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    Abstract  

  Plant roots radiate a wide range of potentially valuable small molecular 
weight compounds into the rhizosphere which play a key role in the chemi-
cal, physical, and biological interaction between roots of the plants and the 
rhizosphere. The microorganisms present in the rhizosphere react with the 
numerous metabolites released by plant roots by positive, negative, and 
neutral ways, and these interactions may infl uence the plant growth and 
development, change nutrient dynamics, and also alter the plants suscepti-
bility towards diseases and abiotic stresses. The root produces chemical 
signals that attract the bacteria and other microbes towards it. Beside this, 
positive interactions also include growth regulator mimics that support the 
plant growth and the cross-species signaling with other rhizospheric micro-
organisms. Plant-microbe interactions can infl uence the plant growth by 
providing nutrients and increased biotic and abiotic stress tolerance. Most 
of the agricultural soils have large amounts of inorganic and organic phos-
phorus (P), but it is present in immobilized form so is usually unavailable to 
plants. One of the major reasons why P is not readily available to plants is 
because of the high reactivity of P with some metal complexes. In this 
regard, the soil inoculants such as fungi, plant growth-promoting rhizobac-
teria (PGPR), and mycorrhizal fungi play a signifi cant role in the solubili-
zation of inorganic phosphate and mineralization of organic phosphates 
into easily available form to plants. Similarly, nitrogen (N) fi xers provide 
available N to the plants. N is a key limiting factor in any ecosystem. For 
treating heavy metal- contaminated tailings and soils, bioremediation is one 
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of the cost-effective methods and is emerging as the potential tool for 
removal of these contaminants from the soil or water. Bioremediation is a 
versatile process that could be applied in situ or ex situ manner. A wide 
variety of microorganisms such as bacteria, fungi, yeasts, and algae are 
being used in bioremediation processes, and some of these have already 
been employed as biosorbents of heavy metals. Various technologies such 
as phytoremediation, bioventing, bioleaching, land farming, bioreactor, 
composting, bioaugmentation, rhizofi ltration, and biostimulation are nowa-
days used for the bioremediation of contaminants from the soil. The aim of 
this chapter is to focus on the plant-microbe interactions responsible for the 
maintenance of soil fertility, plant nutrition, and also the remediation of 
contaminated soil for sustainable agricultural system.  

        Introduction 

 Plants and their associated microorganisms play 
an important role in the formation or modifi ca-
tion of soil (Pate and Verboom  2009 ). The soil 
formation takes place from the weathering of 
rocks and minerals and has distinct properties 
based on their origin, climate, and vegetation. 
Soil carbon is predominantly derived from plants, 
directly or indirectly, and while weathering may 
be due to physical and chemical infl uences. Most 
of the weathering processes involve primarily the 
plant roots, and the microbial activity may 
depend on the root-derived carbon (Beerling and 
Berner  2005 ). Next to water and temperature, 
nutrients are most crucial environmental factors 
desired for the development of the terrestrial 
plants. Rhizosphere is a zone of intense micro-
bial activity, and the microorganisms present in 
the rhizosphere react with the various metabo-
lites released by plant roots (Akhtar and Siddiqui 
 2010 ). Thus, the microorganisms and their prod-
ucts interact with plant roots in a variety of ways 
such as positive, negative, and neutral (Kuzyakov 
and Xu  2013 ). These interactions can infl uence 
the plant growth, change nutrient dynamics, and 
also alter the plants susceptibility towards the 
disease, abiotic stress, and resistance to heavy 
metals (Morgan et al.  2005 ). 

 The root systems support the aboveground 
part of the plant. In addition, the soil needs to main-

tain an appropriate pH, provide the protection 
from toxic substances and pathogens, and also 
contain suitable water levels. Besides this, all the 
essential mineral elements desired by plants are 
obtained from the soil. Marschner ( 1995 ) has 
recognized about 17 essential elements required 
for plant growth and reproduction. Amongst all 
the required essential elements, 14 elements are 
primarily acquired from the soil solution includ-
ing the six macronutrients (N, P, K, Ca, Mg, and 
S) and 8 micronutrients (Fe, Cu, Zn, Mn, Mo, B, 
Cl, and Ni). Additionally, the plants also accu-
mulate nonessential or toxic elements such as 
Cd, Pb, and Na from the soil solution. 

 Most of the essential elements are taken up in 
the ionic form from the soil solution by plants 
(White  2003 ). It is a well-known fact that the 
plant growth may be limited by the availability 
of essential elements or by the presence of toxic 
elements (Morgan et al.  2005 ). The interactions 
between microorganisms and the plant roots in 
rhizosphere assist the plants to acquire essential 
mineral nutrients and thwart the accumulation 
of toxic elements. Thus, it would be obvious 
that the structures of rhizospheric microbial 
communities are distinct from the bulk soil 
(Marilley and Aragno  1999 ), but vary in between 
plant species and over geographical time scale 
(Smalla et al.  2001 ). The different root zones in 
the same plant can hold distinct microbial com-
munities refl ecting qualitative and quantitative 
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differences in root exudation (Yang and Crowley 
 2000 ). Moreover, the structure of rhizospheric 
microbial communities could also be infl uenced 
by root infection by pathogenic microorgan-
isms, which promote greater microbial commu-
nity variability compared to healthy roots (Yang 
et al.  2001 ).  

    The Rhizosphere 

 Hiltner ( 1904 ) recognized rhizosphere as the 
volume of soil within immediate vicinity of the 
roots, which is predominantly affected by the 
activity of plants. The rhizosphere differs from 
the surrounding soils in most of the physico-
chemical and biological factors and with exten-
sive microbial population both in numbers and 
diversity (Phillips et al.  2003 ). The number of 
microorganisms present in per gram of soil is 
much larger in the rhizosphere as compared to 
bulk soil. This increased microbial activity in the 
vicinity of the roots could be attributed to root 
exudates, sloughed senescent root cells, and 
mucigel described as rhizodeposition (Mukerji 
et al.  1998 ). Thus, the rhizosphere is the region 
in which the materials released from the root and 
root metabolic activities directly affect microbial 
density (Table  6.1 ). The roots continuously 
release volatile, soluble, and particulate materi-
als through the process of rhizodeposition, and 
the growth of rhizospheric microorganisms on 
these materials turn over all the cellular activities 
and also release the nutrients in the form which 
could be utilized by plants.

   The rhizosphere encompasses not only the 
region of nutrient uptake by the plant roots 
but also extends into the soil by the action of 
their byproducts (Van der Putten et al.  2001 ). 
This infusion of organic substrates into the 
rhizosphere by plants explains very clearly that 
the biomass and microbial activity are always 
greater in rhizosphere compared to bulk soil 
(Bardgett et al.  1998 ). Root tip is the site of root 
growth, usually characterized by rapidly divid-
ing cells having the root exudates. The root exu-
dates and sloughed root cells provide carbon to 

rhizospheric microorganisms, which in turn 
mobilize N and P in soil for the plants.  

    Chemical Compounds Produced 
by Plant Roots in the Rhizosphere 

 The general concept about the plant is that an 
aerial part such as stem and leaves contains 
greater biomass than roots, but this is actually a 
misleading impression. For many plants the bio-
mass ratio of root and shoot is greater than the 
shoot and root biomass ratio. The materials 
released by plants include a wide variety of 
organic compounds (Table  6.2 ). The nature of 
these compounds depends upon various environ-
ment factors like temperature, moisture content, 
fertilizer dosages, herb, and plant age. The fi ne 
hairs of the roots are critical parts of the root 
 system. They release various root exudate prod-
ucts into the environment due to their metabolic 
activity, and additionally a variety of gaseous 
metabolites also fl ow from the roots in the  process 
of rhizodeposition.

   Table 6.1    Various root zones in the soil   

 Root zones  Functions 

 Rhizosphere  Region around the plant root where 
materials released from the root 
modify microbial populations and 
their activities 

 Endorhizosphere  Regions of the various cell layers 
of the root itself where 
microorganisms also colonize 

 Ectorhizosphere  An area surrounding the root and 
containing root hairs, plant, and 
bacterial mucilage 

 Rhizoplane  Root surface that can be colonized 
by microorganisms 

 Mycorrhizosphere  The ectorhizosphere extends a 
substantial distance from the root 
with the development of 
mycorrhizal fungal associations. 
Materials released from the fungus 
increase the microbial populations 
and their activities around the 
fungal hyphae 

 Spermosphere  The region around the germinating 
seed 

 Rhizodeposition  Release of materials from the roots 
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       Microbial Miscellanies 
in the Rhizosphere 

 The rhizosphere is the “cloud” of microbes sur-
rounding the plant roots and is vital for the plant 
growth and survival. Plant roots construct novel 
environments for microbes due to change in 
increased levels of nutrients and intense  microbial 
population (Giri et al.  2005 ). The microbial den-
sity is always high along the root away from the 
plant tip because respiration of the root is respon-
sible for the change in the environment of the rhi-
zosphere microbes. However, the microbial 
community developed in the changed environ-
ment will also face additional challenges like the 
availability of nutrients and edaphic and other 

biotic and abiotic factors which might be limiting 
for both the plant and their associated rhizo-
spheric microbes. 

 The plant has an increasing demand for inor-
ganic unavailable nutrients not present in a suffi -
cient rate in the soil. In this regard, the 
rhizospheric microorganisms make a major con-
tribution to overcome this demand (Table  6.3 ). 
The fi lamentous fungi also play a unique role in 
the nutrient uptake available to the plant due to 
their extensive hyphal network. They can derive 
the carbon from the plant and other limiting 
nutrients such as N and P from outside the root 
zone. Some free-living N 2 -fi xing bacteria like 
 Azotobacter ,  Azospirillum , and  Azoarcus  present 
in the nitrogen-free or low nitrogen input envi-
ronment play a signifi cant role in the nitrogen 
fi xation and also make the availability of nutri-
ents to plant. Besides this, the rhizospheric com-
munity is not only enriched in bacterial and 
fungal populations but also has protozoans and 
nematodes. These patrons feed on the nutrient- 
rich bacteria and fungi and lead to more rapid 
turnover of the microbe populations in the rhizo-
sphere which could be responsible for the accel-
eration in the release of nutrients for plant.

       Plant-Microbe Interaction 
and Nutrient Availability 

 Continuous application of chemical fertilizers for 
enhancing soil fertility and crop productivity 
resulted in unforeseen harmful environmental 
effects such as leaching of nitrate into ground 
water, surface runoff of N and P, and eutrophica-
tion of aquatic ecosystems (Tilman  1998 ; 
Gyaneshwar et al.  2002 ). Besides this, it also 
negatively impacted the complex system of the 
biogeochemical cycles (Perrott et al.  1992 ; 
Steinshamn et al.  2004 ). All these events sug-
gested that long-term application of chemical fer-
tilizers not only reduced the soil fertility but also 
reduced the microbial population in the various 
agroclimatic conditions. 

 Despite the various negative effects on the 
environment, the use of total amount of fertilizers 
has increased globally to fulfi ll the food demand 

   Table 6.2    Different compounds released by plant roots 
in the process of rhizodeposition   

 Compounds  Exudates components 

 Amino compounds  Asparagine, α- alanine, glutamine, 
aspartic acid, leucine/isoleucine, 
serine, glycine, cystine/cysteine, 
methionine, phenylalanine, 
tyrosine, threonine, lysine, proline, 
tryptophan, β- alanine, arginine, 
homoserine, cystathionine 

 Fatty acids and 
sterols 

 Palmitic, stearic, oleic, linoleic, 
linolenic acids, cholesterol, 
campesterol, stigmasterol, sitosterol 

 Growth factors  Biotin, thiamine, niacin, 
pantothenate, choline, inositol, 
pyridoxine, N-methyl nicotinic acid 

    Nucleotides, 
fl avonines, and 
enzymes 

 Flavonine, adenine, guanine, 
uridine/cytidine, phosphatase, 
invertase, amylase, protease, 
polygalacturonase 

 Organic acids  Tartaric, oxalic, citric, malic, 
propanoic, butyric, succinic, 
fumaric, glycolic, valeric, malonic 

 Sugars  Glucose, fructose, sucrose, maltose, 
galactose, rhamnose, ribose, xylose, 
arabinose, raffi nose, 
oligosaccharide 

 Miscellaneous 
compounds 

 Auxins, scopoletin, fl uorescent 
substances, hydrocyanic acid, 
glycosides, saponin (glucosides), 
organic phosphorus compounds, 
nematode-cyst or egg-hatching 
factors, nematodes attractants, 
fungal mycelium growth stimulants 
and inhibitors, zoospore attractants 
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of the growing world population through inten-
sive agriculture (Vitousek et al.  1997 ; Frink et al. 
 1999 ). In the last fi ve decades, the rate of NPK 
fertilizer application has increased tremendously. 
Thus, there is a challenge to increase the agricul-
tural productivity by minimizing the use of harm-
ful chemical fertilizers. In this regard, the use of 
microbial inoculants such as PGPR and mycor-
rhizal fungi play a crucial role to minimize the 
demand of chemical fertilizers. Thus, the micro-
bial inoculants are considered as promising com-
ponents of agro-environmental integrated system 
because these inoculants possess the capacity to 
promote plant growth, enhance nutrient availabil-
ity and uptake, and support plants’ health (Barea 
et al.  1998 ; Dobbelaere et al.  2001 ; Hodge et al. 
 2001 ; Bonfante  2003 ; Vessey  2003 ; Kloepper 
et al.  2004 ; Han and Lee  2005 ; Adesemoye et al. 
 2008 ; Akhtar et al.  2011 ). 

 The arbuscular mycorrhizal (AM) fungi increase 
the plant growth by water and nutrient uptake 
(Ames et al.  1983 ; Akhtar and Siddiqui  2008a ; 
Akhtar and Panwar  2011 ). The AM fungi have a 
high affi nity towards P-uptake mechanism that 
enhances P nutrition in plants. The AM fungi could 
also scavenge the available P through their extrara-
dical hyphae (Bianciotto and Bonfante  2002 ; 
Akhtar and Siddiqui  2008b ; Akhtar et al.  2011 ). 
Apart from this benefi cial association between the 
AM fungi and plant roots, there are few demerits as 
well. The AM fungi could not be cultured in vitro, 
due to their obligate nature, limiting the knowledge 
about the genetic basis of P solubilization and rhi-
zosphere competence (Amijee et al.  1989 ; Koide 
 1991 ). Moreover, a high concentration of soil phos-
phate, above 100 ppm, could lead to the reduction 
in hyphal growth and chlamydospore production 
(Koide  1991 ). These limitations directly affect the 
P uptake and also cause the reduction of the bene-
fi ts to plants (Stewart et al.  2005 ). 

 Similarly, the use of PGPR increases seed 
germination rate, root growth, yield, leaf area, 
chlorophyll content, nutrient uptake, protein con-
tent, hydraulic activity, tolerance to abiotic stress, 
and shoot and root weight, biocontrol and also 
delay the senescence (Raaijmakers et al.  1997 ; 
Bashan et al.  2004 ; Mantelin and Touraine  2004 ; 
Siddiqui et al.  2007 ; Bakker et al.  2007 ; Yang 
et al.  2009 ; Akhtar and Siddiqui,  2010 ). Other 
benefi cial effects of PGPR include enhancing P 
availability (Rodriguez and Fraga  1999 ; Akhtar 
and Siddiqui  2008a ; Akhtar and Panwar  2011 ; 
Yadav et al.  2012 ); fi xing atmospheric nitrogen 
(Bashan et al.  2004 ; Gupta et al.  2012 ); seques-
tering iron for plants by production of sidero-
phores (Raaijmakers et al.  1997 ; Bakker et al. 
 2007 ; Akhtar and Siddiqui,  2009 ), producing 
plant hormones such as gibberellins, cytokinins, 
and auxins (Gutierrez- Manero et al.  2001 ); and 
synthesizing 1-amino cyclopropane-1-carboxyl-
ate (ACC) deaminase (Glick et al.  2007a ,  b ). 

    Availability of Nitrogen 

 Nitrogen is an essential element for plant growth 
and development, and the complex nitrogen cycle 
has a great impact on soil fertility (Jetten  2008 ). 
This cycle is conquered by four major steps, nitro-
gen fi xation, nitrifi cation, denitrifi cation, and nitro-
gen mineralization (Ogunseitan  2005 ). It has been 
reported by earlier researchers that the microbial 
inoculants have signifi cant roles in nitrogen cycling 
and utilization of nitrogenous fertilizers in the 
plant-soil system (Briones et al.  2003 ; Adesemoye 
et al.  2009 ) (Fig.  6.1 ). The uptake of nitrogen by 
leguminous (Elsheikh and Elzidany  1997 ; Akhtar 
and Siddiqui,  2006 ; Gupta et al.  2012 ) and nonle-
gume plants have been reviewed by many research-
ers (Kennedy et al.  1997 ; Dobbelaere et al.  2001 ; 

   Table 6.3    Microbial density of major groups of microorganisms present in the rhizospheric and non-rhizospheric soils   

 Microorganisms 
 Rhizosphere 
(microbes/g dry soil) 

 Non-rhizosphere 
(microbes/g dry soil)  R:S ratio 

 Algae  5 × 10 3   27 × 10 3   0.2 
 Actinomycetes  46 × 10 6   7 × 10 6   7.0 
 Bacteria  1200 × 10 6   53 × 10 6   23.0 
 Fungi  12 × 10 5   1 × 10 5   12.0 
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Vessey  2003 ; Egamberdiyeva and Hofl ich  2004 ; 
Hernandez and Chailloux  2004 ; Wu et al.  2005 ; 
Shaharoona et al.  2008 ).

   Wu et al. ( 2005 ) conducted greenhouse exper-
iments on maize utilizing  Glomus mosseae  and 
 Glomus intraradices  with or without free-living 
nitrogen fi xer,  Azotobacter chroococcum   and found 
that the co-inoculant increased the plant growth 
and NPK uptake and improved the soil properties 
in a much better way. Shaharoona et al. ( 2008 ) 
reported that inoculation of  Pseudomonas fl uore-
scens  (strain ACC50) and  P. fl uorescens  biotype 
F (strain ACC73) increased effi ciency at all tested 
NPK fertilizer levels in wheat under pot and fi eld 
trials. Amir et al. ( 2005 ) found that the inocula-
tion of PGPR enhanced uptake of N and P in oil 
palm seedlings in nursery. Similarly, Aseri et al. 
( 2008 ) conducted a fi eld experiment to assess the 
effectiveness of PGPR ( A. chroococcum ) and AM 
fungi ( G. mosseae ) on the growth, nutrient 
uptake, and biomass production of pomegranate 
in individual or combined inoculations. The 
results showed that dual inoculation of PGPR and 
AM fungi led to higher biomass accumulation 

and uptake of N, P, K, Ca, and Mg. The result of 
the study thus confi rmed that inoculation with 
mixed strains was more consistent than inocula-
tion of single strain. It is well reported that the 
uptake of NPK and micronutrients are signifi -
cantly enhanced in  Azospirillum  spp. inoculated 
plants under the greenhouse and fi eld conditions. 
Thus, it would be very crucial to fi nd out the fac-
tors behind the successful plant root colonization 
in  Azospirillum  and other PGPR which is respon-
sible for the increase nutrient uptake. 

 Nitrogenase is the enzyme responsible for N 2 - 
fi xation. It has two components: I (a α2β2 
 tetramer encoded by  nifD  and  nifK  genes) and II 
(a homodimer encoded by  nifH  gene). These two 
components are conserved in structure, function, 
and amino acid sequence throughout the diazo-
trophs. These genes are commonly reported to 
regulate lateral root development and long- 
distance movement of nitrogen (de Zamaroczy 
et al.  1989 ; Ueda et al.  1995 ; Minerdi et al.  2001 ). 
The nitrogenase enzyme complex has been cred-
ited for the capacity of PGPR to convert nitrogen 
into ammonia in a free state. Egener et al. ( 1999 ) 

  Fig. 6.1    Schematic representation of symbiotic nitrogen fi xation in the leguminous plants       
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studied root-associated GUS and  nifH  expression 
to monitor the establishment of N 2 -fi xing bacteria 
( Azoarcus  sp.) on rice roots and successfully 
localized the expression of bacterial genes of 
interest in the host plant. They have found that 
the presence of combined nitrogen such as 
ammonia has a strong impact on the expression 
of  nif  gene in most diazotrophs. Similarly, Vande 
Broek et al. ( 1993 ) estimated the qualitative and 
quantitative associativeness in  nifH  expression in 
 A. brasilense  on wheat roots through  gusA  fusion 
plasmid system.  

    Availability of Phosphorus 

 Phosphorus is another growth-limiting nutrient 
generally present in the immobilized organic and 
inorganic form in the soil. Phosphorus is not read-
ily available to plant due to its high reactivity with 
some metal complexes such as Fe, Al, and Ca 
leading to precipitation in the soil or may be pres-
ent in very low concentration (usually in micromo-
lar amount) (Igual et al.  2001 ; Gyaneshwar et al. 
 2002 ). It is also an important and well-known fact 
that when the P fertilizers are added to soils, they 
may not be absorbed or utilized by plants because 

of their sparingly soluble nature, and thus less 
amount of P would be available for the growth of 
agricultural crops (Gyaneshwar et al.  2002 ). Thus, 
the farmer may have to add large amount of fertil-
izers into the fi elds which later cause environmen-
tal problems (Ohno et al.  2005 ). The inoculants of 
PGPR and AM fungi play a signifi cant role in the 
solubilization of inorganic phosphate and mineral-
ization of organic phosphates (Mahmood et al. 
 2001 ; Tarafdar and Marschner  1994a ; Tawaraya 
et al.  2006 ). Moreover, there are many evidences 
which are related to inorganic phosphate (Pi) 
transporter and its expression in the external 
hyphae of AM fungi, which is important in the 
uptake of P and transfer from the AM fungi to 
plants (Tarafdar and Marschner  1994b ; Harrison 
and van Buuren  1995 ). 

 The mechanism for the solubilization of P was 
reported by Gharu and Tarafdar ( 2004 ) and Chen 
et al. ( 2006 ) (Fig.  6.2 ). The organic P usually 
accounting for 30–65 % of total P in soils must be 
converted to inorganic or low molecular weight 
organic acids before they could be assimilated by 
plants. The different forms of organic P in soils 
are inositol phosphatases, phosphoesters, phos-
phodiesters, and phosphotriesters. A large part of 
the organic P is present in the form of inositol 

  Fig. 6.2    Mechanism of soil P solubilization/mineralization and immobilization       
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phosphatases (phytate) (Rodriguez and Fraga 
 1999 ; Zimmermann  2003 ). Phosphatases refer to 
any enzyme that can hydrolyze phosphate esters 
and anhydrides including phosphoprotein phos-
phatases, phosphodiesterases, diadenosine tetra-
phosphatases, exonucleases, 5′-nucleotidases 
phytases, phosphomonoesterases, alkaline, and 
acid phosphatases (Zimmermann  2003 ).

   The role of phosphatases in the mobilization of 
phosphorus, originating from the organic soil 
sources, by AM fungi and PGPR has been reviewed 
by several researchers (Tarafdar and Marschner 
 1994b ; Idriss et al.  2002 ; Rodriguez and Fraga 
 1999 ). Moreover, molecular tools have been also 
used to elucidate plant-microbe interactions in 
phosphorus metabolism (Rodriguez et al.  2000 ; 
Chen et al.  2006 ). Minder et al. ( 1998 ) indicated 
that the genetic control system of phosphate uptake 
is based on the phosphate regulatory protein  PhoB , 
which is mediated by the transmembrane sensor 
protein  PhoR . They have suggested that phosphor-
ylated  PhoB  acts as a transcriptional activator to the 
 Pho  box in the promoter region of genes belonging 
to the  Pho  regulon and concluded that the product 
of the  PhoB  gene regulates the cellular response to 
environmental phosphate limitation. A study on 
 Bradyrhizobium japonicum  and soybean con-
cluded that  PhoB  is responsible only for phosphate- 
limited growth, not for symbiotic nitrogen fi xation 
(Minder et al.  1998 ). Subsequently, Ruiz-Lozano 
and Bonfante ( 1999 ) have investigated the role of 
 Burkholderia  sp. and AM fungi in P metabolism 
and found that through shunting off mechanism, 
the phosphorus is transferred from fungus to the 
plant. Ruiz-Lozano and Bonfante ( 1999 ) also char-
acterized an operon  Pst -like system in  Burkholderia  
similar to  E. coli  phosphorus uptake by  Gigaspora 
margarita . By the possession of a DNA region with 
nitrogenase-coding genes ( nif  operon), the 
 Burkholderia  sp. could also affect nitrogen uptake. 
The approaches are promising to elaborate the role 
of the interaction of bacteria and AM fungi in the 
nutrient uptake (Akhtar  2011 ).  

    Availability of Other Nutrients 

 Microbial inoculants have shown their infl uence 
towards the uptake of other nutrients besides N 

and P (Peix et al.  2001 ; Khan  2005 ; Wu et al. 
 2005 ; Adesemoye et al.  2008 ). Khan ( 2005 ) 
observed that inoculation of  Pseudomonas  and 
 Acinetobacter  strains resulted in enhanced uptake 
of Fe, Zn, Mg, Ca, and K by crop plants. In 
another study, inoculation of chickpea and barley 
with strains of  Mesorhizobium mediterraneum  
signifi cantly increased the K, Ca, and Mg in addi-
tion to P and N in both crop plants (Peix et al. 
 2001 ). Kohler et al. ( 2008 ) have demonstrated the 
effects of PGPR ( Pseudomonas mendocina ) and 
AM fungi ( G. intraradices  and  G. mosseae ) on 
uptake of N, P, Fe, Ca, and Mn in lettuce under 
three different levels of water stress. Sheng and 
He ( 2006 ) reported improved uptake of K by the 
inoculation of  Bacillus edaphicus  and suggested 
that the production of organic acids (citric, oxalic, 
tartaric, succinic, and α-ketogluconic) by this 
strain leads to chelation of metals and mobiliza-
tion of K from K-containing minerals. Similarly, 
Giri and Mukerji ( 2004 ) reported a signifi cant 
increase in Mg concentrations in the seedling of 
 Sesbania aegyptiaca  and  Sesbania grandifl ora  by 
the application of  Glomus macrocarpum , com-
pared to non-mycorrhizal seedlings in saline soil. 
Liu et al. ( 2000 ) reported an increase in acquisi-
tion of Fe, Zn, Cu, and Mn by mycorrhizal fungi 
in maize. Moreover, sulfur uptake has been 
achieved through sulfur oxidization (Banerjee 
et al.  2006 ) and iron uptake through siderophore- 
producing bacteria (Bakker et al.  2007 ). Biswas 
et al. ( 2000 ) reported a signifi cant increase in Fe 
uptake in lowland rice through inoculation of 
 Rhizobium leguminosarum  bv.  trifolii  and sug-
gested that the increase in uptake of Fe, P, and K 
was associated with higher nitrogen rates.   

    Plant Interactions for Remediation 
of Contaminated Soils 

 Soil is an important habitat for thousands of 
organisms including a variety of fungi, actino-
bacteria, algae, protozoa, and different types of 
bacteria. These microorganisms in association 
with soil particles or soil organic matter in the 
rhizosphere are essential for the plant. Plant- 
microbe interactions are now being intensively 
investigated for decontamination and remediation 
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processes. With the discovery of a number of soil 
microorganisms that are capable of degrading 
xenobiotic chemicals including herbicides, pesti-
cides, solvents, and other organic compounds, 
microbial degradation might provide a reason-
able and effective means of disposing toxic 
chemical wastes. Due to the sensitivity and the 
sequestration ability of the microbial communi-
ties towards the heavy metals, microbes have 
been used for bioremediation of sites contami-
nated with them (Hallberg and Johnson  2005 ; 
Kao et al.  2006 ; Umrania  2006 ). Although micro-
bial communities in metal-polluted bulk soils 
have been studied, there are a limited number of 
studies on the composition of microbial commu-
nity in the plant rhizosphere growing in soils 
highly polluted with heavy metals (Dell’Amico 
et al.  2005 ). 

    Phytoremediation 

 Phytoremediation is a kind of bioremediation 
technique that uses plants to manage or remedi-
ate polluted soils. It is an emerging and cost- 
effective technology. It could be defi ned as “the 
elimination, attenuation, or transformation of 
polluting or contaminating substances by plants 
into their less toxic forms” (Vidali  2001 ; 
Kavamura and Esposito  2008 ). It can be used as 
in situ or ex situ technology. Soils could be con-
taminated with thousands of contaminants vary-
ing in their composition and concentration 
through inadequate residue disposal, accidental 
wastes, and inappropriate use (Knaebel et al. 
 1994 ). These contaminants include nitrates, 
phosphates, and perchlorates (Nozawa-Inoue 
et al.  2005 ); explosives such as hexahydro-1,3,5-
trinitro- 1,3,5-triazine and octahydro-1,3,5,7-
tetranitro- 1,3,5,7-tetrazocine (Kitts et al.  1994 ); 
monoaromatic hydrocarbons like benzene, tolu-
ene, ethylbenzene, and xylene (Rooney-Varga 
et al.  1999 ); polycyclic aromatic hydrocarbons 
(Wang et al.  1990 ); herbicides such as diuron, 
linuron, and chlorotoluron (Fantroussi et al. 
 1999 ); and heavy metals (Glick  2003 ). 

 In case of soil remediation, several factors 
such as soil characteristics, type, and concentration 
of contaminants should be considered (Boopathy 

 2000 ; Sheoran et al.  2008 ). The remediation of 
the harmful contaminants from the soil by plants 
is an emerging alternative to restore the contami-
nated sites (Singh et al.  2003 ; Paquin et al.  2004 ; 
Vassilev et al.  2004 ; Shah and Nongkynrih  2007 ; 
Padmavathiamma and Li  2007 ; Rajkumar and 
Freitas  2008 ; Lone et al.  2008 ; Akhtar et al. 
 2013 ). Phytoremediation can be classifi ed 
according to the method and the nature of con-
taminants (Lasat  2002 ; Eapen et al.  2003 ; 
Newman and Reynolds  2004 ; January et al. 
 2008 ). The various methods used for the phytore-
mediation are discussed below (Fig.  6.3 ).

      Phytoextraction 
 Plants can absorb the concentrated metals in their 
aboveground parts which can then be harvested. 
Brennan and Shelley ( 1999 ) found that plants 
have the capability to extract large concentrations 
of heavy metals into their roots, translocate them 
to the stem, and produce a large quantity of plant 
biomass.  

    Phytodegradation 
 It is also known as phytotransformation. In this 
process, plants degrade organic pollutants 
directly via their enzymatic activities. Some 
enzymes break down and convert ammunition 
wastes, others degrade chlorinated solvents such 
as trichloroethylene, and others degrade 
herbicides.  

    Phytovolatilization 
 Phytovolatilization refers to the uptake and tran-
spiration of contaminants, primarily organic 
compounds, by plants. The contaminant, present 
in the soil solution, is taken up and modifi ed by 
the plant and is released to the atmosphere 
through the plant leaves by evaporation or vapor-
ization processes.  

    Phytostimulation 
 It refers to stimulation of rhizospheric microor-
ganisms capable of degrading the contaminants 
by the growing roots releasing exudates/nutrients 
such as carbon sources. This method is useful in 
removing organic contaminants, such as pesticides, 
aromatics, and polynuclear aromatic hydrocarbons 
from soil and sediments (Ukiwe et al.  2013 ).  
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    Phytostabilization 
 In this method, the use of plant roots may limit 
the contaminant by reducing its mobility or 
leaching in the soil. Plants decrease the amount 
of water percolating through the soil matrix, 
which may act as a barrier and reduce the leach-
ing of the contaminant. Phytostabilization can 
occur through sorption, precipitation, complex-
ation, or metal valence reduction. It is helpful in 
the treatment of contaminated land areas affected 
by mining activities (Raskin and Ensley  2000 ). 
Phytostabilization is commonly used to treat the 
metal (arsenic, cadmium, chromium, copper, and 
zinc) contaminants (Kunito et al.  2001 ).  

    Rhizofi ltration 
 It could be used for metals such as Pb, Cd, Cu, 
Ni, Zn, and Cr which are retained within the 
roots. It is useful for both terrestrial and aquatic 
plants for in situ or ex situ purposes. In this 
method, the contaminants do not translocate to 
the shoots. The terrestrial plants are more favored 

for rhizofi ltration due to their fi brous and elon-
gated root systems. The main limitation of this 
method is to adjust to the pH at regular intervals.   

    Rhizoremediation 

 In this method, microorganisms are utilized in 
combination with the plants (Jing et al.  2007 ). 
Generally organic pollutants with high hydro-
phobicity (hence, unable to be absorbed by the 
plant) are remediated by this method. Microbes 
play major role in this method. Plants mainly pro-
vide the microbes with nutrients and growth fac-
tors to proliferate (Siciliano and Germida  1998 ; 
Chaudhry et al.  2005 ). 

   Rhizoremediation of Organic 
Contaminants by PGPR 
 Initially, the PGPR were used for plant growth 
promotion and biocontrol of plant diseases, but now 
they are also being used for rhizoremediation of 

  Fig. 6.3    Schematic diagram of different approaches of phytoremediation       
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organic contaminants (Narasimhan et al.  2003 ; 
Huang et al.  2004 ,  2005 ). In contrast to inorganic 
compounds, microorganisms can degrade and 
mineralize organic compounds in association 
with plants (Saleh et al.  2004 ). Brazil et al. ( 1995 ) 
reported that the bacteria are capable of degrad-
ing a certain kind of organic pollutants such as 
polychlorinated biphenyls isolated from various 
locations and studied the encoding genes involved 
in this pathway. Rhizoremediation of various 
organic pollutants is known when a particular 
crop plant in combination with their known or 
unknown microbes are used as reviewed in detail 
by Kuiper et al. ( 2004 ).  

   Rhizoremediation of Metals by PGPR 
 A wide range of plants have been tested for their 
ability to take up high levels of metals by roots 
form soil and translocate these metals into the 
leaves and shoots. The use of PGPR as adjuncts 
in metal phytoremediation can signifi cantly facil-
itate the growth of plants in the presence of high 
levels of metals (Zhuang et al.  2007 ; Glick  2010 ).  

   Rhizoremediation by Endophytic 
Microorganisms 
 Endophytic bacteria could be defi ned as bacteria 
colonizing the internal tissues of plants without 
causing infection or negative effects on their host 
(Lodewyckx et al.  2002 ). With the exception of 
seed endophytes, the primary site where endo-
phytes gain entry into plants is via the roots (Pan 
et al.  1997 ; Germaine et al.  2004 ). The endo-
phytes either reside inside the plants in specifi c 
plant tissues like root cortex and xylem or colo-
nize the plant systematically by transport through 
the vascular system or apoplast (Mahaffee et al. 
 1997 ; Quadt-Hallmann et al.  1997 ). Endophytic 
bacteria have been isolated from a variety of 
healthy plant species ranging from herbaceous 
crop plants (Lodewyckx et al.  2002 ; Malinowski 
et al.  2004 ; Mastretta et al.  2009 ), different grass 
species (Zinniel et al.  2002 ; Dalton et al.  2004 ), 
to woody tree species (Cankar et al.  2005 ; Moore 
et al.  2006 ; Taghavi et al.  2009 ). 

  Pseudomonas ,  Burkholderia , and  Enterobacter  
are amongst the most common genera of cultivable 
endophytes (Mastretta et al.  2006 ). In addition to 

their benefi cial effects on plant growth, endophytes 
have also been used in phytoremediation (Weyens 
et al.  2009 ). Idris et al. ( 2004 ) investigated the 
endophytes from  Thlaspi goesingense , a hyperac-
cumulator of Ni in both cultivation-dependent and 
cultivation- independent techniques. They con-
cluded that the endophytes used in the cultivation-
independent techniques have the potential to 
tolerate higher concentration of Ni than rhizo-
spheric bacteria. This kind of technique is very 
promising in the phytoremediation of heavy met-
als, but the actual mechanisms is not well under-
stood, and its application in the phytoremediation 
of heavy metal is expensive and very complicated 
(Weyens et al.  2009 ).  

   Mycorrhizoremediation 
 In this advanced approach, symbiotic AM fungi 
could be used for phytoremediation (Huang 
et al.  2004 ; Khan  2006 ). AM fungi have the 
potential to effi ciently explore the soil volume 
(Meharg and Cairney  2000 ). Mycorrhizal asso-
ciation exhibits substantial resistance against the 
toxic metals (Leyval et al.  1997 ; Meharg and 
Cairney  2000 ) and organic compounds such as 
m-toluate and petroleum polycyclic aromatic 
hydrocarbons (Sarand et al.  1998 ,  1999 ; Leyval 
and Binet  1998 ). 

 In addition to their protective behavior, 
mycorrhizae may contribute to resistance of 
plant- microbial associations through enhanced 
degradation of organic pollutants in the mycor-
rhizosphere and lowering the bioavailable con-
centration of heavy metals in soil (Meharg and 
Cairney  2000 ). It is evident from the reports of 
the earlier researchers that the AM fungi have 
the potential to increase the uptake of various 
heavy metals in plants (Liao et al.  2003 ; 
Whitfi eld et al.  2004 ; Liu et al.  2005 ; Leung 
et al.  2006 ). However, some other studies 
showed there is no effect of AM fungi or even 
decreased concentrations in plant tissues (Trotta 
et al.  2006 ; Wu et al.  2007 ). On the basis of 
contrasting results, it is very diffi cult to evalu-
ate the potential of mycorrhizal fungi in the 
uptake of heavy metals in fi eld experiments 
(Liu et al.  2005 ; Leung et al.  2006 ; Wu et al. 
 2007 ; Wenzel  2009 ).   
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    Bioremediation by Microbes 

 In this process, microorganisms are used for deg-
radation or removal of contaminants from the 
soil. This method of degradation or removal of 
environmental contaminant through microbial 
activity is cost-effective and environmentally 
safe compared to other physicochemical method-
ologies used for bioremediation (Akhtar et al. 
 2013 ). It could be used both as in situ and ex situ 
methods. However, there are many loopholes and 
black holes in this technology such as the use of 
inappropriate microbial system for removal of 
metal toxicity, low or inactive microbial popula-
tions, or presence of complex pollutant mixtures. 
The rate and extent of biodegradation depend 
upon many factors which have been summarized 
in tabular form (Table  6.4 ).

   For endurance under metal-stressed environ-
ment, PGPR have evolved several mechanisms 
by which they can immobilize, mobilize, or 
transform metals rendering them inactive so as to 
tolerate the heavy metal ions. These mechanisms 
include: (1) exclusion, the metal ions are kept 
away from the target sites; (2) extrusion, the 
metals are pushed out of the cell through chro-
mosomal/plasmid mediated events; (3) accom-
modation, metals form complex with the metal 
binding proteins or other cell components; 
(4) bio-transformation, toxic metal is reduced to 
less toxic forms; and (5) methylation and demeth-
ylation. Thus, in general, the immobilization and 
mobilization are the two main techniques used 
for the bioremediation of metals by microbes. 

   Immobilization Techniques 
 Immobilization is a technique used to reduce the 
mobility of contaminants by altering the physical 
or chemical characteristics of the contaminant. 
This remediation approach can utilize microor-
ganisms to immobilize metal contaminants. It is 
usually accomplished by physically restricting 
contact between the contaminant or by chemi-
cally altering the contaminant (Evanko and 
Dzombak  1997 , Mulligan et al.  2001 ; Akhtar 
et al.  2013 ). Chemical reagents and bacterial 
reagents assist with the immobilization of metal 
contaminants. Most sites contaminated with 

metals use the solidifi cation and stabilization 
approach to immobilize metals. Solidifi cation 
treatment involves mixing or injecting chemical 
agents to the contaminated soil. The prominent 
mechanism by which metals are immobilized is 
by precipitation of hydroxides. The chemical 
composition of the site, the amount of water pres-
ent, and the temperatures are all factors important 
to the successful use of the solidifi cation/stabili-
zation mechanisms (Evanko and Dzombak  1997 ; 
Wuana and Okieimen  2011 ). The stabilization 
and solidifi cation technique is achieved by mix-
ing the contaminated material with appropriate 
amounts of stabilizer material and water. The 
mixture forms a solidifi ed matrix with the 
waste. The stabilization and solidifi cation tech-
niques can occur both in situ and ex situ. In situ is 

   Table 6.4    Some major factors affecting the bioremediation 
process   

 Factors  Affect 

 Microbial  Growth until critical biomass is 
reached, mutation and horizontal 
gene transfer, enzyme induction, 
enrichment of the capable 
microbial populations, and 
production of toxic metabolites 

 Environmental  Depletion of preferential 
substrates, lack of nutrients, and 
inhibitory environmental 
conditions 

 Substrate  Too low concentration of 
contaminants, chemical 
structure of contaminants, 
toxicity of contaminants, and 
solubility of contaminants 

 Biological aerobic vs. 
anaerobic process 

 Oxidation/reduction potential, 
availability of electron 
acceptors, and microbial 
population present in the site 

 Growth substrate vs. 
co-metabolism 

 Type of contaminants, 
concentration, alternate carbon 
source present, and microbial 
interaction such as competition, 
succession, and predation 

 Physicochemical 
bioavailability of 
pollutants 

 Equilibrium sorption, 
irreversible sorption, and 
incorporation into humic 
matters 

 Mass transfer 
limitations 

 Oxygen diffusion and solubility, 
diffusion of nutrients, and 
solubility and miscibility in 
water 
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preferred for volatile or semi-volatile organics. 
The in situ process is useful for treating surface 
or shallow contamination.  

   Mobilization 
 Microorganisms can mobilize metals through 
autotrophic and heterotrophic leaching, chelation 
by microbial metabolites and siderophores, meth-
ylation, and redox transformations. Heterotrophic 
leaching is when microorganisms can acidify 
their environment by proton effl ux thus leading 
to the acidifi cation resulting in the release of free 
metal cations. Autotrophic leaching is when aci-
dophilic bacteria retrieve CO 2  and obtain energy 
from the oxidation of the ferrous iron or reduced 
sulfate compounds, which causes solubilization 
of metals (Agrawal  2005 ). Siderophores are spe-
cifi c iron-chelating ligands and are able to bind to 
other metals, such as magnesium, manganese, 
chromium, and gallium, and radionuclide, such 
as plutonium (Akhtar et al.  2013 ). Methylation 
involves methyl groups that are enzymatically 
transferred to a metal, forming a number of dif-
ferent metalloids. Redox transformations can 
allow microorganisms to mobilize metals, metal-
loids, and organometallic compounds by reduc-
tion and oxidation processes. There are various 
metal-mobilization techniques that can also occur 
in nature (Gadd  2004 ).    

    Conclusion 

 The rhizospheric microorganisms can infl uence 
plant growth, nutrition availability, disease sus-
ceptibility, resistance towards heavy metals, and 
various abiotic stresses. Plant growth attributes 
could be limited by the unavailability of essential 
elements or the presence of toxic elements. The 
interactions between plant roots and microorgan-
isms present in the rhizosphere assist them to 
acquire essential mineral nutrients from the soil 
and prevent the accumulation of toxic elements. 
Amongst various rhizospheric microorganisms, 
free-living and symbiotic nitrogen-fi xing bacteria 
contribute a lot to meet this demand. In the pres-
ence of N-free or low nitrogen content, the rhizo-
spheric bacteria accomplish associative nitrogen 

fi xation and thus provide essential nutrients to 
plants. Moreover, the phosphate-solubilizing 
bacteria have the capacity to convert inorganic 
unavailable P form to soluble forms available to 
plants. 

 Of the various microorganisms present in the 
soil, the rhizospheric bacterial community has 
the potential to increase the plant growth and 
minimize the disease severity and also is useful in 
the degradation or removal of toxic elements 
from water, soil, sludge, and process-waste 
stream through bioremediation. These technolo-
gies could be broadly classifi ed as ex situ and in 
situ. The ex situ technologies are applied for the 
physical removal of the contaminated materials 
for treatment process, while in situ techniques for 
the treatment of contaminated materials in place. 
Plant-microbe interactions can thus be applied 
for diverse aspects by the development of sus-
tainable technologies for enhancement of crop 
yield, suppression of phytopathogens, degrada-
tion of pollutants, and remediation of contami-
nated sites.     
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