
Chapter 6
Semi-inner Product: Application to Frame
Theory and Numerical Range of Operators

N. K. Sahu and C. Nahak

Abstract This paper deals with the theory of semi-inner product, its generalizations,
and applications to frame theory and numerical range of operators. The notion of
frames is introduced in classical and generalized semi-inner product spaces. Numer-
ical range of two operators is also studied in semi-inner product spaces.

1 Semi-inner Product

An inner product is a handy and powerful tool to study the geometrical properties
of Hilbert space. It is difficult to build Hilbert space-like theory in Banach spaces
because of the absence of inner product. A semi-inner product is a generalization of
inner product. It was introduced by Lumer [11] for the purpose of extending Hilbert
space-like arguments to Banach spaces. It plays a vital role in describing the geometry
on Banach spaces. The formal definition of semi-inner product due to Lumer is as
follows:

Definition 1.1 (Lumer [11])
Let X be a vector space over the real or complex field F . A semi-inner product [., .]
on X is a real or complex valued functional defined on X × X , which satisfies the
following properties:

1. [x + y, z] = [x, z] + [y, z]
[λx, y] = λ[x, y] for all x, y, z ∈ X and λ ∈ F ;
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2. [x, x] > 0 for x �= 0 for all x ∈ X ;
3. |[x, y]|2 ≤ [x, x][y, y] for all x, y ∈ X .

The vector space X endowed with [., .] is called a semi-inner product space.

Lumer proved that a semi-inner product space is a normed linear space with the

norm ‖x‖ = [x, x] 1
2 . Every normed linear space can be made into semi-inner prod-

uct space in many ways. An inner product space is a semi-inner product space where
the inner product plays the role of semi-inner product. Conversely, a semi-inner prod-
uct is an inner product if and only if the norm induced by the semi-inner product
obeys the parallelogram law. It was Giles [7] who put forward some decisive struc-
tural modifications to the notion of semi-inner product. He imposed the additional
homogeneity property in the Definition 1.1 of Lumer semi-inner product. That is,
[x, λy] = λ[x, y] for all λ ∈ F , where λ denotes the conjugate of λ. The imposition
of this property adds much convenience without causing any significant restriction.
He proved that every normed linear space is a semi-inner product space with the
homogeneity property.

Definition 1.2 (Giles [7])
A semi-inner product [., .] is continuous, if it satisfies

lim
λ→0

Re[y, x + λy] → Re[y, x] for all x, y ∈ X and λ ∈ R.

The corresponding space X is called continuous semi-inner product space. If the
involved limit is uniform, then it is called uniformly continuous semi-inner product
space.

Giles also defined the orthogonality relation in semi-inner product space.

Definition 1.3 Let X be a semi-inner product space. For x, y ∈ X , x is said to be
normal to y and y is said to be transversal to x if [y, x] = 0. A vector x ∈ X is
normal to a subspace S of X and S is transversal to x if x is normal to all vectors
y ∈ S.

Definition 1.4 A normed linear space X is said to be Gâteaux differentiable or

smooth if for all x, y ∈ X and real λ, lim
λ→0

‖x + λy‖ − ‖x‖
λ

exists.

Giles proved that the continuity restriction on the semi-inner product is equivalent
to the Gâteaux differentiability of the norm.

To extend Hilbert space-type argument to the theory of the dual of a semi-inner
product space, one has to impose more restriction on the semi-inner product to
guarantee the existence of normals to closed vector subspaces. For that, one has to
restrict the normed space.

Definition 1.5 A normed space X is strictly convex if whenever ‖x‖ + ‖y‖ =
‖x + y‖, where x, y �= 0, then y = λx for some real λ > 0.



6 Semi-inner Product: Application to Frame Theory 79

Definition 1.6 A normed space X is uniformly convex if given ε > 0, there exists
a δ(ε) > 0 such that for x, y ∈ X with ‖x‖ = ‖y‖ = 1, we have ‖x+y‖

2 ≤ 1 − δ(ε)

when ‖x − y‖ > ε.

It is true that uniform convexity implies strict convexity. It is also proved that a
semi-inner product space is strictly convex if and only if the equality [x, y] =
‖x‖‖y‖, where x, y �= 0, implies that y = λx for some real λ > 0 (see
Berkson [2]).

In Hilbert space, the representation theorem for continuous linear functionals sets
up a natural correspondence between vectors and continuous linear functionals by
means of the inner product. This correspondence was discovered by the famous math-
ematician Riesz and is known as the Riesz representation theorem. There is a similar
representation theorem named as the generalized Riesz representation theorem in a
continuous semi-inner product space which is a uniformly convex Banach space.

Theorem 1.1 [Generalized Riesz representation theorem] (Giles [7])
Let X be a continuous semi-inner product space which is uniformly convex and
complete in its norm. Let X∗ be the dual space of X. Then for every continuous
linear functional f ∈ X∗ there exists a unique vector y ∈ X such that f (x) = [x, y]
for all x ∈ X.

Definition 1.7 A uniform semi-inner product space is a uniformly continuous semi-
inner product space where the induced normed space is uniformly convex and com-
plete.

Theorem 1.2 (Giles [7])
If X is a uniform semi-inner product space, then the dual space X∗ is also a uni-
form semi-inner product space with respect to the semi-inner product defined by
[ fx , fy]X∗ = [y, x], where [., .]X∗ denotes the semi-inner product in X∗.

Giles also proved that every finite dimensional strictly convex, continuous semi-
inner product space is a uniform semi-inner product space. We have the following
examples of uniform semi-inner product spaces:

Example 1.1 The real Banach space L p(X, ρ, μ) for 1 < p < ∞ is a uniform
semi-inner product space with the semi-inner product defined as

[y, x] = 1

‖x‖p−2
p

∫

X

y|x |p−1 sgn(x)dμ.

Example 1.2 The real sequence space l p for 1 < p < ∞ is a uniform semi-inner
product space with the semi-inner product defined as

[x, y] = 1

‖y‖p−2
p

∑
i

xi yi |yi |p−2.
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If the vector space is a uniformly convex smooth Banach space, then there is unique
semi-inner product.

The notion of generalized adjoint of a bounded linear operator in a semi-inner
product space was introduced by Koehler [10]. Let X be a uniformly convex smooth
Banach space. If A is a bounded linear operator from X to itself, then the map
gy : X → F(R or C), defined by gy(x) = [Ax, y] is a continuous linear functional.
By the generalized Riesz representation theorem, it follows that there is a unique
vector A†(y) such that [Ax, y] = [x, A† y] for all x ∈ X . The operator A† is called
the generalized adjoint of A. This generalized adjoint operator is not usually linear
but still it has some interesting properties. The following properties are investigated
by Koehler [10] for the generalized adjoint operator:

Theorem 1.3 Let A and B be two bounded linear functionals on a uniformly convex
smooth Banach space X and λ be a scalar. Then,

1. (λA)† = λA†;
2. (AB)† = B† A†;
3. A† is one-to-one if and only if the range of A is dense in X;
4. If the norm of X is strongly (Frechet) differentiable, then A† is continuous.

1.1 Semi-inner Product Space of Type (p)

Nath [13] generalized the concept of semi-inner product introduced by Lumer [11],
by replacing the Schwarz’s inequality with the Holder’s inequality. The similar type
of semi-inner product is called semi-inner product of type (p), and is defined as
follows:

Definition 1.8 Let X be a vector space over the field F of real or complex numbers.
The functional [., .] : X × X → F satisfying

1. [x + y, z] = [x, z] + [y, z] for all x, y, z ∈ X ;
2. [λx, y] = λ[x, y] for all λ ∈ F and x, y ∈ X ;
3. [x, x] > 0 for all x �= 0;

4. |[x, y]| ≤ [x, x] 1
p [y, y] p−1

p for all x, y ∈ X and 1 < p < ∞;
is called a semi-inner product of type (p) on X . The space equipped with [., .]p

is called the semi-inner product space of type (p).

The semi-inner product of type (p) induces a norm by setting ‖x‖ = [x, x] 1
p . Also,

for every normed space we can construct semi-inner product of type (p) in many
ways. Pap and Pavlovic [14] discovered the adjoint theorem for maps on semi-inner
product spaces of type (p). They proved some properties of the generalized adjoint
operator similar to the properties established by Koehler [10] in semi-inner product
spaces. El-Sayyad and Khaleelulla [6] introduced the semi-inner product algebras
of type (p). They found some interesting results on the generalized adjoint of an
operator defined on this space.
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Theorem 1.4 (El-Sayyad and Khaleelulla [6])
Let T be a bounded linear operator defined on a semi-inner product space of type
(p) and T † be its generalized adjoint. Then,

(i) ‖T ‖ = ‖T †‖p−1,
(ii) ‖T †T ‖p−1 = ‖T ‖p.

1.2 Generalized Semi-inner Product

With a view to study regularized learning in general Banach spaces, Zhang and Zhang
[18] introduced the concept of generalized semi-inner product.

To define generalized semi-inner product, one has to know the notion of gauge
function. A gauge function φ is a map φ : R

+ → R
+ such that φ is continuous,

surjective, and strictly increasing with φ(0) = 0 and limt→∞ φ(t) = +∞. The
definition of generalized semi-inner product is as follows:

Definition 1.9 Let X be a vector space over the field F of real or complex numbers.
Let φ and ψ be two gauge functions with φ(t)ψ(t) = t for all positive real numbers
t . The map [., .]φ : X × X → F satisfying

1. [αx + βy, z]φ = α[x, z]φ + β[y, z]φ for all α, β ∈ F and x, y, z ∈ X ;
2. [x, x]φ > 0 for all x ∈ X \ {0};
3. |[x, y]φ | ≤ φ([x, x]φ) ψ([y, y]φ) for all x, y ∈ X and the equality holds when

x = y;

is called a generalized semi-inner product on X . The space X equipped with [., .]φ
is called a generalized semi-inner product space.

When φ(t) = t
1
p and ψ(t) = t

1
q , p, q ∈ (1,+∞) with 1

p + 1
q = 1, the generalized

semi-inner product reduces to the semi-inner product of type (p) introduced by Nath

[13]. Again if φ(t) = t
1
2 and ψ(t) = t

1
2 then the generalized semi-inner product

reduces to the classical semi-inner product introduced by Lumer [11]. Zhang and
Zhang [18] proved that if [., .]φ is a generalized semi-inner product on a vector space
X then ‖x‖ = Φ([x, x]φ) defines a norm on X . Conversely, ifΦ is surjective onto R

+
then for any normed space X , there exists a generalized semi-inner product on it such
that ‖x‖ = Φ([x, x]φ). The Riesz representation of continuous linear functionals is
also true in this generalized semi-inner product space.

2 Bessel Sequence and Frame in Semi-inner Product Space

Frames are redundant signal representations having a wide range of applications
in signal and image processing, wavelet analysis, data transmission with erasures,
wireless communication, data transmission, and many more new applications arising
every year. In this section, we define Bessel sequence and frame in Banach spaces
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by using semi-inner product. The notion of frames was introduced by Duffin and
Schaeffer [5] in 1952 while studying the nonharmonic Fourier series. Frames in L p

spaces and other Banach spaces are effective tools for modeling a variety of natural
signals and images. There is a plethora of literature available for frames in Banach
spaces. For classical frame theory in Banach spaces, one may refer to Casazza and
Christensen [3], Christensen and Heil [4], Gröchenig [8], Kaushik [9], and Stoeva
[15]. To smoothen the study of frames in Banach spaces, Zhang and Zhang [19]
defined this notion by taking the help of semi-inner product.

Here we assume that X is a uniformly convex smooth Banach space. In particular,
we concentrate on the spaces l p and L p, where 1 < p < ∞. It is seen that those
spaces are semi-inner product spaces with uniquely defined semi-inner product (Giles
[7]). Our definition is completely different from those Banach space frames available
in the literature. In the remainder of this section, we assume that X is a real uniformly
convex smooth Banach space with norm ‖.‖p and semi-inner product [., .].
Definition 2.1 A set of elements f = { fi }∞i=1 ⊆ X is called a Bessel sequence if
there exists a constant B > 0, such that

∞∑
i=1

|[ fi , x]|q ≤ B(‖x‖p)
q , ∀x ∈ X,

where 1 < p, q < ∞ and 1
p + 1

q = 1. The number B is called Bessel bound.

Definition 2.2 A sequence of elements { fi }∞i=1 in X is called a frame if there exist
positive constants A and B such that

A(‖x‖p)
q ≤

∞∑
i=1

|[ fi , x]|q ≤ B(‖x‖p)
q , ∀x ∈ X,

where 1 < p, q < ∞ and 1
p + 1

q = 1. A and B are called lower and upper frame
bound, respectively.

If A = B then the frame is called a tight frame, and if A = B = 1 then the frame is
called a Parseval frame. A frame is called a normalized frame if each frame element
has unit norm. We have proved the following necessary and sufficient condition for
a sequence of elements in X to be a Bessel sequence.

Theorem 2.1 Let f = { fi }∞i=1 be a sequence in X. Then, the sequence f is a Bessel

sequence if and only if T : {ci }∞i=1 →
∑∞

i=1
ci fi

|[ fi , x]|q−2

‖{[ fi , x]}‖q−2 is a well-defined

and bounded operator from lq into X.

Our main focus is on Parseval frame and tight frame because the reconstruction
formula naturally holds true without any assumptions. The following two results
establish the reconstruction formulae for Parseval frames and tight frames:
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Theorem 2.2 A set of elements { fi }∞i=1 is a Parseval frame for X if and only if

x =
∞∑

i=1

|[ fi , x]|q−2

‖{[ fi , x]}‖q−2 [ fi , x] fi , ∀x ∈ X. (1)

Theorem 2.3 A set of elements { fi }∞i=1 is a tight frame with bound A for X if and
only if

x =
∞∑

i=1

1

A
2
q

|[ fi , x]|q−2

‖{[ fi , x]}‖q−2 [ fi , x] fi ∀x ∈ X. (2)

Definition 2.3 A tight frame is said to be a normalized tight frame if each of its
element has unit norm.

Definition 2.4 An operator T on X is said to be a co-isometry if its generalized
adjoint is an isometry.

The following theorem tells about the invariance of frame under a co-isometry
operator.

Theorem 2.4 (a) Let { fi }∞i=1 be a frame for the space X and T be a co-isometry,
then {T fi }∞i=1 is a frame. Moreover, {T fi }∞i=1 is a normalized tight frame if
{ fi }∞i=1 is a normalized tight frame.

(b) Let { fi }∞i=1 and {gi }∞i=1 be Parseval frames for X and T be a bounded linear
operator defined by T gi = fi . Then T is a co-isometry.

3 Bessel Sequence and Frame in Generalized Semi-inner
Product Space

Let X be a generalized semi-inner product space with generalized semi-inner product
[., .]φ and norm ‖.‖X . Let Xd be an associated BK-space with norm ‖.‖Xd . Suppose
that X∗ and X∗

d are the dual spaces of X and Xd , respectively. We define Xd -Bessel
sequence and X∗

d -Bessel sequence in a generalized semi-inner product space X , and
prove that the space of all X∗

d -Bessel sequences form a Banach space.

Definition 3.1 A sequence of elements { f j } ⊆ X is called an Xd -Bessel sequence
in X if {[x, f j ]φ} ∈ Xd , and there exists a positive real constant B such that

‖{[x, f j ]φ}‖Xd ≤ B φ([x, x]φ), ∀x ∈ X,

where φ : (0,∞) → (0,∞) is a continuous, nondecreasing function with φ(0) = 0
and φ(t) → ∞ as t → ∞.

Definition 3.2 Let { f j } ⊆ X . Then { f ∗
j } ⊆ X∗ is an X∗

d -Bessel sequence for X∗ if
{[ f j , x]φ} ∈ X∗

d , and there exists a positive real constant B such that
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‖{[ f j , x]φ}‖X∗
d

≤ B φ([x, x]φ), ∀x ∈ X.

We define Xd -frame and X∗
d -frame in this prospective.

Definition 3.3 Let X be a generalized semi-inner product space with compatible
generalized semi-inner product [., .]φ . The sequence { f j } ⊆ X is said to be an Xd -
frame for X if {[ f, f j ]φ} ∈ Xd for all x ∈ X , and there exist two positive constants
A, B such that

A φ([ f, f ]φ) ≤ ‖{[ f, f j ]φ}‖Xd ≤ B φ([ f, f ]φ), ∀ f ∈ X. (3)

Definition 3.4 Let { f j } ⊆ X . Then { f ∗
j } is an X∗

d -frame for X∗ if {[ f j , f ]φ} ∈ X∗
d

for all f ∈ X , and there exist two positive constants A, B such that

A φ([ f, f ]φ) ≤ ‖{[ f j , f ]φ}‖X∗
d

≤ B φ([ f, f ]φ), ∀ f ∈ X. (4)

In this section, we also define Riesz basis in a generalized semi-inner product
space. Likewise Xd -frame and X∗

d -frame, we have Xd -Riesz basis and X∗
d -Riesz

basis.

Definition 3.5 A sequence of elements { f j } ⊆ X is an Xd -Riesz basis for X if

span{ f j } = X ,
∑

j∈I
c j f j converges in X for all c ∈ Xd , and there exist positive

finite real numbers A, B with A ≤ B, such that

Aφ([c, c]Xd ) ≤ ∥∥ ∑
j∈I

c j f j
∥∥

X ≤ Bφ([c, c]Xd ) for all c ∈ Xd . (5)

Definition 3.6 A sequence of elements { f ∗
j } ⊆ X∗ is an X∗

d -Riesz basis for X∗ if

span{ f ∗
j } = X∗,

∑
j∈I

d j f ∗
j converges in X∗ for all d ∈ X∗

d , and there exist positive

finite real numbers A, B with A ≤ B, such that

Aφ([d, d]X∗
d
) ≤ ∥∥ ∑

j∈I

d j f ∗
j

∥∥
X∗ ≤ Bφ([d, d]X∗

d
) for all d ∈ X∗

d . (6)

We can show that Riesz basis automatically generates a frame for the dual space.

4 Numerical Range of Two Operators in Semi-inner
Product Spaces

Quadratic forms are quite useful in linear algebra. The numerical range is a natural
extension of quadratic forms in vector spaces. Like the spectrum, the numerical range
of a linear operator is a subset of the scalar field. It is structured in such a way that
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it is related to both algebraic as well as norm structures of the operator. Whereas the
spectrum of an operator is related only to algebraic structure of the operator. One
can extract much information about the operator through numerical range.

Lumer [11] discussed the numerical range for a linear operator in a Banach space
by using semi-inner product. Williams [17] studied the spectra of products of two
linear operators and their numerical ranges. To study the generalized eigenvalue
problem T x = λAx , Amelin [1] introduced the concept of numerical range for two
linear operators in Hilbert space. The numerical range of two nonlinear operators in
a semi-inner product space was defined by Nanda [12].

4.1 Numerical Range of Two Linear Operators

Let X be a uniformly convex smooth Banach space equipped with norm ‖.‖ and
semi-inner product [., .]. Let T and A be two linear operators defined on X .

Definition 4.1 The numerical range W (T, A) of the two linear operators T and A
is defined as W (T, A) := {[T x, Ax] : ‖Ax‖ = 1, x ∈ D(T )∩D(A)},where D(T )
and D(A) are denoted as the domain of T and the domain of A, respectively. The
numerical radius w(T, A) is defined as w(T, A) = sup{|λ| : λ ∈ W (T, A)}.
Definition 4.2 The coupled numerical range WA(T ) of T with respect to A is
defined as

WA(T ) :=
{ [AT x, x]

[Ax, x] : ‖x‖ = 1, [Ax, x] �= 0
}
. (7)

In the above definition, we have assumed that Dom(A) ∩ Range(T ) �= φ. We can
easily prove the following properties of the numerical range of two linear operators:

Theorem 4.1 Let T1, T2, T, A be linear operators and α,μ, λ be scalars. Then,

(i) W (T1 + T2, A) ⊆ W (T1, A)+ W (T2, A),
(ii) W (αT, A) = αW (T, A),

(iii) W (T, μA) = μW (T, A),
(iv) W (T − λA, A) = W (T, A)− {λ},
(v) w(T1 + T2, A) ≤ w(T1, A)+ w(T2, A),

(vi) w(λT, A) = |λ| w(T, A).

Theorem 4.2 Let T1, T2, T, A be linear operators and α be a scalar. Then,

(i) WA(T1 + T2) ⊆ WA(T1)+ WA(T2),
(ii) WA(αT ) = αWA(T ),

(iii) WαA(T ) = WA(T ).
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Proof (i) Let x, y ∈ Dom(T1)∩Dom(T2). We assume that Dom(A)∩Range(T1) �= φ

and Dom(A) ∩ Range(T2) �= φ.
Then

[A(T1 + T2)x, x]
[Ax, x] = [AT1x + AT2x, x]

[Ax, x] = [AT1x, x]
[Ax, x] + [AT2x, x]

[Ax, x] .

Therefore WA(T1 + T2) ⊆ WA(T1)+ WA(T2).
(ii) If Dom(A) ∩ Range(T ) �= φ, then

[A(αT )x, x]
[Ax, x] = [αAT x, x]

[Ax, x] = α
[AT x, x]
[Ax, x] .

Hence WA(αT ) = αWA(T ).
(iii) If Dom(A) ∩ Range(T ) �= φ, then

[(αA)T x, x]
[αAx, x] = α[AT x, x]

α[Ax, x] = [AT x, x]
[Ax, x] .

As a result WαA(T ) = WA(T ).

Definition 4.3 The spectrum σ(T, A) of the two linear operators T and A is
defined as

σ(T, A) := {λ ∈ C : (T − λA) is not invertible}. (8)

The spectral radius r(T, A) is defined as r(T, A) = sup{|λ| : λ ∈ σ(T, A)}.
Definition 4.4 The eigen spectrum or point spectrum e(T, A) of two linear operators
T and A is defined as

e(T, A) := {λ ∈ C : T x = λAx for x �= 0}. (9)

Definition 4.5 The approximate point spectrum π(T, A) of two linear operators T
and A is defined as
π(T, A) := {λ ∈ C such that there exists a sequence xn ∈ X with ‖Axn‖ = 1
and ‖T xn − λAxn‖ → 0 as n → ∞}.
Definition 4.6 The compression spectrum σ0(T, A) of two linear operators T and
A is defined as

σ0(T, A) := {λ ∈ C : Range(T − λA) is not dense in X}. (10)

One can establish the inclusion relations among spectrum, eigen spectrum, com-
pression spectrum, approximate point spectrum, and numerical range of two linear
operators.
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4.2 Numerical Range of Two Nonlinear Operators

Let X be a normed space, and T be an operator defined on X . Then T is said to be
Lipschitz if there exists a constant M > 0 such that ‖T x − T y‖ ≤ M‖x − y‖ for all
x, y ∈ X . Let Lip(X) denote the set of all Lipschitz operators on X . Suppose that T ∈
Lip(X), and x, y ∈ Dom(T )with x �= y. The generalized Lipschitz norm ‖T ‖L of a
nonlinear operator T on a Banach space X is defined as ‖T ‖L = ‖T ‖+‖T ‖l , where

‖T ‖ = sup
x

‖T x‖
‖x‖ and ‖T ‖l = sup

x �=y

‖T x − T y‖
‖x − y‖ . If there exists a finite constant M

such that ‖T ‖L < M , then the operator T is called the generalized Lipschitz operator
(see Verma [16]). Let GL(X) be the class of all generalized Lipschitz operators.

Definition 4.7 The numerical range VL(T, A) of two nonlinear operators T and A
is defined as

VL(T, A) :=
{ [T x, Ax] + [T x − T y, Ax − Ay]

‖Ax‖2 + ‖Ax − Ay‖2 : x, y ∈ D(T )∩D(A), x �= y
}
,

(11)
where D(T ) and D(A) are the domains of the operators T and A, respectively. The
numerical radius wL(T, A) is defined as wL(T, A) = {sup |λ| : λ ∈ VL(T, A)}.
We have the following elementary properties for the numerical range of two nonlinear
operators.

Theorem 4.3 Let X be a Banach space over C. If T, A, T1, T2 be nonlinear opera-
tors defined on X and λ,μ be scalars, then

(i) VL(λT, A) = λVL(T, A),
(ii) VL(T, μA) = 1

μ
VL(T, A),

(iii) VL(T1 + T2, A) ⊆ VL(T1, A)+ VL(T2, A),
(iv) VL(T − λA, A) = VL(T, A)− {λ}.
Proof (i) We see that for any x, y ∈ X ,

[λT x, Ax] + [λT x − λT y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 = λ

[T x, Ax] + [T x − T y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 .

Hence VL(λT, A) = λVL(T, A).

(ii) For any x, y ∈ X ,

[T x, μAx] + [T x − T y, μAx − μAy]
‖μAx‖2 + ‖μAx − μAy‖2 = μ[T x, Ax] + μ[T x − T y, μAx − μAy]

|μ|2(‖Ax‖2 + ‖Ax − Ay‖2)

= μ

|μ|2
[T x, Ax] + [T x − T y, Ax − Ay]

‖Ax‖2 + ‖Ax − Ay‖2

= 1

μ

[T x, Ax] + [T x − T y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 .
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Hence VL(T, μA) = 1
μ

VL(T, A).

(iii) Let x, y ∈ Dom(T1) ∩ Dom(T2).
Then

[(T1 + T2)x, Ax] + [(T1 + T2)x − (T1 + T2)y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2

= [T1x, Ax] + [T2x, Ax] + [T1x − T1 y, Ax − Ay] + [T2x − T2 y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2

= [T1x, Ax] + [T1x − T1 y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 + [T2x, Ax] + [T2x − T2 y, Ax − Ay]

‖Ax‖2 + ‖Ax − Ay‖2 .

Therefore VL(T1 + T2, A) ⊆ VL(T1, A)+ VL(T2, A). Thus (iii) is proved.

(iv) For any x, y ∈ X ,

[(T − λA)x, Ax] + [(T − λA)x − (T − λA)y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2

= [T x, Ax] − λ‖Ax‖2 + [T x − T y, Ax − Ay] − λ‖Ax − Ay‖2

‖Ax‖2 + ‖Ax − Ay‖2

= [T x, Ax] + [T x − T y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 − λ.

This implies that VL(T − λA, A) = VL(T, A)− {λ}.
We give example of two nonlinear operators in a semi-inner product space and
compute their numerical range and numerical radius.

Example 4.1 Consider the real sequence space l p, 1 < p < ∞.
Let x = (x1, x2, ...), y = (y1, y2, ...) ∈ l p. Consider the two nonlinear operators
T, A : l p → l p defined by T x = (‖x‖, x1, x2, ...) and Ax = (‖x‖, 0, 0, ...). The
unique semi-inner product on the real sequence space l p is defined as

[x, y] = 1

‖y‖p−2

∞∑
n=1

|yn|p−2 yn xn, ∀x = {xn}, y = {yn} ∈ l p.

One can easily compute that ‖Ax‖ = ‖x‖, ‖Ax − Ay‖ = |‖x‖ − ‖y‖|,
[T x, Ax] = ‖x‖2 and

[T x − T y, Ax − Ay] = 1

‖Ax − Ay‖p−2 {|(‖x‖ − ‖y‖)|p−2(‖x‖ − ‖y‖)2}

= 1

|(‖x‖ − ‖y‖)|p−2 |(‖x‖ − ‖y‖)|p = |(‖x‖ − ‖y‖)|2.
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One can calculate that

[T x, Ax] + [T x − T y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 = ‖x‖2 + |(‖x‖ − ‖y‖)|2

‖x‖2 + |(‖x‖ − ‖y‖)|2 = 1, ∀x, y ∈ l p.

Therefore VL(T, A) = {1} and wL(T, A) = 1.

5 Conclusion

Researchers usually take the help of bounded linear functionals to establish Hilbert
space-like theory in Banach spaces. Without using arbitrary bounded linear func-
tionals, we have taken the help of semi-inner product to study frames and numerical
range of operators in Banach spaces. The main benefits of this approach are three-
fold. It is computationally easy. We can avoid the inconvenience of using arbitrary
bounded linear functionals. It helps in constructing concrete examples.
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