ∗(θ ) is a function of bounded variation on [0, 2π [ that is constant on each connected
component of T \ E and jumps at every point of E, is a sense-preserving harmonic
mapping of D whose dilatation is a. Then a is a Blaschke product whose radial limit
at every θ exists and has modulus 1.

Moreover, if E is infinite, f is univalent, and f (D) is convex, then a must be an
infinite Blaschke product.

The relationship between the dilatation and the boundary value function of a
univalent harmonic function of D seen above in Theorems 7, 8, and 10 was further
enhanced by Bshouty and Hengartner [3] for bounded univalent harmonic mappings
of D for which the dilatation extends analytically across a subinterval of T on which it
attains modulus 1. Using Theorem 2 and Helly’s selection theorem, they established
the following:

Theorem 12 Let a be an analytic function of D that admits an analytic extension
across an open interval I = {eit : γ < t < δ}, γ < δ < γ + 2π , such that |a| ≡ 1
on I. Let f be a bounded sense-preserving harmonic mapping of D whose dilatation
is a and which is univalent on a one-sided open neighborhood V of I defined by

V = {z = reiθ : r0 < r < 1 and γ < θ < δ}
for some positive r0. Then for almost all eiθ ∈ I , we have

f ∗(eiθ )− a(eiθ )f ∗(eiθ )+
∫ θ

f ∗(eit ) da(eit ) = const. (1.9)

Moreover, if f is a univalent harmonic mapping of D onto a Jordan domain, then a
variant of (1.9), where f ∗(eiθ ) is substituted by any cluster point of f at eiθ , holds.

Note that this theorem generalizes an earlier result of Lyzzaik [22] which relates
the behavior of a harmonic mapping of a Jordan arc I and its dilatation a in the case
when |a| ≡ 1 on I.
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Remark 1 Theorem 12 also holds if the univalence of f in V is replaced by the
condition that f ∗ is of bounded variation on I since, as mentioned earlier, the former
condition yields that the nontangential limits of h′ and g′ exist and are finite for
almost all eiθ ∈ I.
Remark 2 Equation (1.9) can be expressed in the differential form

df ∗(eiθ )− a(eiθ )df ∗(eiθ ) = 0, f ∗ − a.e. in I (1.10)

or equivalently by

�
{√

a(eiθ )df ∗(eiθ )
}
= 0, f ∗ − a.e. in I. (1.11)

Hence, unless df ∗(eiθ ) = 0, we have

arg df ∗(eiθ ) = −1

2
arg a(eiθ ) mod π. (1.12)

Bshouty and Hengartner [3] deduced from Theorem 12 the following two
corollaries:

Corollary 1 Under the assumptions of Theorem 12, for each eit ∈ I , there is a
branch of

√
a such that

(a) esslims→t+�
{√

a(eit )[f ∗(eis)− f ∗(eit−)]
}

exists for all eit ∈ I.

(b) esslimh→0�
{√

a(eit )[f ∗(ei(t+h))− f ∗(eit )]/h
}
= 0 exists for almost all

eit ∈ I.

If, in addition, f is a univalent harmonic mapping from D onto a Jordan domain
Ω , then either f ∗ is continuous or has a jump at eit .

Corollary 2 Let f be a univalent harmonic mapping from D onto a Jordan domain
� whose dilatation a is given as in Theorem 12, and let eit ∈ I.

(a) If f ∗ has a jump at eit (which can happen only if f ∗(I ) contains a line segment),
then

arg
[
f ∗(eit+)− f ∗(eit−)

] = −1

2
arg a(eit ) mod π. (1.13)

(b) If f ∗ is continuous at eit , then

lim
h→0

�
{√

a(eit )[f ∗(ei(t+h))− f ∗(eit )]/h
}
= 0. (1.14)
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(c) If f ∗ is not constant on any interval [t , t+ δ] for some δ > 0, then the right limit

ψR(t) = lim
h→0+ arg

[
f ∗(ei(t+h))− f ∗(eit−)

]
(1.15)

= −1

2
arg a(eit ) mod π (1.16)

exists. Analogously, If f ∗ is not constant on any interval [t−δ, t] for some δ > 0,
then the left limit

ψL(t) = lim
h→0+ arg

[
f ∗(eit+)− f ∗(ei(t−h))

]
(1.17)

= −1

2
arg a(eit ) mod π (1.18)

exists.

In particular, Corollary 2 states that at every point of the arc f (I ), except possibly its
endpoints, there exist right and left tangent lines which consequently yield interior
and exterior angles.

Definition 1 Let � be a simply connected domain of C. We say that a point ω of
the boundary ∂Ω of � is a point of concavity (with respect to �) if there is a line
segment L containing ω as an interior point such that L \ {ω} is in Ω.Also, we say
that ω is point of convexity (with respect to �) if there is a line segment L containing
ω as an interior point such that L \ {ω} lies in the exterior of Ω.

With a as in Theorem 3.7, since a(eit ) is a strictly increasing function on I ,
Bshouty and Hengartner [3], see also [28], concluded at once:

Corollary 3 Let a and f be as in Theorem 3.7. Then there is no open nonempty
subinterval I1 of I on which all f ∗(eit ) are points of convexity. In particular, there is
no univalent sense-preserving harmonic mapping of D which maps I onto a strictly
convex domain. On the other hand, if f ∗(I ) contains a straight line segment J , then
f ∗ connects the endpoints of J through a number of jumps.

Remark 3 Corollary 3 need not hold if the analyticity of a on I is replaced by the
condition that |a(eit )| = 1 almost everywhere on I ; Laugesen [21] gave examples
of univalent harmonic mappings from D onto itself with inner function dilatations.

As a consequence of Theorem 12 and Corollary 3, we have:

Corollary 4 Let f be a GRM from the unit disk D onto a bounded convex domain
� whose dilatation a admits an analytic extension across an open interval I = {eit :
γ < t < δ}, γ < δ < γ + 2π , such that |a| ≡ 1 on I. Then the following hold:

(a) f ∗ has a jump at eiθ ∈ I if, and only if, arg{√a(eiθ )df ∗(eiθ )} = 0 mod π.

(b) If f has no jumps in I , then f ∗ is constant on I.

The question of the behavior of a univalent harmonic mapping of D whose boundary
function is constant on a subinterval I of T was tackled byAbu Muhanna and Lyzzaik
[1, Theorem 3] and subsequently more generally by Bshouty and Hengartner [3].
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Before stating the related results, there is a need to examine the “preimage” of
each point in the image boundary of the mapping. let us note that the boundary
function of a sense-preserving harmonic mapping may have jumps in as much as
intervals of constancy or else continuity points. The “preimage” of a boundary point
could be a point or a segment. The following definition describes what is meant by
“preimage” of a boundary point.

Definition 2 Let f be a univalent sense-preserving harmonic mapping of D onto a
Jordan domain � and let q ∈ ∂Ω.

(a) If q does not belong to a jump of f ∗, then define γ (q) and δ(q) by (f ∗)−1(q) =
{eit : γ (q) ≤ t ≤ δ(q)}, where γ (q) ≤ δ(q) < γ (q)+ 2π.

(b) If q is an interior point of a jump of f ∗, i.e. q = λf ∗(ei(t+))+ (1− λ)f ∗(ei(t−)),
0 < λ < 1, then define γ (q) = δ(q) = t.

(c) If q is the endpoint f ∗(ei(t−)) of a jump, then define γ (q) as in (a) and put
δ(q) = t.

(d) If q is the endpoint f ∗(ei(t+)) of a jump, then put γ (q) = t and define δ(q) as in
(a).

Note that the cluster set C(f ∗, eiγ (q)) contains points other than q if a jump occurs
at eiγ (q) and likewise for C(f ∗, eiδ(q)).

The following result is due to Bshouty and Hengartner [3].

Theorem 13 Let f be a univalent sense-preserving harmonic mapping of D onto
a Jordan domain � whose dilatation a admits an analytic extension across an open
interval I1 = {eit : γ1 < t < δ1}, γ1 < δ1 < γ1 + 2π , such that |a| ≡ 1 on I1. Let
q be an interior point of f ∗(I1) and let γ (q) and δ(q) be as in Definition 2. Finally,
let α(q) be the opening angle at q as seen from the inside of Ω. Then the following
holds:

1. If α(q) = 0, then γ (q) = δ(q). For 0 < α(q) < π , then γ (q) < δ(q) and

1

2

[
arg a(eiδ(q))− arg a(eiγ (q))

] = α(q). (1.19)

2. If α(q) = π , then either γ (q) = δ(q) or γ (q) < δ(q) and (1.19) holds. Both
cases are possible.

3. If π < α(q) < 2π , then γ (q) < δ(q) and either (1.19) holds or

1

2
[ arg a(eiδ(q))− arg a(eiγ (q))] = α(q)− π. (1.20)

Both cases are possible.
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1.4 Boundary Behavior in the Small Versus Dilatation

The purpose of this section is to study the local behavior of the boundary function f ∗
of a univalent harmonic mappings f of D versus its dilatations a; that is, the behavior
of the boundary function at individual points of T. Here, three kinds of results are
addressed: The first describes the behavior of f ∗ in deleted neighborhoods of points
in T; the second and third consider those results involving the differentiability and
continuity of f ∗ at points in T.

The first result in this section is due to Bshouty, Lyzzaik, and Weitsman [8] and
provides a sufficient condition for f ∗ to be nonconstant on any right or left interval
of the point eiθ0 ; i.e., on any interval of form {eit : θ0 < t < γ } or {eit : γ < t < θ0}
respectively.

Theorem 14 Let f be a GRM from D onto a Jordan domain � with rectifiable
boundary, and let the dilatation a of f be a Blaschke product of form (1.8). Fix
eiθ0 ∈ ∂D. If

∞∑
n=1

1− |ζn|
|eiθ0 − ζn| = ∞, (1.21)

then f ∗ is nonconstant on any right or left interval of eiθ0 .

The main idea behind the proof of this theorem is that (1.21) holds if, and only if,
ΔI arg{√a(z)} = ∞ on any right or left interval I of eiθ0 ; ΔI arg{√a(z)} denote the
net variation over the circular arc I of a continuous single-valued branch of arg

√
a.

In the same direction, Bshouty, Lyzzaik, and Weitsman [8] established the
following result.

Theorem 15 Let f be a GRM from the unit disk D onto a Jordan domain � with
rectifiable boundary whose dilatation a is a Blaschke product of form (1.8). Let there
be a left (right) interval I of eiθ0 across which a continues analytically with |a| = 1
on I.

(a) A sufficient condition for f ∗ to be nonconstant on any left (right) interval of eiθ0

is one of the following:

(i) for every left (right) interval K ⊂ I of eiθ0 ΔK arg{√a(z)} = ∞.

(ii) There exists a subsequence {ξn} of {ζn} converging to eiθ0 such that

∑
arg ξn≤θ0

1+
∑

arg ξn≥θ0

1− |ξn|
|eiθ0 − ξn| = ∞, (1.22)

⎛
⎝ ∑

arg ξn≥θ0

1+
∑

arg ξn≤θ0

1− |ξn|
|eiθ0 − ξn| = ∞

⎞
⎠ .

(b) If � is a bounded convex domain, then each of the above sufficient conditions is
also necessary for f ∗ to be nonconstant on any left (right) interval of eiθ0 .
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As a result of this theorem, the following three corollaries hold [8]:

Corollary 5 Let f be a GRM from the unit disk D onto a bounded convex domain
� whose dilatation a is a Blaschke product of form (1.8) such that there exists a
left (right) interval I of θ0 across which a continues analytically with |a| = 1 on I.
Then a necessary and sufficient condition for f ∗ to be nonconstant on any left (right)
interval of eiθ0 is that one of the following two conditions holds:

(i) ΔI arg{√a(z)} = ∞;
(ii) there exists a subsequence {ξn} of {ζn} converging to eiθ0 such that (1.22) holds.

The following corollary follows at once from Theorem 15(b) and shows that the
“nonconstancy” result of Theorem 14 is sharp.

Corollary 6 Let f be a GRM from the unit disk D onto a bounded convex domain�
whose dilatation a is a Blaschke product of form (1.8), wherem = 0,� {e−iθ0ζn

}
> 0

(�{e−iθ0ζn} < 0) for all n, and

∞∑
n=1

1− |ζn|
|eiθ0 − ζn| <∞. (1.23)

Then f ∗ is constant on some left (right) interval of eiθ0 .

The third corollary examines the stability of a function f given in Theorem 15
upon the addition of finitely many zeros to its dilatation a. Indeed, it asserts that f
is stable if a satisfies (1.21) and unstable otherwise.

Corollary 7 Let a be a Blaschke product whose zeros {ζn}∞n=1 accumulate at eiθ0 ,
and letA be the Blaschke product whose zeros are those of a and an additional value
ζ0. Let f and F be the GRMs of the unit disk onto a bounded convex domain �

whose dilatations are a and A respectively.

(a) If f ∗ is nonconstant on any left or right interval of eiθ0 , then so is F ∗.
(b) If f ∗ is constant on some left (right) interval I of eiθ0 , then for a suitable choice

of ζ0 the function F admits a jump in I.

Next, we address the recent boundary behavior results of a univalent harmonic map-
ping f of D that relate the differentiability of the boundary function at a given point
with the behavior of the dilatation a near the point.

A requisite for these results is the following result due to Fatou [27, pp. 132–135].

Theorem 16 Let u∗ be an integrable real-valued function of T and let u = P [u∗].
Then

(i) If (du∗/dθ )(eiθ0 ) exists and is finite, then the angular limit

lim
z→eiθ0

∂u

∂θ
(z) = du∗

dθ

(
eiθ0

)

is uniform in any Stolz angle with vertex at eiθ0 .
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(ii) If (du∗/dθ )(eiθ0 ) = +∞, then

lim
r→1−

∂u

∂θ
(reiθ0 ) = +∞.

If, in addition, u∗ is monotone increasing in a neighborhood of θ0, then the
angular limit

lim
z→eiθ0

∂u

∂θ
(z) = +∞

is uniform in any Stolz angle with vertex at eiθ0 .

(iii) If (du∗/dθ )(eiθ ) is continuous on an arc θ ∈ [α,β] and α < α1 < β1 < β, then

lim
z→eiθ

∂u

∂θ
(z) = du∗

dθ
(eiθ )

uniformly for θ ∈ [α1,β1] as z → eiθ from D.

Evidently, in (ii) −∞ may replace +∞, and (i) and (iii) hold true for integrable
complex-valued functions f ∗ of T.

By virtue of this theorem and an extension of a theorem of Heinz [19] due to Kalaj
[20, Theorem 2.5], Bshouty, Lyzzaik, andWeitsman [9] obtained the following result:

Theorem 17 Let f be the GRM from the unit disc D onto a bounded convex domain
with boundary function f ∗ and dilatation a, and let (df ∗/dθ )(eiθ0 ) = 0. Then the
angular limit of |a| at eiθ0 is 1; in particular, a has at most a finite number of zeros
in any Stolz angle with vertex eiθ0 .

As a special case of this this theorem we have:

Corollary 8 Let f of form (1.1) be the GRM from the unit disc D onto a bounded
convex domain with boundary function f ∗ and dilatation a. If (df ∗/dθ )(eiθ0 ) = 0
and the angular limit limz→eiθ0 arg a(z) = α, then the angular limits

lim
z→eiθ0

argh′(z) = −θ0 − 1

2
α (mod π )

and

lim
z→eiθ0

arg g′(z) = −θ0 + 1

2
α (mod π )

hold.
The next result [9] deals with the case where (df ∗/dθ )(eiθ0 ) is nonzero and finite.

Corollary 9 Let f ∗ be an integrable complex-valued function of T and let f =
P [f ∗] be the harmonic mapping of D of form (1.1) and whose dilatation is a. Suppose
that (df ∗/dθ )(eiθ0 ) = α �= 0,∞ and the angular limit limz→eiθ0 h

′(z) = β exists.
Then β �= 0 and the angular limit limz→eiθ0 a(z) exists.

In the special case of GRM’s onto convex domains, we have the interesting result
[9]:
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Theorem 18 Let f be the GRM from the unit disc D onto a bounded convex domain
with boundary function f ∗ and dilatation a, and let (df ∗/dθ )(eiθ0 ) = α �= 0. If |α|
is sufficiently small, then a has at most a finite number of zeros in any Stolz angle
with vertex eiθ0 .

In the remaining part of this section, we consider the recent boundary behavior
results of a univalent harmonic mapping f of D that relate the continuity of the
boundary function at a given point with the dilatation a near the point.

We begin by a fact obtained in the proof of Theorem 5 in Laugesen [21] regarding
harmonic mappings f of D of form (1.3) where f ∗(eiθ ) is a function of bounded
variation of [0, 2π [. If f ∗ has a jump at eiθ0 , then the angular limit of the dilatation
a at eiθ0 satisfies

lim
z→eiθ0

a(z) = df ∗(θ0)

df ∗(θ0)
.

In particular, this limit has magnitude 1. In [8], this observation was formulated as
follows:

Theorem 19 Let f be a GRM from the unit disk D onto a Jordan domain � with
rectifiable boundary, let the dilatation a of f be a Blaschke product of form (1.8),
and let eiθ0 ∈ ∂D. Then the following holds:

If limr→1− a(reiθ0 ) does not exist, or if otherwise

lim
r→1−

a
(
reiθ0

) �= α, |α| = 1, (1.24)

then f ∗ is continuous at eiθ0 .

In the next result, Bshouty, Lyzzaik, and Weitsman [9] gave a characterization of
the continuity and the jump of a GRM at a boundary point in terms of the behavior
of h and g.

Theorem 20 Let f of form (1.1) be a GRM from D onto a bounded Jordan domain
with a rectifiable boundary, and let a and f ∗ be dilatation and boundary function of
f respectively. Then limr→1− (1− r)h′(reiθ0 ) = c and limr→1− (1− r)g′(reiθ0 ) = d

exist, are finite, and satisfy ceiθ0 = deiθ0 ; moreover, either limit is zero if, and only
if, f ∗ is continuous at eiθ0 .

We conclude at once that f ∗ is continuous at eiθ0 if f satisfies in particular the
condition that either one of the cluster sets of h′, or g′, at eiθ0 is away from infinity.

Another consequence of Theorem 20 [9] is the following result:

Corollary 10 Under the assumptions of Theorem 20, suppose that there exists a
sequence {zn} of complex numbers in D that satisfies the following properties:

(a) limn→∞ zn = eiθ0 for some θ0 ∈ R;
(b) limn→∞ |zn − zn−1|/|1− znzn−1)| = 0;
(c) limn→∞ g′(zn) = α exists and is finite.
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Then f ∗ is continuous at eiθ0 .

Note that |zn − zn−1|/|1− znzn−1)| is the pseudo hyperbolic distance between zn
and zn−1.

A special case of this corollary is when the values zn are zeros of g′ which are the
same as the zeros of a; see [9].

Theorem 21 Let f of form (1.1) be a GRM from D onto a bounded Jordan domain
with a rectifiable boundary, and let a and f ∗ be dilatation and boundary function
of f respectively. If {zn} is a sequence of complex numbers satisfying (a) and (b) of
Corollary 10, and a(zn) = 0 for all n = 1, 2, · · · , then f ∗ is continuous at eiθ0 .

In the next result [9] which uses Corollaries 3, 4, and 5, we illustrate the sig-
nificance of Theorem 20 by showing the surprising fact that the set of zeros of the
dilatation of the GRM f from D onto D need not determine the behavior of the
boundary function f ∗.

Theorem 22 Suppose the following:

(a) The numbers ζn ∈ D, n = 1, 2, . . . , such that � (e−iθ0ζn
)
> 0 and

∞∑
n=1

1− |ζn|
|eiθ0 − ζn| <∞. (1.25)

(b) The Blaschke subproducts

BN (z) =
∞∏
n=N

|ζn|
ζn

ζn − z

1− ζ nz
.

(c) The GRMs fλ,N , where λ ∈ T, from D onto D, with fλ,N (0) = 0, whose dilatation
is λBN.

Then for sufficiently largeN , there exist two distinct values λ such that the boundary
function f ∗λ,N of fλ,N has a jump discontinuity at eiθ0 for one value and is continuous
at eiθ0 for the other value.

The condition “�(e−iθ0ζn) > 0” may be replaced by the condition “�(e−iθ0ζn) <
0”; in this case the desired GRM has form f (z), where f is the desired GRM whose
Blaschke product is B(z), with zeros ζn satisfying � (eiθ0ζn

)
> 0 and ζn → e−iθ0 . In

view of this, either condition becomes unnecessary for the validity of Theorem 22
provided that the Blaschke products BN

j are chosen as subproducts of B with a com-
mon set of zeros, say {ζnk }; namely a set that satisfies for all k either � (e−iθ0ζnk

)
> 0

or �(e−iθ0ζnk ) < 0.
Next, we present a result of Bshouty, Lyzzaik, and Weitsman [9] that gives a

sufficient condition for the boundary function of a GRM f from D onto a bounded
convex domain � whose dilatation is an infinite Blaschke product to be continuous
at a given boundary point. This result is based on the following result of Protas [25]:
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Theorem 23 Let B be an infinite Blaschke product with zeros {ζn} and let ζ = eiθ0 ,
γ ≥ 1, and m > 0. Then (1.23) holds if, and only if,

∫
Γζ ,γ ,m

1− |B(z)|2
1− |z|2 |dz| <∞.

where Γζ ,γ ,m = Γ is the “curve” in D defined by Γ (θ ) = (1 − m|θ |γ )eiθ for
0 < |θ | < min{π ,m−1/γ }.
Theorem 24 Let f of form (1.1) be a GRM from D onto a bounded convex domain
Ω , whose dilatation is a Blaschke product a with zeros ζn, n = 1, 2, . . . , and whose
boundary function f ∗. If

∞∑
n=1

1− |ζn|
|eiθ0 − ζn| = ∞,

then f ∗ is continuous at eiθ0 .

Remark 4 Let φ = znB(z)s(z) be an inner function, where B is a Blaschke product
and s is a singular inner function associated with the measure σ. Using Protas [25,
Theorem 2], an adaptation of the proof of Theorem 24 yields the following result
[9]:

Let f be the GRM from D onto a bounded convex domain � associated with the
above-mentioned inner function φ. If

∞∑
n=1

1− |ζn|
|eiθ0 − ζn| +

∫ 2π

0
|1− ei(t−θ0)|dσ (t) = ∞,

then f ∗ is continuous at eiθ0 .

In [8], the authors exhibited the following example of a GRM f from D onto
itself whose dilatation a is a Blaschke product having zeros that satisfy (1.23) for
θ0 = 0 such that the jumps of the boundary function f ∗ are generally not entirely
dependent on the zeros of the dilatation. This is done by showing that upon merely
applying a rigid rotation to a, continuity of f ∗ at a point may turn into a jump there.

Example 4.1 Consider the following:

(a) The infinite partition π > t0 > t1 > · · · > π/4, where limk→∞ tk = π/4;
(b) The open circular arcs Jk = {eit : π/2k+1 < t < π/2k}, k = 0, 1, · · · ;
(c) The function f ∗ defined by f ∗(Jk) = eitk , k = 0, 1, · · · , and the symmetry

property f ∗(e−it ) = f ∗(eit );
(d) The function f is Poisson integral of f ∗.

Then, by the Radó–Kneser–Choquet Theorem, f is a univalent harmonic mapping
of D into itself that satisfies f (0) = w0 ∈ R and fz(0) > 0. In view of (c) and (d),
the symmetry property f (z) = f (z) holds for f. Consequently, the dilatation a of f
is likewise symmetric and its zeros are symmetric about the real axis. Moreover, by
Theorem 10 [21], the dilatation a is an infinite Blaschke product having the property
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that for every θ , the radial limit limr→1− a(reiθ ) exists and has modulus 1. Hence
there exists only finitely many zeros of a on every radius of the unit disc. Since f ∗
is constant on every arc Jk , a continues analytically across Jk with |a| ≡ 1 there.
Hence, the zeros of a accumulate in the set {e±iπ/2k : k = 0, 1, · · · }. But f ∗ is
constant on intervals left and right of every point νk = e±iπ/2k , k �= 0, which, by
Corollary 5, neither side of the diameter of D ending at νk contains a sequence of
zeros of a converging to νk.Hence, every νk is not an accumulation point of the zeros
of a and, consequently, the zeros of a accumulate only at 1.

Because limr→1− a(r) exists and has modulus 1 and a has the symmetry property,
we conclude that either a(z) = a1(z) or a(z) = a−1(z), where

aη(z) = η

∞∏
n=1

(z − ζn)(z − ζn)

(1− ζnz)(1− ζnz)
.

Thus aη(1) = η. But since df ∗(1) = √
2 i, Theorem B(a) yields

�
{√

aη(1) df ∗(1)
}
= ±�

{
η1/2

√
2 i
}
= ±√2
 η1/2 = 0.

Hence η = −1. Finally, by Theorem 4.11,

∞∑
n=1

1− |ζn|
|1− ζn| <∞.

We have thus exhibited a GRM from D onto D with dilatation a−1.

Next, let F be the GRM from the open unit disc onto itself whose dilatation is a1

and satisfies F (0) = 0 and Fz(0) > 0. It may be easily verified that F (z) is also a
GRM from the open unit disc onto itself whose dilatation is a1(z) = a1(z) and which
is normalized at the origin exactly like F. Then, by [4, Theorem 1], F satisfies the
symmetry property F (z) = F (z). Because infinitely many zeros of a lie on either
side of the real axis, by Theorem 15, F ∗ is nonconstant on any left or right interval
of 1. Moreover, F ∗ is continuous at 1 or else it has a jump of pure imaginary size
iC, where C > 0. Then, by invoking Theorem 12, we obtain

0 = �
{√

a(1) dF ∗(1)
}
= ±�{iC} = ±C = 0.

Thus F ∗ is continuous at 1.

1.5 Some Open Questions

We end the chapter with the following relevant open questions.

Question 1 (A. Weitsman) Is there a univalent harmonic self mapping f of D whose
dilatation a is an infinite Blaschke product?
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The answer to this question is yes if f (D) is the inner region of an ellipse [8].
Laugesen [21, Theorem 3.6] gave a class of univalent harmonic mappings f of

D whose dilatations a are infinite Blaschke products. In particular, in the proof of
Theorem 11, it was shown that if E is a closed countable subset of D and if f is a
univalent harmonic mapping of D with jumps at each point of E and is constant on
each component of D \ E, then a is a Blaschke product. In the same paper above,
Laugesen asked if one could find conditions on univalent harmonic self mappings of
D that would yield Blaschke product dilatations. This question is unstable: for if f is
a univalent harmonic self mapping f of D whose dilatation a is inner, then by a mere
affine transformation of the form f + αf for almost all values α in a neighborhood
of the origin the dilatation is a Blaschke product and the image is an elliptic domain
close to D. However, the following question is relevant.

Question 2 (R. S. Laugesen) Is there a univalent harmonic self mapping f of D

whose dilatation a is a singular inner function.

Question 3 (A. Lyzzaik, D. Bshouty, and A. Weitsman) Let f be the GRM from
D onto D with dilatation a, and let f ∗(eit ) denote the radial boundary values of f.
If (df ∗/dt)(eiθ ) exists, is it true that a has finitely many zeros in any Stolz angle at
eiθ?

For related results to this question see [7].
Questions 1, 2, and 3 appear in [5].
It is known by Fatou’s theorem [13, p. 12] that if f is a bounded harmonic mapping

of D, then f has radial limits almost everywhere and the exceptional set can be anyFσ
set of measure zero. However, if f is univalent analytic function, then by Beurling’s
theorem [2] the exceptional set have capacity zero. In view of this, the following
question arises:

Question 4 If f is a univalent harmonic mapping of D, then can the exceptional
set have positive capacity? Can it have positive Hausdorf dimension? Can it have
Hausdorf dimension 1?

The authors would like to thank the referee for carefully reading this chapter and
raising Question 4.
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Chapter 2
Harmonic Univalent Mappings and Minimal
Graphs

Zach Boyd and Michael Dorff

2.1 Introduction

In this chapter we will discuss some topics about planar harmonic mappings. These
functions can be thought of as a generalization of analytic maps, and so we will first
present a brief background of analytic univalent mappings. Then we will discuss
harmonic mappings with an emphasis on three topics: the shearing technique, inner
mapping radius, and convolutions. Finally, we will discuss the connection between
planar harmonic mappings and minimal surfaces.

2.1.1 Analytic Univalent Maps

Harmonic maps naturally generalize analytic functions by relaxing the requirement of
analyticity while still retaining some important features. We begin with an overview
of the relevant properties of analytic functions to make clear the analogy with har-
monic maps. In both cases, we focus entirely on functions which are univalent, or
one-to-one, although much interesting work has been done on multivalent functions
as well.

Definition 1.1 Let F : D ⊂ C → C. The function F (x, y) = u(x, y)+ iv(x, y) is
analytic if:

• F is continuous;
• u and v are real harmonic in D; and
• u and v are harmonic conjugates (that is, ux = vy and uy = −vx).
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In this context, a function u(x, y) : R
2 → R is called real harmonic if uxx+uyy = 0.

While analytic functions may map from any open, connected set in general, the
following theorem allows us to restrict attention to the unit disk in many cases.

Theorem 1.2 (Riemann Mapping Theorem) Let G �= C be a simply-connected
domain with a ∈ G. Then there exists a unique univalent, onto analytic function
F : G→ D such that F (a) = 0 and F ′(a) > 0.

Thus, if D is a simply-connected, proper subset of the complex plane, we may
replace the function f : D → C by the function f ◦ φ : D → C, where the
existence of φ : D → D is guaranteed. Therefore, in the study of univalent (one-
to-one) analytic functions, we may restrict our attention to the following class of
functions.

Definition 1.3 The family of analytic, normalized, and univalent functions denoted
by S is

S = {F : D → C |F is analytic, univalent with F (0) = 0,F ′(0) = 1}.
This family of functions is also known as schlicht functions. Note that F ∈ S implies
F (z) = z+ a2z2 + a3z3+ · · · . The following are two essential examples that will be
used throughout the chapter.

Example 1.4 (The Analytic Right Half-Plane Mapping)

Fh(z) = z

1− z
=

∞∑
n=1

zn = z + z2 + z3 + · · · ∈ S.

Example 1.5 (The Koebe Function)

Fk(z) = z

(1− z)2
=

∞∑
n=1

nzn = z + 2z2 + 3z3 + · · · ∈ S.

Observe that Fk maps to the entire complex plane minus a slit from −1/4 to ∞
(Fig. 2.1).

Some important properties of the family S include

• The uniqueness condition in the Riemann Mapping Theorem.
• (de Branges’ Theorem) For F ∈ S, |an| ≤ n, for all n.
• (Koebe 1

4 -Theorem) If F ∈ S, then F (D) contains the disk G = {w : |w| < 1
4 }.

See [14] for more background in univalent analytic functions.

2.1.2 Harmonic Univalent Maps

Complex-valued harmonic functions are a generalization of the analytic functions in
which one of the requirements is relaxed.
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Fig. 2.1 The image of D

under Fk(z) = z
(1−z)2 ∈ S

Definition 1.6 Let f : D ⊂ C → C. The function f (x, y) = u(x, y)+ iv(x, y) is
a (complex-valued) harmonic function if:

• f is continuous; and
• u and v are real harmonic in D.

This definition views harmonic functions as being composed of real and imaginary
parts. If D is simply-connected, we have a more useful characterization ([3]).

Theorem 1.7 If f = u + iv is harmonic in a simply-connected domain G, then
f = h+ g, where h and g are analytic.

Note that f = h + g is equivalent to f = Re{h + g} + iIm{h − g}. Also, one
consequence of this theorem is that a harmonic function f is represented by a power
series of the form

f (z) = h(z)+ g(z) =
∞∑
n=0

anzn +
∞∑
n=1

bnzn.

In particular, every harmonic function with domain D is just the sum of analytic
and coanalytic parts, represented by h and g, respectively. To see the geometric effect
of including g, we recall that an analytic map is called conformal if its derivative
never vanishes. The conformal property means that intersecting curves in the domain
are mapped to intersecting curves in the image, and the angle of intersection is
preserved. A harmonic map is the sum of two maps, one which preserves angles,
and another which reverses them. After some reflection, it should be clear that if
|h′(z0)| > |g′(z0)|, then the map is sense-preserving at z0, meaning that positive angles
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Fig. 2.2 The image of D under Fp

remain positive, and negative angles remain negative under the map f . Equivalently,
we say that a function is sense-preserving if the left-hand side of a curve is mapped
to the left-hand side of its image. The following theorem formalizes this intuition.

Theorem 1.8 (Lewy [22]) f (z) = h(z) + g(z) is locally univalent and sense-
preserving if and only if |ω(z)| = |g′(z)/h′(z)| < 1, for all z ∈ D.

The function ω = g′/h′ is known as the dilatation of f = h+ g.
Observe that in the harmonic case, terms involving z are permissible, but terms

involving zz are not. Also, the graphics highlight the fact that the images of radial and
circular lines intersect at right angles in the conformal case, but not in the harmonic
case.

The boundary of fp(D) in Fig. 2.3 consists of concave arcs and the boundary of
fh(D) in Fig. 2.5 gets mapped to just two points, w = − 1

2 and w = ∞. These ex-
amples illustrate a difference between analytic and harmonic maps and an important
fact about the boundary behavior of certain harmonic functions.

Theorem 1.9 Let f = h+ g be a sense-preserving harmonic map with dilatation
ω = g′/h′. If |ω(z)| = 1 for almost all z in an arc γ of ∂D, then the image of γ
under f is either a concave arc or a stationary point.

Example 1.10 In the following pages, graphs of functions are usually the image of
the unit disk under the function in question. Also, many of these images have been
created by the online applet ComplexTool [9] (Figs. 2.2–2.5)

Example 1.11 The uniqueness part of the Riemann mapping theorem fails in the
harmonic case, since both maps, Fh and fh, send the disk to the same right half-plane.

Open Problem 1 What is the analogue of the Riemann mapping theorem for
harmonic mappings?

As a final point in this section, we note that, in analogy to S, we define the classes
SH and SOH as follows.
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Fig. 2.3 The image of D under fp

Fig. 2.4 The image of D under Fh

Fig. 2.5 The image of D under fh

• Analytic polynomial map: Fp(z) = z − 1
2 z2

• Harmonic polynomial map: fp(z) = z + 1
2 z2

• Analytic right half-plane map: Fh(z) = z
1−z

• Harmonic right half-plane map: fh(z) = Re( z
1−z )+ iIm( z

(1−z)2 )
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Definition 1.12 Let SH be the family of complex-valued harmonic, univalent
mappings that are normalized on the unit disk, that is,

SH = {f : D → C | f is harmonic, univalent with

f (0) = a0 = 0, fz(0) = a1 = 1}.
SOH = {f ∈ SH | fz(0) = b1 = 0}.

Thus, S ⊂ SOH ⊂ SH . Other important classes includeK ,KH , andKO
H , which are the

subclasses of S, SH , and SOH containing only the convex functions, which are exactly
those whose image is a convex domain in C.

We now introduce some major unsolved problems in the field that have obvious
analogues in the theory of analytic functions. For years, the biggest problem in the
theory of univalent analytic functions was the Bieberbach Conjecture, now known
as DeBrange’s Theorem. Solving this problem allows us to know the sharp bounds
on growth and distortion of harmonic maps, among other things. In the nonanalytic
case, we have the following.

Conjecture 1 (Harmonic Bieberbach Conjecture) Let

f (z) =
∞∑
n=0

anzn +
∞∑
n=1

bnzn ∈ SOH .

Then

• |an| ≤ 1
6 (n+ 1)(2n+ 1),

• |bn| ≤ 1
6 (n− 1)(2n− 1),

• ||an| − |bn|| ≤ n.

Currently, the best bound is that for all functions f ∈ SOH , |a2| < 49 ([15]). The
conjecture is that |a2| ≤ 5

2 .

Open Problem 2 Prove a bound on |a2| that is lower than 49.
Recall that for analytic functions we have the Koebe 1

4 -Theorem, which expresses
bounds on the distortion of the unit disk under normalized analytic maps. In the
harmonic case, we have

Conjecture 2 If f ∈ SOH , then f (D) contains the disk G = {w : |w| < 1
6 }.

Currently, the best result is that the range of f ∈ SOH contains the disk {w : |w| < 1
16 }.

Open Problem 3 Prove that the radius can be increased to K where 1
16 < K ≤ 1

6 .

2.2 Shearing

In their paper, Clunie and Sheil-Small introduced the shearing technique that provides
a procedure for constructing harmonic maps f = h + g that are univalent. Before
describing the shearing technique, we need the following definition.
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Definition 2.1 A domain Ω is convex in the horizontal direction (CHD) if every
line parallel to the real axis has a connected intersection with Ω .

We can now state the shearing theorem.

Theorem 2.2 (Clunie and Sheil-Small, [3]) Let f = h+ g be a harmonic function
that is locally univalent in D (i.e., |ω(z)| < 1 for all z ∈ D). The function F = h− g

is an analytic univalent mapping of D onto a CHD domain if and only if f = h+ g

is a univalent mapping of D onto a CHD domain.

Summary of the Shearing Technique: To use the shearing technique we start with

• an analytic function F that is CHD, and
• an analytic function ω such that |ω(z)| < 1 for all z ∈ D.

Then we

• write F as F = h− g and ω as ω = g′/h′, and
• explicitly solve for h and g.

The resulting harmonic function f = h+ g is guaranteed to be univalent.
Notice that it is easy to reformulate Clunie and Sheil-Small’s shearing theorem

for functions which are convex in other directions. In particular, consider the case of
convex in the vertical direction (CVD) which we will use in this chapter.

Definition 2.3 A domain Ω is CVD if every line parallel to the imaginary axis has
a connected intersection with Ω .

Theorem 2.4 Let f = h + g be a harmonic function that is locally univalent in
D (i.e., |ω(z)| < 1 for all z ∈ D). The function F = h + g is an analytic univalent
mapping of D onto a CVD domain if and only if f = h+ g is a univalent mapping
of D onto a CVD domain.

Example 2.5 Consider the analytic function

Fp(z) = z − 1
2 z2.

This is the analytic polynomial map Fp given in Example 2.10. It is CHD. Now
choose a dilatation. We will choose

ω(z) = g′(z)/h′(z) = z.

Note that |ω(z)| < 1 ∀z ∈ D. Next, set h(z) − g(z) = Fp(z) = z − 1
2 z2. Taking

the derivative of both sides, yields h′(z) − g′(z) = 1 − z. Since g′(z) = zh′(z),
we substitute g′(z) into the previous equation to get h′(z) = 1. Integrating this and
normalizing it so that h(0) = 0, yields h(z) = z. Because g′(z) = zh′(z), we can
solve for g to get g(z) = 1

2 z2. Hence, by the Shearing Theorem

fp(z) = h(z)+ g(z) = z + 1
2 z2 ∈ SOH .

Thus, we have constructed a harmonic function fp that is univalent and CHD. Note
that this is the harmonic polynomial function fp in Example 2.10.
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Example 2.6 Consider

Fk(z) = h(z)− g(z) = z

(1− z)2
with ω(z) = z.

Using the same approach as above, we get

fk(z) = h(z)+ g(z) = Re
( z + 1

3 z3

(1− z)3

)
+ iIm

( z

(1− z)2

)
∈ SOH .

The harmonic function fk is a slit mapping which maps D onto C minus a slit on
the negative real axis with the tip of the slit at− 1

6 . There is considerable evidence that
fk can fill a role in harmonic function theory similar to that of the Koebe function
in analytic function theory, and for this reason, fk is called the harmonic Koebe
function.

To help explore how shearing affects the geometry between analytic and harmonic
mappings, one can use the online applet ShearTool [9]. The image below demon-
strates the functionality of this applet, which simultaneously plots both h − g and
h+ g (Fig. 2.6).

Almost all examples of shearing have used dilatations that are finite Blaschke
products. One important type of mappings that are not finite Blaschke products is a
singular inner function. We give a brief description of this topic. For more details,
see [21].

Definition 2.7 A bounded analytic function f is called an inner function if
| lim
r→1−

f (reiθ )| = 1 almost everywhere with respect to Lebesgue measure on ∂D.

If f has no zeros on D, then f is called a singular inner function.
Every inner function can be expressed in the form

f (z) = eiαB(z) exp

(
−
∫

eiθ + z

eiθ − z
dμ(eiθ )

)
,

where α, θ ∈ R, μ is a positive measure on ∂D, and B(z) is a Blaschke product, i.e.,

B(z) = eiθ
∞∏
j=1

( z−aj
1− aj z )mj , for some series of constants |aj | < 1 satisfying

∞∑
n=1

(1 −
|an|) <∞.

The function f (z) = e
z+1
z−1 is an example of a singular inner function. Weitsman

[29] provided the following example.

Example 2.8 Shear

h(z)− g(z) = z

1− z
+ 1

2
e

z+1
z−1 with ω(z) = e

z+1
z−1 .

By a result by Pommenke [27], it can be shown that h−g is convex in the direction
of the real axis. Shearing h− g with ω(z) = e

z+1
z−1 and normalizing yields

h(z) =
∫

1

(1− z)2
dz = z

1− z
.
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Fig. 2.6 The image of D under the f = h+ g is shown in the bottom right, where f is constructed
from shearing h(z)− g(z) = 1

2 log
(

1+z
1−z

)
with ω(z) = −z2

Solving for g we get

g(z) = − 1
2e

z+1
z−1 .

The image given by the map is similar to the image given by the right half-plane
map z

1−z except that there are an infinite number of cusps (Fig. 2.7).
A technique to find harmonic mappings whose dilatations are singular inner

functions involves using a theorem by Clunie and Sheil-Small [3].

Theorem 2.9 Let f = h+ g be locally univalent in D and suppose that h+ εg is
convex for some |ε| ≤ 1. Then f is univalent.

To develop the technique, we let ε = 0 in Theorem 9. This means that if h is
analytic convex and if ω is analytic with |ω(z)| < 1, then f = h+ g is a harmonic
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Fig. 2.7 Image of D under f (z) = z
1−z − 1

2 e
z+1
z−1

univalent mapping. To establish that a function f is convex, we will use the following
theorem ([14]).

Theorem 2.10 Let f be analytic in D with f (0) = 0 and f ′(0) = 1. Then f is
univalent and maps onto a convex domain if and only if

Re
[
1+ zf ′′(z)

f ′(z)

]
≥ 0, for all z ∈ D.

Example 2.11 Let

h(z) = z + 2 log (z + 1) with ω(z) = g′(z)/h′(z) = e
z−1
z+1 .

Using Theorem 10, we can show that h is convex. Then solving for g we get g(z) =
(z + 1)e(z−1)/(z+1).

Hence,

f (z) = h(z)+ g(z) = z + 2 log (z + 1)+ (z + 1)e
z−1
z+1 .

By Theorem 9, f = h+ g is univalent. The image of D under f is shown in Fig. 2.8.

Open Problem 4 Construct examples of harmonic univalent functions whose
dilatation is a singular inner function and determine properties of these functions.

2.3 Inner Mapping Radius

The analytic Koebe function Fk is an important function. It is extremal (or maximal)
in several important senses. It is the function inS that gives equality for the coefficient
bounds in deBranges’Theorem. It is the function that maps the unit disk to a domain
that contains the largest possible disk centered at the origin as described in the Koebe
1
4 -Theorem. It is the function that exhibits both the largest and smallest possible
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Fig. 2.8 Image of D under f (z) = h+ g in Example 2.11

growth possible. It is the function for which the complement of its image is closest
to the origin. It is conjectured that the harmonic Koebe function fk from Example
2.6 has analogous properties in the class SOH although these properties have not been
proven (see Conjectures 1 and 2).

Recall that the tip of the slit of the harmonic Koebe function is at − 1
6 while the

tip of the slit for the analytic Koebe function is at− 1
4 . Notice that if we multiply the

analytic Koebe function by 2
3 , then the images of the unit disk under 2

3Fk and under
fk , the harmonic Koebe function, would be the same. That is,

2
3Fk(D) = fk(D).

This multiplier factor of 2
3 is known as the inner mapping radius for fk(D). For other

functions in SOH , the inner mapping radius may be different. For example, using the
analytic and harmonic versions of the right half-plane maps from Example 1.11, the
inner mapping radius for fh(D) is 1 since fh(D) = Fh(D).

Let’s define this idea of inner mapping radius precisely.

Definition 3.1 For f ∈ SOH , the inner mapping radius, ρO(f ), of the domain f (D)
is the real number F ′(0), where

• F is the analytic function that maps D onto f (D)
• F (0) = 0
• F ′(0) > 0.

Notice that the existence of such a functionF is guaranteed by the Riemann Mapping
Theorem. The functions in S are normalized by requiring that F ′(0) = 1. The
Riemann Mapping Theorem does not guarantee that there is a schlicht mapping
to any simply-connected domain but does guarantee that we can multiply a schlicht
function by some positive real number in order to map onto that domain. This positive
real number is the inner mapping radius.

In the example above with the Koebe functions, F (z) = 2
3Fk(z), and the inner

mapping radius ρO(k0) = F ′(0) = 2
3 . Because of the extremal nature of the analytic

Koebe function, it was conjectured that 2
3 ≤ ρO(f ) ≤ 1. This conjecture was shown

not to be true in the following examples by Dorff and Suffrdge [10].
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Example 3.2 This example demonstrates that the conjectured upper bound of ρO <

1 was too low. Consider the family of functions fα = h+ g constructed by shearing

h(z)− g(z) = z

1− z
with ω(z) = z2 + αz

αz + 1
,

where α ∈ R. It can be shown that if |α| ≤ 1, then fα(z) ∈ SOH .
Let |α| ≤ 1 and α �= −1, then fα(D) is a slit domain consisting of the complex

plane minus a slit along the negative real axis with the tip of the slit at 1
6α − 1

3 .
Hence, the tip can vary from− 1

6 to− 1
2 + ε. If α = −1, then f−1(D) is the half plane

Re(w) > − 1
2 . Thus, for this family of functions,

2
3 ≤ ρO(fα) < 2.

Example 3.3 This example demonstrates that the conjectured lower bound of ρO <

1 was too high. Consider the family of functions ft = h+ g constructed by shearing

Ft (z) = h(z)− g(z) = z − tz2

(1− z)2
with ω(z) = z,

where t ∈ [0, 1]. For 0 < t < 1, Ft (D) is the exterior of the parabola u > − 1−t
t2

v2 −
t+1

4 while ft (D) is the exterior of the parabola ũ > − 1
t
ṽ 2− 1

6− t
12 . It can be computed

that when t = 1
4 , ρO(ft ) is smallest, and we obtain that for 0 < t < 1,

1
2 ≤ ρO(ft ) ≤ 2

3 .

It has been proven that

1
4 ≤ ρO(f ) ≤ 8π

√
3

9 < 4.837.

Because of the way these bounds were determined, they are probably not the tightest
bounds, and it is likely they can be improved. There are no known functions in SOH
that have an inner mapping radius equal to either of these extreme values. On the
other hand, from the previous two examples, we know there are specific functions
that have ρO(f ) = 1

2 and ρO(f ) = 2. The result of ρO(f ) = 1
2 in Example 3.3 was

very surprising because this value did not come from a slit mapping. It is not known
if there is a function in SOH whose inner mapping radius is less than 1

2 or larger than 2.

Open Problem 5 Prove 1
2 ≤ ρO(f ) ≤ 2 or find a harmonic map f ∈ SOH such that

ρO(f ) < 1
2 or ρO(f ) > 2.

The definition of the inner mapping radius can be extended to functions in SH .
Let us denote the inner mapping radius of f ∈ SH by ρ(f ). It is known that

0 < ρ(f ) ≤ 2π

([4]). In [10] an example is constructed for which 0 < ρ(f ) ≤ 4.
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Open Problem 6 Prove ρ(f ) ≤ 4 or find a harmonic map f ∈ SH such that
ρ(f ) > 4.

2.4 Convolutions

The shearing technique given in Theorem 2.2 provides a way to construct harmonic
functions that are univalent. This approach requires certain conditions in order to ap-
ply the technique. Convolutions is another approach to construct harmonic univalent
functions. It also requires certain conditions in order to guarantee that the resulting
functions are univalent. In addition, the study of convolutions is an interesting topic
on its own.

The convolution of harmonic functions is a generalization of the convolution of
analytic functions which is an important area in the study of schlicht functions ([28]
for more information about the convolution of analytic functions). However, many
of the nice theorems in the analytic case do not carry over to the harmonic case.
For example, the Polya–Schoenberg conjecture which was proved by Ruscheweyh
and Sheil-Small states that convexity is preserved under analytic convolution. This
convexity preserving property does not hold for harmonic convolutions. But there are
several open areas related to harmonic convolutions to investigate. In this section we
will explore some of these. For more details about harmonic convolutions, see [6].

Let’s begin with the definition of the convolution for analytic functions.

Definition 4.1 (Analytic Convolution) Given F1,F2 ∈ S represented by

F1(z) =
∞∑
n=0

Anzn and F2(z) =
∞∑
n=0

Bnzn,

their convolution is defined as

F1(z) ∗ F2(z) =
∞∑
n=0

AnBnzn.

As mentioned above, the analytic convolution preserves convexity since F1,F2 ∈
K ⇒ F1 ∗F2 ∈ K . The algebra of convolutions is also simplified by viewing certain
functions as operators. For instance, F (z) = z

1−z is the convolution identity because
its power series is z + z2 + z3 + · · · .

We define an analogous operation for harmonic functions as follows:

Definition 4.2 Given

f1 = h1 + g1 = z +
∞∑
n=2

anzn +
∞∑
n=1

bn zn and

f2 = h2 + g2 = z +
∞∑
n=2

cnzn +
∞∑
n=1

dn zn,
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define harmonic convolution as

f1 ∗ f2 = h1 ∗ h2 + g1 ∗ g2 = z +
∞∑
n=2

ancnzn +
∞∑
n=1

bndn zn.

Harmonic convolutions involve difficulties not present in the analytic case. For
instance, it is not difficult to find f1, f2 ∈ KO

H such that f1 ∗f2 /∈ KO
H . In fact, f1 ∗f2

may even fail to be univalent. The example below illustrates this.

Example 4.3 Let fh = h1 + g1 ∈ KO
H be the harmonic right half-plane map in

Example 1.11, where

h1(z) = z − 1
2 z2

(1− z)2
, g1(z) = − 1

2 z2

(1− z)2
,

and let f2 = h2 + g2 ∈ KO
H be the canonical regular 6-gon map, where

h2(z) = z +
∞∑
n=1

1
6n+1 z6n+1, g2(z) =

∞∑
n=1

−1
6n−1 z6n−1.

Then fh ∗ f2 is not univalent, because

|(g1(z) ∗ g2(z))′/(h1(z) ∗ h2(z))′| = |z4(2+ z6)/(1+ 2z6)| ≮ 1, ∀z ∈ D.

Open Problem 7 Let f1, f2 ∈ KO
H . Since f1 ∗ f2 is not necessarily univalent, what

additional conditions can we impose upon f1, f2 so that f1 ∗ f2 ∈ SOH ?
Several researchers have recently published results related to this question [2,

5, 12, 17, 23, 24]. Let’s look at some of these results. Theorem 4.4 ([5]) gives
conditions under which local univalence of the convolution is enough to establish
global univalence.

Theorem 4.4 Let f1 = h1+ g1, f2 = h2+ g2 ∈ SOH such that hi(z)+gi(z) = z
1−z .

Let ω̃ be the dilatation of f1 ∗ f2. If |ω̃(z)| < 1 for all z ∈ D, then f1 ∗ f2 ∈ SOH and
is CHD.

Theorem 4.4 has been used to determine specific cases in which harmonic
convolutions preserve univalence. In [12], the following result is proved.

Theorem 4.5 Consider the right half-plane map

fh(z) = h1(z)+ g1(z) = z − 1
2 z2

(1− z)2
−

1
2 z2

(1− z)2
,

and let f = h + g ∈ KO
H with h(z) + g(z) = z

1−z and ω = g′/h′ = eiθ zn (n ∈
Z
+, θ ∈ R). If n = 1, 2, then fh ∗ f ∈ SOH and is CHD.

The proof of this theorem relies on properties on analytic convolutions and results
about the location of zeros of symmetric polynomials. If n > 2 in the above theorem,
then fh ∗ f fails to be univalent. In [2], we get the next theorem.
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Theorem 4.6 Let fθ = hθ + gθ , fρ = hρ + gρ ∈ SOH such that hθ (z) + gθ (z) =
hρ(z)+gρ(z) = z

1−z , g′θ /h′θ = eiθ z, and g′ρ/h′ρ = eiρz (θ , ρ ∈ R). Then fθ ∗fρ ∈ SOH
is CHD.

The following theorem was proved in [24]

Theorem 4.7 Let f = h+ g ∈ SOH with h(z)+ g(z) = z
1−z and ω(z) = z+a

1+az with
|a| < 1. Then fh ∗ f ∈ SOH and is CHD if and only if

(Re a)2 + 9 (Im a)2 ≤ 1.

There are other convolution problems that remain to be investigated. In many
theorems, the canonical harmonic right half-plane function fh is convoluted with
other harmonic functions. Can similar theorems be proven if fh is replaced with
a different function? For example, consider the harmonic mapping f1 formed by
shearing h1(z) + g1(z) = z

1−z with other dilatations such as ω(z) = eiθ z+a
1+az with

|a| < 1 or ω(z) = z.

Open Problem 8 Let f = h + g ∈ SOH with h(z) + g(z) = z
1−z and ω = g′/h′ =

eiθ zn (n ∈ Z
+, θ ∈ R). Determine the values of n for which f1 ∗ f is univalent.

Many of the harmonic convolution results, given above, require that one of the
functions be a sheared half-plane. In [12] and [17], results are proven about the
harmonic convolutions of strip mappings and polygons.

Open Problem 9 Determine more results about the convolutions of harmonic
functions that are shears of vertical strips or polygons.

2.5 Harmonic Maps and Minimal Surfaces

Planar harmonic mappings with certain properties are related to minimal surfaces in
R

3, and it is possible to use results from one area to prove new results in the other
area. Before discussing this further, we need to present some background material
about minimal surfaces.

Minimal surfaces are one solution to the problem of finding the minimal surface
area required to span a given curve. Minimal surfaces are guaranteed to minimize
area only locally but often they provide the globally-minimal solution as well. One
consequence of the area-minimizing property is that all minimal surfaces look like
saddle surfaces at each point, and the bending upward in one direction is matched by
the downward bending in the orthogonal direction (This equal-but-opposite bending
property will be defined later as “zero mean curvature.”).
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2.5.1 Background

In order to explore minimal surfaces more fully, we introduce three important con-
cepts from differential geometry, which is the study of differentiable surfaces in
space. For more details on the material from this section, [7].

A surface, M ∈ R
3, can be parametrized by a smooth function x : D → R

3

if x(D) = M and x is one-to-one. Parameterizing a surface with smooth functions
allows us to do calculus with the surface and gives us a way to translate geometric
concepts into rigorous analytic language. Isothermal parameterizations are essential
for the study of minimal surfaces. Basically, such parametrizations map small squares
to small squares. Every minimal surface in R

3 has an isothermal parametrization.
Next, we need to discuss the idea of normal curvature. At each point p on the

surface M , there is a unit normal n. The normal curvature measures how much the
surface bends toward n as you travel in the direction of the tangent vector w at p.
Specifically, given the normal vector n at each point p ∈ M , we can find a plane P
containing n that intersects M in some curve c, which has a curvature value k. As
the plane P revolves around the unit normal n at p, we get a continuous function of
curvature values k(θ ). Let k1 and k2 be the maximum and minimum curvature values
at p. The mean curvature of a surface M at p is H = 1

2 (k1 + k2).

Definition 5.1 A minimal surface is a surface M with H = 0 at all p ∈ M .
Recall that the intuition behind vanishing mean curvature is that M is a saddle

surface with positive curvature in one direction being matched by negative curvature
in the orthogonal direction.

Just as the shearing theorem links analytic function theory to harmonic function
theory, the Weierstrass Representation links harmonic function theory to minimal
surface theory.

Theorem 5.2 (General Weierstrass Representation) If we have analytic functions
ϕk (k = 1, 2, 3) such that

• φ2 = (ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 0
• |φ|2 = |ϕ1|2 + |ϕ2|2 + |ϕ3|2 �= 0 and is finite,

then the parametrization

x =
(

Re
∫
ϕ1(z)dz, Re

∫
ϕ2(z)dz, Re

∫
ϕ3(z)dz

)

defines a minimal surface.
We also have the following converse.

Theorem 5.3 Let M be a surface with parametrization x = (x1, x2, x3) and let
φ = (ϕ1,ϕ2,ϕ3), where ϕk = ∂xk

∂z .

x is isothermal ⇐⇒ φ2 = (ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 0.

If x is isothermal, then

M is minimal if and only if each ϕk is analytic.
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Fig. 2.9 The MinSurfTool applet

We can apply the above theorems to planar harmonic mappings. First, recall
f = h + g = Re(h + g) + iIm(h − g). In Theorem 5.2, choose ϕ1 = h′ + g′
and ϕ2 = −i(h′ − g′). Then we find ϕ3 that will satisfy the requirements of the
Weierstrass representation. That is,

0 = (ϕ1)2 + (ϕ2)2 + (ϕ3)2

= (
h′ + g′

)2 + [−i(h′ − g′)
]2 + (φ3)2.

Solving for ϕ3 yields (ϕ3)2 = −4h′g′, so ϕ3 = −2i
√
h′g′.

Notice that
√
h′g′ may not always exist as an analytic function, but whenever it

does, the Weierstrass representation applies. Since
√
h′g′ = h′

√
ω, it is enough for

the dilatation to have an analytic square root. Thus, we have the following result.

Theorem 5.4 (Weierstrass Representation - (h,g)) Let the harmonic mapping f =
h + g be univalent with g′/h′ being the square of an analytic function. Then the
parametrization

X =
(

Re (h+ g) , Im (h− g) , 2 Im
∫ √

h′g′
)

defines a minimal graph whose projection is f (D).
MinSurfTool [9] is another applet available online that allows for quick and easy

visualization of minimal surfaces (Fig. 2.9).

Example 5.5 Consider the harmonic map

f (z) = h(z)+ g(z) = Re
[ i

2
log

( i + z

i − z

)]
+ iIm

[1

2
log

(1+ z

1− z

)]
.
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Fig. 2.10 The image of D under f , the harmonic square map

It can be constructed by shearing h(z)− g(z) = 1
2 log

(
1+z
1−z

)
with g′(z)/h′(z) = −z2

and is therefore univalent. Note that f (D) is a square region (Fig. 2.10).
Since the dilatation is the square of an analytic function, we can apply Theorem

5.4. Then x3(z) = 2 Im
∫ √

h′g′ = 1
2 Im[i log ( 1+z2

1−z2 )].
By the Weierstrass representation, we have the parametrization of a minimal graph

given by

x =
(

Re (h+ g) , Im (h− g) , 2 Im
∫ √

h′g′
)

=
(

Re
[ i

2
log

( i + z

i − z

)]
, Im

[1

2
log

(1+ z

1− z

)]
, Im

[ i
2

log
(1+ z2

1− z2

)])
.

This minimal surface is Scherk’s doubly periodic surface. In Fig. 2.11 Scherk’s
doubly periodic surface is shown along with the corresponding harmonic map (it is
the projection of the minimal surface onto the complex plane).

We might wonder if the integrals found in the Weierstrass representations are
well-defined. In certain cases, they may indeed be multi-valued. But in such cases,
the ill-definedness reflects the fact that surface is periodic in one or more of the
coordinates, as is the case with the Scherk surfaces.

With the background we just discussed, we are ready to explore applications of
harmonic maps to minimal surface theory. Our goal is to help the reader get a sense
of some important techniques and to suggest some research areas.

2.5.2 Connecting Harmonic Maps to Specific Minimal Graphs

The Weierstrass Representation allows us to take an harmonic univalent function with
an appropriate dilatation and lift it to a minimal graph. Several recent papers have
used this technique [11, 13, 16, 18, 25, 26]. However, it is often difficult to identify
the resulting minimal graphs. One approach to recognizing the minimal surface is to
use a change of variable ([8]).
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Fig. 2.11 Scherk’s doubly periodic minimal surface

Example 5.6 Shearing h(z) − g(z) = z
(1−z)2 with ω(z) = z2 yields the univalent

harmonic slit-map

f (z) = z − z2 + 1
3 z3

(1− z)3
+

1
3 z3

(1− z)3
.

The parametrization of the corresponding minimal graph is

x =
(

Re

{
z − z2 + 2

3 z3

(1− z)3

}
, Im

{
z

(1− z)2

}
, Im

{
2z2 − 2

3 z3

(1− z)3

})
.

This is not a standard form for a known minimal surface. However, using the sub-
stitution z → z̃+1

z̃−1 and interchanging the second and third coordinate functions, we
derive the parametrization

x̃ = (− 1
4 Re

{̃
z + 1

3 z̃3
}

, 1
4 Im

{̃
z − 1

3 z̃3
}

, 1
4 Im

{̃
z 2
})
.

This is Ennepers surface. Thus, the original surface x is the part of Ennepers surface
formed by using a right half-plane as the domain instead of the standard unit disk.

Open Problem 10 Determine the minimal graphs formed by lifting harmonic
univalent mappings in any of the following papers [11, 13, 16, 25, 26].

Open Problem 11 Use the shearing technique to generate a univalent harmonic
map with a dilatation that is a perfect square and use the Weierstrass representation
to construct the minimal graph. Then determine what surface it is.
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2.5.3 Using Harmonic Maps to Find Curvature Bounds
on Minimal Graphs

Geometric function theory and Clunie and Sheil-Small’s shearing theorem allow us to
find sharp bounds on growth and other important properties of harmonic maps. Using
the Weierstrass representation we can translate these bounds to minimal graphs. In
particular, recall that at each point p of a surface S, we let k1 and k2 be the maximum
and minimum curvature values and defined the mean curvature to beH = 1

2 (k1+k2).
H is useful for characterizing minimal surfaces, but in other connections we use K ,
the Gauss curvature.

The Gaussian curvature at p is given by

K = k1k2.

The theorema eggregium of Gauss states that K is invariant under any deformation
without stretching and is thus a good intrinsic measure of curvature. The Gaussian
curvature may be put in terms of the dilatation of harmonic maps. If we denote the
dilatation byω(z) = g′(z)/h′(z), we can express the Gaussian curvature of a minimal
graph with ω2(z) = b(z) by

K(z) = −4|b′(z)|2
(1+ |b(z)|2)4|h′(z)|2 .

We can find a bound for K in terms of h and g. By the Schwarz–Pick lemma,

|b′(z)| ≤ 1− |ω|2
1− |z|2 .

Hence

|K(z)| ≤ 4

(|g′(z)| + |h′(z)|)2(1− |z|2)2
.

This last inequality can be used to find bounds over the origin of minimal graphs
over specific planner domains. In particular,

|K(0)| ≤ 4

(|h′(0)| + |g′(0)|)2
≤ 4

|h′(0)|2 + |g′(0)|2 .

If M is a minimal graph above the unit disk D and f (0) = 0, then Hall showed that

|h′(0)| + |g′(0)| ≥ 27

4π2
.

Thus for any minimal graph above the unit disk,

|K(0)| ≤ 16π2

27
.

Several papers have considered such a situation for arbitrary points on minimal
graphs over various domains. In [18], the authors considered minimal graphs over
half-planes, strips, and 1-slit domains. Papers considering minimal graphs over other
domains include [19, 20], and [26].
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Open Problem 12 Find curvature bounds over arbitrary points for minimal graphs
over domains not investigated in [18–20, 26].

2.5.4 Connecting Results About Harmonic Maps with Results
About Minimal Surfaces

Since certain types of harmonic univalent functions are related to minimal graphs, it
should be true that theorems and concepts from one field should relate to theorems
and concepts from the other field.

One example of this concerns a harmonic convolution theorem and Krust Theorem
about conjugate minimal surfaces.

Definition 5.7 Let x and y be isothermal parametrizations of two minimal surfaces
such that their component functions are pairwise harmonic conjugates. Then, x and
y are called conjugate minimal surfaces.

The helicoid and the catenoid are conjugate surfaces. Any two conjugate minimal
surfaces can be joined through a one-parameter family of associated minimal surfaces
by the equation

z = (cos t)x+ (sin t)y,

where t ∈ R.
An important theorem in minimal surface theory is Krust Theorem.

Theorem 5.8 (Krust) If an embedded minimal surface X : D → R
3 can be

written as a graph over a convex domain in C, then all associated minimal surfaces
Z : D → R

3 are graphs.
Now consider the following less well known theorem about harmonic convolu-

tions [3].

Theorem 5.9 (Clunie and Sheil-Small) If f = h+ g ∈ KH and ϕ ∈ K , then the
functions

h ∗ ϕ + αg ∗ ϕ
are univalent and close-to-convex, where (|α| ≤ 1) and ∗ denotes harmonic
convolution.

Open Problem 13 Determine theorems and properties of harmonic maps that relate
to theorems and properties of minimal surfaces.

As a second example, we will prove a result about minimal surfaces using results
from harmonic univalent mappings. In particular, we will consider a family of mini-
mal surfaces known as Scherks dihedral surfaces and determine the parameter values
for which these surfaces are embedded. First, some background information.

While minimal surfaces can be parametrized by the Weierstrass representation,
there is no guarantee the surface will not have self-intersections. Minimal surfaces
that have no self-intersections are known as embedded minimal surfaces, and they
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Fig. 2.12 Two examples from
the family of Scherks dihedral
surface

 = 4n
ϕ = π

2 ϕ = π
3

= 4n

Fig. 2.13 The projection onto
C of one piece from each
examples in Fig. 2.13

n = 4 n = 4
ϕ ϕ= π

2 = π
3

are a major interest in minimal surface theory. The family Fn(ϕ) of singly periodic
Scherk surfaces with higher dihedral symmetry have n number of vertical planes
that extend to infinity. The smallest angle, ϕ, between these symmetric planes varies
(Fig. 2.12).

We can look at the projection of one piece of these surfaces onto C which is also
the image of the unit disk under the corresponding harmonic univalent mappings
(Fig. 2.13).

These minimal surfaces are embedded, provided that

π

2
− π

n
<
n− 1

n
ϕ <

π

2
.

We can prove this inequality using results planar harmonic mappings. We
summarize the proof below.

Proof Consider the following family of harmonic maps: fn(z) = hn(z) + gn(z),
n ≥ 2, ϕ ∈ [0, π2 ], where

h′n(z) = 1

(zn − eiϕ)(zn − e−iϕ)
, g′n(z) = z2n−2

(zn − eiϕ)(zn − e−iϕ)

(Fig. 2.14).
It is known that fn = hn + gn maps D onto a 2n-gon, and in [25] it was shown

that fn is univalent and convex for every ϕ ∈ ( n
n−1 (π2 − π

n
), π2 ]. Using the Weierstrass

representation, we can lift fn to an embedded minimal surface X. Since X is over a
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Fig. 2.14 Images of the unit
disk under f = hn + gn

n = 4 n = 4 n = 4 n = 4
ϕ = π

2 ϕ = π
3 ϕ = π

6 ϕ = 0

convex domain, Krust theorem guarantees that the conjugate surfaces Y are embed-
ded. These conjugate surfaces Y are Scherk surfaces with higher dihedral symmetry
and this establishes the inequality.

Open Problem 14 Use theorems and properties about harmonic univalent map-
pings to prove results about minimal surfaces.

2.5.5 Using Harmonic Maps to Construct New Minimal Surfaces

In this section we show an example in which a harmonic univalent function is lifted
to form a minimal graph that appears to be new. The construction is outlined below.
Complete details are found in [1].

Let f = h+ g, where

h (z) = 1

2
log

(
1+ z

1− z

)

and let ω = (e
z+1
z−1 )2. Since g′ = h′ω = 1

1−z2 e
2 z+1

z−1 , we know that

g (z) = −1

2
E1

(
z + 1

−z + 1

)
+ 1

2
E1 (1) ,

where E1 (z) is the exponential integral function. By a result by Clunie and Sheil-
Small, f = h+ g is univalent. The image of f (D) is shown in Fig. 2.15.

By the Weierstrass representation f = h+ g lifts to an embedded minimal surface
(Fig. 2.16).

This surface is constructed from a harmonic univalent map that has a dilatation
being a singular inner function (i.e., a function which never equals zero and which has
modulus equal to one on the unit disk). One consequence of having such a dilatation
is that there is no (finite) point where the function is approximately analytic. This
corresponds to the idea that the minimal surface never has zero Gauss curvature. The
surface also has an infinite number of cusps and a singularity with unusual behavior.
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Fig. 2.15 The image of f (D) and a close up of that image

Fig. 2.16 Images of the minimal surface constructed from f

Open Problem 15 Construct other minimal surfaces from harmonic univalent maps
with dilatations that are singular inner functions.

Open Problem 16 Determine the necessary and sufficient conditions for a harmonic
function to have a singular inner function as its dilatation. Specifically, determine
the kind of growth and boundary behavior exhibited by such harmonic functions.
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Chapter 3
The Minimal Surfaces Over the Slanted
Half-Planes, Vertical Strips and Single Slit

Liulan Li, Saminathan Ponnusamy and Matti Vuorinen

3.1 Introduction

A planar harmonic mapping in the unit disk D = {z : |z| < 1} is a complex-valued
harmonic function f (z), defined on D. The mappingf has a canonical decomposition
f = h+g, where h and g are analytic on D and g(0) = 0. The mapping f is locally
univalent in D if and only if its Jacobian Jf (z) = |h′(z)|2 − |g′(z)|2 does not vanish
in D. It is said to be sense-preserving on D if and only if Jf (z) > 0, or equivalently
if h′(z) �= 0 in D and f satisfies the elliptic partial differential equation

fz(z) = ω(z)fz(z)

in D, where the dilatation ω(z) = g′(z)/h′(z) has the property that |ω(z)| < 1 in D.
Planar univalent harmonic mappings are used in the study of the Gaussian curva-

ture of nonparametric minimal surfaces over simply connected domains (for example
[6, 7, 9, 10, 14]). After the publication of landmark paper of Clunie and Sheil-Small
[1], considerable interest in the function theoretic properties of harmonic functions,
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quite apart from this connection, was generated. Since then, the study of univa-
lent harmonic mappings has gained much attention. The case where ω(z) is a finite
Blaschke product is of special interest, since this case arises in many different con-
texts [9, 16]. In this chapter, we shall explicitly study a connection between certain
classes of harmonic univalent mappings and minimal surfaces.

Let S be a nonparametric minimal surface over a simply connected domain Ω in
C given by

S = {(u, v,F (u, v)) : u+ iv ∈ Ω},
where we have identified R

2 with the complex plane in describing the domain of F .
The Weierstrass–Enneper representation provides the close link between harmonic
univalent mappings and the corresponding minimal graphs. Then S is a minimal
surface if and only if S has the representation of the form

S =
{(

Re
∫ z

0
φ1(t) dt + c1, Re

∫ z

0
φ2(t) dt + c2, Re

∫ z

0
φ3(t) dt + c3

)
: z ∈ D

}
,

where φ1, φ2, φ3 are analytic in D,

φ2
1 + φ2

2 + φ2
3 = 0, andf = u+ iv = Re

∫ z

0
φ1(t) dt + iRe

∫ z

0
φ2(t) dt + c (3.1)

is a sense-preserving univalent harmonic mapping from D onto Ω . For this case, we
call S a minimal graph over Ω with the projection f = u+ iv.

Further basic information about harmonic mappings and their relation to minimal
surfaces may be found in [4] and [6]. For instance, the following formulation is
well-known (see for instance [6, Sect. 10.2]).

Theorem A If f = h+g is a harmonic mapping of the form (3.1) with the dilatation
ω = b2, where b(z) = ±z, then we have

φ1 = h′ + g′, φ2 = −i (h′ − g′
)

, φ3 = 2ibh′.

Using this, Jun [11] has considered the minimal surfaces associated with the
harmonic mappings, especially whenΩ = {w : Im w > 0}. The author’s main result,
which is easy to prove, will now be recalled for the sake of convenient reference.

Theorem B ([11]) Let Ω = {w : Im w > 0} and p = p1 + ip2 be a fixed point
in Ω , where p1, p2 ∈ R. If S is a minimal surface over Ω with the projection
f = h + g, where ω(z) = g′(z)

h′(z) = b2(z) = z2, b(z) = ±z and f (0) = p, then
S = {(u, v,F (u, v)) : u+ iv ∈ Ω}, where

u = Re f (z) = p1+ ip2

2

[(
1

2
log

1+ z

1− z
+ z

(1− z)2

)
−
(

1

2
log

1+ z

1− z
+ z

(1− z)2

)]
,

v = Im f (z) = p2

2

[
1+ z

1− z
+
(

1+ z

1− z

)]
,

F = ±p2Re

(
z

(1− z)2
− 1

2
log

1+ z

1− z

)
.
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The class SH of sense-preserving harmonic univalent mappings f = h + g

(normalized so thatf (0) = 0 = h(0) andfz(0) = 1) together with its many geometric
subclasses have been extensively studied [1, 6]. Let S0

H be the subset of all f ∈ SH

in which b1 = fz(0) = 0. We remark that the familiar class S of normalized analytic
univalent functions is contained in S0

H . Every f ∈ SH admits the complex dilatation
ω of f which satisfies |ω(z)| < 1 in D. When f ∈ S0

H , we also have ω(0) = 0.
In this chapter, we discuss the minimal surfaces over the slanted half-planes,

vertical strips, and single slit whose slit lies on the negative real axis. Slanted half-
plane mappings are well suited in the study of convolution of harmonic mappings [5].
Since the slanted half-planes and vertical strips are convex domains, the following
result of Clunie and Sheil-Small is applicable for these cases.

Lemma C [1] If f = h+g is a sense-preserving univalent mapping such that f (D)
is a convex domain, then the function h+ eiβg is univalent for each β, 0 ≤ β < 2π .

3.2 Slanted Half-Plane Mappings

Throughout this chapter, we let Hγ := {w : Re (eiγw) > −1/2} be a slanted
half-plane with the parameter γ , where 0 ≤ γ < 2π .

Theorem 1 Let S be a minimal surface over Hγ with the projection f = h + g,
whose dilatation ω = g′/h′ = b2, where b(z) = ±z. Then

S = {(u, v,F (u, v)) : u+ iv ∈ Hγ } = {(u(z), v(z),F (u(z), v(z))) : z ∈ D},
where

u = π sin γ

4
− cos γ − Im

(
sin γ

4
log

z − e−iγ

z + e−iγ
+ sin 2γ

4(z − e−iγ )

)

− Re

(
cos γ

2(z − e−iγ )2
+ 3

4(z − e−iγ )

)
,

v = π cos γ

4
+ sin γ − Im

(
cos γ

4
log

z − e−iγ

z + e−iγ
− 3

4(z − e−iγ )

)

+ Re

(
sin 2γ

4(z − e−iγ )
− sin γ

2(z − e−iγ )2

)
,

F = ± Re

[
sin 2γ

4
log

z + e−iγ

z − e−iγ
+ 1

2
ei(γ+

π
2 )

1

z − e−iγ
+ i

2

1

(z − e−iγ )2

]
+ c,

if γ ∈ {π4 , 3π
4 , 5π

4 , 7π
4

}
;
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u = Im

(
sin γ

2(1− sin 2γ )
log

z + ieiγ

ieiγ
+ sin γ

2(1+ sin 2γ )
log

z − ieiγ

−ieiγ

− sin γ

cos2 2γ
log

z − e−iγ

−e−iγ
)
− cos γ

cos 2γ
− cos γ

cos 2γ
Re

e−iγ

z − e−iγ
,

v = Im

(
cos γ

2(1− sin 2γ )
log

z + ieiγ

ieiγ
+ cos γ

2(1+ sin 2γ )
log

z − ieiγ

−ieiγ

− cos γ

cos2 2γ
log

z − e−iγ

−e−iγ
)
− sin γ

cos 2γ
− sin γ

cos 2γ
Re

e−iγ

z − e−iγ
,

F = ±Re

[
log (z + ieiγ )

2(1− sin 2γ )
− log (z − ieiγ )

2(1+ sin 2γ )
− sin 2γ

cos2 2γ
log (z − e−iγ )

− ie−iγ

(z − e−iγ ) cos 2γ

]
+ c,

if γ /∈ {π4 , 3π
4 , 5π

4 , 7π
4

}
.

Proof Let f = h+ g ∈ S0
H and f (D) = Hγ . Then, we have

Re (eiγ f (z)) = Re
[
eiγ (h(z)+ e−2iγ g(z))

]
> −1

2
, z ∈ D,

so that
(
h+ e−2iγ g

)
(D) = Hγ and by Lemma C, h + e−2iγ g is a conformal

(univalent) mapping from D onto Hγ .
We now consider the function h + e−2iγ g. We may conveniently normalize it in

such a way that f (0) = h(0) = g(0) = 0. Then h(0) + e−2iγ g(0) = 0. We further
assume that

h(e−iγ )+ e−2iγ g(e−iγ ) = ∞ and h
(
e−i(π+γ )

)+ e−2iγ g
(
e−i(π+γ )

) = −1

2
e−iγ .

By the uniqueness of the Riemann mapping theorem, these observations lead to the
representation (see also [5, Lemma 1])

h(z)+ e−2iγ g(z) = z

1− eiγ z
(3.2)

from which we obtain

g(z) = − 1

z − e−iγ
− e2iγ h(z)− eiγ (3.3)

and

h′(z)+ e−2iγ g′(z) = 1

(1− eiγ z)2
.

Solving this together with g′(z) = z2 h′(z) gives

h′(z) = 1

(z2 + e2iγ )(z − e−iγ )2
and g′(z) = z2

(z2 + e2iγ )(z − e−iγ )2
.
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It is convenient to write h′(z) in the form

h′(z) = 1

(z − ei(γ+π/2))(z − ei(γ−π/2))(z − e−iγ )2
. (3.4)

In order to determine h(z) explicitly, we need to decompose it into partial fractions,
and it is also clear that we need to deal with the cases where

γ ∈
{
π

4
,

3π

4
,

5π

4
,

7π

4

}
and γ /∈

{
π

4
,

3π

4
,

5π

4
,

7π

4

}
.

Case 1 Let γ = π
4 .

In this case, h′(z) given by (3.4) takes the form

h′(z) = 1(
z + e− iπ

4

) (
z − e− iπ

4

)3

so that h′(z) has a simple pole at z = −e− iπ
4 and a pole of order 3 at z = e− iπ

4 . We
see that

h′(z) = i

8
e
iπ
4

(
1

z − e− iπ
4

− 1

z + e− iπ
4

)
− i

4

1(
z − e− iπ

4

)2 +
1

2
e
iπ
4

1(
z − e− iπ

4

)3 .

Integration from 0 to z gives

h(z) =
[

1

8
e

3iπ
4 log

z − e− iπ
4

z + e− iπ
4

+ i

4

1

z − e− iπ
4

− 1

4
e
iπ
4

1

(z − e− iπ
4 )2

]
− 1

2
e−

iπ
4 + π

8
e
iπ
4 .

(3.5)

Eq. (3.3) for γ = π
4 gives

g(z) = − 1

z − e− iπ
4

− ih(z)− e
iπ
4

so that

h(z)+ g(z) = − 1

z − e− iπ
4

+√2e−
iπ
4 h(z)− e

iπ
4

and thus, substituting the expression for h(z) defined by (3.5) yields that

h(z)+g(z) =
√

2π

8
−
√

2

2
+ i
√

2

8
log

z − e− iπ
4

z + e− iπ
4

− 3− i

4

1

z − e− iπ
4

−
√

2

4

1(
z − e− iπ

4

)2

and similarly

h(z)−g(z) = i
√

2π

8
+ i
√

2

2
−
√

2

8
log

z − e− iπ
4

z + e− iπ
4

+3+ i

4

1

z − e− iπ
4

− i
√

2

4

1(
z − e− iπ

4

)2 .
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As u = Re f (z) = Re (h(z)+ g(z)) and v = Im f (z) = Im (h(z)− g(z)), the last two
equalities give

u =
√

2π

8
−
√

2

2
− Im

(√
2

8
log

z − e− iπ
4

z + e− iπ
4

+ 1

4

1

z − e− iπ
4

)

− Re

⎛
⎜⎝
√

2

4

1(
z − e− iπ

4

)2 +
3

4

1

z − e− iπ
4

⎞
⎟⎠ ,

and

v =
√

2π

8
+
√

2

2
− Im

(√
2

8
log

z − e− iπ
4

z + e− iπ
4

− 3

4

1

z − e− iπ
4

)

+ Re

⎛
⎜⎝1

4

1

z − e− iπ
4

−
√

2

4

1(
z − e− iπ

4

)2

⎞
⎟⎠ .

Finally, as b(z) = ±z, Theorem A gives

φ3(z) = 2ibh′(z) = ±2i
z(

z + e− iπ
4

) (
z − e− iπ

4

)3

= ±2i

⎡
⎢⎣ i

8

1

z + e− iπ
4

− i

8

1

z − e− iπ
4

+ 1

4
e
iπ
4

1(
z − e− iπ

4

)2 +
1

2

1(
z − e− iπ

4

)3

⎤
⎥⎦

and therefore,

F (z) = Re
∫ z

0
φ3(z) dz + c

= ∓Re

⎡
⎢⎣1

4
log

z + e− iπ
4

z − e− iπ
4

+ 1

2
e

3iπ
4

1

z − e− iπ
4

+ i

2

1(
z − e− iπ

4

)2

⎤
⎥⎦+ c.

Case 2–4 Using the same approach as in Case 1, we get

Case 2 For γ = 3π
4 ,

F (z) = ∓Re

⎡
⎢⎣−1

4
log

z − e
iπ
4

z + e
iπ
4

− 1

2
e
iπ
4

1

z + e
iπ
4

+ i

2

1(
z + e

iπ
4

)2

⎤
⎥⎦+ c.
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Case 3 For γ = 5π
4 ,

F (z) = ∓Re

⎡
⎢⎣1

4
log

z − e
−iπ

4

z + e− iπ
4

+ e− iπ
4

2

1

z + e− iπ
4

+ i

2

1(
z + e− iπ

4

)2

⎤
⎥⎦+ c.

Case 4 For γ = 7π
4 ,

F (z) = ∓Re

⎡
⎢⎣−1

4
log

z + e
iπ
4

z − e
iπ
4

+ 1

2
e
iπ
4

1

z − e
iπ
4

+ i

2

1(
z − e

iπ
4

)2

⎤
⎥⎦+ c.

Case 5 Let γ /∈ {π4 , 3π
4 , 5π

4 , 7π
4

}
.

In this case, h′(z) given by (3.4) has simple poles at ieiγ and −ieiγ , and a pole of
order 2 at e−iγ . Thus, we may rewrite h′(z) as

h′(z) = A

z + ieiγ
+ B

z − ieiγ
+ C

z − e−iγ
+ D(

z − e−iγ
)2 ,

where A,B,C, and D can be easily computed using a standard procedure from
residue calculus or otherwise. Indeed

A = e−iγ

4(1− sin 2γ )
, B = e−iγ

4(1+ sin 2γ )
, C = − e−iγ

2 cos2 2γ
, and D = 1

2 cos 2γ
.

We observe that A+ B + C = 0. Integration from 0 to z leads to

h(z) = A log
z + ieiγ

ieiγ
+ B log

z − ieiγ

−ieiγ + C log
z − e−iγ

−e−iγ − D

z − e−iγ
−Deiγ .

(3.6)

Note that g defined by (3.3) gives

h(z)+ g(z) = − 1

z − e−iγ
− 2ieiγ h(z) sin γ − eiγ

and

h(z)− g(z) = 1

z − e−iγ
+ 2eiγ h(z) cos γ + eiγ ,

where h is defined by (3.6). By computation, we know that
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u = Im

[
sin γ

2(1− sin 2γ )
log

z + ieiγ

ieiγ
+ sin γ

2(1+ sin 2γ )
log

z − ieiγ

−ieiγ

− sin γ

cos2 2γ
log

z − e−iγ

−e−iγ
]
− cos γ

cos 2γ
Re

(
z

z − e−iγ

)
,

v = Im

[
cos γ

2(1− sin 2γ )
log

z + ieiγ

ieiγ
+ cos γ

2(1+ sin 2γ )
log

z − ieiγ

−ieiγ

− cos γ

cos2 2γ
log

z − e−iγ

−e−iγ
]
− sin γ

cos 2γ
Re

(
z

z − e−iγ

)
.

In the final case, by Theorem A, we find that

φ3(z) = 2ibh′(z) = ± 2iz

(z2 + e2iγ )(z − e−iγ )2

= ±2i

[
− i

4(1− sin 2γ )(z + ieiγ )
+ i

4(1+ sin 2γ )(z − ieiγ )

+ i sin 2γ

2(z − e−iγ ) cos2 2γ
+ e−iγ

2(z − e−iγ )2 cos 2γ

]
.

Integration from 0 to z gives

F (z) = ±Re

[
log (z + ieiγ )

2(1− sin 2γ )
− log (z − ieiγ )

2(1+ sin 2γ )
− sin 2γ

cos2 2γ
log (z − e−iγ )

− ie−iγ

(z − e−iγ ) cos 2γ

]
+ c.

The proof is completed. �

3.3 Vertical Strips

Hengartner and Schober [8] investigated the family of functions from SH that map D

onto the horizontal strip domain {w : |Im w| < π/4}. As an analogous result, Dorff
[2] considered the family SH (D,Ωα) of functions from SH which map D onto the
asymmetric vertical strip domains

Ωα =
{

w :
α − π

2 sin α
< Re w <

α

2 sin α

}
,

where π
2 ≤ α < π . Set S0

H (D,Ωα) = SH (D,Ωα) ∩ S0
H . Note that Ωπ/2 = {w :

|Re w| < π/4} and so, the class discussed by Hengartner and Schober [8] follows
by using a suitable rotation.
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Lemma 1 Each f = h+ g ∈ S0
H (D,Ωα) has the form

h(z)+ g(z) = ψ(z), ψ(z) = 1

2i sin α
log

(
1+ zeiα

1+ ze−iα

)
. (3.7)

Moreover,

h′(z) = ψ ′(z)

1+ ω(z)
, g′(z) = ω(z)ψ ′(z)

1+ ω(z)
and ψ ′(z) = 1

(1+ ze−iα)(1+ zeiα)
. (3.8)

Here ω(z) = g′(z)/h′(z) denotes the dilatation of f .

Proof The representation (3.7) is well-known, whereas (3.8) follows if we solve
the pair of equations h′(z) + g′(z) = ψ ′(z) and ω(z)h′(z) − g′(z) = 0. The proof is
complete. �

Theorem 2 Let S be a minimal surface over Ωα with the projection f = h+ g ∈
S0
H (D,Ωα), which satisfies (3.1) and whose dilatation ω = b2, where b(z) = ±z.

Then S = {(u, v,F (u, v)) : u+ iv ∈ Ωα}, where

u = 1

2 sin α
Im

[
log

(
1+ zeiα

1+ ze−iα

)]
,

v =

⎧⎪⎨
⎪⎩

Im
(

z
z2+1

)
if α = π

2 ,

1

2 cosα
Im

[
log

(
(1+ zeiα)(1+ ze−iα)

z2 + 1

)]
if π

2 < α < π

and

F =

⎧⎪⎨
⎪⎩
± Im

(
1

z2 + 1

)
+ c if α = π

2 ,

± Re
[

1
2 cosα log

(
z+i
z−i
)− 1

sin 2α log
(

z+eiα
z+e−iα

)]
+ c if π

2 < α < π.

Proof Let f = h+ g ∈ S0
H (D,Ωα) with ω(z) = z2. Then by Lemma 1, we have

h′(z) =
⎧⎨
⎩

1
(z+i)2(z−i)2 if α = π

2 ,
1

(z+i)(z−i)(z+eiα )(z+e−iα ) if π
2 < α < π.

(3.9)

Case (i) Let π
2 < α < π . The partial fraction expansion of h′(z) in (3.9) yields

h′(z) = − 1

4 cosα

(
1

z + i
+ 1

z − i

)
+ 1

(e−iα − e3iα)(z + eiα)

+ 1

(eiα − e−3iα)(z + e−iα)
.

Integration from 0 to z gives

h(z) = − 1

4 cosα
log (z2 + 1)+ 1

e−iα − e3iα
log

(
1+ ze−iα

)
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+ 1

eiα − e−3iα
log

(
1+ zeiα

)
,

which simplifies to

h(z) = − 1

4 cosα
log (z2 + 1)+ ie−iα

2 sin 2α
log (1+ ze−iα)− ieiα

2 sin 2α
log (1+ zeiα).

(3.10)

By using (3.7), we obtain that

u = Re (h(z)+ g(z)) = 1

2 sin α
Im

(
log

(
1+ zeiα

1+ ze−iα

))
.

Writing h(z)−g(z) = 2 h(z)− (h(z)+g(z)) and using (3.7) and (3.10), we can easily
find that

h(z)−g(z) = − 1

2 cosα
log (z2+1)+ 1

2 cosα
log

(
1+ ze−iα

)+ 1

2 cosα
log

(
1+ zeiα

)

which gives

v = Im (h(z)− g(z)) = 1

2 cosα
Im

(
log

(1+ zeiα)(1+ ze−iα)

z2 + 1

)
.

In this case, φ3 given by Theorem A takes the form

φ3(z) = ± 2iz

(z + i)(z − i)(z + eiα)(z + e−iα)

= ±2i

[
i

4 cosα

(
1

z + i
− 1

z − i

)
+ 1

2i sin 2α

(
1

z + eiα
− 1

z + e−iα

)]
.

Integration from 0 to z gives

F = ±Re

[
1

2 cosα
log

(
z + i

z − i

)
− 1

sin 2α
log

(
z + eiα

z + e−iα

)]
+ c.

Case (ii) Let α = π
2 . Using the same approach as in Case (i), we derive

u = 1

2
Im

(
log

(
i − z

i + z

))
, v = Im

(
z

z2 + 1

)

and thus,

F = ±Im

(
1

z2 + 1

)
+ c.

The proof is completed. �
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Fig. 3.1 Case 1: γ = π/4 of Theorem 1

Fig. 3.2 Case 2: γ = 3π/4 of Theorem 1

3.4 Single Slit

Finally, we consider single slit domain L whose slit lies on the negative real axis.
Moreover, by the result of Livingston [12] (see also [13] and Dorff [2, Corollary 2])
it follows that if f = h + g ∈ S0

H is a slit mapping whose slit lies on the negative
real axis, then one has

h(z)− g(z) = z

(1− z)2
. (3.11)
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Fig. 3.3 Case 5 with γ = π/2 of Theorem 1

Fig. 3.4 Case 5 with γ = 0 of Theorem 1

Theorem 3 Let S be a minimal surface over L with the projection f = h + g ∈
S0
H , which satisfies (3.11) and whose dilatation ω = b2, where b(z) = ±z. Then

S = {(u, v,F (u, v)) : u+ iv ∈ L}, where

u = Re

(
2z3 − 3z2 + 3z

3(1− z)3

)
, v = Im

(
z

(1− z)2

)
,

and

F = ±Im

(
1

(z − 1)2
+ 2

3(z − 1)3

)
+ c.

Proof By assumption, f = h+ g ∈ S0
H is a single slit mapping whose slit lies on

the negative real axis with ω(z) = z2. Then (3.11) holds and therefore, we have

h′(z)− g′(z) = 1+ z

(1− z)3
and g′(z) = z2 h′(z).
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Fig. 3.5 Illustration for α = π/2 of Theorem 2

Fig. 3.6 Illustration for α = 3π/4 of Theorem 2

Solving these two equations, we obtain

h′(z) = 1

(1− z)4
.

Integrating from 0 to z yields

h(z) = −1

3
+ 1

3(1− z)3
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Fig. 3.7 Illustration for Theorem 3

and so

g(z) = h(z)− z

(1− z)2
= −1

3
+ 1

3(1− z)3
− z

(1− z)2
,

which, by using the previous equation, gives

h(z)+ g(z) = 2z3 − 3z2 + 3z

3(1− z)3
.

The desired representations for u = Re (h(z)+g(z)) and v = Im (h(z)−g(z)) follow
easily.

Finally, since

φ3(z) = ±2izh′(z) = ± 2iz

(1− z)4
= ±2i

(
1

(1− z)4
− 1

(1− z)3

)
,

integrating this from 0 to z yields

F = ±Im

(
1

(z − 1)2
+ 2

3(z − 1)3

)
+ c.

The proof is completed. �

Independently, Theorem 3 has been proved by Dorff and Muir in [3].

3.5 Illustration Using Mathematica

In [3], the authors showed that in Theorem 1 with γ = 0, the corresponding minimal
surface is the wavy plane, and in Theorem 3 the corresponding minimal surface is
an Enneper surface. Also in [3] and [9], it was shown that in Theorem 2 with α = π

2 ,
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the corresponding minimal surface is a part of the helicoid. It would be interesting
to determine the various minimal surfaces for other values of γ and α in Theorems
1 and 2.

The images of the disk |z| < r for r closer to 1 under f = h + g for various
cases of Theorem 1 and the corresponding minimal surfaces associated with f are
illustrated in Figs. 3.1, 3.2, 3.3, 3.4. Similar illustrations for Theorem 2 (Figs. 3.5
and 3.6) and Theorem 3 (Fig. 3.7) are also provided. These figures are drawn using
Mathematica (see for example [15]).

Acknowledgements The research of Liulan Li was supported by National Science Foundation
(NSF) of China (No. 11201130), Hunan Provincial Natural Science Foundation of China (No.
14JJ1012) and construct program of the key discipline in Hunan province. Saminathan Ponnusamy
is currently on leave from the Department of Mathematics, Indian Institute of Technology Madras,
Chennai-600 036, India. The research of Matti Vuorinen was supported by the Academy of Finland,
Project 2600066611. The authors thank the referee for useful comments.

References

1. Clunie, J.G., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I 9,
3–25 (1984)

2. Dorff, M.: Harmonic univalent mappings onto asymmetric vertical strips. In: Papamichael,
N., Ruscheweyh, St., Saff, E.B. (eds.) Computational Methods and Functional Theory 1997,
171–175. World Scientific Publishing, River Edge (1999)

3. Dorff, M., Muir, S.: A family of minimal surfaces and univalent planar harmonic mappings.
Abstr. Appl. Anal. 2014, 8 (2014). (Art. 1988. ID476061)

4. Dorff, M., Rolf, J.S.: Soap films, differential geometry and minimal surfaces. In: Dorff, M. (ed.)
Explorations in Complex analysis, Classroom Resource Material, pp. 85–159. Mathematical
Association of America, Washington, DC (2012)

5. Dorff, M., Nowak, M., Wołoszkiewicz, M.: Convolutions of harmonic convex mappings.
Complex Var. Elliptic Equ. 57(5), 489–503 (2012)

6. Duren, P.: Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156.
Cambridge University Press, Cambridge (2004)

7. Heinz, E.: Über die Losungen der Minimalflachengleichung. Nachr. Akad. Wiss. Gott. Math.
Phys. K1, 51–56 (1952)

8. Hengartner, W., Schober, G.: Univalent harmonic functions. Trans. Am. Math. Soc. 299(1),
1–31 (1987)

9. Hengartner, W., Schober, G.: Curvature estimates for some minimal surfaces. In: Hersch, J.,
Huber, A. (eds.) Complex Analysis, pp. 87–100. Birkhauser, Basel (1988)

10. Jun, S.H.: Curvature estimates for minimal surfaces. Proc. Am. Math. Soc. 114(2), 527–553
(1992)

11. Jun, S.H.: Mappings related to minimal surfaces. J. Chung. Math. Soc. 16(4), 313–318 (2006)
12. Livingston, A.E.: Univalent harmonic mappings. Ann. Polon. Math. 57(1), 57–70 (1992)
13. Livingston, A.E.: Univalent harmonic mappings II. Ann. Polon. Math. 67(2), 131–145 (1997)
14. Nowak, M., Wołoszkiewicz, M.: Gauss curvature estimates for minimal graphs. Ann. Univ.

Mariae Curie-Skłodowska Sect. A 65(2), 113–120 (2011)
15. Ruskeepää, H.: Mathematica Navigator, 3rd ed. Academic Press, Boston (2009)
16. Sheil-Small, T.: On the Fourier series of a step function. Mich. Math. J. 36, 459–475 (1989)



Chapter 4
A Survey On Some Special Classes of Bazilevič
Functions and Related Function Classes

Pravati Sahoo and R. N. Mohapatra

4.1 Introduction

In this chapter we are mainly concerned with the the functions of the form

f (z) = z +
∞∑
n=2

anzn (4.1)

that are analytic in the unit disk Δ = {z ∈ C : |z| < 1}. The family A of all
functions of the form (4.1) is the class of normalized functions f (z) in Δ such that
f (0) = f ′(0) − 1 = 1. S is a subfamily of A consisting of functions univalent in
Δ; that is, f ∈ S, if and only if f ∈ A and f (z1) �= f (z2) for z1 �= z2, whenever,
z1, z2 ∈ Δ. The Koebe function,

k(z) = z

(1− z)2
= z +

∞∑
n=2

nzn, z ∈ Δ

and its rotations kε(z) = z
(1−εz)2 , |ε| = 1, are extremal for many problems in S.

The Koebe function k(z) maps Δ onto the whole complex plane with a slit along
the negative real axis from −1/4 to −∞ and kε(z) maps Δ onto the complement
of the ray {z : z = −t ε̄, t ≥ 1/4}. In 1916, Bieberbach state a conjecture that
|an| ≤ n for f ∈ S, with equality only for Koebe function. Many powerful new
methods, criterions were developed and a large number of problems were generated
in attempts to prove this conjecture. At last, this was settled by Louis De Branges in
1985 [7]. The proof also opened a new era of application of special functions in the
study of univalent function theory.
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Failure to settle the Biberbach conjecture for about 70 years led to the introduction
and investigation of several subclasses of S. An important subclass is S∗, the set of
functions that mapsΔ onto a star-shaped domain with respect to the origin. A domain
D is said to be star shaped if the line segment joining the origin to any other point
of D lies completely in D. Clearly, Koebe function belongs to S∗. It is well-known
that f ∈ S∗, if and only if Re( zf ′(z)

f (z) ) > 0, z ∈ Δ. Another important subclass of
S is the class C of functions which maps Δ onto a convex domain. A domain is
said to be convex, if the line joining any two points on D lies completely in D. It
is well-known that f ∈ C, if and only if Re(1 + zf ′′(z)

f ′(z) ) > 0, z ∈ Δ, from which
it follows that zf ′(z) ∈ S∗. Koebe function does not belong to C. Hence, it follows
that C ⊂ S∗ ⊂ S. Similarly, the classes S∗(α) and C(α) are the classes of starlike
functions of order α and convex functions of order α, respectively. It is also well-
known that f ∈ S∗(α), if and only if Re( zf ′(z)

f (z) ) > α and f ∈ C(α), if and only if

Re(1+ zf ′′(z)
f ′(z) ) > α, z ∈ Δ. The later two classes are subclasses of S, only if α > 0

and if α > 1, then the classes contains only the trivial function f (z) = z.
Many extremal properties of S and S∗ are same because the Koebe functions are

often extremal in the whole class S. Since S∗ is a proper subclass of S, the largest
disk |z| < r < 1 that is mapped by all f (z) ∈ S onto a star-shaped domain, certainly
can not be found by considering only functions in S∗. It is therefore of interest
to find subclass M of S for which S∗ ⊂ M ⊂ S. One such class is the class of
θ − spirallikef unctions, which was introduced by Špaček [66]. He showed, if for
f (z) ∈ A, Re( zf ′(z)

f (z) ) > 0 then f ∈ S. Without loss of generality, η can be replaced

by eiθ , −π/2 ≤ θ ≤ π/2. Let Sp denote the set of all θ − spirallikef unctions,
that is

Sp =
{
f ∈ A : Re

(
eiθ

zf ′(z)

f (z)

)
> 0, z ∈ Δ, −π/2 < θ < π/2

}

For θ = ±π/2, Sp will contain only the identity functions f (z) = z. The function
called θ − spiral Koebe f unction kθ (z) = z

(1−z)2e−iθ cos θ
∈ Sp but kθ /∈ S∗. This

shows that S0 ≡ S∗ and C ⊂ S∗ ⊂ Sp ⊂ S.
In 1955, Kaplan [16], defined the close-to-convex function as: A function f (z) ∈

A is said to be close-to-convex in Δ, if there is a function φ(z) in C and a real β such
that Re{e−iβ f ′(z)

φ′(z) } > 0 for z ∈ Δ. K denotes the set of all close-to-convex functions.
Many other subclasses of S have been introduced but we are not going to include
them here, it will take us away from our desired goal.

In 1955, Bazilevič [2], was able to obtain a structural formula for a sufficiently
large class of functions from S which contains the subclass Sp and K.

A function f (z) ∈ A is said to be Bazilevič of type (α,β), if f (z) is of the form

f (z) = z

{
(α + iβ)z−(α+iβ)

∫ z

0

(
g(t)

t

)α

h(t)t (α+iβ−1) dt

}1/(α+iβ)

,

where z ∈ Δ− {0}, g ∈ S∗, and Re(eiγ h(z)) > 0 in Δ for some α > 0, γ , β ∈ R.
More precisely, a function f (z) ∈ A is said to be Bazilevič of type μ = α + iβ
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(α ≥ 0, β ∈ R), if f (z) satisfies the differential equation

f ′(z)

(
z

f (z)

)1−μ
=
(
g(z)

z

)α

h(z). (4.2)

The collection of univalent functions that satisfies (4.2) is called Bazilevič functions
of type (α,β) and is often denoted by B(α,β) and B = ⋃

α,β B(α,β). Particular
choices of the parameters α,β, and the functions g(z), h(z) yield convex, starlike,
close-to-convex, and spiral like functions, see the books by Duren [6] and Goodman
[12]. B, the class of Bazilevič functions is the largest known subclass of S.

In 1971, Sheil-Small [63] gave a geometric proof of Bazilevič theorem and
presented an intrinsic characterization of this result along the lines of Kaplan’s
characterization of the close-to-convex functions [16].

Also in [20], it is shown that C ⊂ S∗ ⊂ Sp ⊂ K ⊂ B ⊂ S.
For the special case g(z) = z, β = 0, and α = μ ∈ R, the class B can be written

in general as

Uh(μ) =
{
f ∈ A : Re

(
z

f (z)

)1−μ
f ′(z) ≺ h(z), z ∈ Δ

}
,

where ≺ stands for subordination. We say for f , g ∈ A, f is subordinate to g

(f ≺ g), if there is a Schwarz’ function w(z) (i.e., |w(z)| ≤ |z|, z ∈ Δ), such that
f (z) = g(w(z)). In another way we can write for f , g ∈ S, f ≺ g, if f (0) = g(0)
and f (Δ) ⊂ g(Δ).

In the existing literature, Uh(μ) has been studied extensively for different choices
of h(z). The followings are some of the subclasses of B so also S, which are derived
from Uh(μ).
1. For the convex function h(z) = 1+z

1−z , α = −μ, andμ < 0, the class Uh(μ) becomes

B(μ) =
{
f ∈ A : Re

((
z

f (z)

)1+μ
f ′(z)

)
> 0, z ∈ Δ

}
,

which has been introduced in [19].
2. For 0 ≤ λ < 1, μ < 0, and for the convex function h(z) = 1+(1−2λ)z

1−z , the class
Uh(μ) becomes

B1(λ,μ) =
{
f ∈ A : Re

((
z

f (z)

)1+μ
f ′(z)

)
> λ, z ∈ Δ

}
,

which was introduced in [28].
3. For 0 < λ < 1, μ < 0, and for the function h(z) = 1 + λz, the class Uh(μ)
becomes

B1(λ,μ) =
{
f ∈ A :

∣∣∣∣∣
(

z

f (z)

)1+μ
f ′(z)− 1

∣∣∣∣∣ < λ, z ∈ Δ
}

,

which has been introduced by Ponnusamy in [46].
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In 1983, Sheil-Small [64], obtained that if f satisfies the condition
∣∣∣∣∣arg

(
eiγ

(
z

f (z)

)μ+1

f ′(z)

)∣∣∣∣∣ ≤
(1− 2μ)π

2
, z ∈ Δ, (4.3)

for suitable γ ∈ R, then f ∈ S for μ ≤ 1/2 and for μ = 1/2, f is spiral like. Thus,
the above result showed that the range ofμ can be extended fromμ < 0 to μ ≤ 1/2.
So, for the Eq. (4.3), natural question aroused that, how to determine the region Ω
of the complex plane such that

(
z

f (z)

)μ+1

f ′(z) ∈ Ω , z ∈ Δ, (4.4)

implies that f is univalent. In particular, the problem forΩ = {w ∈ C : |w−1| < λ}
and determining the condition on λ, so that f satisfies the condition (4.4), is starlike,
convex, if 0 < μ ≤ 1. Thus, one can still get univalent functions f having a
clear analytical description without being in B, which has been considered to be the
largest known subclass of S. So in this light, in 1999, Obradovic [31] introduced the
following class for μ > 0

U(λ,μ) =
{
f ∈ A :

∣∣∣∣∣
(

z

f (z)

)1+μ
f ′(z)− 1

∣∣∣∣∣ < λ, z ∈ Δ
}

For μ = 1 and λ = 1, the class

U(1, 1) := U =
{
f ∈ A :

∣∣∣∣∣
(

z

f (z)

)2

f ′(z)− 1

∣∣∣∣∣ < 1, z ∈ Δ
}

was introduced in 1972 by Ozaki and Nunokowa in [43]. In [28], Obradovic
established the following result:

Theorem 1 If f ∈ U , then
z

f (z)
≺ (1+ z)2 for z ∈ Δ.

This relation is valid for the starlike functions also. So it is possible to suppose that
U ⊂ S∗. But Koebe function z/(1− z)2 belongs to U and does not belong to S∗(α),
for α > 0. Similarly, the bounded analytic function f (z) = z + z2

2 ∈ U but does not
belong to S∗(α), for α > 0. Thus U �⊂ S∗(α), for any positive α. This inspired many
mathematicians to define subclasses which will be contained in S∗(α), for α > 0.
So in an attempt to solve this problem one subclass U(λ) is introduced by Obradovič
in [29]. For 0 < λ ≤ 1 and μ = 1, the class

U(λ, 1) := U(λ) =
{
f ∈ A :

∣∣∣∣∣
(

z

f (z)

)2

f ′(z)− 1

∣∣∣∣∣ < λ, z ∈ Δ
}

was introduced in [28].
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4.2 Characterization of the Classes U and U (λ)

In 1972, Ozaki and Nunokowa [43] introduced the class U which is a special case of
the class U(λ,μ) forμ = 1 and λ = 1, and the authors have proved that U ⊂ S. This
is the origin of the problems involving the the class U(λ,μ). In 1998, Obradovic [29]
introduced the class U(λ), which is a special case of the class U(λ,μ) for μ = 1, and
proved that U(λ) ⊂ S for 0 < λ ≤ 1[1, 43]. Also observed the following remarks.

Remark 1 For λ > 1, U(λ) need not be univalent.
The class U(λ) is an interesting class as it contains Koebe function, which

provides solution to many extremal function.

Remark 2 For the function

f (z) = z

1+ 1
2 iz + 1

2λe
iβz3

,

where 0.87 · · · =
√

10−√2

2
< λ ≤ 1

and

arcsin
2− λ2

√
2λ

− π

4
< β <

3π

4
− arcsin

2− λ2

√
2λ

we have f ∈ U(λ) and f /∈ S∗(β) [28]. Also in [26], it was shown that

U(λ) �⊂ S∗, 0 < λ < 1.

More information on the structure of the functions of the class U is given in the
following results.

Theorem 2 [39] If f ∈ U , then

z

f (z)
= 1− f ′′(0)

2
z − z

∫ z

0

w(t)

t2
dt , z ∈ Δ,

where w ∈ H and |w(z)| < 1, z ∈ Δ, w(0) = w′(0) = 0.

Theorem 3 If f ∈ U , then

(i)

∣∣∣∣ z

f (z)
− 1

∣∣∣∣ ≤ |z|
( |f ′′(0)|

2
+ |z|

)
, z ∈ Δ

(ii) Re

(
z

f (z)

)
> 0 for all |z| < 1

4 (
√

16+ |f ′′(0)|2 − |f ′′(0)|)

This result is sharp as the function

f (z) = z

1− az − z2
(0 ≤ a ≤ 2)

shows for z = r > 0.
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4.2.1 Starlike-ness Conditions for the Class U and U(λ)

Since U(λ) �⊂ S∗ for 0 < λ < 1, z ∈ Δ, so it is of interest to find a disc |z| < r ,
where we can have star-likeness, convexity, or other properties. In that sense, we cite
the next few results.

Theorem 4 [38]. Let f (z) = z + a2z2 + · · · ∈ U with 0 < |a2| = a ≤ 2, then

(a) Re

{
zf ′(z)

f (z)

}
> 0, |z| < r1(a), where r1(a) ∈ (0, 1), is the positive root of the

equation
2r4 + 2ar3 + a2r2 − 1 = 0.

(b)

∣∣∣∣ zf
′(z)

f (z)
− 1

2β

∣∣∣∣ < 1

2β
, |z| < r , where β and r given by

β =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− r(a + r)

1+ r2
, 0 < r ≤ 2√

a2 + a + 8
= r2(a)

1− [(r(a + r))2 + r4]

2(1− r4)
, r2(a) < r < r1(a)

where r1(a) as in (a).

(c)

∣∣∣∣ f (z)

zf ′(z)
− 1

∣∣∣∣ < r ≤ 1, |z| < r , 0 < r ≤ 2√
a2 + a + 12

.

Theorem 5 If f = z+ a2z2+· · · ∈ U , then f is convex at least in the disc |z| < r ,
where r is the smallest positive root of the equation

7r4 + 5|a2|r3 − 8r2 − 3|a2|r + 1 = 0.

In the next theorem the author [30] gives a sufficient condition for a function f ∈ A
to be in the class U .

Theorem 6 f ∈ A and let

Re

{
zf ′(z)

f (z)
− 1

2

zf ′′(z)

f ′(z)

}
>

3

4
, z ∈ Δ.

Then f ∈ U .
As it is mentioned in Remarks 1 and 2 that U �⊂ S∗(α), α > 0, and U(λ) �⊂ S∗,

λ < 1, so it is of interest to find suitable conditions on λ0 < 1 such that for
0 < λ < λ0, U(λ) is included in S∗, S∗(α), Sα , S∗α , C, Rα or some other well-known
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subclasses of S. Here

Sα =
{
f ∈ A :

zf ′(z)

f (z)
≺
(

1+ z

1− z

)α

, z ∈ Δ
}

is the class of strongly starlike functions of order α, (0 < α ≤ 1).

S∗α =
{
f ∈ S∗(α) :

∣∣∣∣ zf
′(z)

f (z)
− 1

∣∣∣∣ < 1− α, z ∈ Δ
}

and
Rα =

{
f ∈ A : Ref ′(z) > α z ∈ Δ} .

Next, we cite the following results due to Obradovič et al. [40].

Theorem 7 Let f ∈ U(λ) and γ ∈ [0, 1]. Define

λ∗γ =
−|f ′′(0)| cos (πγ/4)+ sin (πγ/4)

√
16 cos2 (πγ/4)− |f ′′(0)|2

2 cos (πγ/4)

and λR
γ is given by the inequality

sin
πγ

2

√
4− λ2 ≥ (|f ′′(0)| + λ

)√
4− (|f ′′(0)| + λ)2 + λ cos (πγ/2).

Then

(i) f ∈ U(λ) ⇒ f ∈ Sγ for 0 < λ ≤ λ∗γ /2
(ii) f ∈ U(λ) ⇒ f ∈ Rγ for 0 < λ ≤ λR

γ /2.

Theorem 8 Let f (z) = z +∑∞
n=2 anzn,

λ∗ = −|a2| +
√

2− |a2|2
2

and λR =
√

8|a2| + 9− (4|a2| + 1)

4
.

Then

(a) f ∈ U(λ) ⇒ f ∈ S∗ for 0 < λ ≤ λ∗
(b) f ∈ U(λ) ⇒ f ∈ R1 for 0 < λ ≤ λR.

Theorem 9 Let f ∈ U(λ), λ∗γ and λR
γ be in Theorem 7. Then

(i) For λ∗γ /2 ≤ λ ≤ 1, f (z) is strongly starlike in |z| < r∗λ,γ , where, r∗λ,γ is the
positive root of the equation Eλ,γ (r) = 0, and

Eλ,γ (r) = 2λ2r4[(1+ cos (πγ/2))+ 2λ|f ′′(0)|r3(1+ cos (πγ/2))

+|f ′′(0)|2r2 − 4 sin2 (πγ/2)]
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(ii) λR
γ /2 ≤ λ ≤ 1, f ∈ Rγ in |z| < rR

λ,γ , where γ ∈ (0, 1] and 0 < rR
λ,γ < 1 are

related by

2− (|f ′′(0)|r + λr2)2 ≥ λr2 sin (πγ/2)+
√

4− λ2r4 cos (πγ/2).

Example 1 Let f (z) = z +∑∞
n=2 anzn, λ ∈ (0, 1]. Then

(i) 0 < λ ≤ 1− 4|a2|
7

, we have

f ∈ U(λ) ⇒ zf ′(z)

f (z)
≺ 2(1− z)

2− z
, z ∈ Δ.

(ii)
1− 4|a2|

7
< λ ≤ 1, we have

f (z) ∈ U(λ) ⇒ rzf ′(rz)

f (rz)
≺ 2(1− rz)

2− rz
,

where r =
√

4|a2|2 + 7λ− 2|a2|
7λ

.

Theorem 10 Let f ∈ U(λ) with f ′′(0) = 0 and γ ∈ (0, 1]. Then we have the
following:

(i) f ∈ Sγ for 0 < λ ≤ sin (πγ/4). In particular, f ∈ S∗ whenever 0 < λ ≤
1/
√

2.

(ii) f ∈ Sγ in |z| <
√

sin (πγ/4)
λ

, if sin (πγ/4) < λ ≤ 1. In particular, f ∈ S∗ in

|z| < 1/
√√

2λ whenever 1/
√

2 < λ ≤ 1.
(iii) f ∈ Rγ for 0 < λ ≤ sin (πγ/6). In particular, U(λ) ⊂ R1 for 0 < λ ≤ 1/2.

(iv) f ∈ Rγ in |z| <
√

sin (πγ/6)
λ

, if sin (πγ/6) < λ ≤ 1. In particular, f ∈ R1 in

|z| < 1/
√

2λ whenever 1/2 < λ ≤ 1.

Example 2 Let f ∈ U(λ), with a2 = 0. Then

•
zf ′(z)

f (z)
≺ 1+ z when 0 < λ ≤ 1

3
. But f ∈ S∗ whenever 0 < λ ≤ 1√

2
.

•
zf ′(z)

f (z)
≺ 2(1− z)

2− z
whenever 0 < λ ≤ 1

7
.

• U(λ) ⊂ R1 for 0 < λ ≤ 1

2
[40].



4 A Survey On Some Special Classes of Bazilevič Functions . . . 71

4.3 Characterization of the Class U (λ, μ)

In 1998, Obradovic [29] introduced and studied the class U(λ,μ) which generalizes
the class U(λ). In this section we discuss the historic development of this class and
its coefficient properties.

In 1995, Ponnusamy [45] showed that, if 0 < λ ≤ 2/
√

5 and h ∈ A satisfies
|h′(z) − 1| < λ in Δ, then h ∈ S∗(α), where α = (2 − λ

√
5)/(2 + λ) by using the

method of differential subordination.

Theorem 11 Let λ ∈ [0, 1] and |h′(z)− 1| < λ in Δ, then h ∈ S∗(β), where

β =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− λ

1+ λ/2
, 0 ≤ λ ≤ 2/3,

4− 5λ2

2(4− λ2)
, 2/3 ≤ λ < 1.

Next we sate an important convolution result due to Ruschweh and Sheil-Small
[58], which is very useful to evaluate sharp bounds.

Theorem 12 Let Φ,Ψ ∈ C and suppose f ≺ Ψ . Then f ∗Φ ≺ Ψ ∗Φ.
By using Theorem 12, Ponnusamy and Singh [51] proved the following improved

version of the Theorem11,

Theorem 13 Let 0 < λ ≤ 2/
√

5 and |h′(z)− 1| < λ in Δ, then h ∈ S∗(β), where

β =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− λ

1+ λ/2
, 0 ≤ λ ≤ 2/

√
5,

4− 5λ2

2(4− λ2)
, 2/

√
5 ≤ λ < 1.

With the help of the above theorem, Ponnusamy [47] gave a sufficient condition
for a function in U(λ,μ) to be in the class of bounded starlike functions.

Theorem 14 If μ < 0, 0 < α ≤ 1, f ∈ A and
∣∣∣∣∣f ′(z)

(
z

f (z)

)μ+1

− 1

∣∣∣∣∣ <
(1− μ)α

1− αμ− 2μ
, z ∈ Δ,

then f ∈ Sα .
Also in [47], the author found a similar type of result which dealt with an integral

operator:
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Theorem 15 Let μ < 0, Rec > μ, and 0 < λ ≤ (|c−μ+1|(1−μ))/(|c−μ|(1−
3μ)). If f ∈ U(λ,μ), then F ∈ Sα , where

α = (1− 2μ)(λ(c − μ)/(c − μ+ 1))

1− μ(λ(c − μ)/(c − μ+ 1))

and

F (z) = z

[
c − μ

zc−μ

∫ z

0

(
t

f (t)

)μ

tc−μ−1 dt

]− 1
μ

. (4.5)

Later on, Obradović introduced and studied the generalized class U(λ,μ) for the
higher range of μ, that is, for μ > 0 in [31]. In the next section, we state some
results on the same class for the higher range of μ.

4.3.1 Starlikeness Condition for the Class U(λ,μ) with Higher
Range of μ

Obradovic [31] proved the following results for 0 < μ < 1.

Theorem 16 [31] Let f ∈ U(λ,μ), 0 < μ < 1. Then we have the representation

(
z

f (z)

)μ

= 1− μλ

∫ 1

0

w(z)

tμ+1
dt ,

where w ∈ H, w(0) = 0, |w(z)| < 1, for z ∈ Δ.

Theorem 17 [31] Let f ∈ U(λ,μ), 0 < μ < 1, and

0 < λ ≤ min

{
1,

1− μ

μ

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 < μ ≤ 1/2

1− μ

μ
, 1/2 ≤ μ < 1,

then Re{( z
f (z) )

μ} > 0, for z ∈ Δ.

Theorem 18 [31] Let f ∈ U(λ,μ), 0 < μ < 1, and 0 < λ ≤ 1− μ√
(1− μ)2 + μ2

,

then U(λ,μ) ⊂ S∗.

By the help of Theorem 16, Obradovic derived the following sufficient condition for
the function in U(λ,μ) to be in the class of starlike functions.
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Theorem 19 [31] Let f ∈ U(λ,μ), 0 < μ < 1, and 0 < λ ≤ 1−μ
1+μ , then f is a

starlike function and

| zf
′(z)

f (z)
− 1| < 1, f or z ∈ Δ

.

Theorem 20 [31] Let f ∈ U(λ,μ), 1
2 ≤ μ < 1. Then, Re (f ′(z)) > 0, z ∈ Δ, for

0 < λ ≤ λ0, where λ0 is the smallest positive root of the equation

a2λ2(3− 4a2λ2)2 + λ2 − 1 = 0, a = μ

1− μ
.

Theorem 21 [29] Let f ∈ U(λ,μ), 0 < μ < 1 and let for c > μ, F (z) is defined
by (4.5). Then

(a) F ∈ S∗ for
(c − μ)λ

1+ c − μ
≤ 1− μ√

(1− μ)2 + μ2
, 0 < μ < 1

(b) F ∈ S∗(β), where

β =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− λ1

1+ λ2
, 0 < λ1 < 1− μ

1− (λ2
1 + λ2

2)

2(1− λ2
2)

, 1− μ ≤ λ1 ≤ 1− μ√
(1− μ)2 + μ2

and λ1 = (c − μ)λ

1+ c − μ
, λ2 = μ

1− μ
, 0 < μ < 1/2.

Remark 3 U(λ, 1) is not included in S∗ for λ < 1 but on the other hand f ∈ U2(λ, 1)

(a2 = 0) is seen to be in S∗ whenever 0 < λ ≤ 1√
2

[40].

This remark opened the door for the functions of missing coefficients which will
extend the range of μ beyond the unit interval. In 2005, Ponusamy and Sahoo [48]
introduced the class

Un(λ,μ) =
{
f ∈ An :

∣∣∣∣∣f ′(z)

(
z

f (z)

)μ+1

− 1

∣∣∣∣∣ < λ, z ∈ Δ
}
≡ An ∩ U(λ,μ),

where 0 < μ < n, for a fixed n ∈ N and An, to be the class of the functions in
A with first n missing coefficients. The case μ = n, which does produce a slightly
different implication, has been discussed in [49]. We next cite some results on the
class U(λ,μ) with higher range of μ.

Theorem 22 Let γ ∈ (0, 1], n ≥ 1, μ ∈ (0, n) and

λ∗(γ ,μ, n) = (n− μ) sin (γπ/2)√
(n− μ)2 + μ2 + 2μ(n− μ) cos (γπ/2)

.

If f ∈ Un(λ,μ), then f ∈ Sγ for 0 < λ ≤ λ∗(γ ,μ, n).
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Theorem 23 If f ∈ Un(λ,μ) and 0 < λ ≤ n− μ√
(n− μ)2 + μ2

, then f ∈ S∗.

Theorem 24 Let α ∈ [0, 1), n ≥ 1, and μ ∈ (0, n). If f (z) ∈ Un(λ,μ), then
f ∈ S∗(α) for 0 < λ ≤ λ∗(α,μ, n), where

λ∗(α,μ, n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(n− μ)
√

1− 2α√
(n− μ)2 + μ2(1− 2α)

for 0 ≤ α ≤ μ

n+ μ

(n− μ)(1− α)

n− μ+ μα
for

μ

n+ μ
< α < 1.

For μ = n, the authors derived the following results:

Theorem 25 If f ∈ Un(λ) and b = |an+1| ≤ 1/n, then f ∈ S∗(α) whenever
0 < λ ≤ λ0(α), where

λ0(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
(1− 2α)(1+ n2(1− 2α − b2))− n2b(1− 2α)

1+ n2(1− 2α)
if 0 ≤ α < α0(n, b),

1− α(1+ nb)

1+ nα
if α0(n, b) ≤ α <

1

1+ nb

with α0(n, b) = n(b+1)
n(b+2)+1 .

4.3.2 Sharpness of the Results on the Class U(λ) and U(λ,μ)

In the recent years the classes U(λ) and U(λ,μ) have been studied more extensively
only for real μ. In the previous sections we stated some of important properties
and results on these classes for real μ, which are not sharp. But more recently,
Ponnusamy, Obradovic and Fournier [9, 11, 56, 68] have studied these classes for
complex μ and achieved even sharper results.

We next state the following theorem due to Fournier and Ponnusamy [11],
which gives conditions, under which U(λ,μ) has geometric significance (such as
starlikeness and spirallikeness).

Theorem 26 [11] Let μ ∈ C with Re(μ) < 1. Then

1. U(λ,μ) ⊂ S∗, if and only if 0 ≤ λ ≤ |1−μ|√
|1−μ|2+|μ|2 .

2. U(λ,μ) ⊂ Sp, if and only if 0 ≤ λ ≤ min
(

1, |1−μ||μ|
)

, where Sp is the class of

spiral-like functions [6].

In our discussion we stated many interesting properties and results on the class
U(1,μ) for real μ [11]. In the following theorem, we state condition on μ ∈ C

under which functions in the class U(1,μ) belongs to the class of spiral-like functions:
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Theorem 27 [11] U(1,μ) ⊂ Sp, if and only if Re(μ) ≤ 1/2.
These theorems are proved with the help of some lemmas related to Blaschke

product. So we first define the Blaschke product.

Definition 1 A finite Blaschke product is a function of the type

b(z) = eiγ
n∏

j=1

z − aj

1− āj z
, {aj }nj=1 ⊂ Δ, γ ∈ R.

Next, we state an important result on Blaschke product which is very useful to
prove sharpness of several result.

Theorem 28 [14, 56] Given φ and ψ in R, there exists a sequence {bn} of finite
Blaschke products such that bn(1) = eiφ , bn(0) = 0, and bn(z) → eiψz in the sense
of convergence in H.

Theorem 29 There exists an infinite sequence wn of infinite Balschke products with
the following property: given a function w ∈ H with w(Δ) ⊆ Δ and two sets of
nodes {φk}mk=1 and {ψk}mk=1 in R, where the φ′ks are assumed to be pairwise distinct
mod 2π there exists a subsequence {wnj } of {wn} such that

wnj (eiφk ) = eiψk , 1 ≤ k ≤ m, j = 1, 2, . . .

and
lim
j→∞wnj = w in H.

Following two theorems are due to Ruscheweyh [15, 57], which are the main
tools for the proof of the sharpness of many of the results on class U(λ,μ).

Theorem 30 Let c ∈ C with Rec < 1 and Fc(z) =∑∞
n=1

1−c
n−c zn−1 ∈ H. Then

sup
z∈Δ

|f ∗ Fc(z)| ≤ sup
z∈Δ

|f (z)|, f or any f ∈ H.

Theorem 31 Let c ∈ C with Rec < j and θ ∈ R. Then the functional

I (w) =
∞∑
k=1

ak(w)

k − c
eikθ , w(z) =

∞∑
k=1

ak(w)zk ∈ Bj

is well defined and continuous over Bj = {w ∈ B||w(z)| ≤ |z|j , z ∈ Δ}.
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4.3.3 Coefficient Characterization and Convolution Properties
of the Functions in the Classes U , U(λ) and U(λ,μ)

For analytic functions f in Δ of the form z
f (z) = 1+ b1z + b2z2 + · · · , a sufficient

condition for f to be in the class U is that, [34]

∞∑
n=2

(n− 1)|bn| ≤ 1 (4.6)

and even more, necessary condition for f to be in S is that, [33]

∞∑
n=2

(n− 1)|bn|2 ≤ 1. (4.7)

On the other hand, no such simple necessary condition for the functions f in A
to be in U seems to be known in the literature except the Bieberbach estimate. The
sufficient condition (4.6) is useful especially for rational function. The class of convex
functions is included in the class of starlike functions. Ponnusamy and Obradovic in
[36], have derived a simple analog of this concerning the class U , that is, if f ∈ A
satisfies the condition ∣∣∣∣

(
z

f (z)

)′′∣∣∣∣ ≤ 2, z ∈ Δ,

then f ∈ U .
If f , g ∈ S, then the function F defined by z

F (z) = z
f (z) ∗ z

g(z) in U whenever
z

f (z) ∗ z
g(z) �= 0 is inΔ [33]. The analogous property does not exist for the convolution

f (z) ∗ g(z). For example k(z) ∗ k(z) is not univalent in Δ, where k(z) is the Koebe
function.

This observation gives the idea about a manner which proceed with a new ap-
proach to the theory of univalent functions although there does not seem to be direct
geometrical meaning. It is sometimes convenient to consider functions f ∈ U(λ,μ)
of the form ( z

f (z) )
μ = 1+ b1z + b2z2 + · · · , because the condition

∞∑
n=2

(n− μ)|bn|2 ≤ 1. (4.8)

is necessary for the function f to be in the class S (see Theorem 11, p.193, vol. 2 of
[12]).

On the other hand, the sufficient condition for the function of the form ( z
f (z) )

μ =
φ(z) = 1+ b1z + b2z2 + · · · to be in U(λ,μ) [50] is

∞∑
n=2

(n− μ)|bn| ≤ λμ. (4.9)
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As a motivation the authors, Ponnusamy and Obradovic, obtained the above
necessary and sufficient coefficient conditions and verified results by considering spe-
cial functions like Gaussian hypergeometric function. The Gaussian hypergeometric
function is defined by

2F1(a, b, c; z) = F (a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

zn, z ∈ Δ,

where a, b, c in general, are complex numbers such that c �= −m, m = 0, 1, 2, . . . ,
and (a)n denotes the Pochhamer symbol

(a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n− 1) for n ∈ N.

In [34], the authors use the following lemma, which was needed to prove the
Theorems 32 and 33.

Lemma 1 For a > −1, b > −1 with ab > 0 and c ≥ (a + 1)(b + 1). Then

∞∑
n=2

(n− 1)
(a)n(b)n
(c)n(1)n

≤ 1.

Theorem 32 Suppose that a, b > −1, ab > 0, and c ≥ max{ab, (a + 1)(b + 1)}.
Then z

F (a,b,c;z) is in U .

Theorem 33 Suppose that a ∈ C − {0} and c ≥ max{|a|2, |a + 1|2}. Then the
function z

F (a,ā,c;z) is in U .

Remark 4 The following observations are from the Theorem 32,

(1) z
F (1,1,c;z) is in U , if c ≥ 4.

(2) z
F (−1/2,−1/2,c;z) is in U , if c ≥ 1/4.

Theorem 34 [34] Suppose f ∈ S has the form
(

z

f (z)

)
= 1+ b1z + b2z2 + · · · �= 0, bn ≥ 0.

Suppose that a, b, c > −2 with c �= 0,−1,−2, . . . and satisfy

0 ≤ ab(a + 1)(b + 1)

2c(c + 1)
≤ 1, c ≥ max

{
a + b − 1,

2(a + b − 1)+ ab

3

}

and that (z/f (z)) ∗ F (a, b, c; z) �= 0 for all z ∈ Δ. Then the transformation

H (z) = z

(z/f (z)) ∗ F (a, b, c; z)
, z ∈ Δ,

is in U .
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Theorem 35 [32] Let f ∈ U(λ) and c ∈ C with Re c ≥ 0 �= c, such that

(z/f (z)) ∗ F (1, c, c + 1; z) �= 0 for all z ∈ Δ,

and G = Gc
f be the transformation defined by

G(z) = z

(z/f (z)) ∗ F (1, c, c + 1; z)
, z ∈ Δ. (4.10)

Let A = | c
c+1

f ′′(0)
2 | ≤ 1. Then

(1) G ∈ U(λ|c|/|c+ 2|). The result is sharp especially when |f ′′(0)/2| ≤ 1− λ. In
particular, G ∈ U whenever 0 < λ ≤ |(c + 2)/c|.

(2) G ∈ S∗ whenever 0 < λ ≤ |c+2|
2|c| (

√
2− A2 − A). In particular, if λ = 1,

f ′′(0) = 0, and |c − 2| ≤ 2
√

2 with Rec ≥ 0, then G ∈ S∗.

Theorem 36 [32] Let f ∈ An in U(λ) and c ∈ C with Rec ≥ 0 �= c, such that
(z/f (z)) ∗ F (1, c, c + 1; z) �= 0 f or all z ∈ Δ, and G = Gc

f be the transformation
defined by (4.10). Then

(1) G ∈ U(λ|c|/|c + n|). In particular, G ∈ U whenever 0 < λ ≤ |(c + n)/c|.

(2) G ∈ S∗ whenever 0 < λ ≤ |c+n|(n−1)

|c|
√

(n−1)2+1
.

4.3.4 Univalence of the Product of the Functions in the Classes
U and U(λ)

In [37], the authors discussed the radius of univalence of a product of functions
F (z) = g(z)h(z)/z, where g,h ∈ U(λ). The authors considered the problem: For
g ∈ F1 ⊂ S and h ∈ F2 ⊂ S, then function F = g(z)h(z)

z is starlike or belongs to
the class U(λ) in the disk |z| < r . In that context, the authors proved the following
theorems in [37].

Theorem 37 Let g,h ∈ S∗. Then the function F (z) = g(z)h(z)/z is starlike in the
disk |z| < 1/3. The result is sharp.

Theorem 38 Let g,h ∈ U . Then the function F (z) = g(z)h(z)/z belongs to the
class U in the disk |z| < 1/3. The result is sharp.

Theorem 39 Let g,h ∈ U2. Then the function F (z) = g(z)h(z)/z belongs to the
class U2 in the disk |z| < 1√

3
. The result is sharp.

Theorem 40 Let g ∈ U2(λ1) and g ∈ U2(λ2). Then the function F (z) = g(z)h(z)/z
belongs to the class U2(λ3) in the disk |z| < r , where

r =
√

2λ3

λ1 + λ2 +
√

(λ1 + λ2)2 + 12λ1λ2λ3

.
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Theorem 41 Let g,h ∈ S. Then the function F (z) = g(z)h(z)/z belongs to the
class U in the disk |z| < r0, where r0 ≈ 0.30294 is the smallest positive root of the
equation

6r2+2(
√

2+4)r3+ 2r4
√

3−2r2

1−r2 +4r2
(
r2(6r2−1−4r4)

(1−r2)2 + log
(

1
1−r2

)) 1
2 + r4(3−2r)

(1−r)2 −1 = 0

in the interval (0, 1).

Theorem 42 Let g,h ∈ S, such that g′′(0) = h′′(0) = 0. Then the function
F (z) = g(z)h(z)/z belongs to the class U in the disk |z| < r0, where r0 ≈ 0.435895
is the smallest positive root of the equation

2r2 + 2
√

2r3 + 2r4
√

3− 2r2

1− r2
+ r4(3− 2r)

(1− r)2
− 1 = 0

in the interval (0, 1). Moreover, F is starlike in the disk |z| < r0.
The sharpness above two theorems are still open.

4.4 Characterization of the Class U (α, λ, μ)

In 1988, Ponnusamy [44] defined and studied a special class of Bazilevič functions
as

Uh(α, λ,μ) =
{
f ∈ A : (1− α)

(
z

f (z)

)μ

+ αf ′(z)

(
z

f (z)

)μ+1

≺ h(z), z ∈ Δ
}

,

where 0 ≤ α < 1, μ < 0 and h(z) is convex function in Δ with h(0) = 1. For α = 0
and h(z) = 1−z

1+z has been studied in [42, 65].
In 2007, Zhu [71], considered the generalized class Un(α,M ,μ) for μ < 0

Un(α,M ,μ) =
{
f ∈ An :

∣∣∣∣∣(1− α)

(
z

f (z)

)μ

+ αf ′(z)

(
z

f (z)

)μ+1

− 1

∣∣∣∣∣< M , z ∈ Δ
}
.

Zhu proved the following result by using a subordination result which is given in [22]:

Theorem 43 [71] Let α > 0, μ < 0 and let

Mn(α, λ,μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(nα − μ)(1− λ)

n− μ(1− λ)
if α ≥ α2,

(nα − μ)
√

2α(1− λ)− 1√
n2α2 + 2[(1− λ)μ2 − nμ]α

if α1 ≤ α < α2

α(nα − μ)(1− λ)

(n− μλ+ μ)α − 2μ
if 0 < α ≤ α1,
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where, α2 = n−μ(1−λ)
n(1−λ) , and

α1 =
√

9μ2 − 2nμ+ n2 − (18μ2 − 2nμ)λ+ 9μ2λ2 + 3μ+ n− 3μλ

2n(1− λ)
.

Ifp(z) andq(z) are analytic inΔwithp(z) = 1+pnzn+· · · andq(z) = 1+qnzn+· · · ,
satisfy

q(z) ≺ 1− μMz

nα − μ
,

then
q(z)[1− α + αp(z)] ≺ 1+Mz,

where 0 < M ≤ Mn(α, λ,μ), then Rep(z) > λ for z ∈ Δ.
Using this theorem, the author also proved the following:

Theorem 44 [71] Let α, λ, μ, M , and Mn(α, λ,μ) be defined as in the above
theorem. If f ∈ Un(α,M ,μ), then f ∈ S∗n (λ).

Theorem 45 [71] Let α > 0 and let

Mn(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nα + 1

n+ 1
if α ≥ n+ 1

n

(nα − μ)
√

2α − 1√
n2α2 + 2(n+ 1)α

if

√
9+ 2n+ n2 − 3+ n

2n
≤ α <

n+ 1

n

α(nα + 1)

(n− 1)α + 2
if 0 < α ≤

√
9+ 2n+ n2 − 3+ n

2n
.

If f ∈ Un(α,M ,μ), where 0 < M ≤ Mn(α), then f ∈ S∗n (0).
For n = 1, the above theorem improves the result due to Mocanu in [23, 24].

Theorem 46 [71] Let α > 0, 0 ≤ λ < 1 and let

Mn(α, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(nα + 1)(1− λ)

n+ 1− λ
if α ≥ α2,

(nα + 1)
√

2α(1− λ)− 1√
n2α2 + 2(n+ 1− λ)α

if α1 ≤ α < α2

α(nα + 1)(1− λ)

(n− 1+ λ+ )α + 2
if 0 < α ≤ α1,

where, α2 = n+1−λ
n(1−λ) , and

α1 =
√

9μ2 − 2nμ+ n2 − (18+ 2n)λ+ 9λ2 − 3+ n+ 3λ

2n(1− λ)
.
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If f (z) satisfies |f ′(z) + αzf ′′(z) − 1| ≤ M for z ∈ Δ, where 0 < M ≤ Mn(α, λ),
then f (z) ∈ C(λ).

For n = 1 the above theorem improves the result due to Mocanu, Mocanu and
Fournier [10, 25].

For λ > 0, α > 0, and μ > 0, Sahoo and Singh [61] defined a new class
Un(α, λ,μ), of non-Bazilevič analytic functions.
For the special values of α = 1, n = 1, μ = 1, and λ = 1, studied in [28, 29, 40,
46, 48, 51].
The authors derived following conditions for which the class Un(α, λ,μ) included
well-known subclasses of S.

Using the following Sahoo–Singh [59] have shown the Remark 5.

Lemma 2 [18] Let −1 ≤ B1 ≤ B2 < A2 ≤ A1 < 1, then

1+ A2z

1+ B2z
≺ 1+ A1z

1+ B1z
, z ∈ Δ.

Remark 5 For 0 ≤ λ2 < λ1 < 1, from Lemma 2, we have

U(α, λ2,μ) ⊂ U(α, λ1,μ).

The authors derived following results in [61]

Theorem 47 Let γ ∈ (0, 1], n ∈ N, α > 0, μ ∈ (0, nα), and

λ∗(α, γ ,μ, n) =
α(nα − μ) sin γπ

2√
α2μ2 + {(nα − μ)+ (1− α)μ}2 + 2μα{(nα − μ)+ (1− α)μ} cos γπ

2

. (4.11)

If f ∈ Un(α, λ,μ), then f ∈ Snγ for 0 < λ ≤ λ∗(α, γ ,μ, n); here λ∗(α, γ ,μ, n)

is an increasing function of n and λ∗(α, γ ,μ, n) → α sin
γπ

2
as n → ∞. Here

Snγ ≡ Sγ
⋂

An.

Theorem 48 Let f ∈ Un(α, λ,μ) and λ∗(α, γ ,μ, n) be as in Theorem 47. Then, for
λ∗(α, γ ,μ, n) < λ, f is strongly starlike in |z| < r = r(α, λ, γ ,μ, n), where

r = r(α, λ, γ ,μ, n) =
{

(nα−μ)α sin γπ
2

λ
√

α2μ2+{(nα−μ)+|α−1|μ}2+2μα cos γπ
2 {(nα−μ)+|α−1|μ}

} 1
n

.

Theorem 49 For 0 < α ≤ 1
2 and 0 ≤ β < 1 or α > 1

2 and 1 − 1
2α ≤ β < 1 or

α > 1
2 , 0 ≤ β < 1− 1

2α and (nα−μ)|α(1− β)− 1| ≥ μ[2α(1− β)− 1], we define

λ∗(α,β,μ, n) = α(nα − μ)(1− β)

(nα − μ)+ μ|1− α(1− β)| .

For α > 1
2 , 0 ≤ β < 1− 1

2α and (nα − μ)|α(1− β)− 1| < μ[2α(1− β)− 1], we
define

λ∗(α,β,μ, n) = (nα − μ)
√

2α(1− β)− 1√
(nα − μ)2 + μ2[2α(1− β)− 1]

.
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If f ∈ Un(α, λ,μ), then f ∈ S∗n (β) for 0 < λ ≤ λ∗(α,β,μ, n).
Next, we consider the following integral transform I(f ) of f ∈ A defined by

[I(f )(z)] = F (z) = z

[
c + 1− μ

zc+1−μ

∫ z

0

(
t

f (t)

)μ

tc−μdt
]1/μ

, (c + 1− μ > 0).

(4.12)

This transform is similar to the Alexander transform when c = μ = 1 and is similar
to Bernardi transformation when μ = 1 and c > 0.

Theorem 50 Let f ∈ Un(α, λ,μ) for λ > 0, n ≥ 2 and μ ∈ (0, nα) here α ≥ 0.
For c+ 1−μ > 0 and β < 1, let F (z) defined by (4.12). Then F ∈ S∗β whenever c,
λ, α are related by

0 < λ ≤ (1− β)(nα − μ)(c + 1+ n− μ){α(c + 1− μ)+ μ}
{μ(1− β)+ n}{α(c + 1)+ μ(1− α))}(c + 1− μ)

.

4.4.1 Fekete–Szegö Problem for the Class U(α, λ,μ)

Until now, these classes have been studied with a view to find necessary conditions
over μ, α, and λ so that, these classes included into the class of univalent functions
or its well-known subclasses.

So far the most well-known Fekete–Szegö problem is open for these classes.
Fekete and Szegö showed that for f ∈ S given by (4.1)

|a3 − μa2
2 | ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3− 4μ, if μ ≤ 0,

1+ 2exp( −2
1−μ ), if 0 ≤ μ < 1,

4− 3μ, if μ ≥ 1.

As a result, many authors have also studied similar problems for some subclasses
of S [4, 17]. In [8], sharp upper bound of Fekete–Szegö functional |a3 − μa2

2 | is
obtained for all real α when β = 0 for (4.13). That result was extended by Darus [5]
for a larger subclass satisfying

Re

{
zf ′(z)

f (1−α)(z)gα(z)

}
> β, z ∈ Δ (4.13)

where α > 0, 0 ≤ β < 1.
Many authors studied Fekete–Szegö problem for subclasses of B(λ,μ) [67, 69].

In this chapter we concentrate on the Fekete–Szegö problem for the class U(α, λ,μ).
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By using the following lemma in [59], Sahoo–Singh established the Fekete–Szegö
problem for the Class U(α, λ,μ)

Lemma 3 For w(z) = c1z + c2z2 + · · · analytic in Δ, let |w(z)| < 1 in Δ. Then

|c1| ≤ 1 (4.14)

|c2| ≤ 1− |c1|2 (4.15)

and

|c2 − sc2
1| ≤ max{1, |s|} (4.16)

The inequalities (4.14) and (4.15) are in (e.g., [27], p. 108) and (4.16) is a trivial(e.g.,
[17]) consequence of the triangle inequality and the inequalities (4.14) and (4.15).
Equality for (4.16) may be obtained with w(z) = z when |s| ≥ 1 and w(z) = z2 when
|s| < 1.

Theorem 51 Let f ∈ U(α, λ,μ) and α > 0, 0 < λ ≤ 1, μ > 0. Then

|a3 − δa2
2 | ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ

|2α − μ| , if |δ − k| ≤ l,

λ2

(α − μ)2
|δ − k|, if |δ − k| ≥ l,

(4.17)

where k = μ+ 1

2
and l = (α − μ)2

λ|2α − μ| .
Corollary 1 For α = 1, f ∈ U(λ,μ) and 0 < λ ≤ 1, μ > 0. Then

|a3 − δa2
2 | ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ

|2− μ| , if |δ − k| ≤ l,

λ2

(1− μ)2
|δ − k|, if |δ − k| ≥ l,

(4.18)

where k = μ+ 1

2
and l = (1− μ)2

λ|2− μ| .

4.5 Characterization of the Class U (λ, μ) in C
n

In [62], Nikolas Samaris dealt with analogous problems involving more generalized
classes not only for the functions in complex plane C but also for the functions in C

n.
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To present these problems we first define the following notations and the definitions.
For α = (α1,α2, . . . αk) ∈ C

k , we denote by Dα the operator

1+ α1z
d

dz
+ α2z2 d

2

dz2
+ · · · + αkz

k d
k

dzk

For μ > 0, α ∈ C
k , Nikolas introduced the classes Sn(μ,α, λ) and Pn(μ,α, λ) by

Sn(μ,α, λ) =
{
f ∈ An :

∣∣∣∣∣Dα

[
f ′(z)

(
f (z)

z

)μ−1
]
− 1

∣∣∣∣∣ < λ, z ∈ Δ
}

Pn(μ,α, λ) =
{
f ∈ An :

∣∣∣∣∣Dα

[(
f ′(z)

(
f (z)

z

)μ−1
)′]∣∣∣∣∣ < λ, z ∈ Δ

}

From this we have

B(μ, λ) ≡ S1(μ, 0, λ), R̄(α, λ) ≡ S1(1,α, λ), Pn(λ) ≡ Pn(1, 0, λ).

If α ∈ C
k , we denote by pα the polynomial pα(x) ≡ 1 + α1x + · · · + αkx(x −

1) · · · (x − k + 1). Here the author consider the polynomials pα(x) has nonpositive
real zeros or α = 0.

If t = (t1, t2, . . . , tk) ∈ (0, 1)k and ρ1, ρ2, . . . , ρk are the zeros of a polynomial pα
we will denote by tα the number t1−1/ρ1 .t2

−1/ρ2 · · · tk−1/ρk .
If pα ≡ 1, we define tα ≡ 1. If n = 0, 1, 2, . . . we denote by Wn the class of analytic
functions in Δ for which |w(z)| ≤ |z|n in Δ.

Theorem 52 Let Sn(μ,α, λ) be the class, such that (μ + n)pα(n) − λμ > 0. Let
also

In(μ,α) =
∫

[0,1]k+1
sn(tα , t1/μ

k+1),

sn(t1, t2) = sup{|w(t1z)− w(t1t2z)|, w ∈ Wn, z ∈ Δ} and

s∗n(μ,α, λ) = λIn(μ,α)pα(n)(μ+ n)

pα(n)(μ+ n)− λμ
.

(i) If s∗n(μ,α, λ) ≤ r , then Sn(μ,α, λ) ⊂ Tr .

(ii) If λ ≤ In
∗(μ,α), then Sn(μ,α, λ) ⊂ T1 where

In
∗(μ,α) =

[
In(μ,α)+ μ

pα(n)(μ+ n)

]−1

.

(iii) It holds that

s∗n(μ,α, λ) ≤ λ(2μ+ n)

pα(n)(μ+ n)− λμ
, In(μ,α) ≥ pα(n)(μ+ n)

3μ+ n
.
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Remark 6 The relation of part(i) of the above theorem is equivalent to
∣∣∣∣ zf

′(z)

f (z)
− γ

∣∣∣∣ ≤ |1− γ | + s∗n(μ,α, λ), γ ∈ C, z ∈ Δ.

If s∗n(μ,α, λ) < 1 and t ≥ (1+ s∗n(μ,α, λ))/2, then Sn(μ,α, λ) ⊂ (S∗)t , where

(S∗)t =
{
f ∈ A1 :

∣∣∣∣ zf
′(z)

f (z)
− t

∣∣∣∣ ≤ t , z ∈ Δ
}
.

For particular values of α, μ, and γ , many authors have obtained nonsharp results
which we discussed in previous sections, but here these results are sharp. The last
inclusion is a new one, which in addition, is sharp. There are several other sharp
results for this class which are analogous of the class of functions in C variable
studied earlier.

Theorem 53 Let Pn(μ,α, λ) be the class such that n(n+ μ)pα(n− 1)− λμ > 0.
Let also

Tn(μ,α) =
∫

[0,1]k+2
sn(tαtk+1, t1/μ

0 )t−1
α t−1

k+1,

s∗∗n (μ,α, λ) = λTn(μ,α, λ)

1− λμ/(n(n+ μ)pα(n− 1))
,

and

T ∗
n (μ,α) =

[
Tn(μ,α)+ μ

n(n+ μ)pα(n− 1)

]−1

.

(i) If s∗∗n (μ,α, λ) ≤ r , then Pn(μ,α, λ) ⊂ Tr .

(ii) If λ ≤ Tn∗(μ,α), then Pn(μ,α, λ) ⊂ T1

(iii) s∗∗n(μ,α, λ) ≤ λ(2μ+ n)− 2λμI ∗∗n−1(α)pα(n− 1)

n(n+ μ)pα(n− 1)− λμ
,

T ∗
n(μ,α) ≥ n(n+ μ)pα(n− 1)

3μ+ n− 2μI ∗∗n−1(α)pα(n− 1)
.

For particular value of α and μ the results are in [46, 52], but these results are more
strong.
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Soc. 30, 125–138 (1971)
21. Miller, S.S., Mocanu, P.T.: Differential subordinations and univalent functions. Mich. Math.

J. 28, 151–171 (1981)
22. Miller, S.S., Mocanu, P.T.: Differential Subordinations and Applications. Dekker, New York

(2000)
23. Mocanu, P.T.: Some starlikeness conditions for analytic functions. Rev. Roum. Math. Pure

Appl. 33, 117–124 (1988)
24. Mocanu, P.T.: Some starlikeness conditions. Mathematica 35(58), 175–178 (1993)
25. Mocanu, P.T.: Simple criteria for starlikeness and convexity. Lib. Math. 13, 27–40 (1993)
26. Mochizuki, N., Sano, T.: Some conditions for the strongly starlikeness of holomorphic

functions. Interdiscip. Inf. Sci. 3, 87–90 (1997)
27. Nehari, Z.: Conformal Mapping. Mcgraw Hill, New York, (1952)
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40. Obradović, M., Ponnusamy, S., Singh, V., Vasundhra, P.: Univalency, starlikeness and
convexity applied to certain classes of rational functions. Analysis (Munich) 22,225–242 (2002)
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Chapter 5
Uniqueness of Entire Functions Sharing
Certain Values with Derivatives

Indrajit Lahiri

5.1 Preliminaries

Let f be a nonconstant meromorphic function in the open complex plane C. We
denote by n(r , a; f ) the number of a-points of f in | z | ≤ r for a ∈ C∪{∞}, where
an a-point is counted according to its multiplicity. We put

N (r , a; f ) =
r∫

0

n(t , a; f )− n(0, a; f )

t
dt + n(0, a; f ) log r

and call it the integrated counting function of a-points of f . Also we define

m(r , f ) = 1

2π

2π∫

0

log+ | f (reiθ ) | dθ

and call it the proximity function of f , where log+ x = log x if x > 1 and log+ x = 0
if 0 ≤ x ≤ 1.

For a ∈C, we put m(r , a; f )=m(r , 1
f−a ) and for a=∞ , we put N (r ,∞; f )

= N (r , f ) and m(r ,∞; f ) = m(r , f ).
The sum T (r , f ) = m(r , f )+N (r , f ) is called Nevanlinna characteristic function

of f . The number

ρ = lim sup
r→∞

log T (r , f )

log r

is called the order of f .
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We denote by n(r , a; f ) the number of distinct a-points of f in | z | ≤ r , and
N (r , a; f ) is defined in terms of n(r , a; f ) in the usual way for a ∈ C ∪ {∞}.

We denote by S(r , f ) any quantity satisfying
S(r , f )

T (r , f )
→ 0 as r →∞ , possibly

outside a set of finite linear measure.
Let f and g be two nonconstant meromorphic functions defined in the open

complex plane C. For a ∈ C∪ {∞} , we say that f and g share the value a counting
multiplicities (CM) if f and g have the same a-points with the same multiplicities.
If we do not consider the multiplicities then f and g are said to share the value a
ignoring multiplicities (IM). The investigation of the relation between two entire or
meromorphic functions sharing certain values is the main theme of the uniqueness
theory. The theory was initiated by the two results of R. Nevanlinna [33] known as:
the five value theorem and the four value theorem.

5.2 Entire Functions Sharing Two Values with Their Derivatives

The uniqueness problem of entire and meromorphic functions sharing values with
their derivatives is a special case of the uniqueness theory. The research on this
problem was started by L. A. Rubel and C. C. Yang [35] with the following result.

Theorem 1 Let f be a nonconstant entire function. If f and f ′ share the distinct
finite values a and b CM, then f ≡ f ′.

Considering f = ee
z

z∫

0

e−e
t

(1 − et )dt , we see that f ′ − 1 = ez(f − 1) and so

the hypothesis that f and f ′ share two finite values is essential for Theorem 1.
In 1979, Mues and Steinmetz [32] improved Theorem 1 by considering IM shared

values and proved the following result.

Theorem 2 Let f be a nonconstant entire function, a and b be distinct finite values.
If f and f ′ share the values a and b IM, then f ≡ f ′.

In 1992, Zheng and Wang [47] considered shared functions and improved
Theorem 1 in the following manner.

Theorem 3 Let f be a nonconstant entire function, a = a(z) and b = b(z) be
distinct meromorphic functions satisfying T (r , a) + T (r , b) = S(r , f ). If f − a and
f ′ − a share 0 CM, and f − b and f ′ − b share 0 CM, then f ≡ f ′.

In 2000, Qiu [34] replaced CM sharing by IM sharing in Theorem 3 and proved
the following result.

Theorem 4 Let f be a nonconstant entire function, a = a(z)( �≡ ∞) and
b = b(z)( �≡ ∞) be distinct meromorphic functions satisfying T (r , a) + T (r , b) =
S(r , f ). If f − a and f ′ − a share 0 IM and f − b and f ′ − b share 0 IM, then
f ≡ f ′.

In 1990, Yang [39] considered the problem of uniqueness of an entire function
when it shares two values with its k-th derivative. He proved the following results.
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Theorem 5 Let f be a nonconstant entire function, k( ≥ 2) be a positive integer
and a( �= 0) be a finite value. Suppose that 0 is a Picard exceptional value of f and
f (k), and that a is an IM shared value of f and f (k). Then f ≡ f (k).

Theorem 6 Let f be a nonconstant entire function, k( ≥ 2) be a positive integer,
a and b be two distinct finite values. If f and f (k) share values a and b CM, then
f ≡ f (k).

Frank [12] in 1991 proposed the following conjecture:

Frank’s Conjecture If an entire function f shares two finite values IM with its k-th
derivative (k ≥ 1), then f ≡ f (k).

Li andYang [25] settled this conjecture affirmatively in 2000 as a consequence of
the following theorem.

Theorem 7 Let f be a nonconstant entire function and a, b be two distinct complex
numbers. Let g = a0f + a1f

(1) + · · · + akf
(k)(k ≥ 1) and φ = f ′(f−g)

(f−a)(f−b) , where
a0, a1, . . . , ak(ak �= 0) are constants. If f and g share a, b IM, then φ must be a
constant satisfying a0φ + a1φ2 + · · · + akφ

k = 0.
In 1994, Gu [13] extended Theorem 6 by considering a linear differential

polynomial.

Theorem 8 Let f be a nonconstant entire function, and let a and b be distinct finite
values, P (f ) = f (n) + a1(z)f (n−1) + · · · + an(z)f (z), where aj (z) (j = 1, 2, . . . , n)
are entire functions satisfying T (r , aj ) = S(r , f ) for j = 1, 2, . . . , n. If f and P (f )
share finite values a and b CM, and a + b �= 0 or an(z) �≡ −1, then f ≡ P (f ).

Li and Yang [24] further generalised Theorem 6 and proved the following result.

Theorem 9 Let f be a nonconstant entire function and L(f ) = b−1 +
n∑

j=0
bjf

(j ),

where bn �≡ 0 and bj (j = −1, 0, 1, . . . , n) are meromorphic functions satisfying
T (r , bj ) = S(r , f ) for j = −1, 0, 1, . . . , n. Let a1 and a2 be two distinct finite
values. If f and L(f ) share a1 CM and a2 IM, then f ≡ L(f ) or f and L(f ) have
the following expressions

f = a2 + (a1 − a2)(1− eα)2

and

L(f ) = 2a2 − a1 + (a1 − a2)eα ,

where α is an entire function.
We now require the following definition.

Definition 1 Let f and g be nonconstant meromorphic functions and a be a com-
plex number. We denote by NE(r , a; f , g) the reduced counting function of those
common zeros of f − a and g − a having the same multiplicities. Also, we denote
by N0(r , a; f , g) the reduced counting function of the common zeros of f − a and
g − a.
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IfN (r , a; f ) = N0(r , a; f , g)+S(r , f ) andN (r , a; g) = N0(r , a; f , g)+S(r , g),
we say that f and g share the value a IM∗.

IfN (r , a; f ) = NE(r , a; f , g)+S(r , f ) andN (r , a; g) = NE(r , a; f , g)+S(r , g),
we say that f and g share the value a CM∗.

Yang and Li [42] extended Theorem 9 to meromorphic functions with few poles
in the following manner.

Theorem 10 Let f be a nonconstant meromorphic function satisfying N (r , f ) =
S(r , f ) and L(f ) = b−1 +

n∑
j=0

bjf
(j ), where bn �≡ 0 and bj (j = −1, 0, 1, . . . , n)

are meromorphic functions satisfying T (r , bj ) = S(r , f ) for j = −1, 0, 1, . . . , n.
Let a1 and a2 be two distinct meromorphic functions such that T (r , aj ) = S(r , f ) for
j = 1, 2. If f and L(f ) share a1 CM∗ and a2 IM∗, then f ≡ L(f ) or f and L(f )
have the following expressions

f = a2 + (a1 − a2)(1− α)2

and

L(f ) = 2a2 − a1 + (a1 − a2)α,

where α is a meromorphic function satisfying N (r ,∞;α)+N (r , 0;α) = S(r , f ).
In order to state the next theorem we need the following definition due to Mues

[31].

Definition 2 Let f be a nonconstant meromorphic function and L(f ) be a
linear differential polynomial generated by f . We now define for a ∈ C,

τ (a) = τ (a; f ,L(f )) = lim inf
r→∞

N0

(
r , 1

f − a

)

N
(
r , 1

f − a

) if N

(
r ,

1

f − a

)
�≡ 0 and

τ (a) = τ (a; f ,L(f )) = 1 if N
(
r , 1

f−a
)
≡ 0, where N0

(
r ,

1

f − a

)
denotes

the reduced counting function of those a-points of f and L(f ) having the same
multiplicities.

Wang [36] improved Theorem 9 in the following manner.

Theorem 11 Let f be a nonconstant entire function and L(f ) = b−1+
n∑

j=0
bjf

(j ),

where bn �≡ 0 and bj (j = −1, 0, 1, . . . , n) are meromorphic functions satisfying
T (r , bj ) = S(r , f ) for j = −1, 0, 1, . . . , n. If f and L(f ) share two complex

numbers a1 and a2 IM and if τ (a1) >
n+ 2

n+ 3
, where n is the highest order of the

derivative involved inL(f ), then either f ≡ L(f ) or f andL(f ) have the following
expressions

f = a2 + (a1 − a2)(1− eα)2
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and

L(f ) = 2a2 − a1 + (a1 − a2)eα ,

where α is an entire function.

In the same paper J. P. Wang conjectured that the condition τ (a1) >
n+ 2

n+ 3
might

be replaced by τ (a1) >
1

2
.

In response to this conjecture in 2005 Yang and Li [42] proved the following
result.

Theorem 12 Let f be a nonconstant meromorphic function satisfying N (r , f ) =
S(r , f ) andg = L(f ) = b−1+

n∑
j=0

bjf
(j ), where bn �≡ 0 and bj (j = −1, 0, 1, . . . , n)

are meromorphic functions satisfying T (r , bj ) = S(r , f ) for j = −1, 0, 1, . . . , n.

Let a1 and a2 be two distinct finite values. If max{τ (a1), τ (a2)} > 1

2
, then f and g

assume one of the following cases:

(i) f ≡ g;
(ii) f = a2 + (a1 − a2)(1 − h)2 and g = 2a2 − a1 + (a1 − a2)h, where h is a

meromorphic function satisfying N (r ,∞;h)+N (r , 0;h) = S(r , f );
(iii) f = a1 + (a2 − a1)(1 − h)2 and g = 2a1 − a2 + (a2 − a1)h, where h is a

meromorphic function satisfying N (r ,∞;h)+N (r , 0;h) = S(r , f );

(iv) there exists an integer k ≥ 3 such that kα = φ, where α = f ′ − g′

f − g
− g′

g − a1
−

g′

g − a2
and φ = f ′(f − g)

(f − a1)(f − a2)
.

If, further, max{τ (a1), τ (a2)} > 2

3
, then one of (i) – (iii) holds.

When the linear differential polynomialg = L(f ) involves only the first derivative
of f , then Yang and Li [42] obtained the following theorem.

Theorem 13 Suppose that f is a nonconstant meromorphic function satisfying
N (r , f ) = S(r , f ) and g = L(f ) = b−1 + b0f + b1f

′, where bj (j = −1, 0, 1) are
meromorphic functions satisfying T (r , bj ) = S(r , f ) for j = −1, 0, 1. Let a1 and a2

be two distinct meromorphic functions such that T (r , aj ) = S(r , f ) for j = 1, 2. If
f and g share a1 and a2 IM∗, then one of the following cases holds:

(i) f ≡ g;
(ii) f = a2 + (a1 − a2)(1− h)2 and g = 2a2 − a1 + (a1 − a2)h;

(iii) f = a1 + (a2 − a1)(1− h)2 and g = 2a1 − a2 + (a2 − a1)h;

(iv) f = a1 + a2

2
+ (a2 − a1)

(
h+ 1

h

)
4

and g = a1 + a2

2
+ (a2 − a1)h

2
,

where h is a meromorphic function satisfying N (r , 0;h)+N (r ,∞;h) = S(r , f ).
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5.3 f , f ′ and f ′′ Sharing One Value

Jank et al. [16] considered the problem of uniqueness of entire and meromorphic
functions sharing a value with two of its derivatives. Their results can be stated as
follows.

Theorem 14 Let f be a nonconstant entire function and a �= 0 be a finite constant.
If f , f ′ share the value a IM and f ′′(z) = a whenever f (z) = a, then f ≡ f ′.

Theorem 15 Let f be a nonconstant meromorphic function and a �= 0 be a finite
constant. If f , f ′ and f ′′ share the value a CM, then f ≡ f ′.

Extending Theorem 14, Chang and Fang [9] proved the following two results.

Theorem 16 Let f be a nonconstant entire function and a, c be two nonzero
constants. If f ′(z) = a whenever f (z) = a and f ′′(z) = c whenever f ′(z) = a,

then either f (z) = A exp
(cz

a

)
+ ac − a2

c
or f (z) = A exp

(cz

a

)
+ a, where A is a

nonzero constant.

Theorem 17 Let f be a nonconstant entire function. If f (z)− z and f ′(z)− z share
0 IM and f ′′(z) = z whenever f ′(z) = z, then f ≡ f ′.

We now require the following notation.

Definition 3 Let f be a meromorphic function in C and a meromorphic function
a = a(z) is called a small function of f if T (r , a) = S(r , f ). We now denote by
E(a; f ) the set of distinct zeros of f − a, where a is a small function of f .

Improving Theorem 17 following result is recently proved by Lahiri and Ghosh
[20].

Theorem 18 Let f be a nonconstant entire function and a = αz+β, where α( �= 0)
and β are constants. If E(a; f ) ⊂ E(a; f ′) and E(a; f ′) ⊂ E(a; f ′′), then either

f = Aez or f = αz + β + (αz + β − 2α) exp
{
αz+β−2α

α

}
.

In 2004 Wang and Yi [38] also generalised Theorem 14 and proved the following
two results.

Theorem 19 Let f be a nonconstant entire function and k( ≥ 2) be a positive
integer. If f (z)− z and f ′(z)− z share 0 CM and if f (k)(z) = z whenever f (z) = z,
then f ≡ f ′.

Theorem 20 Let f be a nonconstant entire function and k( ≥ 2) be a positive
integer. If f , f ′ and f (k) have the same fixed points with the same multiplicities, then
f ≡ f ′.

In 1995 Zhong [48] considered the higher order derivative of an entire function
and proved the following theorem.

Theorem 21 Let f be a nonconstant entire function, and let n be a positive integer.
If f and f ′ share a finite nonzero value a CM and if f (n)(z) = f (n+1)(z) = a

whenever f (z) = a, then f ≡ f (n).
In this direction Li and Yang [26] also proved the following theorem.



5 Uniqueness of Entire Functions Sharing Certain Values with Derivatives 95

Theorem 22 Let f be a nonconstant entire function, a be a finite nonzero constant
and let n be a positive integer. If f , f (n) and f (n+1) share the value a CM, then
f ≡ f ′.

In the above two theorems we see that two consecutive derivatives are involved.
However in 2003 Wang and Yi [37] proved the following two results, in the first of
which they did not consider two consecutive derivatives of f .

Theorem 23 Let f be a nonconstant entire function, a be a finite nonzero constant,
and n, m( > n) be positive integers. If f and f ′ share the value a CM and if
f (n)(z) = f (m)(z) = a whenever f (z) = a, then

f = A exp (λz)+ a − a

λ
,

where A( �= 0) and λ are constants satisfying λn−1 = λm−1 = 1.

Theorem 24 Let f be a nonconstant entire function, a be a finite nonzero constant,
and n( ≥ 2) be a positive integer. If f and f ′ share the value a CM and if f (n)(z) = a

whenever f (z) = a, then

f = A exp (λz)+ a − a

λ
,

where A( �= 0) and λ are constants satisfying λn−1 = 1.
Recently, Lu and Xu [30] used the theory of normal families to replace CM sharing

by IM sharing in Theorem 24 but at the cost of an additional condition as we see in
the following theorem.

Theorem 25 Let f be a nonconstant entire function, a be a finite nonzero constant,
and n( ≥ 2) be a positive integer. If f and f ′ share the value a IM and if f (n)(z) = a

whenever f (z) = a and if there exists z0 ∈ C satisfying f (n)(z0) = f ′(z0) = b, where
b �= a is a constant, then

f = A exp (λz)+ a − a

λ
,

where A( �= 0) and λ are constants satisfying λn−1 = 1.
However, in the same year Chang and Fang [11] were able to replace the CM

sharing by IM sharing in Theorem 24 without any additional hypothesis. Their result
can be stated as follows.

Theorem 26 Let f be a nonconstant entire function, a be a finite nonzero complex
number and k( ≥ 2) be a positive integer. Suppose that f ′(z) = a whenever f (z) = a

and f (k)(z) = a whenever f ′(z) = a. Then either f = c exp{λz} or f = c exp{λz}+
a(λ−1)

λ
, where c, λ are nonzero constants with λk−1 = 1.

Let us now see another way of sharing values by an entire function and its
derivative. In 1995, Zhong [48] introduced the following notion.

Definition 4 Let f and g be two nonconstant meromorphic functions defined in C.
For a ∈ C ∪ {∞}, we put A = {E(a; f )\E(a; g)} ∪ {E(a; g)\E(a; f )}. For B ⊂ C,
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we denote by NB(r , a; f ) the counting function (counted with multiplicities) of those
a-points of f which belong to the set B.

The functions f and g are said to share a value a IMN if NA(r , a; f ) = S(r , f )
and NA(r , a; g) = S(r , g). If, in addition, the common a-points of f and g have the
same multiplicities, then f and g are said to share a value a CMN.

Using this idea Zhong [48] proved the following uniqueness theorem.

Theorem 27 Let f be a nonconstant entire function, f , f (n)(n ≥ 1) share a value
a( �= 0,∞) IMN and f (1)(z) = f (n+1)(z) = a when f (z) = a. If for any set E of
finite linear measure

lim
r→∞,r �∈E

NA

(
r , a; f (n+1)

)
N (r , a; f (n+1))

�= 1

2
, (5.1)

then f ≡ f (n), where A = E(a; f )ΔE(a; f (n+1)).
Zhong left the possibility of removing the condition (5.1) as open. In 1997 Yang

[40] indeed removed the condition (5.1) and proved the following result.

Theorem 28 Let f be a nonconstant entire function. If f and f (n)(n ≥ 1) share
the value a( �= 0,∞) IMN and f (1)(z) = f (n+1)(z) = a when f = a, then f = cez,
where c is a nonzero constant.

Recently a result of Zhong (Theorem 21) is improved in the following manner by
Lahiri and Ghosh [21].

Theorem 29 Let f be a nonconstant entire function and a, b be two nonzero
finite constants. Suppose further that A = E(a; f )\E(a; f (1)) and B = E(a; f (1))\
{E(a; f (n)) ∩ E(b; f (n+1))} for n ≥ 1. If each common zero of f − a and f (1) − a

has the same multiplicity and NA(r , a; f ) + NB(r , a; f (1)) = S(r , f ), then f =
λ exp

{
bz
a

}+ ab−b2

b
or f = λ exp

{
bz
a

}+ a, where λ( �= 0) is a constant.
The theorem of L. Z. Yang (Theorem 28) is also improved in the following way

[21].

Theorem 30 Let f be a nonconstant entire function and a, b be two nonzero finite
constants. Suppose that A = E(a; f )\E(a; f (n)) and B = E(a; f (n))\{E(a; f (1)) ∩
E(b; f (n+1))} for n ≥ 1. If NA(r , a; f ) + NB(r , a; f (n)) = S(r , f ), then either
f = λ exp{z} or f = λ exp{z} + a, where λ( �= 0) is a constant.

Remark 1 Theorem 29 will look smarter if one can get rid of the hypothesis: each
common zero of f − a and f (1) − a has the same multiplicity.

IfA∪B = φ, then by Theorems 16 and 26 one can remove this hypothesis. Again
ifA∪B �= φ and n = 1, then also this hypothesis is needless for Theorem 29 as is ev-
ident from its proof. So ifA∪B �= φ and n ≥ 2, then it is an interesting open problem
to investigate the possibility of removing the said hypothesis from Theorem 29.

Yang [41] gave a generalisation of a result of Jank-Mues-Volkmann (Theorem 14)
in the following manner.

Theorem 31 Let f be a nonconstant entire function. If f and f (n) share a finite
value a( �= 0) IM and E(a; f ) ⊂ E(a; f (1)) ∩ E(a; f (n+1)), then f ≡ f (n).
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In 1999, Li [23] further extended Theorem 31 by considering a linear differential
polynomial instead of the derivative. The result of P. Li may be stated as follows.

Theorem 32 Let f be a nonconstant entire function andL = a1f
(1)+a2f

(2)+· · ·+
anf

(n), where a1, a2, . . . an( �= 0) are constants. If f and L share a finite nonzero

value a IM, E(a; f ) ⊂ E(a; f (1)) ∩ E(a;L(1)) and
n∑

k=1

2kak �= 0 or
n∑

k=1

ak �= −1,

then f ≡ f (1) ≡ L.

Considering the following example P. Li showed that the condition
n∑

k=1

2kak �= 0

or
n∑

k=1

ak �= −1 is essential.

Example 1 Let a1, a2, . . . , an be constants satisfying
n∑

k=1

2kak = 0 and
n∑

k=1

ak =

−1. We put f = a+ e2z

a
−ez, where a( �= 0,∞) is a constant. Then f (k) = 2ke2z

a
−ez

and L(z) = ez. Hence f , L share the value a CM and E(a; f ) ⊂ E(a; f (1)) ∩
E(a;L(1)) but f �≡ f (1).

Seeing the result and example of Li, Lahiri et al. [22] raised the following ques-
tions: Is it possible to further relax the nature of value sharing in Theorem 32? Is the
example of P. Li only of its kind?

In order to answer this question the following two results are proved in [22].

Theorem 33 Let f be a nonconstant entire function in C, a be a finite nonzero
complex number and L = a1f

(1) + a2f
(2) + · · · + anf

(n), where a1, a2, . . . an( �= 0)
are constants.

Further suppose that E1)(a; f ) ⊂ E(a; f (1)) and NA(r , a; f ) + NB(r , a;L) =
S(r , f ), where A = E(a; f )\E(a;L), B = E(a;L)\{E(a; f (1)) ∩ E(a;L(1))} and
E1)(a; f ) are the set of simple a-points of f . Then one of the following cases holds:

(i) f = a + αez and L = αez, where α is a nonzero constant;
(ii) f = L = αez, where α is a nonzero constant;

(iii) f = a + α2

a
e2z − αez and L = αez, where

n∑
k=1

2kak = 0,
n∑

k=1

ak = −1 and α

is a nonzero constant.

Theorem 34 Let f be a nonconstant entire function in C, a be a finite nonzero
complex number and L = a1f

(1) + a2f
(2) + · · · + anf

(n), where a1, a2, . . . an( �= 0)
are constants.

Further, let NA(r , a; f ) + NB(r , a;L) = S(r , f ), where A = E(a; f )\E(a;L),
B = E(a;L)\{E(a; f (1)) ∩ E(a;L(1))}. If f �≡ L, then one of the following cases
holds:
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(i) f = a + αez and L = αez, where α is a nonzero constant;

(ii) f = a + α2

a
e2z − αez and L = αez, where

n∑
k=1

2kak = 0,
n∑

k=1

ak = −1 and α

is a nonzero constant.

In connection to a result of Jank-Mues-Volkmann (Theorem 15) following question
was asked [14, 15]: Let f be a nonconstant meromorphic function, a be a nonzero
finite complex number and k, m be two distinct positive integers. Suppose that f ,
f (k) and f (m) share a CM. Can we get f ≡ f (k)?

Following example shows that the answer to the above question is, in general,
negative [40].

Example 2 Let k, m be positive integers satisfying m > k + 1, b be a nonzero
constant such that bk = bm �= 1 and a = bk . Put f = ebz + a − 1. Then f , f (k) and
f (m) share a CM but f �≡ f (k). However, we see that f (k) ≡ f (m).

In view of this example Chang and Fang [10] asked: Let f be a nonconstant
meromorphic function, a be a nonzero finite complex number and k, m be two
distinct positive integers. Suppose that f , f (k) and f (m) share a CM. Can we get
f (k) ≡ f (m)?

To answer this question affirmatively Chang and Fang [10] proved the following
results.

Theorem 35 Let f be a nonconstant entire function, a be a finite complex number,
k and m be two distinct positive integers, and (k,m) be the greatest common divisor
of k and m. If f , f (k) and f (m) share a CM, then

f (z) =
(

1− 1

c

)
a +

q∑
j=1

Cje
λj z,

where q is a positive integer with q ≤ (k,m), c and Cj , 1 ≤ j ≤ q, are nonzero
constants, and λj , 1 ≤ j ≤ q, are distinct nonzero constants satisfying (λj )k =
(λj )m = c for a �= 0 and (λj )k = c, (λj )m = d for a = 0, where d is a nonzero
constant.

Theorem 36 Let f be a nonconstant meromorphic function, a be a nonzero finite
complex number and k, m be two distinct positive integers. Suppose that f , f (k) and
f (m) share a CM. Then f (k) ≡ f (m).

5.4 Entire and Meromorphic Functions Sharing a Single
Value with Their Derivatives

We start this section with following definition.
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Definition 5 Let f be a nonconstant meromorphic function, the hyper-order of f ,
denoted by ρ2(f ), is defined by

ρ2(f ) = lim sup
r→∞

log log T (r , f )

log r
.

Brück [8] proved the following results.

Theorem 37 Let f be a nonconstant entire function satisfying ρ2(f ) <∞, where
ρ2(f ) is not a positive integer. If f and f ′ share the value 0 CM, then f ≡ cf ′ for
some nonzero constant c.

Theorem 38 Let f be a nonconstant entire function. If f and f ′ share the value 1
CM and if N (r , 0; f ′) = S(r , f ), then f − 1 ≡ c(f ′ − 1) for some constant c( �= 0).

Zhang [44] extended Theorem 38 to meromorphic functions and proved the
following results.

Theorem 39 Let f be a nonconstant meromorphic function. If f and f ′ share 1
CM and if

N (r ,∞; f )+N (r , 0; f ′) < {λ+ o(1)}T (r , f ′)

for some constant λ ∈
(

0,
1

2

)
, then

f ′ − 1

f − 1
is a nonzero constant.

Theorem 40 Let f be a nonconstant meromorphic function. If f and f (k) share 1
CM and if

2N (r ,∞; f )+N (r , 0; f ′)+N (r , 0; f (k)) < {λ+ o(1)} T (r , f (k)
)

for some constant λ ∈ (0, 1), then
f (k) − 1

f − 1
is a nonzero constant.

A meromorphic function a is called small with respect to a meromorphic function
f if T (r , a) = S(r , f ). In 2003, Yu [43] considered the uniqueness problem of an
entire or a meromorphic function when it shares one small function with its derivative.
K. W. Yu proved the following two results.

Theorem 41 Let f be a nonconstant entire function and a( �≡ 0,∞) be a small

function of f . If f − a and f (k) − a share the value 0 CM and δ(0; f ) >
3

4
, then

f ≡ f (k), where k is a positive integer.

Theorem 42 Let f be a nonconstant non-entire meromorphic function and a( �≡
0,∞) be a small function of f . If

(i) f and a have no common pole,
(ii) f − a and f (k) − a share the value 0 CM,

(iii) 4δ(0; f )+ 2(8+ k)Θ(∞; f ) > 19+ 2k,

then f ≡ f (k), where k is a positive integer. Further if k is an odd integer, then the
hypothesis (i) can be dropped.
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In his paper K. W. Yu asked the following open questions:

1. Can CM shared value be replaced by an IM shared value?

2. Can the condition δ(0; f ) >
3

4
of Theorem 41 be further relaxed?

3. Can the condition (iii) of Theorem 42 be further relaxed?
4. Can, in general, the condition (i) of Theorem 42 be dropped?

On these questions a considerable amount of work has been done. In connection to
the second question of K. W.Yu, in 2004 Liu and Gu [27] proved the following result.

Theorem 43 Let k ≥ 1 and f be a nonconstant meromorphic function, a( �≡ 0,∞)
be a small function of f . If f − a and f (k) − a share the value 0 CM, f (k) and a do
not have any common pole of same multiplicity and 2δ(0; f )+ 4Θ(∞; f ) > 5, then
f ≡ f (k).

If f is entire, then Theorem 43 reduces to the following.

Theorem 44 Let k ≥ 1 and f be a nonconstant entire function, a( �≡ 0,∞) be a

small function of f . If f − a and f (k) − a share the value 0 CM and δ(0; f ) >
1

2
,

then f ≡ f (k).
In order to state the next results we require the following definition [17, 18].

Definition 6 Let k be a nonnegative integer or infinity. For a ∈ C∪ {∞} we denote
by Ek(a; f ) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m ≤ k and k + 1 times if m > k. If Ek(a; f ) = Ek(a; g), we say that f, g
share the value a with weight k.

The definition implies that if f , g share a value a with weight k then zo is a zero
of f −a with multiplicitym( ≤ k) if and only if it is a zero of g−a with multiplicity
m( ≤ k) and zo is a zero of f − a with multiplicity m( > k) if and only if it is a zero
of g − a with multiplicity n( > k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly, if f , g share (a, k) then f , g share (a,p) for all integers p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Following definition is well-known.

Definition 7 We denote by δp(a; f ) the quantity

δp(a; f ) = 1− lim sup
r→∞

Np(r , a; f )

T (r , f )
,

where p is a positive integer and Np(r , a; f ) denotes the counting function of a-
points of f , an a-point of multiplicity m being counted m times if m ≤ p and p times
if m > p.

In 2004 Lahiri and Sarkar [19] used the above idea to prove the following two
results in response to the first question of K. W. Yu for a shared value and also to
prove a result for a shared small function.
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Theorem 45 Let f be a nonconstant meromorphic function and k be a positive
integer. If f , f (k) share (1, 2) and

2N (r ,∞; f )+N2(r , 0; f (k))+N2(r , 0; f ′) < {λ+ o(1)}T (r , f (k))

for r ∈ I , where 0 < λ < 1 and I is a set of infinite linear measure, then
f (k) − 1

f − 1
is a nonzero constant.

Theorem 46 Let f be a nonconstant meromorphic function and k be a positive
integer. If f , f (k) share (1, 1) and

2N (r ,∞; f )+N2(r , 0; f (k))+ 2N (r , 0; f ′) < {λ+ o(1)}T (r , f (k))

for r ∈ I , where 0 < λ < 1 and I is a set of infinite linear measure, then
f (k) − 1

f − 1
is a nonzero constant.

Theorem 47 Let f be a nonconstant meromorphic function and k be a positive
integer. Let a( �= 0,∞) be a small function of f . If

(i) a has no zero (pole) which is also a zero (pole) of f or f (k) with the same
multiplicity,

(ii) f − a and f (k) − a share (0, 2),
(iii) 2δ2+k(0; f )+ (4+ k)Θ(∞; f ) > 5+ k,

then f ≡ f (k).
Liu andYang [29] considered an IM shared value by a meromorphic function and

its derivative. Their results can be stated as follows:

Theorem 48 Let f be a nonconstant meromorphic function. If f and f ′ share the
value 1 IM and if

N (r ,∞; f )+N (r , 0; f ′) < {λ+ o(1)}T (r , f ′),

where 0 < λ <
1

4
, then

f ′ − 1

f − 1
is a nonzero constant.

Theorem 49 Let f be a nonconstant meromorphic function, k be a positive integer.
If f and f (k) share the value 1 IM and if

(3k + 6)N (r ,∞; f )+ 5 N (r , 0; f ) < {λ+ o(1)}T (r , f (k)),

where 0 < λ < 1, then
f (k) − 1

f − 1
is a nonzero constant.

Considering a small function Zhang [45] proved the following theorems which
improve the results of Lahiri and Sarkar [19].

Theorem 50 Let f be a nonconstant meromorphic function and k( ≥ 1), l( ≥ 0)
be integers. Also let for a small function a( �≡ 0,∞) of f , f − a and f (k) − a share

(0, l). If one of the following holds, then
f (k) − a

f − a
is a nonzero constant:
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(i) l ≥ 2 and 2N (r ,∞; f ) + N2(r , 0; f (k)) + N2(r , 0; (f/a)′)< {λ + o(1)}
T (r , f (k)),

(ii) l = 1 and 2N (r ,∞; f ) + N2(r , 0; f (k)) + 2N (r , 0; (f/a)′)< {λ + o(1)}
T (r , f (k)),

(iii) l= 0 and 4N (r ,∞; f )+ 3N2(r , 0; f (k))+ 2N (r , 0; (f/a)′)< {λ + o(1)}
T (r , f (k)),

for r ∈ I , where 0 < λ < 1 and I is a set of infinite linear measure.

Theorem 51 Let f be a nonconstant meromorphic function and k( ≥ 1), l( ≥ 0)
be integers. Also let for a small function a( �≡ 0,∞) of f , f − a and f (k) − a share
(0, l). If one of the following holds, then f ≡ f (k):

(i) l ≥ 2 and (3+ k)Θ(∞; f )+ 2δ2+k(0; f ) > k + 4,
(ii) l = 1 and (4+ k)Θ(∞; f )+ 3δ2+k(0; f ) > k + 6,

(iii) l = 0 and (6+ 2k)Θ(∞; f )+ 5δ2+k(0; f ) > 2k + 10.

In 2007 two improvements were made over the results of Q. C. Zhang (Theorems
50 and 51) by J. L. Zhang, L. Z. Yang and by A. Banerjee. First, we state the result
of J. L. Zhang and L. Z. Yang [46].

Theorem 52 Let f be a nonconstant meromorphic function, k( ≥ 1) and l( ≥ 0)
be two integers. Let L(f ) = f (k) + ak−1f

(k−1) + · · · + a0f , where a0, a1, . . . , ak−1

are small functions of f . If for a small function a( �≡ 0,∞), f − a and L(f ) − a

share (0, l), then f = L(f ) provided one of the following holds:

(i) l ≥ 2 and δ2+k(0; f )+ δ2(0; f )+ 3Θ(∞; f )+ δ(a; f ) > 4,
(ii) l = 1 and δ2+k(0; f )+δ2(0; f )+ 1

2δ1+k(0; f )+ k+7
2 Θ(∞; f )+δ(a; f ) > k

2+5,
(iii) l = 0 and δ2+k(0; f )+2δ1+k(0; f )+ δ2(0; f )+Θ(0; f )+ (6+2k)Θ(∞; f )+

δ(a; f ) > 2k + 10.

We now require the following definition.

Definition 8 We denote by N (r , a; f |≥ k) (N (r , a; f |≥ k)) the counting function
(reduced counting function) of those a-points of f whose multiplicities are not less
than k.

In a similar manner we define N (r , a; f |≤ k) and N (r , a; f |≤ k).
Banerjee [7] proved the following two results in the same direction.

Theorem 53 Let f be a nonconstant meromorphic function and k( ≥ 1), l( ≥ 0)
be integers. If f − a and f k − a share (0, l) for some nonconstant small function a

of f , then
f (k) − a

f − a
is a nonzero constant, provided one of the following holds:

(i) l ≥ 2 and 2N (r ,∞; f ) + N2(r , 0; f (k)) + N2(r , 0; (f/a)′) − N (r , 0; f/a |≥
3) < {λ+ o(1)}T (r , f (k)),

(ii) l = 1 and 2N (r ,∞; f ) + N2(r , 0; f (k)) + 2N (r , 0; (f/a)′) − N (r , 0; f/a |≥
2) < {λ+ o(1)}T (r , f (k)),
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(iii) l= 0 and 4N (r ,∞; f )+2N2(r , 0; f (k))+N (r , 0; f (k) |≤ 1)+2N (r , 0; (f/a)′)
−N (r , 0; f/a |≥ 2) < {λ+ o(1)}T (r , f (k)),

for r ∈ I , where 0 < λ < 1 and I is a set of infinite linear measure.

Theorem 54 Let f be a nonconstant meromorphic function and k( ≥ 1), l( ≥ 0)
be integers and a be a nonconstant small function of f . Suppose that f − a and
f (k) − a share (0, l). Then f ≡ f (k) provided one of the following holds:

(i) l = 1 and

(
7

2
+ k

)
Θ(∞; f )+ 3

2
δ2(0; f )+ δ2+k(0; f ) > 5+ k,

(ii) l = 0 and (6+2k)Θ(∞; f )+2Θ(0; f )+δ2(0; f )+δ1+k(0; f )+δ2+k(0; f ) >
2k + 10.

In 2006, Lin and Lin [28] introduced the notion of weakly weighted sharing of
values to investigate the questions of K. W.Yu. In the following definition we explain
this notion.

Definition 9 We denote by N
E

k)(r , a; f , g) the reduced counting function of those
common a-points of f and g whose corresponding multiplicities are equal, both of
their multiplicities are not greater than k.

Also we denote byN
0
(k(r , a; f , g) the reduced counting function of those a -points

of f which are a-points of g, both of their multiplicities are not less than k.
If for some k (a positive integer or∞) and a ∈ C∪{∞}we getN (r , a; f |≤ k) =

N
E

k)(r , a; f , g) + S(r , f ), N (r , a; g |≤ k) = N
E

k)(r , a; f , g) + S(r , g), N (r , a; f |≥
1 + k) = N

0
(1+k(r , a; f , g) + S(r , f ), N (r , a; g |≥ 1 + k) = N

0
(1+k(r , a; f , g) +

S(r , g) and for k = 0 we get N (r , a; f ) = N0(r , a; f , g) + S(r , f ), N (r , a; g) =
N0(r , a; f , g)+ S(r , g), then we say that f and g weakly share a with weight k. We
write f , g share ‘(a, k)’ to mean that f and g weakly share a with weight k.

Obviously, if f and g share ‘(a, k)’, then f and g share ‘(a,p)’ for any integer
p(0 ≤ p < k). Also we note that f and g share IM∗ or CM∗ if and only if f and g
share ‘(a, 0)’ or ‘(a, ∞)’ respectively.

We now state the results of Lin and Lin [28].

Theorem 55 Let k ≥ 1 and 2 ≤ m ≤ ∞ and f be a nonconstant meromorphic
function. If f − a and f (k) − a share “(0,m)” for some small function a( �≡ 0,∞)
of f and 2δ2+k(0; f )+ 4Θ(∞; f ) > 5, then f ≡ f (k).

Theorem 56 Let k ≥ 1 and f be a nonconstant meromorphic function. If f −a and

f (k) − a share “(0, 1)” for some small function a( �≡ 0,∞) of f and
5

2
δ2+k(0; f )+

k + 9

2
Θ(∞; f ) >

k

2
+ 6, then f ≡ f (k).

Theorem 57 Let k ≥ 1 and f be a nonconstant meromorphic function. If f − a

and f (k)−a share ‘(0, 0)’for some small function a( �≡ 0,∞) of f and 5δ2+k(0; f )+
(2k + 7)Θ(∞; f ) > 2k + 11, then f ≡ f (k).
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A. H. H. Al-Klahaldi worked a lot on Brück’s result (Theorem 38) and so it needs
separate attention. Considering the sharing of small functions by an entire function
and its derivative, he [1] exhibited by the following example that it is not possible
to replace straightway the shared value by a shared function in R. Brück’s theorem
(Theorem 38).

Example 3 Let f = exp ez and a = ez

ez−1 . It is easy to see that f − a and f ′ − a

share 0 CM and N (r , 0; f ′) ≡ 0 but f − a �≡ c(f ′ − a) for any nonzero constant c.
Instead Al-Khaladi [1] proved the following theorem.

Theorem 58 Letf be a nonconstant entire function satisfyingN (r , 0; f ′) = S(r , f )
and let a = a(z)( �≡ 0,∞) be a meromorphic small function of f . If f −a and f ′ −a
share 0 CM, then f − a = (1− k

a
)(f ′ − a), where 1− k

a
= eβ , k is a constant and

β is an entire function.
In 2005 Al-Khaladi [2] proved that Brück’s result (Theorem 38) is also valid

for meromorphic functions. He also verified by the following examples that the
hypotheses of Brück’s result (Theorem 38) are essential.

Example 4 Let f = 1+ tan z. Then f ′ − 1 = (f − 1)2 so that f and f ′ share 1 IM
and N (r , 0; f ′) ≡ 0. However, the conclusion of Brück’s result (Theorem 38) does
not hold.

Example 5 Let f = zez

1+ez . Then f and f ′ share the value 1 CM and N (r , 0; f ′) �=
S(r , f ). Clearly f ′ − 1 �= c(f − 1) for any nonzero constant c.

Al-Khaladi [3] extended Theorem 58 to higher order derivative and proved the
following theorem.

Theorem 59 Let f be a nonconstant entire function satisfying N (r , 0; f (k)) =
S(r , f ) and let a = a(z)( �≡ 0,∞) be a meromorphic small function of f . If f − a

and f (k)−a share 0 CM, then f −a =
(

1− Pk−1
a

) (
f (k) − a

)
, where 1− Pk−1

a
= eβ ,

Pk−1 is a polynomial of degree at most k − 1 and β is an entire function.
Al-Khaladi [4] also considered the situation when a meromorphic function share a

nonzero value ignoring multiplicities with its first derivative and proved the following
result.

Theorem 60 Let f be a nonconstant meromorphic function. If f and f ′ share a
value a( �= 0,∞) IM and if N (r , 0; f )+ N (r , 0; f ′) = S(r , f ), then either f ≡ f ′
or f = 2a

1−Ae−2z , where A is a nonzero constant.
In 2010 Al-Khaladi [5] improved Theorem 59 in the following manner.

Theorem 61 Let f be a nonconstant meromorphic function and a = a(z)( �≡ 0,∞)
be a meromorphic small function of f . If f − a and f (k) − a share 0 CM and if

N (r ,∞; f )+N
(
r , 0; f (k)

)
< λT

(
r , f (k)

)+ S
(
r , f (k)

)

for some real constant λ ∈ (0, 1
k+1

)
, then f −a =

(
1− Pk1

a

) (
f (k) − a

)
, where Pk−1

is a polynomial of degree at most k − 1 and 1− Pk−1
a
�≡ 0.
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Al-Khaladi [6] further extended Theorem 59 to meromorphic functions and proved
the following theorem.

Theorem 62 Let f be a nonconstant meromorphic function satisfying
N (r , 0; f (k)) = S(r , f ) and let a = a(z)( �≡ 0,∞) be a meromorphic small function

of f . If f − a and f (k)− a share 0 CM, then f − a =
(

1− Pk−1
a

) (
f (k) − a

)
, where

1− Pk−1
a
�≡ 0 and Pk−1 is a polynomial of degree at most k − 1.

In this short survey, it is not possible to cover a reasonably wide area of the
literature. There are many results which we cannot mention, though many of those
deserve so for their own values and intricacies. We just tried to give an overall idea
of the flow of research on the topic and our efforts will be meaningful only if it can
create some interest in the reader for the topic.

Acknowledgement The author is thankful to the referee for thorough reading of the manuscript
and valuable suggestions.
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Chapter 6
Differential Superordinations and
Sandwich-Type Results

Teodor Bulboacă, Nak Eun Cho and Pranay Goswami

6.1 The General Theory of Differential Superordinations

Let Ω ⊂ C, let p be analytic in the unit disc U = {z ∈ C : |z| < 1}, and let
ψ(r , s, t ; z) : C

3 × U → C. In a series of articles, S. S. Miller, P. T. Mocanu and
many others have determined properties of functions ψ that satisfy the differential
subordination (i.e. the differential inclusion)

{ψ(p(z), zp′(z), z2 p′′(z); z) : z ∈ U} ⊂ Ω.

Reversely, let us consider the dual problem of determining properties of functions ψ
that satisfy the differential superordination

Ω ⊂ {ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ U}.
Since many of these kind of results can be expressed in terms of subordination

and superordination, we will give the required definitions, and note that these results
have been first presented in [21].

Definition 1 Let f , F ∈ H (U), where H (U) denotes the set of all analytic
functions in U. The function f is said to be subordinate to F , or F is said to be
superordinate to f , if there exists a function w analytic in U, with w(0) = 0 and
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|w(z)| < 1, and such that f (z) = F (w(z)), for all z ∈ U. In such a case we write
f (z) ≺ F (z).

It is well-known that, if F is univalent in U, then

f (z) ≺ F (z) ⇔ f (0) = F (0) and f (U) ⊂ F (U).

LetΩ , Δ ⊂ C, letp be analytic in the unit disc U, and let ϕ(r , s, t ; z) : C
3×U →

C. In [21], authors determined sufficient conditions on Ω ,Δ and ϕ for which the
following implication holds:

Ω ⊂ {ϕ(p(z), zp′(z), z2p′′(z); z) : z ∈ U} ⇒ Δ ⊂ p(U). (6.1)

If either Ω or U in (6.1) is a simply connected domain, then it is possible to
rephrase (6.1) in terms of superordination. If p is univalent in U, and if U is a simply
connected domain with Δ �= C, then there exists a conformal mapping q of U onto
U, such that q(0) = p(0). Thus, (6.1) can be rewritten as

Ω ⊂ {ϕ(p(z), zp′(z), z2p′′(z); z) : z ∈ U} ⇒ q(z) ≺ p(z). (6.2)

If Ω is also a simply connected domain with Ω �= C, then there exists a conformal
mapping h of U ontoΩ , such that h(0) = ϕ(p(0), 0, 0; 0). If in addition, the function
ϕ(p(z), zp′(z), z2 p′′(z); z) is univalent in U, then (6.2) can be rewritten as

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z) ⇒ q(z) ≺ p(z). (6.3)

Definition 2 Let ϕ : C
3 × U → C and let h be analytic in U. If p

and ϕ(p(z), zp′(z), z2 p′′(z); z) are univalent in U and satisfy the (second-order)
differential superordination

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z), (6.4)

then p is called a solution of the differential superordination. An analytic function q
is called a subordinant of the solutions of the differential superordination, or more
simply a subordinant if q ≺ p for all p satisfying (6.4). A univalent subordinant q̃
that satisfies q ≺ q̃ for all subordinants q of (6.4) is said to be the best subordinant.

Note that the best subordinant is unique up to a rotation of U.
In the special case when the set inclusions of (6.1) can be replaced by the su-

perordinations of (6.3), there are three distinct cases to consider in analysing this
implication:

Problem 1 Given analytic functions h and q, find a class of admissible functions
Φ[h, q] such that (6.3) holds.

Problem 2 Given the differential superordination in (6.3), find a subordinant q.
Moreover, find the best subordinant.
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Problem 3 Given ϕ and subordinant q, find the largest class of analytic functions
h such that (6.3) holds.

Now, we will introduce a class of univalent functions, with nice boundary
properties:

Definition 3 Let us denote by Q, the set of functionsf that are analytic and injective
on U \ E(f ), where

E(f ) =
{
ζ ∈ ∂U : lim

z→ζ
f (z) = ∞

}
,

and are such that f ′(ζ ) �= 0 for ζ ∈ ∂U \ E(f ).
The subclass of Q for which f (0) = a is denoted by Q(a).
The following well-known lemma [20, p. 24] plays a crucial role in determining

subordinants of differential superordinations; for the number 0 < r < 1, we will use
the notation Ur = {z ∈ C : |z| < r}.
Lemma 1 Let p ∈ Q(a), and let q ∈ H [a, n], where

H [a, n] = {
f ∈ H (U) : f (z) = a + anzn + . . .

}
,

with q(z) �≡ a and n ≥ 1. If q is not subordinate to p, then there exists points
z0 = r0e

iθ0 ∈ U and ζ0 ∈ ∂U \ E(p), and an m ≥ n ≥ 1 for which q(Ur0 ) ⊂ p(U),

(i) q(z0) = p(ζ0)
(ii) z0q

′(z0) = mζ0p
′(ζ0)

(iii) Re z0q
′′(z0)

q ′(z0) + 1 ≥ mRe
[
ζ0p

′′(ζ0)
p′(ζ0) + 1

]

The class of admissible functions referred to in the introduction is defined as
follows:

Definition 4 LetΩ be a set in C and q ∈ H [a, n]. The class of admissible functions
Φn[Ω , q], consists of those functions ϕ : C

3 ×U → C that satisfy the admissibility
condition:

ϕ(r , s, t ; ζ ) ∈ Ω , (6.5)

whenever

r = q(z), s = zq ′(z)

m
, Re

t

s
+ 1 ≤ 1

m
Re

[
zq ′′(z)

q ′(z)
+ 1

]
,

where ζ ∈ ∂U, z ∈ U and m ≥ n ≥ 1.

Remark 1 We will use the next simplified notations:

1. When n = 1 we write Φ1[Ω , q] as Φ[Ω , q];
2. In the special case when h is an analytic mapping of U onto Ω �= C, we denote

the class Φn[h(U), q] by Φn[h, q];
3. If ϕ : C

2 × U → C, then the admissibility condition (6.5) reduces to

ϕ

(
q(z),

zq ′(z)

m
; ζ

)
∈ Ω , (6.6)
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where z ∈ U, ζ ∈ ∂U and m ≥ n ≥ 1.
The next theorem is a key result in the theory of first and second order differential

superordinations, and its proof follows immediately from [20, Lemma 2.2d.]:

Theorem 1 [21] Let Ω ⊂ C, let q ∈ H [a, n] and let ϕ ∈ Φn[Ω , q]. If p ∈ Q(a)
and ϕ(p(z), zp′(z), z2 p′′(z); z) is univalent in U, then

Ω ⊂ {ϕ(p(z), zp′(z), z2p′′(z); z) : z ∈ U} (6.7)

implies q(z) ≺ p(z).
For the special case when h is analytic on U and h(U) = Ω �= C, the class

Φn[h(U), q] is written as Φn[h, q], while the following result is an immediate
consequence of Theorem 1:

Theorem 2 [21] Let q ∈ H [a, n], leth be analytic and letϕ ∈ Φn[h, q]. Ifp ∈ Q(a)
and ϕ(p(z), zp′(z), z2 p′′(z); z) is univalent in U, then

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z), (6.8)

implies q(z) ≺ p(z).
The above Theorems 1 and 2 are very useful to obtain subordinants of a differential

superordination of the form (6.7) or (6.8), by checking that the function ϕ is an
admissible function, which requires that ϕ satisfies condition (6.5), that is a simple
algebraic condition.

Otherwise, the subordinants of various differential superordinations are difficult
to be obtained directly. For checking that the function ϕ is an admissible function,
we can use three different techniques:

(i) an elementary technique deals with those cases in which the equation of the
boundary of Ω is known;

(ii) a second technique concerns those cases for which the geometry of the domain
Ω is of particular form (convex, starlike, . . . );

(iii) the third technique uses a more sophisticated method that employs subordination
chains.

The next theorem, that is an immediate consequence of Theorem 2, proves the
existence of the best subordinant of (6.8) for certain ϕ, and also gives us a method
for finding the best subordinant:

Theorem 3 [21] Let h be analytic in U and let ϕ : C
3 × U → C. Suppose that the

differential equation

ϕ(q(z), zq ′(z), z2q ′′(z); z) = h(z) (6.9)

has a solution q ∈ Q(a). If ϕ ∈ Φ[h, q], p ∈ Q(a) and ϕ(p(z), zp′(z), z2p′′(z); z) is
univalent in U, then

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z) (6.10)
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implies q(z) ≺ p(z) and q is the best subordinant.
This theorem shows us that the problem of finding the best subordinant of (6.10)

reduces to showing that differential equation (6.9) has a univalent solution, and
checking further that ϕ ∈ Φ[h, q].

6.2 First-Order Differential Superordinations

For the case of first-order differential subordinations, the Theorems 1, 2 and 3 can
be simplified as follows, and these results are immediately obtained by using these
theorems and admissibility condition (6.6):

Theorem 4 [21] Let Ω ⊂ C, q ∈ H [a, n], ϕ : C
2 × U → C, and suppose that

ϕ(q(z), tzq ′(z); ζ ) ∈ Ω ,

for z ∈ U, ζ ∈ ∂U and 0 < t ≤ 1

n
≤ 1. If p ∈ Q(a) and ϕ(p(z), zp′(z); z) is

univalent in U, then

Ω ⊂ {ϕ(p(z), zp′(z); z) : z ∈ U} ⇒ q(z) ≺ p(z).

Theorem 5 [21] Let h be analytic in U, q ∈ H [a, n], ϕ : C
2×U → C, and suppose

that
ϕ(q(z), tzq ′(z); ζ ) ∈ h(U),

for z ∈ U, ζ ∈ ∂U and 0 < t ≤ 1

n
≤ 1. If p ∈ Q(a) and ϕ(p(z), zp′(z); z) is

univalent in U, then

h(z) ≺ ϕ(p(z), zp′(z); z) ⇒ q(z) ≺ p(z).

Furthermore, if ϕ(q(z), zq ′(z); z) = h(z) has a univalent solution q ∈ Q(a), then q
is the best subordinant.

Hallenbeck and Ruscheweyh [16], [20, p. 71] considered the differential subordi-
nation

p(z)+ zp′(z)

γ
≺ h2(z), (6.11)

where h2 is convex in U, h2(0) = a, γ �= 0 and Re γ ≥ 0. They showed that if
p ∈ H [a, 1] satisfies (6.11), then

p(z) ≺ q2(z) ≺ h2(z),

where

q2(z) = γ

zγ

∫ z

0
h2(t)tγ−1 dt ,

and the function q2 is a convex function and is the best dominant of (6.11).
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The next theorem is an analogous result for the corresponding differential
superordination:

Theorem 6 [21] Let h1 be convex in U, with h1(0) = a, γ �= 0 with Re γ ≥ 0 and

p ∈ H [a, 1] ∩Q. If
p(z)+ zp′(z)

γ
is univalent in U,

h1(z) ≺ p(z)+ zp′(z)

γ

and

q1(z) = γ

zγ

∫ z

0
h1(t)tγ−1 dt ,

then q1(z) ≺ p(z). The function q1 is convex and is the best subordinant.
Combining the last theorem with the above mentioned Hallenbeck and

Ruscheweyh result, we obtain the following differential sandwich-type theorem:

Corollary 1 [21] Let h1 and h2 be convex in U, with h1(0) = h2(0) = a. Let γ �= 0,
with Re γ ≥ 0, and let the functions qi be defined by

qi(z) = γ

zγ

∫ z

0
hi(t)t

γ−1 d t ,

for i = 1, 2. If p ∈ H [a, 1] ∩Q and
p(z)+ zp′(z)

γ
is univalent, then

h1(z) ≺ p(z)+ zp′(z)

γ
≺ h2(z) ⇒ q1(z) ≺ p(z) ≺ q2(z). (6.12)

The functions q1 and q2 are convex and they are respectively the best subordinant
and best dominant.

If we denote f (z) = p(z)+ zp′(z)

γ
, then (6.12) can be expressed as the following

sandwich-type theorem involving subordination-preserving integral operators:

Corollary 2 [21] Let h1 and h2 be convex in U and f be univalent in U, with
h1(0) = h2(0) = f (0). Let γ �= 0 with Re γ ≥ 0. If

h1(z) ≺ f (z) ≺ h2(z),

then
γ

zγ

∫ z

0
h1(t)tγ−1 dt ≺ γ

zγ

∫ z

0
f (t)tγ−1 dt ≺ γ

zγ

∫ z

0
h2(t)tγ−1 dt ,

when the middle integral is univalent.

Definition 5 [25, p. 157]A functionL(z; t), with z ∈ U and t ≥ 0, is a subordination
(or a Loewner) chain if L(·; t) is analytic and univalent in U for all t ≥ 0, L(z; ·) is
continuously differentiable on [0,+∞) for all z ∈ U, and L(z; s) ≺ L(z; t), when
0 ≤ s ≤ t .
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The following lemma provides a sufficient condition for L(z, t) to be a subordi-
nation chain and it was used in many of these proofs:

Lemma 2 [25, p. 159] The function L(z; t) = a1(t)z+a2(t)z2+ . . . , with a1(t) �= 0
for t ≥ 0, and lim

t→∞ |a1(t)| = ∞, is a subordination chain if and only if there exist

constants r ∈ (0, 1] and M > 0 such that:

(i) L(z; t) is analytic in |z| < r for each t ≥ 0, locally absolutely continuous in
[0,∞) for each |z| < r , and satisfies

|L(z; t)| ≤ M|a1(t)|, for |z| < r and t ≥ 0;

(ii) there exists a function p(z, t) analytic in U for all t ∈ [0,∞) and measurable in
[0,∞) for each z ∈ U, such that Rep(z, t) > 0 for z ∈ U, t ∈ [0,∞), and

∂L(z; t)

∂t
= z

∂L(z; t)

∂z
p(z, t), for |z| < r and for almost all t ∈ [0,∞).

The following result allows to obtain subordinants of a differential superordination
by applying the theory of subordination chains:

Theorem 7 [21, Theorem 7] Let q ∈ H [a, 1], let ϕ : C
2 → C and set

ϕ(q(z), zq ′(z)) ≡ h(z). If L(z; t) = ϕ(q(z), tzq ′(z)) is a subordination chain, and
p ∈ H [a, 1] ∩Q, then

h(z) ≺ ϕ(p(z), zp′(z)) ⇒ q(z) ≺ p(z).

Furthermore, if ϕ(q(z), zq ′(z)) = h(z) has a univalent solution q ∈ Q, then q is the
best subordinant.

An application of this above result could be done by considering again the
differential superordination

h(z) ≺ p(z)+ zp′(z)

γ
, (6.13)

and the corresponding differential equation

q(z)+ zq ′(z)

γ
= h(z). (6.14)

While in Theorem 6 it was assumed that the function h of (6.14) was convex (which
implied that solution q was also convex), now the assumption is a weaker one by
assuming that q is convex and that h is defined by (6.14).

In this new case, it is easy to see that h is a univalent (more precisely, a close-
to-convex) function, and the proof is based on the subordination chain argument as
given in Theorem 7:
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Theorem 8 [21] Let q be convex in U and let h be defined by (6.14), with Re γ > 0.

If p ∈ H [a, 1] ∩ Q,
p(z)+ zp′(z)

γ
is univalent in U, and (6.13) is satisfied, then

q(z) ≺ p(z), where

q(z) = γ

zγ

∫ z

0
h(t)tγ−1 dt.

The function q is the best subordinant.
This last theorem is an example of a solution of Problem 3 referred to in the

Sect. 6.1:

Theorem 9 [21] Let h be starlike in U, with h(0) = 0. If p ∈ H [0, 1] ∩ Q and
zp′(z) is univalent in U, then

h(z) ≺ zp′(z) ⇒ q(z) ≺ p(z),

where

q(z) =
∫ z

0
h(t)t−1 dt.

The function q is convex and is the best subordinant.
There exists a corresponding result of Theorem 9 for differential subordinations

of the form zp′(z) ≺ h(z) due to Suffridge [26], [20, p. 76], and combining that
result with Theorem 9 we obtain the following sandwich-type result:

Corollary 3 [21] Let h1 and h2 be starlike in U, with h1(0) = h2(0) = 0, and let
the functions qi be defined by

qi(z) =
∫ z

0
hi(t)t

−1 dt ,

for i = 1, 2. If p ∈ H [0, 1] ∩Q and zp′(z) is univalent in U, then

h1(z) ≺ zp′(z) ≺ h2(z) ⇒ q1(z) ≺ p(z) ≺ q2(z).

The functions q1 and q2 are convex and they are respectively the best subordinant
and best dominant.

Setting f (z) = zp′(z), then the above corollary can be expressed as the following
sandwich-type theorem involving subordination-preserving integral operators:

Corollary 4 [21] Let h1 and h2 be starlike in U and f be univalent in U, with
h1(0) = h2(0) = f (0) = 0. If

h1(z) ≺ f (z) ≺ h2(z),

then ∫ z

0
h1(t)t−1 dt ≺

∫ z

0
f (t)t−1 dt ≺

∫ z

0
h2(t)t−1 dt

when the middle integral is univalent.
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6.3 Classes of First-Order Differential Superordinations

Let ϕ : C
2 → C be an analytic function in a domain Δ ⊂ C

2, let p ∈ H (U)
such that ϕ(p(z), zp′(z)) is univalent in U and suppose that p satisfies the first-order
differential superordination

h(z) ≺ ϕ(p(z), zp′(z)).

In the case when

ϕ(p(z), zp′(z)) = α(p(z))+ β(p(z)) γ (zp′(z))

it is possible to determine conditions on h, α, β and γ so that the above subordi-
nation implies q(z) ≺ p(z), where q is the largest function so that q(z) ≺ p(z)
for all p functions satisfying the first-order differential superordination, i.e. the best
subordinant q.

Theorem 10 [5] Let q be a convex (univalent) function in the unit disc U, let α,
β ∈ H (D), where D ⊃ q(U) is a domain and let γ ∈ H (C). Suppose that

Re
α′(q(z))+ β ′(q(z)) γ (tzq ′(z))

β(q(z)) γ ′(tzq ′(z))
> 0, z ∈ U and t ≥ 0.

If p ∈ H [q(0), 1]∩Q, with p(U) ⊂ D, and α(p(z))+β(p(z)) γ (zp′(z)) is univalent
in U, then

α(q(z))+ β(q(z)) γ (zq ′(z)) = h(z) ≺ α(p(z))+ β(p(z)) γ (zp′(z)) ⇒ q(z) ≺ p(z),

and q is the best subordinant.
For the particular case when γ (w) = w, using a similar proof as in Theorem 10

we obtain:

Corollary 5 [5] Let q be a univalent function in the unit disc U and letα, β ∈ H (D),
where D ⊃ q(U) is a domain. Suppose that

(i) Re
α′(q(z))

β(q(z))
> 0, z ∈ U

(ii) Q(z) = zq ′(z)β(q(z)) is a starlike (univalent) function in U

If p ∈ H [q(0), 1]∩Q, with p(U) ⊂ D, and α(p(z))+ zp′(z)β(p(z)) is univalent in
U, then

α(q(z))+ zq ′(z)β(q(z)) ≺ α(p(z))+ zp′(z)β(p(z)) ⇒ q(z) ≺ p(z),

and q is the best subordinant.
For the case β(w) = 1, using the fact that the function Q(z) = zq ′(z) is starlike

(univalent) in U if and only if q is convex (univalent) in U, Corollary 5 becomes:
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Corollary 6 [5] Let q be a convex (univalent) function in the unit disc U and let
α ∈ H (D), where D ⊃ q(U) is a domain. Suppose that

Re α′(q(z)) > 0, z ∈ U.

If p ∈ H [q(0), 1]∩Q, with p(U) ⊂ D, and α(p(z))+ zp′(z) is univalent in U, then

α(q(z))+ zq ′(z) ≺ α(p(z))+ zp′(z) ⇒ q(z) ≺ p(z),

and q is the best subordinant.
Next we will give some particular cases of the above results obtained for

appropriate choices of the q, α and β functions.
Taking α(w) = w and β(w) = 1/γ , Re γ > 0, in Corollary 5, condition (i) holds

if Re γ > 0 and (ii) holds if and only if q is a convex (univalent) function in U,
hence we obtain:

Example 1 [5, 21, Theorem 8], Let q be a convex (univalent) function in the unit

disc U and let γ ∈ C, with Re γ > 0. If p ∈ H [q(0), 1] ∩Q and p(z) + zp′(z)

γ
is

univalent in U, then

q(z)+ zq ′(z)

γ
≺ p(z)+ zp′(z)

γ
⇒ q(z) ≺ p(z),

and q is the best subordinant.
Considering in Corollary 6 the special case α(w) = ew, the assumption becomes

Re α′(q(z)) = eRe q(z) cos ( Im q(z)) > 0, z ∈ U,

and we obtain:

Example 2 Let q be a convex (univalent) function in the unit disc U and suppose
that

| Im q(z)| < π

2
, z ∈ U.

If p ∈ H [q(0), 1] ∩Q and ep(z) + zp′(z) is univalent in U, then

eq(z) + zq ′(z) ≺ ep(z) + zp′(z) ⇒ q(z) ≺ p(z),

and q is the best subordinant.

Remark 2 Taking q(z) = λz, |λ| ≤ π/2 in Example 2 we have the next result:
If p ∈ H [0, 1] ∩Q such that ep(z) + zp′(z) is univalent in U and |λ| ≤ π/2, then

eλz + λz ≺ ep(z) + zp′(z) ⇒ λz ≺ p(z),

and λz is the best subordinant.

If we consider in Corollary 6 the case α(w) = w2

2
− βw, then we may easily

obtain the next result:



6 Differential Superordinations and Sandwich-Type Results 119

Example 3 Let q be a convex (univalent) function in the unit disc U and suppose
that

Re q(z) > β, z ∈ U.

If p ∈ H [q(0), 1] ∩Q and
p2(z)

2
− βp(z)+ zp′(z) is univalent in U, then

q2(z)

2
− βq(z)+ zq ′(z) ≺ p2(z)

2
− βp(z)+ zp′(z) ⇒ q(z) ≺ p(z),

and q is the best subordinant.

6.4 Briot–Bouquet Differential Superordinations

Let β, γ ∈ C, let Ω2,Δ2 ⊂ C, and let p ∈ H (U). In a series of articles, S. S.
Miller and P. T. Mocanu and many other authors [20, pp. 80–119] have determined
conditions such that{

p(z)+ zp′(z)

βp(z)+ γ
: z ∈ U

}
⊂ Ω2 ⇒ p(U) ⊂ Δ2.

The above differential operator is known as the Briot–Bouquet differential operator,
and the main investigation in this subject is to find the smallest set Δ2 ⊂ C for
which the above implication holds. We emphasise that this particular differential
implication has many applications in univalent function theory.

Now we will discuss the dual problem of determining conditions so that

Ω1 ⊂
{
p(z)+ zp′(z)

βp(z)+ γ
: z ∈ U

}
⇒ Δ1 ⊂ p(U),

and, in particular, we are interested in determining the largest set Δ1 ⊂ C for which
this implication holds.

If the sets Ω1,Ω2,Δ1,Δ2 ⊂ C are simply connected domains not equal to C,
then it is possible to rephrase the above expressions in terms of subordination and
superordination in the forms

p(z)+ zp′(z)

βp(z)+ γ
≺ h2(z) ⇒ p(z) ≺ q2(z) (6.15)

and

h1(z) ≺ p(z)+ zp′(z)

βp(z)+ γ
⇒ q1(z) ≺ p(z). (6.16)

We mention that the left-hand side of (6.15) is called a Briot–Bouquet differential
subordination, and the function q2 is called a dominant of the differential subordi-
nation. The best dominant, which provides a sharp result, is the dominant that is
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subordinate to all other dominants. Many results and applications of these topics can
be found in [20, pp. 80–119].

In the Sect. 6.1 the dual concept of differential superordination was presented as
introduced in [21]. In the light of those results the left side of (6.16) is called a Briot–
Bouquet differential superordination, and the function q1 is called a subordinant of
the differential superordination. Also, the best subordinant, that provides a sharp
result is the subordinant that is superordinate to all other subordinants.

Now, we will present the results of [22], where the authors combined (6.15) and
(6.16) to obtain conditions so that the Briot–Bouquet sandwich-type result

h1(z) ≺ p(z)+ zp′(z)

βp(z)+ γ
≺ h2(z),

implies that q1(z) ≺ p(z) ≺ q2(z).

Theorem 11 [22] Let h be convex in U with h(0) = a, and let Θ ,Φ ∈ H (D)
where D ⊂ C is a domain. Let p ∈ H [a, 1] ∩ Q and suppose that the function
Θ(p(z))+ zp′(z)Φ(p(z)) is univalent in U. If the differential equation

Θ(q(z))+ zq ′(z)Φ(q(z)) = h(z)

has a univalent solution q that satisfies q(0) = a, q(U) ⊂ D, and

Θ(q(z)) ≺ h(z),

then
h(z) ≺ Θ(p(z))+ zp′(z)Φ(p(z)) ⇒ q(z) ≺ p(z).

The function q is the best subordinant.

In the special case whenΘ(w) = w andΦ(w) = 1

βw+ γ
we obtain the following

result for the Briot–Bouquet differential superordination:

Corollary 7 [22] Let β, γ ∈ C, and let h be convex in U with h(0) = a. Suppose
that the differential equation

q(z)+ zq ′(z)

βq(z)+ γ
= h(z) (6.17)

has a univalent solution q that satisfies q(0) = a, and q(z) ≺ h(z). Ifp ∈ H [a, 1]∩Q
and p(z)+ zp′(z)

βp(z)+ γ
is univalent in U, then

h(z) ≺ p(z)+ zp′(z)

βp(z)+ γ
⇒ q(z) ≺ p(z).

The function q is the best subordinant.
Some conditions and examples for which the Briot–Bouquet differential Equa-

tion (6.17) has univalent solutions may be found in [19] and [20, p. 91].
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There is a complete analogue of Theorem 11 for differential subordinations, which
is given in [18, p. 189] and [20, p. 125]. We can combine that result with Theorem 11
and obtain the following sandwich-type theorem:

Theorem 12 [22] Let h1 and h2 be convex in U with h1(0) = h2(0) = a, and let
Θ ,Φ ∈ H (D), where D ⊂ C is a domain. Let p ∈ H [a, 1] ∩Q and suppose that
Θ(p(z))+ zp′(z)Φ(p(z)) is univalent in U. If the differential equations

Θ(q(z))+ zq ′(z)Φ(q(z)) = hk(z)

have the univalent solutions qk that satisfy qk(0) = a, qk(U) ⊂ D, and

Θ(qk(z)) ≺ h(z),

for k = 1, 2, then

h1(z) ≺ Θ(p(z))+ zp′(z)Φ(p(z)) ≺ h2(z) ⇒ q1(z) ≺ p(z) ≺ q2(z).

The functions q1 and q2 are the best subordinant and the best dominant, respectively.

In the special case whenΘ(w) = w andΦ(w) = 1

βw+ γ
we obtain the following

result for the Briot–Bouquet sandwich-type result:

Corollary 8 [22] Let β, γ ∈ C, and let hk be convex in U with hk(0) = a, for
k = 1, 2. Suppose that the differential equations

qk(z)+ zq ′k(z)

βqk(z)+ γ
= hk(z) (6.18)

have the univalent solutions qk that satisfy qk(0) = a, and qk(z) ≺ h(z), for k = 1, 2.

If p ∈ H [a, 1] ∩Q and p(z)+ zp′(z)

βp(z)+ γ
is univalent in U, then

h1(z) ≺ p(z)+ zp′(z)

βp(z)+ γ
≺ h2(z) ⇒ q1(z) ≺ p(z) ≺ q2(z).

The functions q1 and q2 are the best subordinant and the best dominant, respectively.
If β = 0 and γ �= 0 with Re γ ≥ 0, then (6.18) has univalent (convex) solutions

given by

qk(z) = γ

zγ

∫ z

0
hk(t)t

γ−1 dt ,

for k = 1, 2, and in this case we obtain the sandwich-type result of Corollary 1.
Theorem 11 dealt with finding a subordinant, or the best subordinant, for a

differential superordination for a given h function. Handling the problem from a
different direction, i.e. first select the subordinant q and then find the appropriate h
corresponding to this q, we have the following result:

Theorem 13 [22] Let Θ ,Φ ∈ H (D), where D ⊂ C is a domain, and let q be
univalent in U with q(0) = a and q(U) ⊂ D. Set Q(z) = zq ′(z)Φ(q(z)), h(z) =
Θ(q(z))+Q(z) and suppose that
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(i) Re
Θ ′(q(z))

Φ(q(z))
> 0, z ∈ U and

(ii) Q is starlike in U

If p ∈ H [a, 1] ∩Q and Θ(p(z))+ zp′(z)Φ(p(z)) is univalent in U, then

h(z) ≺ Θ(p(z))+ zp′(z)Φ(p(z)) ⇒ q(z) ≺ p(z),

and q is the best subordinant.

In the special case whenΘ(w) = w andΦ(w) = 1

βw+ γ
, Theorem 13 simplifies

to the following result for the Briot–Bouquet differential superordinations:

Corollary 9 [22] Let β, γ ∈ C, and let q be univalent in U with q(0) = a. Set

h(z) = q(z)+ zq ′(z)

βq(z)+ γ
(6.19)

and suppose that

(i) Re
[
βq(z)+ γ

]
> 0, z ∈ U, (6.20)

and

(ii)
zq ′(z)

βq(z)+ γ
is starlike in U. (6.21)

If p ∈ H [a, 1] ∩Q and p(z)+ zp′(z)

βp(z)+ γ
is univalent in U, then

h(z) ≺ p(z)+ zp′(z)

βp(z)+ γ
⇒ q(z) ≺ p(z)

and q is the best subordinant.
Several previous results of the authors of [22] enable us to replace the conditions

that q be univalent and that (6.20) be satisfied in the above result with weaker condi-
tions. In [20, pp. 86–91], it was shown that if Rc represents the open door function
defined in [20, Definition 2.5a], and

βh(z)+ γ ≺ Rβa+γ (z),

then the differential equation (6.19) has an analytic solution q that satisfies the con-
dition (6.20). Moreover, the condition (6.21) implies that this solution q is univalent.
Combining these results with Corollary 9 we obtain the following improved result:

Corollary 10 [22] Let h ∈ H (U) with h(0) = a, let the numbers β, γ ∈ C with
Re [βa + γ ] > 0, and suppose that

(i) βh(z)+ γ ≺ Rβ+γ (z)
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Let q be the analytic solution of the Briot–Bouquet differential equation

h(z) = q(z)+ zq ′(z)

βq(z)+ γ

and suppose that

(ii)
zq ′(z)

βq(z)+ γ
is starlike in U.

If p ∈ H [a, 1] ∩Q and p(z)+ zp′(z)

βp(z)+ γ
is univalent in U, then

h(z) ≺ p(z)+ zp′(z)

βp(z)+ γ
⇒ q(z) ≺ p(z)

and q is the best subordinant.
Since there is a complete analogue of Theorem 13 for differential subordinations,

which is given in [18, p. 190] and [20, p. 132], combining that result with Theorem 13
we get the following sandwich-type theorem:

Theorem 14 [22] Let Θ ,Φ ∈ H (D), where D ⊂ C is a domain, and let q1 and
q2 be univalent in U with qk(0) = a and qk(U) ⊂ D, for k = 1, 2. Set Qk(z) =
zq ′k(z)Φ(qk(z)), hk(z) = Θ(qk(z))+Qk(z) and suppose that

(i) Re
Θ ′(qk(z))

Φ(qk(z))
> 0, z ∈ U,

and

(ii) Qk is starlike in U.

If p ∈ H [a, 1] ∩Q and Θ(p(z))+ zp′(z)Φ(p(z)) is univalent in U, then

h1(z) ≺ Θ(p(z))+ zp′(z)Φ(p(z)) ≺ h2(z) ⇒ q1(z) ≺ p(z) ≺ q2(z).

The functions q1 and q2 are the best subordinant and the best dominant, respectively.
For the special case of the Briot–Bouquet differential operator this result becomes:

Corollary 11 [22] For k = 1, 2, let hk ∈ H (U) with hk(0) = a. Let β, γ ∈ C with
Re [βa + γ ] > 0, and suppose that

(i) βhk(z)+ γ ≺ Rβa+γ (z).

Let qk be analytic solutions of the Briot–Bouquet differential equation

hk(z) = qk(z)+ zq ′k(z)

βqk(z)+ γ

for k = 1, 2 and suppose that

(ii)
zq ′k(z)

βqk(z)+ γ
is starlike in U.
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If p ∈ H [a, 1] ∩Q and p(z)+ zp′(z)

βp(z)+ γ
is univalent in U, then

h1(z) ≺ p(z)+ zp′(z)

βp(z)+ γ
≺ h2(z) ⇒ q1(z) ≺ p(z) ≺ q2(z).

The functions q1 and q2 are the best subordinant and the best dominant, respectively.

6.5 Generalized Briot–Bouquet Differential Subordinations
and Superordinations

Let ψ : C
2 → C be analytic in a domain D ⊂ C, let h ∈ H (U) be univalent in U,

and suppose that p ∈ H (U) satisfies the first-order differential subordination

ψ(p(z), zp′(z)) ≺ h(z). (6.22)

In [18] the authors determined conditions on ψ and h so that (6.22) implies p(z) ≺
q(z), when

ψ(p(z), zp′(z)) = Θ(p(z))+ zp′(z)Φ(p(z)).

This result had been generalised in [1] and [2] for the cases

ψ(p(z), zp′(z)) = α(p(z))+ β(p(z))γ (zp′(z)) (6.23)

and

ψ(p(z), zp′(z)) = α(zp′(z))+ β(zp′(z))γ (p(z)), (6.24)

respectively.
Now, we will show an extension of the results from [1] and [2], and moreover we

will determine sufficient conditions on ψ so that

h(z) ≺ ψ(p(z), zp′(z)) ⇒ q(z) ≺ p(z),

where ψ is given by (6.23) and (6.24). Combining those results we will obtain
the sandwich-type theorems and we will give some particular cases of those main
results obtained for the appropriate choice of α, β, γ and of the subordinants and the
dominants.

Note that the first type of differential subordinations represents a generalisation
of the Briot–Bouquet differential subordination, i.e.

p(z)+ zp′(z)

βp(z)+ γ
≺ h(z),

obtained from (6.23) for α(w) = w, β(w) = 1

βw+ γ
and γ (w) = w.
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Theorem 15 [8] Let q be univalent in U, let α,β ∈ H (D), where D ⊂ C is a
domain so that D ⊃ q(U), and let γ ∈ H (C). Suppose that

Re

{
α′(q(z))+ β ′(q(z))γ ((1+ t)zq ′(z))

β(q(z))γ ′((1+ t)zq ′(z))
+ (1+ t)

(
1+ zq ′′(z)

q ′(z)

)}
> 0,

z ∈ U, t ≥ 0,

Q(z) = zq ′(z)β(q(z))γ ′(zq ′(z)) is starlike in U.

If p ∈ H (U), with p(0) = q(0) and p(U) ⊂ D, then

α(p(z))+ β(p(z))γ (zp′(z)) ≺ α(q(z))+ β(q(z))γ (zq ′(z)) = h(z)

implies p(z) ≺ q(z), and q is the best dominant.
Note that this result improves Theorem 1 from [1], where we assumed in addition,

thatq is a convex function in U. For the particular caseγ (w) = w, w ∈ C, the previous
theorem reduces to Theorem 3 from [18].

The dual result of Theorem 15 for differential supeordinations is the following
one:

Theorem 16 [8] Let q be univalent in U, let α,β ∈ H (D), where D ⊂ C is a
domain so that D ⊃ q(U), and let γ ∈ H (C). Suppose that

Re

{
α′(q(z))+ β ′(q(z))γ (tzq ′(z))

β(q(z))γ ′(tzq ′(z))
+ t

(
1+ zq ′′(z)

q ′(z)

)}
> 0, z ∈ U, t ≥ 0.

If p ∈ H [q(0), 1] ∩Q, with p(U) ⊂ D and α(p(z))+ β(p(z))γ (zp′(z)) is univalent
in U, then

α(q(z))+ β(q(z))γ (zq ′(z)) = h(z) ≺ α(p(z))+ β(p(z))γ (zp′(z))

implies q(z) ≺ p(z), and q is the best subordinant.
Note that this result improves Theorem 3.1 from [5], where we assumed in

addition, that q is a convex function in U.
Combining the last theorem with Theorem 15, we obtain the following differential

sandwich-type theorem:

Theorem 17 [8] Let q1, q2 be univalent functions in U, with q1(0) = q2(0). Let
α,β ∈ H (D), where D ⊂ C is a domain so that D ⊃ q1(U) ∪ q2(U), and let
γ ∈ H (C). If we denote by

L[qk](z; t) = α′(qk(z))+ β ′(qk(z))γ (tzq ′k(z))

β(qk(z))γ ′(tzq ′k(z))
+ t

(
1+ zq ′′k (z)

q ′k(z)

)
, k = 1, 2,

suppose that

ReL[q1](z; t) > 0, z ∈ U, t ≥ 0,

ReL[q2](z; 1+ t) > 0, z ∈ U, t ≥ 0,
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Q(z) = zq ′2(z)β(q2(z))γ ′(zq ′2(z)) is starlike in U.

If p ∈ H [q1(0), 1]∩Q, with p(U) ⊂ D and α(p(z))+β(p(z))γ (zp′(z)) is univalent
in U, then

α(q1(z))+ β(q1(z))γ (zq ′1(z)) ≺ α(p(z))+ β(p(z))γ (zp′(z)) ≺
≺ α(q2(z))+ β(q2(z))γ (zq ′2(z))

implies q1(z) ≺ p(z) ≺ q2(z). Moreover, the functions q1 and q2 are the best
subordinant and the best dominant, respectively.

An interesting particular case of the above theorem may be obtained for γ (w) = w,
w ∈ C, presented in the next corollary:

Corollary 12 [8] Let q1, q2 be univalent functions in U, with q1(0) = q2(0). Let
α,β ∈ H (D), where D ⊂ C is a domain so that D ⊃ q1(U) ∪ q2(U), and let
γ ∈ H (C). If we denote by

Qk(z) = zq ′k(z)β(qk(z)), k = 1, 2,

suppose that

Q1,Q2 are starlike in U,

Re

[
α′(q2(z))

β(q2(z))
+ zq ′2(z)

Q2(z)

]
> 0, z ∈ U,

Re
α′(q1(z))

β(q1(z))
> 0, z ∈ U.

If p ∈ H [q1(0), 1] ∩Q, with p(U) ⊂ D and α(p(z))+ zp′(z)β(p(z)) is univalent in
U, then

α(q1(z))+ zq ′1(z)β(q1(z)) ≺ α(p(z))+ zp′(z)β(p(z)) ≺
≺ α(q2(z))+ zq ′2(z)β(q2(z))

implies q1(z) ≺ p(z) ≺ q2(z). Moreover, the functions q1 and q2 are the best
subordinant and the best dominant, respectively..

Considering in this corollary the particular case α(w) = w and β(w) = 1

1+ λw
,

w ∈ C \
{
−1

λ

}
, if λ ∈ C

∗ := C \ {0}, we easily deduce the next sandwich-type

theorem related to the Briot–Bouquet differential subordination and superordination:

Corollary 13 [8] Let q1, q2 be univalent functions in U, with q1(0) = q2(0) and

q1(U) ∪ q2(U) ⊂ C \
{
−1

λ

}
, if λ ∈ C

∗. If we denote by

Qk(z) = zq ′k(z)

1+ λqk(z)
, k = 1, 2,

suppose that

Q1,Q2 are starlike in U,
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Re

[
1+ λq2(z)+ zq ′2(z)

Q2(z)

]
> 0, z ∈ U,

Re [1+ λq1(z)] > 0, z ∈ U.

If p ∈ H [q1(0), 1] ∩Q, with p(U) ⊂ C \
{
−1

λ

}
, if λ ∈ C

∗, and p(z)+ zp′(z)

1+ λp(z)
is univalent in U, then

q1(z)+ zq ′1(z)

1+ λq1(z)
≺ p(z)+ zp′(z)

1+ λp(z)
≺ q2(z)+ zq ′2(z)

1+ λq2(z)

implies q1(z) ≺ p(z) ≺ q2(z). Moreover, the functions q1 and q2 are the best
subordinant and the best dominant, respectively.

The next three results deal with similar kinds of subordination and superordination
theorems, for the case when ψ and ϕ, respectively will have the form α(zp′(z)) +
β(zp′(z))γ (p(z)).

Theorem 18 [8] Let q be univalent in U, let α,β ∈ H (C), and let γ ∈ H (D), where
D ⊂ C is a domain so that D ⊃ q(U). Suppose that

Re

{
β((1+ t)zq ′(z))γ ′(q(z))

α′((1+ t)zq ′(z))+ β ′((1+ t)zq ′(z))γ (q(z))
+

(1+ t)

(
1+ zq ′′(z)

q ′(z)

)}
> 0, z ∈ U, t ≥ 0,

Q(z) = zq ′(z)[α′(zq ′(z))+ β ′(zq ′(z))γ (q(z))] is starlike in U.

If p ∈ H (U), with p(0) = q(0) and p(U) ⊂ D then

α(zp′(z))+ β(zp′(z))γ (p(z)) ≺ α(zq ′(z))+ β(zq ′(z))γ (q(z)) = h(z)

implies p(z) ≺ q(z), and q is the best dominant.
This result improves Theorem 1 from [2], where it was presumed the strong

assumption that q is a convex function in U.
The dual result of Theorem 18 for differential supeordinations is the following

one:

Theorem 19 [8] Let q be univalent in U, let α,β ∈ H (C), and let γ ∈ H (D), where
D ⊂ C is a domain so that D ⊃ q(U). Suppose that

Re

{
β(tzq ′(z))γ ′(q(z))

α′(tzq ′(z))+ β ′(tzq ′(z))γ (q(z))
+ t

(
1+ zq ′′(z)

q ′(z)

)}
> 0, z ∈ U, t ≥ 0.

Ifp ∈ H [q(0), 1]∩Q, withp(U) ⊂ D, and α(zp′(z))+β(zp′(z))γ (p(z)) is univalent
in U, then

α(zq ′(z))+ β(zq ′(z))γ (q(z)) = h(z) ≺ α(zp′(z))+ β(zp′(z))γ (p(z))

implies q(z) ≺ p(z), and q is the best subordinant.
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Combining Theorem 18 with Theorem 19 we obtain the next differential
sandwich-type theorem:

Theorem 20 [8] Let q1, q2 be univalent functions in U, with q1(0) = q2(0), letα,β ∈
H (C) and let γ ∈ H (D), where D ⊂ C is a domain so that D ⊃ q1(U) ∪ q2(U). If
we denote by

Λ[qk](z; t) = β(tzq ′k(z))γ ′(qk(z))

α′(tzq ′k(z))+ β ′(tzq ′k(z))γ (qk(z))
+ t

(
1+ zq ′′k (z)

q ′k(z)

)
, k = 1, 2,

suppose that

ReΛ[q1](z; t) > 0, z ∈ U, t ≥ 0,

ReΛ[q2](z; 1+ t) > 0, z ∈ U, t ≥ 0,

Q(z) = zq ′2(z)[α′(zq ′2(z))+ β ′(zq ′2(z))γ (q2(z))] is starlike in U.

Ifp ∈ H [q1(0), 1]∩Q, withp(U) ⊂ D and α(zp′(z))+β(zp′(z))γ (p(z)) is univalent
in U, then

α(zq ′1(z))+ β(zq ′1(z))γ (q1(z)) ≺ α(zp′(z))+ β(zp′(z))γ (p(z)) ≺
≺ α(zq ′2(z))+ β(zq ′2(z))γ (q2(z))

implies q1(z) ≺ p(z) ≺ q2(z). Moreover, the functions q1 and q2 are the best
subordinant and the best dominant, respectively.

Taking in this last theorem α(w) = w and β(w) = 1, w ∈ C, then we obtain the
next corollary:

Corollary 14 Let q1, q2 be convex functions in U, with q1(0) = q2(0) and let
γ ∈ H (D), where D ⊂ C is a domain so that D ⊃ q1(U) ∪ q2(U). Suppose that

Re γ ′(q1(z)) > 0, z ∈ U,

Re

[
γ ′(q2(z))+ 1+ zq ′′2 (z)

q ′2(z)

]
> 0, z ∈ U.

If p ∈ H [q1(0), 1]∩Q, with p(U) ⊂ D and zp′(z)+ γ (p(z)) is univalent in U, then

zq ′1(z)+ γ (q1(z)) ≺ zp′(z)+ γ (p(z)) ≺ zq ′2(z)+ γ (q2(z))

implies q1(z) ≺ p(z) ≺ q2(z). Moreover, the functions q1 and q2 are the best
subordinant and the best dominant, respectively.

Next we will present some particular cases of the main results, obtained for
convenient choices of the subordinants and of the dominants, i.e. qk(z) = rkz, k =
1, 2, where 0 ≤ r1 < r2.

Considering β(w) = 1 and γ (w) = w, w ∈ C, in Corollary 12, for the above
mentioned subordinants and dominants we have the next result.
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Example 4 Let 0 ≤ r1 < r2 and let α ∈ H (D), where D ⊂ C is a domain so that
D ⊃ {w ∈ C : |w| < r2}. Suppose that

Re α′(r1z) > 0, z ∈ U,

Re α′(r2z) > −1, z ∈ U.

If p ∈ H [0, 1] ∩Q, with p(U) ⊂ D and α(p(z))+ zp′(z) is univalent in U, then

α(r1z)+ r1z ≺ α(p(z))+ zp′(z) ≺ α(r2z)+ r2z

implies r1z ≺ p(z) ≺ r2z. Moreover, the functions r1z and r2z are the best subordinant
and the best dominant, respectively .

If we consider the functions qk(z) = rkz, k = 1, 2, where 0 ≤ r1 < r2, in
Corollary 13, we have the next example:

Example 5 Let 0 ≤ r1 < r2 and let λ ∈ C with |λ| ≤ 1

r2
. Suppose that p ∈

H [0, 1]∩Q, with p(U) ⊂ C \
{
−1

λ

}
, if λ ∈ C

∗, and p(z)+ zp′(z)

1+ λp(z)
is univalent

in U. Then

r1z + r1z

1+ λr1z
≺ p(z)+ zp′(z)

1+ λp(z)
≺ r2z + r2z

1+ λr2z

implies r1z ≺ p(z) ≺ r2z, and the functions r1z and r2z are the best subordinant and
the best dominant, respectively.

6.6 Sandwich-type Theorems for a Class of Integral Operators:
the Iφ,ϕ

α,β,γ ,δ Operator

For the functions φ,ϕ ∈ D, where

D = {ϕ ∈ H (U) : ϕ(0) = 1, ϕ(z) �= 0, z ∈ U},
we consider the integral operator Iφ,ϕ

α,β,γ ,δ : Aϕ;α,δ → H (U) by

Iφ,ϕ
α,β,γ ,δ (f )(z) =

[
β + γ

zγ φ(z)

∫ z

0
t δ−1f α(t)ϕ(t) d t

]1/β

, (6.25)

where the complex parameters α,β, γ and δ are suitably chosen and all the powers
in (6.25) are principal ones. The subset Aϕ;α,δ ⊂ H (U) was determined in [20] as
follows:

Lemma 3 [20] Let α,β, γ , δ ∈ C with β �= 0, α+ δ = β + γ , Re (α+ δ) > 0 and
φ,ϕ ∈ D. If f ∈ Aϕ;α,δ , where

Aϕ;α,δ =
{
f ∈ A : α

zf ′(z)

f (z)
+ zϕ′(z)

ϕ(z)
+ δ ≺ Rα+δ(z)

}
, (6.26)
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A = {f ∈ H (U : f (0) = f ′(0)− 1 = 0},
and Rα+δ is the open door function [20, Definition 2.5a], then

Iφ,ϕ
α,β,γ ,δ (f ) ∈ A,

Iφ,ϕ
α,β,γ ,δ (f )(z)

z
�= 0, z ∈ U,

and

Re

⎧⎪⎨
⎪⎩β

z
(

Iφ,ϕ
α,β,γ ,δ (f )(z)

)′

Iφ,ϕ
α,β,γ ,δ (f )(z)

+ zφ′(z)

φ(z)
+ γ

⎫⎪⎬
⎪⎭ > 0, z ∈ U,

where Iφ,ϕ
α,β,γ ,δ is the integral operator defined by (6.25).

A general subordination property involving the integral operator Iφ,ϕ
α,β,γ ,δ defined

by (6.25) is contained in Theorem 21 below:

Theorem 21 [13] Let f , g ∈ Aϕ;α,δ , where Aϕ;α,δ is defined by (6.26). Suppose also
that

Re

[
1+ zν ′′(z)

ν ′(z)

]
> −ρ, z ∈ U,

where ν(z) = z

[
g(z)

z

]α
ϕ(z) and

ρ = 1+ |β + γ − 1|2 − |1− (β + γ − 1)2|
4 Re (β + γ − 1)

, with Re (β + γ − 1) > 0. (6.27)

Then, the following subordination relation

z

[
f (z)

z

]α
ϕ(z) ≺ z

[
g(z)

z

]α
ϕ(z)

implies that

z

[
Iφ,ϕ
α,β,γ ,δ (f )(z)

z

]β
φ(z) ≺ z

[
Iφ,ϕ
α,β,γ ,δ (g)(z)

z

]β
φ(z),

where Iφ,ϕ
α,β,γ ,δ is the integral operator defined by (6.25). Moreover, the function

z

[
Iφ,ϕ
α,β,γ ,δ (g)(z)

z

]β
φ(z) is the best dominant.

Remark 3 If we choose the complex parametersα,β, γ and δwith φ(z) = ϕ(z) = 1,
α = β, γ = δ and 1 < β + γ ≤ 2 in Theorem 21, then we have the results obtained
in [4] and [6].

Next, we present a solution to a dual problem of Theorem 21, in the sense that
the subordinations are replaced by superordinations:
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Theorem 22 [13] Let f , g ∈ Aϕ;α,δ , where Aϕ;α,δ is defined by (6.26). Suppose also
that

Re

[
1+ zν ′′(z)

ν ′(z)

]
> −ρ, z ∈ U,

where ν(z) = z

[
g(z)

z

]α
ϕ(z) and ρ is given by (6.27). If the function z

[
f (z)

z

]α
ϕ(z)

is univalent in U and z

[
Iφ,ϕ
α,β,γ ,δ (f )(z)

z

]β
φ(z) ∈ Q, where Iφ,ϕ

α,β,γ ,δ is the integral

operator defined by (6.25), then the following superordination relation

z

[
g(z)

z

]α
ϕ(z) ≺ z

[
f (z)

z

]α
ϕ(z)

implies that

z

[
Iφ,ϕ
α,β,γ ,δ (g)(z)

z

]β
φ(z) ≺ z

[
Iφ,ϕ
α,β,γ ,δ (f )(z)

z

]β
φ(z).

Moreover, the function z

[
Iφ,ϕ
α,β,γ ,δ (g)(z)

z

]β
φ(z) is the best subordinant.

Remark 4 If we take the complex parameters α,β, γ and δ in Theorem 22 as in
Lemma 3, then we also have the results obtained in [7].

If we combine the above two theorems, we obtain the following sandwich-type
theorem:

Theorem 23 [13] Let f , gk ∈ Aϕ;α,δ , k = 1, 2, where Aϕ;α,δ is defined by (6.26).
Suppose also that

Re

[
1+ zν ′′k (z)

ν ′k(z)

]
> −ρ, z ∈ U,

where νk(z) = z

[
gk(z)

z

]α
ϕ(z), k = 1, 2, and ρ is given by (6.27). If the function

z

[
f (z)

z

]α
ϕ(z) is univalent in U and z

[
Iφ,ϕ
α,β,γ ,δ (f )(z)

z

]β
φ(z) ∈ Q, where Iφ,ϕ

α,β,γ ,δ is

the integral operator defined by (6.25), then the following subordination relations

z

[
g1(z)

z

]α
ϕ(z) ≺ z

[
f (z)

z

]α
ϕ(z) ≺ z

[
g2(z)

z

]α
ϕ(z)

imply that

z

[
Iφ,ϕ
α,β,γ ,δ (g1)(z)

z

]β
φ(z) ≺ z

[
Iφ,ϕ
α,β,γ ,δ (f )(z)

z

]β
φ(z) ≺ z

[
Iφ,ϕ
α,β,γ ,δ (g2)(z)

z

]β
φ(z).
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Moreover, the functions z

[
Iφ,ϕ
α,β,γ ,δ (g1)(z)

z

]β
φ(z) and z

[
Iφ,ϕ
α,β,γ ,δ (g2)(z)

z

]β
φ(z) are

the best subordinant and the best dominant, respectively.

Remark 5 1. If we choose the complex parameters α,β, γ and δ with 1 < β+γ ≤ 2
in Theorem 23, then we have the results obtained in [11].

2. We also note that Theorem 23 is an extension of the results obtained by Bulboacă
in [7], and Cho and Bulboacă in [12].

6.7 Sandwich-type Theorems for a Class of Integral Operators:
the Ah,β Operator

For a function h ∈ A, where

A = {
h ∈ A : h(z) �= 0, z ∈ U̇ = U \ {0},h′(z) �= 0, z ∈ U

}
,

we define the integral operator Ah,β : Kh;β → H (U) by

Ah,β (f )(z) =
[
β

∫ z

0
f β(t)h−1(t)h′(t) dt

]1/β

,

where β ∈ C
∗, and all powers are the principal ones. The subset Kh;β ⊂ H (U) was

determined in [10], as follows:

Lemma 4 [10] Let β ∈ C with Re β > 0, let h ∈ A and denote by

J (γ ,h)(z) = (γ − 1)
zh′(z)

h(z)
+ 1+ zh′′(z)

h′(z)
.

If Rβ represents the open door function, and if

K̃h;β =
{
f ∈ A : β

zf ′(z)

f (z)
+ J (0,h)(z) ≺ Rβ(z)

}
, for β �= 1,

K̃h;1 = {f ∈ H (U) : f (0) = 0} , for β = 1,

then the integral operator Ah,β is well-defined on K̃h;β .

Lemma 5 [10] Let β ∈ C with Re β > 0, and let h ∈ A. If

Kh;β = K̃h;β , for β �= 1,

Kh;1 =
{
f ∈ K̃h;1 : f ′(0) �= 0

}
, for β = 1,

then the integral operator Ah,β is well-defined on Kh;β and satisfies the following
conditions:

F = Ah;β [f ] ∈ A,
F (z)

z
�= 0, z ∈ U, Re

[
β

zF ′(z)

F (z)

]
> 0, z ∈ U, for β �= 1,
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and

F (z) = Ah,β [f ](z) = f ′(0)z + . . . , z ∈ U, for β = 1.

In [3] the author determined conditions on the h and g functions and on the
parameter β, such that

[
zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g(z) ⇒ Ah,β (f )(z) ≺ Ah,β (g)(z). (6.28)

Now we will show an improvement of the above result, then we will study the
reverse problem to determine simple sufficient conditions on h, g and β, such that

[
zh′(z)

h(z)

]1/β

g(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ⇒ Ah,β (g)(z) ≺ Ah,β (f )(z), (6.29)

and under our assumptions this result is sharp.
Combining these results we obtained a so-called sandwich-type theorem, and we

gave some interesting particular results obtained for convenient choices of the h

function.
The next result deals with the subordination of the form (6.28) and gives us an

extension of Theorem 1 of [3]:

Theorem 24 [10] Let β > 0 and let h ∈ A. Let f , g ∈ Kh;β and suppose that

Re
zg′(z)

g(z)
> − 1

β
Re J (0,h)(z), z ∈ U,

Then,
[

zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g(z) ⇒ Ah,β (f )(z) ≺ Ah,β (g)(z),

and the function Ah,β (g) is the best dominant of the subordination.
The next theorem represents a dual result of Theorem 24, in the sense that the

subordinations are replaced by superordinations.

Theorem 25 [10] Let β > 0 and let h ∈ A. Let g ∈ Kh;β and suppose that

Re
zg′(z)

g(z)
> − 1

β
Re J (0,h)(z), z ∈ U.

Let f ∈ Q∩Kh;β such that

[
zh′(z)

h(z)

]1/β

f (z) and Ah,β (f )(z) are univalent functions

in U.
Then,

[
zh′(z)

h(z)

]1/β

g(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ⇒ Ah,β (g)(z) ≺ Ah,β (f )(z),

and the function Ah,β (g) is the best subordinant of the superordination.
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If we combine these two results we obtain the following sandwich-type theorem:

Theorem 26 [10] Let β > 0 and let h ∈ A. Let g1, g2 ∈ Kh;β and suppose that the
next two conditions are satisfied

Re
zg′k(z)

gk(z)
> − 1

β
Re J (0,h)(z), z ∈ U, for k = 1, 2. (6.30)

Let f ∈ Q∩Kh;β such that

[
zh′(z)

h(z)

]1/β

f (z) and Ah,β (f )(z) are univalent functions

in U.
Then,

[
zh′(z)

h(z)

]1/β

g1(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g2(z)

implies
Ah,β (g1)(z) ≺ Ah,β (f )(z) ≺ Ah,β (g2)(z).

Moreover, the functions Ah,β (g1) and Ah,β (g2) are the best subordinant and the best
dominant, respectively .

Since in the assumption of the above theorem we need to suppose that the functions[
zh′(z)

h(z)

]1/β

f (z) and Ah,β (f )(z) are univalent in U, the next similar result will give

us, in addition, sufficient conditions that imply the univalence of these functions:

Corollary 15 [10] Let β > 0 and let h ∈ A. Let g1, g2 ∈ Kh;β and suppose that the
conditions (6.30) are satisfied.

Let f ∈ Q ∩Kh;β such that

Re
zf ′(z)

f (z)
> − 1

β
Re J (0,h)(z), z ∈ U. (6.31)

Then,

[
zh′(z)

h(z)

]1/β

g1(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g2(z)

implies
Ah,β (g1)(z) ≺ Ah,β (f )(z) ≺ Ah,β (g2)(z).

Moreover, the functions Ah,β (g1) and Ah,β (g2) are the best subordinant and the best
dominant, respectively.

Next we will discuss some particular cases of Theorem 26 obtained for appropriate
choices of the h function.

1◦. For the special case h(z) = z exp (λz), |λ| < 1, we obtain the next example:
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Example 6 Let β > 0 and g1, g2 ∈ Kz exp (λz);β , where |λ| < 1. Suppose that the
next two conditions are satisfied

Re
zg′k(z)

gk(z)
>

1

β

|λ|
1− |λ| , z ∈ U, for k = 1, 2.

Let f ∈ Q ∩ Kz exp (λz);β such that (1 + λz)1/βf (z) and

[
β

∫ z

0
f β(t)

1+ λt

t
dt

]1/β

are univalent functions in U.
Then,

(1+ λz)1/βg1(z) ≺ (1+ λz)1/βf (z) ≺ (1+ λz)1/βg2(z)

implies

[
β

∫ z

0
g
β

1 (t)
1+ λt

t
dt

]1/β

≺
[
β

∫ z

0
f β(t)

1+ λt

t
dt

]1/β

≺
[
β

∫ z

0
g
β

2 (t)
1+ λt

t
dt

]1/β

.

Moreover, the functions

[
β

∫ z

0
g
β

1 (t)
1+ λt

t
dt

]1/β

and

[
β

∫ z

0
g
β

2 (t)
1+ λt

t
dt

]1/β

are the best subordinant and the best dominant, respectively.

Remark 6 1. According to Corollary 15, iff ∈ Q∩Kz exp (λz);β satisfies the condition

Re
zf ′(z)

f (z)
>

1

β

|λ|
1− |λ| , z ∈ U,

then it is not necessary to assume that (1+λz)1/βf (z) and

[
β

∫ z

0
f β(t)

1+ λt

t
dt

]1/β

are univalent functions in U.
2. For the special case β = 1 and λ = 0, the right-hand side of the Example 6

represents a generalisation of a result due to Suffridge [26]. In addition, the left-hand
side generalises Theorem 9 from [21].

2◦. For the special case h(z) = z

1+ λz
, |λ| ≤ 1, from Theorem 26 we have:

Example 7 Let β > 0 and g1, g2 ∈ K z
1+λz ;β , where |λ| ≤ 1. Suppose that the next

two conditions are satisfied

Re
zg′k(z)

gk(z)
>

1

β

|λ|
1+ |λ| , z ∈ U, for k = 1, 2.

Let f ∈ Q∩K z
1+λz ;β such that

f (z)

(1+ λz)1/β
and

[
β

∫ z

0

f β(t)

t(1+ λt)
dt

]1/β

are univalent

functions in U.
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Then,
g1(z)

(1+ λz)1/β
≺ f (z)

(1+ λz)1/β
≺ g2(z)

(1+ λz)1/β

implies
[
β

∫ z

0

g
β

1 (t)

t(1+ λt)
dt

]1/β

≺
[
β

∫ z

0

f β(t)

t(1+ λt)
dt

]1/β

≺
[
β

∫ z

0

g
β

2 (t)

t(1+ λt)
dt

]1/β

.

Moreover, the functions

[
β

∫ z

0

g
β

1 (t)

t(1+ λt)
dt

]1/β

and

[
β

∫ z

0

g
β

2 (t)

t(1+ λt)
dt

]1/β

are

the best subordinant and the best dominant, respectively.

Remark 7 1. From the Corollary 15, we deduce that, if f ∈ Q ∩ K z
1+λz ;β satisfies

the condition

Re
zf ′(z)

f (z)
>

1

β

|λ|
1+ |λ| , z ∈ U,

then it is not necessary to assume that
f (z)

(1+ λz)1/β
and

[
β

∫ z

0

f β(t)

t(1+ λt)
dt

]1/β

are

univalent functions in U.
2. For the special case β = 1 and λ = 0, the right-hand side of this Example

generalises a result due to Suffridge [26], and the left-hand side generalises Theorem
9 from [21].

3◦. For the special case h(z) = z exp
∫ z

0

eλt − 1

t
dt , λ ∈ C, Theorem 26 reduces

to the next example:

Example 8 Let β > 0 and g1, g2 ∈ Kh;β , where

h(z) = z exp
∫ z

0

eλt − 1

t
d t

and λ ∈ C. Suppose that the next two conditions are satisfied

Re
zg′k(z)

gk(z)
>
|λ|
β

, z ∈ U, for k = 1, 2.

Let f ∈ Q ∩ Kh;β such that f (z) exp (λz/β) and

[
β

∫ z

0
f β(t)

exp (λt)

t
dt

]1/β

are

univalent functions in U.
Then,

g1(z) exp

(
λz

β

)
≺ f (z)

(
λz

β

)
≺ g2(z) exp

(
λz

β

)

implies
[
β

∫ z

0
g
β

1 (t)
exp (λt)

t
dt

]1/β

≺
[
β

∫ z

0
f β(t)

exp (λt)

t
dt

]1/β

≺
[
β

∫ z

0
g
β

2 (t)
exp (λt)

t
dt

]1/β

.
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Moreover, the functions

[
β

∫ z

0
g
β

1 (t)
exp (λt)

t
dt

]1/β

and
[
β

∫ z

0
g
β

2 (t)
exp (λt)

t
dt

]1/β

are the best subordinant and the best dominant,

respectively.

Remark 8 1. As in the previous remarks, from Corollary 15 we obtain that if f ∈
Q ∩Kh;β , where h(z) = z exp

∫ z

0

eλt − 1

t
dt , satisfies the condition

Re
zf ′(z)

f (z)
>
|λ|
β

, z ∈ U,

then it is not necessary to assume that f (z) exp (λz/β) and[
β

∫ z

0
f β(t)

exp (λt)

t
dt

]1/β

are univalent functions in U.

2. For the special case β = 1 and λ = 0, the right-hand side of the Example 8
extends a result of T. J. Suffridge [26]. In addition, the left-hand side is an extension
of Theorem 9 from [21].

For α ∈ R and θ < 1, a function f ∈ H (U) with f (0) = 0 and f ′(0) �= 0 is
called to be an α-convex (not necessarily normalized) function of order θ , if

Re

[
(1− α)

zf ′(z)

f (z)
+ α

(
zf ′′(z)

f ′(z)
+ 1

)]
> θ , z ∈ U,

and we denote this class by Mα(θ ). For θ = 0 we have Mα ≡ Mα(0), where Mα

represents the class of α-convex (not necessarily normalized) functions introduced
in [24]. Note that all α-convex functions are univalent and starlike [23], that is
Mα ⊂ M0.

The next two results deal with the subordination of the form (6.28) and give us
extensions of Theorem 1 of [3]:

Theorem 27 [9] Let α,β, θ ∈ R, with β > 0, αβ ≥ 1 and 0 ≤ θ < 1. Let
f , g ∈ Kh;β , where h ∈ A, and suppose that

g ∈ Mα(θ ),

Re J (0,h)(z) > − θ

α
, z ∈ U. (6.32)

Then,
[

zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g(z) ⇒ Ah,β (f )(z) ≺ Ah,β (g)(z),

and the function Ah,β (f )(g) is the best dominant of the subordination.
The next theorem is an improvement of the above, that means the conclusion holds

if we make stronger assumption under the parameter θ , and the condition (6.32) is
replaced by a weaker one:
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Theorem 28 [9] Let α,β, θ ∈ R, with β > 0, αβ ≥ 1 and

max

{
α(β − 1)

2
; 0

}
≤ θ < 1.

Let f , g ∈ Kh;β , where h ∈ A, and suppose that

g ∈ Mα(θ ),

Re J (0,h)(z) > − β

2F1
(
1, 2

(
β − θ

α

)
,β + 1; 1/2

) , z ∈ U.

Then,
[

zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g(z) ⇒ Ah,β (f )(z) ≺ Ah,β (g)(z),

and the function Ah,β (g) is the best dominant of the subordination.
The next result represents a dual result of Theorem 27, in the sense that the

subordinations are replaced by superordinations, and it deals with the superordination
of the form (6.29):

Theorem 29 [9] Let α,β, θ ∈ R, with β > 0, αβ ≥ 1 and 0 ≤ θ < 1. Let g ∈ Kh;β ,
where h ∈ A, and suppose that

g ∈ Mα(θ ),

Re J (0,h)(z) > − θ

α
, z ∈ U.

Let f ∈ Q∩Kh;β such that

[
zh′(z)

h(z)

]1/β

f (z) and Ah,β (f )(z) are univalent functions

in U.
Then,

[
zh′(z)

h(z)

]1/β

g(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ⇒ Ah,β (g)(z) ≺ Ah,β (f )(z),

and the function Ah,β (g) is the best subordinant of the superordination.
The next theorem represents a similar dual result of Theorem 28, where the sub-

ordinations are replaced by superordinations. It also deals with the superordination
of the form (6.29):

Theorem 30 [9] Let α,β, θ ∈ R, with β > 0, αβ ≥ 1 and

max

{
α(β − 1)

2
; 0

}
≤ θ < 1.

Let g ∈ Kh;β , where h ∈ A, and suppose that

g ∈ Mα(θ ),



6 Differential Superordinations and Sandwich-Type Results 139

Re J (0,h)(z) > − β

2F1
(
1, 2

(
β − θ

α

)
,β + 1; 1/2

) , z ∈ U.

Let f ∈ Q∩Kh;β such that

[
zh′(z)

h(z)

]1/β

f (z) and Ah,β (f )(z) are univalent functions

in U.
Then,

[
zh′(z)

h(z)

]1/β

g(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ⇒ Ah,β (g)(z) ≺ Ah,β (f )(z),

and the function Ah,β (g) is the best subordinant of the superordination.
If we combine Theorem 27 with Theorem 29, and respectively Theorem 28 with

Theorem 30, we obtain the next two corollaries, that represent the sandwich-type
theorems:

Corollary 16 [9] Let α,β, θ ∈ R, with β > 0, αβ ≥ 1 and 0 ≤ θ < 1. Let
g1, g2 ∈ Kh;β , where h ∈ A, and suppose that the next two conditions are satisfied:

g1, g2 ∈ Mα(θ ), (6.33)

Re J (0,h)(z) > − θ

α
, z ∈ U. (6.34)

Let f ∈ Q∩Kh;β such that

[
zh′(z)

h(z)

]1/β

f (z) and Ah,β (f )(z) are univalent functions

in U.
Then,

[
zh′(z)

h(z)

]1/β

g1(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g2(z)

implies
Ah,β (g1)(z) ≺ Ah,β (f )(z) ≺ Ah,β (g2)(z).

Moreover, the functions Ah,β (f )(g1) and Ah,β (f )(g2) are the best subordinant and
the best dominant, respectively.

Corollary 17 [9] Let α,β, θ ∈ R, with β > 0, αβ ≥ 1 and

max

{
α(β − 1)

2
; 0

}
≤ θ < 1.

Let g1, g2 ∈ Kh;β , where h ∈ A, and suppose that the next two conditions are
satisfied:

g1, g2 ∈ Mα(θ ), (6.35)

Re J (0,h)(z) > − β

2F1
(
1, 2

(
β − θ

α

)
,β + 1; 1/2

) , z ∈ U. (6.36)
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Let f ∈ Q∩Kh;β such that

[
zh′(z)

h(z)

]1/β

f (z) and Ah,β (f )(z) are univalent functions

in U.
Then,

[
zh′(z)

h(z)

]1/β

g1(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g2(z)

implies
Ah,β (g1)(z) ≺ Ah,β (f )(z) ≺ Ah,β (g2)(z).

Moreover, the functions Ah,β (g1) and Ah,β (g2) are the best subordinant and the best
dominant, respectively.

In the assumption of the above two corollaries we need to suppose that the func-

tions

[
zh′(z)

h(z)

]1/β

f (z) and Ah,β (f )(z) are univalent in U. The next similar two

results will give us sufficient conditions that imply, in addition, the univalence of
these functions:

Corollary 18 [9] Let α,β, θ ∈ R, with β > 0, αβ ≥ 1 and 0 ≤ θ < 1. Let
g1, g2 ∈ Kh;β , where h ∈ A, and suppose that the conditions (6.33) and (6.34) are
satisfied. Let f ∈ Q ∩Kh;β such that f ∈ Mα(θ ).

Then,
[

zh′(z)

h(z)

]1/β

g1(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g2(z)

implies
Ah,β (g1)(z) ≺ Ah,β (f )(z) ≺ Ah,β (g2)(z).

Moreover, the functions Ah,β (g1) and Ah,β (g2) are the best subordinant and the best
dominant, respectively.

Corollary 19 [9] Let α,β, θ ∈ R, with β > 0, αβ ≥ 1 and

max

{
α(β − 1)

2
; 0

}
≤ θ < 1.

Let g1, g2 ∈ Kh;β , where h ∈ A, and suppose that the conditions (6.35) and (6.36)
are satisfied. Let f ∈ Q ∩Kh;β such that f ∈ Mα(θ ).

Then,
[

zh′(z)

h(z)

]1/β

g1(z) ≺
[

zh′(z)

h(z)

]1/β

f (z) ≺
[

zh′(z)

h(z)

]1/β

g2(z)

implies
Ah,β (g1)(z) ≺ Ah,β (f )(z) ≺ Ah,β (g2)(z).

Moreover, the functions Ah,β (g1) and Ah,β (g2) are the best subordinant and the best
dominant, respectively.



6 Differential Superordinations and Sandwich-Type Results 141

6.8 Sandwich-Type Theorems for a Class of Integral Operators:
the Iα

λ Operator

In a recent paper, Li and Srivastava [14] introduced and studied the function class Φ
defined by

Φ =
{
λ : [0, 1] → R : λ(t) ≥ 0 and

∫ 1

0
λ(t) dt = 1

}
.

Fournier and Ruscheweyh [14] (see also [17]) have considered an integral operator
which involves a non-negative function

λα : [0, 1] → R such that
∫ 1

0
λα(t) dt = 1.

Many applications of the real valued function λα depends also upon a suitable pa-
rameter α. Thus, in [15] the authors considered the Fournier–Ruscheweyh integral
operator in the following modified form (see also [17, Eq. (2.2), p. 131])

Iα
λ f (z) =

∫ 1

0
λα(t)

f (tz)

t
dt , f ∈ A,

where the real-valued functions λα and λα−1 satisfy the following conditions:

(i) for a suitable parameter α,

λα−1 ∈ Φ, λα ∈ Φ and λα(1) = 0; (6.37)

(ii) there exists a constant c ∈ (− 1, 2], such that

cλα(t)− tλ′α(t) = (c + 1)λα−1(t), 0 < t < 1. (6.38)

Remark that, for Iα
λ operator, under the conditions (6.37) and (6.38), we have

z
(
Iα
λ f (z)

)′ = −c Iα
λ f (z)+ (c + 1) Iα−1

λ f (z).

Moreover, we assume in this section that all powers are the principal ones.

Theorem 31 [15] Let q be univalent in the unit disc U, let β ∈ C
∗ and 0 < μ < 1.

Suppose that the function q satisfies

Re

(
1+ zq ′′(z)

q ′(z)

)
> max

{
0,−Re

μ

β

}
, z ∈ U, (6.39)

and the conditions (6.37) and (6.38) hold. If f ∈ A satisfies the subordination

(1+ β + βc)

(
z

Iα
λ f (z)

)μ

− β(1+ c)

(
Iα−1
λ f (z)

Iα
λ f (z)

)(
z

Iα
λ f (z)

)μ

≺ q(z)+ β

μ
zq ′(z),

then (
z

Iα
λ f (z)

)μ

≺ q(z),

and q is the best dominant.
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Some interesting special cases of Theorem 31, obtained for the dominant q(z) =
1+ Az

1+ Bz
, with −1 ≤ A < B ≤ 1, and q(z) =

(
1+ z

1− z

)ρ

, with 0 < ρ ≤ 1, may be

found in [15].

Theorem 32 [15] Let q be univalent in the unit disc U, such that that the function
zq ′(z)

q(z)
is starlike univalent in U and q satisfies

Re

(
1+ ρ

β
q(z)+ 2δ

β
q2(z)− zq ′(z)

q(z)
+ zq ′′(z)

q ′(z)

)
> 0, z ∈ U, (6.40)

where, δ, ρ,∈ C, β ∈ C
∗.

Suppose also that the conditions (6.37) and (6.38) are satisfied and for a function
f ∈ A let denote

Ψλ,μ,ρ,η,α,β,γ ,δ(f )(z) = γ + ρ

(
z

(1− η)Iα
λ f (z)+ ηIα+1

λ f (z)

)μ

+ (6.41)

δ

(
z

(1− η)Iα
λ f (z)+ ηIα+1

λ f (z)

)2μ

+ βμ(c + 1)

[
1− (1− η)Iα−1

λ f (z)+ ηIα
λ f (z)

(1− η)Iα
λ f (z)+ ηIα+1

λ f (z)

]
,

where 0 ≤ η ≤ 1, 0 < μ < 1.
If

Ψλ,μ,ρ,η,α,β,γ ,δ(f )(z) ≺ γ + ρq(z)+ δq2(z)+ β
zq ′(z)

q(z)
,

then (
z

(1− η)Iα
λ f (z)+ ηIα+1

λ f (z)

)μ

≺ q(z),

and q is the best dominant.
Upon setting q(z) = eAz and η = 1 in Theorem 32, the authors obtained a simple

special case given in [15].

Theorem 33 [15] Let q be a convex univalent function in the unit disc U, let β ∈ C
∗

with Re β > 0, and 0 < μ < 1. Moreover, suppose that the conditions (6.37) and
(6.38) are satisfied. For f ∈ A suppose that

(
z

Iα
λ f (z)

)μ

∈ H [q(0), 1] ∩Q, (6.42)

and

(1+ β + βc)

(
z

Iα
λ f (z)

)μ

− β(1+ c)

(
Iα−1
λ f (z)

Iα
λ f (z)

)(
z

Iα
λ f (z)

)μ

is univalent in U.

(6.43)
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Then,

q(z)+ β

μ
zq ′(z) ≺ (1+ β + βc)

(
z

Iα
λ f (z)

)μ

− β(1+ c)

(
Iα−1
λ f (z)

Iα
λ f (z)

)(
z

Iα
λ f (z)

)μ

implies that

q(z) ≺
(

z

Iα
λ f (z)

)μ

,

and q is the best subordinant.

Taking q(z) = 1+ Az

1+ Bz
, −1 ≤ A < B ≤ 1 in Theorem 33, we easily get the next

result:

Corollary 20 [15] Let−1 ≤ A < B ≤ 1, let β ∈ C with Re β > 0, and 0 < μ < 1.
Also, suppose that the conditions (6.37) and (6.38) hold. For f ∈ A suppose that

(
z

Iα
λ f (z)

)μ

∈ H [q(0), 1] ∩Q

and

(1+ β + βc)

(
z

Iα
λ f (z)

)μ

− β(1+ c)

(
Iα−1
λ f (z)

Iα
λ f (z)

)(
z

Iα
λ f (z)

)μ

is univalent in U.
Then,

β(A− B)z

α(1+ Bz)2
+1+ Az

1+ Bz
≺ (1+β+βc)

(
z

Iα
λ f (z)

)μ

−β(1+c)

(
Iα−1
λ f (z)

Iα
λ f (z)

)(
z

Iα
λ f (z)

)μ

implies that
1+ Az

1+ Bz
≺
(

z

Iα
λ f (z)

)μ

,

and the function
1+ Az

1+ Bz
is the best subordinant.

Theorem 34 [15] Let q be convex univalent in the unit disc U and 0 < μ < 1.

Suppose that
zq ′(z)

q(z)
is starlike univalent in U and q satisfies

Re

(
1+ ρ

β
q(z)+ 2δ

β
q2(z)

)
> 0, z ∈ U, (6.44)

where δ, ρ ∈ C, β ∈ C
∗, and the conditions (6.37) and (6.38) hold. For f ∈ A,

assume that the function

(
z

(1− η)Iα
λ f (z)+ ηIα+1

λ f (z)

)μ

∈ H [q(0), 1] ∩Q, (6.45)
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and the function Ψλ,μ,ρ,η,α,β,γ ,δ(f )(z) defined by (6.41) is univalent in the unit disc U.
Then,

γ + ρq(z)+ δ(q(z))2 + β
zq ′(z)

q(z)
≺ Ψλ,μ,ρ,η,α,β,γ ,δ(f )(z)

implies that

q(z) ≺
(

z

(1− η)Iα
λ f (z)+ ηIα+1

λ f (z)

)μ

,

and q is the best subordinant.
Combining Theorem 31 with Theorem 33, and Theorem 32 with Theorem 34, we

obtain the following sandwich-type results, respectively:

Theorem 35 [15] Let q1 be convex univalent and let q2 be univalent functions in
the unit disc U, let β ∈ C

∗, with Re β > 0, and 0 < μ < 1. Suppose that q2 satisfies
the condition (6.39) for q = q2 and the conditions (6.37) and (6.38) are satisfied.
For f ∈ A assume that the assumptions (6.42) for q = q1 and (6.43) hold.

Then,

q1(z)+ β

μ
zq ′1(z) ≺ (1+ β + βc)

(
z

Iα
λ f (z)

)μ

− β(1+ c)

(
Iα−1
λ f (z)

Iα
λ f (z)

)(
z

Iα
λ f (z)

)μ

≺ q2(z)+ β

μ
zq ′2(z)

implies that

q1(z) ≺
(

z

Iα
λ f (z)

)μ

≺ q2(z),

and q1 and q2 are the best subordinant and the best dominant, respectively.

Theorem 36 [15] Let q1 be convex univalent in the unit disc U and 0 < μ < 1.

Suppose that
zq ′1(z)

q1(z)
is starlike univalent in U and q1 satisfies the condition (6.44)

for q = q1, where δ, ρ ∈ C, β ∈ C
∗. Let q2 be univalent in the unit disc U, such

that that the function
zq ′2(z)

q2(z)
is starlike univalent in U and q2 satisfies the condition

(6.40) for q = q2, and the conditions (6.37) and (6.38) hold.
For a function f ∈ A suppose that the function Ψλ,μ,ρ,η,α,β,γ ,δ(f ) defined by

(6.41) is univalent in the unit disc U, and the condition (6.45) holds for q = q1 and
0 ≤ η ≤ 1.

Then,

γ + ρq1(z)+ δ(q1(z))2 + β
zq1

′(z)

q1(z)
≺ Ψλ,μ,ρ,η,α,β,γ ,δ(f )(z)

≺ γ + ρq2(z)+ δ(q2(z))2 + β
zq2

′(z)

q2(z)
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implies that

q1(z) ≺
(

z

(1− η)Iα
λ f (z)+ ηIα+1

λ f (z)

)μ

≺ q2(z),

and q1 and q2 are the best subordinant and the best dominant, respectively.
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Chapter 7
Starlikeness and Convexity of Certain Integral
Transforms by using Duality Technique

Satwanti Devi and A. Swaminathan

7.1 Introduction

Define A as the class of all analytic functions f in the open unit disk D = {z ∈ C :
|z| < 1} which are normalized by the condition f (0) = 0 = f ′(0) − 1. Hence, the
Taylor series representation of the functions f (z) ∈ A is of the form

f (z) = z +
∞∑
n=2

anzn, z ∈ D.

The univalent class of functions denoted by S is the subclass of A, containing all the
one–one functions in D. Few important subclasses of the class S are defined below:

A domain Ω is starlike with respect to a point a ∈ Ω , if the line segment joining
a point a to any point in Ω also lies entirely in Ω . A domain is starlike if it is starlike
with respect to the origin. Now we define the subclass S∗ ⊂ S which contains all the
starlike functions. The function f is said to be in the subclass of starlike functions
S∗, if it maps the domain D conformally onto the region which bounds a starlike
domain with respect to the origin. The analytic description of the function f (z) ∈ S∗
is given by

S∗ :=
{
f ∈ A : Re

(
zf ′(z)

f (z)

)
> 0, z ∈ D

}
.

If the domain Ω is starlike with respect to each of its points, then the domain Ω

is said to be convex, i.e., when the line segment joining any two points in Ω also
lies in Ω entirely. Now we define the subclass C ⊂ S which contains all the convex
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functions. A function f is said to be in the subclass of convex functions C, if it
maps D conformally onto the region which bounds the convex domain. The analytic
description of the function f (z) ∈ C is given by

C :=
{
f ∈ A : Re

(
1+ zf ′′(z)

f ′(z)

)
> 0, z ∈ D

}
.

Another important subclass of S is the class of close-to-convex functions K in-
troduced by W. Kaplan [18]. A function f (z) ∈ K is said to be in the class of
close-to-convex functions with respect to the starlike function g, if the class consists
of linearly accessible functions, i.e., the function f satisfies the geometric prop-
erty that the complement of the image of open unit disk D under f is the union
of closed half-lines such that the corresponding open half-lines are nonintersecting.
The analytic characterization of the function f (z) ∈ K is given by

K :=
{
f ∈ A : Re

(
eiθ

zf ′(z)

g(z)

)
> 0, θ ∈ R, g ∈ S∗ and z ∈ D

}
.

Note that C ⊂ S∗ ⊂ K ⊂ S.
In the sequel, we also use the following generalization of the classes S∗ and C,

given respectively as follows:

S∗(ξ ) :=
{
f ∈ A : Re

(
zf ′(z)

f (z)

)
> ξ , 0 ≤ ξ < 1, z ∈ D

}

and

C(ξ ) :=
{
f ∈ A : Re

(
1+ zf ′′(z)

f ′(z)

)
> ξ , 0 ≤ ξ < 1, z ∈ D

}
.

Note that S∗(0) ≡ S∗ and C(0) ≡ C. Further, it is interesting to observe that for
0 ≤ ξ < 1, zf ′ ∈ S∗(ξ ) ⇐⇒ f ∈ C(ξ ).

For 0 ≤ σ ≤ 1 and 0 ≤ ξ < 1, the function f ∈ A is said to be in Pascu class of
σ -convex functions of order ξ [25] denoted by M(σ , ξ ), if

σ zf ′(z)+ (1− σ )f (z) ∈ S∗(ξ ).

Note that M(0, ξ ) ≡ S∗(ξ ) and M(1, ξ ) ≡ C(ξ ) which means that the Pascu class
unifies the class of convex and starlike functions, i.e., it provides the smooth passage
between the class of convex and starlike functions. It contains some nonunivalent
functions also. Analytically, this class is defined as

f (z) ∈ M(σ , ξ ) ⇐⇒ Re

(
σ z(zf ′(z))′ + (1− σ )zf ′(z)

σ zf ′(z)+ (1− σ )f (z)

)
> ξ.

We usually set M(σ ) := M(σ , 0).
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7.2 Motivation for the Main Problem and Its Consequences

For each normalized and univalent function f (z) ∈ S, Bieberbach [12] gave
the Bieberbach’s theorem which established the estimation for second coefficient,
|a2| ≤ 2. The equality holds if the function f is the rotation of Koebe function. The
consequence of Bieberbach’s theorem is the Koebe distortion theorem [14, p. 32]
which provides the existence of positive sharp upper and lower bounds of |f ′(z)| that
represent the infinitesimal magnification factor of image curve under the mapping
f . For the function f ∈ S, the Koebe distortion theorem leads to the following

1− |z|
(1+ |z|)3

≤ |f ′(z)| ≤ 1+ |z|
(1− |z|)3

, z ∈ D.

Equality holds only when f (z) is the Koebe function or one of its rotations. This
result is useful to obtain the growth theorem [14, p. 33] which states that for the
function f ∈ S,

1

(1+ |z|)2
≤
∣∣∣∣f (z)

z

∣∣∣∣ ≤ 1

(1− |z|)2
, z ∈ D.

Equality holds only if f (z) is the Koebe function or one of its rotations.

Since Re
f (z)

z
≤
∣∣∣∣f (z)

z

∣∣∣∣ , it is interesting to determine the conditions under which

the following inequality

1

(1+ |z|)2
≤ Re

(
f (z)

z

)
,

holds true.
For the function f (z) ∈ S, H. Grunsky [16] has obtained the range 0 < |z| ≤

(e − 1)/(e + 1) � .462, for which the above inequality holds. For this purpose, R.
Fournier and S. Ruscheweyh [15] considered the real-valued function Λ, which is
defined on [0, 1] and positive on (0,1). For f (z) ∈ S, the function LΛ is defined as

LΛ(f )(z) = inf
z∈D

∫ 1

0
Λ(t)

(
Re

f (tz)

tz
− 1

(1+ t)2

)
dt.

If we consider f (z) as the Koebe function, then LΛ(f )(z) ≤ 0 for all acceptable
weight functions Λ.

This concept leads to investigating various subclasses of S for which results of
this type hold true and the objective of this chapter is to outline all related works and
their consequences in this direction available in the literature. Hence for important
subclasses of S, corresponding weight functions are obtained for which LΛ(S) = 0.

Initially R. Fournier and S. Ruscheweyh [15] obtained the condition on weight
function Λ(t) and gave the following result.
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Theorem 1 [15] Let the function Λ(t) be integrable on [0, 1] and positive on (0, 1).
If

Λ(t)

1− t2
, t ∈ (0, 1) (7.1)

is decreasing, then LΛ(K) = 0.
The following function

Λc(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1− t c)

c
, −1 < c ≤ 2, c �= 0;

log(1/t) , c = 0,

(7.2)

was considered, since it satisfies the condition (7.1). For larger values of c > 7, the
corresponding function LΛc

(K) < 0.
For the function f ∈ A, R. Fournier and S. Ruscheweyh [15] introduced the class

P (β) which satisfies the property that

P (β) = {
f ∈ A : Re eiφ(f ′(z)− β) > 0, β < 1, z ∈ D

}
. (7.3)

The integral operator Vλ(f )(z) was considered which is defined as

Vλ(f )(z) =
∫ 1

0
λ(t)

f (tz)

t
dt , (7.4)

where λ(t) is the real-valued nonnegative function of t ∈ [0, 1] with the property that∫ 1
0 λ(t)dt = 1.

Theorem 2 [15] Let f ∈ P (β). If β < 1 satisfies

β

1− β
= −

∫ 1

0
λ(t)

(1− t)

(1+ t)
dt , (7.5)

then, Vλ(f )(z) ∈ S. Further, if β and λ satisfy (7.5) and in addition t Λ(t) =
t
∫ 1
t

λ(s)
s
ds → 0, as t → 0, then Vλ(P (β)) ∈ S∗ ⇐⇒ LΛ(K) = 0.

These two results lead to various generalizations. In one direction, these results
are proved for the class S∗(ξ ) and are further extended for C and C(ξ ), 0 ≤ ξ < 1.
In another direction, the class P (β) given in (7.3) has been generalized to study the
result for more general classes. All these results are based on Theorems 1 and 2,
wherein the condition (7.1) is modified as per requirement. The proofs also follow
in a somewhat similar fashion as the proofs of these theorems. Hence, the proofs of
Theorems 1 and 2 are important. The best way to understand the proofs given in [15]
is as follows: (1) Prove the first part of Theorem 2, i.e., Vλ(P (β)) ⊂ S, (2) Prove the
second part of Theorem 2, namely the condition for which LΛ(K) = 0. Using this
condition, it is easy to understand the proof of Theorem 1.
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The results were further modified by S. Ponnusamy and F. Ronning [27] using
duality method for convolution and they obtained the condition on the weight function
Λ(t) that, when

Λ(t)

(1+ t)(1− t)1+2ξ
, t ∈ (0, 1)

is decreasing, then LΛ(C(ξ )) = 0 for 0 ≤ ξ ≤ 1/2.
Further the relation was derived between β and λ so that the integral operator Vλ

maps the function f (z) ∈ P (β) into S∗(ξ ) for 0 ≤ ξ < 1. With the condition

β

1− β
= −

∫ 1

0
λ(t)

(
((1+ ξ )− (1− ξ )t)

(1− ξ )(1+ t)
− 2ξ log (1+ t)

(1− ξ )t

)
dt ,

VΛ(f )(z) ∈ S∗(ξ ) ⇐⇒ LΛ(C(ξ )) ≥ 0. For particular value of ξ = 0, the result
reduces to the result given by R. Fournier and S. Ruscheweyh [15].

Likewise, the relation between β and λ was obtained by R. M. Ali and V. Singh
[2] so that the integral operator Vλ maps the function f (z) ∈ P (β) into C and defines
the functional MΛ(f )(z) as

MΛ(f )(z) = inf
z∈D

∫ 1

0
Λ(t)

(
Ref ′(tz)− 1− t

(1+ t)3

)
dt.

R. M. Ali and V. Singh [2] gave the condition on β and λ for which the following
result holds good.

Theorem 3 [2] If β < 1 satisfies

β − 1

2
1− β

= −
∫ 1

0
λ(t)

1

(1+ t)2
dt ,

and t Λ(t) = t

∫ 1

t

λ(s)

s
ds → 0, as t → 0, then Vλ(P (β)) ∈ C ⇐⇒ MΛ(K) = 0.

It is difficult to obtain the condition onMΛ(K), hence the corresponding sufficient
result was given.

Theorem 4 [2] If tΛ′(t)/(1− t2) is decreasing for t ∈ (0, 1), then MΛ(K) = 0.
R. M. Ali and V. Singh [2] introduced the generalized integral operator Vλ(f )(z)

which is the convex combination of z and Vλ(f )(z). They defined

Vλ(f )(z) := ρz + (1− ρ)Vλ(f )(z) = z
∫ 1

0
λ(t)

1− ρtz

1− tz
dt ∗ f (z) ρ < 1.

For the function f (z) ∈ P (β), R. M. Ali and V. Singh [2] derived the relation
between β and λ so that the new integral operator Vλ(f )(z) belongs to the subclasses
of univalent function class S∗ and C.
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Theorem 5 [2] If β < 1 satisfies the condition

1

2(1− ρ)(1− β)
=
∫ 1

0
λ(t)

t

1+ t
dt , (7.6)

then Vλ(f )(z) ⊂ S. Further, Vλ(f )(z) ⊂ S∗ ⇐⇒ LΛ(C) = 0, if β < 1 satisfies
(7.6) and Λ(t) = ∫ 1

t

λ(s)
s
ds satisfies the condition that tΛ(t) → 0 as t → 0+.

To obtain the convexity result for Vλ(P (β)), R. M. Ali and V. Singh [2] gave the
following condition on β < 1 as

1

2(1− ρ)(1− β)
=
∫ 1

0
λ(t)

t(t + 2)

(1+ t)2
dt ,

then Vλ(f )(z) ⊂ C ⇐⇒ MΛ(C) = 0, provided Λ(t) = ∫ 1
t

λ(s)
s
ds satisfies the

condition that tΛ(t) → 0 as t → 0+.
Further extensions of subclass P (β) of the class A are the classes Pγ (β), Rγ (β),

and Wβ(α, γ ), which are defined below and are used to generalize the result given
above.

The class Pγ (β) introduced by Y. C. Kim and F. Ronning in [19] is the linear
combination of two functionals that modifies the class P (β). For β < 1 and 0 ≤
γ < 1, Pγ (β) denotes the normalized class of analytic function defined by

Pγ (β) =
{
f∈A : ∃θ ∈ R |Re

(
eiθ

(
(1− γ )

f (z)

z
+ γf ′(z)− β

))
>0, z ∈ D

}
,

for some θ ∈ R. Note that P1(β) ≡ P (β).
The class Rγ (β) introduced by S. Ponnusamy and F. Ronning in [28] is the set of

all normalized and analytic functions defined by

Rγ (β) =
{
f ∈ A : ∃ θ ∈ R |Re

(
eiθ (f ′(z)+ γ zf ′′(z)− β)

)
> 0, z ∈ D

}
,

for γ ≥ 0 and β < 1. Note that f (z) ∈ Rγ (β) ⇐⇒ zf ′(z) ∈ Pγ (β). Hence, the
class Rγ (β) is closely related to the class Pγ (β). Another simple observation about
the relationship between the class P (β) and Rγ (β) is that R0(β) ≡ P (β).

For α ≥ 0, γ ≥ 0 and β < 1, R. M. Ali et al. [3] defined the class Wβ(α, γ ) as

Wβ(α, γ ) = {f ∈ A : ∃φ ∈ R |

Re eiφ
(

(1− α + 2γ )
f (z)

z
+ (α − 2γ )f ′(z)+ γ zf ′′(z)− β

)

> 0, z ∈ D} .
It unifies both the classes Pγ (β) and Rγ (β). Note that P (β) ≡ Wβ(1, 0), Pα(β) ≡
Wβ(α, 0) and Rγ (β) ≡ Wβ(1+ 2γ , γ ).
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7.3 Application for the Class P (β)

Results given in Sect. 7.2 are more interesting whenever particular values of λ(t) are
chosen for the operator given by (7.4). Various values of λ(t) lead to different inter-
esting consequences. One such application is related to (7.2) that provides Bernardi
operator, which will be defined later. For further applications, we need the following
preliminaries:

Consider the analytic functions fi(z), for i = 1, 2 represented in the series form
as

fi(z) = z +
∞∑
n=2

an,iz
n (an,i ≥ 0),

then the Hadamard product (or convolution) f1 ∗ f2 is given by

(f1 ∗ f2)(z) = z +
∞∑
n=2

an,1an,2zn.

For the complex numbers a, b and c, the Gaussian hypergeometric function
2F1(a, b; c; z) is defined by

F (a, b; c; z) ≡ 2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn! zn, z ∈ D.

where c �= 0,−1,−2, . . . and the Pochhammer symbol, (χ )n is expressed as

(χ )n =
⎧⎨
⎩

1 n = 0,

χ (χ + 1) · · · (χ + n− 1) n ∈ N.

The integral operator Vλ(f )(z) given in (7.4) under special cases of λ(t) reduces
to various well-known operators that were studied in detail by many authors. For
further details, see [9, 10, 17, 20, 21].

(1) Consider

λ(t) = (1+ c)δ

Γ (δ)
t c
(
log

1

t

)δ−1

, for δ ≥ 0 and c > −1.

Then the integral operator defined corresponding to the weight function λ(t)
given above is denoted byVλ(f (z)) := Fc, δ(f (z)) which is known as the Komatu
operator [20]. The particular cases are:
(i) Let δ = 1, so that

λ(t) = (1+ c)t c, c > −1.
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Then the Komatu operator reduces to the Bernardi operator (Bc(f )(z)) [9].
Note that this λ(t) is related to Λc(t) given in (7.2) by Λc(t) =

∫ 1
t

λ(s)
s
ds.

(ii) When c = 0 and δ = 1, the Komatu operator reduces to Alexander or
Biernacki operator [1] which is denoted as

A(f )(z) =
∫ z

0

f (t)

t
dt

that maps the function belonging to S∗ onto C, which means

f (z) ∈ S∗(ξ ) ⇐⇒ A(f )(z) ∈ C(ξ ).

(iii) When c = 1 and δ = 1, the Komatu operator reduces to the Libera operator
[21] which is denoted by

F (f )(z) = 2

z

∫ z

0
f (t)dt.

(2) Consider

λ(t) = Γ (c)

Γ (a)Γ (b)Γ (c − a − b + 1)
tb−1(1− t)c−a−b

2F1(c − a, 1− a; c − a − b + 1; 1− t),

for which the integral operator Vλ(f (z)) is known as Hohlov operator [17] de-
noted by Ha, b, c(f )(z). We note that the Hohlov operator can be written in terms
of convolution as [19]

Vλ(f )(z) := Ha, b, c(f )(z) = z 2F1(a, b ; c ; z) ∗ f (z).

(i) The case a = 1 gives

H1, b, c(f )(z) := L(b, c)(f )(z) = Γ (c)

Γ (b)Γ (c − b)

∫ 1

0
tb−2(1− t)c−b−1f (tz)dt

where L(b, c)(f )(z) is known as Carlson–Shaffer operator [10].
(ii) For the case a = 1, b = ϑ + 1, and c = ϑ + 2, Hohlov operator reduces to

Bernardi operator, i.e., H1,ϑ+1,ϑ+2(f )(z) = Bϑ (f )(z) for Re ϑ > −1.
(3) For the two complex numbers, a, b > −1. Consider

λ(t) =
⎧⎨
⎩

(a + 1)(b + 1) t
a (1−tb−a )
b−a , b �= a,

(a + 1)2ta log (1/t), b = a.

Then the corresponding integral operatorVλ(f )(z) = Gf (a, b, z) was introduced
and studied by S. Ponnusamy [26].
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Note that even though for particular values the Hohlov and Komatu operators reduce
to the Carlson–Shaffer operator, these two operators are different and have different
consequences. We summarize the applications with the following outline:

For application purpose, R. Fournier and S. Ruscheweyh [15] considered only the
Bernardi integral operator Bc(f )(z). If β < 1 satisfies the condition

β

1− β
= −(1+ c)

∫ 1

0
t c

(1− t)

(1+ t)
, (−1 < c ≤ 2),

then for f (z) ∈ P (β), Bc(f )(z) ∈ S∗ and the result is sharp.
For β = −0.262 . . . , M. Nunokawa and D. K. Thomas [22] have shown that

the function f (z) ∈ P (β) implies B0(f )(z) is starlike and if β = −0.0175 . . . then
B1(f )(z) is starlike. These conditions are weak when compared to the result of R.
Fournier and S. Ruscheweyh [15] which provides that for β = −0.629 . . . , B0(P (β))
is starlike and for β = −0.294 . . . , B1(P (β)) is starlike.

R. M. Ali and V. Singh [2] obtained various ranges of inclusion for the Bernardi
operator that are given by B0(P (0)) ∈ S∗(0.1174 . . . ), B1(P (0)) ∈ S∗(0.05685 . . . ),
and B2(P (0)) ∈ S∗(0.0351 . . . ).

S. Ponnusamy and F. Ronning [27] considered the operator Gf (a, b, z) for the
function f (z) ∈ P (β). If the relation between β < 1 and λ(t) is given by

β

1− β
=
∫ 1

0
λ(t)

1− t

1+ t
dt , a ∈ (−1, 2] and a ≤ b,

then Gf (a, b, z) ∈ S∗.
R. M. Ali and V. Singh [2] considered the operator Vλ, where λ(t) = (1− a)(3−

a)t−a(1− t2)/2 and derived the condition on β < 1 under which

β − 1/2

1− β
= − (1− a)(3− a)

2

∫ 1

0
t−a

1− t

1+ t
dt ,

then Vλ(P (β)) ∈ C for 0 ≤ a < 1.
R. M. Ali and V. Singh [2] proved that H1, a, a+b(P (β)) ∈ C, if β < 1 satisfies

β − 1/2

1− β
= − 2F1(2, a; a + b;−1) 0 < a < 1, b > 2,

and the estimate is sharp.
Since duality technique for convolution gives better bounds, it became an adequate

tool while dealing with such type of integral transforms.

7.4 The Class Wβ(α, γ )

The class Wβ(α, γ ) defined in Sect. 7.2 unifies all the other classes existing in the
literature. Hence, we provide results only for the class Wβ(α, γ ) and notify particular
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cases wherever necessary. R. M.Ali et al. [3] discussed the starlikeness of the integral
operator Vλ(Wβ(α, γ ). To discuss the main result, the following notations are useful:

Let μ, ν ≥ 0 satisfy the relation, μ+ ν = α − γ and μν = γ . Further, consider
the positive and integrable functions Πμ,ν(t) and Λν(t) that are positive on (0, 1) and
integrable on [0, 1], and are defined as

Πμ,ν(t) =

⎧⎪⎨
⎪⎩

∫ 1

t

Λν(s)s1/ν−1/μ−1ds, γ > 0

Λα(t), γ = 0,μ = 0, ν = α > 0,
(7.7)

where

Λν(t) =
∫ 1

t

λ(s)

s1/ν
ds. (7.8)

The functional MΠμ,ν (hξ , σ , z(t)) is defined as

MΠμ,ν (hξ , σ , z(t)) =

⎧⎪⎪⎨
⎪⎪⎩

Re
∫ 1

0
Πν,μ(t)t1/μ−1hξ , σ , z(t)dt , γ > 0,

Re
∫ 1

0
Π0,α(t)t1/α−1hξ , σ , z(t)dt , γ = 0,

(7.9)

where

hξ , σ , z(t) = (1− σ )

(
hξ (tz)

tz
− 1− ξ (1+ t)

(1− ξ )(1+ t)2

)
+ σ

(
h′ξ (tz)− 1− ξ − (1+ ξ )t

(1− ξ )(1+ t)3

)
.

Consider gξ (t) to be the solution of initial value problem

d

dt
t1/ν(1+ gξ (t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

μν
t1/ν−1

∫ 1

0
s1/μ−1 (1− ξ (1+ st))

(1− ξ )(1+ st)2
ds, γ > 0

2(1− ξ (1+ t))

α(1− ξ )(1+ t)2
t1/α−1, γ = 0,α > 0,

(7.10)

satisfying gξ (0) = 1.
For σ ∈ [0, 1], define β < 1 by

β

1− β
= −

∫ 1

0
λ(t)[(1− σ )gξ (t)+ σ (2qξ (t)− 1)]dt. (7.11)

Here, qξ (t) is the solution of the initial value problem

d

dt
t1/νqξ (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

μν
t1/ν−1

∫ 1

0
s1/μ−1 (1− ξ − (1+ ξ )st)

(1− ξ )(1+ st)3
ds, γ > 0

t1/α−1 (1− ξ − (1+ ξ ) t)

α(1− ξ )(1+ t)3
, γ = 0,α > 0.

(7.12)

satisfying qξ (0) = 1.
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Recently, S. Verma et al. [32] (see also [23] where similar results are obtained)
considered the function f (z) belonging to the class of analytic function Wβ(α, γ )
and discussed the conditions between the constraint β and the function λ(t) under
which the integral transform Vλ(f )(z) belongs to S∗(ξ ). The following results were
formulated.

Theorem 6 [23, 32] Consider μ, ν ≥ 0 and β satisfy (7.11), for the case σ = 0.
Assume that t1/νΛν(t) → 0 and t1/νΠμ,ν(t) → 0 as t → 0+. Then

Vλ(Wβ(α, γ )) ∈ S∗(ξ ) ⇐⇒ MΠμ,ν (hξ , 0, z(t)) ≥ 0

for ξ ∈ [0, 1/2].
Particular cases for Theorem 6 are discussed as under:

Remark 1

1. For ξ = 0, Theorem 6 yields [3, Theorem 3.1].
2. For the case α = 1+ 2γ , the class Wβ(1+ 2γ , γ ) reduces to the class Rγ (β) and

Theorem 6 coincides with [7, Theorem 2.1].
3. For the class Wβ(1 + 2γ , γ ) := Rγ (β) and the case ξ = 0, Theorem 6 gives

similar result obtained in [28, Theorem 2.2].
4. For the case γ = 0, the class Wβ(α, 0) reduces to the class Pα(β) and Theorem

6 reduces to [5, Theorem 1.2].
5. For the class Wβ(α, 0) := Pα(β) and the case ξ = 0, Theorem 6 gives the result

obtained by [19, Theorem 2.1].

It is difficult to verify the condition onMΠμ,ν (hξ , 0, z(t)). Hence, Theorem 6 cannot be
used directly. From an application point of view, the following sufficient condition
has been derived in [23, 32].

Theorem 7 [23, 32] Let μ ≥ 1, ξ ∈ [0, 1/2] and
Πμ,ν(t)

(1+ t)(1− t)1+2ξ
be decreasing

on (0, 1). Then Vλ(Wβ(α, γ )) ∈ S∗(ξ ) where β satisfies (7.11) and σ = 0.
Considering particular values for ξ , α, and γ , sufficient condition given in

Theorem 7 is similar to [3, Theorem 4.1], [7 ,Theorem 2.2], and [28, Theorem
2.3]. This condition cannot be reduced to the result obtained by Y. C. Kim and F.
Ronning [19] for the case, γ = 0 and ξ = 0, since the condition in [19] contains the
function (log(1/t))1+2ξ instead of (1 + t)(1 − t)1+2ξ in the denominator part. Both
the functions are decreasing and tend to 0 as t → 1. Hence to obtain the sufficient
conditions corresponding to Theorem 6, for the case γ = 0 and ξ = 0, the following
result by Y. C. Kim and F. Ronning [19] is useful.

Theorem 8 [19] If
Λα(t)

log (1/t)
is decreasing on (0, 1), then MΠμ,ν (h0, 0, z(t)) ≥ 0 for

α ∈ [1/2, 1] and γ = 0.
This result is further generalized by R. Balasubramanian et al. [5] to obtain the

sufficient condition so that the integral transform of the functions belonging to the
class Wβ(α, 0) is a member of S∗(ξ ).
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Theorem 9 [5] If
Λα(t)

( log (1/t))1+2ξ
is decreasing on (0, 1), then MΠμ,ν (hξ , 0, z(t)) ≥ 0

for α ∈ [1/2, 1], ξ ∈ [0, 1/2], and γ = 0.
The sufficient conditions given in Theorems 8 and 9 can be applied only when

α ∈ [1/2, 1]. Hence the results obtained are weak as compared to the Theorem 7.
Alternative result corresponding to Theorem 7 is given below.

Theorem 10 [23, 32] Let Λν and Πμ,ν be defined in (7.8) and (7.7), respectively.
Consider the case σ = 0 and β < 1 is given by (7.11). If λ(t) satisfies the condition

tλ′(t)
λ(t)

≤
⎧⎨
⎩

1+ 1

μ
,

ν

(1− ν)
≥ μ ≥ 1 (γ > 0),

3− 1
α

, γ = 0, α ∈ (0, 1/3],

then Vλ(Wβ(α, γ )) ∈ S∗(ξ ) for ξ ∈ (0, 1/2].
Following comparisons are made on substituting certain values of ξ , α, and γ in

Theorem 10:

Remark 2

1. The condition given in [3, Theorem 4.2] is better than that obtained from Theorem
10, for ξ = 0. This is due to the fact that the domain for α is larger for the case
γ = 0.

2. Theorem 10 reduces to the result given in [7, Theorem 3.1] for the caseα = 1+2γ .
The condition given in [7] is weak since the result does not hold for 0 ≤ γ < 1/2.

3. For the case α = 1+2γ and ξ = 0, the condition on λ(t) of Theorem 10 coincides
with [28, Theorem 3.1].

Using Theorem 10, a number of applications for various well-known integral
operators are given.

Theorem 11 [23, 32] Let β < 1 satisfy (7.11) with σ = 0 and λ(t) = (c + 1)tc,
c > −1. Then Bc(Wβ(α, γ )) ∈ S∗(ξ ) for ξ ∈ (0, 1/2], if

c ≤
⎧⎨
⎩

1+ 1

μ
,

ν

(1− ν)
≥ μ ≥ 1 (γ > 0),

3− 1
α

, γ = 0, α ∈ (1/4, 1/3].

Particular cases are discussed for Bernardi operator.

Remark 3

1. The condition obtained by [3, Theorem 5.1] is better than that obtained from
Theorem 11, for ξ = 0. This is due to the fact that the Bernardi integral operator
is starlike if c ≤ 3− 1/α, for the case γ = 0 and α ∈ (0, 1/3] ∪ [1,∞).

2. The result given in [7, Theorem 3.1] is weaker than Theorem 11, for α = 1+2γ .
Further, the condition coincides for the case γ ≥ 1/2.

3. For α = 1+ 2γ and ξ = 0, Theorem 11 coincides with [28, Corollary 3.2].

The case c = 0 gives rise to the following application:
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Corollary 1 [3] Let β < 1 satisfy (7.11) with σ = 0, ξ = 0 and λ(t) = 1. Then the
function F (z) ∈ A satisfying

Re(f ′(z)+ αzf ′′(z)+ γ z2f ′′′(z)) > β

belongs to S∗, for α ≥ γ > 0 or γ = 0 and α ≥ 1/3.
Following results are immediate:

Example 1 Consider the function f ∈ A satisfying the condition Re(f ′(z) +
zf ′′(z)) > (1− 2 ln 2)/2(1− ln 2). Then f (z) is starlike.

Example 2 Consider the function f ∈ A satisfying the condition Re(f ′(z) +
3zf ′′(z)+ z2f ′′′(z)) > (6− π2)/(12− π2). Then f (z) is starlike.

Theorem 12 [23, 32] Consider

λ(t) = (1+ c)δ

Γ (δ)
t c
(
log

1

t

)δ−1

, for δ ≥ 1 and c > −1,

and β < 1 satisfy (7.11) for the case σ = 0. Then Fc,δ(Wβ(α, γ )) ∈ S∗(ξ ) for
ξ ∈ (0, 1/2], if

c ≤
⎧⎨
⎩

1+ 1

μ
,

ν

(1− ν)
≥ μ ≥ 1 (γ > 0),

3− 1
α

, γ = 0, α ∈ (1/4, 1/3].

Remark 4

1. The result obtained by [3 ,Theorem 5.4] is better than the result corresponding
to Theorem 12, for ξ = 0. This is due to the fact that the condition on c, when
γ = 0, exists in the bigger domain for α ∈ (0, 1/3] ∪ [1,∞).

2. For α = 1 + 2γ , Theorem 12 is better than the result in [7, Theorem 4.2] and
reduces when γ ≥ 1/2.

3. Since the bound for c is larger in [5 ,Theorem 2.1], Theorem 12, for γ = 0, is
weaker.

4. For γ = 0 and ξ = 0, Theorem 12 has smaller bound for c than [19, Theorem
2.3].

Theorem 13 [23, 32] Consider

λ(t) = Ktb−1(1− t)c−a−bΨ (1− t) for a, b, c > 0

and β < 1 satisfy (7.11) for the case σ = 0. Then Vλ(Wβ(α, γ )) ∈ S∗(ξ ) for
ξ ∈ [0, 1/2], if

c < (a + b) and 0 < b ≤ 1,
or
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c ≥ (a + b) and b ≤
⎧⎨
⎩

2+ 1

μ
,

ν

(1− ν)
≥ μ ≥ 1 (γ > 0),

4− 1
α

, γ = 0, α ∈ (1/4, 1/3].

Following particular cases are of interest and available in the literature.

Remark 5

1. The result [3, Theorem 5.5] is better than the result of Theorem 13, for ξ = 0.
This is due to the fact that the condition on b, when γ = 0, is defined on the
bigger domain for α ∈ (0, 1/3] ∪ [1,∞).

2. Result given in [7, Theorem 4.3] holds for γ ≥ 1/2 whereas Theorem 13, for
α = 1+ 2γ , is true for γ > 0. Hence the latter result is better.

3. For γ = 0 in Theorem 13, the parameters have the range a > 0, c ≥ a + b, and
b ≤ 4−1/α, whereas the range ofa, b, and c in [5, Theorem 2.2] lies in the interval
a ∈ (0, 1] and b+2ξ ≤ c−a ≤ (c−a−b+1)/α(a(c−a−b+1)+2ξ (1−a))
for α ∈ [1/2, 1].

4. Substituting γ = 0 and ξ = 0 in Theorem 13, the a, b, and α are different when
compared to [19, Theorem 2.4], defined in the range 0 < a ≤ 1, 0 < b ≤ 1/α
and α ∈ [1/2, 1].

5. The bound for b is 0 < b ≤ (c − a) ≤ 1/aα in [11, Theorem 2], which is larger
than the bounds in Theorem 13, for the case γ = 0 and ξ = 0.

For particular values of a, b and c, J. H. Choi et al. [11] gave the following result:
If β < 1 satisfies

β = 1− 1

2(1− 2F1(1, 1/α; 1+ 1/α;−1))
, (1/2 ≤ α ≤ 1),

then H1,1,2(Wβ(α, 0)) ∈ S∗.

Theorem 14 [23, 32] Let a, b > −1, λ(t) be given by

λ(t) =
⎧⎨
⎩

(a + 1)(b + 1) t
a (1−tb−a )
b−a , b �= a,

(a + 1)2ta log (1/t), b = a,

and β < 1 satisfy (7.11) for the case σ = 0. Then for the function f (z) ∈ Wβ(α, γ ),
the operator Gf (a, b, z) ∈ S∗(ξ ) for ξ ∈ [0, 1/2], if

a ≤
⎧⎨
⎩

1+ 1

μ
,

ν

(1− ν)
≥ μ ≥ 1 (γ > 0),

3− 1
α

, γ = 0, α ∈ (1/4, 1/3].

The particular cases of the above result are of interest.

Remark 6

1. Theorem 14, when ξ = 0, leads to the result similar to [3, Theorem 5.3]. But the
condition on “a,” when γ = 0 is true for the larger domain asα ∈ (0, 1/3]∪[1,∞)
in [3] which leads to the better result.
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2. For α = 1+ 2γ , Theorem 14 gives similar result as in [7, Theorem 4.1].
3. [5, Theorem 2.4] gives better bounds for “a” than that obtained in the Theorem

14 for the case γ = 0.

R. M. Ali et al. [4] gave the following results corresponding to the integral operator
Vλ(f )(z).

Theorem 15 [4] Consider μ, ν ≥ 0 and β < 1 satisfy

1

2(1− ρ)(1− β)
= −

∫ 1

0
λ(t)

g0(t)− 1

2
dt ρ < 1,

where g0(t) is the solution of initial value problem given in (7.10). Assume that
t1/νΛν(t) → 0 and t1/νΠμ,ν(t) → 0 as t → 0+. Then

Vλ(Wβ(α, γ )) ∈ S∗ ⇐⇒ MΠμ,ν (h0, 0, z(t)) ≥ 0.

For γ = 0, Theorem 15 gives [6, Theorem 2.4], for ξ = 0.
R. M. Ali et al. [4] discussed the corresponding convexity results for the in-

tegral operator Vλ(Wβ(α, γ ). Following notations are used for further discussion.
The integrable functions Πμ,ν and Λν are defined in (7.7) and (7.8). The functional
MΠμ,ν (hξ , σ , z(t)) is given in (7.9).

Recently R. Omar et al. [24] obtained the condition between β and λ(t), so that
the integral transform Vλ maps the function f (z) ∈ Wβ(α, γ ) into the convex class
of functions of order ξ . The following results are formulated:

Theorem 16 [24] Consider μ, ν ≥ 0, and β < 1 satisfy (7.11) for the case σ = 1.
Assume that t1/νΛν(t) → 0 and t1/νΠμ,ν(t) → 0 as t → 0+. Then

Vλ(Wβ(α, γ )) ∈ C(ξ ) ⇐⇒ MΠμ,ν (hξ , 1, z(t)) ≥ 0

for ξ ∈ [0, 1/2].
Note that these results are also available in the work of S. Verma et al. [31].

Further, particular cases of Theorem 16 are given in the literature.

Remark 7

1. For ξ = 0, Theorem 16 reduces to [4, Theorem 3.1].
2. For γ = 0, Theorem 16 gives similar result as in [6, Theorem 2.3].

To verify the condition MΠμ,ν (hξ , 1, z(t)) ≥ 0, Theorem 16 cannot be used directly.
Hence for application purposes, the following sufficient condition is useful:

Theorem 17 [24] Let μ ≥ 1 and
−tΠ ′

μ,ν(t)+ (1− 1/μ)Πμ,ν(t)

(1+ t)(1− t)1+2ξ
, ξ ∈ [0, 1/2] be

decreasing on (0, 1). Then Vλ(Wβ(α, γ )) ∈ C(ξ ) where β < 1 satisfies (7.11) for the
case σ = 1.

For ξ = 0, Theorem 17 is similar to [4, Theorem 4.2]. When γ = 0, Theorem 17
cannot be reduced to the result of R. Balasubramanian et al. [6, Theorem 2.3]. This is
due to the fact that the denominator part of [6, Theorem 2.3] contains ( log (1/t))1+2ξ
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instead of (1 + t)(1 − t)1+2ξ . Therefore the sufficient condition corresponding to
Theorem 17 for the case γ = 0 is given as under:

Theorem 18 [6] Let ξ ∈ [0, 1/2],
(1− 1/α)Λα(t)− tΛ′

α(t)

[ log (1/t)]1+2ξ
be decreasing on (0, 1).

Then MΠμ,ν (hξ , 1, z(t)) ≥ 0 for α ∈ [1/2, 1] and γ = 0.
Alternative criteria of convexity corresponding to Theorem 18 as in [24] are given

below.

Theorem 19 [24] Let β < 1 be given by (7.11) for the case σ = 1. Further suppose
that λ(t) satisfies the inequality

tλ′(t)
λ(t)

≤ 2+ 1

μ
− 1

ν
, ν ≥ μ ≥ 1.

Then, Vλ(Wβ(α, γ )) ∈ C(ξ ) for ξ ∈ [0, 1/2].

Remark 8

1. For ξ = 0, Theorem 19 gives the result as in [4, Theorem 4.3].
2. For α = 1+ 2γ and ξ = 0, Theorem 19 reduces to [4, Corollary 4.4].

Using Theorem 19, applications for different integral operators discussed in Sect. 7.3
can be obtained.

Theorem 20 [31] Let λ(t) = (c + 1)tc, c > −1, and β < 1 satisfy (7.11) for the
case σ = 1. Then Bc(Wβ(α, γ )) ∈ C(ξ ) for 0 < γ ≤ α ≤ 1+ 2γ and ξ ∈ (0, 1/2],
if

c ≤ 2+ 1/μ− 1/ν, ν ≥ μ ≥ 1.

Remark 9

1. For ξ = 0, Theorem 20 reduces to the result as in [4, Theorem 5.1].
2. For α = 1+ 2γ and ξ = 0, Theorem 20 reduces to [4, Corollary 5.2].

For the case c = 0, Theorem 20 gives the following application:

Corollary 2 [4] Let β < 1 satisfy (7.11), where σ = 1, ξ = 0, and λ(t) = 1. Then
the function F (z) ∈ A satisfying

Re(F ′(z)+ αzF ′′(z)+ γ z2F ′′′(z)) > β

belongs to C, for 0 < γ ≤ α ≤ (1+ 2γ ).
Following result is immediate.

Example 3 Consider the function f ∈ A satisfying the condition Re(f ′(z) +
zf ′′(z)) > (1− 2 ln 2)/(2(1− ln 2)). Then f (z) is convex.

Theorem 21 [31] Consider

λ(t) = (1+ c)δ

Γ (δ)
t c
(
log

1

t

)δ−1

, for c > δ − 2 > −1,
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and β < 1 be defined by (7.11), for the case σ = 1. Then Fc,δ(Wβ(α, γ )) ∈ C(ξ ) for
0 < γ ≤ α ≤ 1+ 2γ and ξ ∈ (0, 1/2], if

c ≤ 2+ 1

μ
− 1

ν
ν ≥ μ ≥ 1.

Following particular cases are available in the literature.

Remark 10

1. The result obtained by [4, Theorem 5.6] coincides with the result obtained by
Theorem 21, for the case ξ = 0.

2. The case γ = 0 implies μ = 0 and ν = α. Hence, Theorem 21 cannot be used
for the case γ = 0 and the comparison cannot be done with [6, Theorem 3.3].

The result for Komatu operator given in Theorem 21 cannot be used for γ = 0. So
the following result is given in [6, Theorem 3.3].

Theorem 22 [6] If ξ ∈ [0, 1/2] and β < 1 satisfies (7.11) for σ = 1, then
Fc, δ(Wβ(α, 0)) ∈ C(ξ ), for α ∈ [1/2, 1], 0 < c+ 1 ≤ 1/(2α)− ξ , and δ ≥ 2(1+ ξ ).

The Hohlov operator was not considered either by R. Omar et al. [24] or S. Verma
et al. [31] for convexity case. Hence, we mention the result given by R. M. Ali et al.
[4].

Theorem 23 [4] Consider

λ(t) = Ktb−1(1− t)c−a−bΨ (1− t) for a, b, c > 0

and β < 1 be defined by (7.11) for the case σ = 1. Then Vλ(Wβ(α, γ )) ∈ C if
c ≥ (a + b + 1) and 0 < b ≤ 1.

Remark 11

1. For γ = 0, Theorem 23 gives better results than that obtained in [6, Theorem
3.2], for ξ = 0. This is due to the fact that in [6, Theorem 3.2], the bounds of
0 < a ≤ 1 and 0 < b ≤ 1/(2α), for α ∈ [1/2, 1] are smaller as compared to the
bounds of Theorem 23.

2. The conditions in [11, Theorem 1] are 0 < a ≤ 1, b ≤ (c− a − 2)/(2α(c− a −
1) − 1), c > a + 2, and α ∈ [1/2, 1] which are different from the conditions in
Theorem 23, for γ = 0.

If β < 1 satisfies

β = 1− 1

2(1− 4F3(2, 2, b, 1/α; 1, c, 1+ 1/α;−1))
,

for 0 < b ≤ (c − 3)/(2αc − 4α − 1), c > 3, and α ∈ [1/2, 1], then J. H. Choi et al.
[11] proved that the function f (z) ∈ Wβ(α, 0) implies L(b, c)(f )(z) ∈ C.

Theorem 24 [31] Let a, b > −1, λ(t) be given by

λ(t) =
⎧⎨
⎩

(a + 1)(b + 1) t
a (1−tb−a )
b−a , b �= a,

(a + 1)2ta log (1/t), b = a,
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and β < 1 satisfy (7.11) for the case σ = 1. Then for the function f (z) ∈ Wβ(α, γ ),
the operator Gf (a, b, z) ∈ C(ξ ) for 0 < γ ≤ α ≤ 1+ 2γ and ξ ∈ [0, 1/2], if

a ≤ 2+ 1

μ
− 1

ν
, for ν ≥ μ ≥ 1.

Theorem 24 for ξ = 0 gives better bounds for “a” than the result given in [4,
Theorem 5.7].

For γ = 0, the result is not valid. In this context, following result is given in [6,
Theorem 3.4].

Theorem 25 Let a, b > −1, λ(t) be defined as in Theorem 24 and β < 1 satisfy
(7.11) for the case σ = 1. Then for the function f (z) ∈ Wβ(α, 0), α ∈ [1/2, 1], the
operator Gf (a, b, z) ∈ C, if a ≤ 0 and b, satisfies b = a or b ≤ 1/α − 1.

For the generalized integral operator Vλ(f )(z), R. M. Ali et al. [4] gave the
following result.

Theorem 26 [4] Consider μ, ν ≥ 0 and β < 1 satisfy

1

2(1− ρ)(1− β)
= −

∫ 1

0
λ(t)(q0(t)− 1)dt ρ < 1,

where q0(t) is the solution of initial value problem given in (7.12). Assume further
that t1/νΛν(t) → 0 and t1/νΠμ,ν(t) → 0 as t → 0+. Then

Vλ(Wβ(α, γ )) ∈ C ⇐⇒ MΠμ,ν (h0, 1, z(t)) ≥ 0.

For γ = 0, Theorem 26 reduces to [6, Theorem 2.5], putting ξ = 0.
Until now, the conditions under which the integral operator Vλ maps the function

belonging to the subclasses of analytic function class A to the subclass of univalent
function class S are discussed. We will now discuss the relation between the constant
β and the function λ(t) and obtain the condition so that the integral operator maps
the function belonging to the subclass of normalized and analytic function class to
another subclass of normalized and analytic function class.

Recently S. Verma et al. [30] obtained sharp values for β so that Vλ(Wβ(α, γ )) ∈
Wω(1, 0)) and Vλ(Wβ(α, γ )) ∈ Wω(α, γ )), for ω < 1 and gave the following results:

Theorem 27 Consider μ, ν ≥ 0 and β < 1 satisfying
β =

1−1− ω

2

[
1− 1

ν

∫ 1

0
λ(t)

∫ 1

0

ds

1+ tsμ
dt−

(
1− 1

ν

)∫ 1

0
λ(t)

∫ 1

0

∫ 1

0

dηdζ

1+ tηνζμ
dt

]−1

,

for γ �= 0,

1− 1− ω

2

[
1− 1

α

∫ 1

0

λ(t)

1+ t
dt −

(
1− 1

α

)∫ 1

0
λ(t)

∫ 1

0

dη

1+ tηα
dt

]−1

, γ = 0.

Then, Vλ(Wβ(α, γ )) ∈ Wω(1, 0)).



7 Starlikeness and Convexity of Certain Integral Transforms . . . 165

Remark 12

1. For α = 1 and γ = 0, Theorem 27 reduces to the result in [15 ,Theorem 2].
2. For γ = 0, Theorem 27 is similar to [8, Theorem 1.5].

Theorem 28 Consider α, γ ≥ 0, and β < 1 satisfying

β

1− β
= −

∫ 1

0
λ(t)

1− (1+ ω)

(1− ω)
t

(1+ t)
dt.

Then, Vλ(Wβ(α, γ )) ∈ Wω(α, γ )).
When γ = 0, Theorem 28 reduces to the result in [19, Theorem 2.6].

Put δ = 1 and c = (1 − α)/α in λ(t) = (1+ c)

Γ (δ)
t c( log (1/t))δ−1. Then using

Theorem 28 for the case γ = 0, Y. C. Kim and F. Ronning [19] proved that f (z) ∈
Wβ(α, 0) implies Re eiφ(f (z)/z − ω) > 0.

7.5 The Pascu Class

The results corresponding to the class Wβ(α, γ ), given in [3] and [4], are unified in
[13]. For the function f (z) ∈ Wβ(α, γ ), S. Devi and A. Swaminathan [13] obtained
the conditions between β and λ so that Vλ(f (z)) ∈ M(σ , 0). The following results
are formulated:

Theorem 29 [13] Considerμ, ν ≥ 0 and β < 1 satisfying (7.11) for ξ = 0. Further
assume that t1/νΛν(t) → 0 and t1/νΠμ,ν(t) → 0 as t → 0+. Then

Vλ(Wβ(α, γ )) ∈ M(σ , 0) ⇐⇒ MΠμ,ν (h0, σ , z(t)) ≥ 0.

For γ = 0, Theorem 29 reduces to [29, Theorem 2.1]. For application purposes,
the following sufficient condition is given:

Theorem 30 [13] Let σ ∈ [0, 1], μ ≥ 1, and β < 1 satisfy (7.11) for ξ = 0. If

σ t1/σ−1/μ+1d(t1/μ−1/σΠμ,ν(t))

1− t2

is increasing on (0, 1), then Vλ(Wβ(α, γ )) ∈ M(σ , 0).
This result cannot be reduced to the result of K. Raghavendar andA. Swaminathan

[29]. This is because the sufficient condition in [29, Theorem 2.1], for ξ = 0, contains
( log (1/t)) in the denominator whereas in Theorem 30, contains the term (1 − t2).
Hence the sufficient condition corresponding to Theorem 30 is given below:

Theorem 31 [29] Let ξ ∈ [0, 1/2], α ∈ [1/2, 1], and β < 1 satisfy (7.11) for γ = 0.
If

σ t1/σ−1/α+1d(t1/α−1/σΛα(t))

( log (1/t))1+2ξ
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is increasing on (0, 1), then Vλ(Wβ(α, 0)) ∈ M(σ , ξ ).
Following alternative condition corresponding to Theorem 30 is used:

Theorem 32 [13] If β is given by (7.11) for the case ξ = 0 and λ(t) satisfy the
condition

(1− σ )

[(
1+ 1

μ

)
λ(t)− tλ′(t)

]
+ σ

[
t2λ′′(t)− 1

μ
tλ′(t)

]
≥ 0.

whenever

σ
λ′(1)

λ(1)
≤ 1+ σ

(
1+ 1

μ
− 1

ν

)
,

then Vλ(Wβ(α, γ )) ∈ M(σ , 0).
The case γ = 0 implies that μ = 0 and ν = α. Hence the above result cannot be

used for γ = 0. Using Theorem 32, a number of applications are discussed.

Theorem 33 [13] Let λ(t) = (1 + c)t c, c > −1 and β < 1 satisfy (7.11) for the
case ξ = 0. If

c ≤ min [(1+ 1/μ− 1/ν) , (1+ 1/μ− ξ) /(1+ 2ξ )] ,

then Bc(Wβ(α, γ )) ∈ M(σ , 0), for σ ∈ [0, 1].
The above result is not valid for γ = 0. Hence, [13, Theorem 3.2] gives the

following result for above theorem. If c > 1+ 1/α and σ ≥ α, then Bc(Wβ(α, 0)) ∈
M(σ , 0), for μ ≥ 1 and σ ∈ (0, 1).

This condition of above result for γ = 0 cannot be compared due to the different
bounds for c and α. The case γ = 0 [29, Theorem 3.1] gave the following result:

Theorem 34 [29] Let λ(t) = (1+ c)t c, c > −1, and β < 1 satisfy (7.11). If

c ≤ min{(1/σ − 1), (1/α − 1)},
then Bc(Wβ(α, 0)) ∈ M(σ , ξ ), for α ∈ [1/2, 1], γ = 0, ξ ∈ [0, 1/2], and σ ∈ (0, 1).

The case c = 0 leads to the following application.

Corollary 3 [13] Let β < 1 satisfy (7.11) for ξ = 0 and λ(t) = 1. Then the function
F (z) ∈ A satisfying

Re(f ′(z)+ αzf ′′(z)+ γ z2f ′′′(z)) > β

belongs to M(σ , 0).
Following results are immediate.

Example 4 Consider the function f ∈ A satisfying the condition Re(f ′(z) +
3zf ′′(z)+ z2f ′′′(z)) > (2(1− (1− σ )π2/12− σ log 2))−1. Then f (z) ∈ M(σ , 0).

Theorem 35 [13] Consider

λ(t) = (1+ c)δ

Γ (δ)
t c
(
log

1

t

)δ−1

, for c < 0 and δ > 2.
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If β < 1 satisfies (7.11) for ξ = 0, then Fc,δ(Wβ(α, γ )) ∈ M(σ , 0) for μ ≥ 1.
For γ = 0, Theorem 35 is better and coincides with the result given in [29,

Theorem 3.4], whenever ξ = 0 and α ∈ [1/2, 1].

Theorem 36 [13] Consider

λ(t) = Ktb−1(1− t)c−a−bΨ (1− t) for a, b, c > 0

and β < 1 satisfy (7.11) for the case ξ = 0. Then Vλ(Wβ(α, γ )) ∈ M(σ , 0) for
μ ≥ 1 if

b < min{1, (2+ 1/μ), (c − a − 1)}.
For γ = 0, Theorem 36 coincides with the result given in [29, Theorem 3.2] for

ξ = 0.

Theorem 37 [13] Let a, b > −1 and λ(t) be given by

λ(t) =
⎧⎨
⎩

(a + 1)(b + 1) t
a (1−tb−a )
b−a , b �= a,

(a + 1)2ta log (1/t), b = a.

Consider β < 1 satisfy (7.11) for the case ξ = 0. If a, b, and μ satisfy any one of
the following conditions

1. b > a, −1 < a < 0 and b + a − 1 < 1/μ < b − 1,
2. b < a, −1 < b < 0 and b + a − 1 < 1/μ < a − 1,
3. b = a < 0,

then f (z) ∈ Wβ(α, γ ) implies Gf (a, b; z) ∈ M(σ , 0), for μ ≥ 1 and σ ∈ [0, 1].
For the generalized integral operator Vλ(f )(z), following result is given in [13,

Theorem 4.1].

Theorem 38 [13] Let μ, ν > 0 and β < 1 satisfy

1

2(1− ρ)(1− β)
= −

∫ 1

0
λ(t)

(
(1− σ )

(
g0(t)− 1

2

)
+ σ (q0(t)− 1)

)
dt ρ < 1,

where g0(t) and q0(t) are the solutions of the initial value problem given in (7.10)
and (7.12), respectively. Assume further that t1/νΛν(t) → 0 and t1/νΠμ,ν(t) → 0 as
t → 0+. Then

Vλ(Wβ(α, γ )) ∈ M(σ , 0) ⇐⇒ MΠμ,ν (h0, σ , z(t)) ≥ 0.

7.6 Conclusion and Further Problems

The duality technique of convolutions is useful for an integral operator to carry a
function from a class of analytic functions into the class of univalent functions and
to the class of analytic functions as well. It is a strong technique because it gives
sharp result. The sufficient condition used to evaluate the results has to be modified
to obtain better results. Hence the following open problems will be of interest for
further research.
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Problem 1 To generalize the class Wβ(α, γ ), so that the results can be extended for
the new class.

Problem 2 To study the results for various other subclasses of S different from
Pascu class.

Problem 3 To find other cases of λ(t), so that the new applications by means of
different integral operator are obtained.

Problem 4 To analyze the ranges of the parameters of λ(t) that were not covered
by the results existing in the literature.

Acknowledgement The authors wish to thank the anonymous referee for the valuable comments
and suggestions to improve the quality of the chapter.
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Chapter 8
Eneström–Kakeya Theorem and Some
of Its Generalizations

Robert B. Gardner and N. K. Govil

8.1 Introduction and History

The study of the zeros of polynomials has a very rich history. In addition to having nu-
merous applications, this study has been the inspiration for much theoretical research
(including being the initial motivation for modern algebra). Algebraic and analytic
methods for finding zeros of a polynomial, in general, can be quite complicated,
so it is desirable to put some restrictions on polynomials. Historically speaking, the
subject dates from about the time when the geometric representation of the complex
numbers was introduced into mathematics, and the first contributors to the subject
were Gauss and Cauchy. Gauss, as part of his 1816 explorations of the fundamental
theorem of algebra, proved (see, for example, [26]):

Theorem 1 If p(z) = zn + a1zn−1 + · + an is a polynomial of degree n with real
coefficients, then all the zeros of p lie in

|z| ≤ R = max
1≤k≤n{(n

√
2|ak|)1/k}.

In the case of arbitrary real or complex aj , he [26] showed in 1849 that R may be
taken as the positive root of the equation

zn −√2(|a1|zn−1 + · · · + |an|) = 0.

Cauchy [13, 51] improved the result of Gauss in Theorem 1, and proved:
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Theorem 2 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex

coefficients, then all the zeros of p lie in|z| ≤ 1+ max
0≤j≤n−1

∣∣∣ ajan
∣∣∣ .

Notice that neither Theorem 1 nor Theorem 2 put any restrictions on the coefficients of
p (beyond the restriction that they either lie in R or C, respectively). See [1, 2, 3, 19]
for several related results which apply to all polynomials with complex coefficients.

In this survey, we explore the Eneström–Kakeya theorem and its generalizations.
By this, we mean that we explore results which give the location of zeros of a
polynomial in terms of their moduli based on hypotheses imposed on the coefficients
of the polynomial. We give a mostly chronological presentation. The well-known
Eneström–Kakeya theorem is most commonly stated as follows:

Theorem 3 If p(z) =∑n
j=0 aj zj is a polynomial of degree n with real coefficients

satisfying 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all the zeros of p lie in |z| ≤ 1.

Proof Define f by the equation

p(z)(1− z) = a0 + (a1 − a0)z + (a2 − a1)z2 + · · · + (an − an−1)zn − anzn+1

= f (z)− anzn+1.

Then for |z| = 1, we have

|f (z)| ≤ |a0| + |a1 − a0| + |a2 − a1| + · · · + |an − an−1|
= a0 + (a1 − a0)+ (a2 − a1)+ · · · + (an − an−1)

= an.

Notice that the function znf (1/z) =∑n
j=0 (aj − aj−1)zn−j , a−1 = 0 has the same

bound on |z| = 1 as f . Namely, |znf (1/z)| ≤ an for |z| = 1. Since znf (1/z) is
analytic in |z| ≤ 1, we have |znf (1/z)| ≤ an for |z| ≤ 1 by the maximum modulus
theorem. Hence, |f (1/z)| ≤ an/|z|n for |z| ≤ 1. Replacing z with 1/z, we see that
|f (z)| ≤ an|z|n for |z| ≥ 1, and making use of this we get,

|(1− z)p(z)| = |f (z)− anzn+1|
≥ an|z|n+1 − |f (z)|
≥ an|z|n+1 − an|z|n
= an|z|n(|z| − 1).

So if |z| > 1 then (1− z)p(z) �= 0. Therefore, all the zeros of p lie in |z| ≤ 1. �

The proof given here is modeled on a proof of a generalization of the Eneström–
Kakeya theorem given by Joyal, Labelle, and Rahman [46]. The original statement
of the result is slightly different and has a complicated history.

It seems that G. Eneström was the first to get a result of this nature when he
was studying a problem in the theory of pension funds. He published his work in
Swedish in 1893 in the journal Öfversigt af Vetenskaps-Akademiens Förhandlingar
[22]. He mentioned his result again in publications of 1893–1894 and 1895. In 1912,
S. Kakeya [47] published a paper (in English) in the Tôhoku Mathematical Journal
which contained the more general result:
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Theorem 4 If p(z) =∑n
j=0 aj zj is a polynomial of degree n with real and positive

coefficients, then all the zeros of p lie in the annulus R1 ≤ |z| ≤ R2 where R1 =
min0≤j≤n−1aj/aj+1 and R2 = max0≤j≤n−1aj/aj+1.

In the final few lines of Kakeya’s paper, he mentioned that the monotonicity as-
sumption of Theorem 3 implies that all zeros of p lie in |z| ≤ 1. The paper gave
no references and Kakeya seems to have been unaware of Eneström’s earlier work.
Kakeya’s paper received a bit of attention and was mentioned in at least three other
papers in the Tôhoku Mathematical Journal during 1912 and 1913; one is in German
[42] and two are in English [40, 41]. The two papers in English are by T. Hayashi.
At some point, Hayashi must have learned of Eneström’s earlier result. Hayashi en-
couraged Eneström to publish his own results in the Tôhoku Mathematical Journal
and in 1920, Eneström [23] published in French: “Remarque sur un théorème relatif
aux racines de l’equation anx

n + an−1x
n−1 + · · · a1x + a0 = 0 où tous les coeffi-

cientes a sont réels et positifs” (“Remark on a Theorem on the Roots of the Equation
anx

n+an−1x
n−1+· · ·+a1x+a0 = 0 where all Coefficients are Real and Positive”) .

In this work [23], Eneström presented a “verbatim” (textuellement) translation of his
original 1893 paper. We can now see that Eneström was the first to publish a proof
of Theorem 3 in 1893 and that Kakeya independently proved the result in 1912. This
could therefore be a reason to refer to Theorem 3 as the “Eneström–Kakeya theo-
rem.” Since Eneström’s argument is so historically important, we present a complete
English translation of this paper of Eneström [23] in the appendix of this chapter.

8.2 Generalizations of Eneström–Kakeya Theorem
During the 1960s

The Eneström–Kakeya theorem gives an upper bound on the modulus of the zeros
of polynomials in a certain class (namely, those polynomials with real, nonnegative,
monotone increasing coefficients). We can easily obtain a zero-free region for a
related class of polynomials in the sense that we can get a lower bound on the modulus
of the zeros. By applying Theorem 3 to znp(1/z) where p has real, nonnegative,
monotone decreasing coefficients, we get the following:

Theorem 5 If p(z) =∑n
j=0 aj zj is a polynomial of degree n with real coefficients

satisfying a0 ≥ a1 ≥ · · · ≥ an ≥ 0, then all the zeros of p lie in |z| ≥ 1.

In 1963, Cargo and Shisha [12] introduced the “backward-difference operator” on
the coefficients of polynomial p(z) = ∑n

j=0 aj zj by defining ∇aj = aj − aj−1

(when speaking of∇a0 or∇an+1, we will assume a−1 = an+1 = 0). More generally,
they also defined “fractional order differences” for any complex α as

∇αan =
k∑

m=0

(− 1)m

⎛
⎝ α

m

⎞
⎠ ak−m.

See Cargo and Shisha [12] (also [52, 54])
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Theorem 6 Ifp(z) =∑n
j=0 aj zj is a polynomial of degree nwith real, nonnegative

coefficients satisfying ∇αaj ≤ 0 for j = 1, 2, . . . , n and 0 < α ≤ 1, then all the
zeros of p lie in |z| ≥ 1.

Cargo and Shisha showed that Theorem 6 reduces to Theorem 5 when α = 1. They
also gave specific polynomials to which Theorem 6 applies, but Theorem 5 does
not, thus showing that the hypotheses are weaker in their result, even though the
conclusion is the same as that of Theorem 5.

The generalization of Eneström–Kakeya theorem for functions of several variables
was given by Mond and Shisha [53].

In 1967, Joyal, Labelle, and Rahman [46] published a result which might be
considered the foundation of the studies which we are currently surveying. The
Eneström–Kakeya theorem, as stated in Theorem 3, deals with polynomials with non-
negative coefficients which form a monotone sequence. Joyal, Labelle, and Rahman
generalized Theorem 3 by dropping the condition of nonnegativity and maintaining
the condition of monotonicity. Namely, they proved:

Theorem 7 If p(z) =∑n
j=0 aj zj is a polynomial of degree n with real coefficients

satisfying a0 ≤ a1 ≤ · · · ≤ an, then all the zeros ofp lie in |z| ≤ (an−a0+|a0|)/|an|.
Of course, when a0 ≥ 0 then Theorem 7 reduces to Theorem 3. The Joyal–Labelle–
Rahman result, like the original Eneström–Kakeya theorem, is only applicable to
polynomials with real coefficients. In 1968, Govil and Rahman [30] presented a
result that is applicable to polynomials with complex coefficients:

Theorem 8 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex

coefficients satisfying |arg aj − β| ≤ α ≤ π/2 for some α and β and for
j = 0, 1, 2, . . . , n and |a0| ≤ |a1| ≤ · · · ≤ |an|, then all the zeros of p lie in
|z| ≤ cosα + sin α + 2 sin α

|an|
∑n−1

j=0 |aj |.
With α = β = 0, Theorem 8 reduces to Theorem 3. In the same paper, Govil
and Rahman gave a result for polynomials with complex coefficients but impose
a nonnegativity and monotonicity condition on the real or imaginary parts of the
coefficients of the polynomial:

Theorem 9 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex co-

efficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying
0 ≤ α0 ≤ α1 ≤ . . . ≤ αn, αn �= 0, then all the zeros ofp lie in |z| ≤ 1+ 2

αn

∑n
j=0 |βj |.

With each βk = 0, Theorem 9 reduces to Theorem 3.

8.3 Generalizations of Eneström–Kakeya Theorem
During the 1970s and 1980s

In 1973, Govil and Jain [28] refined Theorem 8 by giving a zero-free region about
the origin and thus restricting the location of the zeros to an annulus:
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Theorem 10 If p(z) =∑n
j=0 aj zj is a polynomial of degree n with complex coeffi-

cients satisfying |arg aj−β| ≤ α ≤ π/2 for some α and β and for j = 0, 1, 2, . . . , n
and 0 �= |a0| ≤ |a1| ≤ · · · ≤ |an|, then all the zeros of p lie in

1

Rn−1[2R(|an|/|a0|)− ( cosα + sin α)]
≤ |z| ≤ R

where R = cosα + sin α + 2 sin α
|an|

∑n−1
j=0 |aj |.

In the same paper, Govil and Jain similarly refined Theorem 9 by giving a zero-free
annular region and improving the outer radius when the real or imaginary part of the
coefficients satisfy monotonicity condition:

Theorem 11 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex co-

efficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying
0 ≤ α0 ≤ α1 ≤ · · · ≤ αn, αn �= 0, then all the zeros of p lie in

|a0|
Rn−1[2Rαn + R|βn| − (α0 + |β0|)] ≤ |z| ≤ R

where R = 1+ 1
αn

(
2
∑n−1

j=0 |βj | + |βn|
)
.

In a “sequel” paper Govil and Jain [29] further refined Theorems 10 and 11. The
refinement was accomplished by using a more sophisticated technique of proof to im-
prove the inner and outer radii of the annulus containing the zeros of the polynomial.
The refinements are, respectively:

Theorem 12 If p(z) =∑n
j=0 aj zj is a polynomial of degree n with complex coeffi-

cients satisfying |arg aj−β| ≤ α ≤ π/2 for some α and β and for j = 0, 1, 2, . . . , n
and |a0| ≤ |a1| ≤ · · · ≤ |an|, then all the zeros of p lie in

1

2M2
2

[− R2|b|(M2 − |a0|)+ {4|a0|R2M3
2 + R4|b|2(M2 − |a0|)2}1/2] ≤ |z| ≤ R

where

R = c

2

(
1

|an| −
1

M1

)
+
{
c2

4

(
1

|an| −
1

M1

)2

+ M1

|an|

}1/2

and M1 = |an|r , M2 = |an|Rn
[
r + R − |a0|

|an| (cosα + sin α)
]
, c = |an − an−1|,

b = a1 − a0, and r = cosα + sin α + 2 sin α
|an|

∑n−1
j=0 |aj |.

Theorem 13 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex co-

efficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying
0 ≤ α0 ≤ α1 ≤ · · · ≤ αn, αn �= 0, then all the zeros of p lie in

1

2M2
4

[−R2|b|(M4 − |a0|)+ {4|a0|R2M3
4 + R4|b|2(M4 − |a0|)2}1/2

] ≤ |z| ≤ R
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where

R = c

2

(
1

αn
− 1

M3

)
+
{
c2

4

(
1

αn
− 1

M3

)2

+ M3

αn

}1/2

and M3 = αnr , M4 = Rn [(αn + |βn|)R + αnr − (α0 + |β0|)], c = |an − an−1|,
b = a1 − a0, and r = 1+ 1

αn
(2
∑n−1

j=0 |βj | + |βn|).
In 1984, Dewan and Govil [21] considered polynomials with real monotone
coefficients and obtained:

Theorem 14 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

satisfying a0 ≤ a1 ≤ · · · ≤ an, then all the zeros of p lie in

1

2M2
2

[−R2b(M2 − |a0|)+ {4|a0|R2M3
2 + R4b2(M2 − |a0|)2}1/2

] ≤ |z| ≤ R

where

R = c

2

(
1

|an| −
1

M1

)
+
{
c2

4

(
1

|an| −
1

M1

)2

+ M1

|an|

}1/2

andM1 = an−a0+|a0|,M2 = Rn(|an|R+an−a0), c = an−an−1, and b = a1−a0.

Dewan and Govil also showed thatR ≤ an−a0+|a0|
|an| and that the inner radius of the zero

containing region is less than 1, indicating that this result is an improvement of the
result of Joyal, Labelle, and Rahman (Theorem 7); hence it is also an improvement
of the Eneström–Kakeya theorem. They also gave specific examples of polynomials
for which their result gives sharper bound than obtainable from Theorem 7 of Joyal,
Labelle, and Rahman.

In 1980, Aziz and Mohammad [6] introduced a condition on the coefficients to
produce the following generalization of Theorem 3:

Theorem 15 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with real, positive

coefficients. If t1 > t2 ≥ 0 can be found such that

aj t1t2 + aj−1(t1 − t2)− aj−2 ≥ 0, forj = 1, 2, . . . , n+ 1

where we take a−1 = an+1 = 0, then all zeros of p lie in |z| ≤ t1.

With t1 = 1 and t2 = 0, Theorem 15 implies the Eneström–Kakeya theorem. In the
same paper, Aziz and Mohammad [6] introduced an interesting and general condition
on the coefficients of a power series representation

∑∞
j=0 aj zj of an analytic function

in order to restrict the location of the zeros. The condition is that |arg aj −β| ≤ α ≤
π/2 for some α and β and for j = 0, 1, 2, . . . and |a0| ≤ t |a1| ≤ · · · ≤ t k−1|ak−1| ≤
tk|ak| ≥ tk+1|ak+1| ≥ · · · for some t > 0 and some k = 0, 1, . . . . Aziz and
Mohammad [7] imposed similar conditions on the coefficients of polynomials and
proved the following three theorems.
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Theorem 16 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex

coefficients satisfying

|a0| ≤ t |a1| ≤ · · · ≤ t k|ak| ≥ tk+1|ak+1| ≥ · · · ≥ tn|an|
for some k = 0, 1, . . . , n and some t > 0, then all zeros of p lie in

|z| ≤ t

(
2tk|ak|
tn|an| − 1

)
+ 2

n∑
j=0

|aj − |aj ||
tn−j−1|an| .

Theorem 17 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying

0 ≤ α0 ≤ tα1 ≤ · · · ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tnαn > 0

for some k = 0, 1, . . . , n and some t > 0, then all zeros of p lie in

|z| ≤ t

(
2tkαk
tnαn

− 1

)
+ 2

αn

n∑
j=0

|βj |
tn−j−1

.

Theorem 18 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying

0 ≤ α0 ≤ tα1 ≤ · · · ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tnαn > 0

and
0 ≤ β0 ≤ tβ1 ≤ · · · ≤ t rβr ≥ t r+1αr+1 ≥ · · · ≥ tnβn ≥ 0

for some k = 0, 1, . . . , n, some r = 0, 1, . . . , n, and some t > 0, then all zeros of p
lie in

|z| ≤ t

|an| {2(tk−nαk + t r−nβr )− (αn + βn)}.

Notice that each of the three previous results imply Theorem 3 for the appropriate
choices of t , k, and βj .

8.4 Generalizations of Eneström–Kakeya Theorem
During the 1990s

In the style of Aziz and Mohammad [7], Dewan and Bidkham [20] dropped
the nonnegativity condition of Theorem 17 and proved for polynomials with real
coefficients:
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Theorem 19 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

satisfying
a0 ≤ ta1 ≤ · · · ≤ tkak ≥ tk+1ak+1 ≥ · · · ≥ tnan

for some k = 0, 1, . . . , n and some t > 0, then all zeros of p lie in

|z| ≤ t

(
2tkak
tn|an| −

an

|an|
)
+ 1

tn−1|an| (|a0| − a0).

With a0 > 0 and an > 0 in Theorem 19, we see that the zeros of p lie in

|z| ≤ t

(
2t kak
tnan

− 1

)
.

The above result also follows from Theorem 17 if we take each βj = 0, and in this
sense Dewan and Bidkham’s result overlaps with that of Aziz and Mohammad [7].

Related to the hypotheses of Theorem 19, Gardner and Govil [24] proved the
following in 1994 which was inspired by a result by Aziz and Mohammad [6] for
analytic functions:

Theorem 20 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying

α0 ≤ tα1 ≤ · · · ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tnαn

and
β0 ≤ tβ1 ≤ · · · ≤ t rβr ≥ t r+1βr+1 ≥ · · · ≥ tnβn

for some k = 0, 1, . . . , n, some r = 0, 1, . . . , n, and some t > 0, then all zeros of p
lie in R1 ≤ |z| ≤ R2, where

R1 = min
{
(t |a0|/(2(tkαk + t rβr )− (α0 + β0)− tn(αn + βn − |an|)), t

}

and

R2 = max
{[|a0|tn+1 − tn−1(α0 + β0)− t(αn + βn)+ (t2 + 1)(tn−k−1αk

+ tn−r−1βr )+ (t2 − 1)

⎛
⎝k−1∑

j=1

tn−j−1αj +
r−1∑
j=1

tn−j−1βj

⎞
⎠

+ (1− t2)

⎛
⎝ n−1∑
j=k+1

tn−j−1αj +
n−1∑

j=r+1

tn−j−1βj

⎞
⎠
⎤
⎦/|an|, 1

t

⎫⎬
⎭ .

The flexibility of Theorem 20 is revealed by considering the corollaries which result
by letting t = 1, and k, r ∈ {0, n}. For example, with t = 1, k = n, and r = n, it
implies the following, which is clearly a generalization and refinement of the result
of Joyal, Labelle, and Rahman (Theorem 7):
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Corollary 1 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying

α0 ≤ α1 ≤ · · · ≤ αn and β0 ≤ β1 ≤ · · · ≤ βn

for some t > 0, then all zeros of p lie in

|a0|
|an| − (α0 + β0)+ (αn + βn)

≤ |z| ≤ |a0| − (α0 + β0)+ (αn + βn)

|an| .

By making suitable choice of t and k and using appropriate transformations Gardner
and Govil [24] also obtained several results analogous to the above corollary when,
for example, real parts of the coefficients is monotonically decreasing and imaginary
parts monotonically decreasing, or real parts of the coefficients monotonic increasing
and imaginary parts monotonic decreasing.

In order to apply the above Theorem 20 of Gardner and Govil [24], both the real
and imaginary parts of the coefficients have to be monotonic, but if this does not
happen and instead only the real or imaginary parts of the coefficients satisfy this
condition then the Theorem 20 is not applicable. In this regard, Gardner and Govil
[25] proved a result related to Theorem 20, but with hypotheses restricted to just the
the real parts or imaginary parts of the coefficients. To be more precise their result
is the following:

Theorem 21 If p(z) = ∑n
j=0 aj zj is a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying

α0 ≤ tα1 ≤ · · · ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tnαn

for some k = 0, 1, . . . , n, and some t > 0, then all zeros of p lie in R1 ≤ |z| ≤ R2,
where

R1 = t |a0|
/⎛

⎝2(tkαk − α0 − tnαn + tn|an| + |β0| + |βn|tn + 2
n−1∑
j=1

|βj |t j
⎞
⎠

and

R2 = max

⎧⎨
⎩(|a0|tn+1 + (t2 + 1)tn−k−1αk − tn−1α0 − tαn + (t2 − 1)

k−1∑
j=1

tn−j−1αj

+ (1− t2)
n−1∑

j=k+1

tn−j−1αj +
n∑

j=1

(|βj−1| + t |βj |)tn−j
⎞
⎠
/

|an|, 1

t

⎫⎬
⎭ .

By using suitable transformations, Gardner and Govil [25] also obtained results
analogous to the above Theorem 21 when the condition is satisfied by imaginary
parts of the coefficients.



180 R. B. Gardner and N. K. Govil

In the same paper that contained Theorem 19, Dewan and Bidkham [20] also
generalized Theorem 14 due to Dewan and Govil, and proved the following:

Theorem 22 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

satisfying
a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ an

for some k = 0, 1, . . . , n, then all zeros of p lie in

1

2M2
2

[−R2b(M2 − |a0|)+ {4|a0|R2M3
2 + R4b2(M2 − |a0|)2}1/2

] ≤ |z| ≤ R

where

R = c

2

(
1

|an| −
1

M1

)
+
{
c2

4

(
1

|an| −
1

M1

)2

+ M1

|an|

}1/2

andM1 = −an+2ak−a0+|a0|, M2 = Rn(|an|R+2ak−an−a0), c = |an−an−1|,
and b = a1 − a0.

In 1998, Aziz and Shah [8] introduced a very general condition on the coefficients
of a polynomial. Though the condition is complicated, it allowed them to conclude
several of the previous results mentioned above. They proved:

Theorem 23 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients. Suppose for some t > 0 we have

max|z|=r |ta0zn+1 + (ta1 − a0)zn + · · · + (tan − an−1)z| ≤ M1

and
max|z|=r | − anzn+1 + (tan − an−1)zn + · · · + (ta1 − a0)z| ≤ M2,

where r is any positive real number. Then all zeros of p lie in

1

2M2
2

[−r2b(M2 − t |a0|)+ {4t |a0|r2M3
2 + r4b2(M2 − t |a0|)2}1/2

] ≤ |z| ≤ R

where

R = 2M2
1 [− c(M1 − |an|)r2 + {4|an|r2M3

1 + r4c2(M1 − |an|)2}1/2]−1,

c = |tan − an−1|, and b = |ta1 − a0|.
Aziz and Shah proved that Theorem 23 implies Theorem 12 due to Govil and Jain and
stated that a similar argument shows that Theorem 23 implies Dewan and Bidkham’s
Theorem 22, as well as Govil and Jain’s Theorem 13. In the same paper, Aziz and
Shah also gave the following result with similar type of hypotheses which implies
Theorem 19 due to Dewan and Bidkham:
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Theorem 24 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients. Suppose for some t > 0 we have

max|z|=r |ta0zn + (ta1 − a0)zn−1 + · · · + (tan − an−1)| ≤ M

where r is any positive real number. Then all zeros of p lie in

|z| ≤ max

{
M

|an| ,
1

r

}
.

Aziz and Zargar [9] relaxed the monotonicity condition of Joyal, Labelle, and Rah-
man [46] and obtained a result related to the Eneström–Kakeya theorem. Here,the
disk obtained is not necessarily centered at the origin. This result involves a modifica-
tion of the monotonicity condition by introducing a parameter λ, in the sense that the
first (n− 1) coefficients of the polynomial satisfy the monotonicity condition while
the last coefficient an does not follow this pattern, and is free. This λ condition will
appear often in research on the Eneström–Kakeya theorem in the new millennium:

Theorem 25 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with real coef-

ficients satisfying a0 ≤ a1 ≤ · · · ≤ an−1 ≤ λan. Then all the zeros of p lie in
|z + (λ− 1)| ≤ (λan − a0 + |a0|)/|an|.
Of course, withλ = 1, Theorem 25 reduces to Joyal, Labelle, and Rahman’s Theorem
7. With λ = an−1/an, we see from Theorem 25 that the zeros of a polynomial with
monotone coefficients a0 ≤ a1 ≤ · · · ≤ an−1 has all its zeros in |z+(an−1/an−1)| ≤
(an−1−a0+|a0|)/|an|. Later, Aziz and Zargar [9] generalized their own Theorem 25
and proved:

Theorem 26 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

satisfying
a0 ≤ ta1 ≤ · · · ≤ tkak ≥ tk+1ak+1 ≥ · · · ≥ tnan

for some k = 0, 1, . . . , n− 1 and some t > 0, then all zeros of p lie in∣∣∣∣z +
(
an−1

an
− t

)∣∣∣∣ ≤ t

(
2tkak
tn|an| −

an−1

t |an|
)
+ 1

tn−1|an| (|a0| − a0).

In the same paper, Aziz and Zargar [9] proved a result related to Theorem 26, but with
a hypothesis concerning the even-indexed and odd-indexed coefficients separately.
Their result is:

Theorem 27 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with real

coefficients satisfying

0 < a0 ≤ t2a2 ≤ t4a4 ≤ · · · ≤ t2"n/2#a2"n/2#
and

0 < a1 ≤ t2a3 ≤ t4a5 ≤ · · · ≤ t2"n/2#a2"(n+1)/2#−1.

Then all of the zeros of p lie in∣∣∣∣z − an−1

an

∣∣∣∣ ≤ t + an−1

an
.
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8.5 Generalizations in the New Millennium

Cao and Gardner [11] extended the even- and odd-indexed coefficient condition of
Aziz and Zargar’s Theorem 27 to polynomials with complex coefficients to prove
the following:

Theorem 28 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying

α0 ≤ t2α2 ≤ t4α4 ≤ · · · ≤ t2kα2k ≥ t2k+2α2k+2 ≥ · · · ≥ t2"n/2#α2"n/2#,

α1 ≤ t2α3 ≤ t4α5 ≤ · · · ≤ t2"−2α2"−1 ≥ t2"α2"+1 ≥ · · · ≥ t2"n/2#α2"(n+1)/2#−1,

β0 ≤ t2β2 ≤ t4β4 ≤ · · · ≤ t2sβ2s ≥ t2s+2β2s+2 ≥ · · · ≥ t2"n/2#β2"n/2#,

and

β1 ≤ t2β3 ≤ t4β5 ≤ · · · ≤ t2q−2β2q−1 ≥ t2qβ2q+1 ≥ · · · ≥ t2"n/2#β2"(n+1)/2#−1

for some k, ", s, q in {0, 1, . . . , "n/2#}. Then all the zeros of p lie in R1 ≤ |z| ≤ R2

where R1 = min
{
t |a0|
M1

, t
}

, R2 = max
{
M2
|an| ,

1
t

}
and

M1= − (α0 + β0)+ (|α1| + |β1|)t − (α1 + β1)t

+ 2[α2kt
2k + 22"−1t

2"−1 + β2s t
2s + β2q−1t

2q−1]− (αn−1 + βn−1)tn−1

− (αn + βn)tn + (|αn−1| + |βn−1|)tn−1 + (|αn| + |βn|)tn
M2 = tn+3(|a0| − α0 − β0)+ (|α1| − α1 − β1)tn+2

+ (t4 + 1)(α2kt
n−1−2k + α2"−1t

n−2"

+ β2s t
n−1−2s + β2q−1t

n−2q)− (αn−1 + βn−1)+ |an−1| − (αn + βn)t−1

+ (t4 − 1)

⎛
⎝ 2k−2∑
j=0, j even

αj t
n−1−j +

2"−3∑
j=1, j odd

αj t
n−1−j +

2s−2∑
j=0, j even

βj t
n−1−j

+
2q−3∑

j=1, j odd

βj t
n−1−j −

2"n/2#∑
j=2k+2, j even

αj t
n−1−j −

2"(n+1)/2#−1∑
j=2"+1, j odd

αj t
n−1−j

−
2"n/2#∑

j=2s+2, j even

βj t
n−1−j −

2"(n+1)/2#−1∑
j=2q+1, j odd

βj t
n−1−j

⎞
⎠ .

The flexible hypotheses of Theorem 28 allow to obtain a large number of corollaries.
For example, monotonicity conditions can be imposed on the even and odd indexed
coefficients to prove the following result for polynomials with real coefficients:
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Corollary 2 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with real

coefficients satisfying
a0 ≤ a2 ≤ a4 ≤ · · · a2"n/2#,

and
a1 ≥ a3 ≥ a5 ≥ · · · a2"(n+1)/2#−1.

Then all the zeros of p lie in R1 ≤ |z| ≤ R2 where R1 = min
{
|a0|
M1

, 1
}

and R2 =
max

{
M2
|an| , 1

}
for M1 = −a0 + |a1| + a1 + 2a2"n/2# + |an−1| − an−1 + |an| − an and

M2 = |a0| − a0 + |a1| + a1 + 2a2"n/2# + |an−1| − an−1 − an.

Cao and Gardner gave specific examples of polynomials showing that these re-
sults sometimes give improvements over previous results. In addition, they [11]
addressed a similar condition on the moduli of the even and odd indexed coefficients
for polynomials with complex coefficients:

Theorem 29 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients satisfying |arg aj − β| ≤ α ≤ π/2 for some α and β and for j =
0, 1, 2, . . . , n and

|a0| ≤ t2|a2| ≤ t4|a4| ≤ · · · ≤ t2k|a2k| ≥ t2k+2|a2k+2| ≥ · · · ≥ t2"n/2#|a2"n/2#|,
|a1| ≤ t2|a3| ≤ t4|a5| ≤ · · · ≤ t2"−2|a2"−1| ≥ t2"|a2"+1| ≥
· · · ≥ t2"n/2#|a2"(n+1)/2#−1|

for some k = 0, 1, . . . , "n/2# and " = 0, 1, . . . , "n/2#. Then all the zeros of p lie in

R1 ≤ |z| ≤ R2 where R1 = min
{
t |a0|
M1

, t
}

, R2 = max
{
M2
|an| ,

1
t

}
,

M1 = |a1|t + |an−1|tn−1 + |an|tn+ cosα[− |a0| − |a1|t + 2|a2k|t2k + 2|a2"−1|t2"−1

−|an−1|tn−1 − |an|tn]+ sin α

⎡
⎣2

n−2∑
j=0

|aj |t j + |a0| + |a1|t + |an−1|tn−1 + |an|tn
⎤
⎦

and

M2 = |a0|tn+3 + |a1|tn+2 + |an−1| + cosα

⎧⎨
⎩(t4 − 1)

⎛
⎝ 2k−2∑
j=0, j even

|aj |tn−1−j

+
2"−3∑

j=1, j odd

|aj |tn−1−j −
2"n/2#∑

j=2k+2, j even

|aj |tn−1−j −
2"(n+1)/2#−1∑
j=2"+1, j odd

|aj |tn−1−j
⎞
⎠

+ (t4 + 1)(|a2k|tn−1−2k + |a2"−1|tn−2")− |a0|tn+3

− |a1|tn+2 − |an−1| − |an|t−1
}

+ sin α

⎧⎨
⎩(t4 + 1)

n−2∑
j=2

|aj |tn−1−j + |a0|tn−1 + |a1|tn−2 + |an−1|t4 + |an|t3

⎫⎬
⎭ .
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The hypotheses of Theorem 29, as well as several of the other results above, involve
a reversal of an inequality condition on the coefficients of a polynomial. In 2005,
Chattopadhyay, Das, Jain, and Konwar [14] took this idea of a reversal of the in-
equality to its logical conclusion, and introduced hypotheses concerning an arbitrary
number of reversals in an inequality on the coefficients. As an example, they [14]
proved:

Theorem 30 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying for
some t > 0

α0 ≤ tα1 ≤ · · · ≤ tk1αk1 ≥ tk1+1αk1+1 ≥ · · · ≥ tk2αk2 ≤ tk2+1αk2+1 ≤ · · · tnαn
and

β0 ≤ tβ1 ≤ · · · ≤ t r1βr1 ≥ t r1+1βr1+1 ≥ · · · ≥ t r2βr2 ≤ t r2+1βr2+1 ≤ · · · tnβn,

where the inequalities involving the real parts reverse at each of the indices
k1, k2, . . . , kp, and the inequalities involving the imaginary parts reverse at each
of the indices r1, r2, . . . , rq . Then all zeros of p lie in R1 ≤ |z| ≤ R2, where

R1 =min

{
t |a0|
M1

, t

}
,R2 = max

{
M2

|an| ,
1

t

}
,

M1 =−
⎛
⎝α0 + (− 1)p+1αnt

n +
p∑
j=1

(− 1)jαkj t
kj

⎞
⎠

−
⎛
⎝β0 + (− 1)q+1βnt

n +
q∑

j=1

(− 1)jβrj t
rj

⎞
⎠+ |an|tn,

and

M2 =
⎡
⎣−α0t

n−1 + (− 1)p+1αnt + (t2 + 1)
p∑
j=1

(− 1)jαkj t
n−kj−1

+ (t2 − 1)
p∑
j=0

⎧⎨
⎩(− 1)j+1

kj+1−1∑
m=kj+1

αmt
n−m−1

⎫⎬
⎭
⎤
⎦

−
⎡
⎣β0t

n−1 + (− 1)q+1βnt + (t2 + 1)
q∑

j=1

(− 1)jβrj t
n−rj−1

+ (t2 − 1)
q∑

j=0

⎧⎨
⎩(− 1)j+1

rj+1−1∑
m=rj+1

βmt
n−m−1

⎫⎬
⎭
⎤
⎦+ |a0|tn+1,

where we take k0 = r0 = 0 and kp+1 = rq+1 = n.
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With k1 = k, r1 = r , and the number of reversals p = q = 1, Theorem 30 reduces to
Gardner and Govil’s Theorem 20. In the same paper, Chattopadhyay, Das, Jain, and
Konwar also gave a result which hypothesizes a number of reversals in an inequality
concerning the moduli of the coefficients, thus giving a generalization of Theorem 16
due to Aziz and Mohammad.

In 2007, Shah and Liman [56] extendedAziz and Zargar’s idea from Theorem 25 to
complex polynomials by hypothesizing a condition on the moduli of the polynomial.
Their result is as follows:

Theorem 31 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj where |arg aj − β| ≤ α ≤ π/2 for
some α and β for j = 0, 1, 2, . . . , n. If for some λ ≥ 1 we have

|a0| ≤ |a1| ≤ . . . |an−1| ≤ λ|an|
then all the zeros of p lie in

|z + (λ− 1)| ≤
⎧⎨
⎩(λ|an| − |a0|)( sin α + cosα)+ |a0| + 2 sin α

n−1∑
j=0

|aj |
⎫⎬
⎭
/

|an|.

In the same paper, Shah and Liman produced similar results by imposing the “λ
condition” on the real parts and by combining this with a reversal in the monotonicity
condition.

In 2009, in a paper dealing mostly with the number of zeros in a region, Jain [45]
produced a corollary involving a fairly simple monotonicity condition very similar to
the original Eneström–Kakeya theorem, but combined with an additional hypothesis
on coefficients a0, an−1, and an:

Theorem 32 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

satisfying 0 < a0 ≤ a1 ≤ · · · ≤ an−1 < an and such that

(n+ 1)nan−1
n {(n+ 1)a0an + n(an − an−1)(an−1 − a0)} < nn(an − an−1)n+1,

then all the zeros of p lie in

|z| ≤ n

n+ 1

an − an−1

an
< 1.

Jain [45] also showed by example that for some polynomials satisfying both the
hypotheses of the Eneström–Kakeya theorem and the hypotheses of his Theorem 32,
the location of the zeros can be more finely constrained by his result than by the
Eenström–Kakeya theorem (which will, of course, restrict the zeros to |z| ≤ 1).

Choo [16] generalized Theorem 29 by introducing another parameter in each of
the monotonicity-type hypotheses on the coefficients. In addition, he gave a simpler
expression for the upper bound on the zero containing region:
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Theorem 33 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients satisfying |arg aj − β| ≤ α ≤ π/2 for some α and β and for j =
0, 1, 2, . . . , n and

|a0| ≤ t2|a2| ≤ t4|a4| ≤ · · · ≤ t2k|a2k| ≥ t2k+2|a2k+2| ≥ · · · ≥ λ1t
2"n/2#|a2"n/2#|,

|a1| ≤ t2|a3| ≤ t4|a5| ≤ · · · ≤ t2"−2|a2"−1| ≥ t2"|a2"+1| ≥
· · · ≥ λ2t

2"n/2#|a2"(n+1)/2#−1|
for some k = 0, 1, . . . , "n/2#, " = 0, 1, . . . , "n/2#, λ1 > 0, and λ2 > 0. Then all the

zeros of p lie in R1 ≤ |z| ≤ R2 where R1 = min
{
t |a0|
M1

, t
}

, R2 = max
{

M2
tn−1|an| ,

1
t

}
,

M1 = |a1|t + |an−1|tn−1 + |an|tn + |(λ∗∗ − 1)an−1|tn−1 + |(λ∗ − 1)an|tn

+ cosα[− |a0| − |a1|t + 2|a2k|t2k + 2|a2"−1|t2"−1 − λ∗∗|an−1|tn−1 − λ∗|an|tn]

+ sin α

⎡
⎣2

n−2∑
j=0

|aj |t j + |a0| + |a1|t + λ∗∗|an−1|tn−1 + λ∗|an|tn
⎤
⎦

and

M2 = |a0| + |a1|t + |an−1|tn−1 + |(λ∗∗ − 1)an−1|tn−1 + |(λ∗ − 1)an|tn

+ cosα
[
2|a2k|t2k + 2|a2"−1|t2"−1 − λ∗|an|tn − λ∗∗|an−1|tn−1 − |a1|t − |a0|

]

+ sin α

⎧⎨
⎩λ∗|an|tn + λ∗∗|an−1|tn−1 + |a1|t + |a0| + 2

n−2∑
j=2

|aj |t j
⎫⎬
⎭ .

For n even we have λ∗ = λ1 and λ∗∗ = λ2, but for n odd we have λ∗ = λ2 and
λ∗∗ = λ1.

In the same paper, Choo [16] gave a similar generalization of Theorem 28 due to
Cao and Gardener.

In 2010, Singh and Shah [57] combined the hypotheses of Aziz and Mohammad’s
Theorem 15 (but applied to complex coefficients, as opposed to real coefficients) with
the hypotheses of Aziz and Zargar’s Theorem 25 to get the following:

Theorem 34 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n. If t1 > t2 ≥ 0,
can be found such that we have

αj t1t2 + αj−1(t1 − t2)− αj−2 ≥ 0, for j = 2, 3, . . . , n,

βj t1t2 + βj−1(t1 − t2)− βj−2 ≥ 0, for j = 2, 3, . . . , n,

where we take αn+1 = βn+1 = 0, and for some λ ≥ 1,

λαn(t1 − t2)− αn−1 ≥ 0 and λβn(t1 − t2)− βn−1 ≥ 0,
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then all zeros of p lie in |z + (λ− 1)(t1 − t2)| ≤ R where

R = 1

|αn|
{
λ(αn + βn)(t1 − t2)+ (αn + βn)t2 − (α1 + β1)

t2

tn−1
1

− (α0 + β0)
1

tn−1
1

+ (|α1t1t2 + α0(t1 − t2)| + |β1t1t2 + β0(t1 − t2)|) 1

tn1
+ (|α0| + |β0|) t2

tn1

}
.

With all the coefficients real and positive, and λ = 1, the Theorem 34 reduces
to Theorem 15 due to Aziz and Mohammad. With t1 = 1, t2 = 0, and λ = 1,
Theorem 34 reduces to Theorem 25 of Aziz and Zargar. In the same paper, Singh
and Shah [57] modified the hypotheses

λαn(t1 − t2)− αn−1 ≥ 0 and λβn(t1 − t2)− βn−1 ≥ 0,

to
λ1αn(t1 − t2)− αn−1 ≥ 0 and λ2βn(t1 − t2)− βn−1 ≥ 0

where λ1 ≥ 1 and λ2 ≥ 1, and proved a result concerning the location of zeros in
a disk (not necessarily centered at origin) which includes many of the other results
mentioned above. In a related result, but concerning zeros in a disk centered at origin,
Singh and Shah [58] in 2011 presented the following:

Theorem 35 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n. If t1 > t2 ≥ 0
can be found such that for j = 1, 2, . . . , n+ 1 we have

αj t1t2 + αj−1(t1 − t2)− αj−2 ≥ 0

and
βj t1t2 + βj−1(t1 − t2)− βj−2 ≥ 0,

where we take α−1 = αn+1 = β−1 = βn+1 = 0. Then all zeros of p lie in |z| ≤
(|αn + βn +M|t1/|an| where

M = −α1
t2

tn1
− α0

tn1
+ |α1t1t2 + α0(t1 − t2)| 1

tn+1
1

+ |α0t1t2| 1

tn+2
1

−β1
t2

tn1
− β0

tn1
+ |β1t1t2 + β0(t1 − t2)| 1

tn+1
1

+ |β0t1t2| 1

tn+2
1

.

Again, this result implies Aziz and Mohammad’s Theorem 15.
Using the same hypotheses as Theorem 35, Singh and Shah [59] proved another

result concerning the location of zeros, but this time obtained an annulus region
containing all the zeros:

Theorem 36 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n. If t1 ≥ t2,
t1 �= 0, can be found such that for j = 1, 2, . . . , n+ 1 we have

αj t1t2 + αj−1(t1 − t2)− αj−2 ≥ 0
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and
βj t1t2 + βj−1(t1 − t2)− βj−2 ≥ 0,

where we take α−1 = αn+1 = β−1 = βn+1 = 0. Then all zeros of p lie in
min{R2, 1/t1} ≤ |z| ≤ max{R1, t1}. Here,

R1 =
{
−(|an| −K1)|an(t1 − t2)− an−1| +

[
(|an| −K1)2|an(t1 − t2)− an−1|2

+ 4K3
1 t

2
1 |an|

]1/2
}
/(2K1|an|),

R2 =
{
−(|a0|t1t2 −K2)|a1t1t2 + a0(t1 − t2)|t2

1

+ [(|a0|t1t2 −K2)2|a1t1t2 + a0(t1 − t2)|2t4
1 + 4K3

2 |a0|t3
1 t2
]1/2

}
/(2K2

2 ),

K1 = (αn+βn)+ (|α0|−α0)t2/t
n+1
1 + (|β0|−β0)t2/t

n+1
1 , andK2 = (αn+βn)tn+2

1 +
(|αn| + |βn|)tn+2

1 − (α0 + β0)t1t2.

When each βj = 0, Theorem 36 reduces to Theorem 15. With all coefficients real and
positive, and t1 = 1 and t2 = 0, Theorem 36 implies the following clean refinement
of Theorem 3:

Corollary 3 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with real co-

efficients satisfying 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all the zeros of p lie in
a0

2an
≤ |z| ≤ 1.

In the same paper, Singh and Shah [59] introduced a reversal in the inequality imposed
on the coefficients at a particular point and proved:

Theorem 37 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n. If t1 > t2 ≥ 0
can be found such that

αj t1t2 + αj−1(t1 − t2)− αj−2 ≥ 0, for j = 2, 3, . . . , r + 1,

αj t1t2 + αj−1(t1 − t2)− αj−2 ≤ 0, for j = r + 2, r + 3, . . . , n+ 1,

βj t1t2 + βj−1(t1 − t2)− βj−2 ≥ 0, for j = 2, 3, . . . , r + 1,

βj t1t2 + βj−1(t1 − t2)− βj−2 ≤ 0, for j = r + 2, r + 3, . . . , n+ 1,

for some λwith 1 ≤ r ≤ n, where we take αn+1 = βn+1 = 0, then all zeros of p lie in

|z| ≤ t1

|an|
{(

2αr
tn−r1

− αn

)
+ 1

tn1
(|α0| − α0)

}
+ t2

|an|
{

2αr+1

tn−r−1
1

+ 1

tn1
(|α0| − α0)

}

+ t1

|an|
{(

2βr
tn−r1

− βn

)
+ 1

tn1
(|β0| − β0)

}
+ t2

|an|
{

2βr+1

tn−r−1
1

+ 1

tn1
(|β0| − β0)

}
.

Singh and Shah remarked that Theorem 37 reduces to Dewan and Bidkham’s Theo-
rem 19 when each coefficient is real and t2 = 0, and further reduces to Theorem 3



8 Eneström–Kakeya Theorem and Some of Its Generalizations 189

when r = n and a0 ≥ 0. In the same paper, Singh and Shah [59] also presented a
related generalization of Theorem 26 due to Aziz and Zargar.

In 2013, Singh and Shah [60] gave another result related to Theorem 36:

Theorem 38 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n. If t1 > t2 ≥ 0,
can be found such that for j = 2, 3, . . . , n we have

αj t1t2 + αj−1(t1 − t2)− αj−2 ≥ 0,

βj t1t2 + βj−1(t1 − t2)− βj−2 ≥ 0,

and for some real λ1 and λ2 we have

(αn + λ1)(t1 − t2)− αn−1 ≥ 0, and

(βn + λ2)(t1 − t2)− βn−1 ≥ 0,

then all zeros of p lie in
∣∣∣∣z + (λ1 + iλ2)(t1 − t2)

an

∣∣∣∣ ≤ R,

where

R = {[(αn+λ1)+(βn+λ2)](t1−t2)+(αn+βn)t2−(α1+β1)t2/t
n−1
1 −(α0+β0)/tn−1

1

+(|α1t1t2 + α0(t1 − t2)| + |β1t1t2 + β0(t1 − t2)|)/tn1 + (|α0| + |β0|)t2/tn1 }/|an|.
With t2 = 0 in Theorem 38, one easily gets as a corollary the following:

Corollary 4 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n. If t > 0, can
be found such that

tn(αn + λ1) ≥ tn−1αn−1 ≥ tn−2αn−1 ≥ · · · ≥ tα1 ≥ α0

and
tn(βn + λ2) ≥ tn−1βn−1 ≥ tn−2βn−1 ≥ · · · ≥ tβ1 ≥ β0

for some real λ1 and λ2, then all zeros of p lie in
∣∣∣∣z + (λ1 + iλ2)t

an

∣∣∣∣ ≤ R

where

R = t{(αn + λ1)+ (βn + λ2)− [α0 + β0 − |α0| − |β0|]/tn}/|an|.
Among the many results listed above which overlap with Corollary 4 is included
Joyal, Labelle, and Rahman’s Theorem 7, which follows from the corollary when
λ1 = λ2 = 0 and t = 1.



190 R. B. Gardner and N. K. Govil

Many of the results above, such as Corollary 4, involve the parameter t > 0 in
such a way that coefficient aj (or possibly its real part, imaginary part, or modulus)
is multiplied by t j and then involved in some type of monotonicity condition. Such
a result often will follow from a simpler result which does not involve parameter t
by applying the simpler result to polynomial p(tz). Recently, Gulzar, Liman, and
Shah [39] introduced a condition on the coefficients which is somewhat more subtle
and does not yield a result which will easily follow from a simpler theorem. They
required the parameter t to follow a pattern similar to that given in Corollary 4, but
only for some of the coefficients. They prove:

Theorem 39 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with real

coefficients satisfying

a0 ≤ a1 ≤ · · · ≤ ak−1 ≤ tak ≤ t2ak+1 ≤ · · · ≤ tn−kan−1 ≤ tn−k+1an

for some t > 0 and 1 ≤ k ≤ n. Then all the zeros of p lie in

|z + (t − 1)| ≤
an − a0 + |a0| + (t − 1)

{∑n
j=k (aj + |aj |)− |an|

}

|an| .

With k = n and t = λ, Theorem 39 implies Aziz and Zargar’s Theorem 25. With
k = 1, the hypotheses of Theorem 39 is similar to several of the results above (though
there is no resulting reversal in the monotonicity hypothesis).

Choo and Choi [18] gave an interesting result in 2011 related to the hypothesis
of monotonicity of the coefficients in the Eneström–Kakeya theorem. They allowed
one coefficient, say ak , to violate the monotonicity condition and then constrained
the deviation of ak from ak−1 and ak+1 such that the zeros of the polynomial would
still lie in |z| ≤ 1:

Theorem 40 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

satisfying ari = ari+1 = · · · = ari+1−1 for i = 0, 1, 2, . . . ,m, where r0 = 0 < r1 <

r2 < · · · < rm < rm+1 = n+ 1. Suppose that for some 0 ≤ k ≤ m− 1,

arm > arm−1 > · · · > ark+1 > ark−1 > ark−2 > · · · > arn > 0

and let

ρ = max

{
arm−1

arm
,
arm−2

arm−1

, . . . ,
ark+1

ark+2

,
ark−1

ark+1

,
ark−2

ark−1

, . . . ,
ar0

ar1

}
.

If ρ < 1, then p has all its zeros in the disk |z| ≤ 1 provided ark−1 − ε1 ≤ ark ≤
ark+1 + ε2 where

ε1 = (1− ρ)R1

1+ ρ + (1− ρ)(rk+1 − rk − 1)
and ε2 = (1− ρ)R2

1+ ρ + (1− ρ)(rk+1 − rk − 1)
,

R1 = arm + arm−1 + · · · + ark+1 + ark−2 + · · · + ar1 + a0

− {(n− rm)arm + (rm − rm−1 − 1)arm−1 + · · · + (rk+2 − rk+1 − 1)ark+1
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+ (rk+1−rk−1−2)ark−1+ (rk−1−rk−2−1)ark−2+· · ·+ (r2−r1−1)ar1+ (r1−1)a0},
and

R2 = arm + arm−1 + · · · + ark+2 + ark−1 + · · · + ar1 + a0

−{(n− rm)arm + (rm − rm−1 − 1)arm−1 + · · · + (rk+2 − rk − 2)ark+1

+(rk − rk−1− 1)ark−1 + (rk−1− rk−2− 1)ark−2 +· · ·+ (r2− r1− 1)ar1 + (r1− 1)a0}.
Choo and Choi gave examples of polynomials illustrating their result. In particular,
they gave P (z) = 3.6z6 + 5z5 + 4z4 + 3.2z3 + 2.5z2 + 2z + 1.5 as an example
of a polynomial which violates the monotonicity condition of Eneström–Kakeya,
but which still has its zeros in |z| ≤ 1. Coefficient a6 violates the monotonicity
condition; the authors computed ε1 = 1.4667 and observed that a6 ≥ a5 − ε1, thus
indicating that the hypotheses of their theorem are satisfied. In the same issue of
the same journal, Choo and Choi [17] introduced the following generalization of the
Eneström–Kakeya theorem:

Theorem 41 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

satisfying

a0 ≤ a1 ≤ · · · ≤ an−k−1 ≤ λan−k ≤ an−k+1 ≤ · · · ≤ an

for some real λ, then the zeros of p lie in |z| ≥ R where

R = |a0|
|an| + an + |(λ− 1)an−k| + (λ− 1)an−k − a0

if an−k−1 ≥ an−k ,

and

R = |a0|
|an| + an + |(λ− 1)an−k| + (1− λ)an−k − a0

if an−k ≥ an−k+1.

In the same paper, Choo and Choi gave a similar result by hypothesizing that the
real parts of p satisfy the conditions of Theorem 41 and that the imaginary parts are
monotone increasing. They also gave the following result which has a hypothesis
concerning the moduli of the coefficients of p:

Theorem 42 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj where |arg aj − β| ≤ α ≤ π/2 for
some α and β for j = 0, 1, 2, . . . , n. If

|a0| ≤ |a1| ≤ · · · ≤ |an−k−1| ≤ λ|an−k| ≤ |an−k+1| ≤ · · · ≤ |an|
for some λ > 0, then the zeros of p lie in |z| ≥ R where

R = |a0|
(|an| + (λ− 1)|an−k|)( cosα + sin α)− |a0|( cosα − sin α)+ 2 sin α

∑n−1
j=1 |aj |

if |an−k−1| ≥ |an−k|, and

R = |a0|
(|an| + (1− λ)|an−k|)( cosα + sin α)− |a0|( cosα − sin α)+ 2 sin α

∑n−1
j=1 |aj |

if |an−k| ≥ |an−k+1|.
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In 2012, Aziz and Zargar [10] modified the hypotheses of their own 1996 result,
Theorem 25, and proved the following three theorems.

Theorem 43 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

such that for some λ ≥ 1 and 0 < ρ ≤ 1 we have

0 ≤ ρa0 ≤ a1 ≤ a2 ≤ · · · ≤ an−1 ≤ λan,

then all the zeros of p lie in |z + λ− 1| ≤ λ+ 2a0(1− ρ)/an.

Theorem 44 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

such that for some 0 < ρ ≤ 1 and some 0 ≤ k ≤ n we have

ρa0 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ an,

then all the zeros of p lie in
∣∣∣∣z + an−1

an
− 1

∣∣∣∣ ≤ 1

|an| {2ak − an−1 + (2− ρ)|a0| − ρa0}.

Theorem 45 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real coefficients

such that for some 0 < ρ ≤ 1 and some 0 ≤ k ≤ n we have

ρa0 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ λan,

then all the zeros of p lie in

|z| ≤ 2ak − an + (2− ρ)|a0| + ρa0

|an| .

Aziz and Zargar [10] also showed that each of these implies Theorem 7 of Joyal,
Labelle, and Rahman, and hence it is a generalization of the Eneström–Kakeya
theorem.

Recently, Gulzar [33] (see also [31]) proved:

Theorem 46 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying

ρα0 ≤ α1 ≤ · · · ≤ αn−1 ≤ σ + αn

for some σ ≥ 0 and 0 < ρ ≤ 1, then the zeros of p lie in

∣∣∣∣z + σ

αn

∣∣∣∣ ≤
σ + αn − ρ(|α0| + α0)+ 2|α0| + 2

∑n
j=0 |βj |

|αn| .

Under the same hypotheses, Gulzar [38] gave an inner radius for a zero-free region
for p as given in Theorem 46 by showing that p has no zeros in |z| ≤ |a0|/{2σ+an+
|an| − ρ(a0 + |a0|) + |a0|}. With similar monotonicity, hypotheses concerning the
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coefficients, but with the added factor σ as in Theorem 46 and with ρ = 1, Liman,
Shah, and Ahmad [49] gave additional related results in a 2013 publication.

In a result related to Choo and Choi’s Theorems 41 and 46, Gulzar [32] proved:

Theorem 47 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj for j = 0, 1, 2, . . . , n, satisfying

α0 ≤ α1 ≤ · · · ≤ αn−k−1 ≤ λαn−k ≤ αn−k+1 ≤ · · · ≤ αn−1 ≤ σ + αn

for some σ ≥ 0 and real λ, where αn−k �= 0, then the zeros of p lie in

∣∣∣∣z + σ

an

∣∣∣∣ ≤
σ + αn + (λ− 1)αn−k + |λ− 1||αn−k| + |α0| − α0 + 2

∑n
j=0 |βj |

|an|
if αn−k−1 > αn−k , and the zeros lie in

∣∣∣∣z + σ

an

∣∣∣∣ ≤
σ + αn + (1− λ)αn−k + |λ− 1||αn−k| + |α0| − α0 + 2

∑n
j=0 |βj |

|an|
if αn−k > αn−k+1.

With σ = 0 and each βj = 0 in Gulzar’s Theorem 47, one can produce an annulus
(centered at origin) containing all the zeros of the polynomial where the inner radius
is given by Choo and Choi’s Theorem 41.

In [35], Gulzar combines the hypotheses of his own Theorems 46 and 47 (with
parameters ρ, σ , and λ) to present three generalizations of the Eneström–Kakeya
theorem (with hypotheses on (1) the real part, (2) the imaginary part, and (3) the
modulus of the coefficients).

8.6 Related Results

In this survey, we have have tried to present results that put a restriction on the
modulus of the zeros of a polynomial explicitly in terms of the coefficients of the
polynomial, as the original Eneström–Kakeya theorem does. There are other results
related to the Eneström–Kakeya theorem which we have not yet been able to mention
due to restrictions in the length of this chapter, but will now describe them briefly.

We say “explicitly” in the previous paragraph, because there are a number of
results which restrict the modulus of the zeros of a polynomial, but the restrictions
are given indirectly in the sense of being given by a root of a polynomial itself. This
type of result was first given by Cauchy [13], who proved the following:

Theorem 48 Let p(z) = zn +∑n−1
j=0 aj zj , be a complex polynomial. Then all the

zeros of p(z) lie in the disk

{z : |z| < η} ⊂ {z : |z| < 1+ A} , (8.1)
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where

A = max
0≤j≤n−1

|aj |,
and η is the unique positive root of the real-coefficient polynomial

Q(x) = xn − |an−1|xn−1 − |an−2|xn−2 − · · · − |a1|x − |a0|. (8.2)

Govil and Rahman [30] also gave this type of result, and the same is stated as follows:

Theorem 49 Let p(z) =∑n
j=0 aj zj �≡ 0 be a polynomial of degree n with complex

coefficients such that for some a > 0, we have an|a0| ≤ an−1|a1| ≤ · · · ≤ a|an−1 ≤
|an|. Then all the zeros of p lie in |z| ≤ (

1
a

)
M where M is the greatest positive root

of the trinomial equation xn+1 − 2xn + 1 = 0.

Related results concerning the location of the zeros of a polynomial have also been
presented by Aziz and Mohammad [7], Sun and Hsieh [61], Affane-Aji, Agarwal,
and Govil [2], Affane-Aji, Biaz and Govil [3], Choo [15], Choo and Choi [17], Dalal
and Govil [19], Gulzar [34, 36], and Gilani [27].

The hypotheses of the following result, due to Jain [43] in 1988, are very much
in the spirit of the Eneström–Kakeya theorem, although the conclusion involves the
size of the real part of the zeros instead of the modulus:

Theorem 50 Let p(z) = ∑n
j=0 aj zj be a polynomial of degree n with complex

coefficients where Re aj = αj and Im aj = βj where |arg aj − β| ≤ α ≤ π/2 for
some α and β, and j = 0, 1, 2, . . . , n. If 0 < |a0| ≤ |a1| ≤ · · · ≤ |an−1| ≤ |an| = 1.
Then all the zeros of p lie in the vertical strip {z : −max{1, δ2} ≤ Re(z) ≤ δ2} where
δ1 = [(1−α1)+{(1−α2)2+4M}1/2]/2, δ2 = [− (1−α1)+{(1−α2)2+4M}1/2]/2,
and M = (|a1| − |an|)( cosα + sin α)+ 2 sin α(

∑n
j=2 |aj |)+ |an|.

In the same paper, Jain gave a result by putting the monotonicity hypothesis on the
real parts of the coefficients. He also presented the corresponding result which put
restrictions on the imaginary parts of the zeros of the polynomial p. Also, Jain [44]
in 1993 gave a result which restricts the real part of the zeros, but with no condition
on the coefficients (and hence not really related to the Eneström–Kakeya theorem).
It seems that this type of approach to the restriction of the zeros has been relatively
little studied.

The techniques used in proving many of the theorems above can also be used to
establish a bound on the moduli of the zeros of an analytic function which has a
related monotonicity-type condition on the coefficients of its series representation.
For example, Govil and Rahman [30] included the following result in their 1968
paper which was primarily devoted to polynomials:

Theorem 51 Let f (z) = ∑∞
j=0 aj zj be an analytic function in |z| ≤ 1. Suppose

|arg aj − β| ≤ α ≤ π/2 for some α and β for j = 0, 1, 2, . . . and |a0| ≥ |a1| ≥
|a2| ≥ · · · . Then the zeros of f lie in |z| ≥ {cosα + sin α + 2 sin α

|a0|
∑∞

j=1 |aj |}−1.

Also closely related to the results of this survey is the following which is due to Aziz
and Mohammad [6] and appeared in 1980.
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Theorem 52 Let f (z) = ∑∞
j=0 aj zj be an analytic function in |z| ≤ t . Suppose

0 < a0 ≤ ta1 ≤ t2a2 ≤ · · · . Then all the zeros of f lie in |z| ≥ t .

Related results have been presented by Krishnaiah [48], Aziz and Shah [8], Lin,
Huang, Cao, and Gardner [50], Shah and Liman [56], Choo [16], and Gulzar [37].

A natural question is: “Is the Eneström–Kakeya theorem sharp?” In other words, is
there a polynomial p satisfying the hypotheses of the the Eneström–Kakeya theorem
for which there is a zero of modulus 1 (thus indicating that the given bound cannot
be improved)? For pn(z) = 1+ z + z2 + · · · + zn, the zeros of pn are the (n+ 1)th
roots of unity, cos θ+ i sin θ for θ = 2kπ/(n+1) for k = 1, 2, . . . , n. Therefore, the
Eneström–Kakeya theorem (Theorem 3) is sharp. In fact, this example shows that
the alternate version of the Eneström–Kakeya theorem (Theorem 4) is also sharp.

However it is possible to sharpen the Eneström–Kakeya theorem by taking away
a part of the unit disk that does not contain the zeros of the polynomial, and this has
been done, among others, by Govil and Rahman (see Theorem 5 in [30]), and by
Rubinstein (see Corollary 1 in [55]).

In 1912–1913, Hurwitz [42] characterized polynomials for which the Eneström–
Kakeya theorem is sharp. In 1979, Anderson, Saff, and Varga [4] gave a proof (and
correction) of Hurwitz’s result based on matrix methods. In a sense, their result states
that a polynomial satisfying the hypotheses of the Eneström–Kakeya theorem has
a zero of modulus 1 only if the polynomial has pn as a factor for some n (this is
an oversimplification of their result, but somewhat reflects the importance of this
result). An interesting corollary to their main theorem deals with the version of the
Eneström–Kakeya theorem as stated in Theorem 4:

Corollary 5 If p(z) =∑n
j=0 aj zj is a polynomial of degree nwith real and positive

coefficients, then all the zeros of p lie in the annulus R1 ≤ |z| ≤ R2 where R1 =
min0≤j≤n−1aj/aj+1 and R2 = max0≤j≤n−1aj/aj+1. If R1 < R2, then it is not
possible for p to simultaneously have zeros on |z| = R1 and on |z| = R2.

In a related result, Anderson, Saff, and Varga [5] in 1980 introduced a “generalized
Eneström–Kakeya functional” and established a result concerning the location of
zeros of polynomials and showed that their result is asymptotically sharp.

Appendix

Remark on a Theorem on the Roots of the Equation
anx

n + an−1x
n−1 + · · · + a1x + a0 = 0 Where

All Coefficients Are Real and Positive
by

G. Eneström, Stockholm, Sweden
Tôhoku Mathematical Journal, 18 (1920), 34–36

A translation of “Remarque sur un théorème relatif aux racines de l’equation
anx

n + an−1x
n−1 + · · · a1x + a0 = 0 où tous les coefficientes a sont réels et

positifs” by G. Eneström. Translated by Robert Gardner.
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In 1912 M. S. Kakeya demonstrated in a paper in this journal that the absolute
value of each root of the equation above [in the title] is between the smallest and
largest values of

an−1

an
,
an−2

an−1
, . . . ,

a0

a1
,

and therefore for [positive] an > an−1 > · · · > a0, the absolute value of each root is
less than 1.

This theorem has already been proposed and demonstrated by me in 1893 in a
footnote to a problem on pension funds.1 This problem leads us to the equation

ks−1 + a1k
s−2 + · · · + as−2k+ as−1 = 0 (A)

where all of these coefficients are real and positive and for which

1 > a1 ≥ a2 ≥ · · · ≥ as−1.

The reference cited in the footnote is written in Swedish and at the request of
Mr. Hayashi I now translate verbatim the part about the roots of this equation.

Define α1 as the smallest of the quantities

a1,
a2

a1
,
a3

a2
, . . . ,

as−1

as−2

and it is then evident from this definition of α1 that

aq+1 − α1aq ≥ 0 (q = 0, 1, 2, . . . , s − 2; a0 = 1).

Multiplication of equation (A) by k − α1, results in

ks + (a1 − α1)ks−1 + (a2 − α1a1)ks−2 + · · · + (as−1 − α1as−2)k − α1as−1 = 0 (B)

and if we substitute ρ( cosφ+ i sin φ) for k, where ρ is the absolute value of k, then
ρ and φ must satisfy the equations

ρs cos sφ+(a1−α1)ρs−1 cos (s−1)φ+(a2−α1a1)ρs−2 cos (s−2)φ

+ · · · + (as−1 − α1as−2)ρ cosφ − α1as−1 = 0,

ρs sin sφ+(a1−α1)ρs−1 sin (s−1)φ+(a2−α1a1)ρs−2 sin (s−2)φ

+ · · ·+(as−1−α1as−2)ρ sin φ = 0. (C)

We now show that if ρ < α1, equation (C) can not hold, regardless of the value of
φ. Indeed, all coefficients a1 − α1, a2 − α1a1, . . . , as−1 − α1as−2 are positive, so the

1 Härledning af en allmän formel för antalet pensionärer, som vid en godtyeklig tidpunkt förefinnas
inom en sluten pensionslcassa; Öfversigt af Vetenskaps-Akademiens Förhandlingar (Stockholm),
50, 1893, pp. 405–415. The resulting theorem was stated by me, also in L’intermédiaire des
Mathématiciens 2, 1895, p. 418, and in Jahrbuch über die Fortschritte der Mathematik 25 (1893–
1894), p. 360, and also mentions the problem of the theory of pensions to which I alluded in the
text.
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left side can not be greater than

ρs + (a1 − α1)ρs−1 + (a2 − α1a1)ρs−2 + · · · + (as−1 − α1as−2)ρ − α1as−1

and this expression can be written as

ρs−1(ρ − α1)+ a1ρ
s−2(ρ − α1)+ · · · + as−2ρ(ρ − α1)+ as−1(ρ − α1),

which is negative if ρ < α1. The left side of equation (C) is therefore negative for
ρ < α1. It follows that the absolute value of each root of equation (A) is greater than
or equal to α1.

In a similar way we can show that with α2 as the largest of the quantities

a1,
a2

a1
,
a3

a2
, . . . ,

as−2

as−1
,

the absolute value of each root of the equation (A) must be less than or equal to α2.
For this proof, replace k with ks−1 [in equation (A)]. Then multiply the new

equation by k−1/α2 and we easily find that the absolute value of k can never be less
than 1/α2, from which it follows immediately that the value of k can not be greater
than α2. We now have

α1 ≤ |ki | ≤ α2, (i = 0, 1, 2, . . . , s − 1).
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Chapter 9
Starlikeness, Convexity and Close-to-convexity
of Harmonic Mappings

Sumit Nagpal and V. Ravichandran

9.1 Introduction

Let H denote the class of all complex-valued harmonic functions f in the unit disk
D = {z ∈ C : |z| < 1} normalized by f (0) = 0 = fz(0)− 1. Let SH be the subclass
of H consisting of univalent and sense-preserving functions. Such functions can be
written in the form f = h+ ḡ, where

h(z) = z +
∞∑
n=2

anzn and g(z) =
∞∑
n=1

bnzn (9.1)

are analytic and |g′(z)| < |h′(z)| in D. Let S0
H := {f ∈ SH : fz̄(0) = 0}. Observe

that SH reduces to S, the class of normalized univalent analytic functions, if the
co-analytic part of f is zero. In 1984, Clunie and Sheil-Small [5] investigated the
class SH as well as its geometric subclasses. Let S∗H , KH and CH (resp. S∗, K and
C) be the subclasses of SH (resp. S) mapping D onto starlike, convex and close-to-
convex domains, respectively. Denote by S∗0

H , K0
H and C0

H , the class consisting of
those functions f in S∗H , KH and CH respectively, for which fz̄(0) = 0.

Recall that convexity and starlikeness are not hereditary properties for univa-
lent harmonic mappings. In [13], the authors introduced the notion of fully starlike
mappings of order β and fully convex mappings of order β (0 ≤ β < 1) that are
characterized by the conditions

∂

∂θ
arg f (reiθ ) > β and

∂

∂θ

(
arg

{
∂

∂θ
f (reiθ )

})
> β, (0 ≤ θ < 2π , 0 < r < 1)
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respectively. For β = 0 these classes were studied by Chuaqui et al. [3]. Let FS∗H (β)
and FKH (β) (0 ≤ β < 1) denote the subclasses of S∗H and KH respectively con-
sisting of fully starlike functions of order β and fully convex functions of order β.
Set FS∗0

H (β) = FS∗H (β) ∩ S∗0
H and FK0

H (β) = FKH (β) ∩K0
H .

Clunie and Sheil-Small [5] gave a sufficient condition for a harmonic function to
be univalent close-to-convex.

Lemma 1 [5, Lemma 5.15, p. 19] Suppose that H , G are analytic in D with
|G′(0)| < |H ′(0)| and that H + εG is close-to-convex for each |ε| = 1. Then
F = H +G is harmonic univalent and close-to-convex in D.

Making use of Lemma 1, Clunie and Sheil-Small [5] proved that if f = h+ g is
sense-preserving in D and h+ εg is convex for some ε (|ε| ≤ 1), then f is harmonic
univalent and close-to-convex in D. A particular case of this result is the following.

Lemma 2 Let f = h+ g ∈ H be sense-preserving and h ∈ K. Then f ∈ C0
H .

The conditions in the hypothesis of Lemma 2 can’t be relaxed, that is, if f =
h + g ∈ H is sense-preserving and h is non-convex, then f need not be even
univalent. Similarly the conclusion of Lemma 2 can’t be strengthened, that is, if
f = h + g ∈ H is sense-preserving and h ∈ K, then f need not map D onto
a starlike or convex domain. These two statements are illustrated by examples in
Sect. 2 of the paper. In addition, we will consider the cases under which a sense-
preserving harmonic function f = h + g ∈ H with h ∈ K belongs to FS∗0

H (β) or
FK0

H (β). The following lemma will be needed in our investigation.

Lemma 3 [15] Let f = h + ḡ ∈ H where h and g are given by (9.1) with
b1 = g′(0) = 0. Suppose that λ ∈ (0, 1].

(i) If
∑∞

n=2 n(|an| + |bn|) ≤ λ then f is fully starlike of order 2(1− λ)/(2+ λ).
(ii) If

∑∞
n=2 n

2(|an| + |bn|) ≤ λ then f is fully starlike of order 2(2 − λ)/(4 + λ).
Moreover, f is fully convex of order 2(1− λ)/(2+ λ).

All these results are sharp.
For α ∈ C with |α| ≤ 1, let M(α) denote the set of all harmonic functions

f = h+ ḡ ∈ H that satisfy

g′(z) = αzh′(z) and Re

(
1+ zh′′(z)

h′(z)

)
> −1

2
for all z ∈ D.

In [12], Mocanu conjectured that the functions in the class M(1) are univalent in D.
In [4], Bshouty and Lyzzaik proved this conjecture by establishing that M(1) ⊂ C0

H .
Recently, this result is extended in [2] by proving that M(α) ⊂ C0

H for |α| = 1. In
fact, M(α) ⊂ C0

H for each |α| ≤ 1. The coefficient estimates, growth results, area
theorem and convolution properties for the class M(α) (|α| ≤ 1) are obtained in the
last section of the paper. The bounds for the radius of starlikeness and convexity of
the class M(α) are also determined. The bound for the radius of convexity turns out
to be sharp for the class M(1) with the extremal function

F (z) := Re
z

(1− z)2
+ iIm

z

1− z
∈ M(1).
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Fig. 9.1 Graph of the
function
f (z) = 2Re z

1−z + log (1− z).
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The radius of starlikeness of F is also determined. The convolution properties of F
with certain right-half plane mappings are also discussed.

9.2 Sufficient Conditions for Starlikeness and Convexity

Neither the conditions in the hypothesis of Lemma 2 can be relaxed nor the conclusion
of Lemma 2 can be strengthened. The first two examples of this section verify the
truth of this statement.

Example 1 Let h(z) = z− z2/2 ∈ S∗ and g(z) = z2/2− z3/3 so that h′(z) = zg′(z).
Then h is non-convex and f = h + g is sense-preserving in D. But f is not even
univalent in D since f (z0) = f (z0) = 3/4 where z0 = (3+√3i)/4 ∈ D.

Example 2 Let h(z) = z/(1− z) ∈ K and g′(z) = zh′(z). Then the function

f (z) = h(z)+ g(z) = z

1− z
+ z

1− z
+ log (1− z)

belongs to C0
H by Lemma 2. The image of the unit disk under f is shown in Fig. 9.1 as

plots of the images of equally spaced radial segments and concentric circles. Clearly
f (D) is a non-starlike domain.

Now we will consider certain cases under which the conclusion of Lemma 2 can
be extended to fully starlike mappings of order β and fully convex mappings of order
β (0 ≤ β < 1).

Theorem 1 Let f = h+ g ∈ H where h and g are given by (9.1), and let α ∈ C.
Further, assume that

g′(z) = αzh′(z) (z ∈ D) and
∞∑
n=2

n2|an| ≤ 1.
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If |α| ≤ 1 then f is univalent close-to-convex. If |α| ≤ 1/3 then f is fully starlike of
order 2(1− 3|α|)/(5+ 3|α|).
Proof The coefficient inequality

∑∞
n=2 n

2|an| ≤ 1 implies that h ∈ K (see [1]). So
f ∈ C0

H by Lemma 2 if |α| ≤ 1. The relation g′(z) = αzh′(z) gives b1 = 0 and

bn = α
n− 1

n
an−1, (n ≥ 2; a1 = 1).

Consider

∞∑
n=2

n(|an| + |bn|) =
∞∑
n=2

(n|an| + (n− 1)|α||an−1|)

= (1+ |α|)
∞∑
n=2

n|an| + |α|

≤ 1

2
(1+ |α|)

∞∑
n=2

n2|an| + |α|

≤ 1

2
(1+ |α|)+ |α| = 1+ 3|α|

2
.

By applying Lemma 3(i), it follows that f ∈ FS∗0
H (2(1 − 3|α|)/(5 + 3|α|)) if

|α| ≤ 1/3.

Theorem 2 Let f = h+ g ∈ H where h and g are given by (9.1), and let α ∈ C.
Further, assume that

g′(z) = αzh′(z) (z ∈ D) and
∞∑
n=2

n3|an| ≤ 1.

If |α| ≤ 2/11 then f is fully starlike of order 2(6− 11|α|)/(18+ 11|α|). Moreover,
f is fully convex of order 2(2− 11|α|)/(10+ 11|α|).
Proof To apply Lemma 3(ii), consider the sum

∞∑
n=2

n2(|an| + |bn|) =
∞∑
n=2

(n2|an| + n(n− 1)|α||an−1|)

= (1+ |α|)
∞∑
n=2

n2|an| + 2|α| + |α|
∞∑
n=2

n|an|

≤ 1

2
(1+ |α|)

∞∑
n=2

n3|an| + 2|α| + 1

4
|α|

∞∑
n=2

n3|an|

≤ 1

2
(1+ |α|)+ 2|α| + 1

4
|α| = 2+ 11|α|

4
.
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Hence f ∈ FS∗0
H (2(6− 11|α|)/(18+ 11|α|)) ∩ FK0

H (2(2− 11|α|)/(10+ 11|α|)).
Remark 1 If h ∈ K then the harmonic function f = h+ εh is univalent and fully
convex of order 0 for each |ε| < 1. Similarly, if h ∈ S∗ then the harmonic function
f = h+ εh is fully starlike of order 0 for each |ε| < 1.

9.3 Class M(α) (|α| ≤ 1)

In this section, we will investigate the properties of functions in the class M(α).

Theorem 3 Let α ∈ C with |α| ≤ 1. Then we have the following.

(i) M(α) ⊂ C0
H .

(ii) (Coefficient estimates) If f = h+ ḡ ∈ M(α) where h and g are given by (9.1),
then b1 = g′(0) = 0,

|an| ≤ n+ 1

2
and |bn| ≤ n− 1

2
|α|

for n = 2, 3, . . . . Moreover, these bounds are sharp for each α.
(iii) (Growth theorem) The inequality

|f (z)| ≤ |z|
(1− |z|)2

[
1− 1

2
(1− |α|)|z|

]
, z ∈ D,

holds for every function f ∈ M(α). This bound is sharp.
(iv) (Area theorem) The area of the image of each function f ∈ M(α) is greater

than or equal to π (1−|α|2/2) and this minimum is attained only for the function
gα(z) = z + αz̄2/2.

Proof Proof of (i) follows by a minor modification of [4, Theorem 1, p. 768]. For
the convenience of the reader, we include its details here. Let f = h+ ḡ ∈ M(α).
Since |g′(0)| < |h′(0)|, it suffices to show that the analytic functions Fε = h + εg

are close-to-convex in D for each |ε| = 1, in view of Lemma 1. It is easy to verify
that

Re

(
1+ zF ′′

ε (z)

F ′
ε(z)

)
= Re

αεz

1+ αεz
+ Re

(
1+ zh′′(z)

h′(z)

)

= 1

2
− 1

2

1− |αεz|2
|1+ αεz|2 + Re

(
1+ zh′′(z)

h′(z)

)

= 1

2
− 1

2
Pζ (θ )+ Re

(
1+ zh′′(z)

h′(z)

)
> −1

2
Pζ (θ )

where z = reiθ (0 < r < 1), ζ = −ᾱε̄r and Pζ (θ ) = (1− |ζ |2)/|eiθ − ζ |2 (|ζ | < 1)
is the Poisson Kernel. Fix θ1, θ2 with 0 < θ2 − θ1 < 2π . Then∫ θ2

θ1

Re

(
1+ reiθF ′′

ε (reiθ )

F ′
ε(reiθ )

)
dθ ≥ −1

2

∫ θ2

θ1

Pζ (θ ) dθ = −π.
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By the well-known Kaplan’s theorem [11], it follows that each Fε is close-to-convex
in D and hence f ∈ C0

H . This proves (i).
For the proof of (ii), note that the function h is close-to-convex of order 1/2

and hence its coefficients satisfy |an| ≤ (n + 1)/2 for n = 2, 3, . . . (see [9, 16]).
Regarding the bound for bn, note that the relation g′(z) = αzh′(z) gives

(n+ 1)bn+1 = nαan, n = 1, 2, . . .

so that |bn| ≤ (n− 1)|α|/2. For sharpness, consider the functions

fα(z) = 1

2

(
z

1− z
+ z

(1− z)2

)
− 1

2
α

(
z

1− z
− z

(1− z)2

)
z ∈ D, |α| ≤ 1.

(9.2)

The functions fα ∈ M(α) for each |α| ≤ 1 and

fα(z) = z +
∞∑
n=2

n+ 1

2
zn +

∞∑
n=2

n− 1

2
αzn,

showing that the bounds are best possible. Figure 9.2 depicts the image domain fα(D)
for α = ±1,±i.

Using the estimates for |an| and |bn|, it follows that

|f (z)| ≤ |z| +
∞∑
n=2

|an||z|n +
∞∑
n=2

|bn||z|n

≤ |z| + 1

2

∞∑
n=2

(n+ 1)|z|n + 1

2
|α|

∞∑
n=2

(n− 1)|z|n

= |z| + 1

2
(1+ |α|)

∞∑
n=2

n|z|n + 1

2
(1− |α|)

∞∑
n=2

|z|n

= |z|
(1− |z|)2

[
1− 1

2
(1− |α|)|z|

]
.

The bound is sharp with equality holding for the function fα given by (9.2). This
proves (iii).

For the last part of the theorem, suppose that f = h+ ḡ ∈ M(α), where h and g
are given by (9.1). Then the area of the image f (D) is

A =
∫∫

D

(|h′(z)|2 − |g′(z)|2) dx dy

=
∫∫

D

|h′(z)|2 dx dy − |α|2
∫∫

D

|zh′(z)|2 dx dy

= π

(
1+

∞∑
n=2

n|an|2
)
− |α|2

(
π

2
+ π

∞∑
n=2

n2

n+ 1
|an|2

)
,
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Fig. 9.2 Graph of the function fα for different values of α

= π

(
1− 1

2
|α|2

)
+ π

∞∑
n=2

(
n− n2

n+ 1
|α|2

)
|an|2.

The last sum is minimized by choosing an = 0 for n = 2, 3, . . . . This gives h(z) = z
so that g(z) = αz2/2. This completes the proof of the theorem.

If α = 0, then the family M(α) reduces to the class of normalized analytic
functions f with f (0) = 0 = f ′(0) − 1 satisfying Re (1 + zf ′′(z)/f ′(z)) > −1/2
for all z ∈ D. Ozaki [17] independently proved that the functions in the class M(0)
are univalent in D.

For analytic functions f (z) = z +∑∞
n=2 anzn and F (z) = z +∑∞

n=2 Anzn, their
convolution (or Hadamard product) is defined as (f ∗F )(z) = z+∑∞

n=2 anAnzn. In
the harmonic case, with
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f = h+ ḡ = z +
∞∑
n=2

anzn +
∞∑
n=1

bnzn, and

F = H + Ḡ = z +
∞∑
n=2

Anzn +
∞∑
n=1

Bnzn.

their harmonic convolution is defined as

f ∗ F = h ∗H + g ∗G = z +
∞∑
n=2

anAnzn +
∞∑
n=1

bnBnzn.

Results regarding harmonic convolution can be found in [5–7, 15, 13, 14].

Remark 2 Fix α with |α| ≤ 1. It is easy to see that the Hadamard product of two
functions in M(α) need not necessarily belong to M(α). For instance, consider the
function fα given by (9.2). The coefficients of the product fα ∗ fα are too large for
this product to be in M(α) in view of Theorem 3(ii).

In [5], Clunie and Sheil-Small showed that if ϕ ∈ K and f ∈ KH then the
functions (βϕ + ϕ) ∗ f ∈ CH (|β| ≤ 1). The result is even true if KH is replaced by
M(α).

Theorem 4 Let ϕ ∈ K and f ∈ M(α) (|α| ≤ 1). Then the functions (βϕ+ϕ)∗f ∈
C0
H for |β| ≤ 1.

Proof Writing f = h+ ḡ we have

(βϕ + ϕ) ∗ f = ϕ ∗ h+ β̄(ϕ ∗ g) = H +G,

whereH = ϕ ∗h andG = β̄(ϕ ∗g) are analytic in D with |G′(0)| < |H ′(0)|. Setting
F = H + εG = ϕ ∗ (h+ β̄εg) where |ε| = 1, we note that F is close-to-convex in
D since h+ β̄εg ∈ C, ϕ ∈ K and K ∗ C ⊂ C. By Lemma 1, it follows that H +G is
harmonic close-to-convex, as desired.

Remark 3 The function f−1 ∈ M( − 1) given by (9.2) is the harmonic half-plane
mapping

L(z) := f−1(z) = Re

(
z

1− z

)
+ iIm

(
z

(1− z)2

)
(9.3)

constructed by shearing the conformal mapping l(z) = z/(1 − z) vertically with
dilatation w(z) = −z (see Fig. 9.2a). Note that

(L ∗ L)(z) = z +
∞∑
n=2

(
n+ 1

2

)2

zn +
∞∑
n=2

(
n− 1

2

)2

zn, z ∈ D

is univalent in D by [7, Theorem 3]. In fact, the image of the unit disk D under L ∗L
is C\(−∞,−1/4] which shows that L ∗ L ∈ S∗0

H . Since fα ∗ fᾱ = L ∗ L for each
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|α| = 1, where the functions fα are given by (9.2), it follows that the Hadamard
product fα ∗ fᾱ is univalent and starlike in D for each |α| = 1.

The next theorem determines the bounds for the radius of starlikeness and
convexity of the class M(α).

Theorem 5 Let α ∈ C with |α| ≤ 1.

(a) Each function in M(α) maps the disk |z| < 2−√3 onto a convex domain.
(b) Each function in M(α) maps the disk |z| < 4

√
2− 5 onto a starlike domain.

Proof Let f = h + ḡ ∈ M(α). Then the analytic functions Fλ = h + λg are
close-to-convex in D for each |λ| = 1 (see the proof of Theorem 3(i)).

Since the radius of convexity in close-to-convex analytic mappings is 2 − √
3,

the functions Fλ are convex in |z| < 2−√3. In view of [13, Theorem 2.3, p. 89], it
follows that f is fully convex (of order 0) in |z| < 2−√3. This proves (a).

Similarly, since the radius of starlikeness for close-to-convex analytic mappings
is 4

√
2 − 5, it follows that each Fλ is starlike in |z| < 4

√
2 − 5. By [13, Theorem

2.7, p. 91], f is fully starlike (of order 0) in |z| < 4
√

2− 5 ≈ 0.65685.
Now, we shall show that the bound 2 − √3 for the radius of convexity is sharp

for the class M(1). To see this, consider the function f1 given by (9.2), which may
be rewritten as

F (z) := f1(z) = Re

(
z

(1− z)2

)
+ iIm

(
z

1− z

)
. (9.4)

Its worth to note that the function F may be constructed by shearing the conformal
mapping l(z) = z/(1− z) horizontally with dilatation w(z) = z. In [10], it has been
shown thatF (D) = {u+iv : v2 > −(u+1/4)} (see Fig. 9.2b). In particular, F �∈ S∗0

H .
For instance, z0 = −1 − i ∈ F (D) but z0/2 �∈ F (D). In fact, z0/2 ∈ ∂F (D). Thus
M(1) �⊂ S∗0

H .
The next example determines the radius of convexity of the mapping F by

employing a calculation similar to the one carried out in [8, Sect. 3.5].

Example 3 For the purpose of computing the radius of convexity of F , it is enough
to study the change of the tangent direction

Ψr (θ ) = arg

{
∂

∂θ
F (reiθ )

}

of the image curve as the point z = reiθ moves around the circle |z| = r . Note that

∂

∂θ
F (reiθ ) = A(r , θ )+ iB(r , θ ),

where

|1− z|6A(r , θ ) = −r[(1− 6r2 + r4) sin θ + r(1+ r2) sin 2θ ]
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Fig. 9.3 2−√3 - the radius
of convexity of F

–2 –1 0 1 2
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and

|1− z|4B(r , θ ) = r[(1− r2) cos θ − 2r].

The problem now reduces to finding the values of r such that the argument of the
tangent vector, or equivalently

tanΨr (θ ) = B(r , θ )

A(r , θ )
= (1− 2r cos θ + r2)[2r − (1− r2) cos θ ]

(1− 6r2 + r4) sin θ + r(1+ r2) sin 2θ

is a non-decreasing function of θ for 0 < θ < π . A lengthy calculation leads to an
expression for the derivative in the form

[(1− 6r2 + r4)+ 2r(1+ r2)u]2(1− u2)
∂

∂θ
tanΨr (θ ) = p(r , u),

where u = cos θ and

p(r , u) = 1+ 4r2 − 26r4 + 4r6 + r8 − 6ur(1+ r2)(1+ r4 − 6r2)

− 12r2u2(1+ r2)2 + 4ru3(1+ r2)(1+ r4).

Observe that the roots of p(r , u) = 0 in (0, 1) are increasing as a function of
u ∈ [− 1, 1]. Consequently, it follows that p(r , u) ≥ 0 for−1 ≤ u ≤ 1 if and only if

p(r ,−1) = (1+ r)6(1− 4r + r2) ≥ 0.
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This inequality implies that r ≤ 2 − √3. This proves that the tangent angle Ψr (θ )
increases monotonically with θ if r ≤ 2−√3 but is not monotonic for 2−√3 < r <

1. Thus, the harmonic mapping F given by (9.4) sends each disk |z| < r ≤ 2−√3 to
a convex domain, but the image is not convex when 2−√3 < r < 1 (see Fig. 9.3).

Combining Theorem 5 and Example 3, it immediately follows that

Theorem 6 The radius of convexity of the class M(1) is 2 − √3. Moreover, the
bound 2−√3 is sharp.

The next example determines the radius of starlikeness of the mapping F given
by (9.4).

Example 4 The harmonic mapping F given by (9.2) sends each disk |z| < r ≤ r0

to a starlike domain, but the image is not starlike when r0 < r < 1, where r0 is given
by

r0 = 1

3

√
1

3
(37− 8

√
10) ≈ 0.658331. (9.5)

In this case, one needs to study the change of the direction Φr (θ ) = argF (reiθ ) of
the image curve as the point z = reiθ moves around the circle |z| = r . A direct
calculation gives

F (reiθ ) = C(r , θ )+ iD(r , θ ),

where

|1− z|4 C(r , θ ) = r[(1+ r2) cos θ − 2r] and |1− z|2D(r , θ ) = r sin θ.

For our assertion, it suffices to show that

tanΦr (θ ) = D(r , θ )

C(r , θ )
= sin θ (1− 2r cos θ + r2)

(1+ r2) cos θ − 2r

is a nondecreasing function of θ . A straightforward calculation leads to an expression
for the derivative in the form

[(1+ r2)u− 2r]2 ∂

∂θ
tanΦr (θ ) = q(r , u),

where u = cos θ and

q(r , u) = (1− r2)2 − 2ru(1+ r2)+ 8r2u2 − 2r(1+ r2)u3.

The problem is now to find the values of the parameter r for which the polynomial
q(r , u) is non-negative in the whole interval −1 ≤ u ≤ 1. Observe that

q(r ,−1) = (1+ r)4 > 0 and q(r , 1) = (1− r)4 > 0.

Also, differentiation gives

∂

∂u
q(r , u) = −2r(1+ r2)+ 16r2u− 6r(1+ r2)u2.
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Fig. 9.4 1
3

√
1
3 (37− 8

√
10) -

the radius of starlikeness of F
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This shows that q(r , u) is a decreasing function of u for 0 < r ≤ 1/
√

3. Since
q(r , 1) = (1 − r)4 > 0, it follows that q(r , u) ≥ 0 for all u ∈ [−1, 1]
and for all r ∈ (0, 1/

√
3]. For r ≥ 1/

√
3, q(r , u) has a local minimum

at u = (4r − √−3+ 10r2 − 3r4)/(3(1 + r2)) and a local maximum at u =
(4r + √−3+ 10r2 − 3r4)/(3(1 + r2)). Using these observations, we deduce that
q(r , u) ≥ 0 for −1 ≤ u ≤ 1 if and only if

q

(
r ,

4r −√−3+ 10r2 − 3r4

3(1+ r2)

)
= 1

27(1+ r2)2
h(r) ≥ 0,

where h(r) := 27 − 72r2 + 58r4 − 72r6 + 27r8 + 4r(3 + 10r2 +
3r4)

√−3+ 10r2 − 3r4. The function h is a decreasing function of r ∈ [1/
√

3, 1)
and h(r0) = 0, where r0 is given by (9.5). Thus the inequality h(r) ≥ 0 is satisfied
provided r ≤ r0. This proves that the angle Φr (θ ) increases monotonically with θ if
r ≤ r0 and hence the harmonic mapping F sends each disk |z| < r ≤ r0 to a starlike
domain, but the image is not starlike when r0 < r < 1 (see Fig. 9.4).

Combining Theorem 5 and Example 4, we have

Theorem 7 If rS is the radius of starlikeness of M(1), then

4
√

2− 5 ≤ rS ≤ 1

3

√
1

3
(37− 8

√
10).

By Remark 3, F ∗ F is univalent and starlike in D. However, the product L ∗ F
where L is the harmonic half-plane mapping given by 9.3 is not even univalent,
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although it is sense-preserving in D. In fact, the convolution of F with certain
right-half plane mappings is sense-preserving in D. This is seen by the following
theorem.

Theorem 8 Let f = h + ḡ ∈ K0
H with h(z) + g(z) = z/(1 − z) and w(z) =

g′(z)/h′(z) = eiθ zn, where θ ∈ R. If n = 1, 2 then F ∗ f is locally univalent in D,
F being given by (9.2).

Proof We need to show that the dilatation w̃ of F ∗ f satisfies |w̃(z)| < 1 for all
z ∈ D. It is an easy exercise to derive the expression of dilatation w̃ in the form

w̃(z) = z
w2(z)+ [w(z)− 1

2 w′(z)z]+ 1
2 w′(z)

1+ [w(z)− 1
2 w′(z)z]+ 1

2 w′(z)z2
, z ∈ D.

The rest of the proof is similar to [7, Theorem 3].
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Chapter 10
On Generalized p-valent Non-Bazilevic
Type Functions

Khalida Inayat Noor

10.1 Introduction

Let Ap(m) be the class of analytic functions f of the form

f (z) = zp +
∞∑
n=m

an+pzn+p, (n,p ∈ N = {1, 2, . . . }) (10.1)

and analytic in the open unit disc E = {z ∈ C, |z| < 1}.
Letf (z) andF (z) be analytic inE, then we say that the functionf (z) is subordinate

to F (z) in E if there exists an analytic function w(z) in E such that |w(z)| ≤ |z| and
f (z) = F (w(z)). In this case, we write f ≺ F or f (z) ≺ F (z). If F (z) is univalent in
E, then the subordination is equivalent to f (0) = F (0) and f (E) ⊂ F (E), see [6, 9].

Let P (m) be the class of functions h of the form

h(z) = 1+ cmzm + cm+1zm+1 + . . . , (10.2)

which are analytic in E and satisfy Reh(z) > 0 for z ∈ E.
A function f ∈ Ap(m) is said to be p-valently starlike of order β if and only if

there exists h ∈ P (m) such that

zf ′(z)

f (z)
= (p − β)h(z)+ β,

for some β(0 ≤ β < p), and for all z ∈ E.
We denote by S∗(p,m,β) the subclass of Ap(m) consisting of functions of p-

valently starlike of order β. For β = 0, we have S∗(p,m, 0) = S∗(p,m).
Let h(z) be analytic in E with h(o) = 1. Then h ∈ P [m;A,B] if and only if

h(z) ≺ 1+ Azm

1+ Bzm
, z ∈ E, −1 ≤ B < A ≤ 1.
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It can easily be seen that

P [1;A,B] ⊂ P

(
1− A

1− B

)
⊂ P (1) = P.

We have the following.

Definition 1 Let Pk[m;A,B] denote the class of functions h(z) that are analytic in
E with h(0) = 1 and are represented by

h(z0 =
(
k

4
+ 1

2

)
h1(z)−

(
k

4
− 1

2

)
h2(z), (10.3)

where h1,h2 ∈ P [m;A,B], −1 ≤ B < A ≤ 1 and k ≥ 2.
We note that

Pk[m;A,B] ⊂ Pk[1; 1,−1] = Pk ,

where Pk is the class introduced and studied in [8].
We shall assume throughout, unless stated otherwise, that

−1 ≤ B < A ≤ 1, k ≥ 2, p,m ∈ N = {1, 2, . . . } and z ∈ E.
We now define the class Np[k,μ,α;A,B] of analytic functions as follows.

Definition 2 Let α ∈ (0, 1),μ complex, and f ∈ Ap(m). Then f ∈ Np

[k,μ,α;A,B], if and only if
{

(1+ μ)

(
zp

f (z)

)α

− μ
zf ′(z)

pf (z)

(
zp

f (z)

)α}
∈ Pk[m;A,B].

As a special case, with B = μ = −1,p = m = A = 1, k = 2, we have the
class of non-Bazilevic functions introduced and studied in [7]. See also [1, 5, 11] for
the recent developments. For k = 2, we shall denote the class Np[3, μ,α;A,B] as
Np(μ,α;A,B).

10.2 Preliminary Results

To establish our main results, we shall need the following Lemmas.

Lemma 1 Let h(z) be analytic and convex univalent function in E with h(0) = 1.
Also, let the function φ(z), given by (10.2), be analytic in E. If{

φ(z)+ zφ′(z)

δ

}
≺ h(z), Re(δ) ≥ 0 (δ �= 0), (10.4)

then

φ(z) ≺ Ψ0(z) = δ

m
z
−δ
m

∫ z

0
t
δ
m
−1h(t)dt , (10.5)

and Ψ0(z) is the best dominant of (10.4).



10 On Generalized p-valent Non-Bazilevic Type Functions 217

Lemma 2 [10] Let f (z) = ∑∞
n=1 anzn be analytic in E, g(z) = ∑∞

n=1 bnzn be
analytic and convex in E. If f (z) ≺ g(z), then |an| ≤ |b1| for n = 1, 2, . . . .

This result can easily be extended to p-valent functions.

Lemma 3 [3] Let −1 ≤ B1 ≤ B2 < A2 ≤ A1 ≤ 1, then

1+ A2zm

1+ B2zm
≺ 1+ A1zm

1+ B1zm
.

Lemma 4 ([12], Chap. 14) For real or complex numbers a, b, c(c /∈ Z−
0 ), we have

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt = Γ (b)Γ (c − b)

Γ (c)
2F1(a, b; c; z)

(Re(c) > Re(b) > 0), (10.6)

2F1(a, b; c; z) = (1− z)−a2F1

(
a, c − b; c;

z

z − 1

)
(10.7)

(b + 1)2F1(1, b; b + 1; z) = (b + 1)+ bz2F1(1, b + 1; b + 2; z), (10.8)

where 2F1 represents a hypergeometric function.

10.3 Main Results

Theorem 1 Let f ∈ Np[k,μ,α;A,B], Reμ > 0. Then

(
zp

f (z)

)α

∈ Pk[m;A,B] in E.

Proof Let
(

zp

f (z)

)α

= h(z), (10.9)

where h(z) is given by (10.2) and is represented by (10.3). From (10.9), we obtain

(1+ μ)

(
zp

f (z)

)α

− μ
zf ′(z)

pf (z)

(
zp

f (z)

)α

= h(z)+ μm

αp
zh′(z). (10.10)

Since f ∈ Np[k,μ,α;A,B], it follows from (10.3) and (10.10) that, for i = 1, 2,
⎧⎨
⎩hi(z)+ zh′i(z)(

αp

μm

)
⎫⎬
⎭ ≺ 1+ Azm

1+ Bzm
.



218 K. I. Noor

Using Lemma 1, we have

hi(z) ≺ qi(z) = pα

mμ
z
−pα
mμ

∫ z

0
t
pα
mμ−1

(
1+ Atm

1+ Btm

)
dt

= A

B
+
(

1− A

B

) (
1+ Bzm

)−1
2F1

(
1, 1;

αp

μm
+ 1;

Bzm

1+ Bzm

)
, (B �= 0)

= 1+ pα

pα +mμ
Az (B = 0), (10.11)

where we have made a change of variables and then used Lemma 4 with a = 1,
b = pα

mμ
and c = b + 1.

We shall show that qi(z) is the best dominant of (10.11), and also

Re{qi(z)} > ρ, z ∈ E, (10.12)

where

ρ =

⎧⎪⎪⎨
⎪⎪⎩

A
B
+ (

1− A
B

)
(1− B)−1

2 F1

(
1, 1; αp

μm
+ 1; B

B−1

)
, (B �= 0)

1− αp

αp+μmA, (B = 0)

The estimate in (10.12) is the best possible. To prove (10.12), it is sufficient to show
that

inf|z|<1
{Re{qi(z)}} = qi(−1).

Now, for |z| ≤ r < 1,

Re

{
1+ Azm

1+ Bzm

}
≥ 1− Arm

1− Brm
.

We take

Qi(z, s) = 1+ Aszm

1+ Bszm
,

and

d(ν(s)) = αp

μm
s

αp
μm
−1
ds, 0 ≤ s < 1,

which is a positive measure on the closed interval. Then, we have

qi(z) =
∫ 1

0
Qi(z, s)dν(s),

so that

Re{qi(z)} ≥
∫ 1

0

1− Asrm

1− Bsrm
dν(s) = qi(−rm), |z| ≤ rm < 1.
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Letting r −→ 1− in the above inequality, we obtain the assertion (10.12).
Since qi(z) is the best dominant of (10.11), the estimate (10.12) is best possible.

Using (10.11) and (10.12) in (10.10) together with (10.3), we obtain the required
result. �

For k = 2,p = 1, and m = 1, this result reduces to one proved in [10]. By
choosing different values of the parameters, we can derive several interesting results
from Theorem 1. We obtain two of these special cases as follows.

Corollary 1 Let f ∈ N1(μ,α; 1,−1). Then, from Theorem 1, it follows that

f ∈ N1

(
0,α, 1− 2β

p
,−1

)
, z ∈ E,

where

β = 2F1

(
1, 1;

α + μ

μ
,

1

2

)
− 1.

Corollary 2 When p = m = 1, A = 1, B = −1, and μ = α ∈ (0, 1), f ∈ N1

[k,α,α; 1,−1]. That is
{

(1+ α)

(
z

f (z)

)α

− α
zf ′(z)

pf (z)

(
z

f (z)

)α}
∈ Pk , z ∈ E,

implies
(

z

f (z)

)α

∈ Pk
[

1− 2δ1

p
,−1

]
,

where δ1 is given by

δ1 = 2F1

(
1, 1; 2,

1

2

)
− 1 ≈ 2 ln 2− 1.

Theorem 2 Let α ∈ (0, 1), μ2 ≥ μ1 ≥ 0, −1 ≤ B1 ≤ B2 < A2 ≤ A1 ≤ 1.
Then

Np [k,μ2,α;A2,B2] ⊂ Np[k,μ1,α;A1,B1].

Proof Let f ∈ Np[k,μ2,α;A2,B2]. Then f ∈ Ap(m) and

{
(1+ μ2)

(
zp

f (z)

)α

− μ2
zf ′(z)

pf (z)

(
zp

f (z)

)α}
∈ Pk[m;A2,B2].

The case μ2 = μ1 ≥ 0 follows trivially from Lemma 1. We suppose that μ2 > μ1 ≥
0. From Lemma 3, we note that

P [m;A2,B2] ⊂ P [m;A1,B1]
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and, by using Definition 1, it can easily be derived that

Pk[m;A2,B2] ⊂ Pk[m;A1,B1].

Therefore, we have
{

(1+ μ2)

(
zp

f (z)

)α

− μ1
zf ′(z)

pf (z)

(
zp

f (z)

)α}
∈ Pk[m;A1,B1]. (10.13)

Now

(1+ μ1)

(
zp

f (z)

)α

− μ1
zf ′(z)

pf (z)

(
zp

f (z)

)α

=
(

1− μ1

μ2

)(
zp

f (z)

)α

+ μ1

μ2

{
(1+ μ2)

(
zp

f (z)

)α

− μ2
zf ′(z)

pf (z)

(
zp

f (z)

)α}

=
(

1− μ1

μ2

)
H1(z)+ μ1

μ2
H2(z),

where H1,H2 ∈ Pk[m;A1,B1], and since Pk[m;A1,B1] is a convex set, see [2], it
follows that H ∈ Pk[m;A1,B1] in E. This proves the result. �

We shall now deal with a converse case of Theorem 1 as follows.

Theorem 3 Let f ∈ Np[k, 0,α; 1− 2β
p

,−1]. Then

f ∈ Np[k,μ,α; 1− 2β
p

,−1] for |z| < r0, where

r0 =
[

αp

μm+√
α2p2 + μ2m2

] 1
m

. (10.14)

This result is best possible.

Proof Let
(

zp

f (z)

)α

= (p − β)h(z)+ β

=
(
k

4
+ 1

2

)
{(p − β)h1(z)+ β} −

(
k

4
− 1

2

)
{(p − β)h2(z)+ β}

(10.15)

Then h1,h2 ∈ P (m) in E and 0 ≤ β < p. Proceeding as in Theorem 1, we have

1

p − β

[
(1+ μ)

(
zp

f (z)

)α

− μ
zf ′(z)

pf (z)

(
zp

f (z)

)α

− β

]

= h(z)+ μm

αp
zh′(z)

=
(
k

4
+ 1

2

){
h1(z)+ μm

αp
zh′1(z)

}
−
(
k

4
− 1

2

){
h2(z)+ μm

αp
zh′2(z)

}
. (10.16)
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Now, by using the estimate [4],

|zh′(z)|
Re{h′i(z)} ≤

2mr

1− r2m

in (10.16), we have

Re

{
hi(z)+ μm

αp
zh′i(z)

}
≥ Rehi(z)

{
1− 2μm

αp

rm

1− r2m

}

= Rehi(z)

{
αp − 2μmrm − αpr2m

αp(1− r2m)

}
. (10.17)

The right hand side of (10.17) is positive for r ≤ r0, where r0 is given by (10.14).
To show that the bound r0 is best possible, we consider

h1(z) = 1+ zm

1− zm
, h2(z) = 1− zm

1+ zm

in (10.15) and this completes the proof. �

For μm = αp, we have the bound for radius r0 =
(

1
1+√2

) 1
m

.

Let f ∈ Ap(m) and define

Iγ (f (z)) = Fγ (z) = δ + pγ

zδ

∫ z

0
t δ−1f γ (t)dt (δ > −p)

=
(

zp +
∞∑
n=1

δ + pγ

δ + γp + n
zp+n

)
# f γ (z) (10.18)

= zp2F1(1, δ + pγ ; δ + pγ + 1; z) # f γ (z), (z ∈ E)

where # denotes convolution (Hadamard product). The operator Iγ (f ) is a general-
ized form of the well-known Bernardi integral operator.

10.4 The Class Np(μ, α; A, B)

Theorem 4 Let f ∈ Ap(m) and be given by (10.1). Let F , defined by (10.18),

belong to Np(μ,α; 1,−1) for z ∈ E. If
∣∣∣ f (z)
F (z) − 1

∣∣∣ < 1 in E, then f ∈ S#(p,m) for

|z| < R0, where

R0 =
{

2αp

m(1+ 2αp)+√
m2(1+ 2αp)2 + 4αp(αp +m)

} 1
m

. (10.19)

Proof Since F ∈ Np(μ,α; 1,−1), it follows from Theorem 1 that
(

zp

F (z)

)α

∈ P (m) in E.
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Now we set

h(z) = f (z)

F (z)
− 1 = cmzm + cm+1zm+1 + . . . , (10.20)

and we can write

h(z) = zmΨ (z), (10.21)

where Ψ is a Schwartz function with |Ψ (z)| ≤ 1 in E.
In (10.20), we use (10.21) and have

1+ zmΨ (z) = f (z)

F (z)
. (10.22)

Differentiating (10.22) logarithmically, we obtain

zf ′(z)

f (z)
= zF ′(z)

F (z)
+ zm{mΨ (z)+ zΨ ′(z)}

p[1+ zmΨ (z)]
. (10.23)

We write
(

zp

F (z)

)α

= q(z), q ∈ P (m) in E.

Therefore, we have

αp

(
1− zF ′(z)

F (z)

)
= zq ′(z)

q(z)
. (10.24)

Using (10.23), (10.24) and the known [4] estimates
∣∣∣∣ zq

′(z)

q(z)

∣∣∣∣ ≤ 2mrm

1− r2m

∣∣∣∣mΨ (z)+ zΨ ′(z)

1+ zmΨ (z)

∣∣∣∣ ≤ m

1− rm
, |z| = r < 1,

we have

Re{ zf ′(z)

f (z)
‖ ≥ αp − αp

∣∣∣∣ zq
′(z)

q(z)

∣∣∣∣−
∣∣∣∣ z

m{mΨ (z)+ zΨ ′(z)}
1+ zmΨ (z)

∣∣∣∣
≥ αp − 2αpmrm

1− r2m
− mrm

1− rm

= αp −m(1+ 2αp)rm − (αp +m)r2m

1− r2m
. (10.25)

The right hand side of (10.25) is positive for |z| < Rm
0 , whereR0 is given by (10.19).

This completes the proof. �
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Theorem 5 Let f ∈ Np(μ,α;A,B). Then
(
αp

μm

∫ 1

0

1− As

1− Bs
s

αp
μm −1ds

)
< Re

(
zp

f (z)

)α

<

(
αp

μm

∫ 1

0

1+ As

1+ Bs
s

αp
μm
−1
ds

)
,

(10.26)

and inequality (10.26) is sharp with the extremal function f#(z) ∈ Np(μ,α;A,B),
defined by

f#(z) = zp
(
αp

μm

∫ 1

0

1+ Azms

1+ Bzms
s

αp
μm
−1
ds

)−1
α

. (10.27)

Proof From Theorem 1 (with k = 2), it follows that
(

zp

f (z)

)α

≺ αp

μm

∫ 1

0

1+ Azms

1+ Bzms
s

αp
μm
−1
ds.

Therefore, by subordination, it follows that

Re

{(
zp

f (z)

)α}
< sup

z∈E
Re

{
αp

μm

∫ 1

0

1+ Azms

1+ Bzms
s

αp
μm
−1
ds

}

≤ αp

μm

(∫ 1

0
sup
z∈E

Re

{
1+ Azms

1+ Bzms

}
s

αp
μm
−1
ds

)

<
αp

μm

∫ 1

0

1+ As

1+ Bs
s

αp
μm
−1
ds.

Similarly

Re

{(
zp

f (z)

)α}
> inf

z∈E Re
{
αp

μm

∫ 1

0

1+ Azms

1+ Bzms
s

αp
μm
−1
ds

}

≥ αp

μm

(∫ 1

0
inf
z∈E Re

{
1+ Azms

1+ Bzms

}
s

αp
μm
−1
ds

)

>
αp

μm

∫ 1

0

1− As

1− Bs
s

αp
μm
−1
ds. �

Corollary 3 Since, for h ∈ P (m),

(Reh(z))
1
2 ≤ Reh

1
2 (z) ≤ |h(z)| 1

2 ,

it follows, from Theorem 5, that

(
αp

μm

∫ 1

0

1− As

1− Bs
s

αp
μm −1ds

) 1
2

<Re

{(
zp

f (z)

) α
2

}
<

(
αp

μm

∫ 1

0

1+ As

1+ Bs
s

αp
μm
−1
ds

) 1
2

.

Equality holds for f#(z) defined by (10.27).
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Corollary 4 Let f ∈ Np(μ,α;A,B, ).

(i) If μ = 0, for |z| = rm < 1, we have

rp
(

1+ Brm

1+ Arm

) 1
α

≤ |f (z)‖ ≤ rp
(

1− Brm

1− Arm

) 1
α

,

and equality holds for

f1(z) = zp
[

1+ Bzm

1+ Azm

] 1
α

. (10.28)

(ii) For μ �= 0, |z| = r < 1, we have

rp
(
αp

μm

∫ 1

0

1+ Arms

1+ Brms
s

αp
μm −1ds

)−1
α

≤ |f (z)| ≤ rp
(
αp

μm

∫ 1

0

1− Arms

1− Brms
s

αp
μm
−1
ds

)−1
α

.

Equality is attained by the function f#(z) defined by (10.27).

Theorem 6 Let α ∈ (0, 1),μ complex, −1 ≤ B ≤ 1,A �= B, A real,

f (z) = zp +
∞∑

n=p+m
anzn ∈ Np(μ,α;A,B).

Then

∣∣ap+m∣∣ ≤ |A− B|
|μm+ αp| . (10.29)

The inequality (10.29) is sharp with the extremal function defined by the function

f0(z) = zp
(
αp

μm

∫ 1

0

1+ Azmu

1+ Bzmu
u

αp
μm
−1
du

)−1
α

.

Proof We can write

(1+ μ)

(
zp

f (z)

)α

− μ
zf ′(z)

pf (z)

(
zp

f (z)

)α

= 1+ (−μm− αp)am+pzm+p + . . . .

(10.30)

Now

h(z) = 1+ Azm

1+ Bzm
, −1 ≤ B ≤ 1, B �= A, A ∈ R
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is convex univalent in E.
In fact,

1+ zh′′(z)

h′(z)
= m

[
1− 2Bzm

1+ Bzm

]
,

and so

Re

(
1+ zh′′(z)

h′(z)

)
> −m+ 2m

1+ |B| ≥ 0, z ∈ E.

Since f ∈ Np(μ,α;A,B), we use Lemma 2 and (10.30) to obtained the required
result. �
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Chapter 11
Integral Mean Estimates for a Polynomial
with Restricted Zeros

A. Liman and W. M. Shah

11.1 Introduction

Let Pn be the class of polynomials P (z) =
n∑

j=0
aj zj of degree n. For P ∈ Pn, define

‖P ‖q :=
{ 1

2π

2π∫

0

|P (eiθ )|qdθ
} 1

q

, 0 < q <∞,

and

‖P ‖∞ := max|z|=1
|P (z)|.

It was shown by Turan [14], that if P ∈ Pn and P (z) has all its zeros in |z| ≤ 1,
then

n‖P ‖∞ ≤ 2‖P ′ ‖∞· (11.1)

The result is best possible and equality holds forP (z) = αzn+β, where |α| = |β|.
As a generalization of inequality (11.1), Malik [12] proved that if P ∈ Pn and

P (z) = 0 in |z| ≤ k, where k ≤ 1 then

n‖P ‖∞ ≤ (1+ k)‖P ′ ‖∞· (11.2)

The result is best possible and equality holds for P (z) = (z + k)n.
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Later on Malik [13] obtained another generalization of inequality (11.1) in the
sense that the left hand side was replaced by a factor involving the integral mean of
|P (z)| on |z| = 1. In fact he proved:

Theorem A 1 If P ∈ Pn and has all its zeros in |z| ≤ 1, then for each q > 0,

n‖P ‖q ≤ ‖1+ z‖q‖P ′ ‖∞· (11.3)

The result is sharp and equality holds for P (z) = (αz + β)n, where |α| = |β|.
On the other hand as an extension of inequality (11.2), Aziz [1] proved the

following:

Theorem B 1 If P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≤ 1, then for
each q > 0,

n

∥∥∥ P
P

′

∥∥∥
q
≤ ‖1+ kz‖q · (11.4)

The result is sharp and equality holds for P (z) = (αz + βk)n, where |α| = |β|.
In this paper, we consider a more general class of polynomials

Pn,μ :=
{
P (z) = anzn +

n∑
j=μ

an−j zn−j , 1 ≤ μ ≤ n
}

with Pn,1 = Pn,

and prove some results which generalize the above integral inequalities and provide
improvements of some polynomial inequalities as well. We first prove

Theorem 1 If P ∈ Pn,μ has all its zeros in |z| ≤ k where k ≤ 1 and
m:=min|z|=k|P (z)|, then for every real or complex number β with |β| < 1 and
each q > 0,

n

∥∥∥ P − mβzn

kn

P
′ − mnβzn−1

kn

∥∥∥
q

≤ ‖1+ tk,μz‖q , (11.5)

where

tk,μ =
{
n|an|k2μ + μ|an−μ|kμ−1

n|an|kμ−1 + μ|an−μ|
}
. (11.6)

The result is best possible and equality in (11.5) holds for P (z) = (zμ + kμ)
n
μ ,

where n is a multiple of μ.
A result of Aziz and Rather [1, Theorem 2] is a special case of Theorem 1 when

β = 0, whereas Theorem A immediately follows from this result when β = 0 and

k = 1.Also, since μ

n

∣∣∣ an−μan

∣∣∣ ≤ kμ (see lemma), it can be easily verified that tk,μ ≤ kμ

and thus

‖1+ tk,μz‖q ≤ ‖1+ kμz‖q · (11.7)
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Using these observations in Theorem 1, we have the following:

Corollary 1 If P ∈ Pn,μ has all its zeros in |z| ≤ k where k ≤ 1 and
m:=min|z|=k|P (z)|, then for every real or complex number β with |β| < 1 and
each q > 0,

n

∥∥∥ P − mβzn

kn

P
′ − mnβzn−1

kn

∥∥∥
q

≤ ‖1+ kμz‖q · (11.8)

The result is best possible and equality holds for the polynomial P (z) = (zμ +
kμ)

n
μ , where n is a multiple of μ.

If we take β = 0 in Corollary 1, we immediately get a result recently proved by
Aziz and Shah [5], whereas for β = 0, μ = 1, Corollary 1 reduces to a result earlier
proved by Aziz [1, Theorem 2]. Again, since |P ′

(eiθ )| ≤ ‖P ′ ‖∞ f or 0 ≤ θ < 2π ,
as a consequence of Theorem 1, we have the following:

Corollary 2 If P ∈ Pn,μ has all its zeros in |z| ≤ k where k ≤ 1 and
m:=min|z|=k|P (z)|, then for every β with |β| < 1 and each q > 0,

n

∥∥∥∥P − mβzn

kn

∥∥∥∥
q

≤ ‖1+ tk,μz‖q
∥∥∥∥P ′ − mnβzn−1

kn

∥∥∥∥∞ , (11.9)

where tk,μ is defined by (11.6).
A result due to Aziz and Rather [4, Corollary 5] is a special case of Corollary 2

when β = 0. Also using the fact that 1 ≤ tk,μ ≤ kμ, 1 ≤ μ ≤ n, we conclude that
Corollary 2 is a refinement of a result due to Aziz and Shah [5], when β = 0. If we
take μ = 1 and make q →∞ in Corollary 2, we get the following:

Corollary 3 If P ∈ Pn,μ and P (z) has all its zeros in |z| ≤ k where k ≤ 1 and
m:=min|z|=k|P (z)|, then for every β with |β| < 1,

n

∥∥∥P − mβzn

kn

∥∥∥∞ ≤ ‖1+ tk,1z‖∞
∥∥∥P ′ − mnβzn−1

kn

∥∥∥∞, (11.10)

where

tk,1 =
{n|an|k2 + |an−1|
n|an| + |an−1|

}
.

By taking β = 0 in (11.10), we obtain a result due to Govil, Rahman and
Schmeisser [9, Corollary 2], whereas for k = 1, β = 0, Corollary 3 reduces to
inequality (11.1).

Remark 1 Using the fact that 1 ≤ tk,μ ≤ kμ, 1 ≤ μ ≤ n, it follows from
Corollary 3 after suitable choice of β, that if P ∈ Pn and P (z) = 0 in |z| ≤ k where
k ≤ 1, then

‖P ′
(z)‖∞ ≥ n

1+ k
‖P ‖∞ + n

kn−1(1+ k)
min|z|=k|P (z)|. (11.11)
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The result was independently proved by Govil [8, Theorem 2]. Whereas for k = 1,
Corollary 3 reduces to a result of Aziz and Dawood [2, Theorem 4].

Next, by using Holder’s inequality we establish the following result and obtain
generalizations of Theorem B and a result [4, Theorem 2] due to Aziz and Rather.

Theorem 2 Let P ∈ Pn,μ has all its zeros in |z| ≤ k where k ≤ 1. If
m:=min|z|=k|P (z)|, then for each q > 0, s > 1, r > 1 with r−1 + s−1 = 1,
and for any β with |β| < 1,

n

∥∥∥P − mβzn

kn

∥∥∥
q
≤ ‖1+ tk,μz‖qr

∥∥∥P ′ − mnβzn−1

kn

∥∥∥
qs

, (11.12)

where tk,μ is defined by (11.6).
Choosing β = 0 in (11.12), we get Theorem B. Corollary 2 can also be obtained

from Theorem 2 by letting s →∞ (so that r → 1).

11.2 Proofs of the Theorems

For the proofs of these theorems, we need the following lemma.

Lemma 1 If P ∈ Pn,μ and P (z) has all its zeros in |z| ≤ k where k ≤ 1 and

Q(z) = znP
(

1
z̄

)
, then

|Q′
(z)| ≤ tk,μ|P ′

(z)| f or |z| = 1, (11.13)

where

tk,μ =
{
n|an|k2μ + μ|an−μ|kμ−1

n|an|kμ−1 + μ|an−μ|
}

and
μ

n

∣∣∣an−μ
an

∣∣∣ ≤ kμ.

This lemma is due to Aziz and Rather [4].

Proof By hypothesis the polynomial P (z) = anzn +
n∑

j=μ
an−j zn−j has all its zeros

in |z| ≤ k ≤ 1. If P (z) has a zero on |z| = k, then min|z|=k|P (z)| = 0 and the
result follows from Theorem A in this case. Henceforth, we suppose that all the
zeros of P (z) lie in |z| < k where k ≤ 1, so that m > 0. Now m ≤ |P (z)| for
|z| = k, therefore, if β is any real or complex number such that |β| < 1, then∣∣∣mβzn

kn

∣∣∣ < |P (z)| for |z| = k. Since all the zeros of P (z) lie in |z| < k, it follows by

Rouche’s theorem, that all the zeros of F (z) = P (z) − mβzn

kn
also lie in |z| < k. If

G(z) = znF
(

1
z̄

) = Q(z)− mβ̄

kn
then it can be easily verified that for |z| = 1,

|F ′
(z)| = |nG(z)− zG

′
(z)|. (11.14)

As F (z) has all its zeros in |z| < k ≤ 1, the above lemma in conjunction with
inequality (11.14) gives,

|G′
(z)| ≤ tμ,k |nG(z)− zG

′
(z)| f or |z| = 1, 1 ≤ μ ≤ n, (11.15)
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where tμ,k is defined in (11.6). By Gauss–Lucas theorem all the zeros of the poly-

nomial F
′
(z) = P

′
(z) − mnβzn−1

kn
lie in |z| < k ≤ 1. Therefore, the polynomial

zn−1F
′ ( 1

z̄

) = nG(z)− zG
′
(z) has all its zeros in |z| > 1

k
≥ 1. Hence it follows that

the function

W (z) = zG
′
(z)

tμ,k{nG(z)− zG′ (z)} (11.16)

is analytic for |z| ≤ 1, |W (z)| ≤ 1 for |z| = 1 and W (0) = 0. Thus the function
1 + tμ,kW (z) is subordinate to the function 1 + tμ,kz for |z| ≤ 1. By a well-known
property of subordination [10, p. 422], we have for each q > 0, and |z| = 1,

2π∫

0

|1+ tμ,kW (eiθ )|qdθ ≤
2π∫

0

|1+ tμ,ke
iθ |qdθ. (11.17)

Now by (11.16), we have

|1+ tμ,kW (z)| =
∣∣∣ nG(z)

nG(z)− zG′ (z)

∣∣∣

= n
∣∣Q(z)− mβ̄

kn

∣∣
∣∣P ′ (z)− mnβzn−1

kn

∣∣

= n
∣∣P (z)− mβzn

kn

∣∣
∣∣P ′ (z)− mnβzn−1

kn

∣∣ . (11.18)

From (11.17) and (11.18), we conclude that for every real or complex number β
with |β| < 1 and for each q > 0,

nq

2π∫

0

∣∣∣ P (eiθ )− mβeinθ

kn

P
′ (eiθ )− mnβei(n−1)θ

kn

∣∣∣qdθ ≤
2π∫

0

|1+ tk,μe
iθ |qdθ ,

which is equivalent to (11.5) and this completes the proof of Theorem 1. �

Proof Proceeding similarly as in the proof of Theorem 1, we have from (11.18) for
every real or complex number β with |β| < 1 and for each q > 0,

nq

2π∫

0

∣∣∣P (eiθ )− mβeinθ

kn

∣∣∣qdθ =
2π∫

0

{
|1+ tk,μW (eiθ )|

∣∣∣P ′
(eiθ )− mnβei(n−1)θ

kn

∣∣∣
}q

dθ.

This gives with the help of Holder’s inequality for s > 1, r > 1 with
r−1 + s−1 = 1,
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nq

2π∫

0

∣∣∣∣P (eiθ )− mβeinθ

kn

∣∣∣∣
q

dθ ≤
⎧⎨
⎩

2π∫

0

|1+ tk,μW (eiθ )|qrdθ
⎫⎬
⎭

1
r

(11.19)

⎧⎨
⎩

2π∫

0

∣∣∣∣P ′
(eiθ )− mnβei(n−1)θ

kn

∣∣∣∣
qs

dθ

⎫⎬
⎭

1
s

.

Using Inequality (11.17) with q replaced by qr in (11.2), we obtain for each q >

0, s > 1, r > 1 with r−1 + s−1 = 1,

nq

2π∫

0

∣∣∣P (eiθ )− mβeinθ

kn

∣∣∣qdθ ≤
⎧⎨
⎩

2π∫

0

|1+ tk,μW (eiθ )|qrdθ
⎫⎬
⎭

1
r

(11.20)

⎧⎨
⎩

2π∫

0

∣∣∣P ′
(eiθ )− mnβei(n−1)θ

kn

∣∣∣qsdθ
⎫⎬
⎭

1
s

.

Equivalently

n

∥∥∥P − mβzn

kn

∥∥∥
q
≤ ‖1+ tk,μz‖qr

∥∥∥P ′ − mnβzn−1

kn

∥∥∥
qs

,

which is Inequality (11.12) and this completes the proof of Theorem 2. �
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Chapter 12
Uniqueness Results of Meromorphic Functions
Concerning Small Functions

Xiao-Min Li, Kai-Mei Wang and Hong-Xun Yi

12.1 Introduction and Main Results

In this chapter, by meromorphic functions, we will always mean meromorphic func-
tions in the complex plane. We adopt the standard notations in the Nevanlinna theory
of meromorphic functions as explained in [2, 4, 11]. It will be convenient to let
E denote any set of positive real numbers of finite linear measure, not necessarily
the same at each occurrence. For any nonconstant meromorphic function h(z), we
denote by S(r ,h), any quantity satisfying S(r ,h) = o(T (r ,h)) (r → ∞, r �∈ E). It
also will be convenient to let E1 denote any set of positive real numbers, such that
E1 ⊂ (1,+∞) and

∫
E1
d log log r < +∞, we denote by S1(r ,h), any quantity satis-

fying S1(r ,h) = o(T (r ,h)) (r →∞, r �∈ E1). Let f be a nonconstant meromorphic
function, a meromorphic function a satisfying T (r , a) = S(r , f ) is called a small
function related to f , and let S(f ) be the set of meromorphic functions which are
small functions related to f.Obviously, C ⊂ S(f ) and S(f ) is a field (see [3]). Let f
and g be two nonconstant meromorphic functions and let a ∈ {S(f )∩ S(g)} ∪ {∞}.
Next we denote by N0(r , a, f , g), the reduced counting function of the common
zeros of f − a and g − a in |z| < r , where each point in N0(r , a, f , g) is counted
only once, f −∞ means 1/f. Let

N12(r , a, f , g) = N

(
r ,

1

f − a

)
+N

(
r ,

1

g − a

)
− 2N0(r , a, f , g), (12.1)
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where N12(r , a, f , g) denotes the reduced counting function of the different zeros of
f − a and g − a in |z| < r. Let

λ(a, f , g) = 1− lim sup
r→∞

N12(r , a, f , g)

T (r , f )+ T (r , g)
. (12.2)

Then, 0 ≤ λ(a, f , g) ≤ 1 (see [8]). If N12(r , a, f , g) = 0, we say that f and g
share a IM. If N12(r , a, f , g) = S(r , f )+S(r , g), we say that f and g share a “IM,”
which can be found, e.g., in [12].

In 1929, Nevanlinna [8] proved the following famous theorem:

Theorem 1 ([8]) If f and g are meromorphic functions sharing a1, a2, a3, a4, a5

IM, where a1, a2, a3, a4, a5 are five distinct elements in C ∪ {∞}, then f ≡ g.

Regarding Theorem 1, one may ask, whether it is possible to extend Theorem A to
the case when a1, a2, a3, a4, a5 are five distinct elements in {S(f ) ∩ S(g)} ∪ {∞}
(see [8]). In this direction, many results, not until the beginning of 1990s, were
obtained, see, e.g., in the references [5, 6, 9, 10, 12, 13, 15]. In 2000, Li and Qiao
[7] affirmatively answered this question and proved the following result:

Theorem 2 ([7, Theorem 1]) If f and g are meromorphic functions sharing a1, a2,
a3, a4, a5 IM, where a1, a2, a3, a4, a5 are five distinct elements in {S(f )∩S(g)}∪{∞},
then f ≡ g.

Later on, Yi [13] proved the following results to improve Theorem 2:

Theorem 3 ([13, Theorem 4.2]) Let f and g be nonconstant meromorphic
functions, and let a1, a2, a3, a4, a5 be five distinct elements in {S(f )∩S(g)}∪{∞}. If

5∑
j=1

λ(aj , f , g) >
43

9
, (12.3)

then f ≡ g.

Theorem 4 ([13, Theorem 1.2]) Let f and g be nonconstant meromorphic func-
tions, and let a1, a2, a3, a4, a5 be five distinct elements in {S(f )∩ S(g)} ∪ {∞}. If f
and g share a1, a2, a3 “IM,” and if

λ(a4, f , g)+ λ(a5, f , g) >
16

9
, (12.4)

then f ≡ g.

Regarding Theorems 3 and 4, one may ask, is it possible to relax the assumption
(12.3) in Theorem 3 and the assumption (12.4) in Theorem 4? In this direction, we
will prove the following result to improve Theorems 3 and 4:

Theorem 5 Let f and g be nonconstant meromorphic functions, and let a1, a2, a3,
a4, a5 be five distinct elements in {S(f ) ∩ S(g)} ∪ {∞}. If
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5∑
j=1

λ(aj , f , g) >
14

3
, (12.5)

then f ≡ g.

By (12.2) and Theorem 5, we can get the following results to improve and supplement
Theorem 6.3 in [13]:

Corollary 1 Let f and g be nonconstant meromorphic functions, and let a1, a2, a3,
a4, a5 be five distinct elements in {S(f ) ∩ S(g)} ∪ {∞}. If f and g share a1 “IM,”
and if λ(a2, f , g)+ λ(a3, f , g)+ λ(a4, f , g)+ λ(a5, f , g) > 11/3, then f ≡ g.

Corollary 2 Let f and g be nonconstant meromorphic functions, and let a1, a2,
a3, a4, a5 be five distinct elements in {S(f ) ∩ S(g)} ∪ {∞}. If f and g share a1, a2

“IM,” and if λ(a3, f , g)+ λ(a4, f , g)+ λ(a5, f , g) > 8/3, then f ≡ g.

Corollary 3 Let f and g be nonconstant meromorphic functions, and let a1, a2,
a3, a4, a5 be five distinct elements in {S(f ) ∩ S(g)} ∪ {∞}. If f and g share a1, a2,
a3 “IM,” and if λ(a4, f , g)+ λ(a5, f , g) > 5/3, then f ≡ g.

Corollary 4 Let f and g be nonconstant meromorphic functions, and let a1, a2,
a3, a4, a5 be five distinct elements in {S(f ) ∩ S(g)} ∪ {∞}. If f and g share a1, a2,
a3, a4 “IM,” and if λ(a5, f , g) > 2/3, then f ≡ g.

We recall the following result proved by Yi [13]:

Theorem 6 ([13, Theorem 6.4]) Let f and g be two distinct nonconstant meromor-
phic functions, and leta1,a2,a3,a4,a5 be five distinct elements in {S(f )∩S(g)}∪{∞}.
If f and g share a1, a2, a3, a4 “IM,” and if

N

(
r ,

1

g − a5

)
= S(r , g), (12.6)

then

2T (r , f ) ≤ 5N

(
r ,

1

f − a5

)
+ S(r , f ). (12.7)

We will prove the following result to improve Theorem 6:

Theorem 7 Let f and g be two distinct nonconstant meromorphic functions, and
let a1, a2, a3, a4, a5 be five distinct elements in {S(f )∩S(g)}∪{∞}. If f and g share
a1, a2, a3, a4 “IM,” and if

N

(
r ,

1

g − a5

)
= S(r , g), (12.8)

then for every positive number ε, we have

(3− ε)T (r , f ) ≤ 5N

(
r ,

1

f − a5

)
+O(1) (12.9)
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for any positive number r excluding some set E1 ⊂ (1,+∞) with
∫
E1
d log log r

< +∞.

In 1998, Ishizaki and Toda [3] proved the following theorem:

Theorem 8 ([3, Theorem 3]) Letf andg be transcendental meromorphic functions
such thatf and g share a1, a2, a3, a4 IM, where a1, a2, a3, a4 are four distinct elements
in {S(f ) ∩ S(g)}. If N (r , f ) and N (r , g) satisfy one of the following conditions (a),
(b), (c), and (d):

(a) N (r , f ) = S(r , f ) and N (r , g) = S(r , g);
(b) N (r , g) = S(r , g), N (r , f ) �= S(r , f ) and N (r , f ) ≤ uT (r , f ) + S(r , f ) for

some u ∈ (0, 1/19);
(c) N (r , f ) = S(r , f ), N (r , g) �= S(r , g) and N (r , g) ≤ vT (r , g) + S(r , g) for

some v ∈ (0, 1/19);
(d) N (r , f ) �= S(r , f ), N (r , g) �= S(r , g), N (r , f ) ≤ uT (r , f ) + S(r , f ) and

N (r , g) ≤ vT (r , g)+ S(r , g) for some u, v ∈ (0, 1) satisfying either

(i) 0 < u < 1/19 and 0 < v < (2− 19u)/(20− 19u) or
(ii) 0 < v < 1/19 and 0 < u < (2− 19v)/(20− 19v);

then f ≡ g.

Later on, Yi [13] proved the following result to improve Theorem 8:

Theorem 9 ([13, Theorem 7.1]) Let f and g be transcendental meromorphic
functions such that f and g share a1, a2, a3, a4 “IM,” where a1, a2, a3, a4 are four
distinct elements in {S(f ) ∩ S(g)}. Suppose that N (r , f ) and N (r , g) satisfy one of
the following conditions (a), (b), and (c):

(a) N (r , g) = S(r , g), N (r , f ) �= S(r , f ) and N (r , f ) ≤ uT (r , f ) + S(r , f ) for
some u ∈ [0, 2/5);

(b) N (r , f ) = S(r , f ), N (r , g) �= S(r , g) and N (r , g) ≤ vT (r , g) + S(r , g) for
some v ∈ [0, 2/5);

(c) N (r , f ) �= S(r , f ), N (r , g) �= S(r , g), N (r , f ) ≤ uT (r , f ) + S(r , f ) and
N (r , g) ≤ vT (r , g)+ S(r , g) for some u, v ∈ (0, 1) satisfying either

(i) 0 < u < 2/9 and 0 < v < (4− 9u)/(11− 9u) or
(ii) 0 < v < 2/9 and 0 < u < (4− 9v)/(11− 9v).

Then f ≡ g.

We will prove the following result to improve Theorem 9:

Theorem 10 Let f and g be transcendental meromorphic functions such that f
and g share a1, a2, a3, a4 “IM,” where a1, a2, a3, a4 are four distinct elements
in {S(f ) ∩ S(g)}. Suppose that N (r , f ) and N (r , g) satisfy one of the following
conditions (a), (b), and (c):

(a) N (r , g) = S(r , g).
(b) N (r , f ) = S(r , f ).
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(c) N (r , f ) �= S(r , f ), N (r , g) �= S(r , g), N (r , f ) ≤ uT (r , f ) + S(r , f ) and
N (r , g) ≤ vT (r , g)+ S(r , g) for some u, v ∈ (0, 1) satisfying either

(i) 0 < u < 2/3 and 0 < v < 2
3 − u or

(ii) 0 < v < 2/3 and 0 < u < 2
3 − v.

Then f ≡ g.

From Theorem 10, we get the following result to improve Corollary 7.1 in [13]:

Corollary 5 Let f and g be nonconstant meromorphic functions such that
N (r , f ) ≤ uT (r , f ) + S(r , f ) and N (r , g) ≤ vT (r , g) + S(r , g) for some finite
complex numbers u and v satisfying (u, v) ∈ [0, 2/3) × [0, 2/3). If there exist four
distinct elements a1, a2, a3, a4 in S(f )∩ S(g), such that f and g share a1, a2, a3, a4

“IM,” then f ≡ g.

12.2 Some Lemmas

In this section, we introduce some important results which are used to prove the main
results in this chapter:

Lemma 1 ([13, Theorem 3.2]) Let f and g be nonconstant meromorphic functions,
and let a1, a2, a3, a4, a5 be five distinct elements in {S(f ) ∩ S(g)} ∪ {∞}. If f �≡ g,
then

N0(r , a5, f , g) ≤
4∑

j=1

N12(r , aj , f , g)+ S(r , f )+ S(r , g) (12.10)

and

N

(
r ,

1

f − a5

)
+N

(
r ,

1

g − a5

)
≤ 2

4∑
j=1

N12(r , aj , f , g)+N12(r , a5, f , g)

+ S(r , f )+ S(r , g). (12.11)

Lemma 2 ([1, Theorem 2.3], or [14, Theorem 1]) Let f be a nonconstant meromor-
phic function, and let a1, a2, · · · , aq (q ≥ 3) be q mutually distinct small functions
with respect to f. Then for any ε > 0,

(q − 2− ε)T (r , f ) ≤
q∑

j=1

N

(
r ,

1

f − aj

)
+O(1)

for any positive number r excluding some set E1 ⊂ (1,+∞) with
∫
E1
d log log r

< +∞.
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The following result plays an important role in proving Theorem 5 of this chapter,
which improves Theorem 4.1 in [13]:

Lemma 3 Let f and g be nonconstant meromorphic functions and let a1, a2, a3,
a4, a5 be five distinct elements in {S(f ) ∩ S(g)} ∪ {∞}. If f �≡ g, then

T (r , f )+ T (r , g) ≤ 3
5∑

j=1

N12(r , aj , f , g)+ ε(T (r , f )

+ T (r , g))+ S1(r , f )+ S1(r , g). (12.12)

Proof First of all, by Lemma 1, we have from (12.11) that

N

(
r ,

1

f − ak

)
+N

(
r ,

1

g − ak

)
≤ 2

5∑
j=1

N12
(
r , aj , f , g

)−N12(r , ak , f , g)

+ S(r , f )+ S(r , g) (12.13)

for k= 1, 2, 3, 4, 5. By taking the summation over k = 1, 2, 3, 4, 5 in the inequality
(12.13), we have

5∑
k=1

N

(
r ,

1

f − ak

)
+

5∑
k=1

N

(
r ,

1

g − ak

)
≤ 9

5∑
j=1

N12(r , aj , f , g)

+ S(r , f )+ S(r , g). (12.14)

By Lemma 2, we have

3(T (r , f )+ T (r , g)) ≤
5∑

j=1

N

(
r ,

1

f − aj

)
+

5∑
j=1

N

(
r ,

1

g − aj

)

+ ε(T (r , f )+ T (r , g))+ S1(r , f )+ S1(r , g). (12.15)

From (12.14) and (12.15) we have

T (r , f )+ T (r , g) ≤ 3
5∑

j=1

N12(r , aj , f , g)+ ε

3
(T (r , f )

+ T (r , g))+ S1(r , f )+ S1(r , g),

which reveals (12.12). This completes the proof of Lemma 3.

Lemma 4 ([13, Lemma 2.2]) Let f and g be nonconstant meromorphic functions
sharing a1, a2, a3 “IM,” where a1, a2 and a3 are three distinct elements in {S(f ) ∩
S(g)} ∪ {∞}. Then S(r , f ) = S(r , g).

The following result improves Theorem 2 in [2]:
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Lemma 5 Let f and g be two distinct nonconstant meromorphic functions such
that f and g share a1, a2, a3, a4 “IM,” where a1, a2, a3, a4 are four distinct elements
in S(f ) ∩ S(g). Then, for any ε > 0, we have

T (r , f ) ≤ T (r , g)+ εT (r , f )+O(1) (12.16)

and

T (r , g) ≤ T (r , f )+ εT (r , g)+O(1) (12.17)

for any positive number r excluding some set E1 ⊂ (1,+∞) with
∫
E1
d log log r

< +∞.

Proof Without loss of generality, we suppose that aj �≡ ∞ for j = 1, 2, 3, 4. Then,
by Lemma 2 and the assumptions of Lemma 5, we have

2T (r , f ) ≤
4∑

j=1

N

(
r ,

1

f − aj

)
+ εT (r , f )

≤ N

(
r ,

1

f − g

)
+ εT (r , f )

≤ T (r , f − g)+ εT (r , f )+O(1)

≤ T (r , f )+ T (r , g)+ εT (r , f )+O(1), (12.18)

for any positive number r excluding some set E1 ⊂ (1,+∞) with
∫
E1
d log log r

< +∞, where ε is any positive number. From (12.18), we have (12.16). Similarly,
we can get (12.17). This completes the proof of Lemma 5.

12.3 Proof of Theorems

Proof of Theorem 1.1 Suppose that f �≡ g. Then, from (12.2), (12.12), and
Lemma 3, we deduce

5∑
j=1

λ(aj , f , g) ≤ 14

3
,

which contradicts (12.5), and so we get the conclusion of Theorem 5.

Proof of Theorem 1.2 First of all, from (12.1), Lemma 4, and the assumption

N

(
r ,

1

g − a5

)
= S(r , g),

we get

N12(r , a5, f , g) = N

(
r ,

1

f − a5

)
+ S(r , f )+ S(r , g). (12.19)
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From (12.11), (12.19), Lemma 1, and the assumption that f and g share a1, a2, a3, a4

“IM,” we have for k = 1, 2, 3, 4 that

2N

(
r ,

1

f − ak

)
= N

(
r ,

1

f − ak

)
+N

(
r ,

1

g − ak

)

≤ 2N

(
r ,

1

f − a5

)
+ S(r , f )+ S(r , g),

i.e.,

N

(
r ,

1

f − ak

)
≤ N

(
r ,

1

f − a5

)
+ S(r , f )+ S(r , g) for k = 1, 2, 3, 4.

(12.20)

By Lemma 5 and the assumption that f and g share a1, a2, a3, a4 “IM,” we have
(12.16) and (12.17). From (12.16), (12.17), and (12.20), we get the conclusion of
Theorem 7.

Proof of Theorem 1.3 Suppose that f �≡ g. We discuss the following three cases.

Case 1 Suppose that N (r , g) = S(r , g). Then, by Lemma 2 and Lemma 5, we have

(3− ε)T (r , g) ≤ N (r , g)+
4∑

j=1

N

(
r ,

1

g − aj

)
+O(1)

≤ N

(
r ,

1

f − g

)
+ S(r , g)

≤ T (r , f )+ T (r , g)+ S(r , g)

≤ 2T (r , g)+ εT (r , f )+O(1)

and

(3− ε)T (r , f ) ≤ 2T (r , f )+ εT (r , g)+O(1),

and so

T (r , f )+ T (r , g) ≤ 2ε[T (r , f )+ T (r , g)]+O(1) (12.21)

for any positive number r excluding some set E1 ⊂ (1,+∞) with
∫
E1
d log log r <

+∞, where ε is any given positive number. From (12.21), we can find that f and g
are constants, which is impossible.

Case 2 Suppose that N (r , f ) = S(r , f ). Then, in the same manner as in Case 1, we
can get a contradiction.

Case 3 Suppose that N (r , f ) �= S(r , f ), N (r , g) �= S(r , g) and

N (r , f ) ≤ uT (r , f )+ S(r , f ), N (r , g) ≤ vT (r , g)+ S(r , g) (12.22)

for some u, v ∈ (0, 1). We discuss the following two subcases.
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Subcase 3.1 Suppose that 0 < u < 2/3 and 0 < v < 2
3 −u. First of all, from (12.1),

we have

N12(r ,∞, f , g) ≤ N (r , f )+N (r , g). (12.23)

From Lemma 3 and the assumption that f and g share a1, a2, a3, a4 “IM,” we get

T (r , f )+ T (r , g) ≤ 3N12(r ,∞, f , g)+ ε(T (r , f )+ T (r , g))

+ S1(r , f )+ S1(r , g), (12.24)

where ε is an arbitrary positive number. From (12.23) and (12.24), we have

T (r , f )+ T (r , g) ≤ 3(N (r , f )+N (r , g))+ ε(T (r , f )+ T (r , g))

+ S1(r , f )+ S1(r , g). (12.25)

From Lemma 4, we have S(r , f ) = S(r , g) and S1(r , f ) = S1(r , g). From Lemma
5, we have (12.16) and (12.17.) From (12.22) and (12.25), we have

T (r , f )+ T (r , g) ≤ 3uT (r , f )+ 3vT (r , g)+ ε(T (r , f )+ T (r , g)),

i.e.,

(1− 3u− ε)T (r , f ) ≤ (3v− 1+ ε)T (r , g). (12.26)

From (12.16), (12.17), (12.26), and the above supposition, we have 1− 3u ≤ 3v− 1
and so

v ≥ 2

3
− u,

which contradicts the above supposition.

Subcase 3.2 Suppose that 0 < v < 2
3 and 0 < u < 2

3 −v. Then, in the same manner
as in Subcase 3.1, we can get a contradiction. This completes the proof of Theorem 10.
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Chapter 13
Maximal Polynomial Ranges for a Domain
of Intersection of Two Circular Disks

Chinta Mani Pokhrel

13.1 Introduction and Basic Theory

LetΩ ⊆ C with 0 ∈ Ω be a domain and P0
n (Ω) the set of all polynomials whose de-

gree is≤ n and are normalized by the condition P (0) = 0, with geometric constraint
P (D) ⊆ Ω , where D = {z : |z| < 1} is the unit disk. More precisely,

P0
n (Ω) := {P : P is a polynomial of degree ≤ n, P (0) = 0, P (D) ⊆ Ω} .

Definition 1 The maximal range of the family P0
n (Ω), denoted by Ωn, is defined

as
Ωn :=

⋃
P∈P0

n (Ω)

P (D).

Example The maximal polynomial range of the domain Ω := C \ {1} is

Ωn :=
⋃

P∈P0
n (Ω)

P (D) = Pn(D),

where Pn(z) = 1 − (1 + z)n, n ∈ N. This is the best known nontrivial example for
which a range of the single polynomial Pn(z) = 1 − (1 + z)n describes the whole
maximal range Ωn of the family P0

n (Ω). However, this will not be true in general.

Definition 2 A polynomial P ∈ P0
n (Ω) is said to be an extremal polynomial for

Ωn if
P (D) ∩ (∂Ωn\∂Ω) �= φ

Definition 3 A point ζ ∈ ∂D is called a point of contact of a polynomialP ∈ P0
n (Ω)

if P (ζ ) ∈ ∂Ω .

C. M. Pokhrel (�)
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Remark Points on (∂Ωn \ ∂Ω) turn out to be the most interesting ones.
The following results, concerning extremal polynomials and the description of the
maximal range Ωn, have been proved by Cordova and Ruscheweyh in [1, 2, 4, 5].

Theorem 1 For every point ω ∈ (∂Ωn \ ∂Ω), there exists at least one extremal
polynomial P ∈ P 0

n (Ω) such that ω = P (1). Moreover, every extremal polynomial
with P (1) ∈ (∂Ωn \ ∂Ω) satisfies the following conditions:

(1) P ′ has all zeroes in ∂D.
(2) If we denote all these zeroes by eiψj , j = 1, 2, 3 . . . , n − 1, ordered as 0 <

ψ1 ≤ ψ2 ≤ . . . ≤ ψn−1 < 2π , then there exist at least n points of contact
eiθk , k = 1, 2, . . . , n (multiplicities counted) such that 0 < θ1 ≤ ψ1 ≤ θ2 ≤
. . . < ψn−1 ≤ θn < 2π .

(3) P is univalent in D if Ω is simply connected.

If the given domain Ω is convex, then Theorem 1 can be remarkably refined as
follows:

Theorem 2 If Ω is a convex domain, then in addition to (1)–(3) in Theorem 1, we
have:

4. If ω ∈ (∂Ωn \ ∂Ω), then there exists a unique extremal polynomial P ∈ P 0
n (Ω)

such that ω = P (1)
5. If θ1, θn from Theorem 1 are chosen in such a way that no θ in [0, θ1 )∪ (θn, 2π ]

corresponds to a point of contact, then the arc

{
P (eit ) for θn − 2π < θ < θ1

}

is a connected component of ∂Ωn \ ∂Ω .

13.2 Polynomials Having All Zeroes of its Derivatives on ∂D

A polynomial having the property that all the zeroes of its derivative lie on ∂D will
play a central role to construct extremal polynomials and maximal polynomial ranges
Ωn of the given domain Ω . We shall start this section with the following lemma [3].

Lemma 1 Let P (z) =∑n
k=1 akz

k ∈ P0
n with an �= 0 and suppose all zeroes of P ′

lie on ∂D. Then the coefficients of P satisfy the following condition:

a1kak = nan(n+ 1− k)an+1−k , k = 1, . . . , n. (13.1)

Proof Let us denote the zeroes of P ′(z) by eisk , k = 1, . . . , n−1. Then we can write

P ′(z) = nan

n−1∏
k=1

(
z − eisk

)
. (13.2)
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Then

a1 = P ′(0) = nan

n−1∏
k=1

(−e−isk )) . (13.3)

Also,

a1P
′(z)− nanzn−1P ′(z−1) = a1n an

n−1∏
k=1

(
z − eisk

)− nanzn−1nan

n−1∏
k=1

(
z−1 − e−isk

)

= a1n an

n−1∏
k=1

(
z − eisk

)− nannan

n−1∏
k=1

(
1− ze−isk

)

= a1n an

n−1∏
k=1

(
z − eisk

)− nannan

n−1∏
k=1

(
z − eisk

) (−e−isk )

= nan

n−1∏
k=1

(
z − eisk

) (
a1 − nan

n−1∏
k=1

(−e−isk )
)
.

By using Eq. (13.3), we have

a1P
′(z)− nanzn−1P ′(z−1) = nan

n−1∏
k=1

(
z − eisk

) (
a1 − nan

n−1∏
k=1

(−e−isk )
)
≡ 0.

(13.4)

On the other hand,

a1P
′(z)− nanzn−1P ′(z−1) = a1

n∑
k=1

kakz
k−1 − nanzn−1

n∑
k=1

kakz
−(k−1)

= a1

n∑
k=1

kakz
k−1 − nan

n∑
k=1

kakz
n−k

= a1

n∑
k=1

kakz
k−1 − nan

n∑
k=1

(n+ 1− k)an+1−kzk−1

=
n∑

k=1

(a1kak − nan(n+ 1− k)an+1−k) zk−1.

By then,

a1P
′(z)− nanzn−1P ′(z−1) =

n∑
k=1

(a1kak − nan(n+ 1− k)an+1−k) zk−1 ≡ 0.

(13.5)
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Equating each coefficient of Eq. (13.5) to zero, we get the Eq. (13.1). This completes
the proof. We shall use Lemma 1 to prove the following result [6].

Theorem 3 Let P (z) =∑n
k=1 akz

k with an �= 0 and suppose all zeroes of P ′ lie on
∂D. Then there exists φ ∈ R such that

P (ei(t+φ)) = a0 + ei
n+1

2 t

[
S

(
cos

t

2

)
+ sin

t

2
T

(
cos

t

2

)

+ 2i

n+ 1

d

dt

(
S

(
cos

t

2

)
+ sin

t

2
T

(
cos

t

2

))]
.

Where S and T are real symmetric polynomials of degree (n − 1) and (n − 2)
respectively given by

S(x) := 1

2

n∑
k=1

n+ 1

n+ 1− k
αk cos ((n+ 1− 2k) arccos x), (13.6)

T (x) := 1

2

n∑
k=1

n+ 1

n+ 1− k
βk

sin ((n+ 1− 2k) arccos x)

sin ( arccos x)
(13.7)

and satisfy the conditions S(− x) = (− 1)(n−1)S(x) and T (− x) = (− 1)(n−2)T (x).

Proof From Eq. (13.3), it is possible to choose a real number φ so that

ei(n+1)φ = a1

nan
. (13.8)

Now, if we choose

bk := ake
ikφ , k = 1, . . . , n, (13.9)

we get

P (eiφz) =
n∑

k=1

bkz
k and b1 = nbn.

Then from Lemma 1, coefficients bk satisfy the relation

kbk = (n+ 1− k)bn+1−k. (13.10)

It follows that

P (eiφz) = a0 + 1

2

n∑
k=1

(
bkz

k + bn+1−kzn+1−k)

= a0 + 1

2

n∑
k=1

(
bkz

k + k

n+ 1− k
bkz

n+1−k
)
.
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Again, if we choose l := n+1
2 , z = eit , we have

P (ei(t+φ)) = a0 + 1

2

n∑
k=1

(
bke

ikt + k

n+ 1− k
bk e

i(n+1−k)t

)

= a0 + 1

2
eilt

n∑
k=1

(
bke

i(k−l)t + k

n+ 1− k
bk ei(k−l)t

)

= a0 + 1

2
eilt

n∑
k=1

1

n+ 1− k

[
l
(
bke

i(k−l)t + bk ei(k−l)t
)

+ (l − k)
(
bke

i(k−l)t − bk ei(k−l)t
)]

.

If we write bk = αk + iβk with αk ,βk ∈ R, we get

P (ei(t+φ)) = a0 + 1

2
eilt

n∑
k=1

1

n+ 1− k
[2l(αk cos ((k − l)t)− βk sin ((k − l)t))

+ 2 (l − k)i(αk sin ((k − l)t)− βk cos ((k − l)t))]

= a0 + 1

2
ei

n+1
2 t

n∑
k=1

n+ 1

n+ 1− k

[
αk

(
cos (n+ 1− 2k)

t

2

)

+ βk

(
sin (n+ 1− 2k)

t

2

)
+ 2i

n+ 1

d

dt

(
αk

(
cos (n+ 1− 2k)

t

2

)

+βk

(
sin (n+ 1− 2k)

t

2

))]

= a0 + ei
n+1

2 t

[
S

(
cos

t

2

)
+ sin

t

2
T

(
cos

t

2

)

+ 2i

n+ 1

d

dt
S

(
cos

t

2

)
+ sin

t

2
T

(
cos

t

2

)]
,

where S( cos t
2 ) and T ( cos t

2 ) are polynomials as defined in Eqs. (13.6) and (13.7).
Because S is a linear combination of Chebyshev polynomilas of degree |n+1−2k| ≤
(n − 1), it is a polynomial of degree n − 1 and satisfies the condition S( − x) =
(− 1)n−1S(x). Similarly, T is a polynomial of degree n− 2 and satisfies T (− x) =
(− 1)n−2T (x). This completes the proof.

In our work, we shall concentrate on domains which are symmetric with respect to
the real axis and on extremal polynomials having real coefficients. In such a situation,
if a point eisk is a zero of P ′, then the point e−isk is also a zero of P ′ and we have

P ′(z) = nan

n−1∏
k=1

(z − eisk ) =
n∑

k=1

kakz
k−1 (13.11)
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a1 = P ′(0) = nan

n−1∏
k=1

(− eisk ) = nan(− 1)v1 , (13.12)

where v1 is the multiplicity of the zero of P ′ at 1. Without loss of generality, we may
assume that P ′(1) �= 0 so that v1 = 0 and we have

a1 = nan. (13.13)

In such a case, we have φ = 0 in Eq. (13.8). Consequently, from Eq. (13.9), we have
αk + i βk := bk = ake

ikφ = ak ∈ R, and so βk = 0 for all k. Hence the polynomial
T is identically zero. Therefore polynomial P takes the form

P (eit ) = a0 + ei
n+1

2 t

[
S

(
cos

t

2

)
+ 2i

n+ 1

d

dt
S

(
cos

t

2

)]
. (13.14)

Here, one more special case will occur when n is odd so that n+1−2k
2 ∈ N for k ∈ N.

In this case, we have

S(x) = 1

2

n∑
k=1

n+ 1

n+ 1− k
αk cos

(
(n+ 1− 2k)

2
arccos x

)
, (13.15)

which is a polynomial of degree n−1
2 . Therefore if n is odd, polynomial P becomes

P (eit ) = a0 + ei
n+1

2 t

[
S( cos t)+ 2i

n+ 1

d

dt
S( cos t)

]
. (13.16)

Moreover, if we differentiate Eq. (13.16) with respect to t , we get

d

dt
P (eit ) = i

n+ 1

2
ei

n+1
2 t

[
S( cos t)+ 2i

n+ 1

d

dt
S( cos t)

]

+ ei
n+1

2 t

[
d

dt
S( cos t)+ 2i

n+ 1

d2

dt2
S( cos t)

]

= i
n+ 1

2
ei

n+1
2 t S( cos t)− ei

n+1
2 t d

dt
S( cos t)

+ ei
n+1

2 t d

dt
S( cos t)+ i ei

n+1
2 t 2

n+ 1

d2

dt2
S( cos t)

= iei
n+1

2 t

[
n+ 1

2
S( cos t)+ 2

n+ 1

d2

dt2
S( cos t)

]
.

Therefore, we have

d

dt
P (eit ) = iei

n+1
2 t r(t), (13.17)

where r(t) is a real function. From this, we conclude that the polynomial P has the
property that the tangent vectors at P (eit ) turn monotonically with constant speed of
n+1

2 , provided r(t) is not 0 except for the zeroes of P ′ where the direction is reversed.
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13.3 Construction of Extremal Polynomials for a Domain Ω

Which is an Intersection of Two Circular Disks

Here we take a domain of intersection of two circular disks of equal radii. The centers
of the disks are on the real axis at equidistant but on opposite sides of the origin.
Without loss of generality, we may further assume that the centers of the disks are at
−1 and 1. So Ω := B(− 1; r)∩B(1; r) , r( > 1) ∈ R and Pn the set of all complex
polynomials of degree ≤ n. Also,

P0
n := {P ∈ Pn : P (0) = 0,P (D) ⊂ Ω} ,

and
Ωn =

⋃
P∈P0

n

P (D).

If P is an extremal polynomial for Ωn, then by definition, there exists some ω ∈
(∂Ωn\∂Ω).Without loss of generality, we may also assume thatω = P (1). Theorem
1 guarantees that P ′ has all the zeroes on ∂D. Let eisj , j = 1, 2, 3 . . . , n− 1, denote
those zeroes with 0 < s1 ≤ s2 ≤ . . . ≤ sn−1 < 2π , then there exist at least n points
of contact eitk , k = 1, 2, . . . , n satisfying the condition

0 < t1 ≤ s1 ≤ t2 ≤ . . . ≤ sn−1 ≤ tn < 2π. (13.18)

Since our domain Ω is convex, by Theorem 2, P (eit ) ∈ (∂Ωn \ ∂Ω) for tn − 2π
< t < t1; here eitn and eit1 are those contact points such that P ′(eit ) �= 0 for
tn − 2π < t < t1. Then from Eq. (13.17), we conclude that the tangent vectors at
P (eit ) turn monotonically with constant speed n+1

2 . This means that the curvature
of the extremal curve P (eit ), tn − 2π < t < t1 remains constant. Therefore from
the convexity of the domain Ω , the images of such contact points p(eitn ) and p(eit1 )
must lie one on γ1 and another on γ2, where γ1 and γ2 are subsets of ∂Ω . More
precisely,

γ1 := {z ∈ ∂B(− 1; r) ∩ B(1; r)} and γ2 := {z ∈ B(− 1, r) ∩ ∂B(1; r)} .
Since Ω is convex, so is the maximal range Ωn [6]. From the convexity of Ωn, the
boundary ∂Ωn coincides with the curves γ1 and γ2 near the points z1 and z2, where
z1 and z2 are the point of intersection of ∂B(− 1; r) and ∂B(1; r).

Since we are dealing only with the extremal polynomial P with real coefficients,
two cases arise:
Case I (n odd):
In this case,

P (eit ) = ei
n+1

2 t

[
S( cos t)+ 2i

n+ 1

d

dt
S( cos t)

]
, (13.19)

where S is a real symmetric polynomial of degree n−1
2 = q.
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The parametric equation of the curve γ1 may be taken as

γ1(τ ) = −1+ reiτ , −π
4
≤ τ ≤ π

4
. (13.20)

The polynomial P has at least n = 2q + 1 points of contact with ∂Ω . Without loss
of generality, we may assume that P ′(1) �= 0 and so, because of symmetry, it has at
least q + 1 points of contact with the curve γ1 ⊂ ∂Ω . Therefore there exist q + 1
values of tk and corresponding τk with the property

P (eitk ) = γ1(τk), (13.21)

and

d
dt
P (eitk )

γ ′1(τk)
∈ R. (13.22)

Now from Eq. (13.17), we get

d
dt
P (eitk )

γ ′1(τk)
= ie(q+1)tkR(t)

ireτk
= ei((q+1)tk−τk )R1(t),

where R1 is a real polynomial. Therefore

(q + 1)tk − τk = mπ ,

and the values of tk’s are given by the equation

tk = mπ

q + 1
+ τk

q + 1
, k = 0, 1, . . . , q. (13.23)

Finally, with the help of Eqs. (13.21) and (13.17), we get

P (eitk ) = γ1(τk),

ei(kπ+τk )

[
S( cos tk)+ i

q + 1

d

dt
S( cos tk)

]
= −1+ reiτk ,

S( cos tk)+ i

q + 1

d

dt
S( cos tk) = −e−i(kπ+τk ) + re−ikπ ,

S( cos tk)+ i

q + 1

d

dt
S( cos tk) = (− 1)k+1e−iτk + r(− 1)k ,

S( cos tk)+ i

q + 1

d

dt
S( cos t) = (− 1)k(r − cos τk)+ i(− 1)k+1 sin τk. (13.24)
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Equating the real parts of Eq. (13.24), we get

S( cos tk) = (− 1)k(r − cos τk), k = 0, 1, 2, . . . , q,

and the polynomial S satisfies the condition

S(− cos tk) = (− 1)qS( cos tk).

Case I (a): Suppose q is even. Then we have q = 2p, son = 4p+1 andS(−cos tk) =
( − 1)2pS( cos tk) = S( cos tk). Therefore the points ± cos tk , k = 0, 1, 2, . . . ,p are
located symmetrically with respect to 0. If we write the polynomial S in Lagrange’s
interpolation form (because of symmetry, we have considered 2p+ 2 nodes instead
of 2p + 1), it becomes

S(x) =
p∑
k=0

(− 1)k(r − cos τk)
ω(x)2 cos tk
ω′( cos tk)

(x2 − cos2 tk), (13.25)

where

ω(x) =
p∏
k=0

(
x2 − cos2 tk

)
with tk = mπ

2p + 1
+ τk

2p + 1
.

Case I(b): If q = 2p+ 1 is odd, then n = 4p+ 3 and the polynomial S is of degree
2p + 1. So, as usual, we choose 2p + 2 nodes. The Lagrange’s interpolation form
for the polynomial S takes the form

S(x) =
p∑
k=0

(− 1)k(r − cos τk)
ω(x) 2x

ω′( cos tk)
(x2 − cos2 tk), (13.26)

where

ω(x) =
p∏
k=0

(
x2 − cos2 tk

)
with tk = mπ

2p + 2
+ τk

2p + 2
.

From here, we can say that the polynomial P has two extremal curves near the two
points of intersection {z1, z2} = ∂B(− 1; r) ∩ ∂B(1; r).
Case II (n is even): In this case also, as in case I, we can construct the maximal
polynomial. However, in this case, the polynomial P has the form

P (eit ) = ei
n+1

2 t

[
S( cos

(
t

2

)
+ 2i

n+ 1

d

dt
S( cos

(
t

2

)]
, (13.27)

on the boundary; where S is a real symmetric polynomial of degree n− 1.
The parametric equation of the curve γ1 may take the form

γ1(τ ) = −1+ reiτ , −π
4
≤ τ ≤ π

4
. (13.28)

By our assumption, P (z) has real coefficients, and so, P (D) is symmetric with respect
to the real axis and it has at least n = 2p points of contact with the boundary of
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Ωn. Then the curve γ1(τ ) has at least n
2 = p points of contact. This means that there

exist p points tk , k = 0, 1, 2, . . . ,p − 1 and corresponding point τk satisfying the
conditions

P (eitk ) = γ1(τk) (13.29)

d
dt
P (eitk )

γ ′1(τk)
∈ R. (13.30)

Since the P ′ is a polynomial of odd degree n− 1, it has at least one real zero. Since
we assumed that P ′(1) �= 0, so we must have P ′( − 1) = 0 and each extremal
polynomial has only one extremal curve. Finally using the Eqs. (13.29) and (13.30),
we can conclude that

tk = 2

n+ 1
[mπ + τk] (13.31)

and

S

(
cos

tk

2

)
= (− 1)k [r − cos τk] . (13.32)
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