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Introduction

According to the National Institute of
Neurological Disorders and Stroke (NIH), there
are found to be 488 neurological disorders
present in the world at the time of writing,
ranging from acid lipase disease to Zellweger
syndrome [1]. No book chapter is equipped
to tackle all of these in detail; however, it
will focus upon the five major neurological
diseases: Alzheimer’s disease, Parkinson’s
disease, Huntington’s disease, Multiple Sclerosis
and Amyotrophic Lateral Sclerosis. The chapter
will begin by summarising the epidemiology,
pathology and disease susceptibilities for each
of these five major neurological diseases. The
chapter will then look in detail at generating
patient-specific cell lines for personalised
medicine, genome editing and the differentiation
protocols necessary for cell replacement therapy
related to the aforementioned neurodegenerative
diseases. This chapter will then look at the
alternative cell sources that have been used as
existing and current cell therapeutic strategies
before summarising with the advantages and
constraints of stem cells in research and clinical
translation. Finally, the chapter will conclude on
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the current research findings with a particular
focus on patient-derived research in Parkinson’s
disease and how different therapeutic strategies
can be targeted at different neurological diseases
focusing on – Parkinson’s disease and multiple
sclerosis – before summarising on the challenges
for stem cell therapy in neurological disorders:
from bench to the bedside.

Neurological Disorders

Alzheimer’s Disease

Epidemiology and Pathology
Alzheimer’s disease (AD) is the most common
age-related neurodegenerative disease in the
world currently estimated to affect 30 million
people, a figure expected to quadruple in 40 years
[2]. In 2010 alone AD was estimated to have cost
the world $604 billion [3]. This staggering figure
will only increase.

Pathologically AD is characterised by three
cardinal changes in the brain: the presence
of amyloid “ (A“) plaques, intra-neuronal
hyper-phosphorylated microtubule-associated
protein tau and the loss of specific neurons and
synapses, principally pyramidal neurons that are
located in the cerebral cortex and cholinergic
neurons of the basal forebrain [4]. However,
as the disease progresses serotoninergic and
noradrenergic neurons are also affected, with
post-mortem tissue showing further loss of
GABA and somatostatin cell types. Loss of these
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neuronal subtypes leads multiple atrophy of these
affected brain regions, often beginning with the
hippocampus and including the entorhinal cortex,
frontal, parietal and temporal cortices [5]. For
further reading on the progressive AD stages,
see Braak and Braak. AD is symptomatically
characterised by a progressive loss in learning,
memory and cognitive decline.

Disease Susceptibility
AD is largely thought to be sporadic with ge-
netic mutations thought to account for 0.5 %
of all AD patients worldwide [1]. Mutations in
three autosomal dominant Mendelian risk genes –
APP, PSEN1 and PSEN2 – are highly penetrant
and lead to an early onset of this disease [1–4].
Mutations in APP result in increased levels of A“

and also change the ratio of cleaved A“ peptides
from 40 amino acids (A“40) to increasing levels
of the more toxic A“42 peptides [5]. The A“42

peptide is more hydrophobic and amyloidogenic
than the A“40 form and leads to increasing amy-
loid fibrillogenesis [1]. Mutations in PSEN1 and
PSEN2 have been found to impair the activity
of ”-secretase that is involved in the cleavage of
APP, which also results in an increased A“42 to
A“40 ratio [6–9]. Mutations in APP, PSEN1 and
PSEN2 account for only 13 % of all early-onset
AD patients [5]. APOE is a moderately penetrant
gene with semi-dominant inheritance [10]. Inher-
iting the ©4 allele, homozygous APOE ©4©4 and
heterozygous APOE ©3©4, increases the risk of
AD 15x and 3x, respectively, compared to the
most common APOE ©3©3 form of the gene [11].

Parkinson’s Disease

Epidemiology and Pathology
Parkinson’s disease (PD) is a multifactorial neu-
rodegenerative disease characterised by the loss
of A9 dopaminergic neurons in the substantia
nigra pars compacta (SNc) of the midbrain. The
presence of intra-cytoplasmic inclusions (Lewy
bodies) is another characteristic feature in those
midbrain dopaminergic neurons (mDA) in the
SNc that remain [12]. PD is the second most
common neurodegenerative disease worldwide;

the results from a 2010 census in the USA found
PD to affect 630,000 people in the USA costing
$14.4 billion in 2010 alone; as the prevalence
to PD is projected to double by 2040 due to an
increased elderly population, this cost will only
increase [13].

The dopaminergic (DA) neurons project from
the SNc to the dorsolateral striatum, caudate and
putamen forming the nigrostriatal pathway that
releases the neurotransmitter dopamine; it is thus
the reduction in the dopamine following the pro-
gressive loss of DA neurons that allows the dis-
ease to manifest and become symptomatic. The
four cardinal motor symptoms that signify the
manifestation of the disease remains the primary
tool of clinical diagnosis: bradykinesia, resting
tremor, rigidity and postural instability. However,
there are many other non-motor symptoms that
are associated with the disease and can often
precede the initial diagnosis, such as depression
and gastrointestinal difficulties. As no PD patient
presents with a homogenous aetiology, PD re-
mains a difficult disease to diagnose without any
of the motor symptoms. At the stage when the
PD has manifested into the characteristic motor
symptoms that precede diagnosis, up to 70 %
of the mDA neurons of the SNc have already
degenerated [14].

Disease Susceptibility
Approximately 90 % of all PD is idiopathic and
thus of an unknown aetiology [15]. However,
there are genetic susceptibility loci and risk genes
attributed to PD, known as the PARK genes, of
which there are 18 identified to date [16]. Two of
these key PARK genes are PARK1/4 (SNCA) and
PARK8 (LRRK2). SNCA encodes ’-synuclein,
a monomeric protein that in its mutated form
undergoes a conformational change from an ’-
helical structure into “-sheets, which aggregate
and oligomerise to form toxic protofibrils that
then fibrilise [12, 17]. Fibrils of ’-synuclein have
been identified as the main components of LBs
and LNs [13, 14]. Duplications and triplications
of SNCA is directly correlated to the earlier onset
and disease severity of familial PD [18–20], with
single nucleotide polymorphisms associated with
an increased risk in sporadic PD [21, 22].
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The most common (>10 %) autosomal dom-
inant locus of PD is LRRK2. LRRK2 is also
the locus most commonly associated with idio-
pathic PD where spontaneous mutations in this
gene accounts for 3.6 % of all idiopathic PD;
the LRRK2 (G2019S) mutation is responsible
for 1–2 % of all these cases [23]. Mutations
in LRRK2 have been implicated with impair-
ments of lysosomal packaging and chaperone-
mediated autophagy [24], reducing the clearance
of ’-synuclein and ubiquitin, leading to pre-
synaptic accumulation and subsequent neuronal
toxicity [25]. Thus dysfunction in both SNCA and
LRRK2 represents two of the main sources of PD;
it is unknown, however, how the dysfunction of
these genes is triggered.

Recent evidence, however, has shown that tau,
a protein heavily associated with Alzheimer’s
disease (AD), enhances the aggregation and tox-
icity of ’-synuclein [26]. This research article
follows a publication [27] that suggests that tau
and A“ interact synergistically with ’-synuclein
in vivo to promote aggregation and accumulation
of each other leading to cognitive dysfunction.

Huntington’s Disease

Huntington’s disease (HD) is a progressive, fa-
tal, monogenic neurodegenerative disorder. HD
is caused by an expansion of a triplet region
of polyglutamine (CAG) repeats in the hunt-
ingtin (HTT) protein; this trinucleotide repeat
then results in the addition of a long stretch of
glutamines (polyQ) near the N-terminus of the
protein [28]. Initially, HD causes loss of medium
spiny neurons (MSN) in the neostriatum before
progressing to loss of entire cortical structures
[29, 30]. Another pathological feature of HD
is astrogliosis [31]. HD is autosomal dominant
and displays age-dependent penetrance with the
increased length of CAG repeats inversely pro-
portional to age of onset with CAG repeat lengths
greater than 36 repeats considered a pathological
threshold [32, 33]. The prevalence of Hunting-
ton’s disease is 4–10 per 100,000 in the Western
world; the mean age of onset is 40 years, with
death occurring 15–20 years from time of onset.

HD patients have progressive motor dysfunc-
tion, cognitive decline and psychological prob-
lems such as suicidal ideation [34].

Multiple Sclerosis

Epidemiology and Pathology
Multiple sclerosis (MS) is a chronic neurode-
generative demyelinating disease. MS affects 2.5
million people worldwide with 80 % of patients
developing a progressive disability and costs the
EU economy AC9 billion per year [35]. There
are two disease-specific symptoms of MS: Lher-
mitte’s symptom, an electrical sensation that runs
down the spine on neck flexion, and Uhthoff’s
phenomenon, a worsening of symptoms due to
higher than usual temperatures [36]. MS is not
localised to any specific region of the brain are af-
fects the cerebellum and cerebellar pathways, op-
tic nerve, brainstem and also the spinal cord. MS
is a demyelinating neuronal disease caused by the
loss of the oligodendrocytes that normally create
and maintain the myelin sheath. MS is in part
a disease of the innate immune system, as fol-
lowing inflammation the blood–brain barrier be-
comes dysregulated, transendothelial leukocytes
cross the blood–brain barrier and become autore-
active: attacking oligodendrocytes; this leads to
the eventual demyelination of neurons and MS
pathology [37].

Disease Susceptibility
The interaction of the Epstein–Barr virus (EBV)
is heavily implicated in aetiology of MS with
almost 100 % of patients analysed in the study
by the Ramagopalan group having previous sero-
logical markers of a past EBV infection [38]. The
environment plays a hugely significant factor in
determining disease susceptibility in MS with the
biggest risk factor being latitude [39]. There is
also an increasing female to male bias that has
markedly increased in 50 years [40]. Although
the role of genetics are not as pivotal in MS
compared to other highly penetrant Mendelian
diseases such as HD, with only a 30 % likelihood
of MS if both parents are sufferers [41], there
is still a genetic link with heterogeneity on the
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major histocompatibility antigen (HLA) class II
complex gene locus MHA-DRB1 being associ-
ated with increased risk of the disease [42, 43].

Amyotrophic Lateral Sclerosis

Epidemiology and Pathology
Amyotrophic lateral sclerosis (ALS) is the most
common adult motor neuron disease, affecting
1:500,000 people worldwide per year [44]. ALS
is fatal, is idiopathic and varies from patient to
patient with loss of both upper motor neurons
(UMN) in the motor cortex and lower motor
neurons (LMN) in the brainstem and spinal cord.
Loss of neurons leads to muscle atrophy with
patients additionally presenting with dysphagia,
dysarthria, spasticity and hyperreflexia symptoms
and an abnormal reflex commonly called Babin-
ski’s sign. The age of onset of ALS is variable but
tends to be after 40 years of age; only 4 % of ALS
patients survive longer than 10 years [45].

Disease Susceptibility
Approximately 10 % of the cases of ALS are
familial [46]. Of those familial cases, mutations
in three genes – superoxide dismutase SOD1
[47, 48], TAR DNA-binding protein-43 (TDP-43)
TARDBP [49] and fused in sarcoma FUS [28,
29] – account for 30 %.

Mutations in TDP-43, encoded by TARDBP,
enhance protein aggregation, fibril formation and
neurotoxicity in ALS [30]. TDP-43 also behaves
as a prion with intracellular TDP-43 exhibiting
seed-dependent and self-templating aggregation,
with propagation of TDP-43 aggregates via the
exosome [31]. The SOD1 mutations in ALS are
fascinating as they show that the motor neurons
are selectively degenerated via astrocytic- and
microglial-mediated toxicity [32, 33]. The origi-
nal study by the Przedborski group and follow-up
papers have shown that when the mutant SOD1
is carried on motor neurons, fibroblasts, cortical
neurons and myocytes, they do not cause toxic-
ity; similarly SOD1 mutated astrocytes and glial
are not toxic to spinal GABAergic, dorsal root
ganglion neurons or hESC-derived interneurons,
therefore implicating ALS as a non-autonomous
neurodegenerative disease [32–37].

Stem Cell Therapy for Neurological
Disease – Introduction

An advantageous route in which to research and
subsequently treat neurological disorders and
neurodegenerative diseases is to recapitulate in
vitro the endogenous, patient-derived cell type
where the disease is present and prevalent in
vivo, thus determining the reason(s) for their
specific vulnerability and selective degeneration.

Existing ways to elucidate and research the
disease phenotype typically involve post-mortem
tissue sections, neuroblastoma cell lines, non-
human animal models, including small rodents,
yeast, drosophila and zebrafish and non-human
primary culture cell lines. All of these various
research sources have been useful and valuable in
studying the disease further; however, no research
strategy is without limitation. The increasing use
of stem cell therapy, particularly from patient-
derived induced pluripotent stem cells (iPSCs)
in countless groups around the world, should
lead to further understanding and hopefully better
treatment of these complex progressive chronic
neurological diseases.

The reprogramming of the patients’ somatic
cells, typically fibroblasts from a skin biopsy,
to a pluripotent, neural precursor or terminally
differentiated cell type, or the differentiation of
the pluripotent or neural precursors cells into the
terminally differentiated cell type.

Once the terminally differentiated cells such
as mature, electrophysiologically active neurons
are generated, they can be used in drug screening
to elucidate the efficacy of novel or pre-existing
drugs or neurotrophins that can be subsequently
used in patient therapy. These de novo neurons
or neural precursor cells have the long-term po-
tential to be utilised as cell replacement thera-
pies. Fundamentally, however, the generation of
these patient-derived disease lines has the ability
to enhance research and understanding of the
disease aetiology, pathogenesis and manifesta-
tion; to ascertain the selective vulnerability and
thus disease mechanism; and to halt the dis-
ease progression and prevent further cell loss.
An alternative strategy to modelling the disease
by generating patient-derived in vitro de novo
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neurons could be using adult stem cells, such
as in the bone marrow, to mobilise endogenous
protection to treat the selective vulnerabilities of
the disease.

Generating iPS Cell Lines to Study
Neurological Disease

Induced pluripotent stem cells were first derived
in 2006 in a seminal paper in Cell by Takahashi
and Yamanaka [50]; this ground-breaking work
was based upon Sir John Gurdon’s work on
frogs in 1962 that challenged the dogma that
mature cells are irreversibly committed to their
fate [51]. Yamanaka and Takahashi proved this in
a mouse model using a retrovirus encoding Oct4,
Sox2, Klf4 and c-Myc to induce pluripotency from
dermal fibroblasts. One caveat however with the
paper was that the cells failed to produce a viable
chimera, a hallmark of pluripotent stem cells
[50]. However, 1 year later Yamanaka and Taka-
hashi were the first to generate iPS cells using
the same four factors in human cells, this time
being able to produce viable chimeras [52]. A
month later using lentiviruses encoding the four
factors of Oct4, Sox2, Nanog and Lin28, James
Thomson’s group also generated iPS cells in-
cluding a viable chimera from human fibroblasts
[53]. What these two landmark papers proved
and repeated was that pluripotency can be in-
duced from terminally differentiated mature so-
matic cells, developing the possibility of person-
alised medicine: using the patient-specific cells to
treat his individual disease. The pioneering work
of iPS generation based on the vectors discovered
by Yamanaka and Thomson has been replicated
in many laboratories throughout the world using
different tissue sources to generate iPS cell lines
including the amnion [54], dental pulp [55], adi-
pose tissue [56], blood [57–59] and urine [60].

There are caveats with the original Yamanaka
and Thomson studies, however, such as by using
integrating viruses to reprogram somatic cells;
both the vector backbone and transgenes are
integrated into the genome. These integrating
vectors have the potential to create mutations
upon genome insertion that interfere with the nor-
mal function of the cell. The integrating vectors

can also result in residual transgene expression
that can influence and affect the differentiation
propensity of cells to specific lineages [53]. Also
two of the Yamanaka factors – Klf4 and c-Myc –
are oncogenic and have previously resulted in
tumourigenicity due to reactivation of the c-Myc
oncogene [61]. Consequently, as summarised in
Table 1, research was undertaken to either use
nonintegrating transduction strategies [62, 63,
65–68], integrating vectors that can be excised
out of the genome [69–71], DNA-free delivery
of vectors in the form of RNA [64], proteins
[72], mRNAs [73], microRNA (miRNA) [74]
and a chemical only induction of pluripotency
[75]. However, all of these strategies have their
own specific constraint of using each method; in
particular the reprogramming efficiencies of the
non-integrating adenoviral and episomal methods
are very low.

The Sendai virus being an RNA virus will
never produce DNA that integrates into the host
genome during transduction; it can easily be
removed by antibody-mediated negative selection
and generates iPS cells with a high efficiency
[64]; as a result the Sendai virus method of iPS
reprogramming is commonly used. Unfortunately
the transgenes from the Sendai virus can only
be removed by diluting, i.e. multiple passages.
In the original research paper by Fusaki et al.,
the transgenes however were still there after 20
passages [64]. A caveat in using Sendai viruses
to reprogram to pluripotency is the time the iPS
cell line will need to spend in in vitro culture to
facilitate the removal of these transgenes. Con-
sequently reprogramming to pluripotency using
this technique becomes a long process. The con-
sequence of an extended time in in vitro culture
is that there is greater chance of losing genomic
stability and acquiring karyotypic abnormalities
such as amplifications or trisomy on chromosome
8,12, 17q, 20q and X found in both iPSCs and
hESCs [71, 76–78]. Genes found on these chro-
mosomes such as the pluripotency gene Nanog
and anti-apoptosis gene Survivin is encoded in 12
and 17q, respectively, where increasing dosage of
these genes can confer a selective advantage [76].

Another strategy used to generate iPS cell for
clinical therapy was the excision of the already
integrated transgenes. The two systems available
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Table 1 Strategies for generating iPS cells

Method Species Vectors
Days to
generate iPS

Reprogramming
efficiency ( %) References

Integrating vectors

Retrovirus Human OSKcM 30 2 � 10�4 [52]

Lentivirus Human OSNL 20 2.2 � 10�4 [53]

Nonintegrating vectors

Episomal Human OSNLKcM40 30–35 3–6 � 10�6 [62]

Adenovirus Human OSKcM 25–30 2 � 10�6 [63]

Sendai Human OSKcM 7C p5–p20a 10�3 – 10�2 [64]

Minicircle Human OSNL 28 5 � 10�5 [65]

Episomal plasmids Human OSKLlM 26–32 1 � 10�5 – 3 � 10�4 [66]

Liposomal magnetofection Mouse OSKcM 7 4 � 10�2 [67]

Doxycycline inducible Human OSKcM 7 92 % [68]

Excised integrated vectors

PiggyBac Human OSKcM 20–30 3 � 10�4 [69, 70]

Cre/loxP (lentiviral) Human OSKcM 15–20 0.5 % [71]

Viral-free delivery

Proteins Human OSKcM 56 1 � 10�5b [72]

mRNA Human OSKcML 17–24 2.9 % (4.4 % – Hypoxia) [73]

miRNA Human mir-200c, 302 s, 369 s 20 5 � 10�5c [74]

Small molecule-only induction

Chemicals Mouse VC6TFZ 36–48 0.2 % [75]

Abbreviations: O Oct4, S Sox2, K Klf4, cM c-Myc, N Nanog, L Lin28, 40 SV40LT, lM L-Myc, VC6TFZ small
molecules taken from [75]
aThe numbers of passages (p) required before transgenes are silenced
bTransduction repeated 6 times
cTransduction repeated every 48 h 4 times

that use this are Cre/loxP recombination and
piggyBac transposons. In the Cre/loxP system
even though the viral cassette containing the
Yamanaka factors were removed following
reprogramming using transfection of the Cre
recombinase, the initial vector sequences still
remained integrated into the genome; thus, the
Cre/loxP system still has a risk of insertional
mutagenesis [71]. In the mouse, piggyBac has
been shown to be a viable strategy for iPS
generation without leaving a genomic footprint
[69, 70]. Unfortunately, there is a lack of
information to date regarding the removal of
the piggyBac insertions in the human suggesting
more work needs to be done before it can be
used routinely as the strategy for personalised
medicine.

Three other alternative strategies that avoid
the introduction of genetically modifying DNA

into the genome include the use of proteins,
mRNAs and microRNAs (miRNA). The protein-
based method takes the longest out of the all
methods summarised in Table 1; it is also the
most labour intensive requiring 6 repeated trans-
ductions [72]. The use of mRNAs seems to be an
attractive way to generate iPS cells for transla-
tional research: a high efficiency of up to 4.4 %
under hypoxic conditions plus no molecular foot-
print such as integrating vectors or transposons
to remove [73]. The miRNA method is another
attractive nonviral solution that can be applied in
translation therapy. miRNAs leave no molecular
footprint, are reasonably efficient and are quick:
can reprogram in under 3 weeks [74]. MicroRNA
therapy is already deemed to be safe and is un-
dergoing stage 2b clinical trials in the treatment
of Hepatitis C under the brand name Miravirsen
[79, 80].
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Recently the group led by Hongkui Deng has
been able to generate iPS cells from murine cells
using only small molecules. Provided this can be
replicated in human cells, this is another strategy
to generate iPS cells with no footprint [75].

In October 2013, another landmark paper in
the field of cellular reprogramming has been pub-
lished in Nature by the Israeli group led by Jacob
Hanna showing the generation of iPS cells at an
efficiency of close to 100 % in both human and
murine cells in 7 days due to knock-down of the
nucleosome repressor complex Mbd3 [68]. The
importance of this research is the advancement
in the understanding at a molecular level with
a huge gain at a practical level. By generating
iPS cells at a 92 % efficiency in approximately a
week, there is a huge cost benefit by reducing the
laboratory hours needed to make iPS cells; also
with an efficiency of 92 %, it is the first strategy
that could lend itself to automation and scaleup
and bring patient-specific medicine a step closer.

Since 2007 when Yamanaka and Thomson
showed that somatic human skin could be re-
programmed to pluripotency, iPS cells became
instantly more advantageous than hES cells for
one significant clinical reason. The genome of the
in vitro derived cells matches the in vivo cells;
consequently for any future cell replacement ther-
apy, there would be a significant reduction in risk
of immune rejection compared to the allogeneic
hES cells, which will express the human leuko-
cyte antigen minor histocompatibility complex
(HLA/mHC) and low levels of the class I major
histocompatibility antigen (HLA/MHC class I)
[81]. There are logistical benefits from using iPS
cells in that they are easier to derive than hES
and are not subject to the ethical concerns or
strict financial constraints of federal funding in
the USA.

However, although Yamanaka and later Thom-
son pioneered iPS cell research, enabling the pos-
sibility of personalised medicine and a patient-
specific clinical resource of iPS lines, there are
still many constraints. Many of the strategies
developed and in use require integrating vec-
tors and transgenes, with evidence of insertional
mutagenesis and transgene reactivation [82, 83].
There is also an increase in copy-number variants

and increase in point mutations in protein coding
genes as opposed to hES cells [84, 85]. Finally
the last constraint that needs rectifying prior to
cell therapy is epigenetic memory [86, 87], which
not only suggests that these cells are not truly
pluripotent but also implies that there is lack
of current understanding on epigenetic memory
which needs to be fully understood before it
is assumed a fact as it is a variable and may
influence the results of future studies.

Genome Editing

Yamanaka and Thomson have brought cell-
replacement therapy a step closer by allowing
it to be patient-specific, provided however that
the cells do not need genetic modification. In
the cases of a genetic mutation, the cells once
derived will also retain that mutation and the
disease phenotype, for example, a triplication
in the SNCA gene is present not only in the
dopaminergic neurons but also in the fibroblasts
and the iPS cell line [88, 89]. A way to avoid this
is by genome editing homologous recombination;
the first study on this was by the Jaenisch research
group where zinc finger nuclease (ZFN) mediated
genome editing was used to edit the genome to
correct the A53T point mutation and create an
isogenic iPS cell line [90].

There are many methods currently published
that have the ability to perform genome
editing homologous recombination (Table 2):
ZFN [97], bacterial artificial chromosomes
(BACs) [98], transcription activator-like effector
nucleases (TALENs) [99] and clustered, regularly
interspaced, short palindromic repeat (CRISPR)
[100]. Helper-dependent adenoviral vectors
(HDAdV) have also been used in genome editing
being able to edit both the transcriptionally active
and inactive loci [92, 94, 95]. HDAdV also have
a benefit in that they accommodate up to 35 kb
of DNA, as opposed to �4.7 kb that traditional
adeno-associated virus (AAV) system. There
are a few concerns however with HDAdV: a
possibility of in vivo toxicity from the adenoviral
capsid proteins, random integration sites and a
genomic footprint [101].
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Table 2 Technologies for genomic editing (corrective and inductive) of disease mutations in neurological disease
models

Disease Gene Defection Corrective method References

Parkinson’s disease SNCA (’-synuclein) A53T point mutation ZFN [90]
LRRK2 G2019S ZFNa [91]

LRRK2 G2019S HDAdV [92]
Huntington’s disease HTT (huntingtin) CAG repeats BAC [93]

HGPS LMNA (lamin A) C1824T point mutation HDAdV [94]

AWS LMNA A1733T HDAdV [95]

Gyrate atrophy OAT Base-pair mutation BAC [96]

Abbreviations: HGPS Hutchinson–Gilford progeria syndrome, AWS atypical Werner syndrome
aInduction of disease mutation as well as deletion

The biggest concern about genome editing is
the potential for off-target double-stranded DNA
breaks being introduced into the genome, thus
creating non-specific genome variants that are not
truly isogenic. There is rationale for this concern
as a ZFN study by Hockemeyer there was 1 off-
target event per 184 clones analysed [97]. How-
ever, considering that the human diploid genome
is six billion base pairs, that statistical probabil-
ity of generating an off-target event is far too
high. ZFN are also difficult for non-specialists
to design and are associated with high rates of
failure [102].

TALENs are cheaper and easier to use than
ZFN; however, they are larger molecules, so it
can be difficult for them to be efficiently delivered
[99]. Although, TALEN technology has been
used to correct for mutations in the “-globin gene
in the blood disorder disease “-thalassemia [103].

CRISPRs have an advantage over ZRN and
TALEN in that using a single vector to guide
RNAs in series which can be then processed
into individual RNAs allows for simultaneous,
multiplexed targeting of multiple sites of the
genome in the same cell [100]. The big concern
with CRISPR is an increased inherent risk
of off-targeting due to the guide RNA being
shorter [104]. However, a recent publication
by the Zhang group have detailed using 2
guide RNA’s in a ‘double-nickase’ strategy has
been able to facilitate a double-strand break
and reduce off-target mutagenesis up to 1,000
fold [105].

The use of genome editing in science is a
recently emerging field, and it is particularly

valuable when the iPS cells derived from the pa-
tient also contain the genetic disease. Therefore,
by editing out the disease and similarly editing in
the disease [91, 106], researchers will understand
a lot more about each disease phenotype and how
it manifests. Also by editing in a disease to a
non-disease control line, it effectively creates a
positive disease model that could be of particular
use in compound screening (Fig. 1) by being able
to distinguish phenotype of the mutation from the
genetic background. Additionally depending on
the research considered this could minimise the
use of animals in research. To be able to correct
neurodegenerative diseases using genome editing
is a very exciting area of research and could even
be used in future clinical therapy in correcting the
genetic mutation prior to potential transplantation
using the patients’ isogenic cells.

Direct Conversion

Pioneered by Marius Wernig and colleagues
in their seminal paper published in Nature
in 2010, they showed that non-neural adult
somatic fibroblasts can be directly reprogrammed
to terminally differentiated functional and
electrically active neurons without going through
a pluripotent intermediary state [108]. These
induced neurons (iN) were reprogrammed in
13 days from MEFs using three factors – Brn2,
Ascl1 and Myt1l (BAM factors) – with an
efficiency of 19.5 %, with the iN exhibiting
positive immunocytochemical staining for the
neuronal markers of Tuj1, NeuN and MAP2.
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Fig. 1 A schematic representation of the processes that
can be undertaken in personalised medicine. Following a
patient biopsy, fibroblasts can be derived and expanded
into a cell line. The fibroblasts can then be reprogrammed
into induced pluripotent stem cells (iPSCs) [52, 53] or an
induced neural-progenitor stem cell (iNSCs) state [107]
before being terminally differentiated towards a cell type,
such as neurons, astrocytes or oligodendrocytes. Alter-
natively these cells can be directly reprogrammed from
the patient somatic cell to the terminally differentiated

cell type [108]. These cells can then be used in disease
modelling, drug screening and the development on novel
drugs or in cell transplantation. Images of fibroblasts and
Tuj1C/THC dopaminergic neurons are provided by the
author. The image of the GFAPC/S100C astrocytes is
kindly donated by Dr Federica Rinaldi (University of
Oxford). The image of the O4C/NG2C oligodendrocytes
is used with permission from Professor Nada Zecevic
(University of Connecticut) and has previously been pub-
lished [109]

53 % of the mouse embryonic fibroblasts
(MEF)-derived iN expressed Tbr1, a marker of
excitatory cortical neurons with both excitatory
glutamatergic and inhibitory GABAergic neurons
generated. There has been an increase in the
number of groups that have used the BAM
factors amongst other factors, to directly convert
human fibroblasts into terminally differentiated
neuronal cell phenotypes which is summarised in
Table 3. This includes cell populations specific
for neuronal disease such as dopaminergic
neurons for PD [114–118], retinal-like ganglion
neurons for glaucoma [119] and spinal motor
neurons for amyloid lateral sclerosis (ALS) and

spinal muscular atrophy (SMA) [120]. All iN for
PD exhibited functional dopaminergic neuronal
properties: positive expression of midbrain
markers, functionally active electrophysiological
properties and dopamine release and uptake. In
the study led by Abeliovich’s group in 2011,
the fibroblasts used for the direct conversion
were patient-derived from a familial Alzheimer’s
disease (FAD) patients containing mutations in
presenilin-1 and presenilin-2. These FAD-iN
were found to show phenotype of AD showing
altered processing and localization of amyloid
precursor protein (APP) and increased production
of A“ [113].
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Table 3 Summary of iN methods following direct conversion

iN-derived subtype
Reprogramming
factors

Reprogramming
efficiency

Neuronal
efficacy

Duration
(days) References

Glutamatergic/
GABAergic neurons

BAM 19.5 % a 13 [108]
BAMN1 2–4 % 60 % Tuj1b 18 [110]

BM, miR-124 4–11 % 55 % MAP2b 18 [111]

AM,
miR-124,
miR9/9

5 % 50 % MAP2b 30 [112]

BAMOZ 7.1–8.9 % 28.4–36.1 %
MAP2b

21 [113]

Dopaminergic
neurons

ANL 3–6 % THb

5–10 % Tuj1b
18–24 [114]

BAMLF 16 % <95 % MAP2b 24 [115]

AN(Lb) 18.2 %b 35.1 % Tuj1b 14 [116]

ANLFEP 9.19 %a 2 % Pitx3b 18 [117]

ANPSNg 1–2 % 40 % DDCb 20 [118]
Retinal-like
ganglion neurons

ANgB3 3.5 % Tuj1b 14 [119]

Spinal motor
neurons

BAMNgHIL3 5–10 %a 10 [120]

Abbreviations: B Brn2, A Ascl1, M Myt1l, N1 NeuroD1, O Oligo2, Z Zic1, L Lmx1a, N Nurr1, F FoxA2, (Lb) Lmx1b,
E En1, P Pitx3, S Sox2, Ng Ngn2, B3 Brn3b, H Hbx9, I Isl1, L3 Lhx3
aRelates to reprogramming efficiency in MEFs
bReprogramming efficiency from human astrocytes

Table 4 Summary of various reprogramming methods for iNSC generation

Initial cells Transcription factors References

Mouse fibroblasts (Oct4, Sox2, Klf4, c-Myc) initially [121]
Oct4 (initially) Sox2, Klf4, c-Myc [122]

Brn2, Sox2, Klf4, c-Myc [123]

Brn2, Sox2, FoxG1 [124]
Mouse and human fibroblasts Sox2 [107]

Murine sertoli cells Sox2, Klf4, c-Myc, Brn2, Asc1l, Ngn2, Pax6, Hes1, Id1 [125]

The field of iN via direct conversion is very
exciting and although it does hint at the possibil-
ity of far quicker method to reprogram neuronal
cells from somatic cells without a pluripotent
intermediate, it is still very inefficient. Fibrob-
lasts are not an expandable immortal cell type,
with a decreasing capacity to generate iN with
every additional passage being exhausted by pas-
sage 8 [115]. Therefore, it is questionable if the
quantities of cells generated from iN would be
sufficient for cell replacement therapy strategies.
It is for this reason of scalability and prolifer-
ative potential that generating multipotent neu-

ronal progenitors instead of post-mitotic neurons
would be a more sustainable long-term strategy in
modelling PD.

The multipotent progenitors have been termed
induced neural stem cells (iNSCs) and have been
generated from murine and human fibroblasts
and more recently Sertoli cells (Table 4). After
initial research in mouse fibroblasts, there was
no consensus on what transcription factors were
necessary to generate iNSCs with the Yamanaka
pluripotency factors initially used [121, 122].
Han and colleagues then swapped Oct4 for an-
other POU homeodomain transcription factor in
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Brn4 that is normally expressed in the neural
tube [126]. Han and colleagues generated stable
iNSCs for over 130 passages that could form as-
trocytes, neurons and oligodendrocytes, although
the efficiency for oligodendrocyte generation was
extremely poor at approximately 10 % compared
to �100 % efficiency of both neuronal and as-
trocytic differentiation [123]. The Wernig group
found that just Sox2 and FoxG1 were neces-
sary to generate iNSCs; however, those iNSCs
were bi-potent with the potential to form neurons
and astrocytes only, oligodendrocytes were not
generated unless the transcription factor Brn2
was included in the transduction [124]. The first
study and only current study published in hu-
mans is from the Huang group where trans-
duction with Sox2 alone could generate stable
iNSCs with the potential to differentiate into neu-
rons of multiple subtypes, astrocytes and oligo-
dendrocytes after 2–4 weeks of culture in per-
missive differentiation conditions. The human
iNSC were also able to survive and integrate in
mouse brains without any tumourigenicity [107].
The only other published study of iNSC gen-
eration is from the Qi Zhou Chinese group us-
ing mesoderm-derived Sertoli cells. This study

however used 9 transcription factors and needed
1 month of propagation to generate the sufficient
amount of cells necessary for analysis [125].

Differentiation Protocols to Model
Selected Neurogenerative Diseases

Generation of iPS cells is the strategy typically
used by most research groups as a source of
pluripotency prior to the terminal differentiation
of the required cell type necessary to the model of
the disease. Table 5 shows the most efficient pro-
tocol currently published for the generation of the
neuronal subtypes lost in the 5 aforementioned
most common neurodegenerative diseases: basal-
forebrain cholinergic neurons for AD, striatal
medium-sized spiny neurons for HD, midbrain
dopaminergic neurons for PD, motor neurons for
ALS and oligodendrocytes for MS.

The Crompton et al. protocol for AD is long
at 90 days, but it has an excellent efficiency.
83 % of the cells generated are Tuj1C neurons,
with the remaining being GFAPC astrocytes. Of
those 83 % of neurons, between 91 and 92.4 %
of the hES and iPS cell lines taken through

Table 5 Summary of protocols efficiencies used to generate terminally differentiated cell types for disease modelling

Efficiency

Disease Desired subtype Neurons Regional identity Duration References

AD Basal-forebrain-
derived cholinergic
neurons

83 % Tuj1C 97 % NestinC (d30) 90 days [127]

17 % GFAPC 92.3 % Nkx2.1C/nestinC

91–92.4 % ChATC/Tuj1C

HD Striatal medium-sized
spiny neurons

51 % MAP2C, 80 % Tuj1C, 70.6 % CTIP2C/calbindinC 90 days [128, 129]
78 % GABAC/MAP2C

60.3 % CTIP2C/MAP2C

53 % CalbindinC/MAP2C

20 % DARPP32C/CTIP2C

PD Midbrain
dopaminergic neurons

75 % THC 80 % FoxA2C 50 days [130]
20 % THC/FoxA2C 60 % Lmx1aC/FoxA2C

80 % Otx2C/FoxA2C

(counts at d25)
ALS Motor neurons 53 % HB9C/ISL1C 55–70 % FOXP1 31 days [131]

63 % FOXP1C/LHX3�

MS Oligodendrocytes 60–80 % O4C 40–60 % NG2 77 days [132]
70 % A2B5C

Abbreviations: AD Alzheimer’s disease, HD Huntington’s disease, PD Parkinson’s disease, ALS amyotrophic lateral
sclerosis, MS multiple sclerosis
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3 replications of this protocol are positive for
ChAT: cholinergic acetyl transferase, a marker of
cholinergic neurons [127]. The regional identities
of the neurons are correct for an AD model being
92.3 % Nkx2.1, a marker of the basal forebrain.

In the HD model study from the Italian group
of Elena Cattaneo, striatal medium-sized spiny
neurons (MSN) were generated in a very well-
described research article that deconstructed each
neuronal subtype generated from this differen-
tiation protocol, not all of which are shown in
Table 5. A commonly used marker for MSN
is DARPP32; however, DARPP32C neurons are
also found outside the striatum. By co-staining
with CTIP2, a post-mitotic striatal marker, the
regional identity of the MSN can be confirmed.
70.6 % of the calbindin C neurons co-expressed
CTIP2, thus confirming the general acquisition of
an MSN fate and not of an interneuron identity
[128]. The Kriks et al. protocol for PD showed
the generation of 75 % of dopaminergic neurons;
80 % of cells differentiated through the protocol
were positive for the midbrain marker FoxA2.
Although of those 75 % dopaminergic neurons,
only 20 % were midbrain dopaminergic neurons
[130], suggesting that the regional identity of the
majority of those neurons was not specific to the
midbrain.

A follow-up dopaminergic differentiation
study by Kirkeby et al. trialled the GSK3“

inhibitor, CHIR99021, that was used in the
Kriks protocol; what was found was at high
levels of drug, >1 �M, the floor plate begun to
caudalise away from the midbrain fate towards
the hindbrain showed by an upregulation in
LEF1, a gene found at the midbrain–hindbrain
border, and also hindbrain genes HoxA2, HoxA4,
IRX3 and GBX2 [133, 134]. At 4 �M there was
over a 100-fold upregulation in GBX2, a key gene
expressed in the anterior hindbrain that shares a
border in development with the MHB. In the
study published in Nature by Millet, GBX2 was
shown to not only repress Otx2, a key midbrain
gene regulator, but also shift and reposition the
MHB, creating a smaller midbrain and larger
hindbrain region [135]. Furthermore, shifting of
the MHB has a direct consequence on increasing
the number of serotoninergic neurons to the

detriment of the midbrain dopaminergic neurons
[136]. As the Kriks et al. protocol used a very
high CHIR concentration of 3 �M, this may
explain that of the 75 % of dopaminergic neurons
produced by the protocol, 45 % of these neuron
did not have a positive identity for the ventral
midbrain marker FoxA2 [130]. Unfortunately,
with Lmx1a and Lmx1b now being shown to
have overlap in the formation of the anterior
hindbrain roof plate [137], it is quite possible that
these remaining 45 % TH positive cells are of an
anterior hindbrain identity and not the midbrain,
although this is yet to be proven.

However, even though the Kriks protocol may
have generated a population of dopaminergic
neurons of a midbrain/anterior forebrain iden-
tity, it still possess 20 % FoxA2C/THC neurons
which is currently the best in the literature. Also
the issue of non-midbrain contamination is not
insurmountable as this can be selected out by
methods such as FACS sorting. In addition to this,
the neurons from the Kriks et al. protocol have
been grafted in mice, rat and monkey models of
PD, in all cases showing evidence of survival,
integration and behavioural recovery [130].

The diseases of ALS and MS are both nonau-
tonomous diseases; consequently the generation
of MN or oligodendrocytes may not necessar-
ily be the most effective long-term strategy for
cell replacement therapy. However, it is still ad-
vantageous for researchers to obtain regionally
specific terminally differentiated cell types to
ascertain the specific susceptibility of MNs and
oligodendrocytes to astrocytic/microglial disease
transmission in ALS and lymphocytes in MS and
then try to prevent this susceptibility.

For the study of ALS, the Wichterle group
generates limb-innervating lateral motor column
motor neurons. The MN quantification shows by
immunocytochemistry the generation of 30 %
HB9C-specific motor neurons; of those neurons
53 % are HB9C/ISL1C, with ISL1C specify-
ing spinal motor neurons [131], although ISL1C
neurons are also specific for the cranial ganglia
[138]. A FOXP1C neuronal identity is specific for
neurons that innervate with limb muscles [139,
140]. LHX3C expression determines if a me-
dial motor column that innervates axial muscles
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with LHX3� specifying a lateral motor column
with limb-innervating muscles [139]. Of the MN
identified there was a 70 % FOXP1C/LHX3�
identity [131]. Thus, the successful generation
of limb-innervating lateral motor column motor
neurons for ALS research.

Differentiating to oligodendrocytes for the
study of MS the protocol by Sundberg et al.
generates 60–80 % oligodendrocytes, specified
by the commonly used oligodendrocyte specific
marker O4 [132]. This paper also confirmed this
identity and the prior establishment of oligoden-
drocyte precursors cells (OPCs) through this 77-
day protocol using the markers NG2 and A2B5 to
confirm identity. NG2C positive cells account for
the identity of OPCs with NG2 being responsible
for directional migration of the OPC through
cell polarity [141]. A2B5C is a marker of the
oligodendrocyte–astrocyte shared lineage pro-
genitor cell, shown to be expressed on both OPC
and astrocytes; an induction of BMP2 and other
BMPs are required for the astroglial switch [142].

In all of these protocols that are used for
the treatment of the five major neurodegenerative
diseases, the initial recapitulation of development
as shown by Crompton et al., is crucial for more
efficient differentiation of the terminal cell type
of choice. It is of note that the time, necessary
generate specific terminally differentiated cells
through this protocol is very long. However, if
one considers that the gestational period of a
human is 266 days, and a mouse is 20 days,
a 90-day terminal differentiation protocols that
recapitulate the developing embryo would seem
accurate. Another important aspect of the differ-
entiation protocols would be to establish maturity
of the cells with functional synapses and electri-
cal activity. Consequently it is essential that for
disease modelling an accurate recapitulation of
the desired cell type must be achieved.

Existing and Future Therapies Using
Adult Stem Cells

Since the onset of hES [143] and iPS [52, 53]
cells, the field and profile of stem cells has risen
exponentially with the potential clinical therapy

for every disease ever closer. Unfortunately the
progress has been slow, with diseases having in-
creasing layers of complexity and sophistication
necessary to first understand before being able to
treat; this is in addition to the ethical, logistical
and scientific challenges that these hES and iPS
cells bring.

Adult stem cells (ASCs) has been used as
bone marrow transplants since 1963 [144],
with the discovery of what is now known as
haematopoietic stem cells (HSCs). Since then
there has been the discovery of many more ASC
populations: muscle-derived stem cells (MDSCs)
[145, 146], mesenchymal stem cells (MSCs)
[147], cord blood-derived multipotent stem cells
(CB-SCs) [148, 149], neural stem cells (NSCs)
[150], adipose stem cells (AdSCs) [151, 152]
and most recently amniotic stem cells (AmSCs)
[153].

ASCs in the form of CB-SCs are currently
undergoing clinical trials for type I diabetes
based on studies in mice reversing the disease
[154, 155]. It remains to be seen if CB-
SCs to treat disease will be an effective and
feasible long-term strategy for the treatment
of neurological disease. However, whilst the
other methods of cell therapy detailed in this
chapter are being advanced and refined for future
therapeutic use, adult stem cell therapies appear
attractive to patients and clinicians alike. Possibly
the greatest benefit of ASCs is their availability,
with bone marrow, blood and adipose tissue being
readily available sources.

ASCs also have an advantage over iPSCs as
they do not have to be reprogrammed. However
in the brain, the multipotent adult progenitor cell
populations are found in the subgranular zone
in the dentate gyrus of the hippocampus and
the subventricular zone of the lateral ventricles
[38, 39]; these are not readily accessible areas.
Additionally, a constraint of using ASCs com-
pared to hESC or iPSC research is that ASCs
are multipotent; however, this dogma is recently
being challenged, particularly in AdSCs [40–43].

However, ASCs in the form of MSCs and bone
marrow-derived neural crest stem cells (NCSCs)
were used in a recent publication that looked
at the efficacy of these cell populations when
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injected into the striatum of MPTP lesioned mice.
At 7 days post ASC intervention, only 3 % of
starting 5 � 104 MSCs survived; by 14 days there
were no surviving MSCs. The survival rate of
the NCSCs was 10 % after 7 days; this lowered
to 1 % after 28 days with the same starting
cell population. The results of the study showed
that those cells that did survive were not able
to integrate and migrate through the brain tis-
sue and therefore were unable to modify their
initial phenotype and no recovery of any type
was observed [156]. The most recent study from
the Wislet-Gendebien group has confirmed an
earlier implantation study that showed partial and
transient survival, poor integration and no neuro-
genesis or recovery [157]. This study also showed
activation of the innate immune system with pos-
itive markers for microglial and astrocytes [158].
The most concerning article however is that in
vitro expanded neural crest stem cells led to in
vivo tumourigenesis in an animal model [159].

ASCs however have also shown to be safe
and efficacious; in a study using CB-SCs,
the integration and behavioural recovery was
shown in rotenone-induced rat models of PD
[159]. Furthermore, ASCs have shown efficacy
in neuronal protection by secreting protective
growth factors such as GDNF and BDNF
[160–162]. In October 2013, a publication by
a Swedish group has shown that the secretion
of BDNF, GDNF, VEGF-A and angiopoietin-1
proteins resulted in axon regeneration, increased
vascularity and decreased apoptosis [163].
Consequently it can be seen that CB-SCs show
promise as a potential therapy, however more
research is necessary to determine its potential
use as a bench to bedside therapy.

Foetal Cells – A Case Study
from Parkinson’s Disease

Foetal cells were first used as a cell therapy in
PD. In work pioneered at Lund University which
showed in rat models of PD significant functional
recovery following foetal nigral transplantations
into the host striatum [164–168]. Shortly after,
Lindvall and colleagues performed the first trans-

plants of human ventral mesencephalic tissue
from tissue collected from elective terminations
of pregnancy at 8–10 weeks gestation [169]. In
the subsequent paper by the same group six pa-
tients had transplanted mesencephalic foetal tis-
sue into the putamen. These foetal cells were able
to survive in the brain and produce a significant
symptomatic relief, restoring dopamine synthesis
and reducing bradykinesia and rigidity [170].

As a consequence of the success results
found by Lindvall and colleagues, foetal cell
transplantation studies were then replicated with
several open-labelled studies taking place across
the world [171–176]. Positive results and lack of
adverse side effects from these trials led to USA’s
National Institute of Health (NIH) funding of two
double-blind placebo-controlled clinical trials
[177, 178]. However, although double-blinded
clinical trials were undertaken, there were still
concerns that needed to be addressed from the
open-labelled studies. In that, although some of
the patients showed significant benefit from the
foetal transplants, many more did not, with a con-
siderable variation in both intra- and inter-study
[179]. Barker and colleagues recently reviewed
these open-labelled studies in which variations
between these studies were highlighted these in-
cluded: the age of donor tissue, number of donors,
target site for transplantation, immunotherapy
and measurable endpoints of each study [179].

Nevertheless, due to positive results in some
patients, including a lower Unified Parkinson’s
disease rating scale (UPDRS), across these open-
labelled studies the NIH decided to support two
double-blind sham-surgery trials. In 2001, trans-
plantations by Freed and co-workers of mesen-
cephalic foetal tissue from four embryos bilater-
ally into the putamen were used [177]; what they
found was that the younger patients transplanted
(<60 years) had a significantly lower UPDRS and
an increased 18F-fluorodopa signifying neuronal
outgrowth [177]. Unfortunately the older patients
(>61 year) had no significant symptomatic im-
provement over the control group with dyskine-
sias and dystonias recurring in 15 % of the post-
transplanted patients [177].

The second NIH study in 2003 by Olanow and
colleagues 1 and 4 foetal donors per transplant
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were trialled. Despite an increase in striatal 18F-
dopa uptake via PET scans and evidence of graft
survival and innervation in autopsy studies, there
was ultimately no significance between the foetal
transplants and the placebo control, with the
transplanted patients from four donors marginally
failing to show significance (P D 0.096) [178].
The withdrawal of the immunosuppressant cy-
closporine and subsequent graft rejection was
raised by Olanow and co-workers as a possi-
ble reason why the foetal transplants ultimately
failed. However, equally if not more concerning
was that half of the transplanted patients began to
develop graft-induced dyskinesias [178].

The two NIH trials had brought a disap-
pointing conclusion to foetal transplantations
as a symptomatic treatment for PD after the
initial optimism following the earlier open-
labelled studies. Consequently, many questions
were raised concerning the future of PD and
foetal transplantation such as the PD severity
and patient selection, with the potential benefit
of the transplant weighed up against the side
effects of the post-surgery dyskinesias – the
patients with more severe PD (i.e. a higher
UPDRS score) possibly being more predisposed
to dyskinesias post foetal transplantation. The
optimum transplanted area and method of
transplant were other questions to be determined
with donor quality, quantity, age, storage time
and conditions and transplanted region of foetal
tissue were other important variables that needed
addressing, lest not forgetting that increasing
numbers of foetal tissue should be accompanied
by an increasing need for immunosuppression.

In 2008 three independent research groups
revisited their previous work and released their
post-mortem results of PD patients with foetal
midbrain transplants. Warren Olanow’s research
group analysed patient data from an open-
labelled study from a PD patient 14 years post
transplantation [174]. For 11 years the patient
had an improved UPDRS, motor function and
less dyskinesias; however, for the last 3 years of
her life, her PD symptoms had increased [180].
At the post-mortem the grafted neurons were also
found to have positive staining for ’-synuclein
and ubiquitin, reduced dopamine transporter

(DAT) staining and more significantly a Lewy
body pathology. Although grafted midbrain did
improve function and patient quality of life, it did
not arrest the disease and worryingly the disease
pathology had spread from the endogenous host
cells to the grafted striatum [180].

The earlier Lund trials were revisited by Li and
colleagues who found that in patient autopsy’s
11 and 16 years post-foetal transplant, the trans-
planted tissues had survived and provided symp-
tomatic relief. However, what was also observed
was ’-synuclein and ubiquitin positively stained
Lewy bodies and neurites were present in the
grafted neurons suggesting host-to-graft disease
prion-like propagation [181]. However, as these
grafted neurons had provided 16 years of symp-
tomatic relief with an unrelated death, it is debat-
able if an ’-synuclein-driven prion disease prop-
agation significantly affected the patient quality
of life. The third set of PD patients post-mortems
analysed from Isacson trial was the most suc-
cessful. After receiving intracerebral transplanta-
tion of foetal ventral midbrain grafts, there were
no Lewy body of Lewy neurites present [182].
However, serotoninergic neurons were found to
be transplanted and thus a mixed non-specific cell
population. Using PD patient scans, the group led
by Paola Piccini showed that it is the serotonin-
ergic neurons that are responsible for the dysk-
inesias following neural transplantation [183],
confirming prior rat model studies [184].

Recently, a large international consortium
headed by Roger Barker from the University
of Cambridge has been set up with the aim of
determining the efficacy of foetal transplantation
in PD as a replacement for dopaminergic neurons
[185]. This consortium, TRANSEURO, will
attempt to rectify the variability and dyskinesias
shown in previous trials with strict controls on
patient selection, number, age and storage of
donor foetuses, surgical techniques, graft size
and placement, the use of immunosuppression
and length of time on immunosuppression all
being addressed [177, 178, 186]. The results
of this trial (NCT 01898390) are due in 2017.
The success and long-term viability of the foetal
transplantation studies are important not only
in PD but in other neurodegenerative diseases
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such as HD where foetal transplants have also
had mixed success [187–189]. If the foetal
transplantations are successful, it could act as a
proof of principle and be a precursor for the use of
stem cell therapy in neurodegenerative diseases,
such as PD. How the TRANSEURO study will
address the propagation of the prion-like disease
pathology from the host cells to the transplanted
tissue however is still to be determined.

Advantages and Disadvantages
of Using Stem Cell Therapy in the
Treatment of Neurological
Disorders

Advantages

There are significant advantages of using stem
cell therapy for the treatment of neurological
disorders, the ability to generate patient-derived
disease lines and then study those degenerated
cells of that disease is of unquestionable benefit
the researchers aiding the progression and under-
standing of the disease. The ability to generate
in vitro de novo neurons, oligodendrocytes and
astrocytes of a specific regional identity enables
researchers to look at specific vulnerabilities to
specific cell types, also increasing the under-
standing of the ameliorating ability of the cell
types to aid the disease propagation.

Studies from patient-derived iPS cells have
furthermore exemplified some of the limitations
of animal models to accurately model disease,
with rodent models of PD failing to recapitu-
late human disease pathology such as the selec-
tive loss of midbrain dopaminergic neurons and
accumulation of ’-synuclein [190]. In addition to
this studies have shown that in in vitro neuronal
disease models that the disease phenotype is only
apparent in the differentiated neurons, not the
fibroblasts or the pluripotent iPS cells [89, 191]
consequently to study the disease progression
and manifestation disease-specific iPS terminally
differentiated neurons and also neural progeni-
tors have become an essential tool in research,
having the additional potential to minimise the
extent of the animal models used in research.

Animal models however are still a vital tool
for researchers with particular relevance in de-
velopment and embryology; behavioural studies;
ascertaining the effect and side effects of new
drugs and treatments on a systemic level; and is
also the first step necessary for testing the validity
cell replacement therapies prior to human clinical
trials and eventually the bedside.

The validity and understanding gauged from
these terminally differentiated neurons will be-
come more apparent as the protocols necessary to
develop these terminally differentiated diseased
cell types are generated with greater specificity
and efficacy. The sheer quantity and availability
of neurons and neuronal precursor cells that
can be differentiated from stem cells lends
itself perfectly as a model for toxicity testing
via high-content screening and automation
in screening new and existing therapies to
slow/halt/potentially recover disease manifesta-
tion, progression and development of pathology.
The ability of an accurate recapitulation of
the disease cell type coupled with the exciting
potential of genome editing technology such as
CRIPSR can be a significant step forward in
treating neurodegenerative diseases. In diseases
such as HD where a high penetrance monogenic
mutation is responsible for aetiology, disease
correction by removal of the abnormal CAG
repeats, without leaving a genomic footprint can
effectively cure the disease in de novo isogenic
cells. However to be an effective therapy it can
only be used provided 100 % certainty of no off-
targeting of the genome, genome editing cannot
currently give this guarantee. In AD, PD and
ALS, the majority of the cases are idiopathic
with no abnormal mutations to correct; thus, it
is only by further understanding of the disease
aetiology that makes it evidently more treatable.

Challenges

There are many challenges associated with us-
ing hES cells for research, such as the ethical
issues; legislative funding concerns, particularly
in USA; and a risk of immune rejection. There-
fore there has been a gravitation towards using
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patient-derived iPS cells as the primary tool of
research as it enables not only disease modelling
but also the onset of personalised medicine. How-
ever, there are, if not more challenges associated
with iPSCs as there were with hESCs.

The first of these challenges unique to iPSCs
is the method of reprogramming; it is tantamount
to have a methodology in which miRNA is not
randomly integrated into the genome, where re-
programming should be transgene-free leaving
behind no genomic footprint. Concerns however
still remain regarding the heterogeneity of the
iPS cell lines generated compared to the hES cell
lines and the variable clones that they produce
[89]. There is also the matter that the most com-
mon somatic cell type used for reprogramming
is skin from patients of all ages. The skin is
one of the somatic cells that is more likely to
have inherent mutations due to constant exposure
to UV damaging sunlight with at least half of
the mutations seen from reprogramming already
present in the pre-existing fibroblasts [85].

Another more recent concern regarding both
iPS-based and direct somatic cell reprogramming
of both iN and iNSCs is the phenomenon of
epigenetic memory [86, 192], which not only
exemplifies the amount of unknown variables in
this area of research but also changes any as-
sumption that iPS/somatic cell differentiation is a
constant, with epigenetic memory known to vary
DNA methylation which in turn can influence
differentiation capabilities of directing cell fate
in addition to molecular and functional properties
of iPS cells [86, 193]. This phenomenon also
stresses the importance of having multiple control
lines and the use of hESCs as non-iPS control
lines. However, hESC lines are also variable, hav-
ing different characteristics and different lineage
differentiation propensities [194]. An additional
problem of iNSCs and iN compared to iPSCs is
the length of time in culture, lack of cell numbers
generated and the variable cell population gener-
ated [115, 125].

Consequently, this raises another concern re-
garding the time and thus number of in vitro pas-
sages that cells receive which lead to an increas-
ing genotypic abnormality and karyotypic insta-
bility. This raises an important point that needs to

be addressed if ever patient-specific personalised
medicine is able translate to the bedside, which is
cell maintenance in an in vitro environment. The
longer cells are cultured in vitro; they are more
likely to acquire selective adaptations such as
alterations in DNA methylation, X-chromosome
instability, imprinting instabilities and partial and
full chromosomal aberrations such as trisomy of
chromosomes 8, 12 and 17 [195].

Inactivated mouse embryonic fibroblast
(iMEF) cells are still used as a supporting matrix
for both iPS and hES cell maintenance. However,
the complications of using these murine layers is
that non-human sialic acid N-glycolylneuraminic
acid (Neu5Gc) has been detected on the surface
of hESCs maintained on MEF feeder layer
which is potentially immunogenic [196, 197].
Subsequently feeder-free iPS/hES cell culture
has become more apparent using Matrigel™
and CELLstart™; however, chromosomal
abnormalities have still been reported [198, 199]
and Matrigel is still derived from mouse sarcoma.
An alternative of using murine feeders and non-
xeno-free matrices is using autologous feeders
[200]. Unfortunately after an increasing number
of passages, fibroblasts become less viable and
increasingly prone to senescence compared to
younger samples [201]; also unlike iPSCs or
hESCs, fibroblasts are not immortal and have a
limited number of passages. Recently xeno-free
clinical grade iPS cell lines have been described,
with mandatory procedural guidelines necessary
for quality control and good manufacturing
practice also published [202, 203].

Results From the Bench

Due to the advent of patient-specific disease cells,
there is now a plethora of information being re-
leased into the literature from disease modelling.
The terminal differentiation of iPS and neural
precursors into regionally relevant specific neu-
rons, oligodendrocytes and astrocytes to recapitu-
late the disease conferring selective vulnerability
and disease phenotype in response to toxicity has
led to a variety of candidate drugs to be further
researched for clinical therapy.
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Alzheimer’s Disease

In AD, both “- and ”-secretases had led to a
reduction of A“ in patient-derived familial APP-,
PSEN1- and PSEN2-mutated diseased neurons,
with “-secretase inhibitors giving a partial re-
duction in activated GSK3“ and phosphorylated
tau [204, 205]. Docosahexaenoic acid (DHA)
was found to lower the reactive oxygen species
(ROS) in addition to a decreased in cell death in
an APP patient-derived cell line [206]. The use
of DHA was previously described in a mouse
model to protect against amyloid and dendritic
pathology [207].

Parkinson’s Disease

In PD there have been three research articles
with a familial triplication in SNCA (A53T) [88,
89, 106]. In all three articles, phenotype was
shown, with a significant increase in the gene and
protein expression levels and secretion levels of
’-synuclein [88, 89] and a significant increase in
stress gene expression levels, including UCHL1,
one of the PARK genes (PARK5) [88]. The most
recent paper looked at nitrosative stress in the
SNCA A53T line before and after correction by
genome editing [106]. Using yeast as an initial
platform to model the disease, two markers of ER
stress, BIP and PD1, were found to have signif-
icant elevation in A53T. ER-associated dysfunc-
tion (ERAD) substrates, such as sensitivity to glu-
cocerebrosidase (GBA), another PD-associated
risk gene [106, 114], were reversed using a com-
pound called synoviolin, an E3 ubiquitin lig-
ase. Using a small molecule screen based on
yeast, a compound called NAB2 was found to
increase post-ER forms and ameliorate ER ac-
cumulation of ERAD substrates in A53T PD-iPS
neurons [106].

In the LRRK2 mutation in PD, there have
been six papers published from patient-derived
neurons [91, 92, 191, 208–210]. Overall, it has
been shown that there is a link between LRRK2
dysfunction and ’-synuclein accumulation [91,
191, 209]; tau and phosphorylated tau [91];
autophagy impairment [209]; mitochondrial

DNA mutations [210]; significantly lower
mitochondrial consumption rate than controls
[208]; and a decrease in neurite length [91, 191].
After previous suggestions that LRRK2 (G2019S)
is a toxic gain-of-function kinase [211, 212], a
small molecular kinase inhibitor significantly
lowered numbers caspase-3C/THC neurons
[91] and also rescued defects in nuclear
architecture [92].

Huntington’s Disease

In the first patient-derived HD-iPS study in both
heterozygous and homozygous patients, there
was no change in CAG repeat length following
reprogramming, which also did not change either
after 40 passages of the culture [213]. CAG insta-
bility has been previously shown in HD gametes
[214], lymphoblasts [215], post-mitotic murine
neurons [216] and human striatal neurons [217].
Camnasio et al. also found HD-iPS neurons did
not affect neuronal differentiation and had a
significant increase in lysosomal activity over
control lines [213]. Another HD paper showed
that following transplantation of GABAergic
neurons of the forebrain LGE identity from a 72
CAG-repeat HD-iPS line into a rat containing a
unilateral excitotoxic striatal lesion, a significant
behavioural recovery was obtained [218].
However, in this study the in vivo transplanted
neurons developed HD pathology 33 weeks
after transplantation. The in vivo neurons when
exposed to MG132 and thus proteasomal stress
also developed HD pathology [218].

Using genome editing via BACS a 72-
CAG repeat was replaced with a normal 21-
CAG repeat HTT gene [93]. The corrected HD
line reversed the analysed HD pathology of
significantly reduced mRNA levels of BDNF,
TGF-“1 and N-cadherin; significantly reduced
maximum respiration levels; and significantly
increased activated caspase-3. The corrected HD
cell line was able to differentiate in vitro into
DARPP32C neurons and integrate and survive in
a mouse model. In a study of multiple patient-
derived HD-iPS lines, the HD Consortium has
also extensively showed that an increased HD
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pathology of relative intracellular ATP/ADP ratio
and cleaved caspase-3 was associated with the
number of CAG repeats [219].

Amyotrophic Lateral Sclerosis

In ALS a patient-derived iPS line from TDP-
43 mutated neurons displayed phenotype of sig-
nificantly shorter neurite length and increased
insoluble protein of TDP-43 compared to non-
disease controls [220]. There was also an upregu-
lation in RNA transcription genes and downregu-
lation in cytoskeletal protein genes, with TDP-43
being involved in RNA metabolism [221, 222].
This study also found that anacardic acid was
able to prevent cytotoxicity by arsenite, reversing
both neurite length and insoluble protein fraction
pathology; it was postulated that this mechanism
of action was either via redox reduction or sup-
pression of NF-›B protein complex [220].

Consequently using earlier research done in
lower-order mammals and yeast, new pharma-
cological therapies can quickly be ascertained
for their efficacy and therapeutic potential using
patient-derived disease-specific cell lines, which
have the potential ability to be a causative
treatment, reverse pathogenesis, enable better
presymptomatic treatment, halt pathogenesis and
facilitate better symptomatic treatment and thus
improvement in patient quality of life.

Stem Cell Therapy: Readiness
to the Bedside I

Parkinson’s Disease

PD is a neurological disease where stem cell
replacement therapy is a possible strategy for the
treatment of the disease in which the precedent
has been set transplantation of foetal mesen-
cephalic tissue into the midbrain. Yet PD is not
just a motor disorder affecting the dopaminergic
neuronal network. PD is a complex and progres-
sive neurodegenerative disease, and PD patients
have many non-motor symptoms and often go on

to develop dementia. A cell replacement therapy
of dopaminergic neurons will not prevent this.
Consequently to treat PD, one has to ask what
is the aim of the treatment. If the answer is to
cure the disease and prevent it, then the field of
research is a long way off, as although the disease
mechanisms are further being elucidated, such as
the increasing number of PARK genes and risk
loci from GWAS studies, the accumulation of the
’-synuclein and dysfunction of LRRK2 are still
the most common causes. Fundamentally there
is still a clear lack of definitive understanding of
the PD aetiology and the step-by-step manifesta-
tion of the complex and patient-variable disease
pathology. Also for much improved outcomes
of PD treatment, scientists and clinicians would
need to be able to get access to and treat the pa-
tient whilst the patient is presymptomatic and has
greater than 30 % of the dopaminergic neurons
remaining and still functional.

If the purpose of the treatment however is
to improve the quality of life, then existing cell
therapies have shown to be effective as revealed
in the earlier foetal transplant trials [174, 180,
181] with the patient having lower UPDRS
scoring indicating improvements in quality of
life. The widespread use of foetal transplants
in PD however is not a sustainable long-
term strategy; therefore, to replace these foetal
transplants, stem cell-derived neuronal precursors
could be transplanted. The current protocol that
produces the greatest amount of THC FoxA2C
neurons is only at approximately 20 % [130],
with, the remaining 80 % of cells generated
being non-specific. Consequently the current
research literature has not advanced sufficiently
for iPS-based cell replacement therapy to become
a realistic therapeutic strategy yet.

The dangers of transplanting a mixed popu-
lation of cells have been previously shown in
the off-stake dyskinesias in the foetal transplants
[177, 223] which has later been confirmed to be
a result of contaminating serotoninergic neurons
in the transplanted tissue [183]. Although recent
evidence has now indicated that it is the loss
of cholinergic neurons not dopaminergic neurons
that correlates to gait difficulty: one of the cardi-
nal motor symptoms in PD [224]. Therefore, with
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further research it is becoming more apparent that
transplantation of a pure 100 % dopaminergic
neuronal population may not in fact be the best
possible treatment. The original therapeutic the-
ory was the cell replacement of the degenerated
cells with de novo in vitro generated cells; how-
ever, more research and understanding is neces-
sary to determine what all of those cells are. It
is currently known that the loss of midbrain A9
dopaminergic neurons of the SNc causes PD, yet
PD is implicated in non-dopaminergic multiple
pathways: noradrenergic, serotoninergic, gluta-
matergic and cholinergic within the regions of
the cortex, brainstem and basal ganglia [225].
Also with 40 % of all PD patients going on
to get dementia [226], the replacement of the
dopaminergic neurons would not prevent this.

In addition, cell-replacement therapies do not
treat the disease aetiology. Eventually the disease
will degenerate the de novo cells as it did the
endogenous cells to the prion-like propagation
of ’-synuclein. There is increasingly evidence
that ’-synuclein, TDP-43, tau and A“ are prion
diseases [181, 227–233, 240]. This will create
a problem for any cell replacement therapies in
those diseases in which those toxic proteins take
place, PD, ALS and AD. Therefore, for any future
cell replacement therapies, the propagation of
the disease from host to grafted tissue must be
prevented. Recently a group headed by Giovanna
Mallucci has published that treatment of a prion-
infected mouse model with an inhibitor of the
protein kinase PERK (protein kinase RNA-like
endoplasmic reticulum kinase) prevented over-
activation of the unfolded protein response (UPR)
system that otherwise leads to protein synthesis
accumulation and prion replication [234]. Pro-
vided this result can be replicated in human
models, this drug could be used in conjugation
with any cell replacement therapy and also given
routinely as a therapeutic therapy for these dis-
eases.

Each neurological disorder is different; con-
sequently each requires different treatment. In
diseases such as AD and ALS, there is systemic
loss of multiple cell types; a cell replacement
bench to bedside therapy would not necessarily
be the easiest and most effective option with a

pharmaceutical intervention being a more realis-
tic method of treatment. Also studies in HD have
shown diseases can propagate through astrocytes
and glial [235]; in addition to this the disease is
not localised to a specific area making transplan-
tation to multiple locations difficult.

There are a lot of pathological similarities in
neurodegenerative diseases that warrant further
research. For the diseases of protein misfolding,
such as PD, AD and ALS, this leads to ER stress;
therefore, limiting ER stress by reducing pro-
tein synthesis could be a strategy for therapeutic
treatment [236]. Another example of this and the
closer link between PD and ALS is FIG4: a phos-
phatase that regulates intracellular vesicle traf-
ficking along the endosomal–lysosomal pathway,
that mutations lead to ALS and also Charcot–
Marie–Tooth neuropathy, has been found in Pick
bodies, Picks disease, Lewy bodies in PD and
dementia with Lewy bodies (DLB) [237]. This
adds further scrutiny to the endosomal–lysosomal
pathway, pushing it to a central role in many
neurodegenerative diseases. As TDP-43 has been
found in ALS, FTN, AD [238, 239] and is can
mechanisms known to cause TDP-43 dysfunction
implicated in other neurological diseases: Lewy
body dementia, Down syndrome, hippocampal
sclerosis dementia, familial British dementia and
spinal cerebellar ataxia [238]. TDP-43 could be
a marker of general neurodegeneration with sup-
pression of aggregated TDP-43 propagation a
target for therapy [240].

Stem Cell Therapy: Readiness
to the Bedside II

Multiple Sclerosis

A previous strategy on treating MS was the gen-
eration of oligodendrocytes as a cell therapy to
replace the endogenous myelin-sheath-forming
oligodendrocytes. However, it is now established
that in MS the OPCs have not been ablated by
the activated lymphoblasts of the innate immune
system and can still be mobilised to myelin-
sheath-forming oligodendrocytes [241]. Due to
aging however, the OPCs become less efficient in
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differentiating the myelin-sheath-forming oligo-
dendrocytes [242]. Thus, over time the inherent
regenerative process that occurs normally and
efficiently becomes chronic and inefficient lead-
ing to selective vulnerabilities in the motor neu-
ron and subsequent degeneration. It is currently
unknown why the motor neuron is selectively
degenerated. MS is not a cell autonomous dis-
ease; therefore, replacing the degenerated motor
neurons in multiple locations would not be a
sustainable or realistic source of therapy. To treat
MS a synergistic strategy must be employed of
suppressing the immune system and repairing the
damaged axons by facilitating the endogenous
differentiation of the OPCs.

Bone marrow-derived MSCs have shown to be
an effective immunomodulator, more so than both
adipose-derived and cord blood-derived MSCs,
in the suppression of the in vitro proliferation
of mitogen or antigen-stimulated T-cell responses
[243]. Bone marrow-derived MSCs have previ-
ously been shown to promote endogenous repair
and functional recovery in animals of the disease
[244]. The results from two of the bone marrow-
derived phase I clinical therapies indicated that
the delivery of the MSCs were safe with no
tumourigenicity detected [245, 246]. In one of
the studies, there was also evidence of structural,
functional and physiological improvement [245].
There are now 13 phase I or phase II clinical trials
taking place using bone marrow-, umbilical cord-
or adipose-derived MSCs for the treatment of MS
[35]. Therefore, using a strategy specific for a dis-
ease, it appears that MSCs may be the best effec-
tive therapeutic strategy for the treatment of MS.

Conclusion

In conclusion it can therefore be seen that apart
from the hopeful and exciting trials in MS, the
bench to bedside stem cell therapy for neuro-
logical disorders is still a considerable way off.
There still remains a great deal of unknowns
regarding these neurological diseases. The aeti-
ology, manifestation and subsequent pathology
are patient-variable and idiopathic, with common

pathways and processes implicated across the
different neurodegenerative diseases. The new
technologies of genome editing without a molec-
ular footprint represents an exciting chapter in
research by being able to correct, control and
better model the disease. The progression in dif-
ferentiation protocols and the advent of direct
reprogramming will hopefully speed up the time
taken to conduct the research and enable greater
study and understanding of the disease. Thus,
by being able to understand these neurological
disorders, it allows for a better informed ratio-
nale when it comes to treatment. Questions still
remain about the safety and reproducibility of
the patient-derived iPS-cell technology as a route
to cell replacement therapies not withstanding
the logistical practical and financial implications.
However from these patient-derived iPS based
cellular models it is inevitable that greater under-
standing and mechanisms behind the pathology
will be found and then hopefully attenuated. Then
next question would be how readily and how
efficious will these subsequent therapies be in
translating from the localised in vitro terminally
differentiated cell model to the systemic in vivo
environment in which the disease state is in vari-
able stages of progression and is patient-specific.
Once the answers to these questions are ascer-
tained the bench to the bedside approach of using
stem cell mediated therapy to treat neurological
diseases will be realised.
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