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Introduction

Since centuries bacteria were thought to be
unicellular organisms. The discovery of bacterial
communication through small molecules has
asserted that bacteria can efficiently coordinate
intraspecies as well as interspecies. The bacteria
become more benefitted and suitable of behaving
like a multicellular organism to adopt new modes
of growth in limited nutrient supply. Under
adverse conditions, single bacterial cell has less
chance to survive in isolation; consequently
bacterial language has been developed during
evolution to communicate with its neighbours
through self-generated signals (Bassler and
Losick 2006). These signalling small molecules

�Author contributed equally with all other contributors.

L.K. Singh
Allergy and Infectious Diseases, CSIR-Institute
of Genomics and Integrative Biology, Delhi University
Campus, Mall Road, Delhi 110007, India

N. Dhasmana • Y. Singh (�)
Allergy and Infectious Diseases, CSIR-Institute
of Genomics and Integrative Biology, Delhi University
Campus, Mall Road, Delhi 110007, India

Academy of Scientific & Innovative Research (AcSIR),
2, Rafi Marg, Anusandhan Bhawan, New Delhi 110001,
India
e-mail: ysingh@igib.res.in

are called as pheromones or autoinducers. These
autoinducers sense a critical bacterial density in
population (Kievit and Iglewski 2000; Williams
et al. 2007).

Communication in bacterial population is
also observed in symbiotic bacteria which
use these pheromones while interacting with
their host. Bacteria are associated with the
lives of Homo sapiens as well as live stocks
concerning that they cause deadly diseases, can
be in symbiotic relationship or are employed
in various food processing industries (Steidle
et al. 2001). Bacillus genera belong to the
Firmicutes phylum of bacterial kingdom and
include various significant organisms, namely,
B. anthracis, the aetiological agent of anthrax;
B. cereus that causes diarrhoeal symptoms;
and B. thuringiensis, the insect pathogen.
Numerous pathogens are known to cause upper
respiratory and urinary tract infections, given
their ability to communicate intraspecies and thus
form multicellular organization called biofilms.
Enhanced antibiotic resistance is also observed
when these pathogenic microorganisms form
clinically more interesting recalcitrant biofilms
(Davey and O’toole 2000; Donlan and Costerton
2002). Furthermore, B. subtilis is known to
colonize the Arabidopsis thaliana roots through
matrix-enclosed multicellular communities
in which matrix production is triggered by
plant exopolysaccharides and reported to be
beneficial for plant growth (Beauregard et al.
2013).
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Quorum-Sensing-Mediated Biofilm
Formation

Bacillus subtilis is the most extensively studied
organism in Bacillus genera. B. subtilis is
a gram-positive, endospore-forming, rod-
shaped and aerophilic bacteria (Kumar et al.
2013). It secretes diffusible oligopeptides for
communication with the neighbouring cells; the
process referred as quorum sensing (QS) (Kalia
and Purohit 2011; Kalia 2013). Neighbouring
bacteria perceive and broadcast the signals in
its vicinity consequently causing behavioural
modifications in the bacterial population
(Parsek and Greenberg 2005; Bassler and
Losick 2006; Mehta et al. 2009; Boyle et al.
2013; Vlamakis et al. 2013). Biofilms are the
cocoons made up of extracellular polymeric
substances (EPS) in which bacteria thrive under
adverse environmental conditions (Flemming
et al. 2007). The biofilm matrix consists of
exopolysaccharides, proteins, enzymes and
extracellular DNA along with pili and flagella.
Biofilm provides adhesion that facilitates the
initial step of colonization and imparts protection
against the innate host defence. Following
adhesion, biofilm also maintains the moisture
content and absorption of nutrients for the better
survival throughout the infectious phase or under
environmental stress (Flemming and Wingender
2010; Li and Tian 2012; Kostakioti et al.
2013). Biofilm formation precisely describes
the transition between unicellular bacteria to
the partial multicellular organism (Aguilar et al.
2007; Shank et al. 2011). It is an ingenious plan
of nature to sweep over the nutritional stress
using coordinated biological pathways (Lemon
et al. 2008; Shank et al. 2011). Bacteria within
the biofilm display heterogeneity at phenotypic
and genotypic level, and the social behaviour is
governed through paracrine signalling (Stewart
and Franklin 2008; López et al. 2009; Monds and
O’Toole 2009; Kalia et al. 2011; Kalia 2013).

Competence and sporulation stimulating fac-
tor (CSF) is the master regulator of QS-mediated
biofilm formation, competence and sporulation
(Waters and Bassler 2005). The CSF is conserved

in Bacillus spp.; however, the protein sequence
shows the polymorphism. CSF is secreted in
its precursor form (40 amino acids) encoded by
phrC gene. The N-terminal of pre-CSF contains
the guiding sequence for secretion. Membrane-
associated serine proteases cleave the C-terminal
of precursor CSF and release mature CSF (Miller
and Bassler 2001; López et al. 2009). Mature
CSF is a pentapeptide secreted into extracellular
milieu, which regulates the competence factors
ComA, ComK, ComS and ComX expression.
The competence factor ComA activates the sur-
factin operon (srfA-D). Additionally, the ComK
interacts with ComP and switches on the srfA-
D operon, which ensures the cell to be com-
petent and able to produce the exopolysaccha-
rides. Surfactin-producing cells are capable to
show the competency as ComS is synthesized,
while the ComK shows the alternative cascade
regulation; only a fraction of cells producing
surfactin displays the competency (Shank and
Kolter 2011). The pathways of competency and
biofilm formation are similar in B. subtilis and
in other organisms, for example, Streptococcus
pneumoniae. Although the mechanism of action
of QS molecules is well established, how the QS
molecules are synthesized in the cell is relatively
less understood (Turovskiy et al. 2007; orthington
et al. 2012).

Quorum-Sensing-Mediated
Cannibalism

Bacillus undergoes sporulation process in high
stress condition such as nutritional imbalance or
heat stress (Fig. 1). Sporulation is highly energy-
driven and time-investing process in which
vegetative cell differentiates into a dormant
structure. Among different subpopulations
under starvation conditions, a discrete set of
bacterial cells secretes two toxin peptides,
namely, Sdp (sporulation-delaying factor) and
Skf (sporulation-killing factor) whose function
is to delay sporulation and kill the siblings,
respectively (Lamsa et al. 2012). The Skf peptide
toxin kills their neighbouring sensitive cells
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Fig. 1 Quorum-sensing systems in Bacillus: Heteroge-
neous bacterial population undergoes competence with
the trigger of the colony and sporulation stimulating fac-
tor (CSF) during low phosphorylated Spo0A levels. The
CSF acts differently on the cells, giving rise to distinct
subpopulations of non-competent cells (NC), ComS and
ComK expressing cells. The ComK majorly regulates the
expression of surfactin-encoding operon (srfA-D), which
triggers onset of matrix production by ComK and ComS
expressing competent cells. Under persistent nutritional
limitations, the matrix producers generate quorum-sensing
(QS) signal through releasing sporulation-killing factor
(Skf) which causes the killing of neighbouring non-

competent cells, hence releasing nutrients to be used for
prolonged survival and matrix production, the process
known as cannibalism. Additionally, the matrix producers
generate other signals known as a sporulation-delaying
factor (Sdf), which results in enhanced survival in vege-
tative phase of the bacterial life cycle. At early stationary
phase, cells generate QS molecules, i.e. autoinducer AI-2
signals, and regulate various virulence factors like toxin
synthesis and secretion, S-layer formation, etc. At higher
levels of phosphorylated Spo0A signals, sporulation is
triggered simultaneously in the whole bacterial popula-
tion. The QS regulators behind this highly synchronized
onset of sporulation process are still unknown

(non-competent cells) and utilizes the nutrients
released as food to overcome the nutrient
limitations. The procedure of eating their siblings
is termed as cannibalism and is described to
be transitory in nature (Schultz et al. 2009;
Shank and Kolter 2011). The sporulation master
regulator Spo0A governs the expression of Sdp
and Skf proteins. The low level of phosphorylated
Spo0A regulates the sdpABC, srf operon
consequently causing matrix production (López
and Kolter 2009). The same subpopulation forms

the biofilm, out of which some cells display
cannibalistic behaviour. Both biofilm formation
and cannibalism are reported to be triggered by
the QS signal molecule, surfactin. Higher level of
phosphorylated Spo0A promotes the cell into the
committed sporulation phase of the bacterial life
cycle (Fujita and Losick 2005).

Cannibalism is analogous to programmed cell
death, in which cells not required for develop-
ment of bacterial community are removed (López
et al. 2009; Li and Tian 2012). In B. subtilis
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paracrine signalling through QS molecules reg-
ulates the three major life events in the life
cycle, e.g. biofilm formation, cannibalism and
sporulation. Similarly the other Bacillus spp. like
Lactococcus lactis secrete the cannibalism toxin
nisin that functions as the antimicrobial peptide
(Williams et al. 2007). The nisin treatment with
B. subtilis kills the cells, those that are unable
to produce the cannibalism toxin, consequently
giving rise to stronger biofilm that are compet-
ing for survival in limited nutrients. It has been
reported that B. subtilis also kills the neighbour-
ing bacteria through the Skf cannibalism toxin
(Turovskiy et al. 2007). Further investigations
are needed to see the role of QS molecules
and cannibalism toxins in multispecies biofilm
formation.

Quorum-Sensing-Mediated
Virulence

QS governs the major phenomenon in the bac-
terial alternating life stages. Interestingly, the
virulence of pathogenic members of Bacillus is
also reported to be governed by the societal
communication (Fig. 1). The pathogenic clade of
Bacillus species includes B. anthracis, B. cereus
and B. thuringiensis. B. thuringiensis is an in-
sect pathogen, which is a parasite of the eco-
nomically significant crop, cotton. The paracrine
signalling peptide PlcR (34 kDa or 48aa) is se-
creted by the B. thuringiensis and imported by
neighbouring bacterial cells through oligopep-
tide permease. The PlcR interacts with PapR
and binds to the DNA, and this ternary inter-
action is known to cause pleiotropic effects, in-
cluding secretion of toxins (Kievit and Iglewski
2000). The PlcR regulator is also secreted by an-
other pathogen B. cereus causing diarrhoeal and
nausea symptoms upon food poisoning. PlcR is
known to express at the onset of stationary phase
that regulates the synthesis of various toxins like
enterotoxins, cytotoxins and hemolysins. Also,
the deletion of plcR causes abolished virulence in
animal model systems (Grenha et al. 2012). Thus,
PlcR plays central role in controlling the viru-
lence in B. thuringiensis and B. cereus through

QS (Atkinson and Williams 2009; Hong et al.
2012; Rutherford and Bassler 2012).

Anthrax is a zoonotic disease prevalent in
developing countries, and recurrent outbreaks of
the disease are reported across the world. B. an-
thracis is the aetiological agent of anthrax and
secretes the tripartite toxin, namely, lethal factor,
oedema factor and protective antigen encoded
by lef, cya and pag genes, respectively. The
toxin genes are present on the pathogenic is-
lands of extrachromosomal plasmid pXO1. Small
molecular weight protein AI-2 secreted by B.
anthracis is known to modulate the pathogenicity.
Jones and co-workers have investigated the role
of luxS in the secretion of toxins from B. an-
thracis. Using microarray, they demonstrated that
B. anthracis LuxS regulates the AI-2-dependent
toxin secretion, bacterial growth and S-layer pro-
tein expression. The concentration of autoinducer
AI-2 is found to be directly proportional to the
bacterial cell density and toxin secretion (Kievit
and Iglewski 2000; Turovskiy et al. 2007; Jones
et al. 2010).

Conclusion

Bacillus exhibits the alternative life phase,
i.e. vegetative cells and spore. Furthermore,
it displays temporary multicellular organism
behaviour that facilitates bacteria to survive in
different environmental conditions. Under nutri-
tional stress, bacteria show matrix production and
cannibalism. However, persistent environmental
stress or nutritional imbalance leads to the
sporulating fate of vegetative cells in the biofilms.
Bacillus is also reported to express the toxins at
critical bacterial cell density. Sporulation is a
highly energy-driven process in which the active
vegetative cells undergo cellular differentiation
process and form a dormant structure which can
be viable over years. The decision to enter sporu-
lation is reported to be critical for bacterial cell.
Therefore, to avoid the sporulation, bacterium
secretes proteins that are toxic to neighbouring
cells, and this process of feeding on the siblings
is known as cannibalism. The bacteria utilize
the degraded cell components very efficiently
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for delayed survival under starving conditions.
Consequently, cannibalistic behaviour assists the
bacterium to maintain the vegetative phase of
its life cycle. Despite that, prolonged starvation
leads its entry into the sporulation phase.

These major life events in Bacillus are tem-
porally interdependent and are founded on pre-
cise intercellular communications in the bacterial
population through its own molecular language,
i.e. QS. The QS-mediated biofilm formation and
consequent cannibalism behaviour are well elu-
cidated. However, the QS modulators involved in
sporulation are still not known.
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