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    Abstract  

  Sustainable agriculture plays a vital role in agroecosystems and reduces 
adverse effects on the environment by utilizing the various natural pro-
cesses. Optimum soil fertility is an essential goal to be achieved in sustain-
able agriculture system. The presence of benefi cial microorganisms in the 
rhizospheric region and their activities are the main focal point which 
makes dynamic resources available to plants and conserve soil fertility. 
Majority of the agricultural and horticultural crops are associated with 
common soil fungi, the arbuscular mycorrhizal (AM) fungi. These fungi 
are crucial for plant health and fi tness as they increase the effi ciencies of 
the plant root systems. The hyphae of these fungi originating from roots 
grow into the soil and absorb nutrients especially phosphorus and deliver 
it to the roots. They also play a crucial role in imparting tolerance to plants 
against various stresses as well as modifying soil structure. Nevertheless, 
several agricultural practices involved in crop production can infl uence 
both AM formation and function. Consequently, AM fungal introductions 
or changes in crop management practices that enhance the proliferation, 
diversity and function of native AM fungi become essential. Optimization 
of agronomic practices that sustain maximum AM fungal presence and 
activity would enable to achieve increased plant production in sustainable 
agriculture.  
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1         Introduction 

 In spite of the universal escalation of agriculture 
and tremendous growth in the major crop produc-
tivity over the last decades, the eradication of 
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hunger facing mankind is far from being realized 
(FAO  2004 ). Factors that deter maximum crop 
productivity include several abiotic and biotic 
stresses like unfavourable climate, drought, dis-
eases and pests. Recently, increased crop produc-
tivity has been achieved through crop breeding 
along with huge input of chemicals in the form of 
fertilizers and biocides. These chemicals not only 
disturb agricultural ecosystems but are also detri-
mental to the environment (Chapin et al.  2000 ; 
Barabasz et al.  2002 ; Parmesan and Yohe  2003 ; 
Zhong and Cai  2007 ). The tolerance of crops to 
various abiotic and biotic stresses can also be 
evolved through the exploitation of the world-
wide abundant endophytic associations, where 
microorganisms live in reciprocally benefi cial 
relationship with plants. 

 Sustainable agriculture, by defi nition, is eco-
logically sound, economically viable, and 
socially responsible (Siddiqui and Pichtel 
 2008 ). Agroecosystems are characterized by 
major dependence on human interference and 
therefore are infl uenced by factors that extend 
into the system such as energy, agrochemicals 
and their residues (Odum  1984 ). In contrast to 
natural ecosystems, agroecosystems are created 
and controlled by humans through the manage-
ment of ecological processes for production and 
conservation. Soil is the prime area for manipu-
lation in agroecosystems, because it is a biologi-
cally dynamic resource. Within this soil, the 
rhizosphere is the locus of greater role of energy 
fl ow and mineral cycling among the physical, 
chemical and biological components; it can 
therefore be considered as a subsystem (Wright 
and Miller  1994 ). 

 Arbuscular mycorrhizal (AM) fungi are one 
of the imperative soil microorganisms that 
 participate mainly in the plant uptake of nutri-
ents, especially phosphorus (P) in diverse agro-
ecosystems (Atkinson et al.  2002 ; Gadd  2005 ; 
Jansa et al.  2008 ). In addition, AM fungi can 
easily take up and translocate other macronutri-
ents and several micronutrients to plants (Ortas 
and Akpinar  2006 ; Abo-Rekab et al.  2010 ). 
Hence, AM fungi are recipients of worldwide 
attention as they play an important role in sus-
taining an active and diverse biological community 

essential for increasing the sustainability of 
agricultural systems (Gianinazzi and Schüepp 
 1994 ). Arbuscular mycorrhizal fungi constitute 
around 50 % of soil microbial biomass in agri-
cultural soils due to their profuse growth and 
abundance (Olsson et al.  1999 ). Most of the 
major crops are capable of forming AM associa-
tions naturally and are the most common mycor-
rhizal type involved in agricultural systems 
(Barea et al.  1993 ). As AM fungal association 
can improve plant growth and health, there is an 
increasing interest in ascertaining their effec-
tiveness in plant production systems and, conse-
quently, in manipulating them when feasible, so 
that they could be successfully incorporated into 
plant production systems. 

 The aim of this review is to discuss the devel-
opments and to provide insights regarding the 
potentials of AM fungi in agricultural systems. 
Given the overview of benefi cial effects of AM 
association on plant growth and health, it is 
expected that the development of appropriate 
management practices that enable the prolifera-
tion of AM fungi would reduce the chemical 
inputs (fertilizers and biocides) in the upcoming 
years, a key aspect of sustainable agriculture.  

2     General Aspects 

 The obligate endosymbiont, ‘AM fungi’ associating 
with more than 90 % of terrestrial plants (Graham 
 2008 ), belongs to the phylum Glomeromycota 
and acts as a bridge between soil and plants. 
Arbuscular mycorrhizal fungal hyphae are coe-
nocytic and aseptate and reproduce asexually by 
spores (Kuhn et al.  2001 ). Formerly called ‘vesic-
ular–arbuscular mycorrhiza’ or ‘VAM’, the name 
implies to the production of special structures, 
i.e. arbuscules and vesicles (Fig.  1 ), within the 
host roots. However, the lack of the production of 
vesicles within the host roots by certain genera 
belonging to the order Gigasporales ( Gigaspora , 
 Scutellospora ) resulted in the modifi cation of 
term to ‘arbuscular mycorrhiza’ or ‘AM’. At pres-
ent, there are around 249 species in 17 genera of 
fungi involved in AM association (Schüβler and 
Walker  2010 ).
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   Like many host–microbe interactions, the col-
onization process begins with an exchange of sig-
nals between the two partners (host and the 
fungus), followed by the development of the 
symbiosis. The association is characterized by 
the adhesion and ingress of the fungus towards 
the host tissue. The host plant provides carbon 
source, the photosynthates to the fungus, whereas 
in turn, the extraradical hyphae of the fungus 
make available the soil nutrients that are not 
assessable to plant roots or to the host plant 
(Smith and Read  2008 ). The colonization of the 
root by an AM fungus begins with the fi xation of 
the runner hyphae on the rhizoplane of a suscep-
tible host through an appressorium (Fig.  1a, b ). 

The AM fungal mycelium has dual phase: extr-
aradical phase characterized by soil hyphae and 
intraradical phase characterized by exchange 
structures. The former is distinguished morpho-
logically into two types: The fi rst type is the run-
ner hyphae (Fig.  1a ) that actively transport 
nutrients and spread the hyphal network across 
the rhizospheric region extending the association 
to nearby plants (Smith and Read  2008 ; Neumann 
and George  2010 ). The second type is the fi nely 
branched fungal hyphae that play an important 
role in the uptake of nutrients from the soil. 
Intraradical phase consisting of intraradical 
hyphae, arbuscules and vesicles (Fig.  1c–e ) plays 
an important role in nutrient exchange and uptake 

  Fig. 1    ( a – e ) Arbuscular mycorrhizal colonization in crop 
plants. ( a ) Surface runner hyphae (rh) on root of  Allium 
cepa . ( b ) Appressorium (ap) and hyphal entry in  Zea 
mays . ( c ) Intracellular hyphal coils (hc) in  Capsicum ann-

uum . ( d ) Arbuscules ( a ) and arbuscular trunks ( black 
arrows ) in cortical cells of  A. cepa .  e  Vesicle ( v ) in root of 
 Z. mays . Scale bars = 50 μm       
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of carbon by the fungus. First, the AM hyphae 
receive suitable signals from host roots in the 
form of root exudates, and most specifi cally 
strigolactones (Akiyama et al.  2005 ; López-Ráez 
et al.  2008 ), which results in the branching of the 
hyphae. In response, the branched hyphae secrete 
a diffusible signal to the host roots, which  initiates 
the expression of symbiotic-related genes (Kosuta 
et al.  2003 ). Based on the distribution of AM fun-
gal structures within the roots, AM colonization 
patterns within host roots are divided into three 
types:  Arum- ,  Paris-  and intermediate-types 
(Dickson  2004 ). 

 In the  Arum -type, the hyphae grow intercellu-
larly in the root cortex and penetrate to form 
‘arbuscules’ intracellularly, whereas in  Paris - type 
association, intracellular hyphal coils frequently 
having intercalary arbuscules spread cell to cell 
in the cortex (Fig.  2 ). Intermediate-type AM 
exhibits characteristics of both  Arum-  and  Paris-  
types. Most of the cultivated crops form  Arum  
type, while  Paris-type  is common in plants of 
natural ecosystem (Ahulu et al.  2005 ).

   Though most agricultural crops such as fl ax 
( Linum usitatissimum ), corn ( Zea mays ), rice 
( Oryza sativa ), sorghum ( Sorghum bicolor ), 

wheat ( Triticum aestivum ), barley ( Hordeum 
vulgare ), potato ( Solanum tuberosum ), sugarcane 
( Saccharum offi cinarum ), tomato ( Lycopersicon 
esculentum ) and sunfl ower ( Helianthus annuus ) 
can benefi t from mycorrhizal association, certain 
crops belonging to Amaranthaceae, Brassicaceae 
and Chenopodiaceae do not form AM symbiosis 
(Brundrett  2009 ). 

 A wide range of AM fungi have been found to 
be associated with crop species (Fig.  3 ). In spite of 
the general assumption that the diversity of AM 
fungi is low in agricultural soils, several studies 
have reported high AM fungal diversity in agricul-
tural soils (Jansa et al.  2002 ; Oehl et al.  2003 ,  2004 ; 
Ambili et al.  2012 ). Many studies on the diversity 
of AM fungi in agricultural soils have indicated the 
dominance of AM fungal communities by species 
belonging to the genus  Glomus  or the species that 
were once under  Glomus  (Jansa et al.  2002 ; 
Muthukumar and Udaiyan  2002 ; Sjoberg et al. 
 2004 ; Mathimaran et al.  2005 ). Nevertheless, 
spores of AM fungi belonging to  Acaulospora , 
 Entrophospora ,  Gigaspora ,  Sclerocystis  and 
 Scutellospora  have also been reported along with 
 Glomus  in agricultural soils (Jansa et al.  2002 ; 
Muthukumar and Udaiyan  2002 ).

  Fig. 2    Arbuscular mycorrhizal fungal structures showing  Arum-  and  Paris -types       
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  Fig. 3    ( a–h ) Spores of arbuscular mycorrhizal fungi 
associated with  Eleusine coracana . ( a ) Spore of 
 Acaulospora scrobiculata . ( b ) Loose cluster of  Glomus 
aggregatum . ( c )  Funneliformis geosporum . ( d ) 

 Rhizophagus fasciculatus . ( e )  Rhizophagus intraradices . 
( f )  Funneliformis mosseae . ( g )  Sclerocystis sinuosa  ( pe  
peridium,  sp  spore). ( h )  Scutellospora calospora . Scale 
bars = 50 μm       

 

Insight into the Role of Arbuscular Mycorrhizal Fungi in Sustainable Agriculture



8

3        Effects of AM Fungi 

 The major effects of AM association on host 
plants include enhanced uptake of low-mobile 
ions, nutrient cycling, rooting and plant estab-
lishment, plant tolerance to various biotic and 
abiotic stresses, improved soil quality and 
structure and enhanced plant community diver-
sity. In agricultural ecosystems, AM fungi play 
a vital role in maintaining sustainability 
(Sanders  2004 ), by enhancing crop growth 
(Meir et al.  2010 ) and productivity (Lekberg 
and Koide  2005 ), soil constituents and fertility 
(Piotrowski et al.  2004 ; Li et al.  2007 ) and 
pathogen resistance (Sikes et al.  2009 ). 

3.1     Improved Nutrient Uptake 
and Nutrient Cycling 

 Arbuscular mycorrhizal fungi improve plant 
uptake of nutrients by increasing the plant sur-
face area of absorption. The narrow diameter of 
the absorbing hyphae allows more nutrients to be 
taken up from the soil solution. Generally, nutri-
ent depletion zones develop around the root when 

the nutrients are removed from the soil solution 
by the plant roots (Fig.  4 ). For poorly mobile ions 
such as phosphate, a sharp and narrow depletion 
zone develops very close to the root. Hyphae of 
AM fungi can readily spread beyond this deple-
tion zone and take up additional phosphate from 
the soil (Li et al.  1991 ) (Fig.  4 ). The uptake of 
other nutrients like N, K and micronutrients is 
also improved by AM fungi because many of 
these elements are also limited due to various 
reasons in the soil.

   Two important factors that contribute to the 
effective uptake of nutrients by AM fungi from 
the soil are (i) the narrow diameter of the fungal 
hyphae and (ii) its longer lifespan relative to root 
and root hairs. As the diffusion gradient for a 
nutrient is inversely related to the radius of the 
absorbing unit, the soil solution should be less 
depleted at the surface of a narrow absorbing unit 
such as hyphae. Further, narrow hyphae can also 
grow into small soil pores that are not accessible 
to roots and root hairs (O’Keefe and Sylvia 
 1991 ). Therefore, crop species with well- 
developed root systems with fi ne roots or abun-
dant root hairs like wheat, barley and oats ( Avena 
sativa ) remains little affected by AM coloniza-
tion (Ryan and Graham  2002 ). 

  Fig. 4    Arbuscular mycorrhizal fungal hyphae and nutrient depletion zones around root       
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 Arbuscular mycorrhizal fungi participate in N 
dynamics that relate in N cycling, plant growth 
and ecosystem functioning (Miransari  2011 ). 
The reduction of NO 3  is of environmentally sig-
nifi cant concern. This has been accomplished 
with the presence of AM fungi (Hodge and Fitter 
 2010 ; Miransari and Mackenzie  2010 ), which 
absorb and transfer the N to the host under vari-
ous conditions (Liu et al.  2007 ; Atul-Nayyar 
et al.  2009 ; Tian et al.  2010 ). Symbiotic N 2  fi xa-
tion, the starting point in the N cycle, depends on 
an adequate and steady supply of P to the root 
and nodules (Barea et al.  1993 ). The AM fungi 
play an important role in enhancing growth, nod-
ulation and N 2  fi xation by legume crops symbi-
otic with nodulating bacteria. An increased N 2  
fi xation of mycorrhizal crop plants both under 
control (Kucey and Bonetti  1988 ; Barea et al. 
 1989a ) and fi eld conditions (Barea et al.  1989b ; 
Shivaram et al.  1988 ) has been adequately 
demonstrated.  

3.2     Plant Tolerance to Stresses 

3.2.1      Abiotic Stresses 
   3.2.1.1 Water Relations 
 Water is an essential component for plant growth 
which is affected by global climatic change. 
Drought is one of the most important abiotic 
stresses that limit the crop growth and yield in 
agroecosystems in both arid and semiarid regions 
(Feng et al.  2002 ). The symbiotic association of 
plants with AM fungi has been shown to enhance 
plant tolerance to drought (Ruiz-Lozano et al. 
 2006 ; Boomsma and Vyn  2008 ). In arid regions, 
minimum moisture content in plants is balanced 
by an increased uptake of water by roots through 
AM fungal hyphae (Khan et al.  2003 ). Positive 
infl uence of AM fungi in improving plant water 
use effi ciency and sustaining drought has been 
shown for wheat (Al-Karaki et al.  2004 ), oats 
(Khan et al.  2003 ), corn (Subramanian et al. 
 1997 ; Subramanian and Charest  1999 ), soybean 
( Glycine max ) (Aliasgharzadeh et al.  2006 ), 
garden pea ( Pisum sativum ) (Quilambo et al.  2005 ), 
onion ( Allium cepa ) (Bolandnazar et al.  2007 ), 
tomato (Subramanian et al.  2006 ) and other crop 

species (see Augé  2001 ). It has been shown that 
an increased nutrient uptake mediated through 
AM fungi could impart more resistance to 
drought in mycorrhizal plants (Ruiz-Lozano 
et al.  1995 ). The increased uptake of P by AM 
plants under drought conditions results in higher 
yield than those without AM fungi (Smith and 
Read  2008 ). Therefore, improved P nutrition by 
AM fungi during the periods of water defi cit has 
been postulated as a primary mechanism for 
enhancing host plant drought resistance under 
water stress conditions (Subramanian et al. 
 2006 ). In contrast, others consider that host plant 
drought tolerance is independent of P uptake 
stimulated by AM fungi (Davies et al.  1993 ; 
Augé et al.  1994 ). In addition to P, mycorrhizal 
plants can also absorb more N under drought 
conditions resulting in increased growth and 
yield (Tobar et al.  1994 ; Subramanian et al. 
 2006 ). One of the widely accepted mechanisms 
of AM symbiotic infl uence on plant water rela-
tion involves the AM fungal effect on plant size. 
The response of plants to mycorrhizal coloniza-
tion is often related to the direct infl uence of AM 
fungus on plant size in conjunction with improved 
P nutrition (Ebel et al.  1994 ). However, mycor-
rhizal effect on metabolic changes (Subramanian 
and Charest  1995 ) and modifi ed N assimilation 
pathways (Subramanian and Charest  1998 ) as 
shown earlier can also infl uence the size of host 
plants. The AM fungi could therefore to a certain 
extent replace genetic engineering and plant 
breeding techniques (Xu et al.  2008 ; Grover et al. 
 2011 ) by modifying the crop plant physiology as 
well as biochemical responses (Kohler et al. 
 2008 ; Grover et al.  2011 ) to stress tolerance. For 
example, AM fungal association has been shown 
to increase the stomatal conductance of mycor-
rhizal mutant bean ( Phaseolus vulgaris ) than 
non-mycorrhizal under water defi cit condition 
(Augé  2004 ).  

   3.2.1.2 Salinity 
 Salinity is one of the cosmopolitan threats to crop 
production worldwide. Irrigation with groundwa-
ter and irrational use of easily soluble fertilizers 
are main causes for salinity in agroecosystems 
(Copeman et al.  1996 ; Al-Karaki  2000 ). It has 
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been estimated that more than 250 million ha of 
groundwater irrigated lands is salinized, of which 
ten million ha is abandoned annually (Codevasf 
 2011 ). Salt deposition in the soil results in hyper-
ionic and hyperosmotic stresses (Evelin et al. 
 2013 ). The presence of excess salts in the soil 
solution may limit the growth of an organism due 
to specifi c ion toxicity or osmotic stress. These 
factors tend to differ in relative importance 
depending on the species and concentration of 
ions involved, as well as the tolerance of the 
organism in question (Brownell and Schneider 
 1985 ). Salinity may affect certain stages of the 
life history of an organism more compared to 
other stages. Salt stress induced decline in crop 
productivity results from its negative impact on 
plant growth and development (Giri et al.  2003 ; 
Mathur et al.  2007 ). Arbuscular mycorrhizal 
fungi have been shown to increase crop yield 
under saline soils (Daei et al.  2009 ). Nevertheless, 
results on the infl uence of salinity on AM forma-
tion and function are often contradictory. Some 
studies have shown that soil salinity reduces root 
colonization by AM fungi and increases plant’s 
mycorrhizal dependency (Tian et al.  2004 ; Sheng 
et al.  2008 ). In contrast, it has also been shown 
that AM colonization either remains unaffected 
(Yamato et al.  2008 ) or even increased under salt 
stress (Aliasgharzadeh et al.  2001 ). An increased 
soil salinity has also been shown to adversely 
affect the production of extraradical hyphae of 
AM fungal strains that are sensitive to salinity 
(Juniper and Abbott  2006 ; Evelin et al.  2009 ). 
The extent to which salinity reduces AM coloni-
zation depends on the stage of the association 
such that inhibition is more prominent during 
early stages of the symbiosis development than 
during the later stages (McMillen et al.  1998 ). 
For example, salinity inhibited early colonization 
of roots by  Gigaspora decipiens  more than by 
 Scutellospora calospora  (Juniper and Abbott 
 2006 ). It has been shown that AM fungi alleviate 
salt stress in some plants through modifi cations 
in physiological mechanisms (see Evelin et al. 
 2009 ; Porcel et al.  2012 ). However, the adjust-
ment of osmotic potential by settling down of 
soluble sugars in mycorrhizal fungal parts has 

been suggested to protect the plant from salinity 
(Soliman et al.  2012 ). For instance, trehalose in 
spores and extraradical mycelium enables AM 
fungi to colonize host plants even under high 
salinity (Schubert et al.  1992 ). Several studies 
have reported that salt stress induces modifi ca-
tions in plants even at ultrastructure levels 
(Yamane et al.  2004 ; Miyake et al.  2006 ; Andrea 
and Tani  2009 ). Recently, Evelin et al. ( 2013 ) 
showed that the ultrastructural changes in 
AM-inoculated fenugreek ( Trigonella foenum-
graecum)  plants exposed to four different levels 
of salt were less than non-mycorrhizal plants. 
Studies have also shown that some AM fungi are 
able to adapt to different environmental condi-
tions better than others (Stahl and Christensen 
 1991 ). Thus, the varied observations reported by 
different workers may partly refl ect the differ-
ences between the fungi used and their ability to 
adapt to various environments. Nevertheless, 
most of studies examining mycorrhiza and soil 
salinity to date have not considered these 
differences. 

 Arbuscular mycorrhizal fungal-mediated salt 
stress tolerance has been shown for crops like 
chilli ( Capsicum annuum ) (Çekiç et al.  2012 ), 
Chinese milk vetch ( Astragalus sinicus ) (Peng 
et al.  2011 ), pepper ( Piper nigrum ) (Turkmen 
et al.  2008 ; Kaya et al.  2009 ), fenugreek (Evelin 
et al.  2012 ), corn (Sheng et al.  2008 ,  2011 ), bajra 
( Pennisetum glaucum    ) (Borde et al.  2011 ), 
tomato (Hajiboland et al.  2010 ) and clover 
( Trifolium alexandrinum ) (Gharineh et al.  2009 ). 
Like drought stress, an increased P uptake medi-
ated by AM fungi has been suggested to alleviate 
saline stress (Tian et al.  2004 ). However, in cer-
tain cases, saline tolerance of mycorrhizal plants 
appears to be independent of P concentration 
(Feng et al.  2002 ). Both differences in    the ability 
between AM fungi to obtain P from the soil and 
their ability to adapt to changing edaphic condi-
tions (del Val et al.  1999 ) could reason for varied 
sensitivities of AM fungi to salinity. Therefore, it 
might be expected that an isolate originating 
from saline soil would have a higher adaptability 
and a greater capacity to promote plant growth 
under saline stress.   
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3.2.2      Biotic Stress 
   3.2.2.1  Protection Against Pests 

and Pathogens 
 In agriculture, pest and pathogen infestations 
severely damage the crops, resulting in a decline 
in crop yield. In spite of constant efforts to eradi-
cate these pests and pathogens using chemical 
agents, little and temporary success has been 
achieved. Alternatively cost-effective biological 
methods involving microbes could be used to 
improve host plant resistance against pests and 
pathogens. There is a direct competition in host 
roots for nutrient uptake and proliferation 
between AM fungi and pathogens as they colo-
nize the same niche. Some of the recent studies 
do provide evidence that AM fungi and their 
interaction with plants could substantially reduce 
the damage caused by soilborne pathogens 
(Whipps  2004 ; St-Arnaud and Vujanovic  2007 ; 
Smith and Read  2008 ). Further, the extent of pro-
tection imparted by AM fungi could vary with 
the pathogens and the host plant involved. 
Nevertheless, the degree of protection imparted 
by AM symbiosis against pests and pathogens 
could be modifi ed by soil and other environmental 
conditions. Mechanisms by which AM fungi con-
trol root pathogens include (i) improved nutrient 
status of the host, (ii) damage compensa-
tion, (iii) competition for host photosynthates, 
(iv) competition for infection sites, (v) anatomi-
cal and morphological changes in the root 
system, (vi) microbial changes in the mycorrhi-
zosphere and (vii) activation of plant defence 
mechanisms. In some cases, the direct biocontrol 
potential of AM has been demonstrated, espe-
cially for plant diseases involving pathogens 
like  Phytophthora ,  Rhizoctonia  and  Fusarium  
(Abdel-Aziz et al.  1997 ; St-Arnaud et al.  1997 ; 
Vigo et al.  2000 ). A recent study by Singh et al. 
( 2013 ) has clearly demonstrated the AM fungal 
ability to effi ciently control  Fusarium  wilt dis-
ease under all conditions in three chickpea ( Cicer 
arietinum ) varieties tested. Further, several studies 
have also confi rmed the existence of synergism 
between AM fungi and biocontrol agents such as 
 Burkholderia cepacia  (Ravnskov et al.  2002 ), 
 Pseudomonas fl uorescens  (Edwards et al.  1998 ), 

 Trichoderma harzianum  (Datnoff et al.  1995 ) and 
 Verticillium chlamydosporium  (Rao et al.  1997 ). 
These interactions suggest that AM might affect 
plant and soil microbial activity by stimulating 
the production of root exudates, phytoalexins and 
phenolic compounds (Norman and Hooker  2000 ; 
Bais et al.  2005 ). A small increase in the activity 
of plant defence genes, especially those involved 
in the production of chitinases, glucanases, fl avo-
noid biosynthesis and phytoalexins, has been 
observed during mycorrhizal growth; however, 
these mycorrhizal defence induction mechanisms 
remain transitory (Guillon et al.  2002 ; Harrier 
and Watson  2004 ). Further, AM-mediated resistance 
to biotic stress could vary with the mycobiont 
involved. For example, Ozgonen and Erkilic ( 2007 ) 
used three different species of Glomeraceae 
[ Funneliformis mosseae  ( =Glomus mosseae ) , 
Claroideoglomus etinicatum  ( =Glomus etuni-
catum ) , Rhizophagus fasciculatus  ( =Glomus 
fasciculatum )] and a  Gigasporaceae species  
( Gigaspora margarita ) to control blight disease 
caused by  Phytophthora capsici  in pepper. The 
results of the study clearly showed a signifi cantly 
higher plant growth and reduced disease severity 
in AM-inoculated plants. Of the different species 
of Glomeraceae screened,  F. mosseae  was found 
to be more effi cient than others. 

 Many studies have also reported the suppressive 
effect of AM fungi on sedentary endoparasitic 
nematodes (Elsen et al.  2003 ; de la Peňa et al. 
 2006 ). In some crops, this effect is signifi cant 
enough to the level, to consider AM fungi to be 
more or less an effi cient means of biological con-
trol (Castillo et al.  2006 ). With migratory endopar-
asitic nematodes, studies have demonstrated a 
decrease in nematode population development 
like  Meloidogyne incognita  on cucumber ( Cucumis 
sativus ) (Zhang et al.  2008 ),  Radopholus similis  on 
banana ( Musa  spp.) (Elsen et al.  2004 ; Jefwa et al. 
 2010 ),  Pratylenchus  on dune grass ( Ammophila 
arenaria ) (de la Peña et al.  2006 ) and  Rhizoctonia 
solani  (Yao et al.  2002 ) on potato. Recently, 
Affokpon et al. ( 2011 ) evaluated native and com-
mercial AM fungi for their effi cacy to protect 
plants against root-knot nematode,  Meloidogyne  
spp. The results of this study indicated that the 
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nematode attack could mask the magnitude of AM 
fungal benefi ts to the host plant, but AM fungal iso-
lates could modify the severity of stress on plants to 
different levels (Veresoglou and Rillig  2012 ).  

   3.2.2.2  Interaction with Other Soil 
Organisms 

 Arbuscular mycorrhizal fungi interact with a 
diverse group of organisms in the rhizosphere. 
These interactions can    range from positive to 
neutral and to negative on the AM association or 
a particular component of the rhizosphere 
(Azcón-Aguilar and Barea  1992 ; Rillig  2004 ). 
Different types of positive interactions between 
AM fungi and other soil microorganisms are pre-
sented in Table  1 . The microfl ora in the rhizo-
sphere of mycorrhizal roots most aptly termed as 
the ‘mycorrhizosphere’ quantitatively and quali-
tatively differs from the non-mycorrhizal roots 
(Bansal and Mukerji  1994 ). Mainly two groups 
of bacteria, namely, saprophytes and symbionts, 
interact with AM fungi that may be either detri-
mental, neutral or benefi cial in their response 
(Johanson et al.  2004 ). ‘Mycorrhiza helper 
 bacteria’ (MHB) found mostly in temperate and 
tropical ecosystems (Frey-Klett et al.  2007 ) initi-
ate AM fungal root colonization, stimulate myce-
lia growth and also assist spore germination 
(Gryndler et al.  2000 ; Vivas et al.  2006 ). The 
interaction between AM fungi and nodulating 
nitrogen fi xers has received considerable atten-
tion because of the high P demand involved in N 2  
fi xation (Barea and Azcón-Aguilar  1984 ; 

Veresoglou and Rillig  2012 ). The two symbionts 
act synergistically under low fertile conditions, 
resulting in greater N and P content in dually 
inoculated plants than when the organisms are 
inoculated separately. Even at low water poten-
tial, AM fungal inoculation improves nodulation 
and N 2  fi xation by the bacterial symbiont 
(Goicoechea et al.  1998 ), thereby neutralizing the 
effects of salinity. An early association of the 
seedling with AM fungi can moderate the stressed 
condition of the host (Evelin et al.  2009 ). It has 
been noted that the premature nodule senescence 
in soybean under drought conditions could be 
ameliorated through AM fungal inoculation 
(Porcel et al.  2003 ).

   Synergistic interactions have also been 
reported between AM fungi and plant growth- 
promoting rhizobacteria (PGPR) (Muthukumar 
et al.  2001 ; Muthukumar and Udaiyan  2006 ; Sala 
et al .   2007 ). However, the nature and the extent of 
benefi t from interaction could vary. For instance, 
Chandanie et al. ( 2005 ,  2006 ) noted that co- 
inoculation of  Trichoderma  with an AM fungus 
( F. mosseae ) positively stimulated plant growth. 
However, no such effect on plant growth was evi-
dent when  Penicillium  was co-inoculated with 
the same AM fungus.  

   3.2.2.3  Nutrient Transfer in 
Intercropping Systems 

 Intercropping is an ancient technique of growing 
more than one crop species simultaneously in the 
same fi eld. It plays an important role in agricul-
ture rendering advantages to both soil and plant. 
Intercropping improves soil texture and soil 
water availability and supplies various organic 
matters for most effi cient proliferation of symbi-
otic and non-symbiotic microorganisms (Burner 
 2003 ; Muok et al.  2009 ). The wide and diverse 
plants in an intercropping favour an increased 
and viable population of AM fungi. However, the 
capability of legumes to form dual symbiotic 
association with both bacteria and AM fungi is 
important in intercropping systems from improv-
ing soil fertility point of view (Pagano et al.  2008 ; 
de Carvalho et al.  2010 ). As plants from different 
species could be linked by the common AM 
mycelia network, intercropping of legume crops 

   Table 1    Interaction of arbuscular mycorrhizal fungi with 
benefi cial soil microorganisms   

 Group of microorganisms  Results 

 Symbiotic and asymbiotic 
N 2  fi xers 

 N 2  fi xation, N cycling, N 
transfer 

 Phosphate solubilizers  P cycling, use of 
sparingly soluble P source 

 Phytostimulators  Increased rooting and 
seedling establishment 

 Biocontrol agents  Increased resistance/
tolerance to root disease 

 Other fungi and bacteria 
related to soil aggregation 

 Important to soil quality 

  Adapted from Azcón-Aguilar and Barea ( 1997 ) with 
permission  
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can benefi t nonleguminous crops through the 
transfer of N via common mycelia network 
(CMN) (Simard and Durall  2004 ). This CMN 
aids nutrient transfer between different host 
plants, thereby acting as an extension of the root 
systems, and also provides signalling molecules 
(Xiaolin and Shang  1997 ). For example, the 
cocultivation of citrus ( Citrus tangerine ) which is 
highly dependent on AM fungal association due 
to the poor root development (Wu and Xia  2006 ), 
along with a leguminous herb,  Stylosanthes grac-
ilis , consequently increased both soil quality and 
citrus yield in Southern China (Yao et al.  2008 ). 

 Other features of intercropping like the nutri-
ent cycling and organic matter turnover can max-
imize the resource use by plants, thereby 
improving soil fertility. For example, Li et al. 
( 2007 ) showed that the root exudates of faba bean 
containing organic acids and protons increased P 
content of maize plants in a maize–faba bean 
( Vicia faba ) intercropping system. The CMN of 
AM fungi also enhances P balance as well as the 
N and P levels between plants (Giovannetti et al. 
 2004 ). Each AM fungal species tends to have dif-
ferent effects in relation to plant systems. For 
instance, AM fungal taxa that reduce plant growth 
in one plant species can enhance it in another 
(Klironomos  2003 ). Recently, Hu et al. ( 2013 ) 
examined the effect of intercropping  Sedum 
alfredii  with  Ipomoea aquatica  inoculated with 
two different AM fungal species ([Funneliformis 
caledonium ( =Glomus caledonium ) 90036, 
 Glomus versiforme  HUN02B)] in cadmium (Cd)-
contaminated soil. The AM fungus  F. caledonium  
90036 increased P acquisition and plant biomass 
of  S. alfredii , whereas  G. versiforme  HUN02B 
had the same effect on  I. aquatica . Some of the 
studies also suggest that intercropping is benefi -
cial and far better than monoculture system 
(Harinikumar et al.  1990 ; Ishii et al.  1996 ).  

   3.2.2.4 Rooting 
 Nutrient supply by the AM mycelium activity 
exerts a feedback regulation, especially in the 
aerial parts of the plant like photosynthesis and 
the translocation of the photosynthates. Generally, 
fewer photosynthetic products are allocated to 
the root due to an increased effi ciency of the roots 

in response to AM symbiosis (Smith et al.  2003 ; 
Gamalero et al.  2004 ); the shoot/root ratios of 
AM plants are usually higher in AM plants than 
in their corresponding non-AM controls (Smith 
 1980 ). It has also been recently recognized that 
AM colonization could affect a wide range of 
morphological parameters in developing root 
systems including root branching (Atkinson et al. 
 1994 ; Berm et al.  1995 ). Enhanced root prolifera-
tion in response to AM fungal inoculation has 
been reported in black pepper ( Piper nigrum ) 
(Anandaraj and Sarma  1994 ; Thanuja et al.  2002 ) 
and cashew ( Anacardium occidentale ) (Krishna 
et al.  1983 ). Therefore, it has been speculated 
that changes in the plant hormonal balance and 
meristematic activity in response to AM associa-
tion were responsible for the AM-induced effects 
on root development. 

 Changes in root morphology and P uptake 
alter the rhizosphere through predominantly 
affecting the microbial community (Linderman 
 1988 ). The variation in the root architecture of 
mycorrhizal plants from that of a non- mycorrhizal 
plant clearly indicates the involvement of some 
compounds from root system responsible for 
these traits. For example, Wu et al. ( 2010 ) showed 
that polyamines in addition to improving plant 
growth could also signifi cantly alter the root sys-
tem architecture in AM plants.     

4     Management of AM Fungi 

 In agroecosystems, various management practices 
such as the degree and type of fertilization, plant 
protection, fallow period and soil tillage could 
infl uence AM association. 

4.1     Fertilizer 

 Crops require adequate nutrients especially P 
during early stages of growth for optimum crop 
production (Grant et al.  2001 ). Limited P supply 
frequently limits crop production and P fertilizer 
is commonly applied to ensure that suffi cient P 
is available for optimal crop yield and maturity 
(Grant et al.  2005 ). The total soil P usually 
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ranges from 100 to 2,000 mg P kg −1  soil repre-
senting approximately 350–7,000 kg P ha −1  in 
surface 25 cm of the soil, although only a small 
portion of this P is immediately available for 
crop uptake (Morel  2002 ). However, for AM 
fungi which are known for its P uptake (Hu et al. 
 2009 ), soil P is one of the major deterrent soil 
factors in agricultural systems that affects AM. It 
has been well proved that the AM fungal benefi t 
tends to decline as the concentration of P in the 
plant increases (Valentine et al.  2001 ). Higher 
tissue P reduces the production of external 
hyphae (Bruce et al.  1994 ), hyphal branching 
(Nagahashi and Douds  2000 ) and sporulation 
(De Miranda and Harris  1994 ) of AM fungi. As 
available P in the soil increases, AM association 
may depress plant growth, as there is a carbon 
cost associated with supporting the association 
(Kahiluoto et al.  2000 ). For example, cucumber 
plants inoculated with AM fungi and raised on 
full-strength nutrient solution had 19 % lower 
biomass than uninoculated plants (Valentine 
et al.  2001 ). In contrast, mycorrhizal plants had 
66 % higher biomass compared to non-mycor-
rhizal plants under reduced P concentration in 
the nutrient solutions. However, the effect of P 
fertilization on AM fungi may vary with P 
sources. While readily soluble or available, 
forms of P (inorganic) affect AM association to a 
greater extent than less soluble forms of P (e.g. 
rock phosphate) (Linderman and Davis  2004 ). 
Similar results have also been observed for N 
fertilization (Gryndler et al.  1990 ; Liu et al. 
 2000 ). The effect of P fertilization often changes 
with the response or balance of other nutrients 
present. The AM fungal benefi t and mycorrhiza-
tion tend to be highest when low P is combined 
with an ample supply of other nutrients (Grant 
et al.  2005 ). For instance, Guttay and Dandurand 
( 1989 ) observed an increased  mycorrhization in 
corn with N and K fertilization at low P levels 
but a decrease at high P levels. This clearly sug-
gests the interactions among N, P and K fertil-
ization in corn. The application of NPK fertilizer 
along with AM fungi has been shown to increase 
plant growth in potato (Eliopoulos et al.  2007 ), 
onion (Gergon et al.  2008 ) and cucumber 
(Ahmed et al.  2009 ). Using AM as a bioinocu-

lant, instead of phosphate, was found to have a 
direct impact on sugarcane growth and yield 
(Surendran and Vani  2013 ). Like for AM coloni-
zation, some reliable evidence does indicate that 
the use of fertilizers can reduce AM fungal spore 
populations in the soil (Bhadalung et al.  2005 ; 
Emmanuel et al.  2010 ). 

 In organic farming, the use of synthetic 
 fertilizers is avoided which enables the crops to 
depend on AM fungi for soil nutrients (Galvez 
et al.  2001 ). In addition, organic fertilization 
enhances AM fungal association and formation 
of AM fungal propagules in the soil (Gryndler 
et al.  2005 ; Gaur and Adholeya  2005 ), thereby 
improving soil quality. Though organic fertil-
izers generally have a positive effect on crops 
as evidenced by enhanced growth and accumu-
lation of nutrients (Silva et al.  2007 ; Sharif 
et al.  2012 ), results of some studies are found to 
be opposite (Martin et al.  2002 ; Elorrieta et al. 
 2003 ). A consortium of seven AM fungi iso-
lated from the soils of coffee ( Coffea arabica ) 
plantations with different fertilizer inputs (low, 
intermediate and high) was examined for their 
growth-promoting ability in coffee both under 
nursery and fi eld conditions. The results of this 
study clearly showed that greater fertilizer 
inputs negatively infl uenced the spore abun-
dance and plant growth, whereas intermediate 
input increased the AM fungal abundance 
(Trejo et al.  2011 ).  

4.2     Tillage 

 Tillage is an integral part of modern agriculture 
that modifi es the physical, chemical and biolog-
ical properties of a soil. Consequently, tillage 
practices may also affect AM fungi (Gálvez 
et al.  2001 ; Kabir  2005 ; Neelam et al.  2010 ). 
The extent of extraradical AM fungal networks 
can be several metres per cubic centimetre of 
soil, providing the major nutrient–absorbing 
interface between plants and soil (Jakobsen 
et al.  1992 ). The persistence of AM fungi in eco-
systems depends on the formation and survival 
of propagules (e.g. spore, hyphae and colonized 
roots). While spores are considered to be a resis-
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tant structure that may be viewed as long-term 
propagules in the absence of a viable host, 
hyphae are considered to be the main source of 
inocula for plants in undisturbed soils. The dam-
age to these hyphal networks by tillage not only 
affects AM fungal growth but also reduces root 
colonization due to death or lowers infectivity 
of the hyphal fragments compared with intact 
hyphal networks (Johnson et al.  2001 ; Garcia 
et al.  2007 ). 

 Different AM fungi responded variedly to dif-
ferent tillage management practices (Gálvez 
et al.  2001 ; Kabir  2005 ; Borie et al.  2006 ). Tillage 
can reduce the root length colonized by AM 
fungi and subsequently AM-mediated P, Zn and 
Cu uptake by plants (Mozafar et al.  2000 ; Goss 
and de Varennes  2002 ). Certain AM fungal spe-
cies may survive in tilled soils, while others may 
disappear. Because AM fungi are more abundant 
in the topsoil, deep ploughing may dilute their 
propagules in a greater volume of soil, thereby 
reducing their chance of association with a plant 
root. Soil aggregation is an important process 
that maintains soil porosity, hydraulic activity, 
organic matter and also soil erosion (Caesar- 
TonThat et al.  2011 ). But these processes are dis-
turbed by long-term tillage systems, which 
subsequently not only affects the carbon stabili-
zation and sequestration but also the microbial 
populations (Sainju et al.  2009 ). In undisturbed 
soil, roots follow preformed channels, making 
close contact with the AM-colonized root sys-
tems of the previous crop, resulting in enhanced 
mycorrhization of roots (Evans and Miller  1990 ). 
Furthermore, no-tillage favours the accumulation 
of organic matter, changes in soil structures and 
increased availability of C, N and water (Doran 
and Linn  1994 ; Shirani et al.  2002 ) in the surface 
horizons, thereby maximizing their benefi ts to 
crops (Kabir et al.  1999 ). Sheng et al. ( 2012 ) 
showed that long-term tillage and P fertilization 
invertedly affected the fi ne root development and 
AM fungal colonization in corn roots. In a recent 
study, Schalamuk et al. ( 2013 ) demonstrated that 
the effect of no-tillage or conventional tillage 
system on the abundance of AM fungal propa-
gules in wheat crops depends more on the pheno-
logical stages of the crop.  

4.3     Organic Manures 

 Organic manure consists of materials of bio-
logical origin which are used to restore the soil 
fertility and plant growth. According to Lee 
et al. ( 2008 ), general principles of organic 
farming include (1) exclusion of synthetic bio-
cides; (2) addition of organic fertilizers to the 
soil, including farmyard manure, compost and 
crop residue and slow-release mineral fertiliz-
ers such as rock phosphate; and (3) use of crop 
rotation (IFOAM  1998 ). Manure application 
may increase or decrease root colonization by 
AM fungi. Tarkalson et al. ( 1998 ) found that 
manure application increased AM colonization, 
P and Zn uptake by plants and crop yield. 
Muthukumar and Udaiyan ( 2000 ) showed that 
manure applications could increase spore popu-
lations and root colonization by AM fungi. 
Gaur and Adholeya ( 2000 ) also found that 
organic amendments supported both high crop 
yield and AM fungal populations in onion, gar-
lic ( Allium sativum ) and potato. The benefi t of 
organic amendment on AM fungi has been 
attributed to changes in soil structure with 
manure amendments like increased porosity, 
enlarged mean weight diameter of aggregates, 
improved water retention capacity and greater 
activity of benefi cial soil microbes in the soil 
profi le (Celik et al.  2004 ; Pagliai et al.  2004 ). 
However, the effects of compost application on 
AM colonization appear to be inconsistent 
(Ellis et al.  1992 ; Allen et al.  2001 ). For exam-
ple, the low levels of root colonization by AM 
fungi in soybean and sorghum in compost-
amended soils were attributed to high soil P 
availability (Garcia et al.  2007 ). Muthukumar 
and Udaiyan ( 2002 ) showed that the growth and 
yield of the cowpea ( Vigna unguiculata ) varied 
in response with various organic amendments 
based on changes in indigenous AM fungal 
populations. 

 The response of plants to AM fungal inocula-
tion in organic-amended soils has been shown to 
either increase (Rydlová and Vosátka  2000 ; 
Gryndler et al.  2002 ,  2006 ) or decrease 
(Ravnskov et al.  1999 ,  2006 ). Composted 
organic amendments in soil promote AM fungal 
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hyphal growth and establishment (Douds et al. 
 2000 ), consequently aiding the transfer of min-
eral N (Hamel  2004 ) and amino acids 
(Govindarajulu et al.  2005 ) from the organic 
manures to the host plant. Minimal C:N ratio in 
the organic manures also has a positive infl uence 
on AM fungi (Groaker and Sreenivasa  1994 ). 
Likewise, the application of organic manures to 
soils with different nutrient levels affects the AM 
fungal colonization and abundance variedly. 
Both soil factors and N:P ratio of host roots can 
infl uence AM fungal colonization, but the mech-
anism remains unresolved (Liu et al.  2000 ; 
Johnson et al.  2003 ). Available phosphorus and 
mycorrhization in coconut ( Cocos nucifera ) 
were found to be higher in organic manure-
amended soils than in inorganic fertilizer-applied 
soils, even though the later contain higher 
nutrient contents (Karunasinghe et al.  2009 ). 
The application of various combinations of 
organic manures (farmyard + poultry + humic 
acid) along with AM fungal inoculation showed 
enhanced plant growth and nutrient uptake and 
spore density in eroded soils (Sharif et al.  2012 ). 
This suggests AM fungal ability to reduce the 
effect of soil erosion and shield the soil fertility 
(Valarini et al.  2009 ). Numerous studies have 
also revealed the benefi cial effects of organic 
manure application on AM fungi (e.g. Limonard 
and Ruissen  1989 ; Lee and Pankhurst  1992 ; 
Hole et al.  2005 ). Dai et al. ( 2011 ) conducted 
an experiment with various levels of organic 
amendments on chilli and showed an increased 
mycorrhizal colonization and a higher plant tis-
sue nutrient in response to organic amendments. 

 The application of organic manures not only 
stimulates the AM fungal colonization of roots 
but also improves in spore populations in the soil. 
Organic manure amendment along with AM fun-
gal inoculation has been shown to enhance plant 
growth and spore numbers of  C. etunicatum  and 
 F. mosseae  in soils than those fertilized with con-
ventional fertilizers and inoculated with AM 
fungi (Douds et al.  2000 ). During early stages of 
plant growth, the spore numbers in organic 
manure-amended soil tend to decline and then 
increase subsequently due to alterations in nutri-
ent content arising from decomposing manures 

(Harinikumar and Bagyaraj  1989 ; Muthukumar 
and Udaiyan  2002 ; Gryndler et al.  2009 ; Ijdo 
et al.  2010 ).  

4.4     Biocides 

 Biocides, the chemical agents used to control 
pests and pathogens, are an inherent component 
of conventional agriculture. In plant production 
systems involving horticultural crops such as veg-
etables, most cultivators are unwilling to risk low 
production through reduced fertilizer or biocide 
inputs. Information on the effect of agricultural 
chemicals on AM fungi is largely empirical and 
poorly understood. Thus, biocide application may 
have inadvertent or unrecognized effects on AM 
fungi. Biocides used with the intention on pro-
moting plant health may either impair or elimi-
nate AM fungal activity causing damage to plant 
health. There are two benefi ciary effects of bio-
cides like fungicides on AM fungi: (a) modifi ca-
tion of host plant physiology by enhancing root 
exudates that indirectly stimulate root coloniza-
tion and (b) reduction of AM fungal antagonistic 
community (Tataranni et al.  2012 ). Most studies 
examining the effect of biocides on AM fungi are 
often conducted under greenhouses or in plant 
growth chambers, involving sterile media or 
media which have very little similarity to fi eld 
conditions (Udaiyan et al.  1995 ). Soil fumigants 
used to reduce the abundance of pathogen cause 
stunting in a range of crops including onion, pep-
per (Hass et al.  1987 ), soybean (Ross and Harper 
 1970 ) and corn (Jawson et al.  1993 ). This reduc-
tion in plant productivity has often been attributed 
to decreased AM formation, which results in poor 
nutrient uptake. However, results of fi eld studies 
do suggest that the elimination of co- occurring 
soil microorganisms might also substantially con-
tribute to this effect (Hetrick et al.  1988 ). 

 Arbuscular mycorrhizal fungal responses to 
biocides are varied and may be infl uenced by the 
host plant, specifi c chemical compounds, method 
of application, mode of action, growth stage of 
AM fungi and biotic and abiotic factors 
(Giovannetti et al.  2006 ). Fungicides applied as 
soil drenches generally have a detrimental effect 
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on AM fungi (Udaiyan et al.  1999 ). In a recent 
study, Rotor and Delima ( 2010 ) assessed the 
infl uence of AM fungi with the addition of N fertil-
izer and biocides on corn growth and productivity. 
The results of this study clearly suggested that 
microbial inoculants could act as a substitute for 
biocide application. But the effect of fungicides 
on AM association can vary with host–fungal 
combinations. For example, the dicarboximide 
fungicide captan is known to stimulate mycorrhi-
zation of beans by  Glomus  spp. (De Bertoldi 
et al.  1977 ), had no effect on undetermined spe-
cies colonizing onion (El-Giahami et al.  1976 ) 
and reduced colonization by  F. mosseae  in corn 
(Sutton and Sheppard  1976 ). Fungicides can also 
adversely affect different stages of AM fungal 
development and function (Trappe et al.  1984 ). 
The infl uence of three commonly used fungi-
cides, i.e. benomyl, pentachloronitrobenzene, 
and captan, tested on mixed culture of AM fungi 
indicated that these fungicides could alter the 
species composition of AM fungal community 
(Schreiner and Bethlenfalvay  1996 ). Nevertheless, 
the biological response of AM to these fungicides 
depends not only on the fungus–fungicide rela-
tionship but also on the prevailing environmental 
conditions (Schreiner and Bethlenfalvay  1997 ). 
Systemic fungicides like carbendazim can com-
pletely inhibit P uptake by AM fungal hyphae 
even when applied at recommended fi eld rates 
(Kling and Jakobsen  1997 ). In addition, carben-
dazim could disrupt hyphal P uptake at concen-
trations as low as 10 % of the recommended fi eld 
dosage (Schweiger and Jakobsen  1998 ). 
However, under fi eld conditions, carbendazim or 
a mixture of propiconazole and fenpropimorph 
applied at recommended rate did not affect AM 
colonization (Schweiger et al.  2001 ). In contrast 
to carbendazim, the benzimidazole fungicide 
benomyl has to be applied at a much higher rate 
than recommended levels to affect AM fungal 
colonization of roots (Gange et al.  1993 ). 

 Like certain fungicides, higher dosage of 
pesticides like malathion and mancozeb reduces 
plant growth parameters and also affects the 
extent of mycorrhizal colonization (Saleh 
Al-Garni  2006 ). Unlike other pesticides, the 
herbicide atrazine at lower concentration 

decreases mycorrhizal colonization, whereas at 
higher concentration, it stimulates colonization 
(Huang et al.  2006 ,  2007 ). However, it has been 
speculated that the application of higher con-
centrations of atrazine tends to induce tolerance 
in AM fungi, although the real mechanism 
behind the varied effect is yet to be elucidated 
(Huang et al.  2007 ).  

4.5     Crop Rotation 

 In general, microbes in the soil affect the suc-
ceeding crop. From the biological view point, 
crop rotation is essential for proliferation of AM 
fungi (Douds et al.  2005 ). The AM fungi which 
proliferate with a host plant are not necessarily 
those best at promoting the growth of other crops 
in the rotation (Feldmann et al.  1999 ). The prolif-
eration of such AM fungi has been attributed as a 
cause to yield decline in continuous monoculture 
(Schenck et al.  1989 ). This had been noted in 
soybean and sorghum grown as continuous crop-
ping and also by crop rotation, which refl ected 
less mycorrhizal colonization in the former 
method than the later (Ellis et al.  1992 ). In addi-
tion, the diversity of the AM fungal community is 
linked to the diversity and productivity of the 
plant community (van der Heijden et al.  1998 ; 
Bever et al.  2001 ). A more relaxed altitude 
towards weed management may increase both the 
diversity and effectiveness of the AM fungal 
community when the crops are non-mycorrhizal 
(Miller and Jackson  1998 ; Feldmann and Boyle 
 1999 ; Jordan et al.  2000 ). This is important under 
circumstances where the cultivation of non-host 
crop such as  Brassica  spp. is known to reduce 
AM fungal inoculum in the soil (Blaszkowski 
 1995 ). 

 Pre-cropping enhances mycorrhizal inoculum 
potential (Dodd et al.  1990a ,  b ; Karasawa et al. 
 2001 ,  2002 ). The enhancement of mycorrhiza 
inoculum potential by a given pre-crop may 
improve the mycorrhizal activity of a subsequent 
crop in the rotation (Barea et al.  1993 ). This is 
because the fungi develop and sporulate mostly 
in the roots of those plant species, which are most 
susceptible to mycorrhizal colonization. Susceptible 
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crops, which in the rotation follow non-host 
plants (or plants, which develop little mycorrhi-
zal colonization), may carry less colonization 
than they would follow a strongly mycorrhizal 
crop (Ocampo and Hayman  1981 ). The composi-
tion of AM fungal spore communities tends to 
change signifi cantly if crop rotation was prac-
ticed along with P fertilization (Mathimaran et al. 
 2007 ). According to Vestberg et al. ( 2005 ), 
improved P nutrition of rice grown under acidic 
and phosphorus defi ciency conditions without 
using P fertilizer could be achieved by crop rota-
tion (maize and horse gram) along with AM fun-
gal inoculation.  

4.6     Fallow Period 

 Fallow, the reinstatement period to trim down the 
weed growth, may negatively infl uence AM 
fungi. Crops including corn, sorghum, sunfl ower, 
chickpea and linseed, when grown in southern 
Queensland, Australia, after long periods of bare 
fallow, exhibited poor growth with P and Zn defi -
ciency. This syndrome, termed long- fallow disor-
der, was associated with low AM colonization, 
failure of AM fungal mycelia networks in soil to 
take up suffi cient nutrients and reduced AM 
fungal spore density and diversity (Kabir and 
Koide  2000 ; Karasawa et al.  2002 ). The applica-
tion of P and Zn fertilizers to soils following long 
fallow not only alleviated the negative effects of 
low AM colonization and fertility, but crops 
responded better than in soils with higher AM 
fungal inoculum levels (Thingstrup et al.  1998 ). 
Poor growth of linseed after prolonged fallowing 
in a semiarid cropping system was improved by 
inoculation with AM fungal propagules obtained 
from sorghum-cropped fi eld soil (Thompson 
 1994 ). A 1-year fallow in an oxisol reduced the 
number of AM fungal propagules by 40 % and 
the growing of non-mycorrhizal crops like mus-
tard ( Brassica juncea ) reduced them by 13 % 
(Harinikumar and Bagyaraj  1988 ). Wagner et al. 
( 2001 ) observed an exponential decline in spore 
counts of  Claroideoglomus claroideum  ( =Glomus 
claroideum ) with time during soil storage. with 
time during soil storage. Ellis ( 1998 ) also showed 

that the absence of host roots could drastically 
reduce AM fungal populations in the soil. The 
fi ndings of Troeh and Loynachan ( 2003 ) suggest 
that continuous cropping of maize and soybean 
increases AM fungal spore numbers, whereas 
spore numbers tend to decrease under fallow. 
Recently, Karasawa and Takebe ( 2012 ) reported 
that fallow condition could reduce the abundance 
of AM fungal propagules (spores and mycelium), 
due to the disruption of AM fungal mycelial net-
work and alteration of available nutrients and 
microbial activities in soil (Jansa et al.  2003 ). To 
overcome the defects, the maintenance of high 
AM fungal abundance in cropping systems could 
ensure tolerance to prolonged fallow periods and 
their activity (Hijri et al.  2006 ).  

4.7     Management Considerations 

 Reports of improved plant growth responses in 
response to AM inoculation under controlled con-
ditions in low fertile soils led to a fl urry of activi-
ties during 1980s, aimed at utilizing AM fungi as 
bioinoculants. However, the magnitude of 
responses was different under fi eld conditions, 
especially under conventional high-input agricul-
tural systems. Further studies, however, have 
shown that most crop species are mycorrhizal and 
AM fungi can have a substantial positive or nega-
tive impact on crop productivity (Johnson et al. 
 1997 ). Therefore, there is a need to elucidate the 
role of AM fungi in agroecosytems and to under-
stand the impact of management practices on the 
symbiosis. The introduction of appropriate fungi 
to the plant production systems may be appropri-
ate under conditions where the native AM fungal 
inoculum potential is low or ineffi cient. The ini-
tial step in any inoculation programme is to iden-
tify and isolate organisms that are both infective 
(able to associate) and effective (able to impart 
desired effects) under a given set of conditions. 
Isolates of AM fungi may vary widely in these 
properties. So, screening trials are needed to 
select isolates that will perform effi ciently and 
successfully. Screening under actual fi eld condi-
tions is preferred than under controlled condi-
tions, because the infl uence of indigenous AM 

P. Priyadharsini and T. Muthukumar



19

fungi, soil organisms and cultural practices on the 
introduced fungi could be more clearly under-
stood. Factors that should be considered when 
assessing the potential role and introduction of 
AM fungi in agroecosystems include: 

4.7.1     Mycorrhizal Growth Response 
(MGR) and Mycorrhizal 
Dependency (MD) 
of the Host Crop 

 Mycorrhizal growth response (MGR) is the 
responsiveness of change in the total biomass of 
mycorrhizal (M) versus non-mycorrhizal (NM) 
crop plants from the symbiosis (Hetrick et al. 
 1992 ):

  
MGR M NM NM= −( )⎡⎣ ⎤⎦ ×/ 100

   

Mycorrhizal dependency (MD) is defi ned as the 
growth response of the total dry matter in mycor-
rhizal (M) versus non-mycorrhizal (NM) plants 
at a given phosphorus level (Plenchette et al. 
 1983 ):

  
MD M NM M= −( )⎡⎣ ⎤⎦ ×/ 100

   

All mycorrhizal agricultural crops are not equally 
benefi tted from the association. Generally, coarse-
rooted plants like legumes benefi t more from AM 
symbiosis than fi ne-rooted cereals (Jeffries and 
Dodd  1991 ). Mycorrhizal dependency of a crop 

species may differ with the cultivars as well as 
with the AM fungal species involved (Table  2 ; 
Figs.  5  and  6 ).

4.7.2           Inoculum Density, Rate 
and Extent of AM Colonization 

 Rapid and extensive spread of AM fungal coloni-
zation is a crucial factor for effectively enhancing 
plant growth and ably competing with indigenous 
AM fungi. Therefore, the formation of entry 
points is important, and their number is con-
trolled by inoculum level, more specifi cally by 
inoculum density, that is, the number of propa-
gules per given unit of soil. Experiments are pre-
formed either with unknown quantities of AM 
fungal inoculum or state only the spore numbers. 
However, the spore numbers alone do not consti-
tute total propagules, as dried root bits, sporo-
carps, soil hyphae and mycorrhizal roots can also 
act as propagules. Therefore, currently, the total 

   Table 2    Mycorrhizal dependency of agricultural crops 
under low soil P   

 Mycorrhizal 
dependency  Agricultural crops 

 Strong  Cassava, onion, legumes, peppers 
 Medium  Soya, wheat, barley, cowpea, grain 

legumes, tomatoes 
 Weak  Potato, rice, melon, sunfl ower, 

beans, maize, sorghum 

  After Jeffries and Dodd ( 1991 ) with permission  
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number of propagules available for colonization 
is used to measure the AM fungal propagule den-
sity in fi eld soil or inoculum (Muthukumar and 
Udaiyan  2003 ). For example, the reduction in 
plant growth had been shown under fi eld condi-
tions under reduced spore density and root colo-
nization (Zangaro et al.  2008 ,  2012 ). Similarly, 
comparisons between different AM fungi should 
be made at similar inoculum densities. A study 
by Rajan et al. ( 2000 ) showed that the infectivity 
and rate of colonization development of 
 Gigaspora margarita  were greater than those of 
 Rhizophagus intraradices  ( =Glomus intraradi-
ces ). Likewise, propagules of  F. mosseae  were 
found to be most effective compared to those of 
 R. intraradices  (Rajan et al.  2000 ). Studies have 
also shown that inoculum consortia of AM fungi 
perform better than inoculum containing single 
taxa (Khade and Rodriguez  2009 ). In a recent 
study, Jin et al. ( 2013 ) using plant growth 
parameters and molecular techniques to detect 
the presence of AM fungi within plant roots 
showed that a mixed culture [ Rhizophagus irreg-
ularis  ( =Glomus irregulare ) , F. mosseae  and 
 Rhizophagus clarus  ( =Glomus clarum )] func-
tioned better than a single species ( R. irregularis ) 
inoculation in fi eld-grown pea plant.  

4.7.3     Effi ciency of Inocula 
 For fi eld applications, it is always essential to 
confi rm that the inoculated microorganisms 
possess all the qualitative characteristics of an 
inoculum. The effi ciency of the inoculum primar-
ily depends on the performance of the AM fungal 
strain adapted to the host plants for their 
establishment. However, this tends to vary with 
the fungus and the host plants. To characterize 
the effi ciency of inoculum, various approaches 
including the identifi cation of the spore, estimation 
of root fungal colonization (Dalpé  1993 ) and an 
assessment on spore germination rate are often 
used. Further, molecular techniques are also 
handy for the detection of the introduced AM 
fungal strain among the indigenous AM fungal 
strains naturally occurring in the soil. These tech-
niques are not consistent with morphological 
identifi cation, due to the large genetic variability 
in AM fungi, and these techniques are rarely 
used. Consequently, internal transcribed    spacer 
(ITS) sequences of ribosomal DNA genes 
(rDNA) were also used in some discrimination. 
Current researches focus on the development of 
consistent molecular techniques to trace the inoc-
ulated strains using PCR and species-specifi c 
primers (Séguin et al.  2003 ) and also for the 
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entrapment of AM fungal propagules in natural 
polysaccharide gels (Vassilev et al.  2005 ; 
Siddiqui and Kataoka  2011 ) are under study. 
Such technological breakthroughs would greatly 
facilitate both fundamental and applied researches 
on mycorrhizae as well as improve quality con-
trol of commercial inocula.    

5     Methods of Inoculum 
Production 

 The production of inoculum is more essential for 
AM fungi due to its obligate symbiotic nature. 
Traditionally, AM fungi are propagated through 
open pot cultures. Starter cultures are usually ini-
tiated from spores or colonized root fragments, 
which are later incorporated into the growing 
medium for seedling production (Brundrett et al. 
 1996 ). The fungi spread in the substrate and colo-
nize the roots of the seedlings. Both colonized 
substrates and roots can then serve as mycorrhi-
zal inoculum. Soilless culture systems such as 
aeroponic cultures enable the production of 
cleaner spores and facilitate uniform nutrition of 
colonized plants (Singh et al.  2012 ). The success-
ful propagation of some AM fungal strains on 
root-organ cultures has facilitated the develop-
ment of monoxenic strains that can be used 
directly as inoculum for in vitro plant production 
systems or for large-scale inoculum production 
(Fortin et al.  2002 ). 

5.1     Off-Farm Methods 

 The various advantages and disadvantages of dif-
ferent off-farm inoculum production methods are 
shown in Table  3 . Highly infective soil-based 
inocula are quite easy to produce and handle. 
However, the time span required to produce 
appreciable quantities of soil-based inocula can 
range between 6 and 12 months. An inoculum 
form produced using light expanded clay aggre-
gates as substrate is of interest (Dehne and 
Backhaus  1986 ), as the porous material containing 
infective mycelium and spores can be easily 
separated from the plant roots (Feldmann and 

Idczak  1992 ). The aggregates can later be surface 
sterilized and applied to fi eld-grown crops in 
small quantities (Baltruschat  1987 ). Vermiculite 
is an inorganic carrier for AM inoculum produc-
tion, as it is an ideal substrate for AM fungal 
sporulation (Barea et al.  1993 ). Sheared-root 
inocula (Sylvia and Jarstfer  1992 ), prepared from 
aeroponic cultures (Hung and Sylvia  1988 ; 
Jarstfer and Sylvia  1999 ), are also routinely used 
in inoculation programmes. Surface-disinfected 
AM fungal propagules can also be used espe-
cially under in vitro conditions. Two methods of 
off-farm inoculum production (open pot culture 
and root-organ culture) are detailed below.

5.1.1       Open Pot-Culture Production 
 Arbuscular mycorrhizal fungi are obligate sym-
bionts, which require a suitable host plant for its 
establishment and proliferation. Conditions for 
large-scale inoculum production need to be opti-
mized. Care should be taken to identify and avoid 
contamination from undesired species during 
monoculture. The process to attain huge amount 
of targeted inoculum is rather lengthy. The 

   Table 3    Arbuscular mycorrhizal fungal inoculum types 
with their advantages and disadvantages   

 Inoculum type  Advantages  Disadvantages 

 Soil based  Long shelf life  Bulk and heavy 
 Useful at 
transplanting 

 Needs soil 
sterilization 

 Soilless substrate  Weightless than 
soil 

 Needs careful 
control of 
watering and 
fertilizer 
application 

 Uniform 
composition 
 Can be dried and 
stored 

 Surface- 
sterilized AM 
propagules 

 Aeroponically 
developed 
colonized roots 
can be sheared 

 Needs highly 
skilled 
technique 

 Entrapment in 
polymer gel, 
alginate, 
hydrogel, 
hydroponic, 
aeroponic and 
root-organ 
culture 

 Can be kept free 
of extraneous 
organisms 

 Relatively 
expensive 

 Can be dried and 
stored 

  Modifi ed from Azcon-Aguilar and Barea ( 1997 ) with 
permission  
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inoculum production through open pot cultures 
involves the following steps. 

   5.1.1.1 Isolation of AM Fungal Strain 
 Spores of desired AM fungal strain are collected 
from the plant’s rhizosphere by wet-sieving and 
decanting technique (Gerdemann and Nicolson 
 1963 ). However, for raising monoculture, AM 
fungal propagules can be acquired from trap 
cultures. The trap culture constitutes the host 
plant rhizospheric soil diluted equally with steril-
ized sand (Menge  1984 ). The resulting AM fun-
gal spore densities are higher compared to the 
initial rhizosphere soil. In fact, undetected spores 
in the initial extraction of fi eld soil could be 
detected in trap culture (Mortan et al.  1995 ). Liu 
and Wang ( 2003 ) evaluated the presence of AM 
fungal spores by using different trap plants. The 
results of    this study suggested that the numbers 
of AM fungal spores and species were higher in 
trap cultures and clover ( Trifolium repens ) was 
found to be a suitable host for identifying the AM 
fungal diversity. Using spores for initiating 
cultures certainly has some benefi ts like easy 
detection of undesired fungal spores, quick enu-
meration and evaluation of spore viability and 
germination and a reduction of pathogen inclu-
sion (Dodd and Thomson  1994 ). On the other 
side, AM fungal spores sometimes exhibit dor-
mancy, which reduces the potential of the inocu-
lum (Gemma and Koske  1988 ).  

   5.1.1.2 Choice of a Host Plant 
 The selection of a suitable host plant should be 
based on high mycorrhizal dependency, adapt-
ability to in vitro or greenhouse conditions and 
in having an extensive root system. The host 
plants commonly used for raising pot cultures 
are corn, onion, leek ( Allium porrum ),  Sorghum 
halepense , Bahia grass ( Paspalum notatum ), 
Guinea grass ( Panicum maximum ), buffell 
grass ( Cenchrus ciliaris ) and subterranean 
clover ( Trifolium subterraneum ) (Chellappan 
et al.  2001 ). Generally, monocots are preferred 
as hosts, because the fi brous root system 
enables uniform spreading of the roots in a 
given volume of soil than plants with tap roots. 
Further, the fi brous root system renders mono-

cots less dependent on mycorrhizal fungi than 
dicots.  

   5.1.1.3 Optimizing Growing Conditions 
 Properly sterilized substrate is essential not only 
to maintain the purity of a culture but also for 
avoidance of diseases. Usually, equal propor-
tions of sterilized sand soil mixture are used for 
raising inoculum (1:1; sand/soil). A coarse-tex-
tured sandy soil (Gaur and Adholeya  2000 ) 
mixed with vermiculite or perlite or turface 
(Dehne and Backhaus  1986 ) can also be used. 
Inadequate mineral nutrient in the substrate may 
affect plant and in turn the fungal development. 
However, the excess of available P can inhibit 
AM fungal propagation. As N, K, Mg and 
microelement ratios may affect AM inoculum 
development, plant fertilization needs to be per-
formed artifi cially especially when inert sub-
strates are used for inoculum production (Dixon 
et al.  1999 ). In addition, other edaphic and cli-
matic factors such as pH, soil temperature and 
aeration, light intensity and relative humidity 
need to be controlled for optimal AM fungal 
propagation (Rao and Tarafdar  1999 ). Some dis-
advantages of open pot-culture production 
include bulkiness, transportation problems, 
cross-contamination and lack of genetic stabil-
ity (Abdul-Khaliq et al.  2001 ).   

5.1.2      In Vitro  Propagation on Root- 
Organ Culture 

 The root-organ culture involves the proliferation 
of excised roots under axenic conditions on an 
artifi cial nutrient media supplemented with vita-
mins, minerals and carbohydrates. This method 
was fi rst used for in vitro AM fungal propagation 
by Mosse and Hepper ( 1975 ). Root-organ cul-
tures with vigorous root formation and uniform 
growth under poor nutrient conditions (alteration 
in hormones) have been obtained through the 
transformation of roots by the soil bacterium 
 Agrobacterium rhizogenes  (Abdul-Khaliq et al. 
 2001 ). Nevertheless, when hairy root technique 
started to emerge, AM fungal propagules like 
spores or sporocarps, mycorrhizal root bits and 
even isolated vesicles were used in hairy root cul-
tures to initiate in vitro AM fungal inoculum 
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(Kapoor et al.  2008 ). Surface sterilization of AM 
fungal spores is done using various sterilizing 
agents like chloramine-T or Tween 20 (Fortin 
et al.  2002 ) followed by antibiotic solution wash 
to remove contaminants from spore surfaces. All 
the above said processes need to be carried at 
reduced temperatures. The selection of culture 
medium is of prime importance, because both 
roots and AM fungal propagules require different 
media compositions for their growth. The nega-
tive geotropic nature of transformed roots facili-
tates its contact with the AM fungal hyphae, 
thereby initiating colonization. Recently, Abd- 
Ellatif et al. ( 2012 ) demonstrated the successful 
establishment of AM fungal association in root- 
organ culture using tomato hairy roots.   

5.2     On-Farm Methods 

 On-farm production of AM fungal inoculum 
entails increasing the propagules of desired iso-
lates and indigenous AM fungi in fumigated and 
unfumigated fi eld soils, respectively, or trans-
planting pre-colonized host plants into compost- 
based substrate (Douds et al.  2005 ). This type of 
AM fungal inoculum production would enable 
farmers to obtain inoculum at a cheaper cost and 
make their transportation easy. Furthermore, 
farmers could easily produce locally adopted iso-
lates and generate a taxonomically diverse inocu-
lum in large quantities. 

5.2.1     Method 1 
 The earliest method of inoculum production for 
an effective strain of the AM fungus  Rhizophagus 
manihotis  ( = Glomus manihotis ) was developed 
by Sieverding ( 1987 ,  1991 ) in Columbia. In this 
method, fi rst, a 25 m 2  fi eld plot was tilled and 
fumigated to eliminate the indigenous AM fl ora. 
After the fumigant has dissipated, the inoculum 
of the specifi c AM fungal strain ( R. manihotis ) 
was inoculated into holes drilled in the soil and 
then seeded with a grass host,  Brachiaria decum-
bens . Simultaneously, pre-colonized  B. decum-
bens  plants were also transplanted to the inoculum 
preparation plots, thereby minimizing the amount 
of starter inoculum needed. After 4 months of 

growth, the soil and roots were harvested to a 
depth of 20 cm and used as inoculum. 

   5.2.1.1 Advantage 
 A postharvest analysis of the inoculum showed 
that fumigation of the soil was essential to 
increase the AM fungus spore production per 
given quantity of the soil. Further, fumigation 
also increased the relative proportion of spores of 
the desired AM fungal isolate relative to indige-
nous AM fungi compared to unfumigated and 
inoculated plots.   

5.2.2    Method 2 
 The second method of on-farm AM fungal inocu-
lum production involves preparing raised soil 
beds (60 × 60 × 16 cm) (Gaur  1997 ; Douds et al. 
 2000 ). After fumigation of the beds, the AM 
fungi from a starter inoculum were inoculated 
into furrows in the raised beds. A succession of 
hosts [(e.g.  Sorghum sudanese , corn and carrot 
( Daucus carota )] were grown for 1 year of 
4 months each. The growth cycle was carried 
over a course of 3 years. After the third cycle 
started to progress, the soil in raised beds was 
found to be ready to be used as inoculum. 

   5.2.2.1 Advantage 
 An approximately tenfold increase in AM fungal 
inocula was evident from year 1 to year 3, yielding 
around 2.5 × 10 6  propagules per bed.   

5.2.3     Method 3 
 Gaur et al. ( 2000 ) and Gaur and Adholeya ( 2002 ) 
later modifi ed the above method to yield a shorter 
inoculum production cycle without the use of fumi-
gants. Raised beds were prepared as stated above 
(method 2) by using 2:1 (v/v) mixture of soil to leaf 
compost. The beds were either inoculated or left 
uninoculated to enhance the proliferation of indig-
enous AM fungi. In this method, only one plant 
growth cycle was used involving forage crops or 
vegetables as host plants. 

   5.2.3.1 Advantage 
 In this method, inoculum production was 15- 
to 20-fold greater than the starter inoculum 
used. This method produced only 55–69,000 
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propagules per bed, 40-fold lower than the 
3-year method (method 2).   

5.2.4     Method 4 
 In 2005, Douds et al. developed another method 
for on-farm production of AM fungal inoculum 
for temperate regions. Raised bed enclosures 
(0.75 × 3.25 × 0.3 m) were constructed with silt 
fence walls, weed barrier cloth fl oors and plastic 
sheeting dividing walls dividing the enclosure 
into 0.75 m square sections. The enclosures were 
fi lled to a depth of 20 cm with a 1:4 (v/v) mixture 
of compost and vermiculite. Pre-colonized ten 
Bahia grass plants were transplanted into the 
enclosures. One AM fungal isolate was used per 
enclosure section. The enclosures were tended 
for one growing season and watered as needed 
(Douds et al.  2005 ). 

   5.2.4.1 Advantage 
 The advantage of this method includes the pro-
duction of signifi cant quantities of the desired 
AM fungi. An average of 95 × 10 6  propagules 
could be produced per 0.75 × 0.75 m enclosure 
section.   

5.2.5     Method 5 
 In 2006, Douds et al. suggested another method 
for on-farm production of AM fungus inoculum. 
Bahia grass seedlings colonized by AM fungi 
were transplanted into raised bed enclosures con-
sisting of vermiculite mixed with either fi eld soil 
or yard clipping compost or vermiculite mixed 
with yard clipping compost or dairy manure/leaf 
compost. The propagule yield was higher in com-
post and vermiculite mixture compared to soil- 
based mixture. Inoculum production in a 1:4 
(v/v) mixture of yard clipping compost and ver-
miculite media was more (503 propagules cm −3 ) 
than those with 1:9 and 1:99 (v/v) mixtures (240 
and 42 propagules cm −3 ), respectively (Douds 
et al.  2006 ). 

   5.2.5.1 Advantage 
 This method enables the production of concen-
trated AM fungal inoculum that can be readily 
used in horticultural potting media for vegeta-
ble seedling production. Supplemental nutrient 

additions are unnecessary during inoculum 
production.   

5.2.6     Method 6 
 In 2010, Douds et al. modifi ed the existing method 
for the production of AM fungal inoculum in tem-
perate climates. Black plastic bags fi lled with 
approximately 20 L of a 1:4 (v/v) mixture of pas-
teurized compost and vermiculite served as the 
growing medium. To this growing medium, fi eld 
soil (containing 12 propagules cm −3 ) collected 
from the top 10 cm from a fi eld was mixed at the 
rate of 100, 200 or 400 cm 3 . Three-month-old 
non-mycorrhizal or mycorrhizal Bahia grass 
seedlings were planted in the bags at a rate of fi ve 
plants per bag and grown for 3 months. Adding 
100 cm 3  of fi eld soil to the growing medium and 
planting with non- mycorrhizal seedlings pro-
duced 465 propagules cm −3  compared to 137 
propagules cm −3  for planting with the pre-colo-
nized seedlings (Douds et al.  2010 ). 

   5.2.6.1 Advantage 
 This modifi cation to the existing method allows 
greater fl exibility and makes it easier for the 
production of the AM fungal inoculum directly 
on the farm. This method could be readily 
adopted by farmers.     

6     Determination of Infective 
Propagule Abundance 

 The most suitable and convenient method to 
determine the number of infective propagules of 
AM fungi in a crude inoculum, soil or mycorrhi-
zal root bits is termed as the most probable num-
ber (MPN) technique (Alexander  1982 ). It has 
been assessed by using a statistical estimation of 
microbial population density (Cochran  1950 ). 

6.1     Inoculum Management 

 Inoculum formulation procedure consists of plac-
ing fungal propagules (root fragments, mycelium 
and spores) in a carrier (perlite, peat, inorganic 
clay, zeolite, vermiculite, sand, etc.) for a given 
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application (Gianinazzi and Vosátka  2004 ). The 
critical factor that determines the inoculum effi -
ciency is the dosage and the time of inoculation. 
Although, theoretically, a single propagule of 
AM fungi is suffi cient to initiate mycorrhization, 
the colonization process in such cases is very 
slow to be of agronomic interest. About 1–2 kg of 
soil inoculum (with 5,000–10,000 propagules) 
per m 2  of seedbed could be an appropriate appli-
cation rate. However, the application rate for 
each crop species has to be standardized for a 
given set of environmental conditions 
(Muthukumar and Udaiyan  2003 ). The time of 
inoculation is also important, and in general, the 
earlier the inoculation, the greater the benefi t to 
the plant (Barea et al.  1993 ).  

6.2     Inoculation Methods 

 The aim of inoculation is to introduce desired 
AM fungal propagules into the rhizosphere of the 
target plant (Jarstfer and Sylvia  1992 ). Various 
methods of AM fungal inoculation for trans-
planted and fi eld-sown crops have been detailed 
by Bagyaraj ( 1992 ). The most common method 
is to place the inoculum below the seed or seed-
ling, prior to seeding or planting. Seedlings raised 
in sterilized or unsterilized nursery beds or con-
tainers containing selected AM fungi can be 
transplanted after mycorrhizal association is well 
established. This method has been successfully 
used for agronomic crops like chilli, fi nger millet, 
tomato and tobacco ( Nicotina tabacum ) (Govinda 
Rao et al.  1983 ; Sreeramulu and Bagyaraj  1986 ). 
For fi eld-sown crops, AM fungi can be applied as 
seed coating (Hattings and Gerdemann  1975 ), 
mycorrhizal pellets (Hayman et al.  1981 ; Hall 
and Kelson  1981 ), fl uid drilling (Hayman et al. 
 1981 ) and inoculation in furrows (Hayman et al. 
 1981 ; Powell and Bagyaraj  1982 ).   

7     Conclusion 

 The role of AM fungi in enhancing plant growth 
is proved beyond doubt both under on-fi eld and 
off-fi eld conditions. Responses to AM fungal 

association are most widely to occur when 
mycorrhizal-dependent crop species are raised on 
substrates with low P levels. Therefore, it is 
important to determine the mycorrhizal depen-
dency of the crops grown in a region and to select 
those which could respond to AM inoculation. 
Screening for selection of an effi cient crop–AM 
fungal combination should be undertaken. 
Research should be    intensifi ed in the direction of 
manipulating AM fungi in the indigenous AM 
fungal community to achieve maximum crop 
productivity. The optimization of agronomic 
practices, reducing fertilizer input and use of 
cheap source of fertilizer (rock phosphate, 
organic manures) should be investigated. Top pri-
ority should be given to the development of new 
technologies for rapid and large-scale quality 
inoculum production. Further, one of the main 
tasks in AM research is to raise awareness in the 
growers’ mind about the potentials of AM tech-
nology in sustainable crop production and soil 
conservation.     
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