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Abstract A generalized Cesàro–Musielak–Orlicz sequence space Ces�(q)
equipped with the Luxemberg norm is introduced. It is proved that Ces�(q) is a
Banach space and also criteria for the coordinatewise uniformly Kadec–Klee prop-
erty and the uniform Opial property are obtained.
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1 Introduction

In fixed point theory, geometrical properties of Banach space, such as Kadec–Klee
property, Opial property, and their several generalizations play fundamental role. In
particular, the Opial property of a Banach space has its applications in differential
equations and integral equations, etc. On the other hand the Kadec–Klee property
has several applications in Ergodic theory and many other branches of analysis [22].
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In recent times, the theory of Cesàro–Orlicz sequence spaces and Musielak–Orlicz
sequence spaces and their geometric properties has been studied extensively. Some
topological properties like absolute continuity, order continuity, separability, com-
pleteness, and relations between norm and modular as well as some geometrical
properties like Fatou property, monotonicity, Kadec–Klee property, uniform Opial
property, rotundity, local rotundity, property-β etc. are studied in [2–4, 6, 8,
13, 20, 21]. Recently, Khan (see [15, 16]) introduced Riesz–Musielak–Orlicz
sequence spaces and studied some geometric properties of this space. Quite recently,
Mongkolkeha, and Kumam [17] studied (H)-property and uniform Opial property
of generalized Cesàro sequence spaces. Some topological properties of sequence
spaces defined by using Orlicz function are also studied in [1, 5, 25]. This motivated
us to introduce generalized Cesàro–Musielak–Orlicz sequence spaces, which include
the well known Cesàro, generalized Cesàro [24], Cesàro-Orlicz, Cesàro–Musielak–
Orlicz sequence spaces etc. in particular cases. In this paper, we have made an attempt
to study some of the geometric properties in generalized Cesàro–Musielak–Orlicz
sequence spaces.

Throughout the paper, we denote N, R and R
+ as the set of natural numbers,

real numbers, and nonnegative real numbers, respectively. Let (X, ‖.‖) be a Banach
space and l0 be the space of all real sequences x = (x(i))∞i=1. Let S(X) and B(X)
denote the unit sphere and closed unit ball, respectively. A sequence (xl) ⊂ X
is said to be ε-separated sequence if separation of the sequence (xl) denoted by
sep(xl) = inf{‖xl − xm‖ : l �= m} > ε for some ε > 0 [11].

A Banach space X is said to have the Kadec–Klee property, denoted by (H), if
weakly convergent sequence on the unit sphere is strongly convergent, i.e., convergent
in norm [12]. A Banach space X is said to possess coordinatewise Kadec–Klee
property, denoted by (Hc) [7], if x ∈ X and every sequence (xl) ⊂ X such that

‖xl‖ → ‖x‖ and xl(i) → x(i) for each i, then ‖xl − x‖ → 0.

It is known that X ∈ (Hc) implies X ∈ (H), because weak convergence in X implies
the coordinatewise convergence. A Banach space X has the coordinatewise uniformly
Kadec–Klee property, denoted by (U K Kc) [27], if for every ε > 0 there exists a
δ > 0 such that

(xl ) ⊂ B(X), sep(xl ) ≥ ε, ‖xl‖ → ‖x‖ and xl (i) → x(i) for each i implies ‖x‖ ≤ 1 − δ.

It is known that the property (U K Kc) implies property (Hc).
A Banach space X is said to have the Opial property [23] if for every weakly null

sequence (xl) ⊂ X and every nonzero x ∈ X , we have

lim inf
l→∞ ‖xl‖ < lim inf

l→∞ ‖xl + x‖.

A Banach space X is said to have the uniform Opial property [23] if for each ε > 0
there exists μ > 0 such that for any weakly null sequence (xl) in S(X) and x ∈ X
with ‖x‖ ≥ ε the following inequality hold:
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1 + μ ≤ lim inf
l→∞ ‖xl + x‖.

In any Banach space X an Opial property is important because it ensures that X has
a weak fixed point property [9]. Opial in [19] has shown that the space L p[0, 2π ]
(p �= 2, 1 < p < ∞) does not have this property, but the Lebesgue sequence space
l p(1 < p < ∞) has.

A map ϕ : R → [0,∞] is said to be an Orlicz function if it is an even, convex, left
continuous on [0,∞), ϕ(0) = 0, not identically zero and ϕ(u) → ∞ as u → ∞. A
sequence � = (ϕn) of Orlicz functions ϕn is called Musielak–Orlicz function [18].
For a Musielak–Orlicz function �, the complementary function � = (ψn) of � is
defined in the sense of Young as

ψn(u) = sup
v≥0

{ |u|v − ϕn(v)} for all u ∈ R and n ∈ N.

Given any Musielak–Orlicz function � and x = (x(n))∞n=1 ∈ l0, a convex modular
I� : l0 → [0,∞] is defined by

I�(x) =
∞∑

n=1

ϕn

(
|x(n)|

)
and

the linear space l� = {x ∈ l0 : I�(r x) < ∞ for some r > 0} is called Musielak–
Orlicz sequence space. The space l� equipped with functional |||x |||L

� defined by

|||x |||L
� = inf

{
r > 0 : I�

( x

r

)
≤ 1

}

becomes a Banach space. This functional |||x |||L
� is called Luxemberg norm and

the corresponding Musielak–Orlicz sequence space is denoted by l L
�. For the details

about Musielak–Orlicz sequence spaces and their geometric properties we refer to
the articles [3, 10, 13, 18]. The subspace of l� defined as

{
x = (x(n)) ∈ l0 : ∀r > 0 ∃nr ∈ N such that

∞∑

n=nr

ϕn

(
r |x(n)|

)
< ∞

}
,

equipped with the Luxemberg norm induced from l� is denoted by hL
�.

A Musielak–Orlicz function � is said to satisfy the δ0
2-condition denoted by

� ∈ δ0
2 if there are positive constants a, K , a natural m and a sequence (cn) of

positive numbers such that (cn)
∞
n=m ∈ l1 and the inequality

ϕn(2u) ≤ Kϕn(u)+ cn (1)
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holds for every n ∈ N whenever ϕn(u) ≤ a. If a Musielak–Orlicz function� satisfies
δ0

2-condition with m = 1, then � is said to satisfy δ2-condition [10, 18].
For any Musielak–Orlicz function�, h� coincides with l� if and only if� satisfies

δ0
2-condition [10].

A Musielak–Orlicz function � = (ϕn)
∞
n=1 satisfies the condition (∗) [13] if for

any ε ∈ (0, 1) there is a δ > 0 such that

ϕn(u) < 1 − ε implies ϕn((1 + δ)u) ≤ 1 for all n ∈ N and u ≥ 0. (2)

A Musielak–Orlicz function � is to said to vanishes only at zero, which is denoted
by � > 0 if ϕn(u) > 0 for any n ∈ N and u > 0.

2 Class Ces�(q)

Let q = (qn)
∞
n=1 be a sequence of real numbers with qk ≥ 1 for k ∈ N, and Qn =

n∑

k=1

qk . We introduce the Riesz weighted mean map Rq on l0 as Rq : l0 → [0,∞)

such that x → Rq x , where

Rq x = (Rq x(n))∞n=1,with Rq x(n) = 1

Qn

n∑

k=1

qk |x(k)| for each n = 1, 2, . . .

and x ∈ l0.

Using this Riesz weighted mean map and a Musielak–Orlicz function� = (ϕn), we
define on l0 a functional σ�(x) by

σ�(x) = I�(R
q x) =

∞∑

n=1

ϕn

( 1

Qn

n∑

k=1

qk |x(k)|
)
.

Since � is convex, so it is easy to verify that σ�(x) is a convex modular on l0(for
definition see [18]), i.e., it satisfies σ�(x) = 0 if and only if x = 0, σ�(−x) = σ�(x),
σ�(γ x + δy) ≤ γ σ�(x)+ δσ�(y)whenever x, y ∈ l0 and γ, δ ≥ 0 with γ + δ = 1.

We now introduce the space Ces�(q) as follows:

Ces�(q) = {x ∈ l0 : Rq x ∈ l�} = {x ∈ l0 : σ�(r x) < ∞ for some r > 0}.

Clearly, it is a linear space and also forms a normed linear space under the norm
‖x‖L

� = |||Rq x |||L
� introduced with the help of the norm on l�. We call Ces�(q) as

the generalized Cesàro–Musielak–Orlicz sequence space.
The generalized class Ces�(q) include the following classes in particular cases:
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(i) When qn = 1, n = 1, 2, . . ., the Ces�(q) reduces to the Cesàro–Musielak
–Orlicz sequence space ces� studied by Wangkeeree [26], where

ces� =
{

x ∈ l0 :
∞∑

n=1

ϕn

( r

n

n∑

k=1

|x(k)|
)
< ∞ for some r > 0

}
,

(ii) For ϕn = ϕ, ∀n the ces� becomes well-known Cesàro–Orlicz sequence space
cesϕ studied recently by Cui et al. [2], Foralewski et al. [6], Petrot and Suantai
[20],

(iii) For ϕn(x) = |x |pn , pn ≥ 1 ∀n the Ces�(q) reduces to the sequence space
Ces(p)(q) studied by Mongkolkeha and Kumam [17] and when ϕn(x) = |x |pn

with pn = p ≥ 1 ∀n then Ces�(q) reduces to the sequence space Cesp(q)
studied by Khan [14].

We consider the subspace (CesL
�(q))a of Ces�(q) as

(Ces�(q))a =
{

x ∈ Ces�(q) : ∀r > 0 ∃nr such that
∞∑

n=nr

ϕn

( r

Qn

n∑

k=1

qk |x(k)|
)
< ∞

}
.

In this article, we have introduced the generalized Cesàro–Musielak–Orlicz sequence
space and have established the completeness property of the space and also obtained
criteria for some geometric properties like coordinatewise Uniform Kadec–Klee
property, uniform Opial property with respect to the Luxemberg norm.

Notations:
For any x ∈ l0 and i ∈ N, throughout the paper we use the following notations:
x |i = (x(1), x(2), x(3), . . . , x(i), 0, 0, . . .), called the truncation of x at i ,
x |N−i = (0, 0, 0, . . . , 0, x(i + 1), x(i + 2), . . .),
x |I = {x = (x(i)) ∈ l0 : x(i) �= 0 for all i ∈ I ⊆ N and x(i) = 0 for all i ∈

N \ I },
For simplifying notations, we write CesL

�(q) = (Ces�(q), ‖.‖L
�).

3 Main Results

This section contains main results of our work.

Theorem 1 Let� be a Musielak–Orlicz function. Then the following statements are
true:

(i) (Ces�(q), ‖.‖L
�) is a Banach space,

(ii) (CesL
�(q))a is a closed subspace of CesL

�(q),
(iii) if � satisfies δ2-condition then (CesL

�(q))a = CesL
�(q).
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Proof Let (xs)∞s=1 be a Cauchy sequence in CesL
�(q), where xs = (xs(k))∞k=1 and

ε > 0 be given. Then there exists a natural number T such that for every ε > 0 one
can find rε with rε < ε, we have

σ�

(
xs − xt

rε

)
≤ 1 for all s, t ≥ T .

By definition of σ� for each l ∈ N, we have

l∑

n=1

ϕn

(
1

rεQn

n∑

k=1

qk |xs(k)− xt (k)|
)

≤ 1 for all s, t ≥ T, (3)

which implies that for each l ≥ n ≥ 1

ϕn

(
1

rεQn

n∑

k=1

qk |xs(k)− xt (k)|
)

≤ 1 for all s, t ≥ T . (4)

Let pn be the corresponding kernel of the Orlicz function ϕn for each n. We choose
a constant s0 > 0 and γ > 1 such that γ s0

2 pn(
s0
2 ) ≥ 1, for each n ∈ N (which is

follows from ϕn(
s0
2 ) = ∫ s0

2
0 pn(t)dt and s0 > 0).

By the integral representation of ϕn for each n, we have

1

rεQn

n∑

k=1

qk |xs(k)− xt (k)| ≤ γ s0 for each n ∈ N and for all s, t ≥ T . (5)

Otherwise, one can find a natural n with 1
rεQn

n∑

k=1

qk |xs(k)− xt (k)| > γ s0 such that

ϕn

( n∑

k=1

qk |xs(k)− xt (k)|
rεQn

)
≥

n∑

k=1

qk |xs(k)− xt (k)|
rεQn∫

γ s0
2

pn(t)dt >
γ s0

2
pn(

s0

2
),

which contradicts (4). Hence from (5), we have (xs(k))∞s=1 is a Cauchy sequence of
real numbers for each k and hence converges for each k. Suppose for each k ∈ N,
lim

t→∞ xt (k) = x(k). Taking t → ∞ in (3), we obtain for each l ∈ N

l∑

n=1

ϕn

(
1

rεQn

n∑

k=1

qk |xs(k)− x(k)|
)

≤ 1 for all s ≥ T,
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which implies that σ�
( xs−x

rε

) ≤ 1 for all s ≥ T , i.e., ‖xs − x‖L
� ≤ rε < ε for

all s ≥ T . Therefore xs → x in ‖.‖L
� as s → ∞. We omit the verification of

x ∈ CesL
�(q) as it is easy to obtain. This finishes the proof of part (i).

(ii) Clearly (CesL
�(q))a is a subspace CesL

�(q). It is sufficient to show that
(CesL

�(q))a is a closed subspace of CesL
�(q). For this, let xi = (xi (k))∞k=1 ∈

(CesL
�(q))a for each i ∈ N and ‖x − xi‖L

� → 0 as i → ∞ and x ∈ CesL
�(q).

We show that x ∈ (CesL
�(q))a . By the equivalent definition of norm and modu-

lar convergence, we have σ�(r(x − xi )) → 0 as i → ∞ for all r > 0. So for all
r > 0 there exists J ∈ N such thatσ�(2r(x−xJ )) < 1. Since xJ ∈ (CesL

�(q))a

so there exists n J such that
∞∑

n=n J

ϕn

( 2r

Qn

n∑

k=1

|qk xJ (k)|
)
< ∞ ∀r > 0. We

choose nr = n J , then we have

∞∑

n=n J

ϕn

( r

Qn

n∑

k=1

qk |x(k)|
)

≤
∞∑

n=n J

ϕn

( r

2Qn

n∑

k=1

2qk |x(k)− xJ (k)| + r

2Qn

n∑

k=1

2qk |xJ (k)|
)

≤ 1

2

∞∑

n=n J

ϕn

( 2r

Qn

n∑

k=1

qk |x(k)− xJ (k)|
)

+ 1

2

∞∑

n=n J

ϕn

( 2r

Qn

n∑

k=1

qk |xJ (k)|
)

≤ 1

2
σ�(2r(x − xJ ))+ 1

2

∞∑

n=n J

ϕn

( 2r

Qn

n∑

k=1

qk |xJ (k)|
)
< ∞.

Since r is arbitrary, we have x ∈ (CesL
�(q))a . This completes the proof.

(iii) We need to show here only the inclusion CesL
�(q) ⊂ (CesL

�(q))a . Let x ∈
CesL

�(q). Then for some t > 0, σ�(t x) < ∞, i.e.,
∞∑

n=1

ϕn

( t

Qn

n∑

k=1

qk |x(k)|
)
<

∞. We show that for any r > 0 there exists a nr ∈ N such that

∞∑

n=nr

ϕn

( r

Qn

n∑

k=1

qk |x(k)|
)
< ∞.

If r ∈ [0, t] then it is easily follows from

∞∑

n=nr

ϕn

( r

Qn

n∑

k=1

qk |x(k)|
)

≤
∞∑

n=nr

ϕn

( t

Qn

n∑

k=1

qk |x(k)|
)
< ∞.

Now, we fix t and choose r > t . Since x ∈ CesL
�(q), i.e., for some t > 0, σ�(t x) <

∞, so there exists nr and a constant a such that
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∞∑

n=nr

ϕn

( t

Qn

n∑

k=1

qk |x(k)|
)
<

a

2
.

Therefore for each n ≥ nr , we have

ϕn

( t

Qn

n∑

k=1

qk |x(k)|
)
<

a

2
.

Choose a sequence (cn)
∞
n=1 of positive real numbers such that

∞∑

n=1

cn < ∞. So for

a given ε > 0, there exists a nr such that
∞∑

n=nr

cn <
ε

2
. Let u = t

Qn

n∑

k=1

qk |x(k)|,
K > 0 be a constant and a is chosen above. Since r > t so there is a l ∈ N such that
r ≤ 2l t . Applying δ2-condition for all n ≥ nr , we have

ϕn

( r

Qn

n∑

k=1

qk |x(k)|
)

≤ ϕn

( 2l t

Qn

n∑

k=1

qk |x(k)|
)

≤ K lϕn

( t

Qn

n∑

k=1

qk |x(k)|
)

+
( l−1∑

i=0

K i
)

cn

Taking summation on both sides over n ≥ nr , we obtain

∞∑

n=nr

ϕn

( r

Qn

n∑

k=1

qk |x(k)|
)

≤ K l
∞∑

n=nr

ϕn

( t

Qn

n∑

k=1

qk |x(k)|
)

+
( l−1∑

i=0

K i
) ∞∑

n=nr

cn < ∞.

Hence x ∈ (CesL
�(q))a .

We assume in the rest of this work that Musielak–Orlicz function� = (ϕn) with all
ϕn being finitely valued. The following known lemmas are useful in the sequel:

Lemma 1 Let x ∈ (CesL
�(q))a be an arbitrary element. Then ‖x‖L

� = 1 if and only
if σ�(x) = 1.

Proof The proof will run on the parallel lines of the proof of Lemma 2.1 in [2].

Lemma 2 Suppose � ∈ δ2 and � > 0. Then for any sequence (xl) in CesL
�(q),‖xl‖L

� → 0 if and only if σ�(xl) → 0.

Proof For the proof of this lemma see [7, 13].

Lemma 3 If � ∈ δ2, i.e., (1), then for any x ∈ CesL
�(q),

‖x‖L
� = 1 if and only if σ�(x) = 1.
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Proof Since � ∈ δ2 implies CesL
�(q) = (CesL

�(q))a . The proof follows from
Lemma 1.

Lemma 4 Let� ∈ δ2, i.e., (1) and satisfies the condition (∗), i.e., (2). Then for any
x ∈ CesL

�(q) and every ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1) such that σ�(x) ≤ 1−ε
implies ‖x‖L

� ≤ 1 − δ.

Proof The proof of this lemma will be in a way similar to that of the proof of Lemma
9 in [13].

Lemma 5 [13] Let (X, ‖.‖) be normed space. If f : X → R is a convex function
in the set K (0, 1) = {x ∈ X : ‖x‖ ≤ 1} and | f (x)| ≤ M for all x ∈ K (0, 1)
and some M > 0 then f is almost uniformly continuous in K (0, 1); i.e., for all
d ∈ (0, 1) and ε > 0 there exists a δ > 0 such that ‖y‖ ≤ d and ‖x − y‖ < δ

implies | f (x)− f (y)| < ε for all x, y ∈ K (0, 1).

Lemma 6 Let� ∈ δ2, i.e., (1),� > 0 and satisfies the condition (∗), i.e., (2). Then
for each d ∈ (0, 1) and ε > 0 there exists δ = δ(d, ε) > 0 such that σ�(x) ≤ d,
σ�(y) ≤ δ imply

|σ�(x + y)− σ�(x)| < ε for any x, y ∈ CesL
�(q). (6)

Proof Since � ∈ δ2 and satisfies condition (∗), so by Lemma 4, there exists d1 ∈
(0, 1) such that ‖x‖L

� ≤ d1. Also by Lemma 2, we find a δ > 0 such that for every
δ1 > 0, σ�(y) ≤ δ implies ‖y‖L

� ≤ δ1 for any y ∈ CesL
�(q). So, if σ�(x) ≤ d

and σ�(y) ≤ δ then ‖x‖L
� ≤ d1 and ‖y‖L

� ≤ δ1. Hence by Lemma 5, we have
|σ�(x + y)− σ�(x)| < ε because the functional σ� satisfies all the assumptions of
f defined in Lemma 5.

Lemma 7 Let � ∈ δ2, i.e., (1) and satisfies the condition (∗), i.e., (2) and � > 0.
Then for any x ∈ CesL

�(q) and any ε > 0 there exists δ = δ(ε) > 0 such that
σ�(x) ≥ 1 + ε implies ‖x‖L

� ≥ 1 + δ.

Proof The proof of this lemma is parallel to the proof of the Lemma 4 in [3].

Theorem 2 Let � > 0 be a Musielak–Orlicz function satisfying condition δ2, i.e.,
(1) and (∗), i.e., (2). Then sequence space CesL

�(q) has the UKKc-property.

Proof Since � > 0 and it satisfies the condition δ2, so by Lemma 2, for a given
ε > 0 there exist a η > 0, we have

‖x‖L
� ≥ ε

4
⇒ σ�(x) ≥ η. (7)

With this η > 0, by Lemma 4, one can find a δ ∈ (0, 1) such that

‖x‖L
� > 1 − δ ⇒ σ�(x) > 1 − η. (8)
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Let (xl) ⊂ B(CesL
�(q)), ‖xl‖L

� → ‖x‖L
�, xl(i) → x(i) for all i ∈ N and sep(xl) ≥

ε. We show that there exists a δ > 0 such that ‖x‖L
� ≤ 1 − δ. If possible, let

‖x‖L
� > 1 − δ. Then one can select a finite set I = {1, 2, . . . , N − 1} on which

‖x |I ‖L
� > 1 − δ. Since xl(i) → x(i) for each i ∈ N, so we obtain xl → x uniformly

on I . Consequently, by assumption ‖xl‖L
� → ‖x‖L

� there exists lN ∈ N such that

‖xl |I ‖L
� > 1 − δ and ‖(xl − xm)|I ‖L

� ≤ ε

2
for all l,m ≥ lN .

Using Eq. (8), first one of the above inequalities implies that σ�(xl |I ) > 1−η for l ≥
lN . Since sep(xl) ≥ ε, i.e., ‖xl − xm‖L

� ≥ ε, so second one of the above inequalities
implies that ‖(xl − xm)|N−I ‖L

� ≥ ε
2 for l,m ≥ lN , l �= m. Hence for N ∈ N there

exists a lN such that ‖xlN |N−I ‖L
� ≥ ε

4 . Without loss of generality, we assume that
‖xl |N−I ‖L

� ≥ ε
4 for all l, N ∈ N. Therefore by (7), we have σ�(xl |N−I ) ≥ η.

By the integral representation of Musielak–Orlicz function�, we haveϕn(u+v) ≥
ϕn(u) + ϕn(v) for each n and all u, v ∈ R

+. Using this, we obtain σ�(xl |I ) +
σ�(xl |N−I ) ≤ σ�(xl) ≤ 1. This implies that σ�(xl |N−I ) ≤ 1−σ�(xl |I ) < 1−(1−
η) = η, i.e., σ�(xl |N−I ) < η, which contradicts to the fact that σ�(xl |N−I ) ≥ η.
This finishes the proof.

Theorem 3 Let � > 0 be a Musielak–Orlicz function satisfying condition δ2, i.e.,
(1) and (∗), i.e., (2). Then CesL

�(q) has the uniform Opial property.

Proof Let (xl) ⊂ S(CesL
�(q)) be any weakly null sequence and ε > 0 be given. We

show that for any ε > 0 there is a μ > 0 such that

lim inf
l→∞ ‖xl + x‖L

� ≥ 1 + μ,

for each x ∈ CesL
�(q) satisfying ‖x‖L

� ≥ ε. Since� ∈ δ2 and� > 0, so by Lemma 2,
for each ε > 0 there is a number δ ∈ (0, 1) such that for each x ∈ CesL

�(q), we
have σ�(x) ≥ δ. Since � (> 0) satisfies the condition δ2, and the condition (∗), so
by Lemma 6 for any ε > 0, there exists δ1 ∈ (0, δ) such that σ�(u) ≤ 1, σ�(v) ≤ δ1
imply

|σ�(u + v)− σ�(u)| < δ

6
for any u, v ∈ CesL

�(q). (9)

Since σ�(x) < ∞, so there is a number n0 ∈ N such that

∞∑

n=n0+1

ϕn

( 1

Qn

n∑

k=1

qk |x(k)|
)

≤ δ1

6
. (10)

From Eq. (10) it follows that
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δ ≤
n0∑

n=1

ϕn

( 1

Qn

n∑

k=1

qk |x(k)|
)

+
∞∑

n=n0+1

ϕn

( 1

Qn

n∑

k=1

qk |x(k)|
)

≤
n0∑

n=1

ϕn

( 1

Qn

n∑

k=1

qk |x(k)|
)

+ δ1

6
,

which implies
n0∑

n=1

ϕn

( 1

Qn

n∑

k=1

qk |x(k)|
)

≥ δ − δ1

6
> δ − δ

6
= 5δ

6
. Since xl → 0

weakly, i.e., xl(i) → 0 for each i , so there exists a l0 such that for all l ≥ l0, the last
inequality yields

n0∑

n=1

ϕn

( 1

Qn

n∑

k=1

qk |xl(k)+ x(k)|
)

≥ 5δ

6
. (11)

Also by xl → 0 weakly, we can choose an n0 such that σ�(xl |n0) → 0 as l → ∞.
So there exists a l1 > l0 such that σ�(xl |n0) ≤ δ1 for all l ≥ l1. Since (xl) ⊂
S(CesL

�(q)), i.e., ‖xl‖L
� = 1, so by Lemma 3, we have σ�(xl) = 1, which implies

that there exists n0 such that σ�(xl |N−n0) ≤ 1. Now choose u = xl |N−n0 and
v = xl |n0 . Then u, v ∈ CesL

�(q), σ�(u) ≤ 1, σ�(v) ≤ δ1. So from (9), for all l ≥ l1
we have ∣∣σ�(xl |N−n0 + xl |n0

) − σ�
(
xl |N−n0

)∣∣ <
δ

6
,

which implies that σ�(xl)− δ
6 < σ�

(
xl |N−n0

)
for all l ≥ l1, i.e.,

∞∑

n=n0+1

ϕn

( 1

Qn

n∑

k=1

qk |xl(k)|
)
> 1− δ

6 for all l ≥ l1. Again, since σ�
(
xl |N−n0

) ≤

1 and σ�
(
x |N−n0

) ≤ δ1
6 < δ1, so from the Eqs. (9) and (11), we obtain

σ�(xl + x) =
n0∑

n=1

ϕn

( 1

Qn

n∑

k=1

qk |xl(k)+ x(k)|
)

+
∞∑

n=n0+1

ϕn

( 1

Qn

n∑

k=1

qk |xl(k)+ x(k)|
)

>

n0∑

n=1

ϕn

( 1

Qn

n∑

k=1

qk |xl(k)+ x(k)|
)

+
∞∑

n=n0+1

ϕn

( 1

Qn

n∑

k=1

qk |xl(k)|
)

− δ

6

>
5δ

6
+

(
1 − δ

6

)
− δ

6
= 1 + δ

2
.
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Since � ∈ δ2 and satisfies the condition (∗) and � > 0, so by Lemma 7 there is a
μ > 0 depending only on δ such that ‖xl + x‖L

� > 1+μ. Hence lim inf
l→∞ ‖xl + x‖L

� ≥
1 + μ. This completes the proof.

Corollary 1 (i) If ϕn = ϕ, qn = 1 ∀n and � ∈ δ2, then Cesàro–Orlicz sequence
space cesL

ϕ [20] has the uniform Opial property.
(ii) Suppose qn = 1, n = 1, 2, . . . and ϕn(u) = |u|pn for all u ∈ R, 1 < pn < ∞

∀n. Then it is easy to verify that� ∈ δ2 if and only if lim sup
n→∞

pn < ∞. Therefore

cesL
(p) [21] has the uniform Opial property.

(iii) If ϕn(u) = |u|pn , 1 ≤ pn < ∞ ∀n and lim sup
n→∞

pn < ∞, then CesL
(p)(q) has

the uniform Opial property [17].

4 Conclusion

In this study, we have obtained geometric properties such as coordinatewise uni-
formly Kadec–Klee property and uniform Opial property in the generalized Cesàro–
Musielak–Orlicz sequence spaces, which include the well known Cesàro [24], gen-
eralized Cesàro [21], Cesàro–Orlicz [2], Cesàro–Musielak–Orlicz [26] classes of
sequences in particular cases with respect to the Luxemberg norm. In future, our
plan is to obtain these results for a more generalized class of sequences with respect
to both the Luxemberg and Amemiya norm.
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