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Stem cells are being increasingly considered
alternative and viable sources of treatment for
debilitating nervous system disorders and neu-
rodegenerative diseases. Stem cells specific to
nervous tissue, i.e., neural stem cells (NSCs), ex-
ist in two neurogenic regions of the adult brain –
subventricular zone (SVZ) in the lateral ven-
tricle and the subgranular zone (SGZ) in hip-
pocampal dentate gyrus [1–4]. The inaccessi-
bility and unavailability of NSCs deep in the
brain makes it a difficult proposition to use them
in clinical applications. Different stem cells are
thus being tested for their neuronal differenti-
ation capability, as a cell source for genera-
tion of functional mature neurons and glial cells.
The “gold standard” of stem cells are embry-
onic stem cells (ESCs) as they not only retain
long-term self-renewal capacity but also exhibit
pluripotency to all three germ lineages. Recent
advances in technology have brought the ad-
vent of another pluripotent stem cells called “in-
ducible pluripotent stem cells” (iPSc), derived
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through “reprogramming” of terminally differ-
entiated cells by the addition of a select set of
genes [5–7]. However, several limitations still
exist for the use of iPScs in therapeutic applica-
tions, such as the use of viral vectors for transfer
of genes, inclusion of oncogenes, and teratoma
formation [5, 6, 8–10]. Stem cells may also be
isolated from several tissue sources and these
are termed as adult stem cells (ASCs). The first
ASCs to be identified were the hematopoietic
stem cells (HSCs) derived from bone marrow, but
the second population of stem cells from bone
marrow called mesenchymal stem cells (MSCs)
gained prominence due to their unique proper-
ties [11–13]. MSCs are nontumorigenic and im-
munomodulatory in addition to possessing multi-
lineage differentiation potential not only towards
mesodermal lineage derivatives but also to phe-
notypes of other germ layer cells like neuronal,
hepatocytes, and islet cells [14–17]. Although fe-
tal and adult origin MSCs possess some common
characteristics with respect to expression of mes-
enchymal markers and absence of hematopoietic
and HLA-DR markers, their neuronal differenti-
ation efficacy is still to be evaluated for consid-
eration as suitable candidates for nervous system
disorders and neurodegenerative diseases.

Birth of a Neuron

The primary unit of the nervous system is neu-
rons. Neurons are specialized cells of the nervous
system consisting of axons and dendrites that
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receive, integrate, and transduce electrochemical
signals. Neurons in the nervous system are highly
polarized and form an ordered communication
system with both neuronal and nonneuronal cells
through synapses. The initial step in develop-
ment of nervous system in vertebrates involves
the segregation of ectoderm into epidermal and
neural primordia. Initially, the neural plate in
mammalian and avian embryos forms through
apicobasal cell elongation of neuroepithelial cells
and convergent extension [18–22]. This is fol-
lowed by bending of the neural plate at localized
regions termed hinge points – a single median
hinge point and paired dorsolateral hinge points
[23, 24]. The fusion of the neural folds forms the
neural tube. In mammalian central nervous sys-
tem, neurons are generated from the neuroepithe-
lial cells near the lumen of the neural tube termed
the ventricular zone. A vertical cleavage of neu-
roepithelial cells during symmetric division gives
rise to two identical daughter cells that resemble
the precursor cell, but a horizontal cleavage dur-
ing asymmetric division produces basal daughter
cells that retain contact with the basal surface
and an apical daughter cell that loses contact
with the lumen (Fig. 1). This apical daughter cell
migrates away, and the time of this horizontal
division is termed as the birthday of the neuron

(apical daughter cell) and the basal cell remains
in the proliferative zone. During this asymmetric
division, there is a switch in the mitotic state gen-
erating one daughter cell (basal cell) mitotically
active as a stem cell, while the other apical cell
remains in the cell cycle for a number of divisions
and is committed to generate neurons [25].

Differentiation and Specification
of Neuroepithelial Cells

The nervous system consists of a diverse neural
cell type population, derived from these multi-
potent neuroepithelial/precursor cells. The differ-
entiation of the neural precursor cells from the
neural tube across its rostrocaudal axis gives rise
to the neurons and glia of the central nervous
system encompassing the brain and spinal cord.
The differentiation of the neural tube begins with
the formation of three primary brain vesicles
from which the brain develops – prosencephalon,
mesencephalon, and rhombencephalon. The dor-
sal fusion of the neural plate occurs by the third
week to form the neural tube, which by the
end of the fourth week further extends across
the rostrocaudal axis. This creates spatiotempo-
ral differences within neuroepithelial cells at the
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Fig. 1 Ventricular neuroepithelial cell nuclei undergo in-
tracellular migration during cell cycle. A vertical cleavage
(perpendicular to ventricular surface) gives rise to two
daughter cells that sit side by side, both retaining api-
cal connections. Both the daughter cells reenter the cell
cycle. A horizontal (parallel) cleavage produces a basal

daughter cell that retains contact with the basal surface
and an apical daughter that loses contact with the lumen.
The basal daughter stays in the epithelium, while the
apical daughter migrates away (Adopted from Chenn and
McConnell [25])



Stem Cells and Neuronal Differentiation 73

time of neural tube formation. The diversity in
the cell fate specification of the neural precursors
across the rostrocaudal axis is primarily dictated
by the nature of environmental cues over time
during development. The complex interplay of
extrinsic microenvironment in the form of extra-
cellular matrix and morphogens regulates intrin-
sic specifiers, often the master key transcription
factors involved in patterning [26]. In addition,
the developmental commitment with respect to
the time of birthday for neural precursor cells is
supported by the fact that neurogenesis precedes
gliogenesis during the differentiation of neural
tube. A developmental restriction with time in
differentiation potential between early and late
cortical progenitors is also noted. Late cortical
progenitors can only produce upper layer neu-
rons even in much younger microenvironment
indicating that they lose the potency to produce
earlier generated phenotypes [27]. The positional
identities of the neural progenitors along the
dorsoventral axis of the neural tube are through
a gradient of signaling molecules secreted at the
floor plate and roof plate (Fig. 2). The gen-
eration of functional specialized neuronal and
glial cells involves a stepwise process starting
with the specification of neuroepithelial cells to
rapidly dividing transit-amplifying cells and then
to migrating neuroblasts and glioblasts which in
turn get specified to functional terminally differ-
entiated cells under the influence of the adjacent
microenvironment.

Isolation of Neural StemCells (NSCs)

Neural stem cells are multipotent cells possessing
self-renewal capacity and differentiation
capability towards cells of the central nervous
system. During embryogenesis the germinal
neuroepithelial cells along the neural tube
compromises the NSC population which in adult
brain gets restrained in two primary neurogenic
areas, viz., the SVZ of the lateral ventricle and the
SGZ in the dentate gyrus (Fig. 3; [2–4]). The SVZ
of the adult brain harbors at least three distinct
cell phenotypes: A, B, and C cells, besides
the ependymal cells lining the lateral ventricle.
Experimental evidence [28] suggests that the
SVZ astrocytes (type B cells) represent quiescent
stem cells that normally proliferate at a low rate
and generate the migratory neuronal precursors
(type A cells), through the generation of a third,
intermediate cell type, the C cell (or D cell in the
hippocampus), which has the characteristics of
the classic fast-proliferating, transit-amplifying
progenitor cells found in many self-renewing
tissues [29, 30]. Adult neurogenesis is regulated
by intrinsic specifiers and extrinsic modulators.
The intrinsic programs include genetic and
epigenetic factors essential for controlling NSC
self-renewal and multipotency. The extrinsic
factors include the niche where NSCs physically
reside and primarily comprise periventricular
astrocytes, ependymal cells, vasculature,

Fig. 2 Schematic
representations showing
the positional identities of
the neural progenitors
along the dorsoventral axis
of the neural tube is
through a gradient of
signaling molecules
secreted at the floor plate
and roof plate
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Fig. 3 Schematic
representation of NSCs in
the two primary neurogenic
areas of the adult brain;
viz., the subventricular
zone (SVZ) of the lateral
ventricle and the
subgranular zone (SGZ) in
the dentate gyrus
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neurotransmitters, and the basal lamina. NSCs
isolated from neurogenic areas of adult brain
or embryonic CNS region are cultured in
vitro by two methods – (1) two-dimensional
culture in the form of monolayer on specific
extracellular matrix and (2) three-dimensional
suspension culture in the form of neurospheres.
NSCs derived in serum- and feeder-free
culture conditions as floating aggregates are
known as neurospheres. Neurospheres have
been extensively used for studying molecular
mechanisms that regulate self-renewal and
differentiation of NSCs. Although NSCs
responsive to two mitogens bFGF and EGF have
been reported, many labs use a combination
of both [31–33]. In the presence of these
mitogens, they undergo continuous symmetrical
cell division (self-renewal) while retaining the
differentiation potential to neurons, astrocytes,
and oligodendrocytes. For mouse NSCs, several
passages in the presence of these mitogens
resulted in homogeneous morphology in culture
that uniformly expressed nestin and Sox2. These
cells are stem cells as they are clonogenic and
maintain indefinitely the capacity to generate

both neurons and astrocytes. It was further
established that NSCs cultured in the absence of
EGF and in the presence of exogenous Jagged1
showed enhanced neurogenic potential when put
for differentiation [34], in turn suggesting that
activation of Notch receptors on NSCs are pivotal
for maintenance of undifferentiated state and
differentiation potential. NSCs have also been
isolated from brain tissue by fluorescent labeled
sorting of cells through FACS for cell surface
markers like CD133, CD24, or GFP expression
driven by NSC-specific promoters such as nestin,
Sox2, Sox1, and FGF1 [35, 36]. These NSCs
once sorted were cultured in the presence of
growth factors and in suspension culture form.

Differentiation of NSCs to Neuronal
Cells

The derivation of NSCs from human fetal
brain is characterized by classical bipolar
morphology and other cellular morphologies.
It also displays interkinetic nuclear migration
along the cell process, a characteristic feature
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depicted by neuroepithelial cells in vivo. There
are reports of human fetal NSCs having been
maintained in culture up to 35 passages retaining
normal karyotype and differentiation ability.
NSCs are immunopositive for set of neural
precursor/radial glial markers such as nestin,
vimentin, Sox2, brain lipid-binding protein
(BLBP), RC2, GLAST, and 3CB2 [36–38].
Besides, the molecular markers include the Pax
and Hes gene families, members of Notch and
Wnt signaling pathways, RNA-binding proteins
(musashi12), and cell surface markers CD24 and
CD133 [39, 40]. Human NSCs are reported to
express moderate levels of GFAP too. NSCs upon
plating onto poly-ornithine/laminin substrate
with removal of the mitogens show spontaneous
differentiation to a mixed culture of differentiated
mature neuronal (Tuj1C and Map2abC) and
astroglial (GFAPC) cells. Neuronal maturation
can be further achieved by exposing them
to Neurobasal media with B27 along with
neurotrophic factors BDNF and NGF [41].
Functional electrophysiological experiments
suggest that the matured neurons indeed exhibit
voltage-gated NaC, KC, and Ca2C channels,
similar to those observed in primary neurons
[42]. Exposure of NSCs to BMP4 agonists has
exhibited differentiation towards astrocytes [43,
44]. BMP2 in combination with CNTF facilitated
generation of GFAP-positive astrocytes [45].
In addition, Glaser et al. [46] have reported
that sequential exposure to bFGF, PDGF, and
forskolin followed by thyroid hormone (T3)
and ascorbic acid can yield differentiated
oligodendrocytes (20 %) in culture expressing
O4, CNPase, and myelin proteolipid protein.
The differentiation potential of NSCs in vivo
is generally obtained from transplantation
studies into embryonic or neonatal brain or the
subventricular zone of adult rodent brain. In such
a neurogenic environment, neural progenitors
have exhibited “site-specific” differentiation to
neuronal cells. On the other hand, transplantation
of multipotent NSCs into the injured brain has
indicated that the host microenvironment has
strong gliogenic signals imparted majorly by
the proinflammatory cytokines (TFN’, IL6,
and IFN”) present in the vicinity [47–49].

Other cytokines like PDGF, SDF1, MCP1,
and HGF also play a role in chemoattraction
and migration of NSCs [50–52]. The number
of neurons generated by transplanted NSCs
is lower in the lesion area than in intact host
striatum. They are localized mainly in partially
injured or intact regions and do not repopulate
neuron-depleted areas. NSCs transplanted
in nonneurogenic areas during spinal cord
injury have shown differentiation to astrocytes
and oligodendrocytes and not neurons [53].
However, NSCs transplanted in Parkinson’s
disease in vivo model have shown increase in
tyrosine hydroxylase-positive neurons in the
midbrain area [54]. NSCs from neonatal rat upon
transplantation in the lesion area of the brain of
adult PD rat model have shown distinct neuronal
differentiation indicating sufficient availability
of intrinsic cues for dopaminergic traits in the
lesioned brain [55]. Thus, transplantation of
NSCs has indeed shown diverse response in
acquisition of specific phenotypes depending
on the recipient environment, i.e., whether in
the control or injured brain and neurogenic
or nonneurogenic region. Due to limitations in
analyzing differentiation of NSCs in vivo, many
groups of scientists have used the advantage of
neurosphere assays to address the role of intrinsic
gene function for self-renewal and differentiation
of NSCs. Gene targeting and knockouts by
homologous recombination in NSCs are explored
to understand loss/gain of function of genes
with respect to self-renewal and differentiation.
Insertion of master key genes is also performed
on NSCs for achieving terminally differentiated
functional neurons.

Differentiation of Human
Embryonic Stem Cells to Neuronal
Cells

Due to the inaccessibility and serious ethical
concerns surrounding the use of human neural
stem cells, other pluripotent stem cells are tapped
into for generation of human origin neural pro-
genitors. Human embryonic stem cells (hESCs)
and induced pluripotent stem cells (iPSCs) from
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human skin fibroblast are presently considered
the best resource for generation of human origin
neural stem cells. In the last few years, there have
been several reports on differentiation of hESCs
and iPSCs to neural progenitors and specialized
neuronal and glial cells too. The utility of pluripo-
tent stem cells as banks for neural progenitors
depends on the availability of standardized robust
defined protocols of neuronal differentiation from
these cells. Finally, the quality check for in vitro
generated differentiated neural progenitors will
be determined by their functional integration after
transplantation in vivo.

ESCs are known to recapitulate embryonic
developmental stages and so protocols of neu-
ronal differentiation usually involve a multistep
process. Indeed, the functional genomic screen
of human stem cell differentiation revealed path-
ways involved in [56]. As per Spemann and
Mangold [57], the Spemann organizer dictates
the fate commitment of the neuroectodermal pri-
mordial cells through a set of crucial signaling
factors like fibroblast growth factor (FGF), Wnt,
Sonic Hedgehog (SHH), retinoic acid (RA), and
bone morphogenetic proteins (BMP) inhibitors
[58, 59]. Generation of neural progenitors from
hESCs are initiated through two culture tech-
niques – (1) embryoid body formation in serum-
free condition and (2) presence of RA mono-
layer culture of ESCs on feeder-free specialized
ECM-coated Petri dishes or coculture with stro-
mal cell cultures. EBs usually mimic gastrulation
processes and express markers from the three
germ lineages [60, 61]. Embryoid body at specific
day points are usually plated on suitable ECM
with NSC media for the neuroectodermal out-
growth to occur. After eliminating the remnant
of the EB, the outgrowth of neural progenitors
can be propagated in the NSC media and defined
ECM. This procedure is explained in detail in
our published work that resulted in a good yield
of neural progenitors from day 4 EBs under
defined culture conditions [62] with more than
95 % population of cells expressing early neu-
ral markers like nestin, Sox2, musashi12, and
negative for pluripotent marker Oct4. Initially,
these cells organize into rosettes and express cell
adhesion molecule N-cadherin [63]. A similar

EB method of differentiation of hESCs to an
enriched yield of NSCs was obtained in cGMP
conditions by Swistowski et al. [64]. These NSCs
could be maintained in xeno-free defined me-
dia for a prolonged period of time while re-
taining their ability to differentiate in vitro into
functional dopaminergic neurons and upon in
vivo transplantation could survive and give rise
to differentiated dopaminergic neurons [65–67].
Transplantation of hESC-derived DA neurons has
been found to attenuate locomotion deficits in PD
rat model. Further analysis has also established
that the increase in THCve cells in the midbrain
is largely generated from grafted neural progen-
itors. Daadi et al. [68] have shown engraftment
of hESC-derived midbrain dopaminergic neurons
in a monkey model of Parkinson’s disease. After
transplantation the TH-expressing cells did not
co-localize with GAD and maintained their DA-
induced phenotype, extended neurite outgrowths,
and expressed synaptic markers.

Besides dopaminergic neuronal differenti-
ation, studies have also shown generation of
different subtype neurons and glial cells of the
CNS [69]. Treatment of these neuroepithelial
cells by RA represses expression of anterior
genes such as Otx2, Foxg1, and Pax6 and
induces posterior Hox genes [70]. In later
neuroepithelial cells (>15 days), this effect of
RA is not seen. Neuroepithelial cells generated
in absence of morphogens shows a dorsal
fate expressing Pax6, Emx1, Ngn2, and Tbr1
but not ventral transcription factor Nkx2.1
indicating a predominant dorsal telencephalic
fate [71]. This dorsal fate is determined by
high levels of Wnt and low levels of SHH
during hESC differentiation to telencephalic
progenitors. The presence of SHH, one of the
crucial morphogens for patterning midbrain DA
neurons, represses the dorsal characteristics and
induces ventral forebrain fate. Vazin et al. have
depicted that SHH also generated GABAergic
neurons [72]. Taking cues from development, it
is also observed during in vitro differentiation of
neural progenitors from hESCs that manipulating
the timing of SHH exposure can give rise
to distinct neuronal populations with specific
transcriptional profiles and neurotransmitter
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phenotypes [72–74]. hESC-derived ventral
forebrain progenitors have been reported by few
groups [75, 76] with highly enriched populations
of NKX2.1:GFP-positive progenitors, including
cells with telencephalic identity. Liu et al. [77]
have shown that hESCs can be differentiated to
NKX2.1(C)medial ganglionic eminence (MGE)-
like progenitor cells which, after transplantation
into the hippocampus of mice with mu P75-
saporin depleted basal forebrain cholinergic
neurons (BFCNs) and GABA neurons in
the medial septum, produced BFCNs that
synaptically connected with endogenous neurons
and generated GABAergic neurons too. In the
presence of low gradients of SHH and Wnts,
the neuroepithelial cells exhibit phenotypes of
LGE cells which express Gsx2 and low levels of
Pax6 but not Nkx2.1 [78]. On removal of SHH,
these LGE progenitor cells can differentiate
to projection GABAergic neurons expressing
GAD 65/67, DARPP32, Meis2, and Ctip2 [78].
Generation of cholinergic neurons from hESCs
has been recently been reported by BMP9
and NGF treatment [79, 80]. Treatment of
neuroepithelia with RA (0.1 �M) in a chemically
defined media for 10–17 days suppresses anterior
transcription factors Otx2 and Foxg1 and
activates posterior transcription factors Hoxb4,
Hoxc5, and Hoxc8. Further ventralization of the
caudal neuroepithelia is brought about by SHH
from day 14–21 resulting in Olig2-expressing
motor neuron progenitors. These progenitors
on removal of RA and SHH express Mnx1,
Lhx3, and Isl1/2, markers for postmitotic motor
neurons [81–83]. Transplantation of hESC-
derived motor neurons into chick embryonic
spinal cord and mouse spinal cord expressed
Nkx6.1 and Mnx1, and the grafted cells survived
after transplantation [83]. Neural progenitors
derived from EBs under IGF-1/insulin signaling
gave rise to retinal pigment epithelial (RPE)
cells and upon transplantation into a rat model
of retinal degeneration resulted in the formation
of a donor-derived RPE monolayer that rescues
photoreceptor cells [84]. Generation of neural
progenitors from hESCs is also achieved by

culturing the cells in a monolayer subjected
to synergistic inhibition of glycogen synthase
kinase3 (GSK3), transforming growth factor
“ (TGF-“), and Notch signaling pathways
by small molecules [85]. The self-renewal of
these neuroepithelial cells can be maintained
in the presence of leukemia inhibitory factor,
GSK3 inhibitor (CHIR99021), and TGF-“
receptor inhibitor (SB431542). Further, they
retain neurogenic potential and responsiveness
to instructive neural patterning cues towards
midbrain and hindbrain neuronal subtypes and
exhibit in vivo integration. Unlike the neuronal
differentiation reported, astroglial differentiation
from hESCs is quite rare. This is primarily
due to the lack of knowledge of astroglial fate
commitment during embryonic development.
Systemic analysis has indicated that astroglial
progenitor markers have been detected after
long-term culturing of the neural progenitors
derived from hESCs specifically maintained in
EGF-containing media. The glial progenitors
express the markers NF1A, S100b, CD44, and
GFAP [86]. Neural progenitors generated from
hESCs cultured in presence of RA and SHH
agonist purmorphamine (Pur) under defined
culture conditions have shown differentiation to
oligodendrocytes by expressing Olig2, Nkx2.2,
and Sox10 [87, 88]. In vivo transplantation of
these glial derivatives has not yet been tested.

Neuronal differentiation is achieved not only
by regulation of external microenvironment but
also through intrinsic regulators. MicroRNA ex-
pression profiling of NPs and neuronal progenies
shows gain- and loss-of-function of miR-153,
miR-324-5p/3p, and miR-181a/a that contribute
to the shift of NPs from self-renewal to neuronal
differentiation. Stappert et al. [89] have shown
that miR-125b and miR-181a specifically pro-
mote the generation of neurons of dopaminer-
gic fate, whereas miR-181a inhibits the devel-
opment of this neurotransmitter subtype. Studies
have also shown conditional induction of mas-
ter key transcription factors along with extrinsic
cues for faster generation of specialized neuronal
cells.
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Differentiation of Human-Induced
Pluripotent Stem Cells (iPSCs)
to Neuronal Cells

It was long believed that once programmed to
commit to a specialized differentiated cell type,
cells rarely undergo dramatic fate changes in vivo
as a result of an irreversible loss of developmental
potency. However, with the advent of nuclear
transfer technology, the cloning of an animal
from the nucleus of a terminally differentiated
cell explicitly proved that epigenetic modifica-
tions to the genome acquired during development
are reversible and that nuclei from even the
most functionally specialized cells maintained
the potential to generate an adult organism.
Further, pathbreaking work by Yamanaka’s
research group showed that a combination of
four transcription factors (Oct4, Sox2, Klf4,
and cMyc) was sufficient to reprogram diverse
somatic cell types in vitro to a pluripotent
state [90]. These newly reprogrammed cells
are known as induced pluripotent stem cells
(iPSCs). Reprogramming to pluripotency showed
a return to the developmental “ground state”
mirroring the features of ESCs. Differentiation
of these cells to a neuronal lineage too follows a
similar combination of induction factors that are
required to differentiate hESCs. The process
of neuronal differentiation for iPSCs begins
with the initiation of primitive neuroectoderm
which is manifested by rosette formation. The
developmental clock of the rosettes show onset
of early neural markers OTX2, PAX6, Sox1,
Nestin, NR2F1, NR2F2, and IRX2 followed
by glial-like cells at the later day points [91].
Moreover, the cells that emerged from the
rosettes during spontaneous differentiation were
capable of differentiating into dopaminergic
neurons in vitro and into mature-appearing
pyramidal and serotonergic neurons weeks after
being injected into the motor cortex of NOD-
SCID mice. For some human iPSCs that do not
differentiate efficiently to neural progenitors,
inhibition of BMP by Noggin and SB31542 has
been used to increase yield [92, 93]. hiPSCs were
also differentiated by coculturing them with rat

primary neuronal and glial cells and on matrigel-
coated tissue culture dish with differentiation
medium [94]. Distinct maturation properties were
attained depending on the protocol used, and
functional maturation was achieved the best when
cultured along with primary neuronal culture.
hiPSCs have been efficiently differentiated
to region and transmitter-specific neuronal
cells including glutamatergic, GABAergic,
cholinergic, dopaminergic, and motor neurons
as well as astrocytes and oligodendrocytes
[95, 96]. The neural progenitors derived from
hiPSCs upon transplantation into the fetal mouse
brain migrated into various brain regions and
showed in vivo differentiation into glutamatergic,
GABAergic, and dopaminergic subtypes. Even
differentiated Parkinson patient-derived iPSCs
grew in the adult rodent brain and reduced
motor asymmetry in Parkinsonian rats [97, 98].
A recent detailed gene expression microarray
study indicated that expression of ion channels
such as voltage-gated Ca2C, NaC, and KC
channels, ionotropic neurotransmitter receptors,
and ionotropic purinergic receptors is distinctly
upregulated in the differentiated progeny of
iPSCs in comparison to the starting cell type [99].
Furthermore, electrophysiological recordings
and morphological analysis showed that the
grafted cells had attained neuronal integration
and synaptic activity. Also, neuroepithelial cells
derived from hiPSCs after grafting in stroke-
damaged brain have shown improvement in
recovery [100]. Transplantation of neuroep-
ithelial cells obtained from hiPSCs has also
shown improvement of neurological function in
rats with experimental intracerebral hemorrhage
[101], and differentiation of neural progenitors
derived from hiPSCs in a transgenic rat model
of ALS carrying a human mutated SOD1
(G93A) was reported by Popescu et al. [102].
In a recent study, successful differentiation of
hESCs and hiPSCs to retinal ganglion cells
in the presence of Notch inhibitor N-[N-(3,5-
difluorophenacetyl)-l-alanyl]-S-phenylglycine
t-butyl ester (DAPT) has been reported [103].
Neural crest progenitors were also derived
from iPSCs and compared with those from
hESCs, followed by differentiation to functional
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Schwann cells [104]. More than the therapeutic
use of neural progenitors derived from hiPSCs,
this in vitro cell-based technology is in the
spotlight to reproduce cellular models of poorly
understood diseases – such as Down syndrome,
Friedreich’s ataxia, Gaucher disease [105–
107], amyotrophic lateral sclerosis [108], spinal
muscular atrophy [109], Parkinson’s disease
[110, 111], schizophrenia [112], Huntington’s
disease [110], and Alzheimer’s disease [113].
Furthermore, correction of genetic mutations in
disease-specific iPS cells can rescue phenotypes
in cultured cells [111, 114] or in mouse models
of human diseases, such as sickle cell anemia
[115]. The advent of iPSCs brought about an
opportunity to study for the first time the cell
biology and genetics of neurons derived from
any individual. Furthermore, by recapitulating
in vitro developmental steps for neuronal cells,
it can provide indication for factors responsible
for typical and atypical development. Fibroblasts
of patients suffering from these diseases can
be efficiently converted into iPSCs that are
then differentiated into neurons to study the
pathogenesis of these diseases (reviewed in [116–
118]. Dimos et al. [108] derived iPSCs from
an 82-year-old ALS patient, and these patient-
specific iPSCs were efficiently differentiated
even to motor neurons, the cell type destroyed
in ALS. Cellular models are also made on
neural progenitors generated from hiPSCs
derived from fibroblasts of patients with central
nervous system neuropathies [119, 120]. The
studies reporting neuronal differentiation from
pluripotent stem cells are listed in Table 1.

Direct Reprogramming
of Fibroblasts to Induced NSCs
(iNSCs) or Neural Progenitors (iNPs)

The primary limitation related to derivation of
functional neuronal cells from hESCs and hiP-
SCs is the involvement of multiple steps, vari-
ability, and slow procedures. Generating neurons
by differentiation of hESCs or iPSCs requires
months of tissue culture procedures and renders
large-scale studies difficult [90]. Moreover, the

differentiation protocols are dependent on spe-
cific chemicals or growth factors such as pharma-
cological agents and bioactive proteins that may
vary in consistency, thus introducing a further
element of variability [120] and can form ter-
atomas in vivo. This has led to the advent of direct
lineage conversion or reprogramming to lineage-
specific stem/progenitor cells of another germ
layer in one step, bypassing the intermediate
pluripotent stage, and these cells in the neuronal
lineage are known as induced neurons (iN).

To reprogram fibroblasts to NSCs, two broad
approaches have been used (Fig. 4). Thier et al.
[121] used the same four factors (Oct4, Sox2,
cMyc, and Klf4) applied for iPSC reprogram-
ming but restricted Oct4 expression for the first
5 days using either protein transduction or mRNA
transfection. This method tried to create a sce-
nario in which reprogramming intermediates that
have begun to acquire pluripotency are placed un-
der the control of three factors (Sox2, cMyc, and
Klf4). Sox2, which is known to strongly regulate
neuroectodermal development with concomitant
inhibition of mesendodermal development [122],
in turn led to the acquisition of an NSC fate by
the presumed pluripotent intermediates. Concep-
tually, this method is similar to that taken by Kim
et al. to produce induced neural progenitors from
fibroblasts [123] although well-controlled Oct4
expression in this study allowed the generation
of tripotent induced neural stem cells (iNSCs).
These iNSCs have extensive self-renewal capac-
ity in comparison to the bipotent cells with lim-
ited passaging ability. Han et al. [124] and Lujan
et al. [127] took a different approach for this
direct conversion of fibroblasts. Each of these
two groups started with a list of 11 candidate
factors that resulted in generation of iNSCs or
induced neural progenitor cells (iNPCs). The sys-
tematic elimination of factors narrowed the list
down to the minimum combination of factors
required. Han et al. identified four factors (Sox2,
cMyc, Klf4, and Brn4/Pou3f4), whereas Lujan
et al. arrived at a three-factor combination (Sox2,
FoxG1, and Brn2). Both the nonuse of Oct4
and the inevitable role of Sox2 are noteworthy.
In fact, Ring et al. [125] managed to generate
iNSCs from mouse and human fibroblasts by
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Fig. 4 Schematic representation of cell reprogramming approaches by introducing different sets of genes, adopted by
different scientific research groups for deriving iNSCs or iNPCs from fibroblast cells

using the single factor Sox2 for reprogramming.
In 2011, Pang et al. [126] reported a detailed
method of reprogramming by screening a pool
of 19 genes. Their study suggested that Ascl1
alone was sufficient to induce neuronal traits in
fibroblasts, but the combination of Ascl1, Brn2,
and Myt1l provided the best efficiency of repro-
gramming to iNSCs [126]. The iNSCs possess
surprisingly robust self-renewal capability, with
up to 130 passages reported in culture [124].
The iNSCs and iNPCs can undergo trilineage
differentiation (neuron, astrocyte, and oligoden-
drocyte) in culture that when transplanted give
rise to neuronal and glial progenies. This is con-
sistent with their gene expression signatures that
resemble endogenous NPCs. Lujan et al. reported
successful myelination by oligodendrocytes dif-
ferentiated from iNPCs. Further in the same year
Caiazzo et al. reported the generation of differen-
tiated functional dopaminergic neurons by direct
conversion from mouse and human fibroblasts.
Direct conversion in vivo for generation of iNSCs

has also been reported recently [128, 129]. Trans-
planted human fibroblasts and human astrocytes
engineered to express inducible forms of neu-
ral reprogramming genes converted into neurons
when these genes were activated after transplan-
tation [129]. Using a transgenic mouse model to
specifically direct expression of reprogramming
genes to parenchymal astrocytes residing in the
striatum, it was shown that endogenous mouse
astrocytes can be directly converted into neuronal
nuclei (NeuN)-expressing neurons in situ. This
provides evidence that direct neural conversion
can take place in the adult rodent brain when
using transplanted human cells or endogenous
mouse cells as a starting point for neural con-
version. Similarly, hiNPs transplanted to lateral
ventricle were able to differentiate into NeuN-
positive terminal neurons just by responding to
induction of the surrounding environment. These
differentiated terminal neurons were found in
a variety of locations, displaying their migra-
tion ability in the brain [130]. Direct lineage
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conversion is not only restricted to NSCs or
neural progenitors but also for terminally dif-
ferentiated specialized neuronal cells. A recent
report [131] showed that two small molecules
(forskolin and dorsomorphin) enable the tran-
scription factor Neurogenin-2 (NGN2) to convert
human fetal lung fibroblasts into cholinergic neu-
rons with high purity (>90 %) and efficiency (up
to 99 % of NGN2-expressing cells). These human
induced cholinergic neurons (hiCN) show mature
electrophysiological properties and exhibit mo-
tor neuron-like features, including morphology,
gene expression, and the formation of functional
neuromuscular junctions. NSCs exist in vivo in a
highly regionalized manner and produce region-
specific neuronal types, and it appears that iNSCs
may also share this regional identity. Han et al.
reported strong expression of ventral hindbrain
markers in the iNSCs generated by Sox2, cMyc,
Klf4, and Brn4/Pou3f4. Although the reason for
this hindbrain signature is unclear, one can imag-
ine that region-specific factors could be deliber-
ately added to the reprogramming mix, directly
inducing region-specific iNSCs that are both ex-
pandable and able to produce defined neuronal
subtypes. Such a scenario could give iNSCs a
potential advantage over iPSCs.

Differentiation of Mesenchymal
Stem Cells

Mesenchymal stromal cells (MSCs) are multipo-
tent somatic stem cells shown to reside within
the connective tissues of most organs. These non-
hematopoietic stem cells are tissue specific and
more restricted than embryonic stem cells in
terms of differentiation. MSCs are regarded as
strong candidates for cell replacement therapies
because of their ability to self-renew, differentiate
to multilineage, migrate and home in on injury
sites, and for being immunomodulatory [132–
134]. MSCs were first derived from bone marrow
by Friedenstein et al. in 1976 [135]. These cells
were characterized based on plastic adherence,
marker expression, and the ability to differentiate
to adipogenic, chondrogenic, and osteogenic lin-
eages [136]. Although BM-MSCs are preferred
for therapies, the procedure for procurement of

bone marrow is extremely invasive and painful
for patients. Apart from the bone marrow, MSCs
are also located in adult and fetal tissues (Fig. 5).
There are an increasing number of reports de-
scribing their presence in adipose tissue [137–
139]; periodontal tissues such as dental pulp,
dental ligament, follicle, and papilla [137, 140];
peripheral blood [141]; umbilical cord Whar-
ton’s jelly, cord blood, and chorionic villi of the
placenta [142–145]; amniotic fluid [146]; fetal
liver [147]; and lung [148]. The stromal cell
population isolated from these tissues of origin
need to be characterized by the set of MSC
criteria such as plastic adherence; expression of
CD105, CD73, and CD90; negative expression
of CD45, CD34, CD14 or CD11b, CD79 alpha
or CD19, and HLA-DR surface molecules; and
in vitro differentiation to osteoblasts, adipocytes,
and chondroblasts [149]. These cells have re-
ceived extensive attention in the field of tissue
engineering and regenerative medicine due to
their availability and multilineage potential.

MSCs being a connective tissue derivative
obviously show differentiation potential towards
mesoderm lineage. However, recent studies sug-
gest that MSCs have the capacity to transdifferen-
tiate to cells of the other two lineages too (Fig. 5),
including islet cells, myoblasts, cardiomyocytes,
hepatocytes, and neuronal cells [150–156]. A
microSAGE analysis of 2,353 expressed genes in
a single cell-derived colony of undifferentiated
human mesenchymal stem cells reveals mRNAs
of multiple cell lineages [157]. Although NSCs
or neural progenitors have been successfully gen-
erated from ESCs [62, 74] and iPSCs [158, 159],
differentiating MSCs to functional neuronal cells
is considered to be more difficult as it is a more
committed cell type.

In Vitro Neuronal Differentiation
of MSCs

Neuronal Differentiation Using
Extrinsic Cues

In vitro neuronal differentiation of MSCs or
adult stem cells (ASCs) is performed primarily
to estimate the neuronal plasticity of these
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Fig. 5 Schematic representation of isolation of MSCs from adult and fetal tissues and their differentiation potential to
different lineages

cells under defined regulated environment.
Studies on differentiation of MSCs to neuronal
phenotype have typically followed two broad
approaches – modulating the microenvironment
by extrinsic cues and delivery of key transcription
factors along with extrinsic cues to obtain better
efficiency and yield [160]. The extrinsic cues
used by researchers for the past decade portray a
vast diversity – ranging from chemical inducers
to embryonic growth factors and conditioned
media from rodent primary neuronal and glial
cultures. Woodbury et al. [161] were the first
group to report neuronal differentiation from
BM-MSCs. They obtained a fast transition
of neuronal phenotype under the influence of
chemical induction such as dimethyl sulfoxide
(DMSO), butylated hydroxyanisole (BHA), and
“-mercaptoethanol (BME). However, studies
by Lu et al. [165] in 2004 indicated that pure
chemical exposure of MSCs induces neuronal-

like morphology but does not yield functional
neurons and additionally leads to cell toxicity
and cell shrinkage. Several other neuronal
differentiation protocols involving 3-isobutyl-
1-methylxanthine (IBMX), bFGF, dimethyl
sulfoxide (DMSO), butylated hydroxyanisole
(BHA), or epigenetic reprogramming by 5-
azacytidine [163] reported rapid changes in
morphology with rounded cell bodies, which
were eventually reversible in the absence of
the induction factors and showed drastic cell
death with time [163]. Although 5-azacytidine
treatments showed neuronal morphology by day
4, here too the decrease in cell density with time
is noteworthy [163]. The cytoskeletal changes
resulting in pseudo-neuronal morphology thus
indicated cell toxicity. So, the use of embryonic
morphogens and neurotrophic factors for
neuronal differentiation of MSCs started gaining
favor. Trzaska et al. depicted that BM-MSCs
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exposed to midbrain cues (SHH and FGF8) were
capable of differentiating them to dopaminergic
neurons [164]. These ontogenically relevant cues
were also used by Datta et al. (2011) to assess the
neuronal plasticity of WJ-MSCs in comparison
to BM-MSCs. The author’s group [155, 156]
in their study has shown phenotypical and
functional characterization of BM-MSCs, WJ-
MSCs, and DPSCs, not only in the presence of
the morphogens but also when the differentiated
cells were maintained in maintenance medium
(absence of the morphogens). The MSCs from
all the three sources spontaneously showed
abundant expression of early neuronal markers
such as nestin, musashi12, and A2B5 along
with the mesenchymal markers. Upon induction,
the upregulation of mature neuronal markers
“-tubulin III and Map2ab was followed by
a decrease in these early neuronal markers.
Moreover, a distinct increase in dopaminergic-
specific transcription factors (En1, Nurr1, Pitx3)
and dopaminergic marker TH was observed.
Functionally these cells could secrete dopamine
constitutively and upon stimulation with ATP.
The differentiated DPSCs though could secrete
dopamine upon KCl stimulation too, in turn
indicating the presence of purinergic receptors
and potassium ion channels in the induced cells.
In mature neuronal cells, the neurotransmitter is
stored in vesicles within the cell and its release
can be triggered by the influx of intracellular
Ca2C. The midbrain cues were thus capable of
inducing the DPSCs to excitable cells, mimicking
the physiology of neurotransmitter release of
native neurons [156].

Studies have also targeted the signaling
pathways for neural differentiation of MSCs by
providing ligand molecules, molecular effectors,
and inhibitors that are involved in upregulating
transcription factors followed by gene expres-
sion. One such pathway frequently targeted for
neuronal differentiation by many research groups
is cyclic adenosine monophosphate (cAMP)-
activated PKA (protein kinase A) pathway, which
in the downstream mechanism phosphorylates
CREB followed by regulation of different genes
coded for cFOS, BDNF, and TH in turn aiding
neural differentiation [166–168]. Based on

this evidence, many studies have successfully
induced neural differentiation of BM-MSCs and
UCB-MSCs by using forskolin, dibutyryl-cAMP
(db-cAMP), and 3-isobutyl-1-methylxanthine
(IBMX). These studies determined the expression
of neurofilament (NF), TH isoforms, and nuclear
receptor related 1 (Nurr1) and also showed
significant voltage-dependent ionic currents
[169, 170]. However, the role of cAMP and
the downstream effect in neural differentiation
is not explicitly defined [171, 172]. Forskolin
along with GDNF and embryonic midbrain
morphogens were also used for neuronal
induction of human exfoliated deciduous
teeth (SHED) to differentiate to dopaminergic
neurons [173]. Alexanian et al. [174] used the
combination of small molecules that affect the
regulation of chromatin structure and function
and agents that favor neural differentiation to
generate neural-like cells from human MSCs.
The efficiency of neuronal differentiation and
maturation was improved by two specific
inhibitors of SMAD signaling (SMAD1/3
and SMAD3/5/8) that play an important
role in neuronal differentiation of ESCs and
were added to chromatin-modifying enzymes.
Results demonstrated that human MSCs grown
in these culture conditions exhibited higher
expression of several mature neuronal genes,
formed synapse-like structures, and exhibited
electrophysiological properties of differentiating
neural stem cells [174]. Recent studies have
shown that the inhibition of histone deacetylases
(HDACs) induces the differentiation of diverse
cancer and stem cells which in turn suggests
that HDAC inhibitors may be good candidates
for neuronal induction of MSCs too. Jang
et al. [175] investigated the effects of a HDAC
inhibitor, valproic acid (VPA), for the neuronal
differentiation of BM-MSCs. VPA-treated
MSCs had significant increase in expression
of neuro-progenitor marker nestin, musashi,
CD133, and GFAP. VPA-pretreated MSCs
upon differentiation with neuronal induction
media (VPA-dMSCs) exhibited a cell body and
dendritic morphology similar to neurons and
neuronal-specific marker genes, including nestin,
musashi, CD133, GFAP, NeuN, MAP-2, NF-M,
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KCNH1, and KCNH5, but no functional study
is reported. Some studies have also shown that
MSCs cultured in the presence of rodent primary
neuronal or glial culture-conditioned media or as
coculture enhanced the expression of neuronal
markers in the MSCs [177]. This could be due
to the presence of potentially rich sources of
neuronal differentiation promoting signals in the
culture derivatives [178]. However, the use of
rodent culture derivatives not only introduces
undefined additives but is also xenogeneic.

Neuronal Differentiation Using
a DefinedMedium Composition

Researchers have also targeted enriching
neuronal marker expression in MSCs by culturing
them in suspension culture in NSC medium
consisting of serum-free media with bFGF
and EGF [176, 178]. MSCs, ADSCs, and
DPSCs were capable of forming neurosphere-
like structures and expressed neural progenitor
markers in these conditions. Some studies have
used the NSC media to prime the MSCs or ASCs
towards neuronal lineage followed by ontogenic
morphogens and growth factors as induction
factors [179]. Besides specialized dopaminergic
neuronal cells, MSCs have been differentiated to
cholinergic cell types as well. The spindle-shaped
or fibroblast-like WJ-MSCs changed into bulbous
cells and positively expressed cholinergic
neuronal markers, along with elevation of
secretion of acetylcholine in the induced WJ-
MSCs [180]. Transdifferentiation of BM-MSCs
to cholinergic neurons was also demonstrated by
Naghdi et al. [181] by the use of BME and NGF.
This treatment with BME led to the generation
of NF68-positive neuroblasts, which generated
close to 80 % cholinergic marker-positive cells
upon addition of NGF. When treated with
neuronal induction medium consisting of brain-
derived neurotrophic factor (BDNF), low-serum
media and supplemented with hippocampal
cholinergic neuro-stimulating peptide (HCNP)
or rat denervated hippocampal extract (rDHE)
or in combination, it enhanced the action of
choline acetyltransferase (ChAT) [182]. A new

multistep induction protocol has been reported
by Darabi et al. [183] for the transdifferentiation
of bone marrow stromal stem cells into
GABAergic neuron-like cells. Rat BM-MSCs
were pre-induced using “-mercaptoethanol
(BME) and induced using retinoic acid (RA)
and creatine. Immunostaining of neurofilament
200 kDa, neurofilament 160 kDa, nestin,
fibronectin, gamma-aminobutyric acid (GABA),
and glutamic acid decarboxylase (GAD) 65/67
was performed in the induced MSCs. Neuronal
differentiation has been attained by adipose-
derived stem cells too. Factors like bFGF, EGF,
insulin, retinoic acid, and hydroxycortisone
have been used for neuronal differentiation of
AD-MSCs [184–186]. AD-MSCs expressed
sodium current on treatment with bFGF and
forskolin by increasing the intracellular cAMP
levels, which was found to be useful in neural
induction [171, 187]. A recent study has shown
neuronal induction of ADSCs using BME, glial
cell line-derived neurotrophic factor (GNDF),
brain-derived neurotrophic factor (BDNF),
retinoic acid (RA), 5-azacytidine, as well as
their combinations [188]. NSC media consisting
of EGF and bFGF along with IBMX and
BDNF have also been used for ADSC neuronal
induction [189]. A few studies have demonstrated
the differentiation of MSCs towards glial cell
type as well. A recent study has shown that
norepinephrine, a neurotransmitter, when added
in vitro can generate oligodendrocytes from the
umbilical cord-derived multipotent progenitor
cells in a three-dimensional environment [190].
Researchers have also shown that BM-MSCs
and ADSCs can differentiate into Schwann-like
cells (SLC) that have the potential to myelinate
neuronal cells during regeneration [191].

Direct Conversion of MSCs
to Neuronal Cell Types
by Transduction

Apart from these studies, various other strategies
have been employed to obtain neural cells
types from different sources of MSCs. It
has been shown that the microRNAs play an
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Chemical induction using IBMX,BME,
BHA, Valporic acid and db-cAMP

Factors like FGF8,Shh,BDNF,GDNF,
RA and neurotropin

neurons

Astrocytes

Combination

Oligodendrocytes

Neurospheres

Neuroblasts

AD’MSCs

BM’MSCs

DPSCs

WJ’MSCs

Schwann
cells

Direct conversion by transduction of
genes like LMX1a, TRAIL etc

Defined media with
EGF, bFGF

Fig. 6 Schematic representation of various in vitro neuronal induction strategies being reported in literature for
obtaining differentiated neuronal and glial cells from adult and fetal tissue-derived stem cells

important role in the neuronal differentiation
of WJ-MSCs [192]. These small RNAs of
18–24 nucleotides in length were involved in
the regulation of gene expression and found to
enhance motility and oxidative phosphorylation
in neural cells derived from the WJ-MSCs.
Studies aiming at the direct insertion of target
genes for differentiation have also been reported.
Transcription factor such as Neurogenin-1 was
effective in converting MSCs into neuron-specific
protein-expressing cells [193, 194]. The lentiviral
delivery of transcription factor LMX1a showed
enhancement of dopaminergic phenotype in
differentiated human BM-MSCs [193, 194].
These neurons could synthesize higher level
of the enzyme tyrosine hydroxylase (TH). It
has been shown that the neuron-restrictive
silence factors promote neural differentiation
with enhanced electrophysiological properties
[195]. AD-MSCs transfected with TRAIL
(tumor necrosis factor-related apoptosis-inducing

ligand) showed therapeutic efficacy against
brainstem gliomas, and these MSCs were able
to differentiate into neural cell types, thus
reducing the tumor volume in vivo [196]. The
schematic representation depicting the various
in vitro neuronal induction strategies adopted
for transdifferentiation of adult and fetal tissue-
derived stem cells to differentiated neuronal and
glial cells is provided in (Fig. 6). The in vitro
neuronal differentiation studies discussed over
here is summarized in Table 2.

In vitro studies on neuronal differentiation
clearly demonstrate that MSCs and adult tissue-
derived stem cells possess a certain extent of neu-
ronal plasticity and can respond to ontologically
relevant embryonic cues. However, for transplan-
tation in vivo, the microenvironment cannot be
controlled as the embryonic developmental clock
and most of the embryonic cues and morphogens
would not be available. The in vitro neuronal
plasticity of MSCs was indeed replicated in
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Table 2 List of in vitro neuronal differentiation studies from mesenchymal stem cells isolated from different adult and
fetal tissue sources

Mesenchymal
stromal cells Defined factors Results References

BM’MSCs Dimethylesulfoxide,
butylatedhydroxyanisol,
“-mercaptoethanol

Neuronal like cells positive for
Enolase, NeuN, Tau and
Neurofilament-M.

Woodbury et al. [161]

BM’MSCs Dimethylesulfoxide,
butylatedhydroxyanisol,
“-mercaptoethanol, high molarity
sodium chloride, detergent

Neuronal like morphology due to cell
shrinkage and toxicity, positive for
NeuN and NF-M but described to be
Non functional neurons.

Lu et al. [165]

BM’MSCs Dimethylesulfoxide,
butylatedhydroxyanisol,
“-mercaptoethanol

Non functional Neuronal like cells
positive for NF-200, S100“,
(“III-tubulin, NSE and MAP2.
Negative for Na(C), K(C) currents
and action potentials

Barnabe et al. [162]

DPSCs bFGF, 5-azacytidine, db-cAMP,
neurotrophin-3 and supplementary
components

Neuronal like cells expressing
Neurogenin-2, NSE, NF-M, GFAP
and positive for active
voltage-dependent channels.

Kiraly et al. [163]

BM’MSCs Midbrain cues such as SHH and
FGF8

DA like neurons positive for TH,
Pitx3, nurr1, DAT and VMAT2and
also expressed NeuN and beta III
tubulin

Trzaska et al. (2007,
2011)

BM’MSCs,
WJ’MSCs and
DPSCs

SHH, FGF8 and bFGF Assessed the early neuronal markers
in naive MSCs from three sources,
obtained neuronal like cells
expressing EN1, Nurr1, Pitx3 and
TH. Studies also showed the
functional DA neurons through the
dopamine release and increase of
intracellular calcium

Datta et al. [155, 156]

BM’MSCs &
UCB’MSCs

Forskolin, dibutyryl-cAMP
(db-cAMP) and (IBMX)

Cells were positive for NF-M, TH
isoforms and nuclear receptor related
1 (Nurr1) and also showed significant
voltage dependent ionic currents

Wang et al. [169] and
Lepski et al. [170]

DPSCs(SHED) SHH, FGF8, Forskolin and GDNF Dopaminergic cells positive for beta
III tubulin nestin, TH and MAP2

Wand et al. [173]

BM’MSCs Trichostatin A (TSA) RG-108,
8-BrcAMP 1 �M Rolipram

DA like neurons expressing Nurr1
and TH. Also determined the
secretion of neurotrophins and
dopamine

Alexanian et al. [174]

BM’MSCs Combination of histone
deacetylase and valproic acid

Neural progenitors positive for nestin,
Musashi, CD133, and GFAP, NeuN,
Map2, NF-M, KCNHl and KCNH5

Jeong et al. (2013)

BM’MSCs bFGF and EGF Neurospheres which was positive for
nestin and musashi were co cultured
with primary neurons and obtain
specific neural cell type

Fu et al. [176]

WJ’MSCs bFGF and EGF Neurospheres positive for neural
progenitor markers nestin, Sox2 and
Pax6 transcription factors. When
differentiated on fibronectin coated
dishes these were able to generate
neuron/glial - like cells which
expressed Nfl, Map2 and GFAP

Balasubramanian
et al. [178]

(continued)
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Table 2 (continued)

Mesenchymal
stromal cells Defined factors Results References

DPSCs EGF, FGF, ITS, retinoic acid Neural progenitors positive for
Nestin, beta 3 tubulin, EGF, FGF,
ITS, retinoic acid Neuronal Nestin,
PSA-NCAM,

Arthur et al. [179]

BM’MSCs FGF“, BDNF, EGF and NGF Cholinergic neurons positive for
GAP-43, NF-H, Neu-N

Naghdi et al. [181]

WJ’MSCs BDNF, Low serum media,
hippocampal cholinergic
neuro-stimulating peptide or
hippocampal extract and in
combination

Functional cholinergic like cells were
obtained with enhanced ChAT and
secretion of Ach

Zhang et al. (2012)

BM’MSCs “ mercaptoethanol (BME), retinoic
acid and creatine

GABAergic like cells positive for
NF-200, NF-160, nestin, fibronectin,
GABA and GAD65/67

Darabi et al. [183]

AD’MSCs Valporicacid, insulin,
hydroxyanisole, hydrocortisone,
EGF, FGF.

Neuronal GFAP, Neu-N, nestin, IF-M Schaffler and Buchler
[185] and Safford
et al. [184]

AD’MSCs BDNF and retinoic acid Neuronal cells positive for MAP 2,
Neu-N, nestin, GalC, S 100, GFAP,
TH

Anghileri et al. [186]

AD’MSCs bFGF and EGF Neuronal cells positive for Nestin,
Sox2, vimentin, A2B5, GFAP, tuj1.

Lim et al. (2010)

AD’MSCs bFGF, forskolin, ciliary
neurotrophic factor, GDNF.

Neuronal cells positive for Map-2ab,
NF-M, GFAP, GalC, O4, TH, DAT

Kim et al. [187] and
Rooney et al. [171]

AD’MSCs BME, GDNF, BDNF, RA and
5-azacytidine and combinations

Neural cells expressed nestin, BIITub
& ENO2. In vivo brain promoted their
migration from the transplantation
site to the recipient cerebral
parenchyma.

Pavlova et al. [188]

AD’MSCs 1st step-EGF, bFGF with IBMX,
BDNF; 2nd step-BDNF

Both induced Neural cells were
positive for GFAP and TUJ1 markers
but 1st step method showed higher
expression then 2nd step method

Ying et al. [189]

WJ’MSCs Defined medium containing the
neurotransmitter norepinephrine
(NE)

Under two-dimensional conditions,
differentiated into oligodendrocyte
precursors. In a three-dimensional
environment, the MLPCs
differentiated into committed
oligodendrocytes that expressed
myelin basic protein

Hedvika et al. [190]

AD’MSCs Glial growth factors (GGF-2,
bFGF, PDGF and forskolin

Spindle-like morphology similar to
Schwann cells, expressed the glial
markers, GFAP, S100 and p75, When
co-cultured with NG108-15 motor
neuron-like cells, induced neurite
growth in NG108-15 cells

Mantovani et al.
[191]

AD’MSCs “-mercaptoethanol, all-trans-RA,
and mixture of forskolin, bFGF,
PDGF and heregulin

Schwaan like cells express S100 and
GFAP. Enhance neurite outgrowth in
co-culture with sensory neurons

Jiang et al. [87]

(continued)
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Table 2 (continued)

Mesenchymal
stromal cells Defined factors Results References

WJ’MSCs B27 supplement, RA, and bFGF
and carried out miRNA analysis

Gene Ontology database showed that
136 genes were associated with cell
motility, energy production, oxidative
phosphorylation and actin
cytoskeleton organization, indicating
that miR-34a plays a critical role in
cell migration

Chang et al. [192]

BM’MSCS LMX1a transduction LMX1a protein was concentrated in
the cells’ nuclei and specific
dopaminergic developmental genes
were upregulated, expressed higher
levels of tyrosine hydroxylase, and
secreted significantly higher level of
dopamine

Brazilay et al. [193]

AD’MSCs TRAIL transduction Type of cells assessed Astrocyte,
oligodendrocyte positive forTuj 1,
GFAP, CNPase, adiponectin,
sialoprotein. Efficacy was tested In
vivo and In vitro

Choi et al. [196]

in vivo embryonic brain. Muñoz-Elias et al.
[197] for the first time had demonstrated
that both rat and human BM-MSCs assume
neuronal functions in vivo in an embryonic CNS
microenvironment. The transplanted adult MSCs
not only survived and migrated in embryonic
day 15.5 (E15.5) rat ventricles in utero but also
differentiated in a regionally and temporally
specific manner. Transplantation of MSCs
during the gliogenic clock in neonatal mouse
brains showed that BM-MSCs could migrate
throughout the forebrain and cerebellum and
differentiate into astrocytes after injection [198].
The in vivo differentiation of MSCs to neuronal
cells thus gets restricted from embryonic to
neonatal and then for adult CNS. The analysis
of postmortem brain samples from females who
had received bone marrow transplants from male
donors showed that marrow cells can enter the
brain and generate new neurons just as rodent
cells do [199]. The underlying diseases of the
patients were lymphocytic leukemia and genetic
deficiency of the immune system, and they
survived between 1 and 9 months after transplant.
This was one of the first indicative studies
suggesting the neuronal plasticity of marrow cells
and probable neurogenic environment of the adult
CNS. Most studies reported have targeted the

transplantation of undifferentiated MSCs in the
disease or injury model, and some studies have
transplanted these MSCs after priming the cells
with neuronal induction cues or growth factors.
DPSCs upon transplantation in neurogenic area
of the CNS, hippocampus, of mice underwent
proliferation and maturation, forming NPCs and
neurons [200]. Transplantation of these cells in a
nonneurogenic area of the CNS shows survival,
engraftment, and improvement of behavioral
scores of the disease rodent model but rarely
shows differentiation to mature neuronal cell
type. An early study in 1998 [201] showed
engraftment and migration of human BM-MSCs
implanted in the brains of albino rats – similar to
astrocyte grafts. Human SHED derived stem
cells and WJ-MSCs transplanted post-neural
induction with SHH, FGF8 have differentiated
into dopaminergic neurons in vivo and further
elevated the dopamine content [179, 176, 173].
Regeneration by neural-induced human BM-
MSCs in rat models of Parkinson’s disease has
also been reported [202–204]. MSCs treated with
stromal derived factor-1 (SDF-1) increased the
release of dopamine and also helped in preserving
the TH-positive cells [205] in Parkinsonian
rat model. hMSC treatment had a protective
effect on progressive loss of dopaminergic
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neurons induced by MG-132 in vivo through
differentiation and trophic effect [206]. Human
umbilical cord MSC-derived neuron-like cells
have shown rescue of memory deficits and
reduced amyloid-beta deposition in an A“PP/PS1
transgenic mouse model [207]. In addition,
neuroectodermally converted BM-MSCs led
to decrease of A“ peptides by regulation of
two genes F-spondin and neprilysin [208].
All these data suggest that MSCs induced by
recently developed methodologies could be a
potential source of cells to replace damaged
neurons and glia in injured spinal cord and/or
to promote cell survival and axonal growth
of host tissue. Protection of dopaminergic
neurons against the neurotoxic effects and motor
deficits was obtained too by transplantation
of undifferentiated ADSCs, WJ-MSCs, and
BM-MSCs in MPTP-induced rats [209–212]
indicating the paracrine neurotrophic effect of
the cells rather than the graft cells differentiating
in the adult CNS. Transplantation of GLP-
1 transected hMSCs in the right ventricle of
double transgenic mice mutant expressing APP
and presenilin-1 showed a reduction in A“40/42
positively stained plaques, and the number of
reactive astrocytes measured in the dentate gyrus
of the hippocampus also decreased [213] again
representing its paracrine effect. Contribution
towards reduction in ischemic damage has
been reported in ischemic stroke mouse model
after transplantation of BM-MSCs and ADSCs
[214, 215]. Bang et al. [216] have reported
that autologous BM-MSC transplantation shows
improvement of Barthel index and Rankin score
in stroke patients. A long-term follow-up study
of intravenous autologous mesenchymal stem
cell transplantation in patients with ischemic
stroke showed clinical improvement (Lee et al.
2010). Presently several clinical studies have
established the safety of transplantation of
autologous BM-MSCs. Four patients showed
a significant slowing down of the linear decline
of the forced vital capacity and of the ALS-
FRS score [217]. The effect of a combination of
autologous undifferentiated and neural-induced
bone marrow mesenchymal stem cells (MSCs)
on behavioral improvement in rats after inducing

spinal cord injury has also been examined. In all
treatment groups (differentiated, undifferentiated,
and mix), there was less cavitation than lesion
sites in the control group. The Basso-Beattie-
Bresnahan (BBB) score was significantly higher
in rats transplanted with a combination of cells
and in rats transplanted with neural-induced
MSCs alone than in undifferentiated and control
rats [218]. Put together, the data obtained from
the in vivo transplantation of MSCs in rodent
models and clinical trials suggests that MSCs
can promote endogenous reparative mechanisms
that may prove applicable and beneficial for
neurodegenerative disease treatment.

Conclusion

Regeneration of neurons in CNS has always re-
mained as an enigma mainly because the neuro-
genic area that exists in the adult brain is deep-
seated, and with currently available techniques, it
is quite unlikely to engineer any modulation and
be of further use in degenerative cases. This also
limits the clinical use of hNSCs for any nervous
system disorder. Important for effective differ-
entiation of neuronal and glial subtypes is the
patterning of primitive neuroepithelial cells. Tak-
ing inspiration from the ontogenic cues, directed
differentiation has been performed from pluripo-
tent stem cells both by modulating the extrinsic
signals and changing the intrinsic master key
transcription factors. Indeed, hESC and hiPSC
neuronal differentiation quite efficiently mimics
the developmental clock, and functional special-
ized neurons have been obtained by several scien-
tific groups across the globe. However, immuno-
logical issues along with the risk of teratoma
formation limit the therapeutic use of pluripotent
stem cell-derived NSCs. MSCs score precisely on
these points over pluripotent stem cells, and thus
studies to determine the neurogenic plasticity of
MSCs have been very much in the spotlight. A
lot of experimental work on MSCs suggests that
they bring about neuro-rescue in a multipronged
way. While there are several research publica-
tions both in vitro and in vivo models, the exact
mechanism of neuroprotection has not yet been
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understood. Moreover, the functional integration
of these differentiated neuronal cells with the
host brain neurons under both normal and disease
CNS environments needs to be further elucidated
to make the use of MSCs as candidates for cell
replacement therapy a clinical reality.
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