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Preface

With a view to have together at one place experts and professionals working in
different aspects of research in Mathematics, the idea came to organize an event where
people may deliberate upon theoretical as well as computational aspects of mathe-
matics at a common forum. We are delighted to give shape to the idea and host this
International Conference on Mathematics and Computing (ICMC 2013) at Haldia
Institute of Technology, Haldia, in collaboration with Scientific Analysis Group
(DRDO, Ministry of Defence) and Department of Mathematics, IIT Kharagpur.

Haldia is a city and a municipality in Purba Medinapur in the Indian state of
West Bengal. Haldia Institute of Technology is one of the premier educational
establishments in this part of the State and has had the privilege to have organized
international conferences in the past as well.

With three tracks of presentations, contributory papers were called for at ICMC
2013 and 81 papers were submitted to the conference in response. The papers were
reviewed on the basis of the significance, novelty, and technical quality. Of these,
22 papers were selected for presentation and publication in the Conference
Proceedings.

The papers cover different topics including Cryptography, Algebra, Functional
Analysis, Approximation Theory, Fluid Dynamics, etc. The event also included
Tutorials on important topics of current thrust. It is expected that the conference
will witness eminent personalities both from India and abroad (USA, Canada,
Russia, Japan, Hong Kong, Turkey) delivering invited as well as tutorial talks. The
prominent speakers from India were from Government R&D Organizations such
as Defense Research and Development Organization, Industry and from Academic
Institutions such as Indian Statistical Institute Kolkata, IIT Kharagpur, IMSc
Chennai, IISc Bangalore, etc.

Three Tutorials were planned preceding the main conference to be given by Prof.
Bimal Roy (ISI, Kolkata, India), Prof. M. L. Chaudhry (Royal Military College,
Canada), Prof. Ram N. Mohapatra (University of Central Florida, USA), and Prof.
A. Vasudevarao, IIT Kharagpur. There were seven invited talks delivered by
experts like Prof. Ram N. Mohapatra (University of Central Florida, USA), Prof.
R. Balasubramanian (IMSc, Chennai, India), Prof. V. A. Artamonov (Lomonosov
Moscow State University, Russia), Prof. C. E. Venimadhavan (IISc, Bangalore,
India), Prof. Duan Li (Chinese University of Hong Kong), Prof. Hiroshi Yanagihara
(Yamaguchi University, Japan), Prof. Rifat Colak (Firat University, Turkey).
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A conference of this kind would not have been possible without the support
from different organizations and people across different committees. We are
indebted to the Defense Research and Development Organization (DRDO),
Ministry of Communication and Information Technology (MCIT), National Board
for Higher Mathematics (NBHM), Cryptology Research Society of India (CRSI),
Department of Science and Technology (DST), and the Council of Scientific and
Industrial Research (CSIR) for sponsoring the event. Their support helped in
significantly raising the profile of the conference.

All logistic and general organizational aspects were looked after locally by the
Organizing Committee members from the Institute, who spent their time and
energy in making the conference a success. The Technical Program Committee
and External Reviewers helped in selecting the papers for presentations and
working out the technical program. We acknowledge the support and help from all
of them.

The organizers also express their hearty thanks to Springer for agreeing to
publish the proceedings in its Mathematics and Statistics series.

Last but not the least; our sincere thanks go to all the authors who submitted
papers to ICMC 2013 and to all speakers and participants.

We sincerely hope that the readers will find the proceedings stimulating and
inspiring. Any constructive suggestions for improvement are welcome.

December 2013 Ram N. Mohapatra
Debasis Giri
P. K. Saxena

P. D. Srivastava
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Message from the General Chairs

As we all are aware, Mathematics has always been a discipline of interest not only
to theoreticians but also to all practitioners irrespective of their specific profession.
Be it Science, Technology, Economics, Commerce, or even Sociology, new
Mathematical principles and models have been emerging and helping in new
research and in drawing inferences from practical data as well as through logic.
The past few decades have seen enormous growth in applications of Mathematics
in different areas multidisciplinary in nature. Cryptography and signal processing
are such areas, which have got more focus recently due to the need for securing
communication while connecting with others. With emerging computing facilities
and speeds, a phenomenal growth has happened in the problem solving area.
Earlier, some observations were made and conjectures were drawn which
remained conjectures till somebody could either prove it theoretically or found
counter examples. But today, we can write algorithms and use computers for long
calculations, verifications, or for generation of huge amounts of data. With
available computing capabilities, we can find factors of very large integers of the
size of hundreds of digits; we can find inverses of very large size matrices and
solve a large set of linear equations, and so on. Thus, Mathematics and
Computations have become more integrated areas of research these days, and it
was thought to organize an event where thoughts may be shared by researchers and
new challenging problems could be deliberated for solving these.

Apart from many other interdisciplinary areas of research, cryptography has
emerged as one of the most important areas of research with discrete mathematics
as a base. Several research groups are actively pursuing the research on different
aspects of cryptology not only in terms of new cryptoprimitives and algorithms but
a whole lot of concepts related to authentication, integrity, and security proofs/
protocols are being developed, many times with open and competitive evaluation
mechanism to evolve standards.

As conferences, seminars, and workshops are the mechanisms to share
knowledge and new research results giving us a chance to get new innovative ideas
for futuristic needs as threats and computational capabilities of adversaries are
ever increasing, it was thought appropriate to organize the present conference
focused on Mathematics and Computations covering theoretical as well as
practical aspects of research, Cryptography being one of these.
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Eminent personalities working in Mathematical Sciences and related areas were
invited from abroad as well as from within the country to deliver invited talks and
Tutorials for participants. The talks by these speakers covered a wide spectrum,
viz., Number Theoretic Concepts, Cryptography, Algebraic Concepts like Quasi
Groups and applications, etc. The conference was spread over 4 days (December
26–29, 2013) with the first day dedicated to Tutorials. The main conference was
planned with special talks by experts and paper presentations in each session.

We hope that the conference met the aspirations of the participants and its
objective of ideas and current research being shared and new targets/problems
identified in the domain of Coding theory, Cryptography, Computational number
theory, Algebra, Frame theory, Optimizations, Stochastic Processes, Compressive
Sensing, Functional analysis, Complex variables etc., so that the researchers and
students would get new directions to pursue their future research.

December 2013 P. K. Saxena
P. D. Srivastava
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Message from the Program Chairs

It is a great pleasure for us to organize the International Conference on
Mathematics and Computing-2013 to be held from December 26 to 29 at the
Haldia Institute of Technology, Purba Medinipur, West Bengal, India. Our main
goal is to provide an opportunity to the participants to learn about contemporary
research in Mathematics and Computing and exchange ideas. With this aim in
mind, we carefully chose the invited speakers and the tutorial speakers. It is our
sincere hope that the conference will help the participants in their research and
training and open new avenues for work in Mathematics and Computing.

On 26 December 2013, there will be tutorials. The conference will begin after a
formal opening ceremony on 27 December 2013. There will be seven invited one-
hour talks and 22, contributed half-hour talks. Our speakers/contributors come
from Austria, Canada, Hong Kong, India, Japan, Philippines, Russia, Turkey, and
USA.

After an initial call for papers, 81 papers were submitted in the conference. All
submitted papers were sent to referees and after refereeing, 22 papers were
recommended for publication. The proceedings of the conference will be
published by Springer (Mathematics and Statistics Series).

We are grateful to the speakers, participants, referees, organizers, sponsors, and
funding agencies for their support and help without which it would have been
impossible to organize the conference. We owe our gratitude to the volunteers who
work behind the scene in taking care of the details in making this conference a
success.

December 2013 Ram N. Mohapatra
Debasis Giri
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Chapter 1
Propagation of Water Waves in the Presence
of Thin Vertical Barrier on the Bottom
Undulation

A. Choudhary and S. C. Martha

Abstract The problem involving diffraction of water waves by submerged thin
vertical barrier over irregular bottom is examined using linearized theory of water
waves. While formulating the problem mathematically, a mixed boundary value
problem (BVP) occurs. The problem is solved using perturbation theory along with
least-squares method and Green’s integral theorem. The first order reflection and
transmission coefficients are obtained in terms of integrals involving the shape func-
tion c(x) representing the bottom undulation and the solution of the scattering prob-
lem by the submerged barrier. A special case of bottom undulation is considered to
evaluate the first order reflection and transmission coefficients in detail. The numer-
ical results of these coefficients are shown graphically.

Keywords Water wave scattering · Bottom undulation · Vertical barrier · Pertur-
bation analysis · Least-squares method · Green’s integral theorem · Reflection and
transmission coefficients

1 Introduction

The interaction of water waves with vertical barriers has received considerable atten-
tion from many researchers. These problems are important due to their applications
in ocean engineering such as breakwaters and wavemakers which protect a harbor or
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marinas from the rough sea. Dean [3] obtained the linearized solution of water wave
scattering by the submerged plane barrier which extended infinitely downwards in
deep water. Ursell [14] derived the solution of the problem of diffracted waves by thin
vertical barrier partially immersed in deep water using the singular integral equation
approach based on Havelock’s expansion. Porter [12] solved the problem involving
wave transmission through a gap in a vertical barrier in deep water using the complex
variable method along with Green’s integral theorem. Losada et al. [4] used Least-
squares is bounded assolution of the problem involving scattering of water waves by
different thin barriers. Mandal and Dolai [7] and Porter and Evans [13] obtained the
solution of this problem using Galerkin approximation method.

The problems involving diffraction of water waves by undulating bottom topogra-
phy of a seabed are also interesting to study because of their significance in finding the
effect of naturally occurring bottom undulation such as sand ripples on wave propa-
gation. Miles [11] derived the reflection and transmission coefficients using the finite
cosine transform technique when oblique waves are incident to a cylindrical obstacle.
Davies [1] discussed the problem of the reflection of incident waves by irregular bot-
tom using Fourier transform technique. Davies and Heathershaw [2] compared the
theoretical results of [1] by conducting experiments in wave tank. Martha et al. [10]
solved the problem involving water wave scattering by small undulation on seabed
using Fourier transform method and residue theorem.

However, looking at the present situation, the vertical barrier submerged on the
undulating seabed will serve as an effective breakwater for coastal engineering. The
literature in this direction is very limitted. Mandal and Gayen [8] solved one such
problem using multi-term Galerkin approximation and Green’s integral theorem.

In this paper, we discuss the problem involving diffraction of water waves by
undulating bed topography and submerged vertical barrier. A mixed boundary value
problem occurs while formulating the problem mathematically. On applying the per-
turbation analysis involving small parameter ε which characterizes the smallness of
bottom undulation, two boundary value problems, namely BVP-I (by equating the
coefficients of the powers of ε0) and BVP-II (by equating the coefficients of the pow-
ers of ε), are obtained. The BVP-I corresponds to the problem of scattering of water
waves by vertical barrier in water of uniform finite depth. The solution of the BVP-I
is obtained by least-squares method for which the error is minimum. The zeroth order
reflection and transmission coefficients involved in BVP-I are also determined. The
BVP-II which involves the solution of BVP-I, represents the radiation problem in
water of uniform finite depth. Green’s integral theorem is used to obtain the solution
of BVP-II and the first order reflection and transmission coefficients. The numerical
results for these reflection and transmission coefficients are shown graphically.

2 Mathematical Formulation

A right-handed rectangular Cartesian coordinate system is employed in which x-axis
is the position of undisturbed free surface and y-axis is taken positive vertically
downwards from the origin. The bottom of the sea has small undulation and is
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Fig. 1 Scattering of water waves by submerged vertical barrier with bottom undulation

described by y = h+εc(x), where c(x) is a continuous bounded function describing
the shape of the bottom undulation, h denotes the uniform finite depth of the ocean far
to either side of the undulation of the bottom so that c(x)→ 0 as |x | → ∞ and the
nondimensional number ε(� 1) gives the measure of smallness of the undulation.
Consider a thin vertical barrier which is submerged on the bottom undulation, whose
position is located at x = 0, y ∈ L = [d, h] (Fig. 1).

It is assumed that the fluid is inviscid, incompressible and the motion is irrota-
tional. If the motion is to be simple harmonic in time with angular frequency σ,
then the velocity potential Φ which describes the fluid motion can be expressed as
Φ(x, y, t) = Re{φ(x, y)e−iσt }. Then the complex valued potential φ satisfies the
Laplace equation

∂2φ

∂x2 +
∂2φ

∂y2 = 0, in the fluid region, (1)

along with conditions:

Free surface condition:
∂φ

∂y
+ Kφ = 0, on y = 0,

(
with K = σ2

g

)
(2)

Bottom condition:
∂φ

∂n
= 0, on y = h + εc(x), (3)

Condition on barrier:
∂φ

∂x
= 0, on x = 0, y ∈ L , (4)

Condition across gap:
∂φ

∂x
|x=0− = ∂φ

∂x
|x=0+ , on x = 0, y ∈ L̄, (5)

φ|x=0− = φ|x=0+ , on x = 0, y ∈ L̄, (6)

Edge condition: r1/2∇φ is bounded as r → 0, (7)

Far-field behavior: φ(x, y) ∼
{
φinc(x, y)+ Rφinc(−x, y) as x →−∞
Tφinc(x, y) as x →∞. (8)
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where
∂

∂n
is the normal derivative at a point (x, y) on the bottom, g is gravitational

constant, r is the distance from a submerged end of the barrier, R is the reflection
coefficient, and T is transmission coefficient, L̄ = 0 ≤ y ≤ d and φinc denotes the
incident wave.

The incident wave in a finite depth of water h can be written as

φinc(x, y) = ψ0(y)e
ik̂0x

where ψ0(y) = N−1
0 cosh k̂0(h − y) with N0 =

[
4k̂0h

2k̂0h + sinh 2k̂0h

]−1/2

,

k̂0 is the wave number of incident wave, the positive real root of the transcendental
equation

K − k tanh kh = 0. (9)

3 Method of Solution

The bottom condition (3) can be approximated up to the first order of the small
parameter ε as

∂φ

∂y
− ε d

dx
{c(x)φx } + O(ε2) = 0 on y = h. (10)

The approximate boundary condition (10) suggests that φ, R, T can be expanded in
terms of ε as given by

φ(x, y) = φ0 + εφ1 + O(ε2),

R = R0 + εR1 + O(ε2),

T = T0 + εT1 + O(ε2). (11)

Substituting the expressions of φ(x, y), R, and T from relation (11) into (1), (2), (4)–
(8), and (10) and equating the coefficients of ε0 and ε from both sides, the functions
φ0(x, y) and φ1(x, y) satisfy the following BVPs:
BVP-I: The function φ0(x, y) satisfies

∂2φ0

∂x2 +
∂2φ0

∂y2 = 0 in the fluid region, (12)

∂φ0

∂y
+ Kφ0 = 0, on y = 0, (13)
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∂φ0

∂y
= 0 on y = h, (14)

∂φ0

∂x
= 0, on x = 0, y ∈ L , (15)

∂φ0

∂x
|x=0− = ∂φ0

∂x
|x=0+ , on x = 0, y ∈ L̄, (16)

φ1 |x=0− = φ1 |x=0+ on x = 0, y ∈ L̄, (17)

r1/2∇φ0 is bounded as r → 0, (18)

φ0(x, y) ∼
{
(eik̂0x + R0e−i k̂0x )ψ0(y) as x →−∞
T0eik̂0xψ0(y) as x →∞. (19)

BVP-II: The function φ1(x, y) satisfies

∂2φ1

∂x2 +
∂2φ1

∂y2 = 0 in the fluid region, (20)

∂φ1

∂y
+ Kφ1 = 0, on y = 0, (21)

∂φ1

∂y
= d

dx
{c(x)∂φ0

∂x
} = p(x) (say) on y = h, (22)

∂φ1

∂x
= 0, on x = 0, y ∈ L , (23)

∂φ1

∂x
|x=0− = ∂φ1

∂x
|x=0+ , on x = 0, y ∈ L̄, (24)

φ1 |x=0− = φ1 |x=0+ on x = 0, y ∈ L̄, (25)

r1/2∇φ1 is bounded as r → 0, (26)

φ1(x, y) ∼
{

R1e−i k̂0xψ0(y) as x →−∞
T1eik̂0xψ0(y) as x →∞. (27)

Here, the BVP-I represents the scattering of water waves by thin vertical barriers in
water of finite depth h. The solution for φ0 can be expressed as

φ0(x, y) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(eik̂0x + R0e−i k̂0x )ψ0(y)+
∞∑

n=1

Anekn xψn(y) as x →−∞,

T0eik̂0xψ0(y)+
∞∑

n=1

Bne−kn xψn(y) as x →∞,
(28)

where ±ikn, (n = 1, 2, . . .) are the purely imaginary roots of the transcendental
Eq. (9), An, Bn, (n = 1, 2, . . .) are constants to be determined and ψn(y) = N−1

n
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cos kn(h − y) with Nn =
[

4knh

2knh + sin 2knh

]−1/2

.

Now, using the boundary conditions (16) and (17), we obtain

R0 + T0 = 1 and An = −Bn, (29)

and
1

h
ψ0(y)+ 1

h

∞∑
n=0

Anψn(y) = 0, on x = 0, y ∈ L̄, (30)

where A0 = R0 − 1, k0 = −i k̂0.
Again, using the boundary condition (15), we get

∞∑
n=0

An(knh)
1

h
ψn(y) = 0, on x = 0, y ∈ L . (31)

These two relations, (30) and (31), can be combined to make one fixed boundary
condition which specifies the potential as given by

G(y) = 0, 0 < y < h, (32)

where

G(y) = 1

h
ψ0(y)+ 1

h

∞∑
n=0

Anψn(y), on y ∈ L̄,

and

G(y) =
∞∑

n=0

An(knh)
1

h
ψn(y), on y ∈ L .

The relation (32) represents an overdetermined system of equations which can be
solved by applying least-squares method which requires

Error =
⎛
⎝

h∫

o

|G(y)|2dy

⎞
⎠

1/2

=
⎛
⎜⎝

∫

y ∈ L̄

|G(y)|2dy +
∫

y ∈ L

|G(y)|2dy

⎞
⎟⎠

1/2

(33)

to be minimum.
This error will be minimum when

∫

y ∈ L̄

G∗(y)∂G(y)

∂Am
dy +

∫

y ∈ L

G∗(y)∂G(y)

∂Am
dy = 0, m = 0, 1, 2, . . . (34)
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where G∗(y) is the complex conjugate of G(y).
Substituting the expressions of G(y), G∗(y) and their derivatives, we get

Am −
∞∑

n=0

A∗ncnm
[
1− (kmh)(k∗n h)

] = δ0m − c0m (m = 0, 1, 2, . . . ), (35)

where

cnm = 1

h

h∫

d

ψn(y)ψm(y)dy = δnm − 1

h

d∫

0

ψn(y)ψm(y)dy.

Truncating the series for n and m, the system given by relation (35) can be solved
numerically for N + 1 equations with N + 1 unknowns An .

The BVP-II which involves φ0(x, y) the solution of BVP-I, represents the radi-
ation problem. On applying Green’s integral theorem to the functions φ0(x, y) and
φ1(x, y) on the region bounded by

y = 0, 0 < x ≤ X; x = 0+, 0 ≤ y ≤ d; x = 0−, 0 ≤ y ≤ d; y = 0,−X ≤ x < 0;

x = −X, 0 ≤ y ≤ h; y = h,−X ≤ x ≤ X; x = X, 0 ≤ y ≤ h;

where X is positive, large, and tends to infinity, we obtain

R1 = 1

2i k̂0

∞∫

−∞
c(x)

(∂φ0(x, h)

∂x

)2
dx . (36)

Similarly, applying Green’s integral theorem to the functionsφ0(−x, y) andφ1(x, y)
in the same region, we have

T1 = − 1

2i k̂0

∞∫

−∞
c(x)

(∂φ0(x, h)

∂x

)(∂φ0(−x, h)

∂x

)
dx . (37)

These R1 and T1 can be evaluated when the shape function c(x) is known.

3.1 Particular Cases

Case (i): In the absence of vertical barrier, the problem assumed here will be the
problem involving scattering of water waves by bottom undulation only, and in this
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case, the first order reflection and transmission coefficients given by relations (36)
and (37) are the same as the relations (31) and (32) of [10] and relations (3.5) and
(3.6) of [5] when the surface tension is negligible and angle of incidence is zero.

Case (ii): In the absence of undulation at the bottom, the given problem reduces to
the scattering of water waves by vertical barrier. In this situation, the results involving
reflection and transmission coefficients exactly match with the results of [4, 7].
In the next section, we consider the special form of the shape function c(x) to evaluate
the coefficients given by relations (36) and (37).

4 Example of Bottom Undulation

Different examples for the shape functions as considered in [6, 9] can be taken here
to evaluate the reflection and transmission coefficients given by relations (36) and
(37). However, the shape function function c(x) is considered in the form of a patch
of sinusoidal ripples because the functional forms of the uneven bottom closely
resemble some naturally occurring obstacles formed at bottom due to ripple growth
of sands and sedimentation as reported by [1].
The patch of sinusoidal bottom ripples can be expressed as

c(x) =
{

c0 sin λx,
−Mπ

λ
≤ x ≤ Mπ

λ
0, otherwise

(38)

where c0 is amplitude and λ is wave number, of the sinusoidal undulation and M is
a positive integer. For M sinusoidal ripples, T1 vanishes and R1 is given by

R1 = c0k̂0(R0 − 1)

2N 2
0

{
sin(λ− 2k̂0)l

λ− 2k̂0
− sin(λ+ 2k̂0)l

λ+ 2k̂0

}

+ ic0k̂0 R0

2N 2
0

{
2(1− cosλl)

λ
− 2λ

λ2 − 4k̂0
2 +

cos(λ− 2k̂0)l

λ− 2k̂0
− cos(λ+ 2k̂0)l

λ+ 2k̂0

}

+ ic0

N0

∞∑
n=1

[ kn

(λ− k̂0)2 + k2
n

− kn

(λ+ k̂0)2 + k2
n

+
{ (λ− k̂0) sin(λ− k̂0)l − kn cos(λ− k̂0)l

(λ− k̂0)2 + k2
n

− (λ+ k̂0) sin(λ+ k̂0)l − kn cos(λ+ k̂0)l

(λ+ k̂0)2 + k2
n

}
e−knl

]kn An

Nn
, (39)
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Fig. 2 |R1| for different water depths d/h = 0.1, 0.3 with c0/h = 0.1,M = 1,λh = 1

where l = Mπ
λ .

5 Numerical Evaluation and Discussions

The numerical computation is shown for the first order reflection coefficient R1
given by Eq. (39). For computation of R1, we need the values of R0 and the constants
An, (n = 1, 2, . . . , N ) which are evaluated numerically from relation (35).

In Fig. 2, the reflection coefficient R1 is plotted versus K h for different water
depths d/h = 0.1, 0.3 with c0/h = 0.1,M = 1,λh = 1. From this figure, it is
observed that for fixed values of M, c0/h and λh, the zeros of R1 are shifted toward
the left as the values of water depth d/h increases.

In Fig. 3, the first order reflection coefficient R1 is depicted against K h for different
values of ripple amplitude c0/h = 0.1, 0.2 with fixed values of M = 1, d/h = 0.5
and λh = 1. From this graph, it is clear that the values of R1 increase as the ripple
amplitude c0/h increases but the zeros of R1 remain unchanged.

Different curves for R1 against K h are shown in Fig. 4 for different number of
ripples M = 2, 4, 6 with fixed values of other parameters d/h = 0.3, c0/h = 0.1
and λh = 1. From this figure, it is found that the peak values of reflection coefficient
R1 are 0.1439, 0.3183, and 0.4583 corresponding to M = 2, 4, 6 respectively, i.e., it
is clear that when the number of ripples M of undulation increases, the peak value of
the reflection coefficient increases. It is also observed that the reflection coefficient
becomes more oscillatory and the number of zeros increases with increasing number
of ripples.
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Fig. 3 |R1| for different ripple amplitude c0/h = 0.1, 0, 2. with d/h = 0.5,M = 1,λh = 1
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Fig. 4 |R1| for different number of ripples M = 2, 4, 6 with d/h = 0.3, c0/h = 0.1,λh = 1

6 Conclusion

Perturbation analysis is used to analyze the problem involving scattering of water
waves by submerged thin vertical barrier over irregular bottom. The first order reflec-
tion and transmission coefficients are obtained in terms of integrals involving the
shape function c(x) describing the bottom undulation and the solution of the prob-
lem involving scattering by submerged barrier. A special case of bottom undulation
as a patch of sinusoidal ripples is considered and the first order reflection coefficient
is obtained and is shown in different figures.
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Chapter 2
Cryptanalysis of Multilanguage Encryption
Techniques

Prasanna Raghaw Mishra, Indivar Gupta and Navneet Gaba

Abstract We present an analysis of an encryption scheme MUlti-Language
Encryption Technique (MULET ) proposed by G. Praveen Kumar et al. in the Sev-
enth International Conference on Information Technology, ITNG 2010. Using our
analysis, we have successfully recovered 80 % of the plaintext from the MULET
ciphertext. We also give quantitative results in support of our findings.

1 Introduction

MUlti-Language Encryption Technique (MULET ) proposed by Praveen Kumar
et al. [11] is an encryption scheme designed to facilitate encryption/decryption for
a range of languages supported by Unicode [14]. The authors have shown that the
scheme is secure against brute-force attack only and have not discussed its security
against cryptanalytic attacks. However, the scheme escaped the attention of crypt-
analysts. Although Anoop Kumar et al. [1] indicated some of the flaws in the tech-
nique, no comprehensive cryptanalysis was presented. This motivated us to go for an
in-depth cryptanalysis of the scheme. We have launched a ciphertext only attack [13]
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Table 1 Notations

M Mapping constant/modulus
ch_map A set of M-characters from the universal character set is considered as a mapping array
chno A set of characters for universal character set is considered as a substitution array
Quo Quotients required for decryption (key)
Enc Ciphered text
Dec Deciphered text

on MULET ciphertext and successfully recovered more than 80 % of the plaintext
out of it. The organization of this paper is as follows.

In the Sect. 2, we describe MULET algorithm in brief. In Sect. 3, we describe our
technique to recover plaintext out of MULET ciphertext. MULET is a double-layer
encryption scheme and we have tried to remove layers in the reverse order to get back
the plaintext. In Sect. 4, we give a step-by-step complexity analysis of the technique.
In Sect. 5, we give the results of our attack applied on a ciphertext of English encrypted
with MULET.

2 Description of MULET

In this section, we describe MULET encryption and decryption algorithm in brief [11].
Before describing the scheme, we first discuss the notations used in the scheme (see
Table 1).

The Scheme

Key: Secret Keys- M , chmap, chno, Publicly Known- Unicode

Encryption Algorithm
Input: Plaintext, Arrays ch_map and cnno, Modulus M
Output: Ciphertext, Array Quo

while (! End of plaintext) do
Read a character from the original file and store the Unicode value in a variable n ;
R := n%M
Quo[i] := n/M
Enc[i] := ch_map[R]
Increment i ;

end while
while (! end of Enc) do

while (Enc[i] == Enc[i + 1]) do
Increment count;
Increment i ;

end while
if (count>= 2) then

Replace the repetitions with chno[count] in enc
Reset count to zero

end if
end while
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Decryption Algorithm:
Input: Ciphertext, Array Quo
Output: Plaintext

while (! end of enc) do
if (character is chno[i]) then

Remove the character from enc and the character preceding chno[i] in the cipher text is
repeated ‘i’ number of times and store in dec

end if
end while
while (!end of dec) do

Compare the character with the mapping array ch_ map; Position of the character in ch_map
is the required remainder R;

U := Quo[i] ∗ M + R;
Convert U to the corresponding character;

end while

2.1 Example of MULET

Mapping Constant/Modulus M = 16
ch_map:

chno:

Plaintext:

Cryptography is the science of secret writing

Key generated (in Hex):
724 707 6f7 726 706 796 692 207 206 637 656
636 206 666 732 636 657 207 727 746 6e6 a6
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Ciphertext:

3 Cryptanalysis

MULET encryption is done in two layers. The first layer makes use of secret
data ch_map and the modulus M and the second layer uses secret data chno. We
notice that because of the two layers of encryption, the existing attacks on classical
ciphers [2, 13] are not applicable directly on MULET. We have devised a ciphertext
only attack [13] on the scheme to recover various secret parameters and finally the
plaintext. The only assumption we make is that the plaintext language is known.
There are two main parameters whose knowledge leads to recovery of plaintext, viz.,
the modulus M and the useful portion of array chno. To start with, we first guess the
modulus M .

3.1 Guessing the Modulus

A MULET ciphertext contains characters from both the arrays, viz. ch_map and
chno. Let the number of distinct characters occurring in the ciphertext be d and
the number of characters from chno occurring in the ciphertext be b1. We observe
that the index 0 and 1 of chno is never accessed. Similarly, an index higher than 5
corresponds to 6-graph or higher. For a reasonable size of modulus (M ≥ size of
plaintext alphabet/2) occurrence of 6-graph or higher is extremely rare, therefore,
index higher than 5 is rarely accessed. Thus, the wise choice of b1 to start with is 4.

The maximum number of characters from ch_map that can occur in ciphertext
is M . Thus, the bound on the number of distinct characters occurring in ciphertext
is M + b1. There is a possibility that all the 4 characters from chno may not be
occurring in the ciphertext. Similarly, some characters from ch_map may also escape
ciphertext. Let the maximum number of characters from the two arrays not occurring
in the ciphertext be b2. Now we have the following relation:

M − b2 + b1 ≤ d ≤ M + b1

which implies that M can be found by trying b2 values precisely d − b1, d − b1 +
1, . . . , d−b1+b2. The value of b2 is relatively small (say≤ 10, as it is less likely that
more than 10 characters from ch_map are skipped) in most cases. Based on experi-
mentation, the value of b2 is taken as 6 in our case. As the value of d is determined
from the ciphertext, modulus M can be guessed in much smaller number of trials.
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3.2 Segregating the ch_map and chno Characters
in the Ciphertext

Let us assume that the set of unicode values of the plaintext alphabets are A =
{vi , i = 1, 2 · · · , l}. and the expected frequency of v ∈ A in a meaningful text is f e

v .
The first layer of encryption process uses a function φM : A→ {0, 1, · · · ,M − 1}
given as φM (v) = r, r ≡ v (mod M), 0 ≤ r < M . Clearly, φM is many-one if
M < l. M ≥ l makes the cipher merely a simple substitution [2, 8], and it can be
analyzed using existing methods [2, 3, 5, 10].

We have only to consider the other case, i.e., M < l. The remainders are replaced
by the corresponding ch_map array. Once the first layer encryption is over, an n
consecutive occurrence of a character v is replaced by the couple of characters
ch_map(r )chno(n). Here, we make an assumption that the second layer changes do
not alter the relative frequency distribution of ch_map characters in the ciphertext.
We find expected frequency distribution of φM after the first layer. The expected
frequency Rr of a value r of φM can be given as Rr =∑

v∈φ−1
M (r) f e

v . Expected fre-

quency of a chno character at index n is the same as frequency of n-ets (n consecutive
occurrences of any character) in the first layer text. Let these frequencies lie in the
interval [0, b3]. We consider the set

S = {c is a ciphertext character : frequency of c ≤ b3}

We select b1 characters from S and arrange them in decreasing order of their fre-
quencies. The highest frequent character corresponds to index 2, the next to 3, and
so on. With this information, we remove the second layer changes and compute the
frequency distribution of the changed ciphertext. We measure how close the result-
ing frequency distribution is to the expected one. To measure the closeness we use a
metric similar as �1 metric. The distance between the guessed and the expected fre-

quency distributions d with respect to our metric is given as
∑M

i=1 |Rri− f e
ci
|

M (meanings
of the symbols used are described in the next section). We carry out trials on all
possible values of b1. There will be

(o(S)
b1

)
trials for a given value of b1. The selection

giving the minimum distance will reveal the part of chno used in the second layer (it
should be noted that minimum is calculated over all possible values of b1 and M).

3.3 Making Final Substitution

We assume that upto this stage we have successfully undone the second layer changes.
We rewrite the expected frequency distribution of φM as (r1, Rr1), (r2, Rr2), . . . ,

(rM , RrM ) such that 1 ≤ i < j ≤ M =⇒ Rri ≥ Rr j (where {r1, r2, . . . , rM } =
{0, 1, . . . , k − 1}). Let the frequency of ciphertext character c be f o

c . The frequency
distribution is (c1, f o

c1
), (c2, f o

c2
), · · · , (cM , f o

cM
) such that 1 ≤ i < j ≤ M =⇒
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f o
ci
≥ f o

c j
(where c1, c2, . . . , cM are distinct letters in the intermediate ciphertext).

From here we guess the map u : {c1, c2, . . . , cM } → {0, 1, . . . ,M − 1} which
establishes the relation between remainders and ciphertext characters as u(ci ) =
ri , i = 1, 2, . . . ,M . We finally replace the ciphertext character c by vmp

c where vmp
c

is chosen such that f e
vmp

c
= maxv∈φ−1

M (u(c)){ f e
v }. vmp

c is the most probable replacement
for the ciphertext character c.

4 Complexity Analysis

The first step of attack, i.e., guessing the modulus requires at most d trials. While
the removal of the second layer encryption requires

(o(S)
b1

)
calculations of fre-

quency distributions and distance calculations. For a ciphertext of length L , the
total number of operations required to find frequency distribution will roughly
take 2L operations. The Euclidean distance calculation will take at most M log2 L
operations. Therefore, the total number of trials are bounded above by the expres-

sion
∑b1

i=1

∑d
M=1

(o(S)
i

) (
2L + M log2 L

) ≤ L
(∑b1

i=1

∑d
M=1

(o(S)
i

)
(M + 2)

)
. This

shows that our attack is linear in the size of ciphertext.

5 Experimental Results

To verify our strategy, we encrypted an English text of 1,000 characters with MULET.
The two arrays and the modulus we took were the same as taken in example 1 in [11].
After making trials on M and removing the first layer, we found that the modulus
M is 16. We calculate the frequency of characters of the ciphertext. Table 2 gives the
ciphertext characters and their percentage occurrence in the ciphertext in descending
order.

We calculated the remainder r for each of the 52 English unicode characters.
The characters giving the same remainder were grouped together. Table 3 lists the
remainder r , its expected frequency (Rr ) corresponding English character (v), and
the most probable among them (vmp) in descending order of Rr .

A comparison of Tables 2 and 3 suggests the possible mapping of ciphertext char-
acters and remainders. We replace a ciphertext character with the most probable
character corresponding to the possible remainder. In Table 4 we show the cipher-
text characters, their possible remainders, and the possible replacement (the most
probable character corresponding to the possible remainder).

Carrying out these replacements gives us the recovered plaintext. A comparison
of the recovered plaintext from the original one reveals that the attack successfully
recovers 83.36 % of the plaintext in our case. The point to note is that this recovered
text may further be fed to text mining technique including pattern recognition and
dictionary-based techniques [4, 6, 7, 9, 12] to further enhance the success rate.
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Table 2 Frequency distribution of ciphertext character

S.N. Ciphertext character Percentage occurrence

1 0x090a 15.729
2 0x0909 13.022
3 0x090e 9.635
4 0x0908 9.461
5 0x0914 7.909
6 0x0906 7.798
7 0x0907 7.001
8 0x0913 6.833
9 0x090d 5.209
10 0x090c 4.456
11 0x0911 3.917
12 0x090b 3.276
13 0x0912 2.384
14 0x0905 2.291
15 0x0910 0.870
16 0x090f 0.207

Table 3 Pre-computed table for determination of most probable character corresponding to a given
remainder

S.N. Remainder (r ) Expected
frequency
of r (Rr )

Possible
plaintext
characters (v)

Most
probable
character
(vmp)

1 5 15.6289 E U e u e
2 4 13.1218 D T d t t
3 9 9.6341 I Y i y i
4 3 9.4623 C S c s s
5 15 7.9191 O o o
6 1 7.7885 A Q a q a
7 2 7.0108 B R b r r
8 14 6.8234 N n n
9 8 5.2195 H X h x h
10 7 4.4463 G W g w g
11 12 3.9274 L l l
12 6 3.2665 F V f v f
13 13 2.3832 M m m
14 0 2.2916 P p p
15 11 0.8688 K k k
16 10 0.2084 J Z j z j
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Table 4 Possible plaintext character corresponding to a ciphertext character

S.N. Ciphertext character Remainder Possible replacement

1 0x090a 5 e
2 0x0909 4 t
3 0x090e 9 i
4 0x0908 3 s
5 0x0914 15 o
6 0x0906 1 a
7 0x0907 2 r
8 0x0913 14 n
9 0x090d 8 h
10 0x090c 7 g
11 0x0911 12 l
12 0x090b 6 f
13 0x0912 13 m
14 0x0905 0 p
15 0x0910 11 k
16 0x090f 10 j

The bounds we set were b1 = 4, b2 = 6, b3 = 5 and b4 = 10. For our case,
the plaintext language was English. For b1 = 4, b3 = 5 we have o(S) ≤ 11 (see

Table 2). So, the worst case complexity will be L
(∑b1

i=1

∑20
M=1

(11
i

)
(M + 2)

)
=

L
(∑4

i=1

(11
i

)∑20
M=1(M + 2)

)
= L × 550 × 250 = 137500L . For L = 1000 the

complexity is of order 227. It is to be noted that the calculations are made for the
worst case and we have finished our attack in a much lesser time. Below are given
the parts of plaintext, ciphertext, and the recovered.

Plaintext : P a g e o f Y O . . .

Unicode value : 0x50, 0x61,0x67, 0x65, 0x6f, 0x66, 0x59, 0x4f, . . .
MULET encryption (Unicode
value)

: 0x0905, 0x0906,0x090c, 0x090a, 0x0914, 0x090b,
0x090e, 0x0914, . . .

Recovered text : p a g e o f i o . . .

6 Conclusion

In this paper, we have presented a cryptanalysis of an encryption scheme named
MUlti-Language Encryption Technique (MULET). Based on our analysis, we have
launched a ciphertext-only attack and retrieved more than 80 % of the plaintext from
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MULET ciphertext. We have also shown that the scheme can be broken in linear time,
contrary to the claim of exponential complexity by the proposers of the scheme. There
are many more schemes proposed on this philosophy. We hope that this analysis will
be helpful to demonstrate the weaknesses of such schemes.
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Chapter 3
Signcryption with Delayed Identification

Angsuman Das and Avishek Adhikari

Abstract This paper introduces a novel cryptographic primitive called Signcryption
with Delayed Identification (SCDI), where a sender signcrypts a message m such
that the reciever can unsigncrypt it using his private key to recover m, but cannot get
any information about the identity of the sender. The sender at a later point of time
can claim the ownership of the message m by providing a “tag”, which proves that
the signcryptext was generated by the sender. As an application of the primitive, it is
shown that it can be used for safe and anonymous contractual bidding, submission
of papers in a journal or conference, etc. As regards security, formal definitions of
security for the proposed primitive are given and at the end, a generic construction
secure with respect to the proposed definitions is given.

Keywords Partial signature · Signcryption · Random oracle model

1 Introduction

Signcryption, introduced by Zheng [17] and formalized in [1, 2], has been an area
of active research from the day of its inception. Signcryption is a primitive which
encrypts as well as authenticates a message. The main objective in the study of
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signcryption scheme was twofold: to reduce the cost of signcryption than naive
combination of encryption and signature and to achieve better security than compo-
nent encryption and signature scheme (SS). Since then, depending on their applicabil-
ity in various requirements, various signcryption schemes along with several variants
like identity-based signcryption [13], ring signcryption, proxy signcryption, aggre-
gate signcryption [8], threshold signcryption [12], heterogeneous signcryption[11],
etc., and their corresponding security notions have evolved.

In this paper, we propose a new signcryption variant, called Signcryption with
Delayed Identification (SCDI), which provides a layer of anonymity that can be
revealed later. Consider the following scenario: a sender Alice signcrypts a message
m such that the receiver Bob can unsigncrypt it using his private key to recover m
and a “stub”, but cannot get any information about the identity of the sender. Alice
at a later point of time (not necessarily predetermined) can claim that the message m
was generated by her by providing a “tag” corresponding to the “stub”, which proves
or convinces Bob that the signcryptext was actually sent by Alice and no one else.

We give some potential applications of this primitive SCDI as follows:

• Anonymous Contractual Bidding: Suppose the government of a country decides
to call for tenders to construct a bridge. Various construction companies will be
applying for it. Now, while selecting from their proposals, government officials
not only look at the lowest quoted price but also at the quality of the proposal, e.g.,
quality of materials used, number of days needed to complete the task, etc. Now
suppose Alice, one such bidder, does not have good relations with the government
official, Bob, dealing with this tender. Hence she might fear that her proposal
would be rejected regardless of its quality. Thus, she wants to signcrypt her bid in
such a way that it will not reveal her identity, but if her proposal is accepted, then
she can claim it to be hers. SCDI can be used in this scenario. In fact, SCDI is
handy in any anonymous bidding or contractual agreement where “highest/lowest
value wins” is not the case.
• Anonymous Paper/Patent Submission: Suppose Bob is the editor of a journal

and he invites papers for a particular issue. Alice wants to submit a paper to the
journal, but Bob has certain professional or personal conflicts with Alice. So, Alice
wants to hide her identity from Bob until the selection procedure is over. Once
the selection is done, Bob puts up the titles of the selected papers on the journal
webpage. Now Alice would like to claim her ownership on her paper, only if it is
accepted. If this can be done, then at least impartiality by Bob with respect to the
identity of Alice is maintained.1

• Disclosure of Secret and Sensitive Information: Suppose the police department
of a country has declared a prize money for anyone who gives proper information
about the whereabouts of a notorious gangster X. Alice knows the hiding place of
X and wants to inform the police about it to claim the prize. But Alice suspects
that even some of the policemen might be involved with X. As a result, her life can
be in danger if she delivers the information to such corrupted policemen. In such

1 If the content of the paper itself leaks any direct or indirect information about Alice, then nothing
can be done, as the editor cannot be made blind to the content of the paper.
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a scenario, Alice can use SCDI to send the information such that the police does
not know anything about her identity. But when X is arrested, she can identify
herself to be the sender of the information. Although this scenario looks more like
a movie plot, SCDI turns out to be a handy tool.

The need for SCDI (at least in the first two scenarios) rises from the fact that no
absolute winning condition can be specified. Thus, the public verification of the
fairness of the result is not possible. As a result, there is always a chance of unfairness
on the basis of identity.

1.1 Related Work

The idea of revealing the identity of the sender Alice at a later point of time (to be
determined by the sender, but not necessarily predetermined) was first noticed in
[4]. The authors in [4] introduced a new signature primitive called Partial Signature,
where Alice, given a message, can compute a “stub” which preserves her anonymity,
yet later she, but nobody else, can complete the stub to a full and verifiable signature
under her public key.

However, what is of note here is that in the above scenarios confidentiality is
needed along with anonymity and nonrepudiation. For example, Alice would like to
hide her bid or price quotation from other potential bidders. In fact, as we will show
later (see Sect. 1.2) a partial signature scheme alone cannot ensure unbiasedness or
safety, at least with respect to the identity of Alice. Our proposal, SCDI, can serve
these specified goals.

1.2 Security Requirements

We now discuss informally the security requirements for SCDI, namely confiden-
tiality, anonymity, unambiguity, unforgeability, and unlinkability.

• Confidentiality: None other than the receiver, Bob, should be able to get any
information about the message m signcrypted within the ciphertext c. This is
required as the sender, Alice, may want no one other than Bob to know anything
about the content m of the submission. Though in most cases it may be enough to
have IND-CPA security for confidentiality, there might be some scenarios where
IND-CCA2 security is in demand.
• Anonymity: This means that the receiver, Bob cannot get any information about

Alice’s identity from the stub in the initial phase. To elaborate, Bob may have
some prior information about the potential identity of the sender, say for example
it belongs to a set S, which at worse can have only two elements. The protocol
should be such that given the stub, the message m and the knowledge that is created
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by either of the two members in S will give Bob only a negligible advantage in
guessing the right identity.
• Unambiguity: Unambiguity demands that none other than Alice (including Bob)

can generate a tag which matches with the ciphertext generated by Alice’s secret
key to claim authorship of the ciphertext. It requires that an adversary A, given
a ciphertext under the secret key of Alice, skA of a message m of his choice, is
unable to create a tag (may be under a different verification key pk′ other than
pkA) such that it verifies as a “valid” one. In fact, it will be better if this can be
done publicly, i.e., once Alice reveals the message m, the stub and the tag, anyone
(not only Bob) can verify the authorship of Alice on m. Unambiguity ensures that
anonymity is not at the cost of authenticity.
• Unforgeability: Unforgeability claims that an adversary A cannot produce a valid

ciphertext-tag pair, i.e., (c, tag) on a message m of his choice under the secret key
skA of Alice. It should be noted here that unambiguity does not imply unforgeabil-
ity. Unambiguity prevents forgery under an adversarially modified verification key
pk′ (�= pkA), whereas unforgeability prevents forgery on the target verification
key pkA itself.
• Un/Linkability: This feature, unlike others, is specific to the contractual bid-

ding/paper submission protocol. Let us discuss it in detail: Suppose Alice submits
a ciphertext to Bob in the initial submission phase. Bob, due to some technical
reasons, may ask Alice to submit a slightly modified version of the ciphertext
before the review is done. Even Alice herself may want to modify the submission
before the deadline is over. In any case, as the submission is anonymous (even to
Bob), how can Bob be sure about the fact that the revised submission is made by
the actual author, i.e., Alice and not someone else (other than Bob).2 Thus, Bob
must be able to link the two submissions together, i.e., he must be convinced that
both the submissions are done by the same person, Alice. In other words, no one
other than Alice should be able to replace/revise her original submission.

Remark 1 It is worth mentioning here that unambiguity prevents an adversary from
claiming the authorship of Alice’s ciphertext once the selection has been made,
whereas unforgeability prevents an adversary from submitting a ciphertext pretending
to be Alice, such that Alice might face problems in the future, like plagiarism, etc. In
other words, unforgeability is required in the submission phase, whereas unambiguity
is required in the revealing stage.

Remark 2 Anonymous encryption [3] does not provide the required anonymity in
our case. Bellare et al. [3] deals with receiver anonymity, but here sender anonymity
is required.

Remark 3 It is to be noted that though the criteria of anonymity, unambiguity, and
unforgeability were also discussed in [4], the issues of confidentiality and linkability
were not discussed. However as explained above, they are two vital components for

2 Here, we assume that Bob is not the adversary. The rationale behind this assumption is that as
Bob is unaware of the identity of Alice, why would he try to replace Alice’s original submission.
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an SCDI and hence partial signature cannot suffice the need. In fact our definitions
of anonymity, unambiguity, and unforgeability are not exactly the same as that in
[4]. In some cases, our definitions demand weaker security guarantees, whereas in
other cases ours is stronger than that of [4] depending on the application.

Remark 4 Linkability as a feature can also be omitted in certain cases. This can be
done if we agree that, if the receiver/sender finds any need for revision or modification
before the selection is done, he can simply ask for a fresh proposal and cancel the
previous one. However, we insist on linkability, keeping in mind that most of the
paper-submission softwares allow revised submission before the review is done or
before the submission deadline is over.

1.2.1 Organization of the Paper

The rest of the paper is organized as follows: In Sect. 2, some definitions on basic
cryptographic primitives and their security notions are discussed. The main con-
struction is given in Sect. 3 and its security analysis is done in Sect. 4. Finally, we
conclude with some open issues in Sect. 5.

2 Preliminaries and Definitions

We begin by formally defining the notions of Randomness-Extractable Public-Key
Encryption (RE-PKE), Signature Scheme (SS), Commitment Scheme (CS), and
Signcryption with Delayed Identification (SCDI) and their corresponding security
notions.

2.1 Randomness-Extractable Public-Key Encryption

A Randomness-Extractable Public-Key Encryption (RE-PKE) is a tuple of proba-
bilistic polynomial-time (ppt.) algorithms (Gen,Enc,Dec) such that:

1. The key generation algorithm, Gen, takes as input a security parameter 1n and
outputs a public-key/ private-key pair (pk, sk).

2. The encryption algorithm Enc takes as input a public key pk, a message m from
the underlying plaintext space, and an ephemeral key r from the randomness
space to output a ciphertext c := Enc(pk,m, r).

3. The decryption algorithm Dec takes as input a private key sk and a ciphertext c
to output a plaintext m and an ephemeral key r .

It is required that there exists a negligible function negl such that for every n, every
(pk, sk) and every message m in the corresponding plaintext space, it holds that
Pr[Dec(sk,Enc(pk,m, r)) �= (m, r)] ≤ negl(n).
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Remark 5 Paillier encryption scheme [15], OAEP [5] and its variants are some of
the existing examples of IND-CPA-secure RE-PKE, whereas constructions like [7,
9, 10, 14, 16] are examples of IND-CCA2-secure RE-PKE.

Remark 6 If we supress the decryption algorithm Dec to return only the plaintext
m in the RE-PKE, we get a usual public-key encryption scheme.

2.1.1 Security Notions for Public-Key Encryption

Although there are various notions of security for public-key encryption scheme,
only the relevant (IND-CPA and NM-CPA) ones are discussed here.

Indistinguishability against Chosen Plaintext Attack: Indistinguishability
against chosen plaintext attack to a cryptosystem is defined as a game played between
a challenger C and an adversary A in a public-key encryption scheme PKE as follows:

1. Given the security parameter, C generates a pair (pk, sk).
2. A is given the public-key pk. A outputs a pair of messages (m0,m1) from the

plaintext space associated with pk with |m0| = |m1|.
3. C chooses b ∈R {0, 1} and sends the ciphertext c∗ = Encpk(mb) to A;
4. A finally outputs a bit b′.

The advantage Advcpa
A,PKE(n) is defined as |Pr [b′ = b] − 1/2|. The scheme PKE is

said to be secure against chosen plaintext attack if for all probabilistic polynomial-
time adversaries A, the advantage Advcpa

A,PKE(·) is negligible.
Nonmalleability against Chosen Plaintext Attack: There have been so far vari-

ous equivalent definitions of nonmalleability in the literature. In this work, we choose
to work with a simplified version of relation-based definition of nonmalleability as
follows: Nonmalleability against chosen plaintext attack to a public-key cryptosys-
tem is defined as a game played between a challenger C and an adversary A in a
public-key encryption scheme PKE as follows:

1. Given the security parameter, C generates a pair (pk, sk).
2. A is given the public-key pk.
3. C chooses a message m randomly from the plaintext space associated with pk

and sends the ciphertext c = Encpk(m) to A;
4. A finally outputs a ciphertext c′ and a polynomial-time checkable relation ρ on

the message space M.

A wins the game if c �= c′, Dec(sk, c′) �=⊥ and ρ(m,Dec(sk, c′)) holds.
If we wish to analyze a scheme PKE in the random oracle model [6], the hash

functions are replaced by random oracle queries as appropriate, and both C and A
are given access to the random oracle in the above attack game.
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2.2 Signature Scheme

A Signature Scheme (SS) is a tuple of ppt. algorithms (Gen,Sign,Ver) such that

1. The key generation algorithm, Gen, takes as input a security parameter 1n and
outputs a signing-key/ verification-key pair (sk, pk).

2. The signing algorithm Sign takes as input a signing-key sk, a message m from
the underlying plaintext space to output a signature s := Sign(sk,m).

3. The verification algorithm Ver takes as input a verification-key pk and a
message-signature pair (m, s) to output 0 or 1.

It is required that there exists a negligible function negl such that for every n, every
(pk, sk) and every message m in the corresponding plaintext space, it holds that
Pr[Ver(pk,m,Sign(sk,m)) �= 1] ≤ negl(n).

2.2.1 Security Notions for Signature Scheme

A Signature Scheme SS = (Gen,Sign,Ver) is said to achieve existential unforge-
ability against chosen message attack (UF-CMA) if any probabilistic polynomial-
time adversary A has negligible chance of winning against a challenger C in the
following game:

1. Given the security parameter, C generates a key pair (pk, sk) and returns pk
to A.

2. A is given oracle access to the signing oracle.
3. A outputs a message-signature pair (m∗, s∗).

A wins the game if s∗ is a valid signature on m∗ and if m∗ was never queried to the
signing oracle.

2.3 Commitment Scheme

A Commitment Scheme is a tuple of ppt. algorithms (CMT,DCMT) such that

1. The committing algorithm, CMT, takes as input a security parameter 1n and a
string s ∈ {0, 1}∗ and outputs a commitment–decommitment pair (c, d).

2. The decommiting algorithm DCMT takes as input a string s and the commitment–
decommitment pair (c, d) to output 0 or 1.

It is required that there exists a negligible function negl such that for every n and
every string s, it holds that Pr[DCMT(s,CMT(s)) �= 1] ≤ negl(n).
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2.3.1 Security Notions for Commitment Scheme

Hiding: A Commitment Scheme CS = (CMT,DCMT) is said to be hiding if any
probabilistic polynomial-time adversary A has negligible advantage against a chal-
lenger C in the following game:

1. Given the security parameter 1n , A ouputs two strings s0, s1 of the same length
with s0 �= s1.

2. C chooses a bit b ∈R {0, 1} and computes (c, d) := CMT(sb). C outputs c.
3. A outputs a guess b′ for b.

The advantage Advhiding
A,CS (n) is defined to be |Pr [b′ = b] − 1/2|.

Binding: A Commitment Scheme (CS) is said to be binding if any probabilis-
tic polynomial-time adversary A has negligible advantage in the following game:
Given the security parameter 1n , A ouputs two strings s0, s1 of the same length with
s0 �= s1 and two commitment-decommitment pair (c, d0) and (c, d1). The advantage
Advbinding

A,CS (n) is defined as

Pr [DCMT(s0, c, d0) = 1 and DCMT(s1, c, d1) = 1].

2.4 Signcryption with Delayed Identification

Signcryption with Delayed Identification (SCDI) consists of six-tuple of ppt. algo-
rithms (Setup,KeygenA,KeygenB,Signcrypt,Decrypt,Verify) such that

1. The setup algorithm, Setup, takes as input a security parameter 1n and returns
common parameter par required by the SCDI scheme.

2. The key generation algorithm for the sender A, KeygenA, takes as input the
common parameters par and outputs a public-key/ private-key pair (pkA, skA).

3. The key generation algorithm for the receiver B, KeygenB, takes as input the
common parameters par and outputs a public-key/ private-key pair (pkB, skB).

4. The signcryption algorithm Signcrypt takes as input common parameters par,
sender secret key skA, receiver public key pkB , and a message m to output a
signcryptext c := Signcrypt(par, skA, pkB,m) and a tag τ , corresponding to
the message m from sender A.

5. The decryption algorithm Decrypt takes as input common parameter par,
receiver secret key skB , a signcryptext c to output a message-stub pair (m,σ) :=
Decrypt(par, skB, c) or an error symbol ⊥.

6. The verification algorithm, Verify, takes as input common parameter par, a
message m, a stub σ and a tag τ to output 1 or 0, i.e., Verify(par,m,σ, τ ) = 1
or 0.

In addition to these six algorithms, the SCDI may have two more algorithms
ReSigncrypt and Link to enable submission of revised/modified version of a previ-
ously submitted ciphertext.
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1. The re-submission algorithm ReSigncrypt takes as input common parameter
par, a previously submitted signcryptext c1, the sender secret key skA, the
receiver public-key pkB , and the revised submission m2 to output another sign-
cryptext c2. In some cases, ReSigncrypt may additionally take as input the
internal random coins used while generating c1 using Signcrypt.

2. The linking algorithm Link, takes as input common parameters par, two sign-
cryptexts c1, c2 and receiver secret key skB to output 1 or 0, i.e.,
Link(par, skB, c1, c2) = 1 or 0.

Correctness:
It is required that for every n, every (pkA, skA), (pkB, skB), every message m in the
corresponding plaintext space, it holds that

Decrypt(skB, (Signcrypt(skA, pkB,m)) = (m,σ),

Verify(Decrypt(skB,Signcrypt(skA, pkB,m)), τ ) = 1 and

Link(skB, c1,ReSigncrypt(pkB, skA, c1)) = 1.

2.5 Security Notions for SCDI

2.5.1 Confidentiality

A Signcryption Scheme with Delayed Identification (SCDI) is said to achieve
dynamic multi-user insider confidentiality in IND-SCDI-CCA2 sense if any proba-
bilistic polynomial-time adversary A has negligible advantage against a challenger
C in the following game:

1. Given the security parameter, C generates common parameter par and then with
that generates a receiver key-pair (pkB, skB) using KeyGenB.

2. A is given par, pkB as well as oracle access to the decryption algorithm,
Decrypt(par, skB, ·). A outputs a sender key-pair (pkA, skA) and a pair of
messages (m0,m1) from the associated plaintext space with |m0| �= |m1|.

3. C chooses b ∈R {0, 1}, computes and sends the challenge signcryptext c∗ =
Signcrypt(par, skA, pkB,mb) to A;

4. A continues to have oracle access to Decrypt(par, skB, ·)but with the restriction
that it cannot query c∗; A outputs a bit b′.

The advantage Advcca2
A,SC DI (n) is defined as |Pr [b′ = b] − 1/2|.

This game is defined analogous to that of dynamic multi-user insider security for
confidentiality in a regular signcryption scheme. Although for our purpose outsider
security is enough (as Alice knows her submission), we propose a stronger security
requirement as our construction achieves it without much overhead.
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2.5.2 Anonymity

A Signcryption Scheme with Delayed Identification (SCDI) is said to achieve
anonymity if any probabilistic polynomial-time adversary A has negligible chance
of winning against a challenger C in the following game:

1. Given the security parameter, C generates common parameter par and gives it
to A.

2. A with the help of par , outputs two sender-key pairs (pkA0 , skA0), (pkA1, skA1),
a receiver key-pair (pkB, skB) and a message m.

3. C chooses b ∈R {0, 1}, computes and outputs c∗ = Signcrypt(par, skAb , pkB,

m) to A.
4. A outputs a guess b′ for b.

The advantage Advanon
A,SC DI (n) is defined to be |Pr [b′ = b] − 1/2|.

2.5.3 Unambiguity

A Signcryption Scheme with Delayed Identification (SCDI) is said to achieve unam-
biguity if any probabilistic polynomial-time adversary A has negligible chance of
winning against a challenger C in the following game:

1. Given the security parameter, C generates common parameter par and gives it
to A.

2. A outputs a receiver key-pair (pkB, skB), two tags τ0, τ1 corresponding to dif-
ferent senders A0 and A1, and a signcryptext c.

A wins the game if Verify(par,Decrypt(par, skB, c), τb) = 1 for both b ∈ {0, 1}.

2.5.4 Unforgeability

A Signcryption Scheme with Delayed Identification (SCDI) is said to achieve multi-
user insider existential signcryptext unforgeability against chosen message attack in
UF-SCDI-CMA sense if any probabilistic polynomial-time adversary A has negli-
gible chance of winning against a challenger C in the following game:

1. Given the security parameter, C generates common parameter par and then with
that generates a sender key-pair (pkA, skA) using KeyGenA.

2. A is given par, pkA as well as access to the (flexible) signcryption oracle
Signcrypt(par, skA, ·, ·). Each signcryption query consists of a pair (pkB′ ,m)
where pkB′ is a receiver public-key. The oracle answers it with c = Signcrypt
(par, skA, pkB′ ,m) and a corresponding tag τ , which verifies the authorship of
A on c.

3. A outputs a receiver key pair (pkB, skB), a signcryptext c∗ and a tag τ∗.
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Awins the game if Verify(par,Decrypt(par, skB, c∗), τ∗) = 1 and if its underlying
plaintext m∗was never submitted to the (flexible) signcryption oracle Signcrypt(par,
skA, pkB, ·).

2.5.5 Unlinkability

A Signcryption Scheme with Delayed Identification (SCDI) is said to achieve unlink-
ability if any probabilistic polynomial-time adversary A has negligible chance of
winning against a challenger C in the following game:

1. Given the security parameter, C generates common parameter par , then with
that generates a receiver key-pair (pkB, skB) using KeyGenB and feeds A with
(par, pkB).

2. A outputs a challenge sender-key pair (pkA, skA) to B.
3. B outputs a signcryptext c1 from A to B (i.e., created under pkB and skA).
4. A outputs a signcryptext c2.

A wins the game if c2 is a valid signcryptext under pkB & Link(par, skB, c1, c2) = 1.

3 The Proposed Construction

In this section, we propose a generic construction of a signcryption scheme with
delayed identification (SCDI) from a randomness extractable public-key encryption
(RE-PKE), a commitment scheme (CS), and a signature scheme (SS). The construc-
tion is based on “Sign-then-Commit-then-Encrypt” paradigm.

Let �=(Gen, Enc, Dec) be an RE-PKE scheme with message space {0, 1}k ,
C S=(CMT, DCMT) be a commitment scheme, and SS=(Gen′, Sign, Ver) be a
signature scheme. Let l, t << k be two positive integers such that 2−l , 2−t are
negligible. We construct a signcryption scheme with delayed identification (SCDI)
given by (Setup,KeygenA,KeygenB,Signcrypt,Decrypt,Verify,ReSigncrypt,
Link) with message space {0, 1}k−t−l as follows:

1. Setup:

(a) Setup(1n) → par . (par denotes the common parameter required by the
signcryption scheme.)

(b) Choose a hash function H : {0, 1}∗ → {0, 1}l .
(c) Publish par, H globally.

2. KeyGenA: Gen′(par)→ (pkA, skA)

3. KeyGenB:

(a) Gen(par)→ (pkB, skB)

(b) B publishes pkB and keeps skB as his decryption key.
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4. Signcrypt: For a given message m ∈ {0, 1}k−t−l ,

(a) s = Sign(skA,m).
(b) (σ, η) := CMT(s||pkA) and set τ = (s||η||pkA).
(c) Choose r ∈R {0, 1}t and compute α = H(m||r ||σ||τ ).
(d) Compute c := Signcrypt(pkB,m,σ) = Enc(pkB,m||r ||σ,α)

5. Decrypt: For a given signcryptext c,

(a) Dec(skB, c) := (m||r ||σ,α) or ⊥, if the signcryptext is invalid.

6. Verify: For a given (m||r ||σ,α) and a tag τ ,

(a) Parse τ as s, η, pkA.
(b) If Ver(pkA,m, s) = 1, DCMT(s||pkA,σ, η) = 1 and α = H(m||r ||σ||τ ),

output 1, else output 0.

7. ReSigncrypt: For a given signcryptext c1, the sender key-pair (pkA, skA) and
a revised message m2,

(a) Recollect (m1||r1||σ1,α1), the plaintext and randomness pair for c1. (As
Alice herself resigncrypts, she knows (m1||r1||σ1,α1).)

(b) s2 = Sign(skA,m2).
(c) (σ2, η2) := CMT(s2||pkA) and set τ2 = (s2||η2||pkA).
(d) Compute α2 = H(m2||r1||σ2||τ2).
(e) Compute c2 := Signcrypt(pkB,m2,σ2) = Enc(pkB,m2||r1||σ2,α2)

(f) Output (c1, c2). [Note that the same randomness r1 is used while computing
α2 and c2.]

8. Link: For given signcryptexts c1, c2 and receiver secret key skB ,

(a) Compute (mi ||ri ||σi ,αi ) = Dec(skB, ci ) for i = 1, 2.
(b) If r1 = r2, output 1, else output 0.

4 Security Analysis of Construction

Theorem 1 SCDI is IND-SCDI-CCA2 secure in the sense of dynamic multi-user
insider confidentiality in random oracle model if the underlying RE-PKE is IND-CPA
secure.

Proof We will construct an IND-CPA adversary B against RE-PKE using an IND-
SCDI-CCA2 adversary A in dynamic multi-user insider model against SCDI. As
an input, B is fed with pkB of RE-PKE, which B passes on to A. Moreover, the H
and Decrypt oracle queries are provided by B.

Simulation of H -oracle: When A submits a H -query mi ||ri ||σi ||τi , B first checks
whether (σi , τi ) is a valid stub-tag pair for mi or not, using the algorithm Ver and
DCMT. (Note that τi = si ||ηi ||pkAi ) If it is valid, B chooses a random αi ∈ {0, 1}l
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and returns αi to A. If it is not valid, B returns “invalid query”. For each returned
value, B maintains a list called H -list containing (mi ||ri ||σi ||τi ,αi )

Simulation of decryption oracle (ODecrypt): In decryption queries, when a
query (c, pk′A) is asked, B checks whether any previous query-answer history in
H -list leads to c, i.e., c = Enc(pkB,mi ||ri ||σi ,αi ) for any entry (mi ||ri ||σi ||τi ,αi )

in H -list or not. If yes, then B parses that corresponding τi as si ||ηi ||pkAi and checks
if pk′A = pkAi . If both the checks are cleared, then B returns that corresponding
(mi ||ri ||σi ,αi ) else return “invalid decryption query”. It should be noted here that
while answering H-queries, B ensures that the answer αi does not lead to a sign-
cryptext which was previously declared as “invalid” by the decryption oracle. This
provides a perfect simulation since the probability of producing a valid query without
making the corresponding H -query is zero.

Once the first query phase is over, A returns two plaintexts m0,m1 ∈ {0, 1}k−t−l

and an attacked sender key-pair (pkA, skA) to B. B randomly chooses r0, r1 ∈R

{0, 1}t , computes (σ0, τ0), (σ1, τ1) as in Signcrypt and submits m0||r0||σ0,m1||r1||σ1
to the IND-CPA challenger C. C randomly chooses a bit b ∈R {0, 1}, α ∈R {0, 1}l .
C returns the challenge ciphertext c∗ = Enc(pkB,mb||rb||σb,α) to B and B passes
it on to A.

In the second query phase, A is allowed to make H -queries as before and decryp-
tion queries other than the challenge ciphertext c∗. If A makes a valid H -query with
(m0||r0||σ0||τ0) or (m1||r1||σ1||τ1), one stops the game and B returns failure. (The
rationale behind this thought is discussed in the proof of Lemma 1.) If not, after the
second query phase is over, A outputs a guess b′ to B and B returns b′. The theorem
now follows immediately from the following lemma.

Lemma 1 If ε be the probability that given a valid signcryptext, A can correctly
guess the bit b, then B can win the IND-CPA game with a probability greater or equal
to ε− qH/2t − qH/2l , where l denotes the length of the hash output, t denotes the
length of randomness used in the signcrytion algorithm, and qH denotes the number
of hash queries.

Proof If, in the second query phase, A asks a valid H -query mb||rb||σb||τb and gets
the answer α′, then c∗ will be a valid ciphertext only if c∗ = Encpk(mb||rb||σb, α

′)
i.e., α = α′. Therefore, in order to maintain the validity of c∗, B should respond
to the query (mb||rb||σb||τb) with α′ = randomness used in c∗ by IND-CPA chal-
lenger C. However, the probability of guessing the right α′ for α is 1/2l , which is
negligible. This is the reason that B aborts the game when a valid (m0||r0||σ0||τ0)

or (m1||r1||σ1||τ1) is queried upon. However, the probability of abortion due to the
above reason is ≤ qH/2t , where qH is the total number of H -queries.

Now, if (m0||r0||σ0||τ0) or (m1||r1||σ1||τ1) are not queried in this second query
phase, it is valid to assume that H(mb||rb||σb||τb) = α, (where α is the randomness
used by C) except the case when there exists another previous entry of the form
(m||r ||σ||τ ,α) in the H -list. However, the probability that α have been the response
to some valid H -query previously is ≤ qH/2l .

Thus, c∗ is a valid ciphertext except the case when (m0||r0||σ0||τ0) or (m1||r1
||σ1||τ1) is queried to the H -oracle or α has been received as a response from the
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H -oracle. Hence, A can guess the correct bit b, i.e., B can win the IND-CPA game
with probability ≥ ε− qH/2t − qH/2l . �

Theorem 2 SCDI is anonymous in random oracle model if the underlying com-
mitment scheme C S is hiding.

Proof We construct an adversary B against hiding property of C S using an adver-
sary A against anonymity of SCDI. A outputs two sender key-pairs (pkA0, skA0),
(pkA1, skA1), a receiver key-pair (pkB, skB) and a message m to B. B simulates the
H -oracle for A and computes s0 = Sign(skA0,m) and s1 = Sign(skA1,m) and
output (s0||pkA0) and (s1||pkA1) to the challenger C of the hiding property of C S.
C chooses a bit b ∈R {0, 1}, computes (σ∗, η∗) = CMT(sb||pkAb) and output σ∗ to
B. B chooses r ∈R {0, 1}t , α ∈R {0, 1}l and returns c∗ = Enc(pkB,m||r ||σ∗,α) to
A. In the guess phase, A outputs a bit b′ to B and B outputs the same b′ to C.

Simulation of H -oracle: When A submits an H -query m′||r ′||σ′||τ ′, B parses
τ ′ = s′||η′||pkA′ and checks if DCMT(s′||pkA′,σ′, η′) = 1. If not, then return
“invalid query”. If it is “valid,” check if m′||r ′||σ′ = m||r ||σ∗. If they are not equal,
then choose α′ ∈R {0, 1}l such that α′ �= α and return it to A. If they are equal,
return α to A. For each returned value, B maintains a list called H -list containing
(m′||r ′||σ′||τ ′,α′).

Note that the simulation of H -oracle is perfect in A’s view. Now the theorem
follows from the fact that Pr [Bhiding

C S |b = b′] = Pr [Aanon
SC DI |b = b′]. �

Theorem 3 SCDI is unambiguous if the underlying commitment scheme C S is
binding.

Proof We construct an adversary B against binding property of C S using an adver-
sary A against unambiguity of SCDI. A outputs a receiver key-pair (pkB, skB), a
pair of tags τ0, τ1 corresponding to different senders A0 and A1, and a signcryptext
c to B. B decrypts c with skB to get (m||r ||σ,α) and parses τ0 as (s0||η0||pkA0) and
τ1 as (s1||η1||pkA1). B then outputs (s0||pkA0,σ, η0) and
(s1||pkA1,σ, η1) to the challenger C against the binding property of C S.

Let us define the events F0, F1,G0,G1,W0,W1 as follows:
F0 = event DCMT(s0||pkA0,σ, η0) = 1, F1 = event DCMT(s1||pkA1,σ, η1) = 1,
G0 = event that Ver(pkA0,m, s0) = 1 and G1 = event that Ver(pkA1,m, s1) = 1.
W0 = event that α = H(m||r ||σ||τ0) and W1 = event that α = H(m||r ||σ||τ1).
Now, the theorem follows from the fact that Pr [Bwins] = Pr [F0∩F1] ≥ Pr [(F0∩
G0 ∩W0) ∩ (F1 ∩ G1 ∩W1)] = Pr [A wins]. �

Theorem 4 SCDI is multi-user insider existential signcryptext unforgeable against
chosen message attack in UF-SCDI-CMA sense in standard model if the underlying
signature scheme SS is UF-CMA secure.

Proof We construct an UF-CMA adversary B against SS using an UF-SCDI-CMA
adversary A against SCDI. B takes as input the common parameter par , a sender
public-key pkA and a signing oracle OSign(skA, ·). B chooses a hash function
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H : {0, 1}∗ → {0, 1}l and feeds A with par, pkA and H . In the query phase,
A submits a query for (pkB′,mi ), B queries the OSign(skA, ·) with mi to get a
response si , computes (σi , ηi ) = CMT(si ||pkA) and τi = (si ||ηi ||pkA). B then
chooses ri ∈R {0, 1}t and computes ci = Enc(pkB′,mi ||ri ||σi ,αi ), where αi =
H(mi ||ri ||σi ||τi ) and finally returns (ci , τi ) to A. B also maintains a list, S-list,
consisting of the queried messages, mi ’s. Once the query phase is over, A outputs
a receiver key pair (pkB, skB), a signcryptext c∗ and a corresponding tag τ∗ to B.
B computes (m∗||r∗||σ∗,α∗) = Dec(skB, c∗) and parses τ∗ as (s∗||η∗||pkA) and
returns (m∗, s∗) to the UF-CMA challenger C.

Let U be event that s∗ is a valid signature on m∗, i.e., Ver(pkA,m∗, s∗) = 1 and
m∗ /∈ S-list and V be the event that (σ∗, η∗) is a valid commitment-decommitment
pair for s∗||pkA i.e., DCMT(s∗||pkA,σ

∗, η∗) = 1 and α∗ = H(m∗|| r∗||σ∗||τ∗).
Note that, if m∗, the underlying message of c∗, has not been submitted to the sign-
cryption oracle OSigncrypt(skA, pkB, ·), then, as per the simulation, m∗ have not
been queried to the signing oracle OSign(skA, ·). Hence, we have Pr [B wins] =
Pr [U ] ≥ Pr [U ∩ V ] = Pr [A wins]. �

Theorem 5 SCDI is unlinkable in random oracle model if the underlying encryp-
tion scheme � is NM-CPA secure.

Proof We will construct an NM-CPA adversary B against�using a linking adversary
A against SCDI. As an input, B is fed with common parameter par and pkB of�,
which B passes on to A. Moreover, the H -queries needed by A will be provided by
B.

Simulation of H -oracle: When A submits an H -query mi ||ri ||σi ||τi , B first
checks whether (σi , τi ) is a valid stub-tag pair for mi or not, using the algorithm
Ver and DCMT. (Note that τi = si ||ηi ||pkAi ) If it is valid, B chooses a random
αi ∈ {0, 1}l and returns αi to A. If it is not valid, B returns “invalid query.” For each
returned value, B maintains a list called H -list containing (mi ||ri ||σi ||τi ,αi ).

In the challenge phase, A submits a target sender key pair (pkA, skA) to B. Now,
B recieives a challenge ciphertext c1 from the NM-CPA challenger C and passes it
to A as the challenge signcryptext. A continues to have access to the H -oracle. It
should be noted here that while answering H-queries in second phase, B ensures
that any answer αi does not lead to c1, i.e., c1 �= Enc(pkB,mi ||ri ||σi ,αi )A finally
outputs another signcryptext c2 as the linked signcryptext. B outputs (c2, ρ), where
ρ is the relation between two ciphertexts if their corresponding plaintexts have the
same (k − t − l + 1)-th bit to (k − l)-th bit.

Now, let us consider A’s view toward c1. Let c1 = Enc(pkB,m1||r1||σ1,α1).
Let E1 be the event that (m1||r1||σ1||·) has been queried to the H -oracle in the first
phase and E2 be the event that α1 has been received as response from the H -oracle
in the first query phase. Thus, the simulation of H -oracle is perfect in A’s view
unless E1 or E2 occurs, i.e., the simulation is correct in A’s view with probability

Pr[(E1 ∪ E2)
c] = Pr[E1

c ∩ E2
c] = Pr[E1

c] · Pr[E2
c] =

(
1− qH

2k

)
·
(

1− qH
2l

)

≥ 1− qH/2k − qH/2l , where qH denotes the total number of H -queries. Now, we
define Bwin to be the event that B wins the NM-CPA game and Areal

win to be the event
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that A wins the real unlinkability game. Thus, as per the simulation of B, we have,
Pr[Bwin] ≥ Pr[Areal

win ] · (1− qH/2k − qH/2l). �

Remark 7 It is to be noted that an adversary can always mount a denial-of-service
(DoS) attack on this primitive by submitting numerous garbage ciphertexts. As the
sender’s anonymity is maintained in the decryption phase, the correctness of the
committed signature cannot be tested, i.e., before the sender decommits the signature,
the receiver is not able to verify whether the received ciphertext is a proper output
of the signcryption scheme. This is not a limitation of this construction, rather it is
a price to be paid for using this primitive. On the other side, the risk of DoS attacks
is also there if we use a normal signcryption scheme in the existing scenarios, i.e.,
an adversary can create multiple fake email-ids and submit numerous ciphertexts
created against them.

5 Conclusion

In this paper, we have introduced a new primitive called Signcryption with Delayed
Identification (SCDI) and discussed its application in various functionalities. We put
forward proper security notions for this primitive and a generic construction of SCDI
from basic cryptographic primitives secure under these notions. Similar to the goal
of signcryption, as pointed out by Zheng [17], not only do we achieve the goal that
length of ciphertext of SCDI is less than the length of individual encryption and
partial signature, but also gain in terms of security from the component primitives.
Further research in this direction could be related to its efficiency and hence hybrid
SCDI can be an interesting open issue.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Proceedings
of the EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer (2002)

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. J. Cryptol.
20(2), 203–235 (2007)

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption.
In: Proceedings of the ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer (2001)

4. Bellare, M., Duan, S.: Partial signatures and their applications, Cryptology ePrint Archive,
Report 2009/336. http://eprint.iacr.org/2009/336 (2009)

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption—how to encrypt with RSA. In:
Proceedings of the EUROCRYPT ’94. LNCS, vol. 950. Springer (1995)

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient
protocols. In: Proceedings of the 1st CCS, pp. 62–73. ACM Press, New York (1993)

7. Coron, J.S., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: GEM: A generic
chosen-ciphertext secure encryption method. In: Proceedings of the CT-RSA 2002. LNCS, vol.
2271, pp. 263–276. Springer (2002)

http://eprint.iacr.org/2009/336


3 Signcryption with Delayed Identification 39

8. Deva Selvi, S.S., Vivek, S.S., Shiriam, J., Kalaivani, S., Pandu Rangan, C.: Identity based
aggregate signcryption schemes. In: Proceedings of the INDOCRYPT 2009. LNCS, vol. 5922,
pp. 378–397

9. Das, A., Adhikari, A.: An efficient IND-CCA2 secure Paillier-based cryptosystem. Inf. Process.
Lett. 112, 885–888 (2012) (Elsevier, 2012)

10. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum
cost. In: Proceedings of the PKC ’99. LNCS, vol. 1560, pp. 53–68. Springer (1999)

11. Hang, Q., Wong, D.S., Yang, G.: Heterogeneous signcryption with key privacy. Comput. J. 54
(4), 525–536 (2011)

12. Ma, C., Chen, K., Zheng, D., Liu, S.: Efficient and proactive threshold signcryption,. In: Pro-
ceedings of the ISC 2005. LNCS, vol. 3650, pp. 233–243. Springer (2005)

13. Malone-Lee, J.: Identity-Based Signcryption, Cryptology ePrint Archive, Report 2002/098.
http://eprint.iacr.org/2002/098

14. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryptosystem
transform. In: Proceedings of the CT-RSA 2001. LNCS vol. 2020, pp. 159–174. Springer
(2001)

15. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Pro-
ceedings of the EUROCRYPT ’99. LNCS, vol. 1592, pp. 223–238. Springer (1999)

16. Pointcheval, D.: Chosen-ciphertext security for any one-way cryptosystem. In: Proceedings of
the PKC 2000. LNCS, vol. 1751, pp. 29–146. Springer (2000)

17. Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption) �
cost(signature) + cost(encryption). In: Proceedings of the CRYPTO 97. LNCS, vol. 1294,
pp. 165–179. Springer (1997)

http://eprint.iacr.org/2002/098


Chapter 4
HDNM8: A Round-8 High Diffusion Block
Cipher with Nonlinear Mixing Function

Jaydeb Bhaumik and Dipanwita Roy Chowdhury

Abstract Since 2001, AES-128 is accepted as the standard block cipher. Till date,
full-round AES is secure against all existing attacks, but reduced-round versions are
susceptible to several attacks. In this paper, diffusion of AES-like block cipher is
improved by incorporating a 128-bit diffusion layer based on a maximum distance
separable code. Moreover, a nonlinear vectorial Boolean function is employed for
round key mixing, which improves the nonlinearity. Employing this high diffusion
and improved nonlinearity, a new block cipher called ‘HDNM8’ is proposed. It is
shown that HDNM8 is secure against several existing cryptographic attacks. HDNM8
has been implemented on an FPGA platform. It has been found that it requires
reasonable hardware and provides an acceptable throughput.

1 Introduction

Confusion and diffusion are two important cryptographic properties for the design of
a secure block cipher. Each round function of a Substitution Permutation Networks
(SPN) type block cipher consists of three layers: substitution layer, permutation
layer, and round key mixing layer. The permutation layer dissipates the statistics of
the plaintext in the statistics of the ciphertext; it is often referred to as the diffusion
layer. The substitution layer creates confusion, i.e., it makes the relationship between
the key and ciphertext as complex as possible. AES [10] is the most popular SPN-
type block cipher and it has a wide range of applications. It has a block size of 128-bit
and number of rounds 10/12/14. There are also some constructions, which use four
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rounds of AES as building block such as Pelican MAC [11], PC-MAC [17], and the
stream cipher LEX [6].

Only a substitution layer, which is strong against differential cryptanalysis (DC)
and linear cryptanalysis (LC), does not guarantee a secure SPN structure against
DC and LC if a diffusion layer does not provide an avalanche effect. Hence, the
role of the diffusion layer is very important for the design of secure block cipher.
AES employs a 32-bit diffusion layer for a 128-bit block cipher. The AES diffusion
layer is based on a Maximum Distance Separable (MDS) code and the distance
between any two distinct codewords (called branch number [9]) is five. In AES, all
plaintext bits diffuse completely after two rounds. Therefore, diffusion in AES is
relatively slow. Junod and Vaudenay have presented perfect diffusion primitives for
block ciphers by considering software implementations on various platforms [14].
Authors in [14] have constructed efficient (4× 4) and (8× 8) matrices over GF(28)

for block cipher. Hence, for a 128-bit block cipher, multiple parallel modules are
required and complete diffusion is not possible in a single round. Koo et al. proposed
binary (16 × 16) and (32 × 32) matrices for SPN-type block ciphers in [15, 16].
Recently, a new (16 × 16) involutory MDS matrix for AES is proposed in [18]. In
scheme [18], complete diffusion is possible after a single round, but the drawback
of the proposed construction is the performance penalty. SHARK [20] is a 64-bit
block cipher, which uses a Reed-Solomon (RS) code to construct its diffusion layer.
It has branch number 9. Two other block ciphers Khazad [2] and Anubis [1] have
been designed by Barreto and Rijmen. Khazad is a 64-bit, 8-round block cipher and
it employs an MDS diffusion layer, which has branch number 9. It provides complete
diffusion after one round. Anubis is a 128-bit, 12–18 rounds block cipher, but it has
a slower, Rijndael-like 32-bit diffusion layer [5]. A diffusion layer with large branch
number increases the security of cipher. A common feature exploited by several
existing attacks on reduced-round AES is the slow diffusion via the combination of
ShiftRows and MixColumns [18].

Boolean functions XOR and addition modulo 2n are popularly used for round
key mixing in several existing block ciphers. Two popular block ciphers DES and
AES use XOR as a key mixing function because it is balanced, involutary, and
efficient for implementation, although it is purely linear. In case of block ciphers like
IDEA, MARS, RC6, FEAL, SEA, addition mod 2n is used for round key mixing
operation. But in case of modulo addition, the individual output bit as well as a linear
combination of consecutive output bits has a high bias value 1

4 . Therefore, it will be
advantageous if we replace XOR or modulo addition by a nonlinear function, which
maintains properties like balancedness, reversibility, low hardware complexity, in
addition to good nonlinearity. Introduction of nonlinear key mixing function enhances
the overall nonlinearity of the round function of an SPN-type block cipher.

In this Chapter, Cellular Automata (CA)-based MDS codes for diffusion layer,
nonlinear round key mixing function, and AES S-boxes are used to design a new
SPN-type block cipher called ‘HDNM8’ (High Diffusion Nonlinear key Mixing with
8 rounds). Also, the strength of proposed cipher against existing attacks is evaluated
and it has been implemented on an FPGA platform. The proposed design is amenable
for hardware implementation.
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The rest of this Chapter is organized as follows. The next section discusses the
CA-based diffusion layer. A description of ‘Nmix’ function is given in Sect. 3. Design
and implementation of the proposed block cipher HDNM8 is discussed in Sect. 4. The
diffusion property of full round and reduced round versions of HDNM8 are examined
in Sect. 5. Strength of the proposed cipher against existing attacks is analyzed in
Sect. 6 and finally the paper is concluded in Sect. 7.

2 Diffusion Layer Using CA-Based MDS Code

A diffusion layer does not allow to preserve some characteristics that result from a
substitution layer. Several SPN-type block ciphers use MDS codes for the construc-
tion of diffusion layer. The main aim in the design of MDS codes-based diffusion
layer is to reduce the computational cost by selecting an appropriate MDS matrix.
One such diffusion layer based on CA is introduced in [4]. For the sake of com-
pleteness, a brief description of CA and CA-based diffusion layer is given in this
section.

2.1 Cellular Automata

It consist of a number of cells arranged in a regular manner, where the state transitions
of each cell depends on the state of its neighbors. Each cell consists of a D flip-flop
and a combinational logic implementing the next-state function. An r -cell linear CA
can be characterized by an (r × r) binary characteristic matrix T . The i-th row of
the matrix T describes the neighborhood relation of the i-th cell.If an element Ti j (at
row i and column j of matrix T ) is 1, then the i th cell in the array has neighborhood
dependence on the j th cell.The state St+1 can be computed by multiplying St with
T , where St and St+1 represents the states of the CA at t-th and (t + 1)-th instant,
respectively. If the state transition graph of an r -cell CA consists of a single cycle
containing all L = 2r − 1 nonzero states, then the CA is called as maximum length
CA. One characteristic matrix (T ) of an 8-cell maximum length CA is as follows:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The characteristic polynomial is defined as determinant of (T+x[I ]). The polynomial
associated with T is p(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1, which is one of
the primitive polynomials of GF(28). In the rest of this Chapter, T will indicate
characteristic matrix of the 8-cell maximum length CA, which is mentioned above.

2.2 CA-Based MDS Code

A (n,m, d) code that meets the Singleton bound, namely d = n − m + 1, is called
an MDS code, where m is the number of data symbols, n is the number of symbols
in a codeword, and d is the distance of separation between two distinct codewords.
For an MDS code, the minimum number of nonzero symbols in any codeword is d.
The generator matrix G = [I |M] of a (n,m, d) MDS code over GF(28) is a (m× n)
matrix, where elements of G are in GF(28), I is a (m ×m) identity matrix and M is
a m × (n − m) matrix. Sometimes, the matrix M is designed using Vandermonde’s
construction. In this case, each element of M is power of a primitive element of
GF(28). In case of maximum length CA, a characteristic matrix T is equivalent to
a primitive element α. Therefore, the matrix M16×16 of a (32, 16, 17) code can be
constructed from characteristic matrix T , where each element of M is a power of T ,
and it is as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T T 2 T 3 . . . T 15 T 16

T 2 T 4 T 6 . . . T 30 T 32

T 3 T 6 T 9 . . . T 45 T 48

. . . . . . . .

. . . . . . . .

. . . . . . . .

T 15 T 30 T 45 . . . T 225 T 240

T 16 T 32 T 48 . . . T 240 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The linear code generated by the generator matrix G = [I |M] is an MDS code, where
I16×16 is an identity matrix and each element of I is an (8 × 8) binary matrix. The
linear code has dimension 16, length 32, and the minimum distance of separation
between two distinct codewords is 17. The matrix M is sometimes called MDS
matrix.

For a 128-bit block cipher, a single 128-bit diffusion layer can be used in all
rounds, and it is advantageous for a single round iterative architecture. Figure 1 gives
an estimation for the minimum number of active S-boxes in a 4-round cipher. In
Fig. 1, black square boxes indicate the active S-boxes. There are a total of 34 active
S-boxes in a 128-bit four rounds cipher. In case of AES, minimum number of active
S-boxes for a 4-round cipher is 25. The higher the number of active S-boxes are, the
more secure will be the cipher against DC and LC.

Boolean function XOR is used for round key mixing in many block ciphers. XOR
is linear, so nonlinearity of round function solely depends on S-Box. But nonlinear
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Diffusion layer

Diffusion layer

Diffusion layer

Fig. 1 Minimum number of active S-boxes

round key mixing function adds extra nonlinearity in the round function. Following
section describes a nonlinear round key mixing function.

3 Function: Nmix

A nonlinear, reversible, balanced vectorial Boolean function Nmix is introduced in
[3]. A brief description of Nmix is given in this section for the sake of completeness.
Nmix: Assume that X = (xn−1 xn−2 . . . x0) is an n-bit data, K = (kn−1 kn−2 . . . k0)

is an n-bit round-key and Y = (yn−1 yn−2 . . . y0) is the n-bit output after mixing X
with K . Then each output bit is related to the input bits by the following relationship:

yi = xi ⊕ ki ⊕ ci−1 ; ci =
i⊕

j=0

x j k j ⊕ xi−1xi ⊕ ki−1ki (1)

where 0 ≤ i < n, c−1 = 0, x−1 = 0, k−1 = 0 and ci is the carry term propagating
from the i-th bit position to the (i+1)-th bit position. The end carry cn−1 is neglected.
Each yi is also balanced function for 0 ≤ i < n. It is shown in [3] that the bias for the
best linear approximation of output bit yi of Nmix is 2−i , where 2 ≤ i < n. The bias
of the best linear approximation for y0 and y1 are, respectively, 1

2 and 1
4 . Further, the

bias for the best linear approximation of yi⊕ yi+1 is 0.0625, where 2 ≤ i < n. In the
following section, the function Nmix is employed for round-key mixing in a block
cipher called ‘HDNM8’. In case of Nmix, the round key is mixed with round input
in byte by byte fashion, so that there is no carry propagation from lower significant
byte to higher significant byte. Byte wise key mixing is used to minimize the carry
propagation delay and to provide a reasonable amount of nonlinearity.
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Fig. 2 Block diagram of HDNM8

4 Design and Implementation of HDNM8

In this section, a brief introduction of cipher HDNM8 is given first. It is a 128-bit
SPN type block cipher with number of rounds is eight. Each round consists of three
layers: nonlinear round key mixing layer, substitution layer having 16 AES S-boxes,
and a single 128-bit diffusion layer. In this cipher, the ShiftRows and MixColumns
operations of AES-like ciphers are replaced by a single 128-bit diffusion layer. There
are sixteen Nmix modules in each key mixing layer. The block diagram of the cipher
HDNM8 is shown in Fig. 2. Proposed cipher can operate in counter mode, output
feedback mode, and cipher feedback mode, where only encryption module is required
for both encryption and decryption. In Fig. 2, Ki ’s are round keys, where 1 ≤ i ≤ 9,
K1 is the cipher key, and other round keys are generated from the cipher key using
key schedule algorithm of AES. There are eight similar type of rounds (R1 to R8)
and one final round key mixing. In the design of HDNM8, AES S-boxes are used in
the substitution layer. The operation of AES S-box can be described as [10]

S(z) = L(z−1)+ c (2)
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Fig. 3 Architecture of HDNM8 with 16 S-boxes

Table 1 Resources for HDNM8 with 16 S-boxes implementation

Resource type HDNM8 AES
Round key mixing by
Nmix XOR XOR
# % # % # %

Slices 1,736 31 1,613 29 1,028 18
Slice FFs 388 3 260 2 388 3
4-input LUTs 3,352 30 3,131 29 1,994 18
Frequency (MHz) 101.535 112.018 151.493
Throughput (Gbps) 1.299 1.433 1.615

where z ∈ GF(28), z−1 is the multiplicative inverse of z and 0 is mapped to 0.
L is a linear transformation in GF(2) and c is a constant. For efficient hardware
implementation of AES S-box, composite field arithmetic is frequently used. In [7],
the author has proposed a compact implementation of S-box using normal basis for
each subfield. For implementation of HDNM8, Canright’s scheme is employed for
S-box design. The present section explains two architectures of HDNM8 for VLSI
implementation. The first approach primarily focuses on latency (in terms of clock
cycles) optimization, whereas the second approach addresses the area (in terms of
gate count) optimization.

4.1 Latency Optimized Implementation

In the first architecture, there are sixteen S-boxes in a substitution layer. Each
S-box is implemented using normal basis [7]. The diffusion layer is constructed
using a single 128-bit layer and the corresponding MDS matrix M (explained in
Sect. 2) has dimension (16 × 16), where each element is an (8 × 8) binary matrix.
A (128 × 128) binary matrix is realized by substituting the values of all elements,
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Fig. 4 Architecture of HDNM8 with four S-boxes

Table 2 Resources for
HDNM8 with four S-boxes
implementation

Resource type Round key mixing by Nmix
# %

Slices 748 13
Slice FFs 691 6
4-input LUTs 1,357 12
Frequency (MHz) 178.524
Throughput (Mbps) 148.383

which are power of T . The value of T is given in Sect. 2 and the other powers of T are
obtained by matrix operation in GF(2). As a result, each output bit of the diffusion
layer can be expressed as bitwise XOR of input bits. Round key mixing is done by
Nmix function. In the proposed cipher, we use the AES key-schedule algorithm, and
hence it is not implemented in this work. It is assumed that round-keys are available
in round-key register during round operation. Table 1 shows the resources used for
FPGA implementation of the architecture given in Fig. 3. Every architectural module
has been implemented in Verilog and simulated using ModelSim XE III 6.0a. The
design has been synthesized by Xilinx ISE 7.1i tool and the target FPGA device was
Virtex 4vfx12sf363-12. In Table 1, resources required for key scheduling algorithm
is not considered. Moreover, an iterative architecture of AES-128 is implemented
using S-box architecture proposed in [7]. Table 1 shows a comparison of synthesis
results of HDNM8 with AES. From Table 1, it is noted that the implementation of
AES-128 in FPGA requires lesser amount of resources as compared to HDNM8. It
is found that proposed cipher provides reasonable throughput.
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Fig. 5 Block diagram of 128-bit diffusion layer
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Fig. 6 Internal architecture of CA-T

4.2 Area Optimized Implementation

In this architecture, there are four S-boxes in the substitution layer as shown in
Fig. 4. The diffusion layer is constructed by employing a single 128-bit layer and
is implemented using CA. Figure 5 shows a 128-bit diffusion layer using an 8-bit
maximum length CA. In Fig. 5, sixteen output bytes y1, y2, ...y16 are computed by
running CA-T , CA-T 2, ... CA-T 16, respectively, for 16 times, while sequentially
feeding 16 input bytes (starting from x1 up to x16). The CA-based implementation
of the diffusion layer has latency of 16-clock cycles. Figure 6 shows the internal
architecture of CA-T, which represents an 8-bit CA having characteristic matrix T .
The matrix T is given in Sect. 2. In Fig. 6, there are XOR gates in two levels. Two
inputs XOR gates in the first level are used to add previous state output with input.
XOR gates in the second level are used to connect neighboring cells. The internal
architecture of CA-T i is obtained by configuring the second level XOR gates ac-
cording to T i . Also there are 16 Nmix modules in each round. In this case, latency
is high, but the implementation requires smaller amount of hardware compared to
Latency Optimized Implementation. Table 2 shows the synthesis result of the archi-
tecture shown in Fig. 4. In Table 2, resources required for key scheduling algorithm
is not considered. It is observed from Table 2 that the proposed architecture has a
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Table 3 Dependence test results

Number of Average number of Degree of Degree of Degree of
rounds output bit completeness avalanche strict avalanche

changes effect effect

1+ 1
3 64.26 1.0 0.9947 0.9585

2+ 1
3 63.99 1.0 0.9989 0.9888

3+ 1
3 63.99 1.0 0.9990 0.9887

4+ 1
3 64.00 1.0 0.9990 0.9886

5+ 1
3 64.01 1.0 0.9991 0.9887

6+ 1
3 63.99 1.0 0.9991 0.9887

7+ 1
3 63.99 1.0 0.9990 0.9887

8+ 1
3 64.00 1.0 0.9991 0.9887

small area overhead. In the following section, the diffusion properties of full round
and reduced round versions of HDNM8 are examined.

5 Dependence Tests

In this section, the average number of output bits will change when single input
bit changes, the degree of completeness, the degree of avalanche effect, and the
degree of strict avalanche criterion are determined for full round and reduced round
versions of HDNM8. The terms degree of completeness (dc), degree of avalanche
effect (da), and degree of strict avalanche criterion (dsa) have been defined in New
European Schemes for Signatures, Integrity, and Encryption (NESSIE) report IST-
1999-12324 [19]. For a function f , it is desirable to have dc = 1, dsa ≈ 1 and
da ≈ 1. However, bad results would have been a strong indication of weakness in
the algorithm. Examination on all four parameters is carried out by varying number
of rounds from 1 round to 8 rounds. Also in every computation the last round key
mixing (‘ 1

3 ’) is kept fixed. Here, dependence and distance matrices are computed
by considering 5,000 randomly chosen inputs and single randomly chosen 128-bit
key. Table 3 shows the variation of average number of output bit change, degree of
completeness, degree of avalanche effect, degree of strict avalanche effect with the
variation of number of rounds in HDNM8. From Table 3, it is observed that all four
parameters approximately attain their desired values after one round.
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Table 4 Comparison of EDP(DP) versus frequency of occurrence of DDT for S-box

S�-Box AES S-Box
EDP value Number of DP value Number of

occurrence occurrence

EDP = 0 877 0 33,150
0.0001 ≤ EDP ≤ 0.001 271
0.001 ≤ EDP ≤ 0.002 1,806
0.002 ≤ EDP ≤ 0.003 8,079
0.003 ≤ EDP ≤ 0.004 2,5282
0.004 ≤ EDP ≤ 0.005 2,2291
0.005 ≤ EDP ≤ 0.006 5,379
0.006 ≤ EDP ≤ 0.007 1,002
0.007 ≤ EDP ≤ 0.008 485 0.0078 32,130
0.008 ≤ EDP ≤ 0.009 39
0.009 ≤ EDP ≤ 0.01 10
0.01 ≤ EDP ≤ 0.013 13
EDP = 0.0156 1 0.0156 255
EDP = 1.0 1 1.0 1

6 Security Analysis

The robustness of the block cipher HDNM8 against several existing cryptographic
attacks has been studied in this section. It is observed that it is secure against linear
cryptanalysis, differential cryptanalysis, higher order differential attack, interpolation
attack, algebraic attack, and integral attack.

6.1 Expected Differential Probability Value for Characteristic

The probability of the differential is a more accurate measure for the success rate of a
differential attack. But in general, the probability of differential over multiple rounds
of an SPN-type block cipher is difficult to compute. Therefore, in this paper the upper
bound of expected differential probability (EDP) for characteristic is computed. The
differential probability DP f (a, b) of a differential (a, b) with respect to f (x) is
defined in [12], and the expression is as follows:

DP f (a, b) = 2−n#{x ∈ Fn
2 | f (x + a) = f (x)+ b} (3)

If f is a function of parameter k, then expected differential probability (EDP) of a dif-
ferential (a, b) is defined as the mean value of parameterized differential probability
DP[k](a, b) and expressed as
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EDP(a, b) = 2−|κ|�k∈κDP[k](a, b) (4)

here k is assumed to be a uniformly distributed random variable taking values in
κ , set of all keys of size |κ| bits. In order to compute the maximum differential
probability for single round, the AES S-box (S) is combined with the 8-bit Nmix
function. The keyed substitution box is represented by S�-box. For S�-box, it is
obtained that EDP(0, 0) = 1 and EDP(a, 0) = EDP(0, b) = 0 for all a, b ∈ F2

n . It
is observed that maximum expected differential probability of S� is 2−6 for nonzero
input difference, i.e., a �= 0. Table 4 describes the range of expected differential
probabilities and corresponding frequency of occurrence in the difference distribution
table of S�-box. It is observed from Table 4 that EDP values of S�-box are more
evenly distributed compared to AES S-box. The 128-bit diffusion layer has branch
number 17. There are at least 34 active S-boxes in the 4-rounds cipher. It assumed
that the round keys are independent and random. Therefore, the best EDP value for
characteristics of the 128-bit 2-round cipher is bounded by (2−6)17 = 2−102. For a
4-round cipher the value is (2−102)2 = 2−204. Therefore, classical differential attack
is not possible after four rounds.

6.2 Maximum Expected Probability for Linear Characteristic

According to Hong et al., the linear probability [13] of an S-box Si is defined as
follows:

LPSi (Γ x → Γ y) =
(

#{x ∈ Zm
2 |Γ x .x = Γ y.Si (x)}

2m−1 − 1

)2

LPSi
max = maxΓ x,Γ y �=0LPSi (Γ x → Γ y) (5)

where Γ x and Γ y are input and output mask, respectively, and 1 ≤ i ≤ n. It has
been shown in [13] that the probability for each linear characteristic of Substitution,
Diffusion, and Substitution (SDS) function is bounded by qn , where q = LPSi

max
is the maximum linear probability of S-boxes in the substitution layer and n + 1
is a lower bound for the number of active S-boxes in two consecutive rounds of a
linear approximation. For the computation of the expected linear probability (ELP),
a modified S-box (S�) is considered, which is the combination of nmix and AES
S-box. The linear probability of (S�) is computed for each 8-bit key and then the
expected linear probability is computed by taking the average over all 8-bit keys.
In case of (S�)-box, the value of ELPS

max is also 2−6. But it is found that the value
of ELPS

max = 2−6 appears 1,275 times in the linear approximation table of the
AES S-box, while it appears only 5 times in case of S�-box. Hence, the expected
probability for linear characteristic of S�DS� function is bounded by (2−6)16 = 2−96.
So the maximum probability for linear characteristic of the four rounds cipher is
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(2−96)2 = 2−192. Hence, four rounds of proposed construction is sufficient to resist
classical linear attack.

6.3 Higher Order Differential Cryptanalysis

The S-Boxes (AES S-Box) of HDNM8 have algebraic degree 7. Each output bit of
the S-Box can be regarded as a Boolean function with 8 input variables. Key mixing
function Nmix has algebraic degree two except the first bit, which has algebraic degree
one. Therefore, after one round algebraic degree of any intermediate bit becomes at
least 13. Hence, after two rounds the algebraic degree of any intermediate bit becomes
132. Thus, the number of plaintexts needed for higher order differential attack using
a two rounds distinguishers is greater than 2128. So, the proposed cipher is secure
against higher order differential attack.

6.4 Interpolation Attack

In interpolation attack, plaintext and ciphertext pairs are used to construct the relation
between the input and output of the cipher. If the constructed polynomials have small
algebraic degree, then small number of plaintext and ciphertext pairs are required to
solve the coefficients of the polynomial. It is expected that interpolation attack is not
possible just after few rounds because of the complicated expression of the S-Boxes,
together with the effect of diffusion layer and nonlinear round key mixing used in
HDNM8.

6.5 Algebraic Attack

The AES S-Box has been studied by Courtois and Pieprzyk [8]. They observed
that there are 39 quadratic equations over F2 of probability one and one additional
quadratic equation of probability 255

256 exit between input and output of the S-Box.
Hence, this is also the case for the S-box of the proposed cipher HDNM8. It is an
8-round 128-bit cipher, therefore total 16 × 8 + 4 × 8 = 160 number of S-Boxes
are used for one encryption. Using these 40 equations for each S-Box, one can
construct 6,400 quadratic equations of 1,280 unknown variables. The solution of
these equations can be used to derive the value of the secret key used in the encryption.
To the best of our knowledge, the time complexity to solve the above set of quadratic
equations is unknown. Therefore, algebraic attack cannot be faster than exhaustive
key search.
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6.6 Integral Cryptanalysis

Integral cryptanalytic attack is particularly applicable to SPN-type block ciphers,
which have strong word-like structure. Integral cryptanalysis uses sets or even mul-
tisets of chosen plaintexts of which part is held constant and another part varies
through all possibilities. XOR sum of set of input plaintexts and XOR sum of cor-
responding ciphertexts are used to derive the secret key. In HDNM8, the operations
in substitution layer is bytewise operation. But keymixing and diffusion layer are
bitwise operation. Therefore, development and propagation of bytewise structure is
disrupted by the bitwise operation in round key mixing and diffusion.

7 Conclusions

In this Chapter, a CA-based MDS code is employed to construct the diffusion layer of
a 128-bit block cipher. A new block cipher called ‘HDNM8’ is introduced employing
the the diffusion layer, the nonlinear key mixing function, and the AES S-boxes. The
robustness of the proposed cipher against several existing cryptographic attacks has
been shown. Also, HDNM8 has been implemented in hardware. Performance of
HDNM8 on an FPGA platform is evaluated and compared with AES.
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Chapter 5
Frames and Erasures

Saliha Pehlivan

Abstract Frames have been useful in signal transmission due to the built in
redundancy. In recent years, the erasure problem in data transmission has been the
focus of considerable research in the case the error estimate is measured by operator
(or matrix) norm. Sample results include the characterization of one-erasure opti-
mal Parseval frames, the connection between two-erasure optimal Parseval frames
and equiangular frames, and some characterization of optimal dual frames. If iter-
ations are allowed in the reconstruction process of the signal vector, then spectral
radius measurement for the error operators is more appropriate than the operator
norm measurement. A complete characterization of spectrally one-uniform frames
(i.e., one-erasure optimal frames with respect to the spectral radius measurement) in
terms of the redundancy distribution of the frame is obtained. The characterization
relies on the connection between spectrally optimal frames and the linear connectivity
property of the frame. The linear connectivity property is equivalent to the intersec-
tion dependence property, and is also closely related to the concept of k-independent
set.

1 Introduction

In the study of Hilbert spaces, an orthonormal basis, possessing some desirable
properties, is one of the most important concepts. One such property is that each
element in Hilbert space can be written uniquely as a linear combination of the
elements in the basis. For instance, in the signal transmission, a signal is thought of
as a vector in a Hilbert space that is represented as a linear combinations of orthogonal
basis vectors. The signal is transmitted to a receiver by transmitting the sequence of
coefficients that represents the signal. These coefficients can be computed by taking
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some inner products. The receiver on the other side reconstructs the signal. However,
if one of the coefficients is lost during the transmission, the receiver cannot recovers
the signal. The orthogonality property of the basis is restrictive in this sense. This
brings us the notion of frame that has redundancy so that if some pieces of information
is lost, it is recovered with the other pieces that are received.

A vector in a Hilbert space can be represented by the elements of a frame but not
necessarily uniquely as in the case of an orthonormal basis. Thus, frames are con-
sidered as a generalization of orthogonal basis. The redundancy property of frames
makes it more robust than orthogonal basis in some applications such as signal
processing, image processing, coding, and sampling. These applications have nat-
urally led to the investigations of optimal frames or dual frames that yield better
approximations to the original signals. Typically, there are two types of investiga-
tions on optimal dual frames: one of them is to find (characterize) and construct
optimal frames among a class of frames. Examples of this kind include the known
theory established for erasure optimal Parseval frames (i.e., frames that are erasure
optimal in the class of all Parseval frames (c.f. [1–4, 6, 8, 10–12, 21]). The other kind
is the investigation of optimal dual frames for a given frame. This case addresses the
applications when a particular frame that models the nature of the application is pres-
elected for encoding (decomposition of) the signal. In this case, the theory of optimal
dual frames (for the purpose of better decoding) needs to be established (c.f. [13,
15–19]). When it comes to the terminology of optimal, we mean the reconstruction
error is minimal with respect to some prescribed measurement.

2 Preliminaries

2.1 Frames in Hilbert Spaces

Let H be a Hilbert space with inner product 〈 , 〉, and norm ‖·‖. The formal definition
of a frame which is valid in both finite and infinite dimensional Hilbert spaces is the
following:

Definition 2.1 A collection { fi }i∈N of elements of a Hilbert space H is called a
frame for H if there are positive constants 0 < A ≤ B <∞ such that

A ‖ f ‖2 ≤
∑
i∈N
|〈 f, fi 〉|2 ≤ B ‖ f ‖2 , for all f ∈ H. (1)

In the above definition, A and B are called lower and upper frame bounds,
respectively.

A frame is called a tight frame if A = B, and if A = B = 1, it is called a Parseval
frame. If the norm of frame vectors are equal, it is called a uniform frame and if
additionally norm is one, it is called a unit norm frame.

Now let us see some frame examples on �2.
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Example 2.1

(i) Standard orthonormal basis is a Parseval frame with A = 1.
(ii) F = {0, 0, 0, 0, 0, e1, e2, e3, . . .} is a Parseval frame with A = 1.

(iii) F = {e1, e1, e1, e1, e2, e3, e4, . . .} is a frame with bounds A = 1 and B = 4.

(iv) F =
{

e1,
1√
2

e2,
1√
2

e2,
1√
3
e3,

1√
3

e3,
1√
3
e3, . . .

}
is a Parseval frame.

The definition given in (1) is true for both finite and infinite dimensional Hilbert
spaces. However, there is an alternative definition to frames in finite dimensional
Hilbert spaces.

Theorem 2.1 A family of elements { fi }Ni=1 in a finite dimensional Hilbert space H
is a frame for H if and only if { fi }Ni=1 spans H; i.e., span{ fi }Ni=1 = H.

Proof Assume that H = span{ fi }Ni=1. We can find nonzero h ∈ H with ‖h‖ = 1
such that

A =
N∑

i=1

|〈h, fi 〉|2 = min

{
N∑

i=1

|〈 f, fi 〉|2 : f ∈ H , ‖ f ‖ = 1

}
, (2)

where
∑

i |〈 f, fi 〉|2 is a continuous function of f . We see that A > 0 and

N∑
i=1

|〈 f, fi 〉|2 =
N∑

i=1

∣∣∣∣
〈

f

‖ f ‖ , fi

〉∣∣∣∣
2

‖ f ‖2 ≥ A ‖ f ‖2 . (3)

Note that by Cauchy-Schwarz’ inequality, we have

N∑
i=1

|〈 f, fi 〉|2 ≤
N∑

i=1

‖ fi‖2 ‖ f ‖2 , (4)

and since the sequence of vectors { fi }Ni is finite, B =
N∑

i=1

‖ fi‖2 <∞. Hence, { fi }Ni
is a frame for H .

For the other direction, assume that F is a frame and { fi }Ni=1 does not span H .
Then there exists a vector f ∈ M⊥where M =span{ fi }Ni=1. Note that f is orthogonal

to each fi . Thus,
∑N

i=1 |〈 f, fi 〉| = 0. This implies that the lower frame bound is 0,
which contradict the fact that F is a frame.

Note here that, particularly, this definition implies that every basis for a Hilbert
space H is a frame for H . Moreover, a finite collection of vectors { fi }Ni is a frame
for its span, span{ fi }Ni .

Propsition 2.1 Let { fi }Ni=1 be a frame with a lower and upper frame bounds A and
B, respectively. Then, ‖ fi‖2 ≤ B for all i = 1, . . . , N. If ‖ fi‖2 = B for all i , then fi

is orthogonal to every f j for j �= i . Moreover, if ‖ fi‖2 < A, then fi ∈ span{ f j }Nj �=i .
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Proof Let { fi }Ni=1 be a frame with bounds A and B. Then from the frame definition,

for every j ∈ {1, . . . , N }, we have B
∥∥ f j

∥∥2 ≥ ∑N
i=1

∣∣〈 f j , fi 〉
∣∣2 ≥ ∣∣〈 f j , f j 〉

∣∣2 =∥∥ f j
∥∥4
. Thus, ‖ fi‖2 ≤ B.

For the second part of the proposition assume that ‖ fi‖2 = B, then, from the
definition of frame, B

∥∥ f j
∥∥2 ≥∑N

i=1

∣∣〈 f j , fi 〉
∣∣2 = ∣∣〈 f j , f j 〉

∣∣2+∑N
i=1
i �= j

∣∣〈 f j , fi 〉
∣∣2 =

B2 + ∑N
i=1
i �= j

∣∣〈 f j , fi 〉
∣∣2
, and, this implies that

∑N
i=1
i �= j

∣∣〈 f j , fi 〉
∣∣2 ≤ 0. Therefore,

〈 f j , fi 〉 = 0 for all i �= j .
To show the last part of the proposition, suppose ‖ fi‖2 < A for all i , and assume

for a contradiction that there exist j ∈ {1, . . . , N } such that f j is not in the span of
{ fi }i �= j , in other words, 〈 fi , f j 〉 = 0 for every i �= j . Then, from the definition of

frame, we have A
∥∥ f j

∥∥2 ≤ ∑N
i=1

∣∣〈 f j , fi 〉
∣∣2 = ∣∣〈 f j , f j 〉

∣∣2 +∑N
i=1
i �= j

∣∣〈 f j , fi 〉
∣∣2 =

∥∥ f j
∥∥4
, that is,

∥∥ f j
∥∥2 ≥ A. This contradicts with the assumption. Hence, fi ∈

span{ f j }Nj �=i for all i ∈ {1, . . . , N }.
As particular cases of the proposition, we state the following two corollaries:

Corollary 2.1 Let { fi }Ni=1 be a tight frame with frame bound A. Then, ‖ fi‖2 ≤ A
for all i = 1, . . . , N, and the inequality holds if and only if fi is orthogonal to every
f j for j �= i .

Proof It is enough to show that if fi is orthogonal to every f j for j �= i , then
‖ fi‖2 = A, the rest follows from the proof of the above proposition. In fact, assume
that fi is orthogonal to every f j for j �= i . Then, by the last part of the proposition, we
have ‖ fi‖2 ≥ A; moreover, we have ‖ fi‖2 ≤ A from the first part of the proposition.
Thus, ‖ fi‖2 = A for all i ∈ {1, . . . , N }.
Corollary 2.2 Let { fi }Ni=1 be a Parseval frame. Then, ‖ fi‖2 ≤ 1 for all i =
1, . . . , N, and the inequality holds if and only if fi is orthogonal to every f j for
j �= i .

Propsition 2.2 If one of the vectors f j of a Parseval frame { fi }Ni=1 is removed, then
the family of the vectors { fi }i �= j is either a frame or an incomplete set.

Proof By Corollary 2.2, the norm of vectors of a Parseval frame is either one or less
than one. If

∥∥ f j
∥∥ = 1, then fi is orthogonal to span{ fi }i �= j ; thus, { fi }i �= j ceases to

be a frame. On the other hand, when
∥∥ f j

∥∥ < 1, f j ∈ span{ fi }i �= j . Hence, { fi }i �= j

spans the Hilbert space H , thus, { fi }i �= j is a frame for H .

2.2 Frame Operators

We have a reconstruction formula for frames similar to the reconstruction formula for
orthonormal basis. To derive the formula, we first define the analysis and synthesis
operators.
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Definition 2.2 Let { fi }i∈I be a frame for a Hilbert space H and {ei }i∈I be the
standard orthonormal basis. The analysis operator � : H → �2(I ) is defined to be

�( f ) =
∑
i∈I

〈 f, fi 〉ei for all f ∈ H. (5)

The adjoint of the analysis operator is called the synthesis operator that is given by
�∗(ei ) = fi . By composing synthesis operator �∗ with its adjoint operator �, we
get the frame operator S which is given by S f = �∗� f =∑

i∈I 〈 f, fi 〉 fi .

Remark 2.1 That S is self-adjoint and positive operator follows from S∗=(�∗�)∗=)
�∗� = S, and 〈S f, f 〉 =

〈∑
i∈I 〈 f, fi 〉 fi , f

〉
= ∑

i∈I 〈 f, fi 〉〈 fi , f 〉 = ∑
i∈I |〈 f, fi 〉|2 ,

respectively.

Remark 2.2 By the definition (1) of frame and Remark 2.1, we have A ‖ f ‖2
≤ 〈S f, f 〉 ≤ B ‖ f ‖2 for all f ∈ H , or, AI ≤ S ≤ B I . If { fi }i∈I is a tight frame;
i.e., A = B, then S = AI , and if { fi }i∈I is a Parseval frame; i.e., A = B = 1, then
S = I .

Next, we give some properties of analysis operator.

Propsition 2.3 Let�T f be an analysis operator for the set of vectors {T fi }i∈I where
T : H → H is a linear operator. Then, �T f h = � f T ∗h.

Proof Let h ∈ H . By the definition of analysis operator we have, �T f h =∑
i∈I 〈h, T fi 〉ei =∑

i∈I 〈T ∗h, fi 〉ei = � f T ∗h.

Propsition 2.4 Let�α f be an analysis operator of the set of vectors {α fi }i∈I where
α is a scalar. Then, �α f = ᾱ� f .

Proof Letting T = α I in Proposition 2.3, the result follows.

Following couple propositions show the relationship between frames and its corre-
sponding analysis and frame operators, respectively. In other words, frames can be
characterized by analysis and frame operators.

Propsition 2.5 Let H be a finite, say n, dimensional Hilbert space. Then, { fi }Ni=1 is
a frame for H if and only if the analysis operator � is one-to-one.

Proof First, suppose that { fi }Ni=1 is a frame for H . And assume that� f = 0 for some

f ∈ H . Then,
N∑

i=1

〈 f, fi 〉ei = 0, which means that 〈 f, fi 〉 = 0 for all i = 1, . . . , N

because {ei }ni=1 is the standard orthonormal basis. On the other hand, since { fi }Ni=1
is a frame, we can write every f ∈ H as a linear combination of frame vectors

such that f =
N∑

i=1

ci fi for some constants ci . Then 〈 f, f 〉 =
〈

f,
∑N

i=1 ci fi

〉
=

∑N
i=1 c̄i 〈 f, fi 〉 = 0. Hence f = 0, and f is one-to-one.
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Now, suppose that � is one-to-one, and assume for a contradiction that { fi }Ni=1
is not a frame for H ; i.e., { fi }Ni=1 does not span H . Then there exist nonzero f ∈ H

such that 〈 f, fi 〉 = 0 for all i = 1, . . . , N . Thus, we have � f =
N∑

i=1

〈 f, fi 〉ei = 0.

This contradicts with � being one-to-one. Hence, { fi }Ni=1 is a frame for H .

Propsition 2.6 Let H be a finite dimensional Hilbert space. Then, { fi }Ni=1 is a frame
for H if and only if the frame operator S is invertible.

Proof First assume that { fi }Ni=1 is a frame for H . To show that S is one-to-one,

assume further that S f = 0. Then by Remark 2.1, we have
N∑

i=1

|〈 f, fi 〉| = 0. This

implies that ‖ f ‖ = 0 by the definition of frame. Hence, f is one-to-one. Now, to
show that S is onto, assume that there exist nonzero element f in the orthogonal
complement of the range of S. Then 〈Sg, f 〉 = 0 for all g ∈ H . Thus, 〈S f, f 〉 = 0.
Again, from Remark 2.1 and the definition of frame, f = 0. Therefore, range of S
is the entire space H .

To show the opposite direction, assume that S is invertible with the inverse
operator S−1. Then, for each f ∈ H , f = SS−1 f = ∑N

i=1〈S−1 f, fi 〉 fi =∑N
i=1〈 f, S−1 fi 〉 fi . This shows that { fi }Ni=1 spans H and, therefore, { fi }Ni=1 is a

frame.

If the inverse S−1 of frame operator is applied to the frame vectors fi for i =
1, . . . , N , then the new collection of vectors {S−1 fi }Ni=1 is a frame and its frame
bounds are characterized by the frame bounds of { fi }Ni=1.

Propsition 2.7 If { fi }Ni=1 is a frame for a finite dimensional H with corresponding
frame operator S and frame bounds A and B, then {S−1 fi }Ni=1 is also a frame for H
with lower and upper frame bounds B−1 and A−1, respectively. Moreover, the frame
operator for {S−1 fi }Ni=1 is S−1.

Proof Recall from Remark 2.2 that AI ≤ S ≤ B I . Now, applying S−1 to each side,
we have S−1 A ≤ S−1S = I ⇒ S−1 ≤ A−1 I, and I = S−1S ≤ S−1 B ⇒ S−1 ≥
B−1 I, which is B−1 I ≤ S−1 ≤ A−1 I, or,

B−1 ‖ f ‖2 = 〈B−1 f, f 〉 ≤ 〈S−1 f, f 〉 ≤ 〈A−1 f, f 〉 = A−1 ‖ f ‖2 for all f ∈ H. (6)

On the other hand, S−1 f = S−1SS−1 f = S−1 ∑N
i=1〈S−1 f, fi 〉 fi = ∑N

i=1

〈 f, S−1 fi 〉S−1 fi . (Note that this shows that S−1 is the frame operator for {S−1 fi }Ni=1.)
This implies that

〈
S−1 f, f

〉
=

〈 N∑
i=1

〈 f, S−1 fi 〉S−1 fi , f
〉
=

N∑
i=1

∣∣∣〈 f, S−1 fi 〉
∣∣∣
2
. (7)
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From (6) and (7), we have B−1 ‖ f ‖2 ≤∑N
i=1

∣∣〈 f, S−1 fi 〉
∣∣2 ≤ A−1 ‖ f ‖2 for all f

∈ H. Therefore, {S−1 fi }Ni=1 is a frame with lower and upper frame bounds B−1 and
A−1, respectively.

Now, we shall show the relationship between frame bounds and the eigenvalues
of frame operators.

Propsition 2.8 Let { fi }Ni=1 be a frame with frame operator S for a finite dimensional
H. Then the smallest and largest eigenvalues of S are a lower and an upper frame
bounds, respectively, for { fi }Ni=1.

Proof Assume that { fi }Ni=1 is a frame for H with frame operator S and n is the
dimension of H . For any f ∈ H , we can write f = ∑n

i=1〈 f, ei 〉ei , where {ei }ni=1
is the standard orthonormal basis. Then S f =∑n

i=1〈 f, ei 〉Sei =∑n
i=1 λi 〈 f, ei 〉ei ,

where {λi }ni=1 are the eigenvalues for S corresponding to the eigenvectors {ei }ni=1.
And,

〈S f, f 〉 =
〈 n∑

i=1

λi 〈 f, ei 〉ei , f
〉
=

n∑
i=1

λi 〈 f, ei 〉〈ei , f 〉 =
n∑

i=1

λi |〈 f, ei 〉|2 . (8)

Note that in Remark 2.1, it is shown that 〈S f, f 〉 = ∑N
i=1 |〈 f, fi 〉|2, and we also

have

‖ f ‖2 = 〈 f, f 〉 =
〈 n∑

i=1

〈 f, ei 〉ei , f
〉
=

n∑
i=1

|〈 f, ei 〉|2 (9)

Thus, by (8) and (9),

λmin ‖ f ‖2 = λmin

n∑
i=1

|〈 f, ei 〉|2 ≤
n∑

i=1

λi |〈 f, ei 〉|2

=
N∑

i=1

|〈 f, fi 〉|2 ≤ λmax

n∑
i=1

|〈 f, ei 〉|2 = λmax ‖ f ‖2 .

2.3 Parseval Frames

In this section, we shall show that Parseval frames have the reconstruction property of
orthonormal bases. For the rest of the paper, we assume that H is finite dimensional
Hilbert space. Let us first make the following observation.

Remark 2.3 If the collection of vectors { fi }Ni=1 is a Parseval frame then the cor-
responding analysis operator � is an isometry; that is 〈� f,� f 〉 = 〈�∗� f, f 〉 =
〈S f, f 〉 = ∑N

i=1 |〈 f, fi 〉|2 = ‖ f ‖2 = 〈 f, f 〉 which follows from Remark 2.1 and
the definition of Parseval frame (A = B = 1). Furthermore, � preserves inner
products; i.e., 〈� f,�g〉 = 〈 f, g〉 for every f, g ∈ H .
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Theorem 2.2 A family of vectors { fi }Ni=1 is a Parseval frame if and only if it satisfies

the reconstruction property, that is, for every f ∈ H, f =∑N
i=1〈 f, fi 〉 fi .

Proof Assume that { fi }Ni=1 is a Parseval frame, and let {ei }Ni=1 be the standard ortho-
normal basis for C

N and {vi }ni=1 be an orthonormal basis for H . Then, from the
reconstruction property of orthonormal basis and Remark 2.3, we have

f =
n∑

i=1

〈 f, vi 〉vi =
n∑

i=1

〈� f,�vi 〉vi =
n∑

i=1

〈 N∑
j=1

〈 f, f j 〉e j ,

N∑
k=1

〈vi , fk〉ek

〉
vi

=
n∑

i=1

N∑
j=1

N∑
k=1

〈 f, f j 〉〈vi , fk〉〈e j , ek〉vi =
n∑

i=1

N∑
j=1

〈 f, f j 〉〈vi , f j 〉vi

=
N∑

j=1

〈 f, f j 〉
n∑

i=1

〈 f j , vi 〉vi =
N∑

j=1

〈 f, f j 〉 f j .

Thus, { fi }Ni=1 satisfies reconstruction property.

For the converse, assume that f =∑N
i=1〈 f, fi 〉 fi holds true for the family of vec-

tors { fi }Ni=1. Then ‖ f ‖2 = 〈 f, f 〉 =
〈

f,
∑N

i=1〈 f, fi 〉 fi

〉
= ∑N

i=1 〈 f, fi 〉〈 f, fi 〉 =∑N
i=1 |〈 f, fi 〉|2 . Therefore, { fi }Ni=1 is a Parseval frame.

Propsition 2.9 If the collection of vectors { fi }Ni=1 in H is a frame for H with frame

operator S, then {S− 1
2 fi }Ni=1 is a Parseval frame for H.

Note 1 The frame operator S being a positive invertible operator has a positive square

root operator S
1
2 . Similarly, since S−1 is positive operator, there is a corresponding

positive square root operator S− 1
2 . Both S

1
2 and S− 1

2 are self-adjoint operators.

Proof Let { fi }Ni=1 be a frame for H with frame operator S. Then, from Note 1, we

have f = S− 1
2 SS− 1

2 f = S− 1
2
∑N

i=1

〈
S− 1

2 f, fi
〉
fi = ∑N

i=1

〈
S− 1

2 f, fi
〉
S− 1

2 fi =∑N
i=1

〈
f, S− 1

2 fi
〉
S− 1

2 fi , which means that
{

S− 1
2 fi

}N
i=1 satisfies reconstruction for-

mula; hence,
{

S− 1
2 fi

}N
i=1 is a Parseval frame for H .

2.4 Dual Frames

For every frame, we have a general reconstruction formula similar to the reconstruc-
tion formula for Parseval frames. To define reconstruction formula, we need a new
set of vectors called dual frames.

Definition 2.3 Let { fi }Ni=1 be a frame for a Hilbert space H . A set of vectors {gi }Ni=1
which satisfies the following formula
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f =
N∑

i=1

〈 f, gi 〉 fi =
N∑

i=1

〈 f, fi 〉gi , for all f ∈ H (10)

is called a dual frame for { fi }Ni=1. The set of vectors {S−1 fi }Ni=1 is a dual frame for
{ fi }Ni=1, and is called standard or canonical dual frame. If {gi }Ni=1 is not a standard
dual, it is called an alternate dual frame.

Propsition 2.10 Let F = { fi }Ni=1 be a frame. Then {S−1 fi }Ni=1 is a dual frame for
F.

Proof Recall that the frame operator S for a frame { fi }Ni=1 is given by

S f =
N∑

i=1

〈 f, fi 〉 fi , for all f ∈ H. (11)

Since S is a positive and invertible operator, we can substitute S−1 for f in Eq. (11),
and we get the reconstruction formula

f = S(S−1 f ) =
N∑

i=1

〈S−1 f, fi 〉 fi =
N∑

i=1

〈 f, S−1 fi 〉 fi . (12)

using the fact that S−1 is self-adjoint. Similarly, if we apply S−1 to both sides of
Eq. (11), we obtain the dual of reconstruction formula

f = S−1(S f ) = S−1
( N∑

i=1

〈 f, fi 〉 fi

)
=

N∑
i=1

〈 f, fi 〉S−1 fi . (13)

Thus, by (12) and (13), we conclude that {S−1 fi }Ni=1 is a dual frame for F .

Remark 2.4 Standard dual of a tight frame F is A−1 F . Indeed, using the fact that
S = AI , the inverse of frame operator is A−1 I ; thus, S−1 F = A−1 F . In particular,
the standard dual of a Parseval frame F is itself because S = I in Parseval case.

Remark 2.5 Standard dual of the frame {S−1 fi }Ni=1 is { fi }Ni=1 because of the fact
that the frame operator for the frame {S−1 fi }Ni=1 is S−1.

Definition 2.4 Let F = { fi }Ni=1 and G = {gi }Ni=1 be sequences in a Hilbert space H ,
and let�F and�G be the corresponding analysis operators for F and G, respectively.
Then, if�F ⊥ �G , F and G are called orthogonal sequences. If these sequences F
and G are frames, they are called orthogonal frames.

Propsition 2.11 Let F = { fi }Ni=1 and G = {gi }Ni=1 be sequences in a Hilbert space
H. Then F and G are orthogonal if and only if �∗F�G = 0, where �F and �G are
the corresponding analysis operators for F and G, respectively.
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Proof Let F and G be sequences in H with analysis operators�F and�G , respec-
tively. Then �∗F�G = 0 ⇔ 〈�F f,�G g〉 = 〈 f,�∗F�G g〉 = 0, for all f, g ∈
H ⇔ �F ⊥ �G .

Now we shall show the relationship between standard dual and alternate dual by
giving the characterization of duals.

Propsition 2.12 Let F = { fi }Ni=1 be a frame with frame operator S. Then, G =
{gi }Ni=1 is a dual frame of F if and only if there exists a sequence H = {hi }Ni=1
such that �∗H�F = 0 and {gi }Ni=1 = {S−1 fi + hi }Ni=1, where �F and �H are the
corresponding analysis operators for F and H.

Proof Assume that G = {gi }Ni=1 is a dual of F = { fi }Ni=1, and let hi = gi − S−1 fi .

Then
∑N

i=1〈 f, fi 〉hi = ∑N
i=1〈 f, fi 〉gi −∑N

i=1〈 f, fi 〉S−1 fi = f − f = 0 This

implies that, for every f, h ∈ H ,
〈∑N

i=1〈 f, fi 〉hi , h
〉
= ∑N

i=1〈 f, fi 〉〈hi , h〉 =
〈�F f,�H h〉 = 〈�∗H�F f, h〉 = 0. Therefore, �∗H�F = 0.

Conversely, assume that there exist a sequence {hi }Ni=1 such that {gi }Ni=1 =
{S−1 fi + hi }Ni=1 with �∗H�F = 0. Then, for all f, h ∈ H , 〈�∗H�F f, h〉 =
〈�F f,�H h〉 = ∑N

i=1〈 f, fi 〉〈hi , h〉 = 0. This implies that
∑N

i=1〈 f, fi 〉hi = 0 for
all f in H . Thus,

∑N
i=1〈 f, fi 〉gi =∑N

i=1〈 f, fi 〉S−1 fi +∑N
i=1〈 f, fi 〉hi = f + 0 =

f, which implies that G is a dual of F .

2.5 Traces of Frame Operators

Theorem 2.3 Let T be a linear operator on a Hilbert Space H, and n be the dimen-
sion of H. Assume that k ≥ n and N ≥ n. If {vi }ki=1 and { fi }Ni=1 are frames for H
with corresponding dual frames {wi }ki=1 and {gi }Ni=1, then

k∑
i=1

〈 T vi , wi 〉 =
N∑

i=1

〈 T fi , gi 〉. (14)

Proof

k∑
i=1

〈 T vi , wi 〉 =
k∑

i=1

〈 N∑
j=1

〈 T vi , g j 〉 f j , wi

〉
=

k∑
i=1

N∑
j=1

〈 T vi , g j 〉〈 f j , wi 〉

=
N∑

j=1

k∑
i=1

〈 f j , wi 〉〈 T vi , g j 〉 =
N∑

j=1

〈 k∑
i=1

〈 f j , wi 〉vi , T ∗g j

〉

=
N∑

j=1

〈 f j , T ∗g j 〉 =
N∑

j=1

〈 T f j , g j 〉.
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Corollary 2.3 Let T be a linear operator and { fi }Ni=1 be a frame for H with dual

frame {gi }Ni=1. Then tr(T ) =∑N
i=1〈 T fi , gi 〉.

Proof In Theorem 2.3, let k = n and {vi }ni=1 be the standard orthonormal basis; i.e.,

{ei }ni=1. Since tr(T ) =
n∑

i=1

〈 T ei , ei 〉, the result follows from the Theorem.

Corollary 2.4 Let { fi }Ni=1 be a frame of H with dual frame {gi }Ni=1. Then n =∑N
i=1〈 fi , gi 〉.

Proof In Corollary 2.3, let T be an Identity operator In . Then, the result is immediate.

Remark 2.6 As a special case of the above Corollary, for Parseval frames { fi }Ni=1,

we have n =∑N
i=1〈 fi , fi 〉 =∑N

i=1 ‖ fi‖2 , that is, the dimension of Hilbert space
H is the sum of the squares of the lengths of frame vectors.

Propsition 2.13 If { fi }Ni=1 is a uniform Parseval frame, then ‖ fi‖ =
√

n
N for all i,

where n is the dimension of H.

Proof Since the norm of vectors is uniform , for any j ∈ {1, . . . , N }, we have∥∥ f j
∥∥2 = 1

N

∑N
i=1 ‖ fi‖2 = n

N , where the last equality follows from Remark 2.6.

3 Erasures

3.1 The Erasure Problem

The property of frames that the number of vectors, N , greater than or equal to
the dimension, n, of the Hilbert space has a great significance in applications. For
instance, in coding theory, the information of a vector f is transmitted, or encoded,
by the analysis operator�F f , that is,�F f = {〈 f, fi 〉}Ni=1, where { f }Ni=1 is a frame
for a Hilbert space H . On the other side, the receiver reconstructs, or decodes, the
vector f , by the help of synthesis operator, �∗G of a dual {gi }Ni=1, �∗G�F f . If there
is no erasure, the receiver is able to reconstruct f completely. If there is loss of data
or any erasure, however, the receiver still may be able to reconstruct f perfectly with
the help of redundancy property of frames, which is the quantity N

n .
To deal with the erasures, maximum errors for erasures are to be minimized. To

minimize the maximal errors for erasures, two approaches are provided in [11] and
[17]. One approach provided by Holmes and Paulsen in [11] is to select an optimal
frame for erasures. On the other hand, second approach provided by Lopez and
Han in [17] is to select optimal dual frames for erasures for a given frame. Second
approach is motivated mainly, because of the limitations on optimal frames, to give
more freedom to frames that are to be used in coding. To find optimal frame means to
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find a best frame that minimizes the error on reconstructed vectors; however, to find
an optimal dual frame for a given frame is to find a best dual frame that minimizes
the error on reconstructed vectors.

To make the notion of optimal frames and optimal dual frames precise, let us first
define the error operator E� for erasures. Let D be an N × N diagonal matrix with
m ones and n − m zeros, and Dm be the set of all such diagonal matrices, D. For
any frame pairs F = { fi }Ni=1 and G = {gi }Ni=1, where G is the dual frame of F , and
�F and�G are the respective analysis operators for F and G, the error operator for
m-erasure where � = {i1, . . . , im} is defined by

E�( f ) = f −
∑
i /∈�
〈 f, fi 〉gi =

∑
i∈�
〈 f, fi 〉gi = �∗G D�F f, (1)

and the maximum error when m-erasures occur is defined by max
{∥∥�∗G D�F

∥∥ : D ∈
Dm} ,where ‖·‖ is a measurement for the error operator (it could be the usual matrix
norm, Hilbert-Schmidt norm, or some other measurement). The goal is either to
characterize the dual frame G that minimizes the maximum error if a frame F is pres-
elected, or to characterize Parseval frames F such that max

{∥∥�∗G D�F
∥∥ : D ∈ Dm

}
is minimal among all the Parseval frames. The similar setup can be used for other
applications (e.g., optimal for sparsity, noise control). In the following sections, we
will give precise definitions for optimal frames and optimal dual frames, and give
some results.

3.2 Optimal Frames for Erasures

From now on, for a frame F = { fi }Ni=1 for a Hilbert space H of dimension n, we
will call F an (N , n) frame, and we will let ‖ · ‖ be a matrix norm. Throughout this
section, we let F be a Parseval frame.

A Parseval frame F ′ is called optimal frame for 1-erasure if it satisfies δ1
F ′ =

minF max
{∥∥�∗F D�F

∥∥ : D ∈ D1
}
, and a Parseval frame F ′ is called optimal frame

for any m-erasure if it is optimal for (m−1)−erasure and δm
F ′ =minF max

{∥∥�∗F D�F
∥∥

: D ∈ Dm} . In other words, a Parseval frame that is optimal for m−erasures is opti-
mal for m or less erasures.

One-erasure optimal Parseval frames are characterized in [11].

Propsition 3.1 An (N , n) Parseval frame is 1-erasure optimal if and only if it is
uniform. Moreover, minimum error, δ1

F ′ , is n/N.

Definition 3.1 If F is an (N , n) uniform Parseval frame and ‖�∗F D�F‖ is a constant
for all D where D is a diagonal matrix with 2 ones and N − 2 zeros on the diagonal,
and�∗F and�F are synthesis operator and analysis operator of F , respectively, then
F is called 2-uniform Parseval frame.

The following Theorem provides an alternative definition for a 2-uniform Parseval
frame that is given in [11].
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Theorem 3.1 Assume that F is a uniform (N , n) Parseval frame. Then, F is
2-uniform if and only if

∣∣〈 fi , f j 〉
∣∣ = c is constant for all i �= j where

c =
√

n(N − n)

N 2(N − 1)
. (2)

The proof of the theorem in [11] implies that 2-uniform Parseval frames are 2-
erasure optimal Parseval frames.

For a 2-uniform (N , n) Parseval frame, �F�
∗
F can be written in the following

way:

�F�
∗
F =

⎡
⎢⎢⎢⎣

〈 f1, f1〉 〈 f2, f1〉 . . . 〈 fN , f1〉
〈 f1, f2〉 〈 f2, f2〉 . . . 〈 fN , f2〉

...
...

. . .
...

〈 f1, fN 〉 〈 f2, fN 〉 . . . 〈 fN , fN 〉

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

n/N ±c . . . ±c
±c n/N . . . ±c
...

...
. . .

...

±c ±c . . . n/N

⎤
⎥⎥⎥⎦ . (3)

In other words, �F�
∗
F = n

N I + cQ where Q = (qi j ) is a self-adjoint matrix with
qii = 0 for all i and

∣∣qi j
∣∣ = 1 for all i �= j .

Definition 3.2 Let F be a 2-uniform (N , n) Parseval frame. Then, the (N × N )
matrix Q derived above is called signature matrix of F .

In [11], the characterization of 2-uniform Parseval frames is given in the following
way:

Propsition 3.2 Let Q be a signature matrix of a 2-uniform (N , n) Parseval frame

F. Then Q2 = (N − 1)I + μQ, where μ = (N − 2n)

√
N − 1

n(N − n)
. Conversely,

let Q be a signature matrix of the form Q2 = (N − 1)I + μQ, μ2 �= −4(N −
1). Then, Q is a signature matrix of a 2-uniform (N , n) Parseval frame with

n = N

2
− μN

2
√

4(N − 1)+ μ2
and �F�

∗
F = n

N I + cQ.

3.3 Optimal Dual Frames

Given a frame F , we search for a dual frame G of F , which makes the error of erasures
minimum. Now, in the following subsections, we will look at the optimal dual frames
with respect to matrix norm measurement and spectral radius measurement.
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3.3.1 Optimality with Respect to Matrix Norm Measurement

Let a frame F be given. Then a dual frame G ′ for F is called optimal dual frame of
F for 1-erasure if δ(1)F,G ′ = minG max

{∥∥�∗G D�F
∥∥ : D ∈ Dm

}
, and a dual frame

G ′ for F is called optimal dual frame of F for any m-erasure if it is optimal for
(m − 1)−erasure and δ(m)F,G ′ = minG max

{∥∥�∗G D�F
∥∥ : D ∈ Dm

}
.

In [17], the condition in which the standard dual of a frame is the unique optimal
dual frame for m−erasures is given.

Theorem 3.2 Let F = { fi }Ni=1 be an (N , n) frame for a Hilbert space H. If‖S−1 fi‖·
‖ fi‖ is constant for all i , then the standard dual is the unique optimal dual frame
for m−erasure.

In particular, the standard dual of a uniform tight frame is the optimal dual frame
for m−erasures. In fact, because the frame operator S of a tight frame is of the
form S = AI , where A is the frame bound, ‖S−1 fi‖ = 1

A‖ fi‖ for all i . Using the
uniformness of the frame, we obtain the conditions of the Theorem.

The necessary and sufficient condition for the standard dual of a frame to be
the 1-erasure optimal dual frame is given in [15]. Let F be an (N , n) frame and
c = max

{‖S−1 fi‖ · ‖ fi‖ : i ∈ {1, . . . , N }}. Define Hi = span{ fi : i ∈ � j } for
j = 1, 2, where �1 = {i : |S−1 fi‖ · ‖ fi‖ = c}, and �2 = {1, . . . , N }\�1.

Theorem 3.3 The standard dual is the unique 1-erasure optimal dual if and only if
H1 ∩ H2 = {0} and { fi }i∈�2 is linearly independent set.

Propsition 3.3 For an (N , n) Parseval frame F = { fi }Ni=1 for H, the standard dual
is the unique optimal dual frame for m−erasure if and only if ‖ fi‖ is constant for
all i .

3.3.2 Optimality with Respect to Spectral Radius Measurement

Most of the research so far (c.f. [11, 15, 17]) have focused on measuring the error of
the reconstructed vector by operator norm. For example, it is known that a Parseval
frame is one-erasure optimal if and only if it is uniform, and it is 2-erasure optimal
if it is equiangular ( c.f. [11]). For the case when a frame F is preselected, optimal
dual problems for erasures were studied for example in [15–17], optimal dual frame
for sparsity was investigated in [13], and some other optimality was also studied for
different purposes (c.f. [5, 7, 9, 14, 18, 19]).

Now consider the case when iterations are applied in the reconstruction process:
Let F = { fi }Ni=1 be a frame and G = {gi }Ni=1 be a dual frame of F in a Hilbert space

H with dimension n. For any f ∈ H , we have f = ∑N
i=1〈 f, gi 〉 fi = ∑N

i=1 ai fi ,

where 〈 f, gi 〉 = ai . Let � = {i : ai is lost or erased} and �c = {1, . . . , N }\�.
Now, we can rewrite the reconstruction formula for f in the following way;
f = ∑

i∈�〈 f, gi 〉 fi +∑
i∈�c 〈 f, gi 〉 fi , or equivalently, f = E� f + R� f, where
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E� f =
∑
i∈�
〈 f, gi 〉 fi and R� f =

∑
i∈�c

〈 f, gi 〉 fi . Note that E� + R� = I . This

implies that the receiver knows both operators E� and R�. The first step approxima-
tion of f is given by f (1) = R� f . However, we can achieve higher approximation
accuracy by employing the following iterations:

f (1) = R� f

f (2) = E� f (1) + R� f

f (3) = E� f (2) + R� f

...
...

f (n) = E� f (n−1) + R� f.

Then, the error of the reconstruction is f − f (n) = E� f − E� f (n−1) = E�( f −
f (n−1)) = E�(E� f − E� f (n−2)) = E2

�( f − f (n−2)) = En−1
� ( f (1) − f ) = En

� f.
Thus, we have ‖ f − f (n)‖ = ‖En

� f ‖ ≤ ‖En
�‖‖ f ‖ .

To measure the error, we need to look at the norm of En
�, ‖En

�‖. It can be estimated
by the spectral radius of E�. Recall that r(E�) ≤ ‖E�‖. In the case that E� is
positive or normal, E∗�E� = E�E∗�, we have ‖E�‖ = r(E�), thus, ‖E�‖ =
maxi |λi |, where λi is an eigenvalue of E�. But, it could happen that r(E�) <<
‖E�‖. In this case, limn→∞ ‖En

�‖1/n = r(E�), where r(E�) is the spectral radius
of E�. Therefore, the spectral radius r(E�) of E� satisfies r(E�) = max

{|λ| :
λ ∈ σ(E�)

} = limn→∞ ‖En
�‖1/n .

Definition 3.3 Let F be a frame and G be a dual frame of F . For each k, let r (k)F,G =
max {r(E�) : |�| = k} and r (k)F = min{r (k)F,G : G is a dual frame of F}, where |�|
denotes the cardinality of �. A dual frame G of F is called 1-erasure spectrally
optimal if r (1)F,G = r (1)F . We say that G is k-erasure spectrally optimal if it is (k − 1)-

erasure spectrally optimal and r (k)F,G = r (k)F .

Clearly we have r (k)F,G ≤ δ
(k)
F,G . In the iterated reconstruction introduced in this

section, the reconstruction error of a signal f is dominated by ‖En
�‖·‖ f ‖. Therefore

in order to completely recover f as n → ∞, we need the necessary condition that
r (k)F,G < 1 (or a more stronger δ(k)F,G < 1). In this section, we present two conditions,
mentioned in [20], to ensure this inequality. The first one is a necessary and sufficient
condition on the frame F such that this happens for one of the dual frames G. The
second one is a necessary and sufficient condition on the triple (N , n, k) such that
there exists a dual frame pair (F,G) for H with the property that r (k)F,G < 1. Both
results involve the standard dual frames.

Propsition 3.4 Let F = { fi }Ni=1 be a frame for a Hilbert space H of dimension n.
Assume that k represents the number of erased coefficients in the frame expansion,
and S is the frame operator of F. Then the following are equivalent:
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(i) Every (N − k) vectors span the Hilbert space H,
(ii) δ(k)

S−1/2 F,S−1/2 F
< 1,

(iii) r (k)
F,S−1 F

< 1,

(iv) There exists a dual frame G of F such that r (k)F,G < 1.

Propsition 3.5 Let n be the dimension of H. Then the following are equivalent:

(i) N − k ≥ n,
(ii) There exists a frame F such that δ(k)

S−1/2 F,S−1/2 F
< 1,

(iii) There exists a frame F such that r (k)
F,S−1 F

< 1,

(iv) There exists dual pair (F,G) such that r (k)F,G < 1.

4 Spectrally One-Uniform Frames

In this section, we mention about a recent work [20] on one-uniform frames and
one-erasure optimal dual frames under spectral radius measurement. We define and
talk about some properties of spectrally one-uniform frames that admit one-erasure
spectrally optimal dual frames.

4.1 Spectrally One-Uniform Frames

Recall that for the 1-erasure case, spectral radius of the error operator satisfies r (1)F,G =
max{|〈gi , fi 〉| : 1 ≤ i ≤ N }. Therefore, for one-erasure spectrally optimal dual
frame we have r (1)F ≥ n/N since

∑N
i=1〈gi , fi 〉 = n. This leads to the question of

characterizing all the frames F such that r (1)F = n/N , and the questions of how

to compute r (1)F and how to construct frames F and their duals G with prescribed

maximal error r (k)F,G . It turns out that the answers to all these questions rely on an
interesting connectivity property for finite sequences (or subset) of nonzero vectors
in H . From application point of view we are only interested in frames consisting of
nonzero vectors. So we will assume this property throughout the rest of the paper.

Definition 4.1 Let F be an (N , n) frame. Then F is called spectrally one-uniform
frame if there exists a dual frame G of F such that 〈gi , fi 〉 = c for all i = 1, . . . , N
where c = n/N .

Theorem 4.1 Let F be an (N , n) frame. Then F is spectrally one-uniform frame if
and only if there exists a dual G such that r (1)F = r (1)F,G = n/N.
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4.2 Linearly Connected Sequences

In [20], three properties of frames: linear connectivity, intersection dependence, and
k-independence properties, on which the characterization of spectrally one-uniform
frames rely, are defined. And it is proved that the linear connectivity property is
equivalent to the intersection dependence property, and is also closely related to the
well-known concept of k-independent set.

Two vectors f and g in a sequence F of vectors are linearly F-connected (or sim-
ply, connected) if there exist vectors {u1, . . . , u�} from F such that {g, u1, . . . , u�}
are linearly independent and f = cg +∑�

i=1 ci ui with c, ci all nonzero. Clearly
connectivity is reflexive and symmetric. It is shown in [20] that it is also transitive.

We use the notation f
F↔ g if f and g are F-connected.

Definition 4.2 Let F = { fi }Ni=1 be a finite sequence of nonzero vectors in H . We
say that F

(i) is linearly connected if every two vectors in F are F-connected.
(ii) has the intersection dependent property if H�∩H�c �= {0}holds for every proper

subset � of {1, . . . , N }, where H� is the subspace spanned by { fi : i ∈ �}.
(iii) is k-independent if every k vectors in F are linearly independent.

The Theorem 4.2 states that all these three properties are closely related.
We note as a result of the transitivity property of connected vectors that adding up

a vector that is in the span of a connected sequence forms a new sequence of vectors
which is connected.

Corollary 4.1 Let F = { f1, . . . , fN } be a connected sequence of H. Then for any
nonzero vector f ∈ span{ f1, . . . , fN }, the sequence { f1, . . . , fN , f } is connected.

Theorem 4.2 Let F = { fi }Ni=1 be a sequence of H and let � =dim span{ fi : 1 ≤
i ≤ N }. Then the following are equivalent:

(i) F is linearly connected.
(ii) F has the intersection dependent property.

(iii) F contains an �−independent subset of cardinality of at least �+ 1.

As a consequence of Theorem 4.2 we obtain the following partition of frames:

Corollary 4.2 Let F = { fi }Ni=1 be a sequence of H. Then there exists a (unique up to
permutations) partition {� j }Jj=1 of {1, 2, . . . , N } such that each { fi }i∈� j is linearly
connected, and H is the direct sum of the subspaces Hj =span{ fi : i ∈ � j }.

4.3 Redundancy Distribution of a Frame

By Corollary 4.2, the redundancy distribution of a frame that helps to characterize and
construct spectrally one-uniform frames, and to compute maximum erasure errors,
r (1)F,G , is defined in the following way:
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Definition 4.3 Let F = { fi }Ni=1 be a frame for H , and let Hj ,� j be as in Corollary

4.2. Then the redundancy distribution of F is defined to be
{

dim Hj
|� j |

}
1≤ j≤J

. We say

that F has the uniform redundancy distribution if
dim Hj
|� j | is a constant for all j .

Let G = {g1, . . . , gN } be a dual frame of a frame F = { f1, . . . , fN }. Define
�G =

{
i : 〈gi , fi 〉 = n/N

}
and �c

G = {1, 2, . . . , N }\�G .

Lemma 4.1 Let |�c
G | ≥ 1 and i1, i2 ∈ �c

G. If fi1 and fi2 are F-connected, then
there exists a dual G ′ such that |�G ′ | > |�G |.
Remark 4.1 If |�c

G | = 1, then for all i = 1, . . . , N 〈gi , fi 〉 = n
N . Indeed, by assump-

tion N − 1 vectors, say f1, . . . , fN−1, have the property 〈gi , fi 〉 = n
N . Because∑N

i=1〈gi , fi 〉 = n, we also have 〈gN , fN 〉 = n
N .

Corollary 4.3 If F is a connected frame, then there exists a dual G ′ = {g′i }Ni=1 such
that 〈g′i , fi 〉 = n/N for all i .

Example 4.1 The converse of Corollary 4.3 is not true. Consider the frame F =
{e1, e1, e1} ∪ {e2, e2, e2} in C

2. It has a dual G = {e1/3, e1/3, e1/3} ∪
{e2/3, e2/3, e2/3} with 〈gi , fi 〉 = 1/3 for i = 1, 2, 3. However, f3 = e1 and
f4 = e2 are not F-connected.

Let F = { fi }Ni=1 = ∪J
j=1 Fj be a frame with a partition {� j }Jj=1 of {1, . . . , N }

and Fj = { fi : i ∈ � j } is linearly connected. Let n j = dim Hj = dim span{ fi :
i ∈ � j }, N j = |� j | and d j = n j

N j
.

Propsition 4.1 There exist a dual frame G j = {gi }i∈� j of Fj with 〈gi , fi 〉 = d j for
all i ∈ � j . Moreover, there exist a dual frame G ′ of F such that 〈g′i , fi 〉 = d j for
all i ∈ � j .

The following lemma gives the precise value of r (1)F for any given frame F .

Lemma 4.2 Let F be a frame and {d j }Jj=1 be its redundancy distribution. Then

r (1)F = max{d j : j = 1, . . . , J }. In particular, r (1)F only takes rational values.

In the following theorem, the characterization of all the frames that admit dual
frames, so that the maximal one-erasure reconstruction error is minimal, is given by
Theorem 4.2.

Theorem 4.3 Let F = { fi }Ni=1 be a frame for H. Then the following are equivalent:

(i) F is spectrally one-uniform frame;
(ii) F has the uniform redundancy distribution;

(iii) There exists a dual frame G = {gi }Ni=1 of F such that 〈gi , fi 〉 = n/N for all i ;
(iv) There exists a dual frame G = {gi }Ni=1 of F such that |〈gi , fi 〉| = n/N for all i .
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Frames with any prescribed redundancy distributions can be easily constructed
by the following theorem.

Theorem 4.4 Let d j = n j
N j
∈ (0, 1) with the property that

∑J
j=1 n j = n and

∑J
j=1 N j = N. Then there exists a frame F = { fi }Ni=1 such that its redundancy

distribution is {d j }Jj=1. Moreover, such a frame F can be explicitly constructed out
of any given basis of H.

Corollary 4.4 (i) If F is a uniform Parseval frame, then it has the uniform redun-
dancy distribution.

(ii) Assume that F has the uniform redundancy distribution and N and n are co-
prime to each other. Then F is connected.
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Chapter 6
Semi-inner Product: Application to Frame
Theory and Numerical Range of Operators

N. K. Sahu and C. Nahak

Abstract This paper deals with the theory of semi-inner product, its generalizations,
and applications to frame theory and numerical range of operators. The notion of
frames is introduced in classical and generalized semi-inner product spaces. Numer-
ical range of two operators is also studied in semi-inner product spaces.

1 Semi-inner Product

An inner product is a handy and powerful tool to study the geometrical properties
of Hilbert space. It is difficult to build Hilbert space-like theory in Banach spaces
because of the absence of inner product. A semi-inner product is a generalization of
inner product. It was introduced by Lumer [11] for the purpose of extending Hilbert
space-like arguments to Banach spaces. It plays a vital role in describing the geometry
on Banach spaces. The formal definition of semi-inner product due to Lumer is as
follows:

Definition 1.1 (Lumer [11])
Let X be a vector space over the real or complex field F . A semi-inner product [., .]
on X is a real or complex valued functional defined on X × X , which satisfies the
following properties:

1. [x + y, z] = [x, z] + [y, z]
[λx, y] = λ[x, y] for all x, y, z ∈ X and λ ∈ F ;
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2. [x, x] > 0 for x �= 0 for all x ∈ X ;
3. |[x, y]|2 ≤ [x, x][y, y] for all x, y ∈ X .

The vector space X endowed with [., .] is called a semi-inner product space.

Lumer proved that a semi-inner product space is a normed linear space with the

norm ‖x‖ = [x, x] 12 . Every normed linear space can be made into semi-inner prod-
uct space in many ways. An inner product space is a semi-inner product space where
the inner product plays the role of semi-inner product. Conversely, a semi-inner prod-
uct is an inner product if and only if the norm induced by the semi-inner product
obeys the parallelogram law. It was Giles [7] who put forward some decisive struc-
tural modifications to the notion of semi-inner product. He imposed the additional
homogeneity property in the Definition 1.1 of Lumer semi-inner product. That is,
[x, λy] = λ[x, y] for all λ ∈ F , where λ denotes the conjugate of λ. The imposition
of this property adds much convenience without causing any significant restriction.
He proved that every normed linear space is a semi-inner product space with the
homogeneity property.

Definition 1.2 (Giles [7])
A semi-inner product [., .] is continuous, if it satisfies

lim
λ→0

Re[y, x + λy] → Re[y, x] for all x, y ∈ X and λ ∈ R.

The corresponding space X is called continuous semi-inner product space. If the
involved limit is uniform, then it is called uniformly continuous semi-inner product
space.

Giles also defined the orthogonality relation in semi-inner product space.

Definition 1.3 Let X be a semi-inner product space. For x, y ∈ X , x is said to be
normal to y and y is said to be transversal to x if [y, x] = 0. A vector x ∈ X is
normal to a subspace S of X and S is transversal to x if x is normal to all vectors
y ∈ S.

Definition 1.4 A normed linear space X is said to be Gâteaux differentiable or

smooth if for all x, y ∈ X and real λ, lim
λ→0

‖x + λy‖ − ‖x‖
λ

exists.

Giles proved that the continuity restriction on the semi-inner product is equivalent
to the Gâteaux differentiability of the norm.

To extend Hilbert space-type argument to the theory of the dual of a semi-inner
product space, one has to impose more restriction on the semi-inner product to
guarantee the existence of normals to closed vector subspaces. For that, one has to
restrict the normed space.

Definition 1.5 A normed space X is strictly convex if whenever ‖x‖ + ‖y‖ =
‖x + y‖, where x, y �= 0, then y = λx for some real λ > 0.
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Definition 1.6 A normed space X is uniformly convex if given ε > 0, there exists
a δ(ε) > 0 such that for x, y ∈ X with ‖x‖ = ‖y‖ = 1, we have ‖x+y‖

2 ≤ 1− δ(ε)
when ‖x − y‖ > ε.

It is true that uniform convexity implies strict convexity. It is also proved that a
semi-inner product space is strictly convex if and only if the equality [x, y] =
‖x‖‖y‖, where x, y �= 0, implies that y = λx for some real λ > 0 (see
Berkson [2]).

In Hilbert space, the representation theorem for continuous linear functionals sets
up a natural correspondence between vectors and continuous linear functionals by
means of the inner product. This correspondence was discovered by the famous math-
ematician Riesz and is known as the Riesz representation theorem. There is a similar
representation theorem named as the generalized Riesz representation theorem in a
continuous semi-inner product space which is a uniformly convex Banach space.

Theorem 1.1 [Generalized Riesz representation theorem] (Giles [7])
Let X be a continuous semi-inner product space which is uniformly convex and
complete in its norm. Let X∗ be the dual space of X. Then for every continuous
linear functional f ∈ X∗ there exists a unique vector y ∈ X such that f (x) = [x, y]
for all x ∈ X.

Definition 1.7 A uniform semi-inner product space is a uniformly continuous semi-
inner product space where the induced normed space is uniformly convex and com-
plete.

Theorem 1.2 (Giles [7])
If X is a uniform semi-inner product space, then the dual space X∗ is also a uni-
form semi-inner product space with respect to the semi-inner product defined by
[ fx , fy]X∗ = [y, x], where [., .]X∗ denotes the semi-inner product in X∗.

Giles also proved that every finite dimensional strictly convex, continuous semi-
inner product space is a uniform semi-inner product space. We have the following
examples of uniform semi-inner product spaces:

Example 1.1 The real Banach space L p(X, ρ, μ) for 1 < p < ∞ is a uniform
semi-inner product space with the semi-inner product defined as

[y, x] = 1

‖x‖p−2
p

∫

X

y|x |p−1 sgn(x)dμ.

Example 1.2 The real sequence space l p for 1 < p < ∞ is a uniform semi-inner
product space with the semi-inner product defined as

[x, y] = 1

‖y‖p−2
p

∑
i

xi yi |yi |p−2.
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If the vector space is a uniformly convex smooth Banach space, then there is unique
semi-inner product.

The notion of generalized adjoint of a bounded linear operator in a semi-inner
product space was introduced by Koehler [10]. Let X be a uniformly convex smooth
Banach space. If A is a bounded linear operator from X to itself, then the map
gy : X → F(R or C), defined by gy(x) = [Ax, y] is a continuous linear functional.
By the generalized Riesz representation theorem, it follows that there is a unique
vector A†(y) such that [Ax, y] = [x, A† y] for all x ∈ X . The operator A† is called
the generalized adjoint of A. This generalized adjoint operator is not usually linear
but still it has some interesting properties. The following properties are investigated
by Koehler [10] for the generalized adjoint operator:

Theorem 1.3 Let A and B be two bounded linear functionals on a uniformly convex
smooth Banach space X and λ be a scalar. Then,

1. (λA)† = λA†;
2. (AB)† = B† A†;
3. A† is one-to-one if and only if the range of A is dense in X;
4. If the norm of X is strongly (Frechet) differentiable, then A† is continuous.

1.1 Semi-inner Product Space of Type (p)

Nath [13] generalized the concept of semi-inner product introduced by Lumer [11],
by replacing the Schwarz’s inequality with the Holder’s inequality. The similar type
of semi-inner product is called semi-inner product of type (p), and is defined as
follows:

Definition 1.8 Let X be a vector space over the field F of real or complex numbers.
The functional [., .] : X × X → F satisfying

1. [x + y, z] = [x, z] + [y, z] for all x, y, z ∈ X ;
2. [λx, y] = λ[x, y] for all λ ∈ F and x, y ∈ X ;
3. [x, x] > 0 for all x �= 0;

4. |[x, y]| ≤ [x, x] 1
p [y, y] p−1

p for all x, y ∈ X and 1 < p <∞;
is called a semi-inner product of type (p) on X . The space equipped with [., .]p
is called the semi-inner product space of type (p).

The semi-inner product of type (p) induces a norm by setting ‖x‖ = [x, x] 1
p . Also,

for every normed space we can construct semi-inner product of type (p) in many
ways. Pap and Pavlovic [14] discovered the adjoint theorem for maps on semi-inner
product spaces of type (p). They proved some properties of the generalized adjoint
operator similar to the properties established by Koehler [10] in semi-inner product
spaces. El-Sayyad and Khaleelulla [6] introduced the semi-inner product algebras
of type (p). They found some interesting results on the generalized adjoint of an
operator defined on this space.
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Theorem 1.4 (El-Sayyad and Khaleelulla [6])
Let T be a bounded linear operator defined on a semi-inner product space of type
(p) and T † be its generalized adjoint. Then,

(i) ‖T ‖ = ‖T †‖p−1,
(ii) ‖T †T ‖p−1 = ‖T ‖p.

1.2 Generalized Semi-inner Product

With a view to study regularized learning in general Banach spaces, Zhang and Zhang
[18] introduced the concept of generalized semi-inner product.

To define generalized semi-inner product, one has to know the notion of gauge
function. A gauge function φ is a map φ : R

+ → R
+ such that φ is continuous,

surjective, and strictly increasing with φ(0) = 0 and limt→∞ φ(t) = +∞. The
definition of generalized semi-inner product is as follows:

Definition 1.9 Let X be a vector space over the field F of real or complex numbers.
Let φ and ψ be two gauge functions with φ(t)ψ(t) = t for all positive real numbers
t . The map [., .]φ : X × X → F satisfying

1. [αx + βy, z]φ = α[x, z]φ + β[y, z]φ for all α, β ∈ F and x, y, z ∈ X ;
2. [x, x]φ > 0 for all x ∈ X \ {0};
3. |[x, y]φ | ≤ φ([x, x]φ) ψ([y, y]φ) for all x, y ∈ X and the equality holds when

x = y;

is called a generalized semi-inner product on X . The space X equipped with [., .]φ
is called a generalized semi-inner product space.

When φ(t) = t
1
p and ψ(t) = t

1
q , p, q ∈ (1,+∞) with 1

p + 1
q = 1, the generalized

semi-inner product reduces to the semi-inner product of type (p) introduced by Nath

[13]. Again if φ(t) = t
1
2 and ψ(t) = t

1
2 then the generalized semi-inner product

reduces to the classical semi-inner product introduced by Lumer [11]. Zhang and
Zhang [18] proved that if [., .]φ is a generalized semi-inner product on a vector space
X then ‖x‖ = Φ([x, x]φ) defines a norm on X . Conversely, ifΦ is surjective onto R

+
then for any normed space X , there exists a generalized semi-inner product on it such
that ‖x‖ = Φ([x, x]φ). The Riesz representation of continuous linear functionals is
also true in this generalized semi-inner product space.

2 Bessel Sequence and Frame in Semi-inner Product Space

Frames are redundant signal representations having a wide range of applications
in signal and image processing, wavelet analysis, data transmission with erasures,
wireless communication, data transmission, and many more new applications arising
every year. In this section, we define Bessel sequence and frame in Banach spaces
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by using semi-inner product. The notion of frames was introduced by Duffin and
Schaeffer [5] in 1952 while studying the nonharmonic Fourier series. Frames in L p

spaces and other Banach spaces are effective tools for modeling a variety of natural
signals and images. There is a plethora of literature available for frames in Banach
spaces. For classical frame theory in Banach spaces, one may refer to Casazza and
Christensen [3], Christensen and Heil [4], Gröchenig [8], Kaushik [9], and Stoeva
[15]. To smoothen the study of frames in Banach spaces, Zhang and Zhang [19]
defined this notion by taking the help of semi-inner product.

Here we assume that X is a uniformly convex smooth Banach space. In particular,
we concentrate on the spaces l p and L p, where 1 < p < ∞. It is seen that those
spaces are semi-inner product spaces with uniquely defined semi-inner product (Giles
[7]). Our definition is completely different from those Banach space frames available
in the literature. In the remainder of this section, we assume that X is a real uniformly
convex smooth Banach space with norm ‖.‖p and semi-inner product [., .].
Definition 2.1 A set of elements f = { fi }∞i=1 ⊆ X is called a Bessel sequence if
there exists a constant B > 0, such that

∞∑
i=1

|[ fi , x]|q ≤ B(‖x‖p)
q , ∀x ∈ X,

where 1 < p, q <∞ and 1
p + 1

q = 1. The number B is called Bessel bound.

Definition 2.2 A sequence of elements { fi }∞i=1 in X is called a frame if there exist
positive constants A and B such that

A(‖x‖p)
q ≤

∞∑
i=1

|[ fi , x]|q ≤ B(‖x‖p)
q , ∀x ∈ X,

where 1 < p, q < ∞ and 1
p + 1

q = 1. A and B are called lower and upper frame
bound, respectively.

If A = B then the frame is called a tight frame, and if A = B = 1 then the frame is
called a Parseval frame. A frame is called a normalized frame if each frame element
has unit norm. We have proved the following necessary and sufficient condition for
a sequence of elements in X to be a Bessel sequence.

Theorem 2.1 Let f = { fi }∞i=1 be a sequence in X. Then, the sequence f is a Bessel

sequence if and only if T : {ci }∞i=1 →
∑∞

i=1
ci fi

|[ fi , x]|q−2

‖{[ fi , x]}‖q−2 is a well-defined

and bounded operator from lq into X.

Our main focus is on Parseval frame and tight frame because the reconstruction
formula naturally holds true without any assumptions. The following two results
establish the reconstruction formulae for Parseval frames and tight frames:
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Theorem 2.2 A set of elements { fi }∞i=1 is a Parseval frame for X if and only if

x =
∞∑

i=1

|[ fi , x]|q−2

‖{[ fi , x]}‖q−2 [ fi , x] fi , ∀x ∈ X. (1)

Theorem 2.3 A set of elements { fi }∞i=1 is a tight frame with bound A for X if and
only if

x =
∞∑

i=1

1

A
2
q

|[ fi , x]|q−2

‖{[ fi , x]}‖q−2 [ fi , x] fi ∀x ∈ X. (2)

Definition 2.3 A tight frame is said to be a normalized tight frame if each of its
element has unit norm.

Definition 2.4 An operator T on X is said to be a co-isometry if its generalized
adjoint is an isometry.

The following theorem tells about the invariance of frame under a co-isometry
operator.

Theorem 2.4 (a) Let { fi }∞i=1 be a frame for the space X and T be a co-isometry,
then {T fi }∞i=1 is a frame. Moreover, {T fi }∞i=1 is a normalized tight frame if
{ fi }∞i=1 is a normalized tight frame.

(b) Let { fi }∞i=1 and {gi }∞i=1 be Parseval frames for X and T be a bounded linear
operator defined by T gi = fi . Then T is a co-isometry.

3 Bessel Sequence and Frame in Generalized Semi-inner
Product Space

Let X be a generalized semi-inner product space with generalized semi-inner product
[., .]φ and norm ‖.‖X . Let Xd be an associated BK-space with norm ‖.‖Xd . Suppose
that X∗ and X∗d are the dual spaces of X and Xd , respectively. We define Xd -Bessel
sequence and X∗d -Bessel sequence in a generalized semi-inner product space X , and
prove that the space of all X∗d -Bessel sequences form a Banach space.

Definition 3.1 A sequence of elements { f j } ⊆ X is called an Xd -Bessel sequence
in X if {[x, f j ]φ} ∈ Xd , and there exists a positive real constant B such that

‖{[x, f j ]φ}‖Xd ≤ B φ([x, x]φ), ∀x ∈ X,

where φ : (0,∞)→ (0,∞) is a continuous, nondecreasing function with φ(0) = 0
and φ(t)→∞ as t →∞.

Definition 3.2 Let { f j } ⊆ X . Then { f ∗j } ⊆ X∗ is an X∗d -Bessel sequence for X∗ if
{[ f j , x]φ} ∈ X∗d , and there exists a positive real constant B such that
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‖{[ f j , x]φ}‖X∗d ≤ B φ([x, x]φ), ∀x ∈ X.

We define Xd -frame and X∗d -frame in this prospective.

Definition 3.3 Let X be a generalized semi-inner product space with compatible
generalized semi-inner product [., .]φ . The sequence { f j } ⊆ X is said to be an Xd -
frame for X if {[ f, f j ]φ} ∈ Xd for all x ∈ X , and there exist two positive constants
A, B such that

A φ([ f, f ]φ) ≤ ‖{[ f, f j ]φ}‖Xd ≤ B φ([ f, f ]φ), ∀ f ∈ X. (3)

Definition 3.4 Let { f j } ⊆ X . Then { f ∗j } is an X∗d -frame for X∗ if {[ f j , f ]φ} ∈ X∗d
for all f ∈ X , and there exist two positive constants A, B such that

A φ([ f, f ]φ) ≤ ‖{[ f j , f ]φ}‖X∗d ≤ B φ([ f, f ]φ), ∀ f ∈ X. (4)

In this section, we also define Riesz basis in a generalized semi-inner product
space. Likewise Xd -frame and X∗d -frame, we have Xd -Riesz basis and X∗d -Riesz
basis.

Definition 3.5 A sequence of elements { f j } ⊆ X is an Xd -Riesz basis for X if

span{ f j } = X ,
∑

j∈I
c j f j converges in X for all c ∈ Xd , and there exist positive

finite real numbers A, B with A ≤ B, such that

Aφ([c, c]Xd ) ≤
∥∥ ∑

j∈I

c j f j
∥∥

X ≤ Bφ([c, c]Xd ) for all c ∈ Xd . (5)

Definition 3.6 A sequence of elements { f ∗j } ⊆ X∗ is an X∗d -Riesz basis for X∗ if

span{ f ∗j } = X∗,
∑
j∈I

d j f ∗j converges in X∗ for all d ∈ X∗d , and there exist positive

finite real numbers A, B with A ≤ B, such that

Aφ([d, d]X∗d ) ≤
∥∥ ∑

j∈I

d j f ∗j
∥∥

X∗ ≤ Bφ([d, d]X∗d ) for all d ∈ X∗d . (6)

We can show that Riesz basis automatically generates a frame for the dual space.

4 Numerical Range of Two Operators in Semi-inner
Product Spaces

Quadratic forms are quite useful in linear algebra. The numerical range is a natural
extension of quadratic forms in vector spaces. Like the spectrum, the numerical range
of a linear operator is a subset of the scalar field. It is structured in such a way that
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it is related to both algebraic as well as norm structures of the operator. Whereas the
spectrum of an operator is related only to algebraic structure of the operator. One
can extract much information about the operator through numerical range.

Lumer [11] discussed the numerical range for a linear operator in a Banach space
by using semi-inner product. Williams [17] studied the spectra of products of two
linear operators and their numerical ranges. To study the generalized eigenvalue
problem T x = λAx , Amelin [1] introduced the concept of numerical range for two
linear operators in Hilbert space. The numerical range of two nonlinear operators in
a semi-inner product space was defined by Nanda [12].

4.1 Numerical Range of Two Linear Operators

Let X be a uniformly convex smooth Banach space equipped with norm ‖.‖ and
semi-inner product [., .]. Let T and A be two linear operators defined on X .

Definition 4.1 The numerical range W (T, A) of the two linear operators T and A
is defined as W (T, A) := {[T x, Ax] : ‖Ax‖ = 1, x ∈ D(T )∩D(A)},where D(T )
and D(A) are denoted as the domain of T and the domain of A, respectively. The
numerical radius w(T, A) is defined as w(T, A) = sup{|λ| : λ ∈ W (T, A)}.
Definition 4.2 The coupled numerical range WA(T ) of T with respect to A is
defined as

WA(T ) :=
{ [AT x, x]
[Ax, x] : ‖x‖ = 1, [Ax, x] �= 0

}
. (7)

In the above definition, we have assumed that Dom(A) ∩ Range(T ) �= φ. We can
easily prove the following properties of the numerical range of two linear operators:

Theorem 4.1 Let T1, T2, T, A be linear operators and α,μ, λ be scalars. Then,

(i) W (T1 + T2, A) ⊆ W (T1, A)+W (T2, A),
(ii) W (αT, A) = αW (T, A),

(iii) W (T, μA) = μW (T, A),
(iv) W (T − λA, A) = W (T, A)− {λ},
(v) w(T1 + T2, A) ≤ w(T1, A)+ w(T2, A),

(vi) w(λT, A) = |λ| w(T, A).

Theorem 4.2 Let T1, T2, T, A be linear operators and α be a scalar. Then,

(i) WA(T1 + T2) ⊆ WA(T1)+WA(T2),
(ii) WA(αT ) = αWA(T ),

(iii) WαA(T ) = WA(T ).
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Proof (i) Let x, y ∈ Dom(T1)∩Dom(T2). We assume that Dom(A)∩Range(T1) �= φ
and Dom(A) ∩ Range(T2) �= φ.
Then

[A(T1 + T2)x, x]
[Ax, x] = [AT1x + AT2x, x]

[Ax, x] = [AT1x, x]
[Ax, x] +

[AT2x, x]
[Ax, x] .

Therefore WA(T1 + T2) ⊆ WA(T1)+WA(T2).
(ii) If Dom(A) ∩ Range(T ) �= φ, then

[A(αT )x, x]
[Ax, x] = [αAT x, x]

[Ax, x] = α
[AT x, x]
[Ax, x] .

Hence WA(αT ) = αWA(T ).
(iii) If Dom(A) ∩ Range(T ) �= φ, then

[(αA)T x, x]
[αAx, x] =

α[AT x, x]
α[Ax, x] =

[AT x, x]
[Ax, x] .

As a result WαA(T ) = WA(T ).

Definition 4.3 The spectrum σ(T, A) of the two linear operators T and A is
defined as

σ(T, A) := {λ ∈ C : (T − λA) is not invertible}. (8)

The spectral radius r(T, A) is defined as r(T, A) = sup{|λ| : λ ∈ σ(T, A)}.
Definition 4.4 The eigen spectrum or point spectrum e(T, A) of two linear operators
T and A is defined as

e(T, A) := {λ ∈ C : T x = λAx for x �= 0}. (9)

Definition 4.5 The approximate point spectrum π(T, A) of two linear operators T
and A is defined as
π(T, A) := {λ ∈ C such that there exists a sequence xn ∈ X with ‖Axn‖ = 1
and ‖T xn − λAxn‖ → 0 as n→∞}.
Definition 4.6 The compression spectrum σ0(T, A) of two linear operators T and
A is defined as

σ0(T, A) := {λ ∈ C : Range(T − λA) is not dense in X}. (10)

One can establish the inclusion relations among spectrum, eigen spectrum, com-
pression spectrum, approximate point spectrum, and numerical range of two linear
operators.
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4.2 Numerical Range of Two Nonlinear Operators

Let X be a normed space, and T be an operator defined on X . Then T is said to be
Lipschitz if there exists a constant M > 0 such that ‖T x − T y‖ ≤ M‖x − y‖ for all
x, y ∈ X . Let Lip(X) denote the set of all Lipschitz operators on X . Suppose that T ∈
Lip(X), and x, y ∈ Dom(T )with x �= y. The generalized Lipschitz norm ‖T ‖L of a
nonlinear operator T on a Banach space X is defined as ‖T ‖L = ‖T ‖+‖T ‖l , where

‖T ‖ = sup
x

‖T x‖
‖x‖ and ‖T ‖l = sup

x �=y

‖T x − T y‖
‖x − y‖ . If there exists a finite constant M

such that ‖T ‖L < M , then the operator T is called the generalized Lipschitz operator
(see Verma [16]). Let GL(X) be the class of all generalized Lipschitz operators.

Definition 4.7 The numerical range VL(T, A) of two nonlinear operators T and A
is defined as

VL(T, A) :=
{ [T x, Ax] + [T x − T y, Ax − Ay]

‖Ax‖2 + ‖Ax − Ay‖2 : x, y ∈ D(T )∩D(A), x �= y
}
,

(11)
where D(T ) and D(A) are the domains of the operators T and A, respectively. The
numerical radius wL(T, A) is defined as wL(T, A) = {sup |λ| : λ ∈ VL(T, A)}.
We have the following elementary properties for the numerical range of two nonlinear
operators.

Theorem 4.3 Let X be a Banach space over C. If T, A, T1, T2 be nonlinear opera-
tors defined on X and λ,μ be scalars, then

(i) VL(λT, A) = λVL(T, A),
(ii) VL(T, μA) = 1

μ
VL(T, A),

(iii) VL(T1 + T2, A) ⊆ VL(T1, A)+ VL(T2, A),
(iv) VL(T − λA, A) = VL(T, A)− {λ}.
Proof (i) We see that for any x, y ∈ X ,

[λT x, Ax] + [λT x − λT y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 = λ [T x, Ax] + [T x − T y, Ax − Ay]

‖Ax‖2 + ‖Ax − Ay‖2 .

Hence VL(λT, A) = λVL(T, A).

(ii) For any x, y ∈ X ,

[T x, μAx] + [T x − T y, μAx − μAy]
‖μAx‖2 + ‖μAx − μAy‖2 = μ[T x, Ax] + μ[T x − T y, μAx − μAy]

|μ|2(‖Ax‖2 + ‖Ax − Ay‖2)
= μ

|μ|2
[T x, Ax] + [T x − T y, Ax − Ay]

‖Ax‖2 + ‖Ax − Ay‖2
= 1

μ

[T x, Ax] + [T x − T y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 .



88 N. K. Sahu and C. Nahak

Hence VL(T, μA) = 1
μ

VL(T, A).

(iii) Let x, y ∈ Dom(T1) ∩ Dom(T2).
Then

[(T1 + T2)x, Ax] + [(T1 + T2)x − (T1 + T2)y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2

= [T1x, Ax] + [T2x, Ax] + [T1x − T1 y, Ax − Ay] + [T2x − T2 y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2

= [T1x, Ax] + [T1x − T1 y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 + [T2x, Ax] + [T2x − T2 y, Ax − Ay]

‖Ax‖2 + ‖Ax − Ay‖2 .

Therefore VL(T1 + T2, A) ⊆ VL(T1, A)+ VL(T2, A). Thus (iii) is proved.

(iv) For any x, y ∈ X ,

[(T − λA)x, Ax] + [(T − λA)x − (T − λA)y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2

= [T x, Ax] − λ‖Ax‖2 + [T x − T y, Ax − Ay] − λ‖Ax − Ay‖2
‖Ax‖2 + ‖Ax − Ay‖2

= [T x, Ax] + [T x − T y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 − λ.

This implies that VL(T − λA, A) = VL(T, A)− {λ}.
We give example of two nonlinear operators in a semi-inner product space and
compute their numerical range and numerical radius.

Example 4.1 Consider the real sequence space l p, 1 < p <∞.
Let x = (x1, x2, ...), y = (y1, y2, ...) ∈ l p. Consider the two nonlinear operators
T, A : l p → l p defined by T x = (‖x‖, x1, x2, ...) and Ax = (‖x‖, 0, 0, ...). The
unique semi-inner product on the real sequence space l p is defined as

[x, y] = 1

‖y‖p−2

∞∑
n=1

|yn|p−2 yn xn, ∀x = {xn}, y = {yn} ∈ l p.

One can easily compute that ‖Ax‖ = ‖x‖, ‖Ax − Ay‖ = |‖x‖ − ‖y‖|,
[T x, Ax] = ‖x‖2 and

[T x − T y, Ax − Ay] = 1

‖Ax − Ay‖p−2 {|(‖x‖ − ‖y‖)|p−2(‖x‖ − ‖y‖)2}

= 1

|(‖x‖ − ‖y‖)|p−2 |(‖x‖ − ‖y‖)|p = |(‖x‖ − ‖y‖)|2.
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One can calculate that

[T x, Ax] + [T x − T y, Ax − Ay]
‖Ax‖2 + ‖Ax − Ay‖2 = ‖x‖

2 + |(‖x‖ − ‖y‖)|2
‖x‖2 + |(‖x‖ − ‖y‖)|2 = 1, ∀x, y ∈ l p.

Therefore VL(T, A) = {1} and wL(T, A) = 1.

5 Conclusion

Researchers usually take the help of bounded linear functionals to establish Hilbert
space-like theory in Banach spaces. Without using arbitrary bounded linear func-
tionals, we have taken the help of semi-inner product to study frames and numerical
range of operators in Banach spaces. The main benefits of this approach are three-
fold. It is computationally easy. We can avoid the inconvenience of using arbitrary
bounded linear functionals. It helps in constructing concrete examples.
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Chapter 7
Multi-level Nonlinear Programming Problem
with Some Multi-choice Parameter

Avik Pradhan and M. P. Biswal

Abstract Decentralized planning is important for modeling a real-life
decision-making problem. Multi-level programming is a very powerful tool for mod-
eling such type of decentralized planning problems. In a multi-level programming
problem, the decision is taken by several decision makers who are in different levels.
In this paper, we studied a multi-level nonlinear programming problem where some
(or all) of the coefficients of the objectives and the constraints are multi-choice type.
We propose a suitable solution procedure to solve the stated multi-level program-
ming problem. To solve these type of problems, first we tackle each multi-choice
parameter of the multi-level programming problem by using interpolating polyno-
mial and obtain a multi-level mixed integer nonlinear programming problem. Then
we use the concept of tolerance membership function for the objectives and the con-
trol variables of the decision makers and formulate a fuzzy max–min type decision
model to obtain a Pareto optimal solution of the transformed multi-level program-
ming problem. We present a numerical example to illustrate the solution procedure
of the stated problem.

1 Introduction

Modeling a large and complex systems invariably needs to decompose the system
into a number of smaller subsystems, each with its own goals and constraints. The
interconnections among the subsystems may take on many forms, but one of the most
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common form is the hierarchical organization in which a particular level decision
maker controls or co-ordinates his/her lower level decision makers. These types
of decomposed system is called multi-level system [1]. In a hierarchical decision-
making system, if two or more levels are present with one decision maker in each
level to take decision, then the problem is called a multi-level programming problem.
Multi-level programming can be considered as an extension of Stackelberg games
for solving decentralized planning problems with multiple decision makers in a
hierarchical organization. Multi-level programming problem (MLPP) can also be
defined as a k-person, nonzero sum game with perfect information in which each
player moves from top-down sequentially. In a multi-level programming problem, if
there are only two levels, then the problem is called a bi-level programming problem.
The formal mathematical formulation of bi-level programming problem was studied
by Fortuni-Amat and McCarl [13] in 1981 and Candler and Townsley [9] in 1982.
After the formulation of the bi-level programming problem it has been extended to
formulate a multi-level programming problem. Multi-level programming problem
has the following properties (see Shih et al. [21]; Lai [15]):

(i) the decision makers take decision interactively within a predominantly hierar-
chical structure;

(ii) the decisions are made sequentially from upper level to lower level;
(iii) each level decision maker independently maximize its own net benefits, but

their actions are affected by the action of the other decision maker (DM);
(iv) these affects can be reflected in both the objective and the feasible space.

Most of the real-life case study in this area can be found in export-import business,
agriculture, government policy, economic systems, finance, warfare, transportation,
network designs, and is especially suitable for conflict resolution.

In real-life situations, there exist some decision-making problems with different
structures. These type of problems cannot be solved using standard decision-making
approaches. For example, suppose in a multi-level nonlinear programming problem
all the DM have multiple number of choices for the cost coefficients of their objec-
tives, or for the resource level, then classical method like vertex enumeration, KKT
transformation, fuzzy programming, or fuzzy goal programming can not be used
directly to solve the problem. To deal with these type of problems, we need to con-
struct a new mathematical model. In this paper, we transform these type of problem
into a mathematical model such that these type of situation can be handled. We for-
mulate a model for a multi-level nonlinear programming problem whose parametric
space contained some multi-choice type parameter. We use some standard mathe-
matical methods to tackle these multi-choice parameter. Then we solve the problem
by standard optimization methods. After presenting the Introduction, some literature
reviews on the work are presented in the next Section. Then Mathematical formu-
lation of the problem, Proposed methodology, Numerical example, and conclusions
are presented in the subsequent Sections.
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2 Literature Review

In last three decades several development has been done in the field of hierarchial opti-
mization. The simplest form of a multi-level programming problem is bi-level pro-
gramming problem. After the formation of bi-level programming problem by Fortuni-
Amat and McCarl [13], Candler and Townsley [9] in several direction research has
been done on this topic. Candler and Townsley [9] has proposed an implicit search
algorithm which generates an enumerating bases from lower level activities, but no
progress has been made for a large system. Then Bialas and Karwan [5, 6] has pro-
posed two methods to solve a bi-level programming problem, they are known as
vertex enumeration method and k-th best method. In 1988 Anandalingam [1] dis-
cussed multi-level programming problem (MLPP) as well as bi-level decentralized
programming problem based on Stackelberg solution procedure. He used KKT trans-
formation technique to solve these multi-level and bi-level decentralized problems. It
was Lai [15] who used the concept of fuzzy set theory to solve multi-level program-
ming problem. After Lai’s fuzzy set theory concept for multi-level programming
Shih et al. [21], Shih and Lee [22] extended his concept by introducing noncompen-
satory max-min aggregation operator and compensatory fuzzy operator respectively
for MLPP. After the development of fuzzy programming approach for hierarchial
optimization problem fuzzy goal programming approach has been developed by Pal
and Moitra [18] and Pramanik and Roy [19]. Baky [3] has used fuzzy goal program-
ming approach and proposed two algorithm to solve multi-level multiobjective linear
programming problem.

In case of multi-choice programming problem, it was Healey [14] who originated
the problem.The problem belongs to a class of combinatorial optimization problems
with a requirement to choose a value from a number of choice, and to find a combina-
tion which optimize an objective function subject to a set of constraints. In practice,
MCP can be extended as an application of generalized assignment problems, mul-
tiple choice knapsack problems, sales resource allocation, multi-item scheduling,
timetabling, etc. Chang [10, 11] has proposed the formulation of multi-choice goal
programming(MCGP), in this problem the DM allowed to set multi-choice aspira-
tion levels (MCAL) for each goal. Paksoy and Chang [17] have applied the revised
multi-choice goal programming approach of Chang [11] to deal with the multi-choice
parameters and solved a supply chain network design problem. Liao [16] follows the
method of Chang [10] to solve the multi-segment goal programming problem. Then
Biswal and Acharya [7] has extended Chang’s method to transform multi-choice
programming problem to a deterministic model where right-hand side parameter
of linear programming problem is multi-choice type. Further Biswal and Acharya
[7] used interpolating polynomial to remove multi-choiceness of the right- hand
side parameter of constraints and formulated a mixed integer nonlinear program-
ming problem. Chang et al. [12] have studied multi-coefficient goal programming in
their paper and use Chang’s [10] transformation technique to deal with multi-choice
parameter. There are no decision-making model in the OR literature for solving
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multi-level nonlinear programming problem containing some multi-choice parame-
ter. In the next section, we present the mathematical model for the multi-choice
multi-level nonlinear programming (MLNLP) problem.

3 Mathematical Formulation of the Problem

Let us consider a multi-level nonlinear programming (MLNLP) problem with K
number of decision maker at different levels. Let X ∈ R

n be the decision vector of the
problem. The decision vector is controlled by the DM and it is partitioned among the
DMs. Each level DM control at least one variable of the DV. Suppose Xk ∈ R

nk (k =
1, 2, ..., K ) is controlled by the k-th level decision maker and n1+n2+· · ·+nK = n.
Also, each level decision makers have their own objective function. We consider the
MLNLP problem where the parameters of the objective functions and the constraints
are multi-choice type. Let F̄k : Rn → R (k = 1, 2, ..., K ) be the objective function
of the k-th level DM, where the parameter of the function are multi-choice type.
Hence this type of problem can be presented as:
find X = (x1, x2, ..., xn)

T so as to

maxX1 : F̄1(X) (1)

maxX2 : F̄2(X)

...

maxX K : F̄K (X)

subject to

S = {(x1, x2, ..., xn)|ḡi (X) ≤ 0, i = 1, 2, ...,m; x j ≥ 0, j = 1, 2, ..., n.} (2)

where X1 ∪ X2 ∪ . . .∪ X K = X, Xi ∩ X j = φ, i �= j ∀i, j and ḡi : Rn → R (i =
1, 2, ...,m) are the real-valued function where the parameters are multi-choice type.

In the above model, for each multi-choice parameter in ḡi the feasible region
will be different. Also, for each multi-choice parameter in the objective functions
F̄k the value of the functions will be different. Let us consider a multi-level multi-
choice linear programming problem where only two parameters are multi-choice
type. Suppose there are p alternative choices for first parameter and q alternative
choices for the second parameter. Then we have to solve pq different MLPP to
obtain the optimal solution. Due to the presence of the multi-choice parameters, the
problem cannot be solved directly. Further, the MLPP has to be solved for K different
decision makers. Hence, we present a suitable methodology to solve these type of
problem.
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Table 1 Data table for
multi-choice coefficient ck j

uk j 0 1 2 · · · sk j − 1

fck j (ukj ) c(1)k j c(2)k j c(3)k j · · · c
(sk j )

k j

4 Proposed Methodology

The main difficulties in solving the model problem occurs due to the presence of
several multi-choice parameter. To overcome these difficulties, first we tackle these
multi-choice parameters. Chang [10, 11], Liao[16], Biswal and Acharya [7, 8] has
introduced methods to transform the problem containing multi-choice parameter to
a mixed integer programming problem. We formulate the interpolating polynomials
for each of the multi-choice parameters present in the problem.

4.1 Formulation of Interpolating Polynomial

For the discussion, let us consider that Ck(= (ck1, ck2, ...ck j , ...)) be the vector of
multi-choice parameters present in the k level DM’s objective function. The set of

alternative choices for the parameter ck j be {c(1)k j , c(2)k j , ..., c
(sk j )

k j }, i.e., there are sk j

number of alternative choices available for the parameter ck j out of which we have to
select one to obtain optimal solution. Hence, to tackle the multi-choice parameter ck j

we introduce an integer variable ukj which takes sk j number of values. We formulate a
Lagrange interpolating polynomial fck j (ukj )which passes through all the sk j number
of points given by Table 1.

Following Lagrange’s formula [2] we get the interpolating polynomial for the
multi-choice parameter ck j as:

fck j (ukj ) = (ukj − 1)(ukj − 2) · · · (ukj − sk j + 1)

(−1)(sk j−1)(sk j − 1)! c(1)k j

+ ukj (ukj − 2) · · · (ukj − sk j + 1)

(−1)(sk j−2)(sk j − 2)! c(2)k j

+ ukj (ukj − 2)(ukj − 3) · · · (ukj − sk j + 1)

(−1)(sk j−3)2!(sk j − 3)! c(3)k j + · · ·

+ ukj (ukj − 1)(ukj − 2) · · · (ukj − sk j + 2)

(sk j − 1)! c
(sk j )

k j . k = 1, 2, ..., K (3)

Similarly, let us consider that the vector of the multi-choice parameters presents
in the i-th constraint be Ai (= (ai1, ai2, ..., ai j ...)) (i = 1, 2, ...,m). Suppose for
the multi-choice parameter ai j there are pi j number of alternative choice. To tackle
the multi-choice parameter ai j we introduce an integer variable wi j which takes
pi j number of different values, and construct an interpolating polynomial fai j (wi j )
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Table 2 Data table for
multi-choice coefficient ai j

wi j 0 1 2 · · · pi j − 1

fai j (wi j ) a(1)i j a(2)i j a(3)i j · · · a
(pi j )

i j

following the Lagrange’s formula. The interpolating polynomial fai j (wi j ) passes
through all the pi j number of points which are given by Table 2. The interpolating
polynomial can be written as:

fai j (wi j ) = (wi j − 1)(wi j − 2) · · · (wi j − pi j + 1)

(−1)(pi j−1)(pi j − 1)! a(1)i j

+ wi j (wi j − 2) · · · (wi j − pi j + 1)

(−1)(pi j−2)(pi j − 2)! a(2)i j

+ wi j (wi j − 2)(wi j − 3) · · · (wi j − pi j + 1)

(−1)(pi j−3)2!(pi j − 3)! a(3)i j + · · ·

+ wi j (wi j − 1)(wi j − 2) · · · (wi j − pi j + 2)

(pi j − 1)! a
(pi j )

i j ,

i = 1, 2, ...,m. (4)

After transforming all the multi-choice parameters ck j , ai j (k = 1, 2, ..., K ; i =
1, 2, ...,m) by introducing interpolating polynomial, we obtain a multi-level mixed
integer nonlinear programming problem. Hence the transformed multi-level pro-
gramming model for the problem (1–2) is given by:

maxX1 : F1(X,U1)

maxX2 : F2(X,U2)

...

maxX K : FK (X,UK ) (5)

subject to

S = {(x1, x2, ..., xn)|gi (X, wi j ) ≤ 0, i = 1, 2, ...,m; x j ≥ 0, j = 1, 2, ..., n.} (6)

0 ≤ ukj ≤ sk j − 1

0 ≤ wi j ≤ pi j − 1

ukj , wi j ∈ N0 k = 1, 2, ..., K ; i = 1, 2, ...,m. (7)

where N0 is the set of nonnegative integers and Uk = (uk1, uk2, ..., ukj , ...)

(k = 1, 2, ..., K ).
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4.2 Fuzzy Programming Approach to Solve
the Transformed Problem

In the previous Section, we have derived transformed multi-level mixed integer
nonlinear programming problem in which there are no more multi-choice parame-
ters. We use fuzzy programming approach to obtain a Pareto optimal solution of
the transformed model. Since the feasible region are same for the original and for the
transformed model, the obtained solution will be a Pareto optimal solution for the
original problem also. In the above MLP problems, K number of different decision
makers are there. The objective function for all the decision makers are different and
conflicting in nature. So, we have to find a solution which will satisfy all the criteria
of the decision makers. To fulfill this demand we have to find a compromise solution
which can be achieved by using fuzzy programming approach. To solve the problem
(5–7), the first-level DM provides his/her preferred ranges for the objective function
Z41 and control variable X1 to the second-level DM and asked for his solution. The
second-level DM solves his/her problem in isolation with the additional preference
information from the first-level DM and submit the solution to the first-level DM.
Then first-level DM will modify the solution under the overall benefit of the organi-
zation; this process will continue until DMs get a satisfactory solution. By following
the satisfactory solution, both DMs individually rebuild/build the revised ranges for
their objective functions and control variable which become the additional constraints
of the third-level DM. The solution of the third-level DM is proposed to the upper
levels. If any upper levels are not satisfied with this proposal, the third-level DM will
then solve a new problem with new information from the upper level DMs until a
satisfactory solution is reached. This procedure continues until the K -th level DM’s
solution satisfies all DMs and the final solution will be a satisfactory solution for the
problem (5–7). Fuzzy membership functions have been introduced to represent the
ranges given by each level DM for their objective function and the control variable.
To formulate the fuzzy programming model for the k-th level DM of the problem we
construct the membership function for all the DM.

4.2.1 Construction of the Fuzzy Membership Function

In order to construct the membership function for the DM’s objective function, we
solve all the DM’s problem with their own objective function individually over the
same feasible region. After solving all the problems we obtain the optimal solution
for the k-th level DM as (F∗k ; X∗k;U∗k ), where Uk = (uk1, uk2, ..., ukj , ...)) and
X∗k(∈ R

n) is the optimal solution for the k-th level DM (k = 1, 2, ..., K ). To set
the minimum tolerance value for the membership function of the objective function
of the DM, we construct the pay-of f matrix. Set the minimum tolerance value for
the k-th level DM’s objective as the minimum value for the objective in the pay-of f
matrix, and denote them as F ′k for k-th level DM. Since the objective function are
conflicting in nature, F∗k �= F ′k . The k-th level DM control the decision variable Xk ,
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O X∗
l −Nl X∗

l

1

X∗
l + Pl X∗

l

µXl

Fig. 1 Triangular membership function for l-th level decision Variable

k = 1, 2, ..., K ; to get a compromise solution, all the k − 1 DM have to give a range
for their controlled decision variables. Let the positive and negative deviation for Xl

be Pl and Nl respectively, where Pl , Nl ∈ R
nl , l = 1, 2, ..., k − 1, and they need

not be same. Hence we construct the fuzzy membership function for Fk ,and Xl as:

μFk (X,Uk) =

⎧
⎪⎪⎨
⎪⎪⎩

1, Fk ≥ F∗k
Fk−F

′
k

F∗k −F
′
k

, F
′
k < Fk < F∗k

0, Fk ≤ F
′
k

(8)

μXl =
⎧⎨
⎩
(X∗l +Pl )−Xl

Pl
, X∗l ≤ Xl ≤ X∗l + Pl

Xl−(X∗l −Nl )

Nl
, X∗l − Nl ≤ Xl ≤ X∗l

(9)

where X∗l ⊆ X∗l , l = 1, 2, ..., k−1.Note that, the membership function correspond-
ing to the objective functions are nonlinear but for the decision variable membership
function is linear. The membership function corresponding to the decision variable
is shown in Fig. 1.

4.2.2 Fuzzy Programming Model

We define all the membership functions to establish the fuzzy programming model
for the k-level problem. Let αk be the minimum acceptable degree of satisfaction
for the objective Fk . Then we have μFk ≥ αk . Let γ̄l be the minimum acceptable
degree of satisfaction of the decision variable Xl , then we have μXl ≥ γ̄l . Let us set
λ1 = min{α1, α2, ..., αk, γ̄1, γ̄2, ..., γ̄k−1}. Now we apply Bellman and Zadeh’s [4]
max-min operator to construct the fuzzy programming model for the problem. The
fuzzy programming model for k-th level DM is given by:
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max : λ1 (10)

subject to,

Fq − λ1(F
∗
q − F ′q) ≥ F ′q (11)

(X∗l + Pl)− Xl ≥ λ1 Pl

Xl − (X∗l − Nl) ≥ λ1 Nl

S = {(x1, x2, ..., xn)|gi (X, wi j ) ≤ 0, i = 1, 2, ...,m; x j ≥ 0, j = 1, 2, ..., n.}
0 ≤ uq j ≤ sq j − 1

0 ≤ wi j ≤ pi j − 1

uq j , wi j ∈ N0 q = 1, 2, ..., k; i = 1, 2, 3, ...,m.

where N0 is the set of nonnegative integer. Also Il ∈ R
nl and all elements of it are

1. This is treated as an mixed integer nonlinear programming problem. Using any
nonlinear programming solver, we solve the problem. After obtaining a satisfactory
solution for all the k DM, we have to solve the problem for (k + 1)-th level DM.
If any one of the (k − 1) upper level DM is not satisfied with the solution, then we
rebuild the membership function for the objectives and the decision variables, and
again have to solve the reformulated fuzzy programming model for the k-th level
DM. This procedure will continue until all the (K − 1)-th level DMs are satisfied by
the K -th level DM’s proposal.

5 Numerical Example

In this Section, We present a numerical example to illustrate the solution procedure
for a multi-level multi-choice nonlinear programming problem. We consider a tri-
level nonlinear programming problem where some of the parameters of the problem
are multi-choice type. We consider the following multi-level example:

maxx1 : F1 = {5, 6, 7}x1 + {2, 4}x2 + {1, 4, 5}x3 − x2
1 − {5, 7}x2

2 − {2, 3, 4}x2
3 (12)

maxx2 : F2 = {2, 4, 6}x1 + {1, 2, 3}x2 + {3, 4}x3 − {1, 2}x2
1 − {1, 3, 5}x2

2 − x2
3 (13)

maxx3 : F3 = {3, 5}x1 + 3x2 + {2, 3, 4, 6}x3 − x2
1 − {2, 4}x2

2 − x2
3 (14)

subject to,

{1, 3}x1 + {1, 4}x2 + x3 ≤ {7, 9, 10, 12} (15)

{1, 2}x1 + 2x2 + {2, 4, 5}x3 ≤ {8, 9, 11, 12, 15} (16)

{3, 4, 5}x1 + {2, 3, 4, 5}x2 + {3, 4}x3 ≤ {20, 21, 23, 24} (17)

xi ≥ 0 i = 1, 2, 3. (18)
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We formulate interpolating polynomial for each of the discrete parameter present in
the problem. We replace those parameters by corresponding interpolating polynomial
to obtain a multi-level mixed integer nonlinear programming problem. After solving
the transformed model, we obtain the best individual for the DMs as: F∗1 = 16.175
at X∗1 = (3.5, 0.4, 1.25) for the first-level DM, F∗2 = 15.25 at X∗2 = (3, 1.5, 2)
for the second-level DM and F∗3 = 16.375 at X∗3 = (2.5, .75, 3) for the third-level
DM. From the pay-of f matrix of the objective functions value, we set the minimum
tolerance values for all the DM’s objective functions as F ′1 = 8.4375, F ′2 = 13.2275
and F ′3 = 12.0675. With these tolerance limits we formulate nonlinear membership
functions for all the DM’s objective functions (using the formula (8)) and apply fuzzy
programming approach to obtain the Pareto optimal solution of the problem. First
we solve the transformed for the second level DM.

For second level DM’s problem, the first-level DM give the positive and negative
deviation for his/her control variable x1 as p1 = 0.5, n1 = 0.3 and we construct
the membership function for x1 with the help of (9). Hence we construct the fuzzy
programming model for second-level DM with the help of (10–11) (with k=2) and
solve it using LINGO 11.0 [20]. Then we obtain the solution as λ = 0.7310467, x1 =
3.419314, x2 = 0.9355070, x3 = 1.777556, f1 = 14.17802; f2 = 14.706042.
Suppose, this is a satisfactory solution for first-level DM, then we can proceed to
third level.

We keep the bounds for the objective functions same as previous case and let the
first-level DM decide to give tolerance limit for x1 = 3.419314 as 0.3 (negative)
and 0.5 (positive). Similarly, the second-level DM chooses the tolerance limit for
x2 = 0.9355070 as 0.3 (negative) and 0.5 (positive). Hence by solving the fuzzy
programming model for the third-level DM, we obtain the satisfactory solution as
x1 = 3.256412, x2 = 0.7726045, x3 = 2.530299 with λ = 0.4569917 where
f1 = 12.143165; f2 = 14.373931; f3 = 15.5812. Suppose this solution satisfy
all the upper level DM then this solution will be a Pareto optimal solution for the
problem.

6 Conclusions

In this paper we have presented a multi-level nonlinear programming problem, where
some of the parameters are multi-choice type. Interpolating polynomials are used to
replace those multi-choice parameters. The transformed problem becomes a multi-
level mixed integer nonlinear programming problem which can be solved by using
fuzzy programming approach directly. Instead of using interpolating polynomials, if
we use auxiliary binary variables for the transformation, the size of the transformed
problem will become larger due to the presence of more number of auxiliary binary
variables however it takes more number of iteration compare to the previous case. On
the basis of the proposed method any DM can use other membership functions (such
as piecewise, exponential, hyperbolic functions) to establish the fuzzy programming
model.
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Chapter 8
A New Class of Rational Cubic Fractal Splines
for Univariate Interpolation

P. Viswanathan and A. K. B. Chand

Abstract Fractal interpolation functions that share smoothness or nonsmoothness
property of the prescribed interpolation data provide a novel method of interpolation.
The present paper proposes a new type of rational cubic spline fractal interpolation
function which involves two families of free shape parameters and which does not
require derivatives at knots for its construction. The scaling factors inherent with the
structure facilitate the proposed rational fractal interpolation function to recapture a
classical rational cubic spline studied earlier in the literature as a special case. In addi-
tion, the scaling factors are the key ingredients that provide fractality to the derivative
of the constructed interpolant. Thus, in contrast to the classical nonrecursive rational
splines, the proposed rational cubic fractal spline can produce interpolants whose
derivatives have irregularity in finite or dense subsets of the interpolation intervals
depending on the nature of the problem. Assuming that the original data defining
function belongs to the smooth class C 2, an upper bound for the interpolation error
with respect to the L∞-norm is obtained and the uniform convergence of the ratio-
nal cubic fractal interpolant is deduced. The developed rational fractal interpolation
scheme is illustrated with numerical examples and some possible extensions are
exposed.

1 Introduction

The theory of interpolation, in particular, the spline theory, has evolved beyond its
mathematical framework and has become a powerful tool in the applied sciences
as well as engineering, computer aided geometric design for instance. The kinds of
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splines that are widely applied are polynomial splines. For a given set of interpolation
data, in general, the polynomial spline is unique, and consequently, local modification
of the interpolating curve is impossible. On the other hand, shape modification is a
crucial requirement in geometric design environment.

In recent years, rational splines with parameters, where the free parameters can
be adjusted so as to yield a variety of interpolating curves for a prescribed data set,
have received considerable attention in the literature (see, for instance, [7, 10] and
references therein). Wide applicability of rational interpolants may be attributed to
their: (i) ability to receive free parameters within the spline structure, (ii) ability to
accommodate a wider range of shapes than the polynomial family, (iii) excellent
asymptotic properties, (iv) capability to model complicated structures, (v) better
interpolation properties, and (vi) excellent extrapolating powers.

These traditional nonrecursive polynomial and rational splines are differentiable
indefinite number of times except possibly at a finite number of points in the interpo-
lation interval. Consequently, these techniques do not work satisfactorily for interpo-
lating a dataset wherein variable representing the derivative of a suitable order has to
be modeled with a function having irregularity in a dense subset of the interpolation
interval. On the other hand, such datasets appear naturally and abundantly in nonlin-
ear and nonequilibrium phenomena, for instance, in electromechanical systems (e.g.,
a pendulum-cart system [14]) and in fluid dynamics (e.g., falling sphere experiments
in polymeric/wormlike micellar fluids [13]).

Using theory of Iterated Function System (IFS), Barnsley [1] proposed Fractal
Interpolation Function (FIF), which offers an alternative to the traditional interpola-
tion techniques. FIFs aim mainly at data that exhibit an irregular, nonsmooth struc-
ture which cannot be conveniently described using functions occurring in traditional
interpolation and approximation theory. Such data arise in the study of real-world
sampled signals such as financial series, seismic data, speech signals, and bioelectric
recordings. The main differences of a FIF with the traditional interpolants include: (i)
the construction via IFS theory that implies a self- similarity in small scales, (ii) the
construction by iteration of the functional equation instead of using an analytic for-
mula, (iii) the usage of free parameters termed scaling factors, which offer flexibility
in the choice of interpolant in contrast to the unicity of a typical traditional inter-
polant, and which determine the fractal dimension of the graph of the corresponding
interpolant.

We shall supply more particulars—of a technical nature—concerning the notion
of fractal interpolation in the next section, soon after we finish discussing this general
introduction.

Although fractal interpolants were introduced originally for modeling nonsmooth
signals, a little later, Barnsley and Harrington [2] observed that by appropriate choice
of the elements in the IFS, smooth FIFs can also be constructed. This observation
initiated a striking relationship between the classical splines and the fractal functions.
A fractal spline is not a typical fractal, but the adjective fractal is retained because
(i) of the flavor of the scaling in its definition, (ii) a certain derivative of this function
is typically a fractal, and (iii) the graph of a fractal spline is a union of transformed
copies of itself. An alternative name could be self-referential splines to alert us to
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the fact that graph of such a spline is a union of the transformed copies of itself.
Fractal splines constitute an advance in the techniques of approximation, since the
classical methods of real-data interpolation can be generalized by means of smooth
fractal techniques (see, for instance, [3, 11]). For a fractal spline f ∈ C p(I ), where
C p(I ) denotes the space of p-times differentiable real-valued functions defined on
a real compact interval I with continuous p-th derivatives, the function f (p) may be
nondifferentiable in a finite or dense subset of the interpolation interval. Further, if
the experimental data are approximated by a C p-FIF f , then the fractal dimension
of the graph of f (p) provides a quantitative parameter for the analysis of the data,
allowing to compare and discriminate the experimental processes [12].

The most widely studied fractal splines so far in the literature are obtained through
polynomial IFSs. Recently, by establishing some constrained aspects of cubic Her-
mite FIFs, the authors have demonstrated that the polynomial FIFs can be explored
in the field of constrained interpolation (see [5]). To exploit the advantage of rational
functions over polynomials and the versatility of fractal splines, Chand et al. [6, 15]
recently constructed rational fractal splines and studied their shape preserving prop-
erties. The aforementioned construction requires derivatives at knots as input. Unfor-
tunately, in some manufacturing processes, the derivatives are difficult to obtain.

In the present paper, we introduce a new class of rational FIFs that depend only
on function values at knots. For suitable values of the scaling factors, the constructed
rational FIFs recover a standard rational cubic spline studied in [8]. To demonstrate
the effectiveness of the constructed rational cubic fractal spline f in approximation
of a function, an upper bound for the L∞-norm of the interpolation error Φ − f
for an original data defining function Φ ∈ C 2 is obtained. As a consequence, uni-
form convergence of the constructed fractal spline is deduced. In our test examples,
we have compared the plots obtained by the present fractal interpolation scheme
and its traditional nonrecursive counterpart. The result is encouraging for the spline
class treated now, especially when the data arise from a smooth function whose first
derivative has varying irregularity (from smooth to nowhere differentiable).

2 Preliminaries

In this section, we shall briefly recall some basic facts on fractal interpolation. We
shall uncover these preludatory materials in three subsections. For a complete and
rigorous treatment, the reader is referred to the well-known treatises [1, 2].

2.1 Iterated Function Systems

Definition 1 Let (X, d) be a complete metric space and M ∈ N. If fm : X → X ,
m = 1, 2, . . . ,M are continuous mappings, then I = {X; f1, f2, . . . , fM } is called
an Iterated Function System (IFS). If, in addition, there exists a constant 0 ≤ c < 1
such that for all fi ∈ I ,
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d
(

fi (x), fi (y)
) ≤ cd(x, y) ∀ x, y ∈ I,

then I is called a hyperbolic (contractive) IFS. The constant c is referred to as the
contraction factor of the IFS I .

Associated with the IFS I , there is a set valued map W from the hyperspace H (X)
of nonempty compact subsets of (X, d) into itself. More precisely,

W :H (X) −→H (X), W (E) := M∪
m=1

fm(E) for E ∈H (X).

There exists a natural metric h on H (X), called the Hausdorff metric, which com-
pletes H (X). This metric h is defined as follows:

h(A, B) = max
{
max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(b, a)
}
.

When I is a contractive IFS with contraction factor c, it is well-known that the
collage map W is a contraction on the complete metric space

(
H (X), h

)
with the

same contraction factor c. A basic result in the theory of IFS is the following:

Theorem 1 (Barnsley [1]) Given a contractive IFS I on a complete metric space
(X, d) and any set A0 ∈ H (X), there exists a unique set A, called the attractor of
the hyperbolic IFS, such that

A = lim
n→∞W n(A0) and W (A) = A.

Here the limit is taken in the Hausdorff metric and W n denotes the n-fold composition
of W with itself.

Next the question of how to obtain functions whose graphs are attractors of suitable
IFSs is investigated.

2.2 Fractal Interpolation Functions

Let N ∈ N, N > 2. Let x1 < x2 < · · · < xN be real numbers and a set of data
points {(xn, yn) ∈ I × R : n = 1, 2, . . . , N } be given. Set I = [x1, xN ] = [a, b]
and In = [xn, xn+1] for n ∈ J = {1, 2, . . . , N − 1}. Suppose Ln : I → In are
contraction homeomorphisms such that

Ln(x1) = xn, Ln(xN ) = xn+1. (1)

For instance, if Ln(x) = an x + bn , then the prescription in (1) yields

an = xn+1 − xn

xN − x1
, bn = xN xn − x1xn+1

xN − x1
, n ∈ J. (2)
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Let 0 < rn < 1, n ∈ J , and K = I × D, where D is a large enough compactum,
i.e., a compact connected subset of R. Let N − 1 continuous mappings Fn : K → R

be given satisfying:

Fn(x1, y1) = yn, Fn(xN , yN ) = yn+1, |Fn(x, y)− Fn(x, y∗)| ≤ rn|y− y∗|. (3)

Now define functions wn : K → K , wn(x, y) = (
Ln(x), Fn(x, y)

) ∀ n ∈ J .

Proposition 1 (Barnsley [1]) The IFS {K ;wn : n ∈ J } defined above admits a
unique attractor G, and G is the graph of a continuous function f : I → R which
obeys f (xn) = yn for n = 1, 2, . . . , N.

Definition 2 The function f whose graph is the attractor of an IFS as described in
the above proposition is called a Fractal Interpolation Function (FIF) corresponding
to the IFS {K ; wn : n ∈ J }.
Let us provide some excerpts from the proof of the above proposition, which is
needed in the sequel.
Let F be the set of continuous functions g : I → R such that g(x1) = y1 and
g(xN ) = yN . Then F endowed with the uniform metric d∞(g, h) = max{|g(x)−
h(x)| : x ∈ I } is a complete metric space. Define the Read-Bajraktarević operator
T : F → F by

(T g)(x) = Fn

(
L−1

n (x), g ◦ L−1
n (x)

)
∀ x ∈ In, n ∈ J.

Then, T is a contraction mapping on (F , d∞), i.e.,

d∞(T g, T g∗) ≤ |r |∞ d∞(g, g∗),

where |r |∞ := max{rn : n ∈ J } < 1. Hence, by the Banach fixed point theorem, T
possesses a unique fixed point on F , that is to say, there is a unique f ∈ F such that
(T f )(x) = f (x) ∀ x ∈ I . The aforementioned function f is the FIF corresponding
to the IFS {K ; wn : n ∈ J }, and it satisfies the functional equation:

f (x) = Fn

(
L−1

n (x), f ◦ L−1
n (x)

)
, x ∈ In, n ∈ J.

The most extensively studied FIFs in theory and applications so far are defined by
the iterated mappings:

Ln(x) = an x + bn, Fn(x, y) = λn y + Rn(x), n ∈ J. (4)

Here an and bn are given by (2), −1 < λn < 1 and Rn : I → R are suitable contin-
uous functions such that the conditions specified in (3) are satisfied. The parameter
λn is called a scaling factor of the transformation wn , and λ = (λ1, λ2, . . . , λN−1) is
the scale vector corresponding to the IFS. The properties such as smoothness, shape,
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and fractal dimension of the FIF depends heavily on the scaling factors λn, n ∈ J .
The function f obtained through the IFS (4) is, in general, nonsmooth and possesses
noninteger Hausdorff dimension.

2.3 Differentiable FIFs (Fractal Splines)

For a prescribed set of data, a FIF with C p-continuity is obtained as the fixed point
of IFS (4), where the scaling factors λn and the functions Rn are chosen according
to the following proposition.

Proposition 2 (Barnsley and Harrington [2]) Let x1 < x2 < · · · < xN and Ln(x) =
an x+bn, n ∈ J , satisfy (1). Let Fn(x, y) = λn y+Rn(x), n ∈ J , satisfy (3). Suppose
that for some integer p ≥ 0, |λn| ≤ κa p

n , 0 < κ < 1, and Rn ∈ C p(I ), n ∈ J . Let

Fn,k (x, y) = λn y + R(k)n (x)

ak
n

, y1,k =
R(k)1 (x1)

ak
1 − λ1

, yN ,k =
R(k)N−1(xN )

ak
N−1 − λN−1

, k = 1, 2, . . . , p.

If Fn−1,k(xN , yN ,k) = Fn,k(x1, y1,k) for n = 2, 3, . . . , N −1 and k = 1, 2, . . . , p,
then the IFS

{
I ×R; (Ln(x), Fn(x, y)

) : n ∈ J
}

determines a FIF f ∈ C p[x1, xN ],
and f (k) is the FIF determined by the IFS

{
I ×R; (Ln(x), Fn,k(x, y)

) : n ∈ J
}

for
k = 1, 2, . . . , p.

Armed with these requisite general material, we proceed to the next section wherein
we develop a new class of rational cubic spline FIFs.

3 Construction of Rational Cubic Fractal Spline
with Linear Denominator

Given a set of interpolation data {(xn, yn) : n = 1, 2, . . . , N }, we consider the
IFS given in (4) with Rn(x) = Pn(x)

Qn(x)
. Here, for n ∈ J , Pn(x) are cubic polynomials

whose coefficients are to be determined using interpolation conditions and Qn(x) are
preassigned linear polynomials. The construction of corresponding FIF f ∈ C 1(I )
is enunciated in the following theorem.
For convenience in writing the formulas which enter into the theorem, let us denote:
hn = xn+1 − xn , Δn = yn+1−yn

hn
, and |λ|∞ = max{|λn| : n ∈ J }.

Theorem 2 Let {(xn, yn) : n = 1, 2, . . . , N + 1} be a given set of data points and
{(xn, yn) : n = 1, 2, . . . , N } be the set of interpolation points, where x1 < x2 <

· · · < xN+1. Consider the rational IFS {I × R; (Ln(x), Fn(x, y)
) : n ∈ J }, where

Ln(x) = an x + bn and Fn(x, y) = λn y + Rn(x), |λn| ≤ κan, 0 < κ < 1, n ∈ J .
Further, let Rn(x) = Pn(x)

Qn(x)
, where Pn(x) is a cubic polynomial and Qn(x) �= 0 (for

all x ∈ I = [x1, xN ]) is a preassigned linear polynomial involving shape parameters
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such that Fn(x1, y1) = yn, Fn(xN , yN ) = yn+1 are satisfied. With Fn,1(x, y) =
λn y+R(1)n (x)

an
, let Fn,1(x1,�1) = �n and Fn,1(xN ,�N ) = �n+1. Then a C 1-rational

cubic spline FIF f satisfying f (xn) = yn, f (1)(xn) = �n, n = 1, 2, . . . , N exists,
and it is unique for a fixed choice of the shape parameters and the scaling factors.

Proof Consider the IFS I = {
I × R; (Ln(x), Fn(x, y)

) : n ∈ J
}
, where Ln(x) =

an x + bn satisfy the prescription in (1), and Fn(x, y) = λn y + Rn(x) fulfill the
conditions Fn(x1, y1) = yn , Fn(xN , yN ) = yn+1. Let Rn(x) ≡ Rn

(
x1 + θ(xN −

x1)
) = Pn(x)

Qn(x)
, where

Pn(x) ≡ Pn(x1 + θ(xN − x1))

= A1n(1− θ)3 + A2nθ(1− θ)2 + A3nθ
2(1− θ)+ A4nθ

3,

Qn(x) ≡ Qn(x1 + θ(xN − x1)) = αn(1− θ)+ βnθ.

The constants αn and βn are free parameters that can be utilized for shape modifi-
cation and shape control of the fractal interpolant. We impose the conditions αn > 0
and βn > 0 so as to ensure strict positivity of Qn , which in turn avoid any singu-
larity of the rational expression Rn . It is worthwhile to mention that our strategy of
preassigning the denominator polynomial Qn , and determining only the numerator
polynomial Pn via interpolation conditions avoids the possibility of nonlinearity in
the system governing the coefficients of the rational expression.

Consider F := {g ∈ C (I )| g(x1) = y1 and g(xN ) = yN } equipped with
the uniform metric d∞. The IFS I induces a contraction map T : F → F ,
g → T g, (T g)

(
Ln(x)

) := Fn
(
x, g(x)

)
, x ∈ I , whose contraction factor is |λ|∞.

The contraction map T has a unique fixed point f ∈ F , which obeys:

f
(
Ln(x)

) = Fn
(
x, f (x)

)
,

= λn f (x)+ A1n(1− θ)3 + A2nθ(1− θ)2 + A3nθ
2(1− θ)+ A4nθ

3

αn(1− θ)+ βnθ
.

(5)

The conditions Fn(x1, y1) = yn , Fn(xN , yN ) = yn+1 can be reformulated as the
interpolation and continuity conditions f (xn) = yn , f (xn+1) = yn+1, n ∈ J . In
view of (1), the functional Eq. (5) with x = x1 yields

f
(
Ln(x1)

) = λn f (x1)+ Pn(x1)

Qn(x1)
=⇒ yn = λn y1 + A1n

αn
=⇒ A1n = (yn − λn y1)αn .

Similarly, substituting x = xN in (5) and using (1), we obtain

A4n = (yn+1 − λn yN )βn .

Now we make f ∈ C 1(I ) by imposing the conditions prescribed in Barnsley-Harrington
theorem (see Proposition 2).
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By hypothesis, |λn | ≤ κan , n ∈ J , where 0 < κ < 1. We also have Rn ∈ C 1(I ). Adhering
to the notation of Proposition 2, for n ∈ J , we let:

Fn,1(x, y) = λn y + R(1)n (x)

an
,

y1,1 = �1, yN ,1 = �N , Fn,1(x1,�1) = �n, Fn,1(xN ,�N ) = �n+1.

Then by Proposition 2, the FIF f ∈ C 1(I ). Further, f (1) is the fractal function determined by
the IFS I ∗ ≡ {

I ×R; (Ln(x), Fn,1(x, y)
) : n ∈ J

}
. Consider F ∗ := {g ∈ C (I ) : g(x1) =

�1 and g(xN ) = �N } endowed with the uniform metric. The IFS I ∗ induces a contraction
map T ∗ : F ∗ → F ∗ defined by (T ∗g∗)

(
Ln(x)

) = Fn,1
(
x, g∗(x)

)
, x ∈ I. By Proposition

2, the fixed point of T ∗ is f (1). Consequently, f (1) obeys the functional equation:

f (1)
(
Ln(x)

) = Fn,1
(
x, f (1)(x)

) = λn f (1)(x)+ R(1)n (x)

an
. (6)

The conditions Fn,1(x1,�1) = �n and Fn,1(xN ,�N ) = �n+1 can be reformulated as
follows: f (1)(xn) = �n and f (1)(xn+1) = �n+1, n ∈ J . Now from (6) and (1), we have

f (1)(Ln(x1)) =
λn f (1)(x1)+ Qn(x1)P

(1)
n (x1)−Pn(x1)Q

(1)
n (x1)

Q2
n(x1)

an

=⇒ A2n = (2αn + βn)yn + αnhn�n − λn
[
(2αn + βn)y1 + αn(xN − x1)�1

]
.

Finally, substituting x = xN in the functional Eq. (6) and using (1), we get

A3n = (2βn + αn)yn+1 − hnβn�n+1 − λn
[
(2βn + αn)yN − βn(xN − x1)�N

]
.

Therefore, with θ := x−x1
xN−x1

, the desired rational cubic spline FIF receives the form:

f
(
Ln(x)

) = λn f (x)+ Pn(x)

Qn(x)
, x ∈ I, n ∈ J, (7)

Pn(x) = (yn − λn y1)αn(1− θ)3 + (yn+1 − λn yN )βnθ
3 + {

(2αn + βn)yn + αnhn�n

−λn[(2αn + βn)y1 + αn(xN − x1)�1]
}
θ(1− θ)2 + {

(2βn + αn)yn+1

−hnβn�n+1 − λn[(2βn + αn)yN − βn(xN − x1)�N ]
}
θ2(1− θ),

Qn(x) = αn(1− θ)+ βnθ.

Since the FIF f in (7) is obtained as a solution of the fixed point equation T g = g, it is unique
for a fixed choice of the scaling factors and the shape parameters. ��

Remark 1 If λn = 0 for all n ∈ J , then the rational spline FIF defined above reduces
to the classical rational cubic interpolant C introduced by Qi Duan et al. [8], which
can be defined on [xn, xn+1] as follows:
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C(x) = Un(θ)

Vn(θ)
, θ = x − xn

xn+1 − xn
, (8)

Un(θ) = (1− θ)3αn yn + θ(1− θ)2[(2αn + βn)yn + αnhn�n] +
θ2(1− θ)[(2βn + αn)yn+1 − hnβn�n+1] + θ3βn yn+1,

Vi (θ) = αn(1− θ)+ βnθ.

4 Convergence Analysis

Among various considerations in the analysis of an interpolation method, accuracy
of the interpolant is of major importance. Effectiveness of the rational cubic spline
FIF in approximation of a function can be explained by studying its convergence
properties. This section is devoted to establish a uniform error bound for the rational
cubic spline FIF constructed in the foregoing section. We shall demonstrate that
for suitable choices of parameters (scaling factors and shape parameters) in the
rational IFS, our rational cubic spline FIF converges to the data generating function
Φ ∈ C 2(I ) at least as rapidly as the square of the mesh norm approaches zero. The
equality of the knot spacing is supposed here for the sake of simplicity. As a first
step towards establishing the desired error bound for the rational cubic spline FIF,
we have the following error bound for its classical counterpart C :

Lemma 1 (Qi. Duan et al. [8]) LetΦ ∈ C 2(I ) and C be the piecewise rational cubic
interpolant [cf. (8)] for the data {(xn, yn) : n = 1, 2, . . . , N } where yn = Φ(xn).
Then for x ∈ [xn, xn+1],

|Φ(x)− C(x)| ≤ cnh2
n

2
‖Φ(2)‖∞,

where cn = max
0≤θ≤1

w(αn ,βn ,θ)
v(αn ,βn ,θ)

,

w(αn, βn, θ) = θ
[
(αnβn − 3β2

n )θ
4 + (7β2

n − 5αnβn + α2
n)θ

3 − (4β2
n − 7αnβn

+ 3α2
n)θ

2 + 3(α2
n − αnβn)θ − α2

n

]
,

v(αn, βn, θ) =
[
(1− θ)αn + βnθ

][
βnθ

2 + (αn − 2βn)θ − αn
]
.

Moreover, for any αn > 0, βn > 0, cn is bounded and 1
4 ≤ cn ≤ max

0≤θ≤1

3θ3−7θ2+4θ
2−θ =

0.42330428...

This next lemma establishes an upper bound for the uniform distance between the
rational cubic spline FIF f and its classical counterpart C .

Lemma 2 Let f and C, respectively, be the rational cubic spline FIF and the clas-
sical cubic spline interpolant for the data set {(xn, yn) : n = 1, 2, . . . , N }. Let the
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rational function Rn(λn, x) = Pn(λn ,x)
Qn(λn ,x)

appearing in the functional equation of the

FIF f satisfy
∣∣ ∂Rn
∂λn
(τn, x)

∣∣ ≤ D0 ∀ (τn, x) ∈ (−an, an) × In and n ∈ J . Then,

‖ f − C‖∞ ≤ |λ|∞
1−|λ|∞

(‖C‖∞ + D0
)
.

Proof The rational cubic spline FIF f ∈ C 1(I ) is the fixed point of the Read-
Bajraktarević operator Tλ defined on the space F = {g ∈ C 1(I ) | g(x1) =
y1, g(xN ) = yN , g(1)(x1) = �1, and g(1)(xN ) = �N } such that

Tλg(x) = λng
(
L−1

n (x)
)+ Rn

(
λn, L−1

n (x)
)
, (9)

where Rn
(
λn, L−1

n (x)
) = Pn(λn ,θ)

Qn(θ)
, θ = L−1

n (x)−x1
xN−x1

= x−xn
hn
, x ∈ In . Here we write

Rn(θ) ≡ Rn(λn, θ) in order to put in evidence that the coefficients of the rational
function depend on the scaling factor λn . LetΛ = [−κa1, κa1]×[−κa2, κa2]× ...×
[−κaN−1, κaN−1], 0 < κ < 1. For a given λ = (λ1, λ2, . . . , λN−1) ∈ Λ ⊂ R

N−1

with at least one λn �= 0, the rational cubic spline FIF f is the fixed point of Tλ, and
for 0 = (0, 0, ..., 0) ∈ Λ, the classical rational quadratic C is the fixed point of T0.
For x ∈ [xn, xn+1], we obtain

∣∣∣TλC(x)− T0C(x)
∣∣∣ =

∣∣∣λnC
(
L−1

n (x)
)+ Rn

(
λn, L−1

n (x)
)− Rn

(
0, L−1

n (x)
)∣∣∣,

≤ |λn|‖C‖∞ + |λn|
∣∣∣∂Rn(τn, L−1

n (x))

∂λn

∣∣∣,
≤ |λn|

(‖C‖∞ + D0
)
.

The first step in the preceding analysis used definition of the map T , the second
step followed from the mean value theorem, and the last step was plain due to the
definition of D0. Validity of the above inequality for all x ∈ In , n ∈ J , asserts

‖TλC − T0C‖∞ ≤ |λ|∞
(‖C‖∞ + D0

)
. (10)

Inasmuch as Tλ is a contraction map, we have

‖Tλ f − TλC‖∞ ≤ |λ|∞‖ f − C‖∞. (11)

In view of (10)–(11),

‖ f − C‖∞ = ‖Tλ f − T0C‖∞ ≤ ‖Tλ f − TλC‖∞ + ‖TλC − T0C‖∞,
≤ |λ|∞‖ f − C‖∞ + |λ|∞

(‖C‖∞ + D0
)
,

which on simplification yields

‖ f − C‖∞ ≤ |λ|∞
(‖C‖∞ + D0

)

1− |λ|∞ .

This completes the proof. ��
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Theorem 3 Let Φ ∈ C 2(I ) and let f be the rational cubic spline FIF such that
f (xn) = Φ(xn) = yn and f (1)(xn) = �n, n = 1, 2, . . . , N. Then

‖Φ − f ‖∞ ≤ ch2

2
‖Φ(2)‖∞ + |λ|∞

1− |λ|∞
(‖C‖∞ + D0

)
,

where c = max{cn : n ∈ J }, cn, n ∈ J , are as in Lemma (1), and D0 is prescribed
in Lemma (2).

Proof By triangle inequality:

‖Φ − f ‖∞ ≤ ‖Φ − C‖∞ + ‖C − f ‖∞. (12)

First summand in the right-hand side of the above inequality can be bounded using
Lemma 1 as follows.

‖Φ − C‖∞ ≤ ch2

2
‖Φ(2)‖∞. (13)

Similarly, the uniform distance between the rational cubic spline FIF f and its clas-
sical counterpart C present in the second summand can be bounded by Lemma 2:

‖ f − C‖∞ ≤ |λ|∞
1− |λ|∞ (‖C‖∞ + D0). (14)

Substitution of (13)–(14) in (12) completes the proof. ��
As consequences of the previous theorem we have the following convergence results.

4.1 Convergence Results

(a) For the scaling factors satisfying |λn| < an = hn
xN−x1

, the rational cubic spline

FIF f uniformly converges to the data defining functionΦ ∈ C 2(I ) as the mesh
norm approaches zero, i.e., ‖Φ − f ‖∞ = O(h).

(b) If the scaling factors are selected such that |λn| < a2
n , then we have |λ|∞ < h2

|I |2 .
Consequently, the estimate of the uniform error bound for the rational cubic
spline FIF obtained in the above theorem provides ‖Φ − f ‖∞ = O(h2). Thus,
for suitable values of the scaling factors, the rational cubic spline FIF f has the
same order of convergence as that of its classical counterpart C .

Remark 2 Since the rational cubic spline FIF does not possess a closed-form expres-
sion, the standard methods such as Taylor series analysis, Cauchy remainder formula,
and Peano kernel theorem cannot be easily adapted for analyzing its convergence.
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Instead, we have used the error bound for the classical rational cubic spline via the
triangle inequality ‖Φ− f ‖∞ ≤ ‖Φ−C‖∞+‖C− f ‖∞ to establish that f has the
same order of convergence as that of its classical counterpart C . As consequence, it
is possible to approximate any regular function by using a rational cubic spline FIF
with arbitrary accuracy. The application of triangle inequality to obtain the conver-
gence does not imply that the error committed by the rational cubic spline FIF in
approximating a smooth function will be always greater than the error committed by
its classical counterpart. Furthermore, we feel that any possible loss of precision is
to be counterbalanced with the generality offered by the method.

5 Numerical Examples and Discussion

Consider the data set {(1, 24), (2, 2.5), (4, 41), (5, 4), (7, 57), (8, 5), (9, 0.5),
(10, 2.5)}, where it is required to interpolate the subset {(1, 24), (2, 2.5), (4, 41),
(5, 4), (7, 57), (8, 5), (9, 0.5)}. Due to the principle of construction of a C 1-FIF, we
take |λn| < an for n = 1, 2, 3, . . . , 6. The graph of the desired C 1-rational cubic
spline FIF f is obtained as the fixed point of the IFS:

{I × R;wn(x, y) = (
Ln(x), Fn(x, y)

) : n = 1, 2, . . . , 6}, (15)

where with θ := x−x1
xN−x1

, the component maps are given by Ln(x) = xn(1−θ)+xn+1θ

and

Fn(x, y) = (
αn(1− θ)+ βnθ

)−1 ×
[
(yn − λn y1)αn(1− θ)3 + (yn+1

− λn yN )βnθ
3 + {

(2αn + βn)yn + αnhn�n − λn[(2αn + βn)y1

+ αn(xN − x1)�1]
}× θ(1− θ)2 + {

(2βn + αn)yn+1 − hnβn�n+1

− λn[(2βn + αn)yN − βn(xN − x1)�N ]
}
θ2(1− θ)

]
+ λn y.

We have written a simple computer program in MatLab for plotting the graphs of FIFs.
One inputs the data points, scaling factors, and shape parameters whereupon points
on the graph are recursively generated. Theoretically, to obtain the actual fractal
interpolant, one needs to continue the iterations indefinitely. However, in practice,
computation is very fast; a good view of the whole function is quickly obtained and
may be printed with a graphics printer.

Due to the implicit and recursive nature of the FIF, perturbation in the scaling
factor or shape parameters in a particular subinterval may influence the entire con-
figuration. However, through various test examples, we observed that the portions of
the interpolating curve pertaining to other subintervals are not extremely sensitive
toward changes in the parameters of a particular subinterval.

To illustrate this, we take the rational cubic spline FIF in Fig. 1, as a reference
curve, and analyze the effects of perturbing the parameters of a particular segment
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Fig. 2 Effects of λ2

of this curve. Our reference curve is obtained by iterating the IFS (15), where the
scaling factors are λn = 0.12 and the shape parameters are αn = βn = 0.5 for
n = 1, 2, . . . , 6. By changing λ2 to 0.2 and keeping other parameters as in Fig. 1,
we obtain the FIF displayed in Fig. 2. It can be observed that the perturbation in
λ2 affects the rational fractal interpolant in the interval [x2, x3], whereas there are
no perceptible changes in other subintervals. In Fig. 3 we display the fractal spline
with spline parameters same as in our reference curve except for λ3 = 0. Next we
change λ4 to 0.05 with respect to the reference curve and iterate the IFS code to
obtain Fig. 4. By comparing Fig. 4 with Fig. 1, it can be observed that the changes in
λ4 also produce local effects.
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Fig. 4 Effects of λ4

Similar experiments can be conducted by changing other parameters, and it can
be observed that the changes in the parameters pertaining to a particular subinterval
do not produce considerable effects in the other subintervals. To be more precise,
since the completely local classical rational spline C is a particular case of the
proposed rational FIF (obtained when scaling in each subinterval is taken as zero),
the fractal scheme is local or global depending on the magnitude of the scaling in
each subinterval.

We recover a classical rational cubic spline C in Fig. 5 by iterating the functional
Eq. (7) with the scaling factor in each subinterval as zero and the shape parameters as
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Fig. 5 Classical rational cubic spline interpolant
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Fig. 6 Derivative of the rational cubic spline FIF in Fig. 1

in Fig. 1. The derivatives of the rational cubic FIF in Figs. 1 and 3, and the classical
cubic spline in Fig. 5 are displayed in Figs. 6–8 respectively.

It can be observed that (see Fig. 8) the derivative of the classical rational cubic
spline is smooth except possibly at knots. Further, the presence of the shape parame-
ters in the classical rational cubic spline C does not help to produce an interpolant
with nonsmooth derivative. On the other hand, the proposed cubic spline FIF with
nonzero scaling factors can produce interpolant whose derivative is irregular in a
dense set of points in the interpolation interval (see Figs. 6 and 7). By comparing
Figs. 3 and 5 it can be seen that rational spline FIF f may agree with classical ratio-
nal spline C in specified subintervals, by taking corresponding scaling factors to be
zero. In this way, the fractality of the derivative f (1) can be confined in a piece of the
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domain, if in this part the possible signal displays some complex disturbance (see
Figs. 7 and 8, where the derivatives coincide in the subinterval [4, 5].

Due to the fractal nature of the corresponding derivative functions f (1), the graphs
of f depicted in Figs. 1–4 themselves have some artifacts when compared with the
classical counterpart in Fig. 5. However, this is to be counteracted with the general-
ity offered by the proposed C 1-continuous fractal interpolant and its suitability in
representing a function Φ ∈ C (I ) whose derivative Φ(1) is continuous but nondif-
ferentiable in a dense subset of I . Furthermore, among various desirable properties
of an interpolant, if the fairness (i.e., visual pleasantness) of the graph of f is of
very high concern in a particular problem, then we can take the scaling factor in
each subinterval to be very close to zero. On the other hand, if nonsmoothness of
the derivative function has high priority, then we may choose the scaling factors
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with larger magnitudes. Thus, the parameters can be adjusted to find an interpolant
satisfying chosen properties such as smoothness, localness, fairness, and fractality
in the derivative.

6 Concluding Remarks and Possible Extensions

In order to combine the advantages of rational splines involving free parameters over
the polynomial splines and the versatility of fractal splines over the traditional inter-
polating splines, a new class of rational cubic spline fractal interpolation functions
is introduced in the present work. For zero scaling in each subinterval, the proposed
rational cubic fractal spline recaptures the traditional cubic spline (cf. [8]).

We may compare and contrast the fractal spline f introduced herein with its
traditional nonrecursive counterpart C as follows. The presence of additional para-
meters, namely, the scaling factors in the proposed rational cubic spline FIF f offer
an additional flexibility in modifying the shape of the interpolant. Furthermore, the
scaling factors are the key ingredient that provide fractality to the derivative f (1) of
the proposed rational spline f . That is, the present fractal spline f allows varying
irregularity for the first derivative f (1), and larger the value of |λ|∞ with respect to
the interpolation step, more pronounced is the irregularity in f (1). The irregularity in
f (1) can be quantified by means of its fractal dimension, which provides an index for
the analysis of the underlying experimental process [12]. These are to be compared
with the fact that the classical counter part C of f , which is studied in [8], has a deriv-
ative C (1) that is smooth except possibly at the knots. In spite of this flexibility and
versatility, for relatively mild conditions on the scaling factors, the proposed scheme
possesses the same convergence property as that of its classical counterpart. A pos-
sible objection to fractal splines may be that in contrast to the classical nonrecursive
interpolants, evaluation of a fractal interpolant at a point is not straightforward and
requires a recursive procedure. However, the widespread availability of high-speed
computing machines has reduced the importance of this disadvantage.

As far as ability to construct a smooth interpolant with fractality in the derivative of
the interpolant is concerned, perhaps a closest competitor for the fractal interpolation
scheme is the interpolatory subdivision scheme. For obtaining representative results
of subdivision scheme, the reader may consult the nice survey article [9]. In what fol-
lows, we shall supply a brief comparison between the two traditions—interpolatory
subdivision and fractal interpolation. In both these methods, interpolants are con-
structed iteratively in contrast to the analytic formulae employed in traditional non-
recursive interpolation techniques. Both these methods can produce an interpolant
whose derivative of a suitable order has varying irregularity (from smooth to nowhere
differentiable). The fractality in the derivative of fractal interpolant can be measured
and controlled with the help of scaling factors, whereas, upto our knowledge, a quan-
tification of irregularity in terms of the parameters involved in the subdivision scheme
is not available. For further details on this comparison, the reader is invited to refer
to the recent article [5] by the authors.
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Identifying appropriate values for the parameters of the rational IFS presented
herein so that corresponding FIFs can be applied in shape preserving interpolation
can be considered for a future research work. Extension of the proposed rational
fractal spline to shape preserving bivariate interpolation can also be considered.
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Chapter 9
Applications of Compressive Sensing
to Surveillance Problems

Christopher Huff and Ram N. Mohapatra

Abstract In many surveillance scenarios, one concern that arises is how to
construct an imager that is capable of capturing the scene with high fidelity. This
could be problematic for two reasons: First, the optics and electronics in the camera
may have difficulty in dealing with so much information; second, bandwidth con-
straints may pose difficulty in transmitting information from the imager to the user
efficiently for reconstruction or realization. This paper is a study of the application of
various compressive sensing methods to surveillance problems. It is based largely on
the work of [7], with theory and algorithms presented in the same manner. We explore
two of the seminal works in compressive sensing and present the key theorems and
definitions from these two papers. We then survey three different surveillance sce-
narios and their respective compressive sensing solutions. The original contribution
of this paper is the development of a distributed compressive sensing model.

1 Introduction

Recent advances in technology have brought with them a great capacity for storing
large amounts of data. With data sets becoming increasingly large, it is becoming
difficult to analyze the data in order to make use of it. As an example, consider
a network of surveillance cameras monitoring a particular area. If the number of
cameras is large, it would be difficult to have a small group of people to monitor
them carefully. To remedy this situation, one may want to have a computer program
to monitor the data and tell the user when a particular event of interest is happening
in the scene. An immediate issue that one would encounter in such a scenario (in
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addition to many computer vision-related obstacles) would be that of the program
parsing the large amount of video data quickly enough so as to alert the user of an
event in a timely manner.

Another situation in which a great amount of data is difficult to manage can be
found in signal transmission. Suppose one wanted to construct UAV (unmanned
aerial vehicle) with the capability of being able to capture (very) high-resolution
video of the events happening on the ground below it. Assuming the UAV is able to
have such a sensor attached to it (this is not a trivial consideration) the data collected
by the UAV must be transmitted in order to be of use. This transmission may not
always be possible, since the transmission channel will have limited bandwidth.

These two examples are among the many where a large amount of data are needed
for a task, but the amount is too great to manage. This motivates one to ask the
questions: Is there any structure in the data set that I am interested in? If so, may I
exploit that structure to make the data easier to use?

Depending on the data one is interested in, the answers to the above questions will
vary. Recently, there has been a great deal of work in dealing with data sets which
exhibit a characteristic, now known as sparsity. We say that a data set is sparse if
most of the values in that data set are zero, or so close to zero so as to have little
contribution to the overall information of the data. As a frivolous example, consider
the vector

[1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0] (1)

Suppose we were interested in sensing this vector so that we may transmit it to
a user. The vector has 16 entries, but only 6 of the entries are nonzero. This means
that the information contained in the vector only depends on the location of the 6
nonzero entries, not the values in all 16 entries. This suggests that one may want
to sense all 16 entries and then transmit the locations of the nonzero vectors. The
problem with this approach is that it requires one to sense all of the data, parse all
of it, and then determine the locations of the nonzero entries. This process involves
many calculations, which is not desirable. This begs the following question: If we
knew a priori that the vector of interest was sparse, could we take a small number of
measurements and then transmit them to the user in a way such that the user could
reconstruct the vector from the measurements provided? This would mean that the
UAV would not be tasked with the computations described earlier.

This question has been answered affirmatively using a technique known as com-
pressive sensing [9]. The idea behind compressive sensing is as follows: given a
signal x ∈ R

n , one may capture m << n linear measurements y ∈ R
m of x and then

accurately reconstruct the original signal from y. There are conditions that must be
levied on the measurement process and the signal of interest must be sparse; but with
these two requirements met, compressive sensing allows one to sense and compress
the signal simultaneously.

In this work, we will be interested in dealing with digital images and video. It
has been known for some time that natural images and videos are compressible (we
will define this precisely later). This essentially means that images and videos may
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be represented sparsely on some basis. With the knowledge of this sparsity in hand,
one needs only to devise a sensing scheme which is consistent with the theory of
compressed sensing in order to enable accurate reconstruction from dramatically
undersampled data.

The work that follows is organized as follows: first we review some of the mathe-
matical results that provide support for much of the literature dealing will compressive
sensing. Second, we look at some applications of compressive sensing to surveillance
problems. This part of the work will demonstrate different ways in which one may
find sparsity in a problem and different algorithms that may be applied to a given
problem. The third and final section will conclude this work with further research
questions and possible directions to their solutions.

2 The Mathematics of Compressive Sensing

In this section, we will survey two of the most important works which developed
compressive sensing into a rigorous mathematical theory. The first work we present is
entitled Stable Signal Recovery from Incomplete and Inaccurate Measurements [9],
while the second is entitled Near Optimal Signal Recovery From Random Projec-
tions: Universal Encoding Strategies? [3] The former used the restricted isometry
property to prove that measurements with additive noise could still be used to re-
cover the original signal with reasonable error. The latter established the fact that
compressible signals could be recovered from compressive measurements efficiently.

2.1 Recovery from Noisy Measurements

Suppose we wish to recover a sparse vector xo ∈ R
m from incomplete measurements

y ∈ R
n , n << m, which are subject to additive noise, e, such that ||e||2 ≤ ε. That

is, y = Axo + e, where A is a matrix whose columns are the codes against which
xo is inner produced to produce linear measurements/observations of xo. The above
problem is considered in the paper Stable Signal Recovery from Incomplete and
Inaccurate Measurements.

The key contributions of the paper are twofold: first, that paper was among the
first to introduce an error model into the sparse recovery problem. Second, that paper
contains a theorem which bounds the error of the recovery by a multiple of the l2

norm of e. Before we state the major result of that paper, we need to develop the
concept of the restricted isometry property.

Let T ⊂ {1, . . . ,m}. Let AT be the n × |T | submatrix of A obtained by keeping
only the columns of A which correspond to the indices in T . Then, we may define
the S-restricted isometry constant δS for A which is the smallest quantity such that

(1− δS)||c||22 ≤ ||AT c||22 ≤ (1+ δS)||c||22 (2)
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for all subsets T with |T | ≤ S and vectors c ∈ R
T . We say that matrices which have

an associated restricted isometry constant exhibit the restricted isometry property
(RIP). With these definitions and notation in mind, we may now state the major
result from [9]:

Theorem 1 Let S be such that δ3S + 3δ4S < 2. Then for any signal xo with sparsity
less than s and any perturbation e with ||e||2 ≤ ε, the solution x# to the minimization
problem is

min ||x ||1subject to ||Ax− y||2 ≤ ε (3)

obeys

||x# − xo||2 ≤ CS · ε, (4)

where the constant CS may only depend on δ4S.

This theorem is important due to the stability and error estimate provided for
robustly recovering a sparse signal with additive noise.

2.2 Recovering a Compressible Signal

In the above theorem, we have assumed that the signal of interest xo was sparse in the
canonical basis. This is not a reasonable assumption for many signals such as natural
images. To appeal to compressive sensing in the context of image acquisition, we
will make use of transform coding.

Suppose I ∈ R
m denotes a vectorized natural image. Then, we may represent I

as a sparse linear linear combination of appropriately chosen vectors. That is,

I = �x, (5)

where x is S-sparse. This representation introduces a sparse vector, but it is still not
clear how to apply the results of compressive sensing. A reasonable question that one
may ask is, for what matrix A of test vectors can we use so that the product A� = �
exhibits the RIP? If we had such a matrix, then we would have that the solution to
the minimization problem

min ||x ||1subject to �x − y = 0 (6)

is the sparsest solution. We could then recover the original image via I = �x .
The answer to the above question was addressed in the paper Near Optimal Signal
Recovery From Random Projections: Universal Encoding Strategies?

That work addressed signals whose coefficients decay like a power law in some
basis. That is, if� = (ψ j ) j=1,...,N is an orthonormal basis and I ∈ R

N is the signal
of interest. Let x j =< I, ψ j > and let us sort the vector x according to the magnitude
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of its elements so that |xk | ≥ |xk−1| ≥ · · · ≥ |x1|. We say that x decays like a power
law if there exists C > 0 such that

|xk | ≤ C · k−1/p, 1 ≤ k ≤ N (7)

If p is sufficiently small (0 ≤ p ≤ 1) then we say that I is compressible.
With this type of signal in mind, we are then introduced to two principles which

the measurement matrix (the role assumed by A) is to obey: the uniform uncertainty
principle (UUP) and the exact reconstruction principle (ERP). Suppose that 1 ≤ k ≤
N and � = {1, . . . , k}. Then we suppose that the measurement matrix A = A�
is a random matrix of dimension |�| by N . Let the number of measurements |�|
be a random variable and denote the expected value of |�| by K . Further still, let
RT denote the restriction map from R

N to a set T ⊂ R
N . Then, we may define

R∗T : T → R
N as the function which inserts zeros outside of T (if x ∈ R

N , then
supp(R∗T x) ⊂ T ). Let A�T := A�R∗T . Then A�T is an |�| by |T | matrix obtained
by extracting |T | columns from A� , where the j th column is chosen if j ∈ T .

The Uniform Uncertainty Principle (UUP) [3]: We say that the measurement
matrix A obeys the uniform uncertainty principle with oversampling factor λ if for
every sufficiently smallα > 0, the following statement is true with probability greater
than or equal to 1− O(N−ρ/α) for some fixed ρ > 0: for all subsets T such that

|T | ≤ α · K/λ, (8)

the matrix A obeys the bounds

1/2 · K/N ≤ λmin(A�T ∗ A�T ) ≤ λmax(A�T ∗ A�T ) ≤ 3/2 · K/N . (9)

The Exact Reconstruction Principle (ERP) [3]: We say that the measurement
matrix A obeys the exact reconstruction principle with oversampling factor if for all
sufficiently small α > 0, each fixed subset T obeying (equation number) and each
sign vector σ defined on T , |σ(t)| = 1 if t ∈ T , there exists with probability greater
than 1− O(N−ρ/α) a vector P ∈ R

N with the following properties:

1. P(t) = ρ(t), for all t ∈ T .
2. P is a linear combination of rows from A.
3. |P(t)| ≤ 1/2 for all t ∈ T c.

Now that we may describe a measurement matrix A with the UUP and ERP, we may
formally state the theorem which will allow us to use sparse representation to recover
compressible signals.

Theorem 2 [3] Let F be a measurement matrix such that the UUP and ERP hold
with oversampling factors λ1 and λ2, respectively. Let λ = max(λ1, λ2) and assume
that K ≥ λ. Suppose I is a signal satisfying the compression inequality for some
fixed 0 < p < 1, and let r := 1/p− 1/2. Then for any sufficiently small α > 0, any
minimizer x# to the problem (4) will obey,
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||x − x#||2 ≤ C p,α · R · (K/λ)−r (10)

with probability 1− O(N−ρ/α).

This theorem, together with the fact that Gaussian measurement matrices obey the
UUP and ERP with λ = log(N ), enables us to consider the reconstruction of large
classes of signals which are sparse in some orthonormal bases. This includes the
class of natural images which are sparse in a wavelet basis. Videos may be regarded
as sequences of images, and hence these results enable us to address problems of
capturing videos as well.

3 Applications to Surveillance Problems

This section is primarily concerned with application of compressive sensing to dif-
ferent types of surveillance problems. The first scenario deals with a rather typical
surveillance task; monitoring a parking lot. The second scenario will address the
need to track motion in a video sequence. The third situation is one in which we are
concerned about reconstructing a photograph of a very large land area.

The acquisition and transmission of high-resolution video signal is often problem-
atic due to the limitations of the ability of the camera to capture sufficient amounts
of data and the transmission channel’s bandwidth, which limits the amount of infor-
mation that can be transmitted once the data are acquired. This motivates the need
to develop a framework by which a scene can be sampled at a relatively low rate and
then reconstructed in a way such that the video is of high quality.

There are many different types of scenes that one might capture. The type of
motion in the video, the amount of the viewing area being consumed by the motion,
lighting conditions, etc. For our purpose, we will assume that we want to reconstruct
a video in which most of the scene is static, and the lighting conditions are constant.
This may seem rather restrictive at first glance, but such scenes naturally arise in
the area of surveillance (traffic cameras, UAVs, etc.). From hereon we proceed with
these types of surveillance applications in mind (Fig. 1).

The first portion of this section deals with a stationary camera capturing a dynamic
scene. The second section also involves a stationary camera, but explores the idea of
using compressive sensing to capture purely motion information from a scene. In the
third and final section, we deal with the problem of surveying a large piece of land.
The contents of this final section are largely taken from a recent work written by the
author of this paper which appeared in the proceedings of an SPIE conference [6].

3.1 Video Reconstruction Using LDS Model

One potential solution for compressive sensing of such video sequences was offered
in Compressive Acquisition of Dynamic Scenes [1]. In the paper, the authors modeled
the compressive sensing of a scene in time as a linear dynamical system. The basic
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Fig. 1 Frame 30 ground truth

model of a linear dynamical system is as follows: let {It , t = 0, . . . , T } be a sequence
of frames indexed by time t. Then we may model each frame of video It ∈ R

N as

xt = Czt ,

where C ∈ R
N×d is the observation matrix and zt ∈ R

d is the hidden state vector.
Let yt denote the compressive measurement of xt . That is,

yt = �t xt . (11)

where �t is the sensing matrix to be used at time t . At each time instance we
encode the static portions of the scene as well as the dynamic portions. Let y̌t and ỹt

denote the static and dynamic measurements, respectively. Let �̌ and �̃t denote the
measurement matrices for the static and dynamic portions of the scene, respectively
(Fig. 2).

Then at each time instant t, we take the following measurements:

yt =
(

y̌t

ỹt

)
=

[
�̌

�̃t

]
It = �t yt , (12)

where y̌t ∈ R
M̌ denotes the constant measurements associated with the constant

sensing matrix �̌ (essentially encoding the constant motion from the scene), and ỹt

denotes the dynamic measurements associated with the matrix �̃t .
To recover the video sequence [xt ] via the LDS model, we first solve for the

state sequence [zt ] and then solve for the observation matrix C (the notation [xt ]
denotes the matrix with columns equal to xt , t = 1, . . . , N ). To solve for the state
sequence, we make the following observation: if [x] lies in the column span of C ,
then

[
y̌t

]
lies in the column span of �̌C . This implies that the SVD of

[
y̌t

]
will

render an approximation of the state sequence
[
ẑ
]
. More precisely, if M̌ ≥ d, and
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Fig. 2 Frame 30 reconstruc-
tion with 74 frames

[
y̌t

] = U SV T , then
[
ẑt

] = Sd V T
d , where Sd is the d × d principal submatrix of S

and Vd is the T × d matrix formed by columns of V corresponding to the singular
values in Sd . We have that this estimate of the state sequence is reasonably accurate
when xt is compressible [ref].

Once the estimated state sequence [x̂t ] has been constructed, we can recover C
by solving the following problem:

min
d∑

k=1

||�T ck ||1 subject to ||�t C ẑ − yt ||2 ≤ ε,∀t. (13)

Rather than solving this problem directly, we may use a modified CoSAMP algo-
rithm in order to take advantage of the redundancy in the common measurements.
The pseudocode for this algorithm is provided below:

This version of the CoSAMP algorithm can be interpreted as a special case of
the model-based CoSAMP algorithm developed in [ref]. This interpretation offers
the advantage of allowing the calculation of the number of measurements required
for stable recovery by simply looking at the model sparsity of the signal. Specifi-
cally, if the sparsity of the signal (in our case Ĉ) is s, then results of model-based
CoSAMP guarantee that O(slog(Nd)) are needed. The results in [ref] show that if
the columns of C are K -sparse, then the sparsity of Ĉ is equal to d K . Thus, we need
M = O(slog(Nd))measurements at each time instant in order to guarantee that the
recovery will be accurate. That is, M = O(d K log(Nd)/T ). This implies that as the
number of frames increases, the number of measurements needed decreases.
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Algorithm 1: LDS CoSAMP
input : �t , �yt , ẑt , K
output: Ĉ
�t ← �t�;
vt ← 0;
�← 0;
while stoppingcriterianotmet do

R←∑
t �

T
t vt ẑt ;

∀k ∈ {1, . . . , N }, r(k)←∑d
i=1 R2(k, i);

�← � ∪ r2K ;
A← argmin

∑
t ||yt − (�t )·,�Aẑt ||2;

B�,· ← A;
B�c,· ← 0;
∀k ∈ {1, . . . , N }, b(k)←∑d

i=1 B2(k, i);
�← bK ;
S�,· ← B�,·;
S�c,· ← 0;
Ĉ ← �B;
vt = yt −�t Sẑt ;

Fig. 3 Frame 30 reconstruc-
tion with 200 frames

3.2 Experiments with the LDS Model

The original paper which used the CS-LDS model focused mainly on scenes that
resemble changing textures. One such scene is one that contains a flame from a
lighter. To show how well this model works with such a scene, we present results
of different reconstructions below. In each reconstruction, we vary the number of
frames used. This illustrates the model’s ability to allow very few measurements per
frame to be used, so long as enough frames are used (Fig. 3).
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Fig. 4 Frame 30 reconstruction with 560 frames

Fig. 5 Using the CSLDS-mean model

For our next experiment, we consider a portion of a video which captures a car
passing through a static background (Fig. 4).

One notices that the static portion of the scene is reconstructed accurately, but the
dynamic portion of the scene is hardly reconstructed at all. In fact, the cars driving by
are reconstructed as faint spectres. Their positions can be gathered from the recon-
struction, but their features are completely gone. In the next experiment, we consider
a scene with people walking around. The first example considers only a portion of
the scene where the people are pacing in the same small area, turning and walking
a very small distance. The second example is of the same general scene, except that
now we have a person walking a significant distance through the scene (Fig. 5).

Looking at these results, we notice that the appearance of the figures which pace
around, but stay entirely within the frame, are well recovered while the person who
walks off frame is poorly reconstructed (see Figs. 6 and 7), with their features being
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Fig. 6 Pedestrians with little motion

Fig. 7 Pedestrians with significant motion

dissolved in the same way as the features of the moving cars in the preceding experi-
ment. This begs the following question: Why does this model reconstruct persistently
visible objects well, while failing to reconstruct objects that are not always within the
scene? A rigorous answer to this question is a great opportunity for further research,
as this answer may lead to a better model which will be more robust to a variety of
scenes.

3.3 Monitoring Motion in a Scene

In certain scenarios, the user might not be interested in what the scene looks like,
but rather, what is happening in the scene. For example, one might want to know
when there are moving objects in the scene and the nature of their motion, rather than
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the look of the scene itself. To address this surveillance concern, we demonstrate a
method developed in Compressive Sensing for Background Subtraction [5]. In this
work, the authors make use of the following observation: given a scene with a static
background and a changing foreground, the difference image from the two adjacent
frames will have a higher degree of sparsity than the frames themselves.

To be more precise, let us introduce some notation. Let xb denote the background
image, xc the current frame, and xd the difference image, with xd = xc − xb. Let Sd

denote the support of the difference image. Then by parsing Sd one may determine
the overall shape and location of motion in the frame. A conventional imaging scheme
would sense xb and xc and then directly construct xd . Since we are not concerned
with the actual appearance of the scheme, the work needed to capture xb and xc

is excessive. We instead seek a way to use compressive sensing to reconstruct the
difference image in a way such that we never need to reconstruct xb or xc.

Indeed, let us observe the following:

yb = �xb, (14)

and,

yc = �xc. (15)

Therefore,

yb − yc = �(xb − xc), (16)

or,

yd = �xd , (17)

where yd = yb − yc denotes the difference compressive measurements. This simple
idea give us a way by which to reconstruct the difference image by requiring that
we only compressively sense the background and current images. Further still, when
one looks at a difference image, one notices that it is mostly black. This suggests
that xd should be sparser than xb and xc.

Indeed, let us suppose that the sparsity of the xb and xc is K (it is reasonable to
make this assumption because of the similarities between the two images). Let Kd

denote the sparsity of the difference image, xd . Because much of the difference im-
age will be empty, but for any motion, we may conclude that the wavelet coefficients
used to represent the information contained in the static portion of the scene may be
discarded. Hence, Kd ≤ K . This means that we should be able to take few compres-
sive measurements of xb and xc and still be able to reconstruct the difference image
at the level of the quality it would have been seen at if we took all K measurements
of xb and xc. We demonstrate this point empirically in the next section.
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Fig. 8 The ground truth
difference image

Fig. 9 Frame 30 reconstruc-
tion using 5 % of the data

3.4 Experiments with Motion Tracking

In this section, we present numerical experiments which demonstrate that a reason-
able difference image may be reconstructed from the compressive measurements of
the scene, and that the number of measurements required to reconstruct the difference
scene is much less than the number required to reconstruct the scene itself. We use
the Coiflet wavelet basis as the sparsifying basis for each frame of video. We will
recover images via the NESTA algorithm.

In our first experiment, our objective is to reconstruct a scene of a parking lot with
a car driving past. The field-of-view is 64 by 64 pixels. We reconstruct the difference
images in two ways: first we sense the video in the traditional manner and construct
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Fig. 10 Frame 30 reconstruc-
tion using 10 % of the data

the difference images from the actual image sequence, providing the ground truth.
Second, we compressively sense the scene and construct the difference image from
the difference of compressive measurements.

The results of the first experiment are presented in Figs. 7, 8, 9 and 10. At first
glance, one may look at these results and be left feeling that the compressive sensing
scheme does not offer much of a benefit. The amount of data the sensor needs
to process is far lower with the compressive sensing scheme, but in exchange the
reconstruction quality is far worse, both in terms of appearance of the reconstruction
and the error measured in terms of the L2-norm. However, when one looks closely
at the reconstructed difference image, one notices that the outline of a car is clearly
visible and distinct from the noise. Also, the noise looks like noise. To be exact, it is
clear that the errors in the reconstruction are extraneous. This gives reason to believe
that a filtering process may be performed on the reconstructed difference images in
order to produce more accurate results.

As can be seen from Figs. 11, 12, 13 and 14, even a very naive thresholding tech-
nique can dramatically improve the quality of the reconstructed image. In particular,
the portion of the scene with the moving car peaks high enough so that its motion is
sensed correctly in every frame of video. This means that the motion sensing problem
may in fact be resolved via a compressive sensing approach.

3.5 Using a Compressive Background Model for Object Detection

Often, it is the case that there is no new object in the scene. This implies that there
is nothing of interest taking place in the scene. The above model calls for an l1
minimization for each and every difference image. This is computationally taxing,
and so it is worthwhile to investigate whether or not the minimization step really needs
to be performed at every time instance. This section proposes a way of determining
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Fig. 11 Frame 30 reconstruc-
tion using 20 % of the data

Fig. 12 Frame 30 reconstruc-
tion using 30 % of the data

whether or not the scene is changing. To do this, we develop a statistical model for the
compressive background measurements and then use the compressive measurements
directly to determine if a new object has entered the scene (Fig. 15).

Suppose we have a collection of compressive measurements of the background
images. Let ybi ∈ R

M denote the i th compressive measurement vector of the back-
ground of the scene with i = 1, . . . B. Let yb denote the mean of the background
images. Let us consider the distribution of l2 distances of the background images
about their mean:

||ybi − yb||22 = σ 2
M∑

k=1

(
ybi (k)− yb(k)

σ

)2

(18)
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Fig. 13 Frame 30 filtered
reconstruction using 5 % of
the data

Fig. 14 Frame 30 filtered
reconstruction using 10 % of
the data

Fig. 15 Frame 30 filtered
reconstruction using 20 % of
the data

If we take M > 30, then the central limit theorem gives us that the distribution of l2
distances may be approximated by a Gaussian distribution. That is,

||ybi − yb||22 ∼ N (Mσ 2, 2Mσ 4). (19)
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Now suppose that we are comparing a test image to the mean background. Then we
may derive the following distribution:

||yt − yb||22 ∼ N (Mσ 2 + ||μd ||22, 2Mσ 2 + 4σ 4||μd ||22). (20)

We can simplify matters by considering the logarithms of the l2 distances. Using this
approach, we may write that

log ||ybi − yb||22 ∼ N (μb, σ
2
b ). (21)

and

||yt − yb||22 ∼ N (μt , σ
2
t ). (22)

Our goal is to use these statistics to determine if a new object has entered a scene
without having to perform a costly l1 minimization to reconstruct the difference
image. Toward this end, we learn the parameters in (11) via maximum likelihood
estimates. Withμb and σb known, we have that if σ 2

t is sufficiently different from σ 2
b ,

then a simple two-sided threshold test is optimal for discriminating between another
background image and an image with a new object in it [10]. Thus, we say that there
is a new object in the scene if

| log ||yt − yb||22 − μb| ≥ aσb, (23)

where a is a constant to be chosen by the user.

3.6 Monitoring a Large Track of Land

High-resolution imaging sensors used in observing terrestrial activities over a very
wide field-of-view will be required to produce gigapixel images at standard video
rates. This data deluge affects not just the sensor but all of the processing, com-
munication, and exploitation systems downstream. A key challenge is to achieve
the resolution needed to observe and make inferences regarding events and objects
of interest while maintaining the area coverage, and minimizing the cost, size, and
power of the sensor system. One particularly promising approach to the data deluge
problem is to apply the theory of compressive sensing, which enables one to col-
lect fewer, information-rich measurements, rather than the many information-poor
measurements from a traditional pixel-based imager (Fig. 16).

For the wide field-of-view imaging application, Muise [8] designed a compressive
imaging algorithm with associated measurement kernels and has simulated results
based upon a field-of-view multiplexing sensor described by Mahalanobis et al. [2].
These works show a viable concept for wide area imaging at high resolution. In
this section, we explore concepts of collecting measurements of a wide area through
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Fig. 16 Frame 30 filtered reconstruction using 30 % of the data

Fig. 17 Using 5 % of the data

multiple cameras and reconstructing the entire wide area image. This process is
known as distributed compressive imaging (DCI).

Consider an N -pixel area to be sensed with multiple cameras and suppose we
have limited bandwidth for communications. The bandwidth restriction precludes
us from allowing for intra-camera communication. Compressive sensing theory tells
us that M = β log N/K measurements are sufficient to guarantee an accurate sig-
nal recovery (here K denotes the sparsity of the area of interest). Suppose we have
α cameras at our disposal and that these cameras have overlapping fields-of-view.
Then, assuming the cameras end up covering the entire area in aggregate, each
camera need only take M/α compressive measurements in order to facilitate accu-
rate signal reconstruction. The clear benefit here is that as the number of cameras
increases, the amount of information each camera is responsible for acquiring
decreases (Fig. 17).
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3.7 DCI Model

Here we propose a simple extension to the traditional compressive sensing model to
make use of a camera ensemble. The naive DCI model is

Y = PBx + ε, (24)

where P is a concatenation of the random Gaussian sensing matrices of each of the
α cameras in our ensemble and B is the sparsity basis for the scene, x . That is,

P = [P1,P2, . . . ,Pα]T = [p1
1, p1

2, . . . , p1
k/α, p2

1, . . . , p2
k/α, . . . pα1 , . . . , pαk/α]T .

Each entry of Y is an inner product of the image with a random projection vector
pi

j and so its form is

Y = [〈p1
1,Bx〉, 〈p1

2,Bx〉, . . . , 〈p1
k/α,Bx〉, . . . , 〈pα1 ,Bx〉, . . . , 〈pαk/α,Bx〉]T + ε.

Our interest lies in having multiple cameras, all surveying a large region from
different perspectives. As such, if we take an absolute coordinate system for the
entire region we model the differences in perspectives with an operator Oi so that
Oi (Bα) generates the underlying scene Bα from the point of view of the i th camera.
With this idea, we may rewrite the observed measurements as

Y = [〈p1
1,O1(Bx)〉, 〈p1

2,O1(Bx)〉, . . . , 〈p1
k/α,O1(Bx)〉, . . . , 〈pα1 ,Oα(Bx)〉,

. . . , 〈pαk/α,Oα(Bx)〉]T .

For a particular perspective operator, Oi , we wish to derive the adjoint (for lack
of a better term), O∗, so that

〈h,Oi (y)〉 = 〈O∗i (h), y〉, for all h, y.

For example, if Oi translates an image by [a, b] pixels, then O∗i would translate
the measurement mask by [−a,−b] pixels for an equivalent inner product. With this
idea in mind, we may once again rewrite our observation vector, Y, as

Y = [〈O∗1(p1
1),Bx〉, 〈O∗1(p1

2),Bx〉, . . . , 〈O∗1(p1
k/α),Bx〉, . . . , 〈O∗α(pα1 ),Bx〉,

. . . , 〈O∗α(pαk/α),Bx〉]T + ε
= P∗Bx + ε.

Thus we take as the general DCI model

Y = P∗Bx + ε, (25)
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where ε is included to take into consideration additive error in the sensing process.
Also, unlike (1), this accounts for different camera perspectives. Thus we will be
solving

min
P̂,x
||x ||1 subject to ||Y− P̂Bx ||2 ≤ c (26)

where P̂ = P∗ + Pe, the ideal perspective operator plus an error. This alters our
model for the observations to

Y = P̂Bx + ε
= (P∗ + Pe)Bx + ε
= P∗Bx + PeBx + ε
= P∗Bx + ε′

where our new error term is bounded by

||ε′||22 = ||PeBx + ε||22
≤ ||Pe||22||Bx ||22 + ||ε||22
≤ E ||Pe|| + c,

where E is the overall energy in the image. Appealing to the result from Candes,
Romberg, and Tao, we can solve (10) for x� with the guarantee that

||xtrue − x�||2 ≤ O(E ||Pe|| + c).

Although the behavior of E ||Pe|| is difficult to characterize, there are several obser-
vations:

• When the ideal perspective estimates are known, P� = 0 and thus E ||Pe|| is a
minimum, and Eq. (4) distils down to the case studied by Candes, Romberg, and
Tao.
• An iteration of (5) while perturbing the perspective estimates should generate a

surface which has a global minimum when P̂ = P∗.
Hence, we are left with a procedure and an optimality criterion which theoretically

should give us estimates for x and the camera perspectives by minimizing the l1 norm
of x while fitting the observed data (Fig. 18).

3.8 Experiments with Large Area Monitoring

Given a wide field-of-regard image, we wish to collect image projections from mul-
tiple cameras and rebuild the scene with minimal data being transmitted. Assuming
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Fig. 18 Using 10 % of the data

that we know the perspective parameters for the multiple cameras, we have a sequence
of cameras depicted by Fig. 1.

We assume that the bandwidth of the data-link can only afford to send down 0.2 %
of the image over the support of its field-of-view. For example, if a camera generated
a 128 × 128 image, then the amount of information transmitted for reconstruction
would be approximately 24 numbers. The reconstruction from the noncompressed
sensing is accomplished by observing the image, calculating the compression coeffi-
cients assuming a DCT basis set, and sending the top 0.2 % of the coefficients to the
reconstruction algorithm. Under this paradigm, the results of the scene reconstruction
are shown in Fig. 2.

For a distributed compressive imaging scenario, we assume the entire scene of
interest can be compactly represented in a DCT basis and each individual camera
would sample an image projection of a limited FOV of the scene. The projection
masks should be randomized (to guarantee incoherence with the DCT basis) but
should also have a notion of random sampling (as this is optimally incoherent with
the DCT basis). We choose a methodology of projection mask construction as the
following:

1. Randomly generate a size and location for the pixel sampling.
2. Iterate until roughly 1/4 of the pixels are contributing to the projection (this will

ensure an SNR advantage through multiplexing).

An example of a projection mask used for this experiment is given in Fig. 3.
With the camera perspective parameters assumed to be known, we calculate the

projection mask in terms of the underlying scene coordinate system. This results in
calculating the rows of the projection matrix P . Two of these example perspective
masks are given in Fig. 4.

With this calculation of the projection masks into the underlying scene coordinate
system, we use the STOMP [4] as our compressive sensing reconstruction algorithm
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Fig. 19 Using 20 % of the data

with less than 0.2 % of the underlying dimension of each camera’s FOV. The results
are shown in Fig. 5.

One notices that while new information is collected and transmitted, all of the
areas of the underlying scene experience higher fidelity reconstruction. The final
reconstruction with and without DCI is shown in Fig. 6.

One notices a very low frequency image from the standard compression which
results from only 0.2 % of the information being transmitted. The overall shape of
the larger buildings is successfully reconstructed as well as the general large road
network. With DCI, the reconstruction contains far more high-frequency content
with many smaller buildings visible and the texture and shape of the trees on the
right being of higher quality (Fig. 19).

3.9 Multi-camera Registration Issues

The above experiment was conducted under the assumption that the camera perspec-
tives were known. Such information is not generally known and an image registration
step would be required. For standard video cameras, this registration can be nontrivial,
but solvable with standard tie-point correlation and re-sampling, or other techniques.
For DCI, the imagery is unavailable to calculate correlations and we are required
to register the imagery without access to the images. This problem was solved with
manifold lifting techniques by Wakin [11], while we wish to test whether Eq. (3)
gives us a general optimization criterion for estimating the camera perspectives from
the image projection data stream (Fig. 20).

Again, Eq. (3) suggests that the same criteria used to estimate the nonzero coeffi-
cients of a sparse model can be used to iteratively estimate the perspective parameters
of our distributed compressive imaging system. To see the intuition, imagine that our
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Fig. 20 Using 30 % of the data

perspective estimates for the cameras are incorrect. It should take more coefficients
to reconstruct the incorrect scene than it would take to reconstruct the correctly regis-
tered information. Thus, finding the sparsest solution (or equivalently, the minimum
l1 solution) over all possible perspective parameters should lead to the correct per-
spective estimates. We test this through a nine camera DCI test with the Lena image
as described in the next section.

3.10 A DCI Model with Unknown Registration

In this experiment, we treat the image of Lena as the field-of-regard and we have
nine cameras surveying the image, each of which has a limited field-of-view. While
no two cameras share the same field-of-view, each camera’s field-of-view overlaps
with at least one other camera’s (Fig. 21).

The registration of the center camera’s position is assumed to be unknown; and for
the purposes of this experiment, all other camera perspective parameters are assumed
to be known. Also, although the results of our experiments should generalize to most
camera perspective parameters, we test only unknown x, y translation.

With real surveillance applications in mind, it is reasonable to assume that one
will have approximate camera registration parameters available. These approximate
values will serve as an initial guess. Our experiment takes in the measurements from
all nine cameras (the only unknown is the position of the center camera, denoted
as γ ), then takes in the estimate for γ , calculates the projection masks in terms of
the underlying scene coordinate system, recovers an image through l1 minimization,
and saves the associated l1 norm of the scene coefficients. We then make another
estimate forγ and repeat this process, always saving the l1 norms associated with each
reconstruction. This process is meant to visualize the function from Eq. (3), which
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Fig. 21 A wide field-of-regard image being sensed with multiple cameras

Fig. 22 The scene being surveyed by traditional cameras with reconstruction via traditional com-
pression

should give us an optimality criteria for estimating x and the camera registration
parameters (which are embedded in the estimate for x) (Fig. 22).

Graphing the l1 norms for each of the reconstructions as a function of the unknown
parameter γ we have the following result in Fig. 8.

The noisy nature of this surface suggests that determining the optimal camera
parameters based on the l1 norm would be a difficult task. However, if we smooth
this function by convolving it with a Gaussian mask of size 7 × 7 we gain insight
into the nature of how this function behaves.

This graph suggests that this function is locally quadratic. This offers one the
intuition that one can find the global minimum of the function by taking a smoothed
version of ||x ||1 as our optimality criteria. To this end, for each test value of γ we solve
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Fig. 23 A typical projection mask

Fig. 24 Projection masks placed in the scene’s coordinate system

(4) for several values close to γ and take the average value of ||x ||1 as our objective
function. The gradient of this new surface (represented in Fig. 9) should now be
relatively continuous and should give us insight into the possible convergence of a
gradient descent algorithm. These gradients were calculated for the raw and smoothed
versions of our objective function and are shown in Fig. 10 as arrows overlaid on an
image of our objective function. The ideal perspective estimates correspond to the
center of each image (Fig. 23).

The results of this experiment are promising and lend support to the argument that
the minimum l1 norm taken over different image reconstructions is minimized when
the projection masks are correctly positioned within the scene’s coordinate system
(Fig. 24).

The analysis and experiment, coupled with the calculations in 3 bode well for
the concept of distributed compressive imaging. Randomized projections of limited
field-of-view images seem to contain enough information to not only recover the
underlying large area image, but also estimate the viewing geometry of each indi-
vidual camera. This conclusion is also supported by the experiments conducted by
Wakin [11] (Fig. 25).
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Fig. 25 The scene being surveyed by compressive sensing cameras

4 Conclusions and Further Research

In this work we looked at different surveillance problems and the results that compres-
sive sensing approaches can deliver. The LDS method is capable of reconstructing
certain types of surveillance scenes with a high degree of accuracy. This model also
enjoys the ability to reduce the number of measurements needed for each frame of
video, so long as there is a sufficiently large number of frames available. The major
drawback of this model is that it fails to reconstruct the features of dynamics that are
not present in each frame. This drawback presents us with an opportunity for future
research, with questions of why this model fails in these instances and whether or not
it can be generalized to allow it to reconstruct additional classes of video (Fig. 26).

In the context of motion sensing, we have presented results that show that motion
information can be sensed directly by a compressive imager. The results were noisy,
but the silhouettes of the moving objects were preserved. Further, we demonstrated
that even a very naive filtering method could get rid of most of the noise. There
are limitations to this method, however. In the scene, we observed the object of
interest was fairly large relative to the field-of-view. If the object(s) of interest was
smaller, say a group of pedestrians from far above, then the pedestrian silhouettes
may look like noise. As such, our filtering technique may disregard valuable motion
information. One potential solution might be to use optical flow data. If one looks
at the optical flow of the reconstructed sequence, surely one will observe mostly
erratic motion vectors. However, the (small) portions of the scene that are actually
representative of motion should still exhibit stable motion vectors. The portions of
the scene associated with the smoothly changing motion vectors could be weighted
heavily in a new filtering process. This will help prevent legitimate motion from
being regarded as noise (Fig. 27).
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Fig. 26 On the left is the complete reconstruction via traditional imaging. On the right is the
reconstruction via compressive sensing

Fig. 27 How the Lena image is being sensed

The third problem we looked at was that of wide-area surveillance. We have
shown through analysis and simulation that there is significant benefit in distributed
compressive imaging (DCI) to sense a very large area with significant benefits when
there are severe bandwidth transmission restrictions. We have shown that the same
criteria which allows compressive sensing to work (namely minimizing the L1-norm
of the reconstruction coefficients) is also a viable criteria to estimate the registration
parameters of the multiple cameras. It is particularly beneficial that one can take ad-
vantage of the redundancy of multiple cameras without intra-camera communications
(something unattainable with traditional compression). A topic for further research
is some combination of the manifold lifting algorithm developed by Wakin [11] with
the L1-minimization techniques outlined in this paper. This might lead to a faster
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Fig. 28 The x and y axes represent the guess for γ , while the z axis represents the l1 norm of the
reconstruction given γ . There are 81 nodes in both the x and y directions

Fig. 29 The smoothed graph of the l1 norms as a function of γ

method by which to accurately estimate the camera registration parameters (Figs. 27,
28, 29, 30 and 31).

Another topic for further research would be to determine an effective way to in-
corporate prior information about a scene into the model. This information should
be used in a way that would increase the sparsity of the system (so that fewer mea-
surements need to be taken) and/or decrease the number of iterations needed to con-
verge to an accurate solution to the system. As an example, consider the wide-area
surveillance application we discussed. Suppose that a low-resolution photo of the
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Fig. 30 The graph on the left displays the gradient of ||x ||1 before being smoothed. There is no
indication that a gradient descent search will converge to the correct solution. The graph on the right
displays the gradient of the smoothed l1 function. There is a clear convergence to a point which is
very close to the ideal perspective estimates

Fig. 31 The red diamond displays the location of the true camera registration. The circle displays
the location of the point that the graph’s gradient converges to

entire track of land was available (this could be thought of as being given by a satel-
lite with typical optics, without need for high-resolution capabilities). The resolution
would be relatively poor, but the overall shape of the image could be captured. A
good question to ask, then, would be if one could use this information to speed up the
reconstruction process. The CoSAMP algorithm uses a support pruning procedure.
Could knowing roughly what the scene should look like help to more efficiently
hone in on what the correct support of the sparse solution is? The ability to use such
information would make for a novel algorithm and would contribute greatly in the
applicability of compressive sensing to surveillance and imaging problems.
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Chapter 10
Region of Variability for Some Subclasses
of Univalent Functions

A. Vasudevarao

Abstract Let A denote the class of analytic functions f in the unit disk D with
f (0) = 0 and f ′(0) = 1. Let S denote the class of univalent functions in A . Let
F̃ (for example, class of starlike, convex, close-to-convex, spiralike, etc.) be any
arbitrary subfamily of S and z0 ∈ D then upper and lower estimates of | f (z0)|,
| f ′(z0)| and Arg f ′(z0) for all f ∈ F̃ are respectively called a growth theorem, a
distortion theorem and a rotation theorem at z0 for F̃ . These estimates deal only with
absolute values of f (z0) and f ′(z0) or with the argument of f ′(z0). The aim of this
paper is to give a survey on regions of variability of f (z0)or f ′(z0)or log f ′(z0)when
f ranges over some well-known subclasses of S . As a consequence, we present the
sharp Pre-Schwarzian norm and Block semi-norm for some of the subclasses of S .
We also graphically illustrate the region of variability for several sets of parameters.

1 Introduction

Let D := {z : |z| < 1} be the unit disk in the complex plane C and H denote the
space of all analytic functions on D. Here we think of H as a topological vector
space endowed with the topology of uniform convergence over compact subsets of
D. Further, let A := { f ∈ H : f (0) = 0 = f ′(0) − 1}. If f ∈ A then f (z) has
the following representation

f (z) = z +
∞∑

n=2

anzn .
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A single-valued function f is said to be univalent in a domain Ω ⊂ C if it is
one-to-one in Ω . Let S denote the class of univalent functions in A . A function
f ∈ A is called starlike if f (D) is a starlike domain with respect to the origin, and
the class of univalent starlike functions is denoted by S ∗. Each univalent starlike
function f is characterized by

Re

(
z f ′(z)
f (z)

)
> 0 for z ∈ D.

A function f ∈ A is called convex if f (D) is a convex domain. We denote the class
of univalent convex functions in A by C . It is known that a function f ∈ A is in C
if and only if

Re

(
1+ z f ′′(z)

f ′(z)

)
> 0 for z ∈ D.

It is geometrically evident that a convex domain is starlike with respect to each of
its points. Hence, C � S ∗. The Koebe function k(z) = z/(1− z)2 shows that this
containment is proper. For each f ∈ S ∗ the Alexander transformation [3] defined
by

g(z) =
z∫

0

f (t)

t
dt

is convex. This transformation provides a nice bridge between functions in C and
S ∗. A function f ∈ A is called close-to-convex (see [13]) if there exists a convex
(univalent) function g and a number φ ∈ R such that

Re

(
eiφ f ′(z)

g′(z)

)
> 0 for z ∈ D.

We denote the class of close-to-convex functions in A by K . Also, it is known that
every close-to-convex function is univalent inD. There is another natural generaliza-
tion of starlike functions, namely spirallike functions which again leads to a useful
criterion for univalence. A function f ∈ A is α-spirallike if for some real constant
α (|α| < π/2),

Re

(
eiα z f ′(z)

f (z)

)
> 0 for z ∈ D.

A complete characterization of spirallike functions by means of subordination has
been investigated by Ruscheweyh [34]. Also, we refer to the survey by Ahuja and Sil-
verman [2] for several other important properties and characterizations of spirallike
functions.

Although, the class of starlike functions (with respect to an interior point) has
been studied extensively among many other subclasses, not much is known about
starlike functions with respect to a boundary point until the work of Robertson (see
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[33]). Motivated by the work in [33] and characterizations of this class of functions,
some advancement in this direction has taken place (see [9, 14, 16, 35]). On the
other hand, there does not seem to be any development on spirallike functions with
respect to a boundary point until the recent work of Elin et al. [8] (see also [9]). More
recently, Aharonov et al. [1] provided a natural geometric approach for discussing
spirallike functions with respect to a boundary point.

Let Fμ denote the class of functions f ∈ H , which is non-vanishing in D with
f (0) = 1, and for μ ∈ C, such that Reμ > 0, satisfying

Re

(
2π

μ

z f ′(z)
f (z)

+ 1+ z

1− z

)
> 0 for z ∈ D.

Functions in the class Fμ are called spirallike functions with respect to a boundary
point. The basic properties and a number of equivalent characterizations of the class
Fμ have been studied in [1]. In particular, if μ = π the class Fπ coincides with the
class of starlike functions with respect to a boundary point introduced by Robertson
(see [33]) This has led to considerable research in this class and associated classes. It
is also known that functions in Fπ are either close-to-convex or just the constant 1.

An analytic univalent function f inD is called exponentially convex if e f (z) maps
D onto a convex domain. For α ∈ C\{0}, the family E (α) of α-exponential functions
was introduced in [4]. A function f ∈ S is said to be in E (α) if F(D) is a convex
domain, where F(z) = eα f (z). Although Arango et al. [4] studied exponentially
convex functions in 1997, no attempt has been made until the recent work [23] on
the region of variability for this class.

Let f and g be analytic functions in the unit disk D. The function f is said to
be subordinate to g, written as f ≺ g or f (z) ≺ g(z), if there exists a function
ω analytic in D, with ω(0) = 0 and |ω| < 1, and such that f (z) = g(ω(z)). If
g is univalent, then f ≺ g if and only if f (0) = g(0) and f (D) ⊂ g(D). For a
detailed study on differential subordination, we refer to the monograph of Miller and
Mocanu [17].

The class of univalent functions is preserved under a number of elementary trans-
formations. The preservation of S under the disk automorphism (also called the
Koebe transform) leads to the study of the behaviour of the pre-Schwarzian norm of
f given by

‖ f ‖ := sup
z∈D
(1− |z|2)

∣∣∣∣
f ′′(z)
f ′(z)

∣∣∣∣ ,

where f is locally univalent function in D. A function f is called a Bloch function
(see [28, p. 72]) if it is analytic in D and

‖ f ‖B := sup
z∈D
(1− |z|2)| f ′(z)| <∞.

This defines a semi-norm, and the class of Bloch functions forms a complex Banach
space B with respect to the Bloch norm | f (0)| + ‖ f ‖B . It is well known that
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‖ f ‖B is conformally invariant. That is, if h is a conformal automorphism of D,
then ‖ f ◦ h‖B = ‖ f ‖B . There is a close connection between Bloch functions and
univalent functions, in particular with their derivatives (see [28]). That is if f maps
D conformally into C then ‖ log( f − a)‖B ≤ 4 for a /∈ f (D) and ‖ log f ′‖B ≤ 6.
Conversely, if ‖g‖B ≤ 1 then g = log f ′ for some conformal map f . We refer to
the monographs by Duren [7], Goodman [11] and Pommerenke [28] for a detailed
study of analytic univalent functions.

We need to recall the following lemma which plays a vital role in proving our
main results on regions of variability. For a positive integer p, let

(S ∗)p = { f = f p
0 : f0 ∈ S ∗}.

Lemma 1 Let f be an analytic function in D with f (z) = z p + · · · . If

Re

(
z

f ′′(z)
f ′(z)

)
> −1, z ∈ D,

then f ∈ (S ∗)p.

Although we could not find any historical reference for a proof of Lemma 1, it might
be well-known (see [11, 12]). For an analytic proof of Lemma 1 we refer to [38].

Let F̃ ⊂ A and z0 ∈ D. Then upper and lower estimates of the form

K1 ≤ | f (z0)| ≤ K2, M1 ≤ | f ′(z0)| ≤ M2, m1 ≤ Arg f ′(z0) ≤ m2 for all f ∈ F̃

are respectively called a growth theorem, a distortion theorem and a rotation theorem
at z0 for F̃ , where Ki , Mi and mi (i = 1, 2) are some non-negative constants. These
estimates deal only with absolute values of f (z0) and f ′(z0) or with the argument of
f ′(z0). If one wants to study the exact value of f (z0) or f ′(z0), then it is necessary
to consider the region of variability of f (z0) or f ′(z0) when f ranges over the class
F̃ . For example it is known that for each fixed z0 ∈ D,

{
log

(
f (z0)

z0

)
: f ∈ S

}

is precisely a closed disk, and {logφ′(z0) : φ ∈ C } is the set {log(1− z)−2 : |z| ≤
|z0|} (see also [7, Exercises 10, 11 and 13 in Chap. 2]).

2 Main Results

In 2005, the region of variability for functions of bounded derivative and of positive
real part has been discussed in [38]. Also, the region of variability of log f ′(z0)when
f ranges over the class of convex functions f with f ′′(0) = 2λ (where λ ∈ D) has
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been investigated in [39]. The aim of this paper is to provide region of variability for
well-known subclasses of the class of univalent functions.

In [20] the authors considered the following two subclasses F1 and F2 of S to
determine the region of variability. More precisely, Let F1 (F2 respectively) denote
the subclass of locally univalent normalized functions f ∈ A such that

Re Pf (z) <
3

2

(
Re Pf (z) > −1

2
respectively

)
, z ∈ D,

where

Pf (z) = 1+ z f ′′(z)
f ′(z)

, z ∈ D.

It is well-known that (see [29, Eq. (16)] and [30]) f ∈ F1 implies

∣∣∣∣
z f ′(z)
f (z)

− 2

3

∣∣∣∣ <
2

3
,

which implies that

Re

(
z f ′(z)
f (z)

)
> 0, for z ∈ D.

Hence F1 ⊂ S ∗. Also F2 ⊂ K . For f ∈ F j ( j = 1, 2), we denote by log f ′ the
single-valued branch of the logarithm of f ′ with log f ′(0) = 0. Using the Herglotz
representation for analytic function with positive real part in D, we can write that if
f ∈ F1, then there exists a unique positive unit measure μ on (−π, π] such that

1− 2
z f ′′(z)
f ′(z)

=
π∫

−π

1+ ze−i t

1− ze−i t
dμ(t).

This easily gives

log f ′(z) =
π∫

−π
log

(
1− ze−i t

)
dμ(t).

It follows that for each fixed z0 ∈ D the region of variability

{
log f ′(z0) : f ∈ F1

}

coincides with the set {log(1− z) : |z| ≤ |z0|}. Similarly if f ∈ F2 then by applying
the Herglotz formula we obtain
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1+ z f ′′(z)
f ′(z)

= −1

2
+ 3

2

π∫

−π

1+ ze−i t

1− ze−i t
dμ(t)

from which we can easily deduce that

log f ′(z) = 3

π∫

−π
log

(
1

1− ze−i t

)
dμ(t)

and so for each fixed z0 ∈ D the region of variability

{
log f ′(z0) : f ∈ F2

}

coincides with the set {−3 log(1− z) : |z| ≤ |z0|}. Although one may question the
significance of the classes F1 and F2 but on the positive side, we give a precise
description of the region of variability of log f ′(z0) which always is a nice feature.
To make this point precise, for λ ∈ D and for z0 ∈ D fixed, we define

C1(λ) = { f ∈ F1 : f ′′(0) = −λ}
C2(λ) = { f ∈ F2 : f ′′(0) = 3λ}

Vj (z0, λ) = {log f ′(z0) : f ∈ C j (λ)}, for j = 1, 2.

The basic properties of the set Vj (z0, λ), j = 1, 2 are:

Corollary 1 We have

1. For each j = 1, 2, Vj (z0, λ) is a compact subset of C.
2. For each j = 1, 2, Vj (z0, λ) is a convex subset of C.
3. If |λ| = 1 or z0 = 0, then

V1(z0, λ) = {log(1− λz0)} and V2(z0, λ) = {−3 log(1− λz0)}.

4. For |λ| < 1 and z0 �= 0, the set V1(z0, λ) has log(1− λz0) as an interior point,
whereas the set V2(z0, λ) has −3 log(1− λz0) as an interior point.

5. For each j = 1, 2 Vj (eiθ z0, λ) = Vj (z0, eiθλ) for θ ∈ R.

In view of the property (5) in Corollary 1, it is sufficient to determine Vj (z0, λ)

( j = 1, 2) for 0 ≤ λ < 1 and z0 ∈ D. For z, a ∈ D, we define

δ(z, a) = z + a

1+ az
.

Let a ∈ D, λ ∈ [0, 1). If f ∈ C1(λ) then we introduce
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Fa,λ(z) =
z∫

0

exp

⎧
⎨
⎩

ζ2∫

0

δ(aζ1, λ)

ζ1δ(aζ1, λ)− 1
dζ1

⎫⎬
⎭ dζ2, z ∈ D, (1)

and for f ∈ C2(λ) we put

Ga,λ(z) =
z∫

0

exp

⎧
⎨
⎩

ζ2∫

0

3δ(aζ1, λ)

1− ζ1δ(aζ1, λ)
dζ1

⎫
⎬
⎭ dζ2, z ∈ D. (2)

It is not difficult to see that Fa,λ ∈ C1(λ) and Ga,λ ∈ C2(λ).
The following results give the precise description of regions of variability for the

classes C j (λ) for j = 1, 2.

Theorem 1 For 0 ≤ λ < 1 and z0 ∈ D \ {0}, the boundary ∂V1(z0, λ) is the Jordan
curve given by

(−π, π] � θ → log F ′eiθ ,λ
(z0) =

z0∫

0

δ(eiθ z, λ)

zδ(eiθ z, λ)− 1
dz.

If log f ′(z0) = log F ′
eiθ ,λ

(z0) for some f ∈ C1(λ) and θ ∈ (−π, π], then f (z) =
Feiθ ,λ(z). Here Feiθ ,λ(z) is given by (1).

Theorem 2 For 0 ≤ λ < 1 and z0 ∈ D \ {0}, the boundary ∂V2(z0, λ) is the Jordan
curve given by

(−π, π] � θ → log G ′eiθ ,λ
(z0) =

z0∫

0

3δ(eiθ z, λ)

1− zδ(eiθ z, λ)
dz.

If log f ′(z0) = log G ′
eiθ ,λ

(z0) for some f ∈ C2(λ) and θ ∈ (−π, π], then f (z) =
Geiθ ,λ(z). Here Geiθ ,λ(z) is given by (2).

Another class of our interest is Sα . More precisely, for −π/2 < α < π/2, we say
that f ∈ Sα provided f ∈ A is locally univalent in D and

Re eiα
(

1+ z f ′′(z)
f ′(z)

)
> 0, z ∈ D.

It is easy to see that f ∈ Sα if and only if there exists a function g ∈ S ∗ such
that

f ′(z) =
(

g(z)

z

)(cosα) exp(−iα)

.
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Also, we observe that the above conditions are precisely the conditions for the
function z f ′(z) to belong the class of spirallike functions. The class S0 consists
of the normalized convex functions. For a general value of α (|α| < π/2), a function
in Sα need not be univalent in D. For example, the function f (z) = i(1− z)i − i is
known to belong to Sπ/4\S . In 1968, Robertson [32] showed that f ∈ Sα is uni-
valent if 0 < cosα ≤ 0.2315 · · · and showed that there are non-univalent functions
f ∈ Sα for each α, 1/2 < α < 1. Subsequently Libera and Zeigler [15] improved
the range of univalency of f ∈ Fα to 0 < cosα ≤ 0.2564 · · · . In 1975, Chichra [6]
has improved the range still further to 0 < cosα ≤ 0.2588 · · · and indicated that
his result is the best possible one obtainable solely from an application of Nehari’s
test for univalence [18]. In the same year Pfaltzgraff [19] has shown that f ∈ Sα is
univalent whenever 0 < cosα ≤ 1/2. This settles the improvement of range of α for
which f ∈ Sα is univalent. On the other hand, Singh [36] has shown that functions
in Sα which satisfy f ′′(0) = 0 are univalent for all real values of α with |α| < π/2.

For f ∈ Sα , log f ′(z) denotes the single-valued branch of the logarithm of f ′(z)
with log f ′(0) = 0. The Herglotz representation for analytic function with positive
real part in D shows that if f ∈ Sα , then there exists a unique positive unit measure
μ on (−π, π] such that

1+ z f ′′(z)
f ′(z)

= e−iα

⎡
⎣cosα

π∫

−π

1+ ze−i t

1− ze−i t
dμ(t)+ i sin α

⎤
⎦

from which we obtain that

log f ′(z) = 2e−iα cosα

π∫

−π
log

(
1

1− ze−i t

)
dμ(t).

In view of this formula, for a fixed z0 ∈ D, the region of variability of

{
log f ′(z0) : f ∈ Sα

}

coincides with the set
{
−

(
2e−iα cosα

)
log(1− z) : |z| ≤ |z0|

}
.

Let B0 be the class of analytic functions ω in D such that |ω(z)| ≤ 1 in D and
ω(0) = 0. Functions in B0 are called Schwarz functions. It is easy to see that for
each f ∈ Sα there exists an ω f ∈ B0 such that

ω f (z) =
eiα

(
1+ z f ′′(z)

f ′(z)

)
− eiα

eiα
(

1+ z f ′′(z)
f ′(z)

)
+ e−iα

, z ∈ D.
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Further, if f ∈ Sα then a simple computation shows that

e−iα d

dz
eiα

(
1+ z f ′′(z)

f ′(z)

)∣∣∣∣
z=0
= f ′′(0) =

(
2e−iα cosα

)
ω′f (0).

Since ω f ∈ B0, the Schwarz lemma then gives that | f ′′(0)| ≤ 2 cosα. Now for
λ ∈ D and for z0 ∈ D fixed, we introduce

Sα(λ) = { f ∈ Sα : f ′′(0) = 2λe−iα cosα}, and

V3(z0, λ) = {log f ′(z0) : f ∈ Sα(λ)}.

In [21] the explicit region of variability V3(z0, λ) of log f ′(z0) when f ranges over
the class Sα(λ) has been investigated.

Proposition 1 For f ∈ Sα(λ) we have

∣∣∣∣
f ′′(z)
f ′(z)

− c1(z, λ)

∣∣∣∣ ≤ r1(z, λ), z ∈ D,

where

c1(z, λ) = (2e−iα cosα)
{
λ
(
1− |z|2)+ z

(|z|2 − λ2
)}

(
1− |z|2) (1− 2λRe z + |z|2) , and

r1(z, λ) = 2(1− λ2)|z| cosα(
1− |z|2) (1− 2λRe z + |z|2) .

For each z ∈ D \ {0}, equality holds if and only if f = Heiθ ,λ for some θ ∈ R where

Heiθ ,λ(z) =
z∫

0

exp

⎧
⎨
⎩

ζ2∫

0

(2e−iα cosα)δ(eiθ ζ1, λ)

1− ζ1δ(eiθ ζ1, λ)
dζ1

⎫
⎬
⎭ dζ2, z ∈ D.

The case λ = 0 of Proposition 1 gives the following interesting result.

Corollary 2 Let f ∈ Sα(0). Then we have

∣∣∣∣
f ′′(z)
f ′(z)

− (2e−iα cosα)z|z|2
1− |z|4

∣∣∣∣ ≤
2|z| cosα

1− |z|4 , z ∈ D.

In particular,

(1− |z|2)
∣∣∣∣

f ′′(z)
f ′(z)

∣∣∣∣ ≤ 2|z| cosα, z ∈ D.

On the other hand, the case α = 0 of Corollary 2 shows that if f is convex with
f ′′(0) = 0, then we have the sharp Pre-Schwarzian estimate ‖ f ‖ ≤ 2. The convex
function
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f (z) = 1

2
log

(
1+ z

1− z

)

shows that number 2 cannot be replaced by a smaller number. Moreover

‖ f ‖ ≤ 2 cosα if f ∈ Sα(0).

For z0 ∈ D \ {0}, λ ∈ D and f ∈ Sα(λ) one can prove that V3(eiθ z0, λ) =
V3(z0, eiθλ). In deed, this is a consequence of the fact e−iθ f (eiθ z) ∈ Sα(eiθλ)

if and only if f ∈ Sα(λ). In view of this fact it suffices to consider V3(z0, λ) for
λ ∈ [0, 1).

Theorem 3 For 0 ≤ λ < 1 and z0 ∈ D \ {0}, the boundary ∂V3(z0, λ) is the Jordan
curve given by

(−π, π] � θ → log H ′eiθ ,λ
(z0) =

z0∫

0

(2e−iα cosα)δ(eiθ z, λ)

1− zδ(eiθ z, λ)
dz.

If log f ′(z0) = log H ′
eiθ ,λ

(z0) for some f ∈ Sα(λ) and θ ∈ (−π, π], then f (z)
coincides with Heiθ ,λ(z).

One of the important subclasses of S is K . In 2008 (see [22, 25]), the authors
considered the region of variability for close-to-convex functions with fixed deriva-
tive. More precisely, let α be a complex number for which Re α > 0 and φ ∈ C . Let
Kφ(α) denote the class of functions f ∈H with f (0) = 0, f ′(0)/φ′(0) = α and

Re

(
f ′(z)
φ′(z)

)
> 0, z ∈ D

(with φ ∈ C fixed). For each fixed z0 ∈ D, we denote the class Vφ(z0, α) by

Vφ(z0, α) = { f (z0) : f ∈ Kφ(α)}.

The basic properties of Vφ(z0, α) are:

Proposition 2 For f ∈ Kφ(α) we have

1. Vφ(z0, α) is a compact subset of C.
2. Vφ(z0, α) is a convex subset of C.
3. If z0 = 0 then Vφ(z0, α) = {0}.
4. For |c| < 1 and z0 ∈ D \ {0}, Vφ(z0, α) has

z0∫

0

(
α + αcζ

1− cζ

)
φ′(ζ ) dζ
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as an interior point.

Theorem 4 Let z0 ∈ D and Re α > 0. If z0 = 0, then Vφ(z0, α) = {0}. If z0 �= 0,
then Vφ(z0, α) is the convex closed Jordan domain surrounded by the simple closed
curve ∂D � c → fc(z0), where

fc(z) =
z∫

0

(
α + αcζ

1− cζ

)
φ′(ζ ) dζ, z ∈ D.

Furthermore if f (z0) = fc(z0) for some f ∈ Kφ(α) and c ∈ ∂D, then f = fc.

The following growth result is a simple consequence of Theorem 4.

Corollary 3 For z0 ∈ D\{0} and f ∈ Kφ(α), we have

Re

{
f (z0)

φ(z0)

}
≤ (Re α)

(
1+ |z0|
1− |z0|

)
− (Re α)

1∫

0

Re

(
2c

(1− cz0t)2
z0φ(z0t)

φ(z0)

)
dt.

Also we have

Re

{
f (z0)

φ(z0)

}
≥ (Re α)

(
1− |z0|
1+ |z0|

)
− (Re α)

1∫

0

Re

(
2c

(1− cz0t)2
z0φ(z0t)

φ(z0)

)
dt.

By fixing the convex functions φ(z) by

− log(1− z),
1

2
log

(
1+ z

1− z

)
,

z

1− z

in Theorem 4 we can obtain precise regions of variability of f (z0)when f ∈ Kφ(α)

(see [22, 25]).
Although, the class of starlike functions (with respect to an interior point) has been

studied extensively among many other subclasses, little was known about starlike
functions with respect to a boundary point until the work of Robertson [33]. Motivated
by the work in [33] and characterizations of this class of functions, some advancement
in this direction has taken place (see [9, 14, 16, 35]). On the other hand, there does
not seem to be any development on spirallike functions with respect to a boundary
point until the recent work of Elin et al. [8] (see also [9]). More recently, Aharonov
et al. [1] provide a natural geometric approach to discuss spirallike functions with
respect to a boundary point and the Ref. [1] contains the result of others.

Let Fμ denote the class of functions f ∈ H , and non-vanishing in D with
f (0) = 1, and for μ ∈ C, such that Reμ > 0 satisfying
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Re

(
2π

μ

z f ′(z)
f (z)

+ 1+ z

1− z

)
> 0 for z ∈ D.

Basic properties and a number of equivalent characterizations of the class Fμ are
formulated in [1]. The case μ = π coincides with the class starlike functions with
respect to a boundary point introduced by Robertson [33] who has generated interest
on this class. Let f (z) be analytic in D with f (0) = 1. Then f ∈ Fπ if and only if
there exists a function S(z) ∈ S ∗(1/2) such that

f (z) = (1− z)

(
S(z)

z

)
.

In 2006, Elin [10] obtained the growth theorem and distortion theorem for functions
in the class Fπ . For λ ∈ D and for z0 ∈ D fixed we introduce

Fμ(λ) =
{

f ∈ Fμ : f ′(0) = μ

π
(λ− 1)

}

V4(z0, λ) = {log f (z0) : f ∈ Fμ(λ)}

In [23] the region of variability V4(z0, λ) for log f (z0) when f ranges over the
class Fμ(λ) has been investigated. Some of the basic properties of V4(z0, λ) are:

Proposition 3 For f ∈ Fμ(λ) we have

1. V4(z0, λ) is a compact and convex subset of C.
2. For |λ| = 1 or z0 = 0,

V4(z0, λ) =
{
μ

π
log

(
1− z0

1− λz0

)}
.

3. For |λ| < 1 and z0 ∈ D \ {0}, V4(z0, λ) has (μ/π) log
(

1−z0
1−λz0

)
as an interior

point.

The precise geometric description of the set V4(z0, λ) is:

Theorem 5 For λ ∈ D and z0 ∈ D \ {0}, the boundary ∂V4(z0, λ) is the Jordan
curve given by

(−π, π] � θ → log Jeiθ ,λ(z0) = μ

π

z0∫

0

δ(eiθ ζ, λ)− 1

(1− δ(eiθ ζ, λ)ζ )(1− ζ ) dζ. (3)

If log f (z0) = log Jeiθ ,λ(z0) for some f ∈ Fμ(λ) and θ ∈ (−π, π], then f (z) =
Jeiθ ,λ(z) where
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Fig. 1 Region of variability of log f (z0) when f ∈ Fμ(λ). a z0 = −0.173777 + 0.0869191i ,
λ = −0.196029 + 0.480913i , μ = 32796 + 64560.2i . b z0 = −0.713811 − 0.0997298i , λ =
−0.225338+ 0.323073i , μ = 69097.4+ 83886.6i
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Fig. 2 Region of variability of log f (z0) when f ∈ Fμ(λ). a z0 = 0.737135 + 0.496542i ,
λ = −0.00646307−0.0167039i , μ = 14038.5+9544.66i . b z0 = −0.00588894−0.00496324i ,
λ = −0.0472837+ 0.0970889i , μ = 25447.1− 2011.7i

Jeiθ ,λ(z) = exp

⎛
⎝μ
π

z∫

0

δ(eiθ ζ, λ)− 1

(1− δ(eiθ ζ, λ)ζ )(1− ζ ) dζ

⎞
⎠, z ∈ D.

It is clearly evident from Proposition 3 that the region bounded by the curve
∂V4(z0, λ) (see Figs. 1, 2, 3, 4) is compact and convex.

In univalent function theory, there are several subclasses of S having analytic
characterizations involving the positive real part of an appropriate quantity. In [26],
the authors considered one of the subclasses Pγ,β of S . More precisely, let Pγ,β
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Fig. 3 Region of variability of log f (z0) when f ∈ Fμ(λ). a z0 = −0.734426 + 0.61942i ,
λ = −0.0564481 − 0.00656122i , μ = 54025 − 5108.28i . b z0 = −0.69693 − 0.601351i ,
λ = −0.0416728− 0.683999i , μ = 23944.2+ 50613.5i
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Fig. 4 Region of variability of log f (z0) when f ∈ Fμ(λ). a z0 = 0.80351 + 0.549035i ,
λ = −0.55886 + 0.0419296i , μ = 83278.8 − 90464.3i . b z0 = 0.691568 + 0.644823i ,
λ = 0.126172 + 0.137643i , μ = 47178.4+ 83497.8i

denote the class of functions P ∈H with P(0) = 1 and

Re
(

eiγ P(z)
)
> β cos γ in D,
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for some β with β < 1 and γ ∈ C with |γ | < π/2. If we choose P(z) = z f ′(z)
f (z) and

β = 0 then the class Pγ,β reduces to

S γ (0) =
{

f ∈ A : Re

(
eiγ z f ′(z)

f (z)

)
> 0 in D

}

for some γ with |γ | < π/2. Functions in S γ (0) are known to be univalent in D and
S 0(0) ≡ S ∗. Functions in S γ (0) are called spirallike functions (see [37]).

Herglotz representation for analytic functions with positive real part in D shows
that if P ∈ Pγ,β , then there exists a unique positive unit measure μ on (−π, π]
such that

P(z) =
π∫

−π

1+ [1− 2βe−iγ cos γ ]ze−i t

1− ze−i t
dμ(t).

Then it is a simple exercise to see that for each P ∈Pγ,β there exists an ωP ∈ B0
such that

ωP (z) = eiγ P(z)− eiγ

eiγ P(z)− (2β cos γ − e−iγ )
, z ∈ D, (4)

and conversely. A simple computation of (4) gives

P ′(0) = 2e−iγ ω′P (0)(1− β) cos γ.

Suppose that P ∈ Pγ,β . Then, because |ω′P(0)| ≤ 1, by the classical Schwarz
lemma we let

P ′(0) = 2λe−iγ (1− β) cos γ

for some λ ∈ D, with ω′P (0) = λ. Now for λ ∈ D and a ∈ D we define

H̃a,λ(z) = 1+ 2(1− β)e−iγ cos γ
δ(az, λ)z

1− δ(az, λ)z
.

Obviously H̃a,λ(0) = 1. Since δ(az, λ) lies in the unit diskD and ϕ(w) = w/(1−w)
maps |w| < 1 onto Re ϕ(w) > −1/2, we obtain that

Re
(

eiγ H̃a,λ(z)
)
> β cos γ in D.

For λ ∈ D and z0 ∈ D fixed, it is natural to introduce (for convenience with the
notation P(λ) instead of Pγ,β(λ))
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P(λ) :=Pγ,β(λ) =
{

P ∈Pγ,β : P ′(0) = 2(1− β)e−iγ λ cos γ
}

VP (z0, λ) =
⎧⎨
⎩

z0∫

0

P(ζ ) dζ : P ∈P(λ)

⎫⎬
⎭ .

The main aim of this paper is to provide explicitly the region of variability of
VP (z0, λ) for

∫ z0
0 P(ζ ) dζ when P ranges over the class P(λ).

Proposition 4 For f ∈Pγ,β we have

1. VP (z0, λ) is a compact and convex subset of C.
2. For |λ| = 1 or z0 = 0,

VP (z0, λ) =
{

z0 − 2(1− β)e−iγ cos γ

(
z0 + 1

λ
log(1− λz0)

)}
.

3. For |λ| < 1 and z0 ∈ D \ {0}, VP (z0, λ) has

z0 − 2(1− β)e−iγ cos γ

(
z0 + 1

λ
log(1− λz0)

)

as an interior point.

Proposition 5 For P ∈P(λ) with λ ∈ D, we have

|P(z)− c(z, λ)| ≤ r(z, λ), z ∈ D,

where

c(z, λ) = (1+ λz(e−iγ − 2β cos γ )e−iγ )(1− λz)(
1− |z|2) (1+ |z|2 − 2Re (λz)

)

+|z|
2(z − λ) (λ+ z(e−iγ − 2β cos γ )e−iγ

)
(
1− |z|2) (1+ |z|2 − 2Re (λz)

) ,

r(z, λ) = 2(1− |λ|2)(1− β)|z|2 cos γ(
1− |z|2) (1+ |z|2 − 2Re (λz)

) .

For each z ∈ D \ {0}, equality holds if and only if P = H̃eiθ ,λ for some θ ∈ R.

The choice of λ = 0 in Proposition 5 gives the following interesting result.

Corollary 4 For P ∈P(0) we have

∣∣∣∣P(z)−
1+ (1− 2β)|z|4

1− |z|4
∣∣∣∣ ≤

2(1− β)|z|2
1− |z|4 , z ∈ D. (5)

For each z ∈ D \ {0}, equality holds if and only if P = H̃eiθ ,0 for some θ ∈ R.
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Theorem 6 For λ ∈ D and z0 ∈ D \ {0}, the boundary ∂VP (z0, λ) is the Jordan
curve given by

(−π, π] � θ →
z0∫

0

H̃eiθ ,λ(ζ ) dζ =
z0∫

0

1+ [2(1− β)(cos γ )e−iγ − 1]δ(eiθ ζ, λ)ζ

1− δ(eiθ ζ, λ)ζ
dζ.

If
z0∫

0

P(ζ ) dζ =
z0∫

0

H̃eiθ ,λ(ζ ) dζ

for some P ∈P(λ) and θ ∈ (−π, π], then P(z) = H̃eiθ ,λ(z).

As a special case, we consider P = f ′ and γ = 0 in the class Pγ,β . Thus, Pγ,β

reduces to Rβ , where

Rβ = { f ∈ A : Re f ′(z) > β in D}.

Then Rβ ⊂ S for 0 ≤ β < 1. For λ ∈ D and z0 ∈ D being fixed, we introduce

R(λ) = {
f ∈ Rβ : f ′′(0) = 2(1− β)λ},

VR(z0, λ) = { f (z0) : f ∈ R(λ)}.

For P = f ′, a computation shows that the extremal function H̃eiθ ,λ(z) for the
class R(λ) takes the form

H̃eiθ ,λ(z) = z0 + 2(1− β)
z0∫

0

(eiθ ζ + λ)ζ
1+ λeiθ ζ − (eiθ ζ + λ)ζ dζ. (6)

One can easily obtain the following result which is the analog of Theorem 6 for
the class R(λ).

Corollary 5 For λ ∈ D and z0 ∈ D \ {0}, the boundary ∂VR(z0, λ) is the Jordan
curve given by

(−π, π] � θ → H̃eiθ ,λ(z0) = z0 + 2(1− β)
z0∫

0

(eiθ ζ + λ)ζ
1+ λeiθ ζ − (eiθ ζ + λ)ζ dζ.

If f (z0) = H̃eiθ ,λ(z0) for some f ∈ R(λ) and θ ∈ (−π, π], then f (z) = H̃eiθ ,λ(z).

For 0 ≤ β < 1 and λ = 0, set

R(0) = { f ∈ A : f ′′(0) = 0 and Re f ′(z) > β in D} ⊂ Rβ.
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In particular, the choices γ = 0 and P(z) = f ′(z) in Corollary 4 give the following:
if f ∈ R(0) ⊂ Rβ for some 0 ≤ β < 1/2, then by (5) we obtain

| f ′(z)| ≤ 1+ (1− 2β)|z|4 + 2(1− β)|z|2
1− |z|4 = 1+ (1− 2β)|z|2

1− |z|2 , z ∈ D,

so that
‖ f ‖B := sup

z∈D
(1− |z|2)| f ′(z)| ≤ 2(1− β).

Equality holds for

f (z) = βz + (1− β)
2

log

(
1+ z

1− z

)
, z ∈ D.

Letω be a simply connected domain in the right half planeH+ = {w ∈ C : Re w > 0}
with 1 ∈ ω. Let Pω be the conformal mappings of the unit disk D onto Ω with
PΩ(0) = 1 and P ′Ω(0) > 0. Let C V Ω denotes the class of functions f ∈ A such
that

1+ z f ′′(z)
f ′(z)

∈ Ω, z ∈ D.

Clearly C V Ω is a subclass of C . Let

HΩ(z) =
z∫

0

PΩ(ζ )− 1

ζ
dζ and FΩ(z) =

z∫

0

eHΩ(ζ ) dζ for z ∈ D.

In [40], the author proved the following result:

Theorem 7 Let z0 ∈ D \ {0}. If Ω is starlike with respect to 1 and

Re

(
z P ′Ω(z)

PΩ(z)− 1
+ PΩ(z)− 1

)
> 0 (7)

holds inD, then the variability region VΩ(z0) is the convex and closed Jordan domain
bounded by the simple closed curve ∂D � ε → ε−1 FΩ(εz0), and

VΩ(z0) = {ε−1 FΩ(εz0) : |ε| ≤ 1}

holds. Furthermore f (z0) = ε−1 FΩ(εz0) holds for some f ∈ C V Ω and |ε| = 1 if
and only if f (z) ≡ ε−1 FΩ(εz).

From Theorem 7 it follows the following result on subordination.

Corollary 6 IfΩ is starlike with respect to 1 and (7) holds inD, then for f ∈ C V Ω

a subordination relation
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f (z)

z
≺ FΩ(z)

z

holds in D.

The region of variability for certain families of harmonic univalent mappings has been
investigated by Ponnusamy et al. [31]. Region of variability for concave univalent
functions has been studied in [5] (also see the references therein [24], [27]). This is
a rich field of current research interest and this survey is an attempt to introduce new
researchers into this field.
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Chapter 11
Ideal Cone: A New Method to Generate
Complete Pareto Set of Multi-criteria
Optimization Problems

Debdas Ghosh and Debjani Chakraborty

Abstract In this paper, a new classical method, entitled ideal cone (IC), is presented
to generate complete Pareto set of multi-criteria optimization problems (MOP). Sys-
tematically changing a parameter, which is independent of decision maker’s (DM)
preferences, the method seeks Pareto optimal solutions sequentially. Parameter of
the proposed classical method is independent of objective functions of the problem.
Formulated method is a non-gradient direction-based technique. Directions of the
method essentially lie on k-dimensional unit sphere for k-criteria problems. Though
proposed method is a direction-based method, it bears necessary and sufficient con-
dition for globally weak Pareto optimality. It is shown that a simple modification
of the presented method can attain D-Pareto optimal points of the problem, where
D is any pointed convex cone. Thus, formulated technique not only can generate
Pareto set, but also obtain general D-Pareto set. A brief comparison of the proposed
method with the existing similar classical methods is also made. Developed method
is supported by several numerical and pictorial illustrations.

Keywords Multiple objective programming · Pareto set · Direction-based Pareto
set generation algorithm · Ideal cone method

1 Introduction

Most of the optimization problems stemming from engineering design or other com-
plex decision situations are characterized by the existence of multiple criteria with
some complicated additional constraints. In practice, the decision maker (DM) has
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to reconcile those dissimilar and conflicting criteria to obtain optimum design or
solution. Mathematically, to get the optimum solution, DM has to optimize multiple
criteria simultaneously with respect to the constraints. This optimization problem is
called multi-criteria optimization problem (MOP). In general, a unique solution of
such problem may not exist since otherwise there is no conflict between the objec-
tives. Thus, usually there are many optimal solutions of a MOP. This optimal solution
concept leads to Pareto optimality. A Pareto optimum solution is the feasible solu-
tion where any improvement in one criterion can only take place through worsening
of at least one another criterion. The concept of Pareto optimality is of primordial
importance to recognize the conflicting nature of the criteria, and hence, to capture
the trade-off between the criteria. All the Pareto points are equally acceptable as
solution of the MOP. Usually, by using some additional requirements, DM selects
one point from Pareto sets as final solution. These additional requirements may be
subjective, and practically depends on DM’s preference.

Solving MOP effectively means to generate complete Pareto set. There exist var-
ious methods [(classical and evolutionary (see [5] for comparison)] in the existing
literature to generate Pareto set. The approaches of all the classical methods can be
mainly categorized into two parts: aggregation of objective function (AOF) methods
and Pareto surface generation methods [2, 12, 14–16, 18, 20].

In the first category, the approaches involve forming an AOF with respect to the
constraints. Here, the objective is to find optimal solution of the scalar optimization
problem with a suitable AOF as the objective function, and subject to the constraints
in the considered MOP.

In the second category, methods are purposed to find complete Pareto set or set of
non-dominated solutions. However, each of the existing methods have one or more
of the three deficiencies (see [24]): (1) the method is not necessary and sufficient for
Pareto optimality, (2) the method cannot generate complete Pareto surface, or (3) the
method requires significant knowledge about the physical properties of the criteria.
Thus, a need arises to find a procedure having ability to generate the entire Pareto
surface, and which does not carry any of the above-mentioned deficiencies. In this
paper, an attempt for the same is made. The proposed method in this paper belongs
to the second category.

In this paper, a new classical method for MOP—hereby named ideal cone (IC)—is
proposed. The main idea for the methodology is confined under the simple and well-
known fact that “in the criterion space, if the intersecting set of the feasible region
and the translated nonpositive orthant having vertex at a feasible point contains only
the vertex of the translated cone, then that feasible point must be Pareto optimal
solution and vice versa”. To implement this idea for generating complete Pareto set
of a MOP, in general, the whole feasible region will be translated on the nonnegative
orthant first and then the cone of nonpositive orthant will be moved along all possible
directions in the nonnegative orthant to test whether the above-mentioned fact holds
true. The direction is the only parameter of the problem. The method seeks Pareto
optimal solutions one after another by systematically changing this parameter, which
is, obviously, independent of DM’s preferences. Detail of the method is demonstrated
in the Sect. 3. The paper is organized as follows.
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In the next section, preliminaries of MOP and the notations, which are used
throughout this paper, are given. In the Sect. 3, the proposed method and corre-
sponding useful results are demonstrated. Numerical explorations and efficiencies
the proposed method is discussed in the Sect. 4. A brief comparison of the proposed
method with the existing methods is given in the Sect. 5. In the last section, which is
Sect. 6, contribution and future scope of this paper on MOP is drawn.

2 Preliminaries and Notations

In mathematical notions, MOPs are defined in the following way

min
x∈X

f (x) = (
f1(x), f2(x), . . . , fk(x)

)T
, k ≥ 2, (1)

where X = {x ∈ R
n : g(x) ≤ 0, h(x) = 0, a ≤ x ≤ b} is the feasible set;

g: Rn → R
r and h: Rn → R

s are vector valued functions; the constant vectors
a ∈ (R ∪ {−∞})n and b ∈ (R ∪ {∞})n are, respectively, lower and upper bound of
the decision vector x = (x1, x2, . . . , xn)

T.
We denote the image of the feasible set X under the vector mapping f by Y :=

f (X ). Therefore, Y is the feasible set in the criterion space. If for each individual
i ∈ {1, 2, . . . , k}, x∗i is the point of global minima of the objective function fi , the
point y∗i := f (x∗i ), i = 1, 2, . . . , k in the criterion space is said to be an anchor
point. Again, the point y I = (y I

1 , y I
2 , . . . , y I

k )
T given by y I

i := min
x∈X

fi (x) = min
y∈Y

yi

is called as ideal point or utopia point. As in general y I is not attainable, notion
of Pareto optimality is being introduced as follows. The definitions of weak Pareto
optimality and proper Pareto optimality are also given subsequently.

Definition of Pareto optimality depends on a dominance structure or compo-
nentwise order in the space R

k . To represent dominance structure on R
k , the fol-

lowing subsets are usually used. The nonnegative orthant of R
k is represented by

R
k
� := {y ∈ R

k : y � 0}; y = (y1, y2, . . . , yk)
T. The notation y � 0 implies yi ≥ 0

for each i = 1, 2, . . . , k. The set R
k≥ is defined by {y ∈ R

k : y ≥ 0} where y ≥ 0
means y � 0 but y 	= 0. The notation R

k
> := {y ∈ R

k : y > 0} indicates the positive
orthant of R

k . Here, y > 0 stands for yi > 0 for each i = 1, 2, . . . , k. The relations
‘�’, ‘≤’ and ‘<’ are similarly defined. For x̂, x̄ ∈ X , the vector f (x̂) is said to
dominate another vector f (x̄) if f (x̂) ≤ f (x̄).

Definition 1 (Pareto optimality [7]). A feasible solution x̂ ∈ X is called efficient
or Pareto optimal, if there is no other x ∈X such that f (x) ≤ f (x̂). If x̂ is efficient,
f (x̂) is called non-dominated. The set of all efficient points is denoted by XE. The
collection of all non-dominated points is denoted by YN.

Definition 2 (Weak Pareto optimality [7]). A feasible solution x̂ ∈ X is called
weakly Pareto optimal if there is no x ∈ X such that f (x) < f (x̂). The point
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ŷ = f (x̂) is then called weakly non-dominated and x̂ is called weakly Pareto optimal
point. The set of all weakly efficient points is denoted by XwE. The collection of all
non-dominated points is denoted by YwN.

Definition 3 (Proper Pareto optimality [7]). A feasible solution x̂ which is a Pareto
optimal point is said to be properly Pareto optimal if there exists a positive real
number M such that for any i ∈ {1, 2, . . . , k} and x ∈ X satisfying fi (x) < fi (x̂)
there exists an index j such that f j (x̂) < f j (x) such that fi (x̂)− fi (x)

f j (x)− f j (x̂)
≤ M. The

point ŷ = f (x̂) is then called properly non-dominated. The set of all proper Pareto
optimal solutions is denoted by XpE.

It can be easily perceived that a feasible point x̂ ∈X belongs to XE if and only
if ( f (x̂) − R

k
�)

⋂
f (X ) = { f (x̂)}. Similarly, a feasible point x̂ ∈ X belongs to

XwE if and only if ( f (x̂)− R
k
>)

⋂
f (X ) = ∅.

In a more general sense, if the objective space R
k is partially ordered by a pointed

convex cone D say, a decision point x̂ ∈ X is efficient with respect to D when
( f (x̂) − D)

⋂
f (X ) = { f (x̂)}. Analogously, a point x̂ ∈ X is weakly efficient

with respect to D when ( f (x̂)− int(D))
⋂

f (X ) = ∅, where int(D) represents the
interior of D. If D is taken as R

k
ε := {y ∈ R

k : dist(y,Rk
>) ≤ ε‖y‖}, then a (weakly)

Pareto optimal point with respect to D is said to be (weakly) ε-Pareto optimal point.
Since, at any ε-Pareto optimal point, trade-off between any two criteria are bounded
by ε and 1/ε, any ε-Pareto optimal point is properly Pareto optimal point.

We observe that the nonpositive orthant −R
k
� and its interior are two convex

cones, which can be used to examine whether a feasible point is Pareto optimal or
weakly Pareto optimal or none of them. Thus, the closed-convex cone−R

k
� may be

imagined as an IC to test Pareto optimality. Application of the same is implemented
while forming constraint inequalities of the proposed method—hence, the method is
named as IC method. In the next section, detailed construction of the IC method is
studied.

3 Ideal Cone Method and Results

We describe IC method and its mathematical perspective in the following three
subsections.

3.1 Mathematical Description of the Method

Ideal cone is a classical method to generate Pareto set (XE), and hence, complete
non-dominated set (YN) of a MOP. How the method generates XE is discussed in
the following. Central idea behind IC method lies in the following two facts—first,
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a feasible point x∗ ∈X is a Pareto optimal solution of the MOP (1) if

(
f (x∗)− R

k
�

) ⋂
f (X ) = { f (x∗)},

second, the non-dominated set YN is a subset of the boundary of the criterion feasible
region, i.e.,

YN ⊂ bd(Y ).

From the geometrical point of view, first fact means that—in the criterion space,
if the criterion feasible region and the translated nonpositive orthant whose vertex is
being shifted from origin to the point f (x∗) have intersection the single point f (x∗)
only, then the feasible point x∗ is a Pereto optimal solution of the considered MOP.
If x∗ is Pareto optimal solution, the point y∗ = f (x∗) must be a non-dominated
solution. So, to get a non-dominated solution, we may translate the cone of non-
positive orthant of the criterion space along a particular direction β̂ ∈ R

k
� till this

cone does not touch the criteria feasible region. Translation of the cone −R
k
� along

a particular direction β̂ ∈ R
k
� means that the vertex of the cone is retained on the

line zβ̂, z ∈ R. Now, if the cone −R
k
� is being translated along β̂ ∈ R

k
�, then it can

touch the boundary of the criterion feasible region Y (bd(Y )) in two possible ways:
either the vertex of the cone touches first or one (or more) boundary plane(s) of the
cone touches first. Once the first case happens, the point where the cone touches the
criterion feasible region is certainly be a globally non-dominated point. If the latter
case happens, it is possible in two different ways: touching portion is either a single
point or a set of points. In the first case, though the touching point is a Pareto optimal
point, but not a proper Pareto optimal solution. In the second case, it can be easily
perceived that all the points except the extreme points of the touching portion are
weakly Pareto optimal solutions.

Let us illustrate how the above said touching portion of bd(Y ) and the cone
zβ̂−R

k
�, for a particular direction β̂ ∈ R

k
�, can be found. To demonstrate, let us begin

with a graphical perspective of the IC method for a simple bi-objective optimization
problem. Figure 1 portrays the criterion feasible region Y = f (X ) for a generic bi-
objective problem and the cone zβ̂−R

k
� for three different values of z, namely z1, z2

and z3 corresponding to the points A, B, and C respectively. Here OA = z1, OB = z2

and OC = z3. Let us now consider the set
{

y: zβ̂ � f (x), y = f (x), x ∈ X
}
,

z ∈ R. For each specific value of z ∈ R, this set is either an empty set or a subset of
Y . For example, for z = z1 the set is empty; for z = z2 the set is the singleton set
{B}, B ≡ z2β̂; for z = z3 the set is the shaded region CDBEC. We note that for a
fixed z ∈ R, the set

{
y: zβ̂ � f (x), y = f (x), x ∈X

}
represents the intersecting

region of (zβ̂ − R
k
�) and f (X ). Now, for generic z ∈ R let us try to minimize the

intersecting region between (zβ̂−R
k
�) and f (X ) by translating the cone (zβ̂−R

k
�)
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f (X )

Feasible region

Non-dominated set

Fig. 1 Explanation of IC method

along β̂ such a way that the cone does not leave f (X ). In the optimum situation
if the intersection (zβ̂ − R

k
�)

⋂
f (X ) contains only one point, then that singleton

point indeed be a non-dominated point. We note that minimizing the intersecting
region (zβ̂ − R

k
�)

⋂
f (X ) eventually involve minimizing the value of z with the

constraints zβ̂ � f (x), x ∈ X . It is worthy to note that the earlier discussions do
not depend on the number of criteria. Therefore, to get a non-dominated solution of
the MOP (1) we can solve the following minimization problem:

IC(β)

⎧
⎨
⎩

min z
subject to zβ̂ � f (x),

x ∈X .

(2)

Solving this problem for various values of β̂ in R
k
�, whole non-dominated set of

the considered MOP can be generated. It is to notice that if β̂ is replaced by any vector,
β say, parallel to β̂, then solution of the subproblem will remain the same with a little
modification to the value of the objective function z. That is why subproblem (2) has
been referred as IC(β). Solution of IC(β) may be represented by (x∗, z∗, û), where
x∗ is the solution of (2) with objective value z∗ and û = f (x∗)

‖ f (x∗)‖ . Since the utopia
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point is assumed to be infeasible solution, the unit vector û is always well-defined.
Here, we note that the unit vector û may not always be identical to β̂.

3.2 Theoretical Results on IC Method

We note that IC method is intended to generate non-dominated solutions. Thus, one
natural question may arise: whether solution of IC(β) for any β ∈ R

k
� is Pareto op-

timal or not, and conversely whether each non-dominated solution of the considered
MOP is attainable by the IC subproblem or not? We have made attempt for the same
in the following two theorems.

Theorem 1 Solution of IC(β) for any β ∈ R
k
� is weakly Pareto optimal.

Proof Suppose (x∗, z∗, û) is solution of IC(β). Let x∗ 	∈XwE. So, there must exists
some x̄ ∈ X such that f (x̄) < f (x∗). Now the constraints of the IC(β) directly
show that optimal value of the objective function z in IC(β) must be less than z∗. A
contradiction arises. Hence, x∗ must be weakly Pareto optimal.

Theorem 2 Let x∗ ∈ XE. Then there exists some β ∈ R
k
� such that IC(β) has

optimum solution at x∗.

Proof Let us chooseβ = f (x∗). As x∗ ∈XE, (β−R
k
�)

⋂
f (X ) = {β}. Therefore,

optimal solution of IC(β) must be x∗. Hence the result follows.

Due to Theorems 1 and 2, IC method bears necessary and sufficient condition for
weakly Pereto optimality. Once solving all possible IC(β̂) is accomplished for all β̂,
from the solution set itself we can easily detect the points, which lie on XwE \XE as
follows. Suppose (x∗, z∗, û) be a solution of a particular IC subproblem and S be the
set of all such solution points. If there exists (x∗, z∗1, û1) ∈ S, then solution of IC(û)
is all the points lie on the line segment joining x∗ and f −1(z∗û). Therefore, solution
of IC(û) is not unique and x∗ must be weakly Pareto optimal point. Thus, though IC
method may generate some points on XwE \XE, they can be easily detected. So,
IC method bears necessary and sufficient condition for weak Pareto optimality and
if the solution of the IC(β) is unique, that solution must be globally Pareto optimal.

Here, from the easy geometrical visualization of the IC method we obtain the
following two results. Some more theoretical aspects of IC method can be obtained
in our further research on mathematical perspective of IC method.

Lemma 1 Let us suppose β1, β2 are two non-parallel vectors in R
k≥. If IC(β1) and

IC(β2) have solutions (x∗, z∗1, β̂2) and (x∗, z∗2, β̂2) respectively, then
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(
z∗2β̂2 − R

k
�

)
⊂ (

z∗1β̂1 − R
k≥
)
,

(
z∗2β̂2 − R

k
�

)
	⊂ (

z∗1β̂1 − R
k
>

)
and

z∗2 < z∗1.

Lemma 2 Let us suppose β1, β2 ∈ R
k≥ are two non-parallel vectors and bd(Y ) is

smooth. If IC(β1) and IC(β2) have solutions (x∗, z∗1, β̂2) and (x∗, z∗2, β̂2) respec-

tively, then for each t ∈ (0, 1), IC(βt ) must have solution (x∗, z∗t , β̂2) for some
z∗t ∈ R>, where βt = z∗1β̂1+ t (z∗2β̂2− z∗1β̂1). Furthermore, if 0 < t1 < t2 < 1, then
z∗t2 < z∗t1 .

Theorem 3 Let (x∗, z∗, β̂1) is solution of IC(β1). If there does not exist any other
vector β2 ∈ R

k≥ which is not parallel to β1 such that IC(β2) has solution (x∗, z∗, β̂1),
then either x∗ is an anchor point or x∗ ∈XpE.

Proof If possible let x∗ 	∈XpE.
Then, there must exist some δ > 0 and one j ∈ {1, 2, . . . , k} such that

B( f (x∗), δ)
⋂

f (X ) = { f j (x): f j (x) ≥ f j (x
∗)}

⋂
B( f (x∗), δ)

⋂
f (X ).

(3)
Since otherwise there exists ε > 0 such that x∗ is an ε-Pareto optimal point.
This implies trade-offs between all the objectives are bounded by ε and 1/ε, and
hence, x∗ ∈XpE. A contradiction arises. Therefore, (3) holds true, and we note that
(3) clearly implies the theorem.

Proposition 1 Let us suppose β̂1, β̂2 ∈ R
k
�

⋂
S

k−1 are two non-parallel vec-

tors and bd(Y ) is smooth. If CM(β̂1) and CM(β̂2) have solutions (x∗, z∗1, β̂3) and

(x∗, z∗2, β̂3) respectively, then there must exist two criteria whose trade-off is un-
bounded at x∗.

Let us now try to solve the IC subproblems efficiently under which generation of
the complete efficient set of the considered MOP is confined.

3.3 Algorithmic Implementation of the Ideal Cone Method

Earlier discussion and results show that IC(β) subproblems are to be solved for each
unit vector β̂ ∈ R

k
� to obtain complete Pareto and weakly Pareto sets of a MOP.

In practice algorithmic implementation of IC method, a uniform discretization of
the set S

k−1≥ S
k−1 ⋂

R
k≥ would be considered to get required β̂s, where S

k−1 is the

k-dimensional unit sphere. Solving IC(β̂) for more and more β̂s, number of obtained
Pareto points will be increased and gradually the entire Pareto set will be captured.
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Let us note that any β̂ ∈ S
k−1 can be expressed by

(
cosφ1, cosφ2 sin φ1, cosφ3 sin φ2 sin φ1, . . . , cosφk−1

k−2∏
i=1

sin φi ,

k−1∏
i=1

sin φi

)
,

for φi ∈ [0, π2 ], i = 1, 2, . . . , (k − 1). This is well know spherical discretization
technique. However, if we discretize each φi to equal number of subintervals, then
set of discretized points will be much congested near the point (1, 0, 0, . . . , 0). Thus,
to get a uniform discretized points on S

k−1, let us attempt to divide φ1 by m number
of points and φi by round(m

∏i
l=1 sin φi ) number of points, for i = 2, 3, . . . , k − 1.

Here round is the rounding function to the nearest integer.
Following Algorithm 1 provides a sequential procedure to obtain complete Pareto

set of a tri-criteria problem. In tri-criteria problem, we need to run 2 for loops for
each φi , i = 1, 2. For k-criteria problem, we only have to run k − 1 for loops for
each φi , i = 1, 2, . . . , k − 1.

Algorithm 1 Algorithm to generate complete non-dominated set
Require: Given MOP: {

min f (x)

subject to x ∈ X .

Final output YN of the algorithm is the complete non-dominated set of the problem.
1: Initialize φ1 and φ2 to 0.
2: Initialize YN ← ∅.
3: Give m (total number of grid points for φ1).
4: for φ1 = 0 to π

2 with step length π
2m do

5: Find m2 = round(m sin φ1)

6: for φ2 = 0 to π
2 with step length π

2m2
do

7: Find β̂ = (cosφ1, cosφ2 sin φ1, sin φ2 sin φ1)

8: Find x∗β where (x∗β, z∗β, û) is the solution of the following problem for β̂:
9:

IC(β̂)

⎧⎪⎨
⎪⎩

min z

subject to zβ̂ � f (x),

x ∈ X .

10: Set YN ← YN
⋃

f (x∗β).
11: end for
12: end for

The above, discretization of S
k−1≥ is done aiming to get evenly spaced β̂s over

S
k−1≥ . Since with the generated β̂s thereby, if the solutions of IC(β̂) subproblems

are accumulated, it is sure that IC method has not missed any portion of the Pareto
surface to seek Pareto points.
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4 Examples and Discussions

In this section, a couple of test problems are considered to compare the proposed IC
method with the existing classical methods. Advantages and efficiencies of IC method
are also discussed. The considered problems are either studied extensively or used
as benchmark. In the literature Pareto set generating methods, or existing classical
methods have been failed to obtain their entire Pareto set efficiently. In comparison,
direct search domain (DSD) [9] method has not been considered since DSD method—
originally being a modification of the physical programming (PP) [19] method—
bears all the deficiencies of the PP method and highly depended on the method’s
shrinking angle [9]. Nonetheless, DSD subproblems can attain locally Pareto optimal
points as their solutions. It is to be noted that only varying the parameter β over the
first orthant R

k≥, IC method can efficiently obtain well-diversified Pareto optimal

points. In all the following examples, uniform spherical discretization of S
k−1≥ is

taken to get β̂s of IC method.

Example 1 This test problem is a simple bi-objective optimization problem studied
in [19] to compare performance of PP, WS, and CP methods. The problem is stated
as follows:

min

(
f1(θ)
f2(θ)

)

subject to 0.5326 ≤ θ ≤ 1.2532

where f1(θ) = sin θ, f2(θ) = 1− sin7 θ.

Messac and Mattson [19] mentioned that here performance of PP method is su-
perior than WS and CP methods.

In Figs. 2, 3, 4, 5, performance of PP method and IC method for 50 and 200
evaluations are explored. For PP method, used so-called pseudo-preferences Pi (i =
1, 2) are Pi = ( fi1, fi2, fi3, fi4, fi5)

T = f (0)i (1, 1, 1, 1, 1)T + δi (0, 1
4 ,

1
2 ,

3
4 , 1)T

where δi = ( fi,max − fi,min)/nd and f (0)i is a free parameter. The parameter nd

defines PP method’s search box size δi [19, 24]. Here f (0)i is chosen as αi j fi,min +
(1 − αi j ) fi,max, i = 1, 2 where α1 j + α2 j = 1, αi j ∈ [0, 1]. The subscript j
corresponds of the number on discretized points of the interval [0, 1]. Here anchor
points are (0.5078, 0.9913) and (0.95, 0.3017). Results on the Fig. 2 obtained for
nd = 50 and for the Fig. 3, nd = 200. We observe that PP subproblems are incapable
to generate a significant portion of the Pareto frontier and obtained solutions are not
well-distributed. But solutions of IC subproblems, as observed in Figs. 4 and 5, are
well-diversified over the entire Pareto set and no portion is left out to generate.

Example 2 In this example, we have considered an engineering design problem—a
three-bar truss problem. This problem and its variations are broadly used [1, 4, 13,
17–19] as benchmark to recognize efficiency of Pareto frontier generation methods.
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Fig. 3 Performance of PP method on Example 1 for 200 evaluations

The three-bar truss under static loading is shown in the Fig. 6. In the problem,
total volume of the truss and linear combination of the horizontal and vertical dis-
placements of the node P for a small deformation of the truss are to be minimized
simultaneously. The design variables are cross section of the bars: a1, a2 and a3 say.
All of them are bounded by 0.1 and 2 cm2. Here, the subscripts 1, 2 and 3 are used to
refer left, middle, and right bar, respectively. Different numerical data of the problem
are as follows:

F = 20 kN, L = 1 m, Young modulus of the bars E = 200 GPa, maximum stress
accepted in each bar is σ = 200 MPa.
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Fig. 5 Performance of IC method on Example 1 for 200 evaluations

Thus, the MOP can be described as:

min

(
δ(a1, a2, a3)

V (a1, a2, a3)

)

subject to
|Ti |
ai
≤ σ

0.1× 10−4 ≤ xi ≤ 2× 10−4

i = 1, 2, 3.
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Fig. 6 Three-bar truss under static loading

where Ti s are tension of the bars. They can be calculated as:

T1 = a1 E
2L (δ1 − δ2),

T2 = a2 E
L δ2,

T3 = a3 E
4L

(
δ1 +
√

3δ2

)
.

The objective functions are:

f1 ≡ δ(a1, a2, a3) = δ1
4 + 3δ2

4 ,

f2 ≡ V (a1, a2, a3) = L
(√

2a1 + a2 + 2a3

)
.

The displacements δ1 and δ2 can be determined from the expression of of Ti s and
the force balance equations:

vertical: F = T2 + T1√
2
+ T3

2 ,

horizontal: F =
√

3T3
2 − T1√

2
.

A discrete approximation of the feasible set of this problem is shown in the Fig. 7.
As noticed, the arcs AB and CD of the boundary of the feasible region contain Pareto
optimal points. However, the boundary also contains the arc BC including non-Pareto
optimal points. It is mentioned and illustrated in [18] that to obtain all the globally
Pareto optimal points through NBI and NC method one needs to apply Pareto filter
algorithm; WS method performs quite poorly—it can offer only two Pareto optimal
points; to apply CP method, several iterations are needed to find appropriate scale of
weights. Here, we observe in the Fig. 8 that IC method works significantly well and
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generates only globally Pareto optimal points—they are also well-diversified over
the Pareto frontier.

Example 3 In this test problem, well-known DTLZ5 problem [6] is considered.
This problem, although a three criteria optimization problem, has two-dimensional
efficient frontier. As mentioned in [22], all existing classical methods fail to capture
the efficient frontier of this problem. This problem has been stated as follows:
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min

⎛
⎝

f1(x)
f2(x)
f3(x)

⎞
⎠

subject to 0 ≤ xi ≤ 1, i = 1, 2, 3.

where x = (x1, x2, x3)
T and

f1(x) = (1+ g(x3)) cos(θ1(x)) cos(θ2(x)),
f2(x) = (1+ g(x3)) cos(θ1(x)) sin(θ2(x)),
f3(x) = (1+ g(x3)) sin(θ1(x)),

g(x3) =
(
x3 − 1

2

)2
,

θ1(x) = π
2 x1,

θ2(x) = π
4

1+2g(x3)x2

1+g

(√
x2

1+x2
2+x2

3

) .

This problem has Pareto optimal curve [22]: f 2
3 = 1− f 2

1 − f 2
2 with f1 = f2 ∈

[0, 1√
2
]. As shown in [9], DSD method can yield all the Pareto points, but parameters

of the method should be choosen very tactfully and this leads to significant knowledge
about the solutions to be found. However, proposed IC method can also generate
the entire Pareto optimal frontier—depicted in the Fig. 9—without requiring prior
knowledge about the problem.

Thus, we observe that direction-based IC method successfully obtain global Pareto
optimal points of the problems.

• Finding D-Pareto points: It is worthy to mention here that IC method can not only
efficiently obtain global Pareto optimal points, but also obtain ε-Pareto optimal
points and more generally Pareto optimal points with respect to any ordering
(pointed convex) cone D. To get D-Pareto optimal points the constraint inequality
in IC(β) has to be taken as zβ̂ − f (x) ∈ D instead of zβ̂ � f (x). Similarly,
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to obtain ε-Pareto optimal points, one needs to take the constraint inequality as

zβ̂− f (x) ∈ R
k
ε , or

dist
(

zβ̂− f (x), Rk
>

)
‖zβ̂− f (x)‖ ≤ ε. Quite often identifying ε-Pareto optimal

points are of due importance since at an ε-Pareto optimal point trade-off of all the
objective functions are bounded by ε and 1/ε. Thus, ε-Pareto optimal points are
properly Pareto optimal. Owing to this fact, DM always try to choose an ε-Pareto
optimal point as most preferable solution of the MOP because DM usually is not
willing to improve one unit of an objective function at the cost of an infinite loss
of another objective function.
• Finding knee regions: Let by knee points/regions we refer the points of local

minima of distances between ideal point and Pareto points. Finding knee regions
of Pareto set usually facilitate DM’s final selection of solution from the Pareto set,
since, DM ideally wants to obtain ideal point, but it is not attainable by criteria
feasible set, and thus, DM may like to obtain a point which has smallest possible
deviation from ideal point. Let us note that if (x∗, z∗, û) is solution of an IC
subproblems, then z∗ essentially measures the distance between ideal point and
the Pareto point f (x∗). Thus, local minimum of values of z∗ of IC subproblems
offer knee regions of the Pareto set with respect to the ideal point.

5 Comparison

In this section, let us compare the proposed IC method with the existing other similar
methods. First, let us see the subproblem formulation of each of those existing tech-
niques. Discussion of all the problems are made with respect to the pointed, closed,
convex cone K = R

k
� and used f ∗ is the ideal point. The matrix� has the meaning

as described in [3].

Pascoletti–Serafini Scalarization [21]:

SP(a, r)

⎧
⎨
⎩

min t
subject to a + tr − f (x) ∈ K

x ∈X .

Normal Boundary Intersection [3]:

NBI(β)

⎧⎨
⎩

min t
subject to �β + t n̂ − f (x)+ f ∗ = 0

x ∈X .

Proposed IC:

IC(β)

⎧⎨
⎩

min t
subject to t β̂ − f (x)+ f ∗ ∈ K

x ∈X .
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5.1 Pascoletti–Serafini Scalarization

• Solutions of original Pascoletti–Serafini scalarization are not always Pareto/
weakly-Pareto points.
• Helbig [11] proved that if Pareto set of the MOP in nonempty, then for (a, r) ∈

R
k × int(K ), solution of PS(a, r) is weakly Pareto optimal.

• Observing that Helbig’s restriction considers potentially an unbounded set of point
in R

k×int(K ), Eichfelder [8] tried to find more stricter condition on the parameters
(a, r).
• For a bi-objective problem, Eichfelder considered r = −n̂, where n̂ is the unit

normal direction on the so-called CHIM (Convex Hull of Individual Minima), and
allowed the reference point a to vary on the projection set of f (X ) on a line
parallel to CHIM. This line must lie beneath f (X ). Mathematically, Eichfelder
showed that in this way complete Pareto set of bi-objective problem can be gen-
erated. However, the projection method is no-longer applicable for more than two
objective functions (see [8]).
• Eichfelder’s method though efficiently capture Pareto set of bi-objective problems,

but it does not give any other information to facilitate DM’s final selection of
solution. Like, it does not give positions of weak Pareto points or proper Pareto
points or knee regions of the Pareto set.
• We also note that how to choose parameter a over the projection set is not given

properly, and thus, diversity of generated solution over the entire Pareto set is
questionable.
• Parameter restriction of Eichfelder’s approach needs information about the the

criteria feasible set f (X ), and thus, this parameter set changes for every MOP.

5.2 Normal Boundary Intersection

• NBI technique is a restricted case of PS(a, r) with a = �β, r = −n̂ and the cone
K must have empty interior.
• Similarly to Eichfelder’s approach, to obtain Pareto set, NBI method also consid-

ered r to be a fixed direction and a to be a variable reference point restricted to lie
on CHIM.
• As K is restricted to have empty interior, outcome solution of the NBI subproblem

may be non-Pareto optimal. Nonetheless, NBI cannot capture the entire Pareto set,
cannot work for non-convex problems, and it has several other deficiencies [3].
• NBI also does not give positions of weak Pareto points or proper Pareto points or

knee regions of the Pareto set.
• Shukla [23] proposed a modification of NBI such that solution of modified NBI

must be weakly-Pareto optimal. However, being originated from NBI, the modified
NBI method bears all the deficiencies of the NBI method, but less likely.
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5.3 Ideal Cone

• Solution of each IC subproblem is shown to be weakly-Pareto optimal and each
Pareto point is attainable by an IC subproblem. In contrast, NBI or SP method
does not guaranty weak-Pareto optimality of the outcome solutions.
• To obtain entire Pareto set of MOP, in the proposed technique, the reference point a

is taken as a fixed point and r = β̂ is considered to vary over the unit sphere S
k−1 on

the first hyperoctant. But in all other methods, r is taken as fixed and a is considered
to vary. This variable reference point considerably changes the subproblems, and
hence, needs extra computational cost than the IC method. Nevertheless, NBI and
SP method cannot generate complete Pareto set.
• A simple uniform-discretization of S

k−1 ⋂
R

k
� (a bounded set, unlike Helbig’s

unbounded set) will give a discrete approximation of parameter set of IC subprob-
lems.
• Approach of the IC method can easily detect and separate weakly-Pareto point

(please refer to the paragraph after Theorem 2). Moreover, through solution set of
the IC method we can easily detect the region of the Pareto set where objectives
can have unbounded trade-offs (Proposition 1).
• IC method’s solution can also capture knee regions of the Pareto set with respect

to the ideal point. Here, we note that no such extra information can be obtained
from the solution set of the NBI or SP method.
• We also note that MNBI left a significant portion of the Pareto set to obtain,

Eichfelder’s techniques gives several redundant solutions, but IC method captures
the entire Pareto set without such drawbacks.
• More importantly, parameter restriction of Eichfelder’s approach needs informa-

tion about the the criteria feasible set f (X ), and thus, this parameter set changes
for every MOP. For MNBI and NBI also we need to compute the set �β, which
changes to every MOP. But proposed method’s parameter β̂ does not depend on
f (X ) and the parameter set does not change corresponding to each MOPs.

• We note that IC method is searching Pareto points in each and every possible direc-
tions form the ideal point, and thus, the generated Pareto set obviously maintains
a diversity throughout the Pareto surface. By contrast, other methods start from a
reference point, which is restricted to lay on a plane, and then search Pareto points
along the normal to the considered plane, i.e., those methods search Pareto points
along a particular direction. Therefore, unless the Pareto surface is approximately
parallel to that plane, the generated Pareto set by those methods are trivially not
diversified over the entire Pareto set.

6 Conclusion

In the presented study, a Pareto set generation method has been developed. To solve
the IC subproblems (2) efficiently, a uniform discretization for S

k−1≥ is used. Proposed
IC method bears necessary and sufficient condition for global Pareto optimality if
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YN = YwN. A little modification of the constraint inequality, which is mentioned in
the foregoing section, ensures general D-Pareto optimality of the outcome solutions
by IC method. Thus, the proposed method not only captures global Pareto points, but
also obtains D-Pareto points and, more importantly, ε-Pareto optimal points. We have
shown that IC method though intended to obtain only Pareto points, may also attain
weakly Pareto points. A simple procedure to identify weak Pareto optimal points
attained by IC method has been mentioned. Similarly, from the IC solution points
itself we can easily detect the position of the Pareto surface where objective functions
may have unbounded trade-offs. This information may facilitate DM to choose the
best preferable solution or best design or best decision of the MOP. Identification of
the points of unbounded trade-offs of two criteria eventually mean finding the Pareto
points, which are not proper Pareto optimal points. This identification of proper
Pareto optimal points from IC solution points using Lemmas 1 and 2 will be done
in our further research on IC method. More details on mathematical perspective and
advantage of IC method over the existing classical methods to generate Pareto set
can be also obtained in future.

It is important to mention here that the approach of the proposed IC method also
can efficiently generate complete fuzzy non-dominated set for fuzzy multi-objective
optimization problems. This work on capturing complete fuzzy non-dominated set
can be found in [10].
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Chapter 12
Fractional Programming Problem
with Bounded Parameters

A. K. Bhurjee and G. Panda

Abstract In this paper, existence of the solution of a nonlinear fractional
programming problem with parameters varying in some bounds, is studied. A general
nonlinear programming problem, which is free from uncertain parameters, is formu-
lated using the uncertain parameters of the original problem. Relation between the
solution of the original problem and the transformed problem is established. The
theoretical developments are justified in a numerical example.

Keywords Efficient solution · Fractional programming problem · Parametric
optimization problem · Interval valued function

1 Introduction

In a general optimization problem, the parameters are usually considered as real
numbers. But there are many real-life situations where parameters are not fixed due
to several type of uncertainties associated with the data set. If these parameters vary
in between some lower and upper bounds (i.e., the parameters lie in closed intervals),
then the corresponding optimization problem is an interval optimization problem.
Readers may refer [1, 4–7, 10–15, 19] for some major contributions in the area
of optimization problems with interval parameters during the last 2 decades. If the
objective function of an interval optimization problem is the ratio of two interval
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valued function, then we call this as interval fractional programming problem and
denote by (IFP). Existence of the solution of general fractional programming prob-
lem is studied by many authors (see Refs. [3, 9, 17, 18, 20]) in several directions. For
the first time, Hladik [4] focused on interval fractional programming, whose objec-
tive function is the ratio of two linear interval valued functions. Nonlinear interval
fractional programming problem has not been studied yet.

In this paper, a fractional programming problem (IFP) is considered in which
the objective function is a ratio of two nonlinear interval valued functions and the
constraints have linear/nonlinear interval valued functions. Section 2 provides some
preliminaries on interval analysis. In Sect. 3 a new interval optimization problem
(IFPλ) is constructed using the interval valued functions in the numerator and denom-
inator of (IFP), to get rid of the denominator function. Next, (IFPλ) is transformed
to a deterministic nonlinear programming problem (IFPλ

w), which is free from all
uncertain parameters. Relations between the solutions of these three optimization
problems are established in this section. Finally, it is proved that solution of (IFPλ

w)

is an efficient solution of (IFP). These results are illustrated with a numerical example
in Sect. 4.

Throughout the paper, the following notations are used. Bold capital letters
denote closed intervals; I (R) = The set of all closed intervals in R; (I (R))k =
The product space I (R)× I (R)× · · · × I (R)︸ ︷︷ ︸

(k times)

;Ck
v = k-dimensional column whose

elements are intervals; Ck
v ∈ (I (R))k , Ck

v = (C1,C2, . . . ,Ck)
T, C j = [cL

j , cR
j ], j ∈

�k, �k = {1, 2, . . . , k}.

2 Preliminaries

Let ∗ ∈ {+,−, ·, /} be a binary operation on the set of real numbers. The binary
operation � between two intervals A = [aL , aR] and B = [bL , bR] in I (R), denoted
by A�B is the set {a∗b: a ∈ A, b ∈ B}. In the case of division, (A�B), it is assumed
that 0 /∈ B. These interval operations can also be expressed in terms of parameters.
Any point in A may be expressed as a(t) = aL + t (aR − aL), t ∈ [0, 1]. An
interval A is said to be a positive interval if a(t) is positive ∀t . Algebraic operations
of intervals can also be explained in parametric form as follows:

A � B = {a(t1) ∗ b(t2)| t1, t2 ∈ [0, 1]} (1)

An interval vector Ck
v ∈ (I (R))k, Ck

v = (C1,C2, . . . ,Ck)
T, can be expressed in

terms of parameters as
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Ck
v =

{
c(t)|c(t) = (c1(t1), c2(t2), . . . , ck(tk))

T, t = (t1, t2, . . . , tk)
T,

c j (t j ) ∈ C j , c j (t j ) = cL
j + t (cR

j − cL
j ), t j ∈ [0, 1], j ∈ �k

}

The set of intervals, I (R) is not a totally order set. Several partial ordering in I (R)
exist in the literature. Interval valued function is defined in several ways by many
authors (see Refs. [6, 8, 16]). We accept the following partial ordering and express
an interval valued function as follows:

Definition 2.1 [2] For A,B ∈ I (R),

A � B if a(t) ≤ b(t), ∀t ∈ [0, 1], and A ≺ B if a(t) < b(t), ∀t ∈ [0, 1] (2)

Definition 2.2 [2] For c(t) ∈ Ck
v, let fc(t): Rn → R. Then for a given interval

vector Ck
v , we define an interval valued function FCk

v
: Rn → I (R) by

FCk
v
(x) =

{
fc(t)(x)

∣∣∣ fc(t): Rn → R, c(t) ∈ Ck
v

}

For every fixed x , if fc(t)(x) is continuous in t then min
t∈[0,1]k

fc(t)(x) and max
t∈[0,1]k

fc(t)(x),

exist. In that case

FCk
v
(x) =

[
min

t∈[0,1]k
fc(t)(x), max

t∈[0,1]k
fc(t)(x)

]

If fc(t)(x) is linear in t then min
t∈[0,1]k

fc(t)(x) and max
t∈[0,1]k

fc(t)(x) exist in the set

of vertices of Ck
v . If fc(t)(x) is monotonically increasing in t then FCk

v
(x) =

[ fc(0)(x), fc(1)(x)].

3 Existence of Solution of (IFP)

In this section we propose single objective fractional programming problem whose
parameters lie in intervals as follows:

(IFP):min
FCk

v
(x)

GDl
v
(x)

subject to H j

B
m j
v
(x) � A j , j ∈ �p, (3)

where FCk
v
, GDl

v
, H j

B
m j
v
: Rn → I (R), GDl

v
(x) 
 0, A j ∈ I (R), A j = [aL

j , aR
j ] and

j ∈ �p. Using Definition 2.2, the objective function can be express as
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FCk
v
(x)

GDl
v
(x)
=

{
fc(t)(x)

gd(t ′)(x)

∣∣∣ c(t) ∈ Ck
v, d(t ′) ∈ Dl

v, gd(t ′)(x) > 0

}

Using Definition 2.1 in inequality (3), the constraints of (IFP) can be expressed as

{
x ∈ Rn |H j

B
m j
v
(x) � A j , j ∈ �q

}
≡

{
x ∈ Rn |h j

b j (t ′′j )
(x) ≤ a(t ′′j )∀t ′′j ∈ [0, 1], j ∈ �q

}

Throughout this section, we consider t = (t1, t2, . . . , tk)T, ti ∈ [0, 1], i ∈ �k,

t ′ = (t ′1, t ′2, . . . , t ′l )T, t ′q ∈ [0, 1], q ∈ �l , t ′′j ∈ [0, 1], j ∈ �p.

The feasible set for (IFP) can be expressed as the set

S =
{

x ∈ Rn : H j

B
m j
v
(x) � A j , j ∈ �p

}

=
⋂

j∈�p

{
x ∈ Rn : h j

b j

(
t ′′j

)(x) ≤ a j

(
t ′′j

)
, a j

(
t ′′j

)
∈ A j

}

Using Definition 2.2, (IFP) can be rewritten as

min
x∈S

FCk
v
(x)

GDl
v
(x)
= min

x∈S

{
fc(t)(x)

gd(t ′)(x)

∣∣∣ gd(t ′)(x) > 0, c(t) ∈ Ck
v, d(t ′) ∈ Dl

v

}
(4)

Here the objective function
F

Ck
v
(x)

G
Dl

v
(x) is an interval valued mapping. So minimum of

this function should be obtained using a partial ordering. For this reason the exact
minimum of (4) does exist. Since for different pairs (t, t ′), fc(t)(x)

gd(t ′)(x)
represents different

functions of x , so minimum solution of (4) can be considered as an efficient solution.
Assuming that for every pair (c(t), d(t ′)), the optimization problem min

x∈S

fc(t)(x)
gd(t ′)(x)

has

a solution, we define the solution of (IFP) in the light of solution of set optimization
problem as follows:

Definition 3.1 x∗ ∈ S is called an efficient solution of (IFP) if there is no x ∈ S
with

fc(t)(x)

gd(t ′)(x)
≤ fc(t)(x

∗)
gd(t ′)(x∗)

∀(t, t ′) and for at least one (t, t′) = (t, t ′), fc(t)(x)

gd(t′)(x)
<

fc(t)(x
∗)

gd(t′)(x∗)

Denote λ = [λL , λR] = {λ|λ ∈ [λL , λR]}, where for fixed x ∈ S,
λL = min

t,t ′
fc(t)(x)

he(t ′)(x)
and λR = max

t,t ′
fc(t)(x)

he(t ′)(x)
.Consider the following parametric problem

(IFPλ): min
x∈S

[
FCk

v
(x)�

(
λ⊗GDl

v
(x)

)]
(5)
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Equation (5) is equivalent to

min
x∈S

{
fc(t)(x)− λgd(t ′)(x)| c(t) ∈ Ck

v, d(t ′) ∈ Dl
v, λ ∈

[
λL , λR

]}
(6)

Denote ϕt,t ′(λ, x) = fc(t)(x)−λgd(t ′)(x) andΦ(λ) = min
x∈S
[FCk

v
(x)�(λ⊗GDl

v
(x))].

The efficient solution of (IFPλ) can be defined in the light of Definition 3.1 as
follows:

Definition 3.2 x∗ ∈ S is called an efficient solution of (IFPλ) if there is no x ∈ S with
ϕt,t ′(λ, x) ≤ ϕt,t ′(λ, x∗) ∀(t, t ′) and for at least one (t, t′) = (t, t ′), ϕt,t′(λ, x) <
ϕt,t′(λ, x∗).

Consider a weight function w: [0, 1]k × [0, 1]l → R+, so that w(t, t ′)ϕt,t ′(λ, x)
is integrable and construct an optimization problem

(IFPλ
w): min

λL≤λ≤λR

x∈S

∫

k+l

w(t, t ′)ϕt,t ′(λ, x) dtdt ′,

where
∫

k+l =
∫ 1

0

∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
(k+l times)

, t = (t1, t2, . . . , tk)T, t ′ = (t ′1, t ′2, . . . , t ′l )T, dt =

dt1dt2 . . . dtk , dt ′ = dt ′1dt ′2 . . . dt ′l .
Note: w(t, t ′)may be treated as a preference weight function, which has to be provided
by the decision maker. Different preference functions can be provided to estimate
the Pareto optimal value of the model. For every t, t ′, w(t, t ′) = 1 indicates that the
investor’s natural attitude is to estimate the mean. If

∫
k+l w(t, t ′) dt ′ = 1 then the

investor’s inclination is to estimate in between the optimistic and pessimistic optimal
value.

Theorem 3.1 If (x∗, λ∗) is an optimal solution of (IFPλ
w) then x∗ is an efficient

solution of (IFPλ).

Proof Let (x∗, λ∗) be an optimal solution of (IFPλ
w) and x∗ is not an efficient solution

of (IFPλ). Then by Definition 3.2, there is some x ∈ S with

fc(t)(x)− λ∗gd(t ′)(x) ≤ fc(t)(x
∗)− λ∗gd(t ′)(x

∗) ∀(t, t ′)
and for at least one (t, t′) = (t, t ′),

fc(t)(x)− λ∗gd(t′)(x) < fc(t)(x
∗)− λ∗gd(t′)(x

∗)

Hence for a weight function w: [0, 1]k ×[0, 1]l → R+, there exists x ∈ S, such that
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w
(
t, t ′

) (
fc(t)(x)− λ∗gd(t ′)(x)

) ≤ w
(
t, t ′

) (
fc(t)(x

∗)− λ∗gd(t ′)(x
∗)

) ∀ (
t, t ′

)

and for at least one
(
t, t′

) = (
t, t ′

)
,

w
(
t, t′

) (
fc(t)(x)− λ∗gd(t′)(x)

)
< w

(
t, t′

) (
fc(t)(x

∗)− λ∗gd(t′)(x
∗)

)

Integrating with respect to t, t ′, the above relation implies that for some x in S

∫

k+l

w(t, t ′)ϕt,t ′(λ
∗, x) dtdt ′ <

∫

k+l

w(t, t ′)ϕt,t ′(λ
∗, x∗) dtdt ′,

which is impossible since (x∗, λ∗) is the optimal solution of (IFPλ
w). Hence x∗ is an

efficient solution of (IFP). �

Proceeding in a similar way the relationship between the solution of the problems
(IFP) and (IFPλ) can be studied in the following theorem.

Theorem 3.2 x∗ ∈ S is an efficient solution of (IFP) if and only if x∗ is an efficient
solution of (IFPλ) and 0 ∈ Φ(λ).
Proof Let x∗ be an efficient solution of (IFP) then there is no x ∈ S such that

fc(t)(x)

gd(t ′)(x)
≤ fc(t)(x

∗)
gd(t ′)(x∗)

∀ (
t, t ′

)
and for at least one

(
t, t′

) = (
t, t ′

)
,

fc(t)(x)

gd(t′)(x)
<

fc(t)(x
∗)

gd(t′)(x∗)

For fixed (t, t ′), (t, t′), there exist λ, λ′ such that fc(t)(x∗)
gd(t ′)(x∗)

= λ, fc(t)(x∗)
gd(t′)(x∗)

= λ′ ≤ λ.

This implies that

fc(t)(x)− λgd(t ′)(x) ≤ fc(t)(x
∗)− λgd(t ′)(x

∗) ∀ (
t, t ′

)

and for at least one (t, t′) = (t, t ′), fc(t)(x)− λgd(t′)(x) < fc(t)(x∗)− λgd(t′)(x∗).
From Definition 3.2 for (IFPλ), we obtain that x∗ is an efficient solution for the
problem (6) and ϕt,t ′(λ, x∗) = 0, so 0 ∈ Φ(λ).

Suppose there is a λ such that x∗ is an efficient solution of problem (IFPλ) then
there exist no x ∈ S with fc(t)(x)− λgd(t ′)(x) ≤ fc(t)(x∗)− λgd(t ′)(x∗), and for at
least one (t, t′) = (t, t ′), fc(t)(x)− λgd(t′)(x) < fc(t)(x∗)− λgd(t′)(x∗). Since 0 ∈
Φ(λ), so for fixed (t, t ′) and (t, t′) there exists λ such that fc(t)(x∗)−λgd(t ′)(x∗) = 0
and fc(t)(x∗)− λgd(t′)(x∗) = 0. From the above discussion, there is no x ∈ S such
that

fc(t)(x)

gd(t ′)(x)
≤ fc(t)(x

∗)
gd(t ′)(x∗)

∀ (
t, t ′

)
and for at least one

(
t, t′

) = (
t, t ′

)
,

fc(t)(x)

gd(t′)(x)
<

fc(t)(x
∗)

gd(t′)(x∗)

From Definition 3.1, x∗ is an efficient solution of (IFP). �
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Using the result in Theorems 3.1 and 3.2, we may conclude that (x∗, λ∗) is an
optimal solution of (IFPλ

w) then x∗ is an efficient solution of (IFP).

4 A Numerical Example

Some results of the previous section can be verified in the following example.
Consider the following interval fractional quadratic programming problem as

(IFP): min
[−10,−6]x1 ⊕ [2, 3]x2 ⊕ [4, 10]x2

1 ⊕ [−1, 1]x1x2 ⊕ [10, 20]x2
2

[−5,−3]x1 ⊕ [1, 2]x2 ⊕ [1, 1]
(

2x2
1 − 2x1x2 + 2x2

2

)

subject to [1, 2]x1 ⊕ [3, 3]x2 � [1, 10], [−2, 8]x1 ⊕ [4, 6]x2 � [4, 6],
[−5,−3]x1 ⊕ [1, 2]x2 ⊕ [1, 1]

(
2x2

1 − 2x1x2 + 2x2
2

)

 0, x1, x2 ≥ 0.

Denote

FC5
v
(x1, x2) = [−10,−6]x1 ⊕ [2, 3]x2 ⊕ [4, 10]x2

1 ⊕ [−1, 1]x1x2 ⊕ [10, 20]x2
2 ,

GD2
v
(x1, x2) = [−5,−3]x1 ⊕ [1, 2]x2 ⊕ [1, 1]

(
2x2

1 − 2x1x2 + 2x2
2

)
,

H1
B2

v
(x1, x2) = [1, 2]x1 ⊕ [3, 3]x2, and H2

B2
v
(x1, x2) = [−2, 8]x1 ⊕ [4, 6]x2.

Then fc(t)(x1, x2) = (−10 + 4t1)x1 + (2 + t2)x2 + (4 + 6t3)x2
1 + (−1 + 2t4)

x1x2 + (10 + 10t5)x2
2 and gd(t ′)(x1, x2) = (−5 + 2t ′1)x1 + (1 + t ′2)x2 + 2x2

1 −
2x1x2 + 2x2

2 , where t = (t1, t2, . . . , t5)T, t ∈ [0, 1]5, t ′ = (t ′1, t ′2)T, t ′ ∈ [0, 1]2.
Using Definition 2.1, the parametric form of H1

B2
v
(x1, x2) � [1, 10], H2

B2
v
(x1, x2) �

[4, 6], and GD2
v
(x1, x2) 
 0 can be written as h1

b1(t ′′1 )
(x1, x2) ≥ (1+9t ′′1 ) ∀t ′′1 ∈ [0, 1],

h2
b2(t ′′2 )

(x1, x2) ≥ (4 + 2t ′′2 ) ∀t ′′2 ∈ [0, 1], and gd(t ′′3 )(x1, x2) > 0 ∀t ′′3 ∈ [0, 1],
respectively, where h1

b1(t ′′1 )
(x1, x2) = (1+t ′′1 )x1+3x2, h2

b2(t ′′2 )
(x1, x2) = (−2+10t ′′2 )

x1 + (4 + 2t ′′2 )x2 and gd(t ′′3 )(x1, x2) = (−5 + 2t ′′3 )x1 + (1 + t ′′3 )x2 + 2x2
1 −

2x1x2 + 2x2
2 . Hence

S =
{
(x1, x2) ∈ R2| h1

b1(t ′′1 )
(x1, x2) ≥ (1+ 9t ′′1 ), h2

b2(t ′′2 )
(x1, x2) ≥ (4+ 2t ′′2 ),

gd(t ′′3 )(x1, x2) > 0, x1 ≥ 0, x2 ≥ 0, t ′′1 , t ′′2 , t ′′3 ∈ [0, 1]
}

=
{
(x1, x2) ∈ R2| x1 + 3x2 ≥ 1, 2x1 + 3x2 ≥ 10,−2x1 + 4x2 ≥ 4, 8x1 + 6x2 ≥ 6,

− 5x1 + x2 + 2x2
1 − 2x1x2 + 2x2

2 > 0, x1 ≥ 0, x2 ≥ 0
}
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Here λ = [4, 5]. Consider weight function w: [0, 1]7 → R+ define as w(t, t ′) =
t1 + t3 then the deterministic problem (IFPλw) becomes

min
4≤λ≤5
(x1,x2)∈S

(
(−23/3+ 4λ)x1 + (5/2− (3/2)λ)x2 + (15/2− 2λ)x2

1 + 2λx1x2 + (15− 2λ)x2
2

)

Using LINGO the optimal solution of the above problem is found as
(x∗1 , x∗2 , λ∗) = (0, 3.3333, 5). Hence from Theorems 3.1 and 3.2, (0, 3.3333) is an
efficient solution for (IFP) and the optimal value of (IFPλ) is [−26.687, 119.382].

5 Conclusion

In this paper, a fractional programming problem with interval parameters and interval
parametric optimization problem are discussed. The interval parametric optimization
problem is converted to a general optimization problem, which is free from uncertain
parameters. It is proved that the solution to this transformed problem is an efficient
solution of the original problem. This development may be used to discuss the exis-
tence of the solution of multi-objective fractional programming problem, which is
the future research scope of the present work.
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Chapter 13
Approximation Properties of Linear Positive
Operators with the Help of Biorthogonal
Polynomials

G. Icoz

Abstract In this paper we introduce Konhauser polynomials, Kantorovich type
modification of Konhauser polynomials, and q-Laguerre polynomials. Approxima-
tion properties of these operators are obtained with the help of the Korovkin theorem.
The order of convergence of these operators is computed by means of modulus con-
tinuity, Peetre’s K-functional, the elements of the Lipschitz class, and the second
order modulus of smoothness. Also we introduce the r-th order generalization of
these operators and we evaluate their generalizations. Finally we give some applica-
tions to differential equations for operators which include Konhauser polynomials.

1 Introduction

In 1960, the Meyer-König and Zeller operators were introduced by Meyer-König and
Zeller in [28] as

Mn ( f ; x) =
∞∑

k=0

f

(
k

k + n + 1

)(
n + k

k

)
xk (1− x)n+1

where 0 ≤ x < 1.
In order to obtain the monotonicity properties, Cheney and Sharma [7] modified

these operators by

M∗n ( f ; x) =
∞∑

k=0

f

(
k

k + n

)(
n + k

k

)
xk (1− x)n+1

where 0 ≤ x < 1.
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In [7], Cheney and Sharma also introduced the operators

Pn ( f ; x) = exp

(
t x

1− x

) ∞∑
k=0

f

(
k

k + n

)
L(n)k (t) xk (1− x)n+1

where 0 ≤ x < 1, −∞ < t ≤ 0 and L(n)k (t) are the Laguerre polynomials. Since

L(n)k (0) = (n+k
k

)
, the operator M∗n ( f ; x) is a special case of the operators Pn ( f ; x).

Before proceeding further, we recall the following Konhauser’s polynomials intro-
duced by Konhauser in [23] with k ∈ Z

+ as

Y n
υ (t; k) =

1

υ!
υ∑

i=0

t i

i !
i∑

j=0

(−1) j
(

i

j

)(
j + n + 1

k

)

υ

.

Detailed properties of these polynomials can be found in [23].
If we choose k = 1 in Y n

υ (t; k) , then we obtain L(n)k (t), the well-known Laguerre
polynomials.

We consider the sequence of linear positive operators for x ∈ [0, 1) , t ∈ (−∞, 0]
as

Ln ( f ; x) = 1

Fn (x, t)

∞∑
υ=0

f

(
υk

k (υ − 1)+ n + 1

)
Y n
υ (t; k) xυ (1)

where {Fn (x, t)}n∈N are the generating functions for the sequence of functions{
Y n
υ (t; k)

}
υ∈N0

, N0 ≡ N ∪ {0}, is given by Carlitz [6] in the form

Fn (x, t) =
∞∑
υ=0

Y n
υ (t; k) xυ

and

Fn (x, t) = (1− x)−
n+1

k exp
{
−t
[
(1− x)−

1
k − 1

]}

also Y n
υ (t; k) ≥ 0 for t ∈ (−∞, 0] . This recurrence relation was given by Srivastava

in [33] as

tY n+1
υ−1 (t; k) = (k (υ − 1)+ n + 1) Y n

υ−1 (t; k)− kυY n
υ (t; k)

where Y n
υ (t; k) = 0 for υ ∈ Z

−.
Assume that the following condition holds:

max {υ, n} ≤ k (υ − 1)+ n + 1.
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Remark 1.1 If we choose k = 1 in (1), then Ln turns out to be Pn which was
introduced by Cheney and Sharma in [7].

Remark 1.2 If we choose k = 1 and t = 0 in (1), then Ln reduces to M∗n . These
operators are called as Bernstein power series by Cheney and Sharma in [7].

First, we introduce the Kantorovich type generalization of the operators Ln . Let
us denote by M [0, b] (0 < b < 1) , the class of measurable functions on [0, b] .

We modify the operators Ln (similarly in [3]) by replacing f
(

u
k(υ−1)+n+1

)
in

(1) with an integral mean of f (x) over a small interval
[

υ
k(υ−1)+n+1 ,

υ+1
kυ+n+1

]
as

follows:

(
L∗n f

)
(x, t; k) = 1

Fn(x;t)
∞∑
υ=0

kυ+n+1
n Y (n)υ (t; k) xυ

υk+ n
kυ+n+1∫

υk

f

(
u

k (υ − 1)+ n + 1

)
du

(2)
where f ∈ M [0, b] (0 < b < 1), x ∈ [0, 1), t ∈ (−∞, 0] and k < n + 1.

Remark 1.3 Notice that this modification involves the Kantorovich type generaliza-
tion of the operators Pn and Mn .

The q-type generalization of the linear positive operators was initiated by Phillips
in [31]. He introduced the q-type generalization of the classical Bernstein operators
and obtained the rate of convergence and the Voronovskaja type asymptotic formula
for these operators.

q-Laguerre polynomials were defined by Hahn [15], p. 29; Jackson [19], p. 57;
Moak [29], p. 21, Eq. 23 as

L(α)n (x; q) =
(
qα+1; q)n
(q; q)n

n∑
k=0

(
q−n; q)k q(

k
2) (1− q)k

(
qn+α+1x

)k
(
qα+1; q)k (q; q)k

.

Moak gave the following recurrence relation ([29], p. 29, eq. 4.14) and the generating
function ([29], p. 29, eq. 4.17) for the q-Laguerre polynomials by

t L(α+1)
k−1 (t; q) = [k + α] q−α−k L(α)k−1 (t; q)− [k] q−α−k L(α)k (t; q)

(Reα > −1, k = 1, 2, ...) ,

and

Fα (x, t) =
(
xqα+1; q)∞
(x; q)∞

∞∑
m=0

qm2+αm [− (1− q) xt]m

(q; q)m
(
xqα+1; q)m

=
∞∑

k=0

L(α)k (t; q) xk (Reα > 1) . (3)
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Trif [34] defined the Meyer-König and Zeller operators based on q-integers as fol-
lows:

Mn,q ( f ; x) =
n∏

j=0

(
1− q j x

) ∞∑
k=0

f

(
[k]

[k + n]

)[
n + k

k

]
xk

where 0 ≤ x < 1.
In [30], Özarslan defined the q-analog of Pn f as follows:

Pn,q ( f ; x) = 1

Fn (x, t)

∞∑
k=0

f

(
[k]

[k + n]

)
L(n)k (t; q) xk

where x ∈ [0, 1], t ∈ (−∞, 0], q ∈ (0, 1] and {Fn (x, t)}n∈N is the generat-

ing functions for the q-Laguerre polynomials. Since L(n)k (0; q) =
[

n + k
k

]
and

Fn (x, 0) =
n∏

j=0

(
1− q j x

)
, then Mn,q ( f ;x) is the special case of the operators

Pn,q ( f ;x).
Let us recall the concepts of q-differential and q-derivative, respectively.
For an arbitrary function f(x), the q-differential is given as

dq f(x) = f(qx)− f(x) .

For an arbitrary function f(x), the q-derivative is defined as

Dq f(x) = dq f(x)

dq x
= f(qx)− f(x)

(q − 1) x
.

We mention some notations for q-calculus. Throughout the present article q will
be a real number satisfying the inequality 0 < q ≤ 1. For n ∈ N,

[n]q = [n] :=
{
(1− qn) / (1− q) , q 	= 1

n, q = 1
,

[n]q ! = [n]! :=
{

[n] [n − 1] ... [1] , n ≥ 1
1, n = 0

,

(α;q)n =
{

1 ; n = 0
(1− α) (1− αq) ...

(
1− αqn−1

) ; n ∈ N, α ∈ C
,

and

(a;q)∞ =
∞∏
j=0

(
1− aq j

)
, (a ∈ C) .
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For the integers n, k, n ≥ k ≥ 0, the q-polynomial coefficients are defined by

[
n
k

]
= [n]!

[k]! [n − k]! .

Now suppose that 0 < a < b, 0 < q ≤ 1 and f is a real-valued function. The q-
Jackson integral of f over the interval [0, b] and a general interval [a, b] are defined
as (see [20])

a∫

0

f (t) dqt = (1− q) a
∞∑
j=0

f
(

q j a
)

q j

and

b∫

a

f (t) dqt =
b∫

0

f (t) dq t −
a∫

0

f (t) dqt

respectively.
It is clear that q-Jackson integral of f over an interval [a, b] contains two infinite

sums, so some problems are encountered in deriving the q-analogs of some well-
known integral inequalities which are used to compute the order of approximation of
the linear positive operators containing the q-Jackson integral. In order to overcome
these problems Gauchman [13] and Marinković et al. [26] introduced a new type of
q-integral. This new q-integral is called Riemann type q-integral and is defined as

b∫

a

f (t) d R
q t = (1− q) (b − a)

∞∑
j=0

f
(

a + (b − a) q j
)

q j

where a, b and q are some real numbers such that 0 < a < b and 0 < q < 1.
Contrary to the classical definition of q-integral, this definition includes only points
within the interval of integration.

Now, we describe a Kantorovich type generalization of operators Pn , M∗n , Mn,q

and Pn,q . This Kantorovich type generalization was studied by Dalmanoğlu [9]; Radu
[32] and etc. We consider the sequence of Kantorovich type linear positive operators
as follows:

(
Kn,q f

)
(x, t) = 1

Fn,q (x, t)

∞∑
k=0

⎛
⎜⎝

[k+1]/[n+k]∫

[k]/[n+k]

f (t) d R
q t

⎞
⎟⎠ q−k [n + k] L(n)k (t; q) xk

(4)
where x ∈ [0, 1] , t ∈ (−∞, 0] , q ∈ (0, 1], n > 1 and {Fn (x, t)}n∈N is the
generating functions for the q-Laguerre polynomials which was given in (3).
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2 Approximation Properties of These Operators

Let b be a real number in the interval (0, 1), x ∈ [0, 1) and t ∈ (−∞, 0]. We have
the following theorem for the convergence of the sequence operators {Ln}.
Theorem 2.1 (Icoz, Tasdelen and Varma [16])
If f is continuous on [0, b] , |t |n → 0 then {Ln f } converges to f uniformly on [0, b] .

Now, we state the following theorem for the convergence of Kn,q f operators.

Theorem 2.2 (Icoz, Varma and Tasdelen [18])
Let q := qn be a sequence satisfying lim

n
qn = 1 and 0 < qn < 1. If f ∈ C [0, 1] and

|t |
[n] → 0 (n→∞) then

{
Kn,q f

}
converges to f uniformly on [0, b] (0 < b < 1) .

Finally, in order to obtain uniform convergence of the linear operators L∗n, we
will use the classical Bohman-Korovkin theorem (see [5] and [25]).

Theorem 2.3 (Icoz, Tasdelen and Dogru [17])
If f is continuous on [0, b] and |t |n → 0 then

{
L∗n
}

converges to f uniformly on [0, b] .

3 Rates of Convergence

In this section, we compute the rates of convergence for these operators by means
of the modulus of continuity, Peetre’s K-functional, elements of Lipschitz class, and
the second order modulus of smoothness.

Let f ∈ C [0, b]. The modulus of continuity of f denotes by ω ( f, δ), is defined
to be

ω ( f, δ) = sup
s,x∈[0,b]
|s−x |<δ

| f (s)− f (x)| .

It is well known that a necessary and sufficient condition for a function f ∈ C [0, b]
is

lim
δ→0

ω ( f, δ) = 0.

It is also well known that for any δ > 0 and each s ∈ [0, b]

| f (s)− f (x)| ≤ ω ( f, δ)

(
1+ |s − x |

δ

)
.

The following theorem gives the rate of convergence of the operator Ln f to the
function f by means of modulus of continuity.

Theorem 3.1 (Icoz, Tasdelen and Varma [16])
For all f ∈ C [0, b] , we have
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‖Ln ( f ;x)− f (x)‖C[0,b] ≤
(

1+ (3γ ) 1
2

)
ω
(

f ;δ∗∗n
)

(5)

where

δ∗∗n =
1√
n

and γ = max
{

kb, k |t | b, 3 |t | b2
}

. (6)

Our next theorem gives the rates of convergence of the sequence
{

L∗n f
}

to f by
means of the modulus continuity of f .

Theorem 3.2 (Icoz, Tasdelen and Dogru [17])
If f ∈ C [0, b] (0 < b < 1) and |t |n → 0 (n→∞) then we have

∥∥(L∗n f
)
(·, t;k)− f (·)∥∥C[0,b] ≤ 2ω

(
f, δ∗n

)
(7)

where

δ∗n =
√
|t |b

n(1−b)

(
k + 3b + 1

n

)+ (k + 2) b
n + 1

3n2 . (8)

Before mentioning the theorem on the rate of convergence of the operator Kn,q f
to f , let us recall an inequality on C [0, b] ([18], page 92):

∥∥∥
(

Kn,q (e1 − x)2
)
(x, t)

∥∥∥
C[0,b]

≤ |t | (3b2 + b
)

[n]
(
1− bqn+1

) + 2 |t | b
[2] [n]2

(
1− bqn+1

)

+
(

1+ 4

[2]

)
b

[n]
+ 1

[3] [n]2 . (9)

The following theorem gives the rate of convergence of the operator Kn,q f to the
function f by means of modulus of continuity:

Theorem 3.3 (Icoz, Varma and Tasdelen [18])
Let q := qn be a sequence satisfying lim

n
qn = 1 and 0 < qn < 1.For all f ∈ C [0, b]

and |t |[n] → 0 (n→∞)
∥∥(Kn,q f

)
(x, t)− f (x)

∥∥
C[0,b] ≤ 2ω ( f, δn) (10)

where

δn =
[
|t | (3b2 + b

)

[n]
(
1− bqn+1

) + 2 |t | b
[2] [n]2

(
1− bqn+1

) +
(

1+ 4

[2]

)
b

[n]
+ 1

[3] [n]2

]1/2

.

(11)

Let f ∈ C [0, b] and 0 < α ≤ 1. We recall that f belongs to LipM (α) if the
inequality
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| f (ζ )− f (η)| ≤ M |ζ − η|α ; ζ, η ∈ [0, b]

holds.
We will now study the rate of convergence of the positive linear operators Ln

means of the Lipschitz class LipM (α) , for 0 < α ≤ 1.

Theorem 3.4 (Icoz, Tasdelen and Varma [16])
For all f ∈ LipM (α) , we have

‖Ln ( f ;x)− f (x)‖C[0,b] ≤ M (3γ )
α
2
(
δ∗∗n
)α (12)

where γ and δ∗∗n are given by (6).

Next, we mention the approximation order of operator Kn,q f in term of the
elements of the usual Lipschitz class.

Theorem 3.5 (Icoz, Varma and Tasdelen [18])
Let q := qn be a sequence satisfying lim

n
qn = 1 and 0 < qn < 1. For all f ∈

LipM (α) and |t |[n] → 0 (n→∞)
∥∥(Kn,q f

)
(x, t)− f (x)

∥∥
C[0,b] ≤ Mδαn (13)

where δn is given by (11).

Next, we obtain the rates of convergence of the sequence L∗n f to f by means of
the elements of the Lipschitz class LipM (α), for 0 < α ≤ 1.

Theorem 3.6 (Icoz, Tasdelen and Dogru [17])
If f ∈ LipM (α) (0 < α < 1) and |t |n → 0 (n→∞) then we have

∥∥(L∗n f
)
(x, t;k)− f (x)

∥∥
C[0,b] ≤ M

(
δ∗n
)α (14)

where δ∗n is given by (8).

Let C2 [0, b] := {g ∈ C [0, b] : g′, g′′ ∈ C [0, b]
}
. Similarly in [4], we define the

following norm in the space C2 [0, b] :
‖ f ‖C2[0,b] := ‖ f ‖C[0,b] +

∥∥ f ′
∥∥

C[0,b] +
∥∥ f ′′

∥∥
C[0,b] .

For any δ > 0, the Peetre’s K-functional is defined by

K2 (ϕ; δ) = inf
g∈C2[0,b]

{‖ϕ − g‖ + δ ∥∥g′′
∥∥}

where ‖.‖ is the uniform norm on C [0, b] (see [14]). From [10] (p.177, Theorem
2.4), there exists an absolute constant C > 0 such that
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K2 ( f ;δ) ≤ Cω2

(
f ;√δ

)

where the second order modulus of smoothness of f ∈ C [0, b] is denoted by

ω2 ( f ;δ) = sup
0<h≤δ

sup
x,x+2h∈[0,b]

| f (x + 2h)− 2 f (x + h)+ f (x)| .

We recall the usual modulus of continuity of f ∈ C [0, b] by

ω ( f ;δ) = sup
0<h≤δ

sup
x,x+h∈[0,b]

| f (x + h)− f (x)| .

We have the following result:

Theorem 3.7 (Icoz, Tasdelen and Varma [16])
If f ∈ C [0, b] then we have

‖Ln ( f ;x)− f (x)‖C[0,b] ≤ 2K
(

f, ε∗∗n
)

(15)

where the operators Ln are defined by (1) and

ε∗∗n =
2 |t | b + kb + k |t | b + 3b2 |t |

4n
. (16)

Note that for each fixed t, ε∗∗n → 0, when n→∞.
Next, let us consider the following operator:

(
Ln,q f

)
(x, t) = (Kn,q f

)
(x, t)− f

(
x − t x

[n]
(
1− bqn+1

) + 1

[2] [n]

)
+ f (x)

(17)
for x ∈ [0, 1]. We need the following lemma to prove Theorem 3.8.

Lemma 3.1 (Icoz, Varma and Tasdelen [18])
Let g ∈ C2 [0, 1]. Then we have

∣∣(Ln,q g
)
(x, t)− g (x)

∣∣ ≤
⎧⎨
⎩
−t
(

3x2 + x
)

[n]
(
1− bqn+1

) − 2t x

[2] [n]2 (1− bqn+1
) +

(
1+ 4

[2]

)
x

[n]

+ 1

[3] [n]2 +
(

−t x

[n]
(
1− bqn+1

) + 1

[2] [n]

)2
⎫⎬
⎭
∥∥g′′

∥∥ . (18)

The next result establishes a local approximation theorem for the operator Kn,q f .

Theorem 3.8 (Icoz, Varma and Tasdelen [18])
Let q := qn be a sequence satisfying lim

n
qn = 1 and 0 < qn < 1. For each f ∈

C [0, 1] and x ∈ [0, 1], we have



210 G. Icoz

∣∣(Kn,q f
)
(x, t)− f (x)

∣∣ ≤ Cω2

(
f ;√εn (x)

)
+ ω

(
f ;
∣∣∣∣∣

−t x

[n]
(
1− bqn+1

) + 1

[2] [n]

∣∣∣∣∣

)

(19)
where

εn (x) = −t
(
3x2 + x

)

[n]
(
1− bqn+1

) − 2t x

[2] [n]2
(
1− bqn+1

) +
(

1+ 4

[2]

)
x

[n]

+ 1

[3] [n]2 +
(

−t x

[n]
(
1− bqn+1

) + 1

[2] [n]

)2

(20)

and C is a positive constant.

Now, we compute the rate of convergence of the sequence L∗n f to f by means of
the Peetre’s K-functional.

Theorem 3.9 (Icoz, Tasdelen and Dogru [17])
If f ∈ C [0, b] and |t |n → 0 (n→∞) then we have

∥∥(L∗n f
)
(·, t;k)− f (·)∥∥C[0,b] ≤ 2K

(
f ;ε∗n

)
(21)

where

ε∗n = 3|t |b2

2n(1−b) + k|t |b
2n(1−b) + |t |b

2n2(1−b)
+ (k+1)b

2n + b
2n + 1

6n2 . (22)

4 A Generalization of r-th Order for These Operators

By Cr [0, b] (0 < b < 1, r = 0, 1, 2, ...) we denote the set of functions f having
continuous r − th derivatives f (r)

(
f (0) (x) = f (x)

)
on the segment [0, b].

We consider the following generalization of the positive linear operators Ln :

L[r ]
n ( f ;x) = 1

Fn (x;t)
∞∑
υ=0

r∑
i=0

f (i)
(

υk

k (υ − 1)+ n + 1

) (x − υk
k(υ−1)+n+1

)i

i ! Y n
υ (t;k) xυ

(23)
where f ∈ Cr [0, b] , r = 0, 1, 2, ... and n ∈ N.We call the operators above the r -th
order of the operators Ln, (for instance, [21, 22]). Note that when r = 0, we get the
sequence of operators {Ln}.
Theorem 4.1 (Icoz, Tasdelen and Varma [16])
If f (r) ∈ LipM (α) and f ∈ Cr [0, b] then we have

∥∥L [r ]
n ( f ;x)− f (x)

∥∥
C[0,b] ≤

M

(r − 1)!
α

α + r
B (α, r)

∥∥Ln
(|s − x |α+r ; x)∥∥C[0,b]

(24)
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where B (α, r) is the beta function and r, n ∈ N.

Now, consider the function g ∈ C [0, b] defined as

g (s) = |s − x |α+r . (25)

Since g (x) = 0, Theorem 2.1 yields

lim
n
‖Ln (g;x)‖C[0,b] = 0. (26)

So, it follows from Theorem 4.1 that, for all f ∈ Cr [0, b] such that f (r) ∈ LipM (α) ,

we have
lim

n

∥∥L [r ]
n ( f ;x)− f (x)

∥∥
C[0,b] = 0. (27)

Finally, taking into consideration Theorems 3.1 and 3.4 with M = br and observing
g ∈ Lipbr (α) one can deduce the following results from Theorem 4.1 immediately.

Corollary 4.1 (Icoz, Tasdelen and Varma [16])
For all f ∈ Cr [0, b] such that f (r) ∈ LipM (α) , we have

∥∥L [r ]
n ( f ;x)− f (x)

∥∥
C[0,b] ≤

M

(r − 1)!
α

α + r
B (α, r)

(
1+ (3γ ) 1

2

)
ω
(
g;δ∗∗n

)

(28)
where δ∗∗n and γ are the same as in Theorem 3.1 and g is defined by (25).

Corollary 4.2 (Icoz, Tasdelen and Varma [16])
For all f ∈ Cr [0, b] such that f (r) ∈ LipM (α) , we have

∥∥L [r ]
n ( f ;x)− f (x)

∥∥
C[0,b] ≤

Mbr

(r − 1)!
α

α + r
B (α, r) (3γ )

α
2
(
δ∗∗n
)α (29)

where δ∗∗n and γ are the same as in Theorem 3.1.

The last two results give us the rates of convergence of the sequence
{

L [r ]
n f

}
to

f by means of the modulus of continuity and the elements of the Lipschitz class
LipM (α), respectively.

Similarly in [21] (see also [1, 11, 22]), we have considered the following gener-
alization of the positive linear operators L∗n defined by (2)

(
L∗n,r f

)
(x, t;k) = 1

Fn(x;t)
∞∑
υ=0

kυ+n+1
n Y (n)υ (t;k) xυ

×
υk+ n

kυ+n+1∫

υk

r∑
j=0

f ( j)(
u

k (υ − 1)+ n + 1
)
(x− u

k(υ−1)+n+1 )
j

j ! du

(30)
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where f ∈ Cr [0, b] , r = 0, 1, 2, ... and n ∈ N. Note that taking r = 0, we get a
result for L∗n defined in (2).

Theorem 4.2 (Icoz, Tasdelen and Dogru [17])
If f ∈ Cr [0, b] and f (r) ∈ LipM (α), then we have

∥∥(L∗n,r f
)
(x, t;k)− f (x)

∥∥
C[0,b] ≤

M

(r − 1)!
α

α + r
B (α, r)

× ∥∥(L∗n,r |s − x |α+r ) (x, t;k)∥∥C[0,b] (31)

where B (α, r) is the Beta function and r, n ∈ N.

Now, consider the function g ∈ C [0, b] defined by (25). Since g (x) = 0, The-
orem 2.1 yields lim

n→∞‖(Lng) (x, t;k)‖C[0,b] = 0. So, from Theorem 4.2, for all

f ∈ Cr [0, b] such that f (r) ∈ LipM (α), we have

lim
n→∞

∥∥(L∗n,r f
)
(·, t;k)− f (·)∥∥C[0,b] = 0. (32)

5 An Application to Differential Equations

In this section, we mention a result on functional differential equation for Ln ( f ; x)
defined in (1). This equation seems to be fundamental for the investigation of many
kinds of linear positive operators. In May [27], Volkov [35] and Alkemade [2], there
are equations similar to the equation mentioned in Theorem 5.1

Theorem 5.1 (Icoz, Tasdelen and Varma [16])
Let g (s) = s

1−s . For each x ∈ [0, b] (0 < b < 1) and f ∈ C [0, b] , Ln ( f ;x) as
defined in (1), satisfies the functional differential equation

x
d

dx
Ln ( f ;x) = −x

n + 1− t (1− x)−
1
k

k (1− x)
Ln ( f ;x)+ n + 1− k

k
Ln ( f g;x) . (33)

Remark 5.1 These results show how using q-calculus we can obtain many new
operators and study their degree of convergence.
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3. Altın, A., Doğru, O., Özarslan, M.A.: Kantorovich type generalization of certain class of
positive linear operators. WSEAS Trans. Math. 3(3), 607–610 (2004)

4. Bleimann, G., Butzer, P.L., Hahn, L.: A Bernstein-type operator approximating continuous
functions on the semi-axis. Nederl. Akad. Wetensch Indag. Math. 42, 255–262 (1980)

5. Bohman, H.: On approximation of continuous and of analytic functions. Ark. Mat. 2, 43–56
(1952)

6. Carlitz, L.: A note on certain biorthogonal polynomials. Pacific J. Math. 24, 425–430 (1968)
7. Cheney, E.W., Sharma, A.: Bernstein power series. Canad. J. Math. 16, 241–252 (1964)
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16. İçöz, G., Taşdelen, F., Varma, S.: On linear positive operators involving biorthogonal polyno-

mial. Ars Combinatoria. 105, 319–331 (2012)
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Chapter 14
Similarity-Based Reasoning Fuzzy Systems
and Universal Approximation

Sayantan Mandal and Balasubramaniam Jayaram

Abstract In this work, we show that fuzzy inference systems (FIS) based on
similarity-based reasoning (SBR), where the modification function is a fuzzy impli-
cation, is a universal approximator under suitable conditions on the other components
of the fuzzy system.

Keywords Similarity-based reasoning · Fuzzy implications · Universal approxi-
mation

1 Introduction

The term approximate reasoning (AR) refers to methods and methodologies that
enable reasoning with imprecise inputs to obtain meaningful outputs [5]. AR schemes
involving fuzzy sets are one of the best known applications of fuzzy logic in the
wider sense. Fuzzy inference systems (FIS) have many degrees of freedom, viz., the
underlying fuzzy partition of the input and output spaces, the fuzzy logic operations
employed, the fuzzification and defuzzification mechanism used, etc. This freedom
gives rise to a variety of FIS with differing capabilities. One of the important factors
considered while employing an FIS is its approximation capability. Many studies
have appeared on this topic and due to space constraints, we only refer the readers to
the following exceptional review on this topic [14], or the recent work dealing with
the approximation capabilities of implicative models of fuzzy relational inference
mechanisms [11] and the references therein.
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In this work, we consider a similarity-based reasoning (SBR) FIS where simi-
larity between the inputs and the antecedents is used to subsequently modify the
consequents to obtain a final output. Such inference schemes are also known as plau-
sible reasoning scheme [6]. After detailing the inference mechanism in an SBR, we
show that when the modification functions are modeled based on fuzzy implications,
under suitable conditions on the other components of an SBR, the FIS based on SBR
becomes a universal approximator, i.e., can approximate a continuous function over
a compact set to arbitrary accuracy. Also, we deal only with single variable functions,
alternately where the rule base consists of single input–single output (SISO) rules.

2 Preliminaries

We assume that the reader is familiar with the classical results concerning fuzzy set
theory and basic fuzzy logic connectives, but to make this work more self-contained,
we introduce some notations, concepts, and results employed in the rest of the work.

2.1 Fuzzy Sets

If X is a nonempty set we denote by F(X) the fuzzy power set of X , i.e., F(X) =
{A|A : X → [0, 1]}.
Definition 1 A fuzzy set A is said to be

• normal if there exists an x ∈ X such that A(x) = 1,
• convex if X is a linear space and for any λ ∈ [0, 1], x, y ∈ X , A(λx+ (1−λ)y) ≥

min{A(x), A(y)}.
Definition 2 For an A ∈ F(X), the Support, Height, Kernel and Ceiling of A are
denoted, respectively, as Supp A, Hgt A, Ker A and Ceil A and are defined as

Supp A = {x ∈ X |A(x) > 0} ,
Hgt A = sup {A(x)|x ∈ X} ,
Ker A = {x ∈ X |A(x) = 1} ,
Ceil A = {x ∈ X |A(x) = Hgt A} .

A is said to be bounded if Supp A is a bounded set. Note that for a normal fuzzy set
Ker A = Ceil A.

We denote the space of fuzzy sets which are bounded, normal, convex, and con-
tinuous as FB NCC (X). Clearly, FB NCC (X) ⊆ F(X).
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Fig. 1 An illustrative example for 1
3 -type partition in Definition 5

Definition 3 Let P be an arbitrary collection of fuzzy sets of X , i.e., P = {Ak}nk=1 ⊆
F(X). P is said to form a fuzzy partition on X if

X ⊆
n⋃

k=1

Supp Ak .

In the literature, a partition P of X as defined above is also called a complete
partition.

Definition 4 A fuzzy partition P = {Ak}nk=1 ⊆ F(X) is said to be

• consistent if Ak(x) = 1 then A j (x) = 0 for any j �= k.

• Ruspini partition if
n∑

k=1

Ak(x) = 1 for every x ∈ X .

Definition 5 Let {xk}nk=1 be a classical partition of X , i.e., X =
n−2⋃
k=1

[xk, xk+1) ∪
[xn−1, xn]. If P = {Ak}nk=1 is a fuzzy partition of the space X in such a way that

• each Ak is normal at xk ∈ X , i.e., Ak(xk) = 1,

• Supp Ak =
(

xk−1 + xk−xk−1
3 , xk+1 − xk+1−xk

3

)
for k = 2, . . . , n − 1, while Supp

A1 =
(
x1, x2 − x2−x1

3

)
and Supp An =

(
xn−1 + xn−xn−1

3 , xn

)
,

we call this type of partition as 1
3 -type partition.

For instance, see Fig. 1 for n = 5.

2.2 Defuzzification

Often there is a need to convert a fuzzy set into a crisp value, a process which is
called Defuzzification. This process of defuzzification can be seen as a mapping
g : F(X) −→ X . There are many types of defuzzification techniques available
in the literature, see [13] for a good overview. In this work, we use the following
defuzzifier extensively.
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Example 1 For an A ∈ F(X), the First of Maxima (FOM) defuzzifier gives as output
the smallest of all those values in X with the highest membership value that can be
mathematically expressed as

FOM(A) = min
{

x |A(x) = max
w

A(w)
}

. (1)

Similarly the Last of Maxima (LOM) defuzzifier is defined as

LOM(A) = max
{

x |A(x) = max
w

A(w)
}

. (2)

2.3 Fuzzy Logic Connectives

Definition 6 ([7]) A binary operation T : [0, 1]2 → [0, 1] is called a t-norm, if it
is increasing in both variables, commutative, associative and has 1 as the neutral
element.

Definition 7 ([1]) A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
is decreasing in the first variable, increasing in the second variable, and I (0, 0) = 1,
I (1, 1) = 1, I (1, 0) = 0. The set of all fuzzy implications are denoted by I.

Definition 8 ([1]) A fuzzy implication I : [0, 1]2 → [0, 1] is said to

• satisfy the ordering property, if

I (x, y) = 1⇐⇒ x ≤ y, x, y ∈ [0, 1]. (OP)

• be a positive fuzzy implication if I (x, y) > 0, for all x, y ∈ (0, 1).

3 Fuzzy Inference Mechanism

Given two nonempty classical sets X, Y � R, a fuzzy single input–single output
(SISO) IF-THEN rule is of the form:

IF x̃ is A THEN ỹ is B, (3)

where x̃ , ỹ are the linguistic variables and A ∈ F(X), B ∈ F(Y ) are the linguistic
values taken by the linguistic variables. A knowledge base consists of a collection
of such rules. Hence, we consider a rule base of n SISO rules which is of the form:

IF x̃ is Ai THEN ỹ is Bi , (4)
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where x̃ , ỹ, and Ai ∈ F(X), Bi ∈ F(Y ), i = 1, 2, . . . n are as mentioned above.
As an example, consider the rule

IF Temperature is High THEN Fanspeed is Medium.

Here Temperature and Fanspeed are the linguistic variables and High, Medium are
the linguistic values taken by the linguistic variables in a suitable domain. Now given
a single SISO rule (3) or a rule base (4) and given any input “ x̃ is A′”, the main
objective of an inference mechanism is to find B ′ such that “ ỹ is B ′ ”. Many types of
inference mechanisms are available to us in [2, 10, 17], etc. Here we consider only
the case of similarity based reasoning.

4 Similarity-Based Reasoning

Consider the fuzzy if-then rule (3). Let the given input be x̃ is A′. Inference in SBR
schemes in AR is based on the calculation of a measure of compatibility or similarity
M(A, A′) of the input A′ to the antecedent A of the rule, and the use of a modification
function J to modify the consequent B, according to the value of M(A, A′).

Some of the well-known examples of SBR are compatibility modification infer-
ence (CMI) [4], “Approximate Analogical Reasoning Scheme” (AARS) in [15] and
“Consequent Dilation Rule” (CDR) in [12], Smets and Magrez [10], Chen [3], etc.
In this section, we detail the typical inferencing mechanism in SBR, but only in the
case of SISO fuzzy rule bases.

4.1 Matching Function M

Given two fuzzy sets, say A, A′, on the same domain, a matching function M
compares them to get a degree of similarity, which is expressed as a real in the
[0, 1] interval. We refer to M as the matching function in the sequel. Formally,
M : F(X)× F(X)→ [0, 1].
Example 2 Let X be a nonempty set and A, A′ ∈ F(X). Below we list a few of the
matching functions employed in the literature.

• Zadeh [18]: MZ(A, A′) = max
x∈X

min(A(x), A′(x)).

• Magrez–Smets [10]: Given a fuzzy negation N ,

MM(A, A′) = max
x∈X

min(N (A(x)), A′(x)).

• Measure of Subsethood [12]: For an I ∈ FI,

MS(A, A′) = min
x∈X

I (A′(x), A(x)).



220 S. Mandal and B. Jayaram

Definition 9 Let F∗ ⊆ F(X) be an arbitrary collection (not necessarily a fuzzy
partition) of fuzzy sets on X . M is said to be consistent with F∗ if for any A ∈ F∗,

M(A, A) = 1. (MCF)

Definition 10 Let P = {Ak}nk=1 ⊆ F∗ be the given fuzzy partition of X . Let
A′ ∈ F∗. M is said to be consistent with P (and F∗) if

n∑
k=1

M(A′, Ak) ≤ 1. (MCP)

Definition 11 The matching function M is said to be Strong if

Ker A ⊆ Ker B or Ker B ⊆ Ker A =⇒ M(A, B) = 1 (MS)

Example 3 Let X � R be any bounded interval and F∗ = FB NCC (X). For a given
fuzzy partition P = {Ak}nk=1 ⊆ FB NCC (X), we define a matching function as,

MP (Ak, A′) = Area(A′ ∩ Ak)

Area(A′)
, A′ ∈ FB NCC (X). (5)

Clearly M satisfies (MCF), (MCP), and (MS).

Example 4 Let X � R be any bounded interval. Let the antecedent fuzzy sets
{Ak}nk=1 = PX ⊆ F∗(X) partition the input space X such that it forms a partition
of the type defined in Definition 5.

Now, if x ′ ∈ X is the input let A′ ∈ F(X) be the fuzzified input such that
A′ attains normality at x ′, i.e., A′(x ′) = 1. Then the matching function defined as
M(A′, A) = A(x ′) for any A ∈ F(X) has the property (MCP).

4.2 Modification Function J

Let A′ be the fuzzy input and s = M(A, A′) ∈ [0, 1], a measure of the compatibility
of A′ to A.

The modification function J is again a function from [0, 1]2 to [0, 1] and, given
the rule (3), modifies B ∈ F(Y ) to B ′ ∈ F(Y ) based on s, i.e., the consequent in
SBR, using the modification function J , is given by

B ′(y) = J (s, B(y)) = J (M(A, A′), B(y)), y ∈ Y.

In AARS [15] the following modification operators have been used:

(i) JML(s, B) = B ′(x) = min{1, B(x)/s}, x ∈ X ;
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(ii) JMVR(s, B) = B ′(x) = s · B(x), x ∈ X .

In CMI [4] and CDR [12] J is taken to be a fuzzy implication operator. In fact,
JML(s, B) = IGG(s, B), where IGG is the Goguen implication [1].

4.3 Aggregation Function G

In the case of multiple rules

Ri : IF x̃ is Ai THEN ỹ is Bi , i = 1, 2, . . . , m,

we infer the final output by aggregating over the rules, using an associative operator
G : [0, 1]2 → [0, 1] as follows:

B ′(y) = Gm
i=1

(
J
(
M(Ai , A′), Bi (y)

))
, y ∈ Y. (6)

Usually, G is a t-norm, t-conorm, or a uninorm [7].

5 Fuzzy Systems F Based on SBR

An SBR fuzzy inference system can be represented by the hexatuple
F = {R(Ai , B j ), f, M, J, G, g

}
where

• R is the fuzzy if-then rule base formed from the fuzzy partitions {Ai }, {B j } on
X, Y , respectively,
• f : X −→ F(X) is called the fuzzification mapping that maps an element x ∈ X

to a fuzzy set of F(X),
• M is matching function,
• J is modification function,
• G is aggregation function, and
• g : F(Y ) → Y is any defuzzifier, that converts the output fuzzy set into a crisp

value y ∈ Y .

We considerFwith the following assumptions on the different components/elements.

5.1 The Fuzzy Partitions Ai, B j

Let X, Y � R be arbitrary but fixed and let F∗(Z) = FB NCC (Z), where Z = X or Y .
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Let the antecedent fuzzy sets {Ak}nk=1 = PX ⊆ F∗(X) partition the input space
X such that it forms a partition of the type defined in Definition 5, which also implies
it is complete.

Similarly, let the consequent fuzzy sets {B j }mj=1 = PY ⊆ F∗(Y ) form a complete
and Ruspini partition of the output space Y .

5.2 The Fuzzified Input A′

Let us consider a fuzzification f : X −→ F∗(X) that maps x ′ ∈ X to a fuzzy set of
A′ ∈ F∗(X) = FB NCC (X) such that

Supp
(

f (x ′) = A′
) ∩ Supp Ak �= ∅,

for some Ak ∈ PX . Moreover, it is assumed that A′ intersects only two of the adjacent
fuzzy sets Ak , i.e., Supp A′ ∩ Supp Ak �= ∅ if and only if k = m, m + 1 for some
m ∈ Nn−1.

Note that it is with this fuzzified input A′ the antecedents Ai of the different rules
are matched against.

Example 5 Let {xk}nk=1 be a crisp partition of X . Let{Ak}nk=1 partitioning the input
space X be such that Ak ∈ PX and forms a fuzzy partition of the type defined in
Definition 5. Then if we take

|Supp A′| ≤ 1

3
· l

min
i=1

{
|xi+1 − xi |

}
,

then A′ intersects at most two of the adjacent fuzzy sets Ak .

5.3 The Operations M, J, G

We choose a matching function M such that M is Consistent w.r.to the partition PX

given in Sect. 5.1, i.e., M satisfies both (MCP) and (MS).
We choose the modification function J to be a fuzzy implication, i.e., J ∈ FI.

For notational convenience we will denote it by “ −→” in the sequel.
The aggregation function G is any t-norm T .



14 Similarity-Based Reasoning Fuzzy Systems 223

5.4 The Fuzzy Output B′

With the above assumptions, the output fuzzy set B ′ for a given crisp input x ′ (or
fuzzy input A′) takes the form as given in the following lemma:

Lemma 1 With the operations of the SBR FIS (6) as in Sects. 5.1–5.3 the fuzzy
output of the SBR FIS (6), for a given input x ′ ∈ X is given by

B ′(y) = T
[
sm −→ Bm(y), sm+1 −→ Bm+1(y)

]
, (7)

where sm = M
(

A′, Am
)

and sm+1 = M
(

A′, Am+1
)
.

Proof With the above operations M, J, G the fuzzy output for a given input x ′ ∈ X
is given by (6) as follows:

B ′(y) = T
[
M(A′, A1) −→ B1(y)), M(A′, A2) −→ B2(y), . . . ,

. . . , M(A′, An) −→ Bn(y)
]
.

We can write the above as

B ′(y) = T n
k=1[M(A′, Ak) −→ Bk(y)]. (8)

By the choice of our fuzzification based on our above notations on A′, Ak , viz., that
A′ intersects only two adjacent fuzzy sets among the {Ak}, say Am, Am+1, we have
that M(A′, Ak) = 0 for all k �= m, m + 1. Note also that I (0, y) = 0 −→ y = 1
for any y ∈ [0, 1]. Now, the fuzzy output B ′(y) for any y ∈ Y which is given by (8)
becomes

B ′(y) = T n
k=1

[
M(A′, Ak) −→ Bk(y)

]
,

= T
[
Tk �=m,m+1

(
M(A′, Ak) −→ Bk(y)

)
,

M
(

A′, Am
) −→ Bm(y), M

(
A′, Am+1

) −→ Bm+1(y)
]

= T
[

M
(

A′, Am
) −→ Bm(y), M

(
A′, Am+1

) −→ Bm+1(y)
]

= T
[
sm −→ Bm(y), sm+1 −→ Bm+1(y)

] = (1.7).

5.5 The Defuzzified Output g(x′)

We have chosen the modification function J to be a fuzzy implication, i.e., J = I ∈
FI. Assuming that the considered modification function J has (OP), we define the
defuzzification function g appropriately so that g is continuous. In the following, we
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discuss the explicit formulae for g. Note that g is also known as the system function
of the fuzzy system F [8, 9].

6 SBR Fuzzy Systems and Universal Approximation

In this section, we show that F = {R(Ai , Bi ), M, J, G, g} such that the fuzzy parti-
tions {Ak}, {Bk} and the operations M, J, G, g as given in Sects. 5.1–5.5 are universal
approximators, i.e., they can approximate any continuous function over a compact
set to arbitrary accuracy.

Theorem 1 For any continuous function h : [a, b] → R over a closed interval and
an arbitrary given ε > 0, there is an SBR fuzzy system F = {R(Ai , Bi ), M, J, G, g}
with M having the property (MCP) w.r.to PX = {Ai }, J having (OP), G being a
t-norm and g as given in (11) or (12) such that max

x∈[a,b] |h(x)− g(x)| < ε.

Proof We prove this result in the following steps.
Step I : Choosing the points of normality
Since h is continuous over a closed interval [a, b], h is uniformly continuous on

[a, b]. Thus for a given ε > 0 there exists δ > 0 such that

∣∣w − w′
∣∣ < δ =⇒ ∣∣h(w)− h(w′)

∣∣ <
ε

2
.

Step I (a): A Coarse Initial Partition
With the δ = δ(ε) defined above and taking l = ⌈ b−a

δ

⌉
we now choose wi ∈

X, i = 1, 2, . . . l, such that |wi − wi+1| < δ.
Let zi = h(wi ), the value h takes at the above chosen wi , for i = 1, 2, . . . l. We

call these points wi and zi the points of normality on the input space and the output
space respectively.

In Fig. 2, the points w1, w2, . . . , w11 and the points z1, z2, . . . z8 are the points
of normality in the input and the output spaces, respectively.

Step I (b): Redundancy Removal and Reordering
Let us choose the distinct zi ’s from the above and sort them in ascending order.

Let σ : Nl −→ Nk denote the above permutation map such that zi = uσ(i), for
i = 1, 2, . . . l and u j , j = 1, 2, . . . , k are in ascending order.

By rearranging the zi ’s in ascending order and renaming them we have obtained:
u1 = z1, u2 = z8, u3 = z6, u4 = z5, u5 = z7, u6 = z2, u7 = z4, u8 = z3.

Step I (c): Refinement of the input space partition:
Thus for each i = 1, 2, . . . , l we have h(wi ) = zi = uσ(i). However, note that

consecutive points of normality wi , wi+1 in the input space need not be mapped to
consecutive points of normality uσ(i), uσ(i)+1 or uσ(i), uσ(i)−1.

In Fig. 2, h(w1) = u1 and h(w2) = u6. Thus for the consecutive points w1 and
w2 the function values are u1 and u6, which are not consecutive.
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Fig. 2 An illustrative example for Step I in the proof of Theorem 1

To ensure the above, we further refine the input space partition. To this end, we
refine every sub-interval [wi , wi+1], for i = 1, 2, . . . l − 1 as follows. Note that
h(wi+1) = uσ(i+1).

Refinement Procedure:
For every i = 1, 2, . . . l − 1 do the following:

(i) If uσ(i+1) = uσ(i)+1 or uσ(i)−1 then we do nothing.
(ii) Let uσ(i+1) = uσ(i)+p, where p ≥ 2. For every u ∈ {uσ(i)+1, uσ(i)+2, . . . ,

uσ(i)+p−1} we find a point v ∈ [wi , wi+1] such that h(v) = u. Note that the
existence of such a v ∈ [wi , wi+1] is guaranteed by the continuity—essentially
the ontoness—of the function h. If u = uσ(i)+q , for some 1 ≤ q ≤ p − 1, then

we denote the point v as w
(q)
i,i+1.

(iii) Similarly, let uσ(i+1) = uσ(i)−p, where p ≥ 2. For every u ∈ {uσ(i)−1,

uσ(i)−2, . . . , uσ(i)−p+1} we find a v ∈ [wi , wi+1] such that h(v) = u. Once

again, if u = uσ(i)−q , for some 1 ≤ q ≤ p − 1, then we denote v as w
(q)
i,i+1.

From Fig. 2, it can be seen that we have inserted points w1
1,2, w

2
1,2, w

3
1,2, w4

1,2 ∈[w1, w2]. Proceeding similarly, the following sub-intervals, shown in Fig. 2, have
been refined: [w2, w3], [w4, w5], [w8, w9], and [w9, w10].

Step I (d): Final Points of Normality:
Once the above process is done, we again rename the points of normality w

(q)
i,i+1

in the input space X in ascending order as x1, x2, . . . , xn(n ≥ l) and the uσ(i)’s of
the output space as y1, y2, . . . yk .
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Step II : Construction of the Fuzzy Partitions
In the next step, we construct fuzzy sets on both the input and output spaces with

the above obtained xi ’s and y j ’s as the points of normality, as given below.
Step II (a): Fuzzy Partition on the input space: We construct n fuzzy sets such

that

• each Ai is centered at xi ,

• Supp Ai =
(

xi−1 + xi−xi−1
3 , xi+1 − xi+1−xi

3

)
for i = 2, . . . , n−1, while Supp A1

=
(
x1, x2 − x2−x1

3

)
and Supp An =

(
xn−1 + xn−xn−1

3 , xn

)
,

• each Ai is normal at xi , i.e., Ai (xi ) = 1,
• each Ai is a continuous convex fuzzy set,
• {Ai }ni=1 form a partition as defined in Definition 5.

For instance, if each of the Ai ’s (i = 2, . . . , n − 1) is a triangular fuzzy set and
A1, An are half-triangular with all of them attaining normality atxi then clearly we
can construct {Ai }ni=1’s partitioning the input space X as in Definition 5 and are
continuous, convex, of finite support and Ai (xi ) = 1.

Step II (b): Fuzzy Partition on the output space
Now we have the output space partition points as y1, y2, . . . yk . We partition

the output space such that B1, B2, . . . Bk form a Ruspini partition (as above) with
B j (y j ) = 1, j = 1, 2, . . . k. Here obviously,

|y j − y j−1| < ε

2
, j = 1, 2, . . . k.

Further, let the fuzzy sets {B j }kj=1 be continuous, convex, and of finite sup-
port along the same lines as the Ai ’s above, i.e., Supp B1 = (y1, y2), Supp
B j = (y j−1, y j+1), j = 2, 3, . . . k − 1, Supp Bk = (yk−1, yk).

Step III: Construction of the smooth rule base
We construct the rule base with l rules of the following form:

IF x is Ai THEN y is Bi , i = 1, 2, . . . n, (9)

where the consequent Bi in the i-th rule is chosen such that i = j is the index of that
y j = h(xi ), where xi is the point at which Ai attains normality.

Note that, since h is continuous, by the above assignment of the rules, we have
that rules whose antecedents are adjacent also have adjacent consequents, i.e., for
any i = 1, 2, . . . n − 1 we have Supp Bi ∩ Supp Bi+1 �= ∅. Thus, the constructed
rule base is smooth as defined in [16].

Step IV : Approximation capability of the output
Now we consider an SBR fuzzy system with multiple SISO rules of the form (9).

Let x ′ ∈ X be the given input. Clearly, x ′ ∈ [xm, xm+1] for some m ∈ Nn . Now as
in Sect. 5.2, we fuzzify x ′ in such a way that the fuzzified input A′ (with A′(x ′) = 1)
intersects at most two of the Ai ’s, say, Am, Am+1.

For instance, one could take A′ Example 5.
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So we have the following:

B ′(y) = T
[
M

(
A′, Am

) −→ Bm(y),

M
(

A′, Am+1
) −→ Bm+1(y)

]

= T
[
sm −→ Bm(y), sm+1 −→ Bm+1(y)

]
,

where sm = M
(

A′, Am
)

and sm+1 = M
(

A′, Am+1
)
. Note that by our assumption

on M , we have that sm + sm+1 ≤ 1.
The output fuzzy set B ′ is given by (7). We consider the kernel of B ′, i.e., Ker

B ′ = {y : B ′(y) = 1}. We choose the defuzzified output y′ such that it belongs to
Ker B ′ (Fig. 3).

Since T is a t-norm, we know that T (p, q) = 1 if and only if p = 1 and q = 1.
Noting that J has (OP), i.e., p −→ q = 1⇔ p ≤ q and sm + sm+1 ≤ 1, we have

Ker B ′ = {
y : B ′(y) = 1

}

= {y : sm −→ Bm(y) = 1}
⋂
{y : sm+1 −→ Bm+1(y) = 1}

= {y : sm ≤ Bm(y)}
⋂
{y : sm+1 ≤ Bm+1(y)} .

Letαm = min{α : sm −→ α = 1} andβm+1 = min{β : sm+1 −→ β = 1}. Since
J has (OP), clearly αm = sm and βm+1 = sm+1.

By the continuity and convexity of Bm, Bm+1 there exist am, bm , am+1, bm+1
such that Bm(am) = Bm(bm) = sm and Bm+1(am+1) = Bm+1(bM=1) = sm+1. By
the monotonicity of the implication in the second variable, for every y ∈ [am, bm]
we have that sm → Bm(y) = 1 and for every y ∈ [am+1, bm+1] we have that
sm+1 → Bm+1(y) = 1. Thus,

{y : sm ≤ Bm(y)} = [am, bm], and

{y : sm+1 ≤ Bm+1(y)} = [am+1, bm+1] .
Hence, Ker B ′ = {y : B ′(y) = 1} = [am, bm]

⋂
[am+1, bm+1]. (10)

Claim: Ker B ′ = [am+1, bm] �= ∅.
First, note that for any sm ∈ [0, 1]by the normality of Bm we have that Bm(ym) = 1

and hence ym ∈ {y : sm ≤ Bm(y)} = ym ∈ [am, bm] �= ∅. Similarly, ym+1 ∈
[am+1, bm+1] �= ∅. it suffices to show that am+1 ≤ bm from whence Ker B ′ =
[am+1, bm].

Note that since m < m+1, ym < ym+1 and from am+1 ∈ Supp Bm+1 we have that
ym ≤ am+1 ≤ ym+1. Similarly, ym ≤ bm ≤ ym+1. Hence, ym ≤ am+1, bm ≤ ym+1.

Since Bm+1 is monotonic on [ym, ym+1],
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Fig. 3 The output fuzzy set B ′

am+1 > bm implies Bm+1(am+1) ≥ Bm+1(bm)

implies sm+1 ≥ 1− Bm(bm)

implies sm+1 ≥ 1− sm

implies sm + sm+1 ≥ 1.

Since M satisfies (MCP), sm + sm+1 ≤ 1 and hence sm + sm+1 = 1. Now,

sm + sm+1 = 1 impliesBm+1(am+1)+ Bm(bm) = 1

implies Bm+1(am+1) = 1− Bm(bm)

implies Bm+1(am+1) = Bm+1(bm)

implies bm ∈ [am+1, bm+1], i.e., am+1 ≤ bm .

Now, we define g(x ′) as either of the following—(11) or (12):

y′ = g(x ′) = F O M(B ′(y)) = am+1 (11)

y′ = g(x ′) = L O M(B ′(y)) = bm (12)

Now from the above we have the system function as, y′ = g(x ′) = am+1 or bm .

Now clearly, am+1, bm ∈ [ym, ym+1] and hence,

∣∣ym − g(x ′)
∣∣ <

ε

2
or

∣∣ym+1 − g(x ′)
∣∣ <

ε

2
.

WLOG, let |ym − g(x ′)| < ε
2 i.e., |ym − y′| < ε

2 . Now since x ′ ∈ [xm, xm+1], we
have |h(x ′)− ym | < ε

2 . Finally we have the following:

∣∣g(x ′)− h(x ′)
∣∣ = ∣∣y′ − h(x ′)

∣∣
≤ ∣∣y′ − ym

∣∣+ |ym − h(x ′)|
<
ε

2
+ ε

2
< ε.
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Since x ′ is arbitrary we have, max
x∈[a,b] |h(x)− g(x)| < ε .

Remark 1 Note that with g as in (11) or (12) and since M satisfies (MS), if x ′ =
xk ∈ X we have M(A′, Ak) = 1 and we obtain B ′ = Bk , i.e., g(x ′) = yk and the
interpolativity of the inference is preserved.

7 Conclusion

In this work, we provided a constructive proof of the universal approximation prop-
erties of SBR when the modification function taken in the inference is a fuzzy impli-
cation.
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Chapter 15
Similarity Measure of Intuitionistic Fuzzy
Numbers by the Centroid Point

Satyajit Das and Debashree Guha

Abstract The aim of the paper is to introduce a new similarity measure between
intuitionistic fuzzy numbers (IFNs). The proposed method is based on the centroid
point of IFNs. It is also proved that the proposed measure satisfies the properties
of similarity measure. Examples are considered to compare the proposed similarity
measure with the existing similarity measures. The similarity results show that the
new similarity measure can overcome the faults of the existing similarity measures.

Keywords Intuitionistic fuzzy number · Centroid point · Similarity measure

1 Introduction

As Zadeh proposed fuzzy sets [1], many researchers concentrated on computing
similarity of fuzzy sets and they have applied them in several fields such as pattern
recognition [2, 3], approximate reasoning [4], decision making [5], etc. Similarity
measures between fuzzy numbers have also been derived by researchers [6–13].

Fuzzy set was further generalized and out of several higher order fuzzy sets,
intuitionistic fuzzy set (IFS), introduced by Atanassov [14] became very useful to
deal with uncertainty present in real-world situations. Different similarity measures
between IFSs have also been proposed in the literature. Guha and Chakraborty [15]
developed a theoretical-based similarity measure between IFSs. Based on Housedroff
distance, a similarity measure of IFSs was proposed by Hung and Yang [16]. Szmidt
and Kacprzyk [17] proposed a similarity measure based on Hamming and Euclidean
distance measures. In 2007, Li et al. [18] gave a comparative analysis of similarity
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measure between IFSs. Recently with the universe as the real line, research on the
concept of intuitionistic fuzzy numbers (IFNs) has received attention from many
scholars. However, till now little research has been done on computing similarity
measure between IFNs. In 2011, Ye [19] proposed a multi-criteria group decision-
making method using vector similarity measure for trapezoidal intuitionistic fuzzy
numbers (TrIFNs). Furthermore, using the Hamming distance and Euclidean distance
between TrIFNs, a similarity measure was proposed by Ye [20]. In 2013, Farhadinia
and Ban [21] developed a new similarity measure of generalized IFNs and generalized
interval-valued fuzzy numbers.

However, after studying the above similarity measures it can be observed that
they fail to compute the similarity measure properly for some cases. Under these
situations, experts may not be able to implement the comparison in a proper manner.
This creates problems in case of practical applications. With this point of view, to
overcome the shortcomings of existing similarity measures, a new similarity measure
of IFNs by utilizing distance between centroid point of IFNs has been proposed in
this paper. Furthermore, analysis and comparison of existing similarity measures of
IFNs have been described with the help of a set of examples.

This paper has been arranged as follows. In Sect. 2, definitions of IFNs have
been studied. A brief description of existing similarity measures is given in Sect. 3.
Section 4 describes the proposed similarity measure. In Sect. 5, some examples are
given to compare the proposed measure with the existing similarity measures. The
conclusions are drawn in Sect. 6.

2 Preliminaries

In this section, definitions and arithmetic operations of IFNs are analyzed.

Definition 1 [22] Let A = [(a, b, c, d)], wA; (a′, b, c, d ′),uA] be a generalized
TrIFN (GTrIFN) and its membership and non-membership functions are, respec-
tively, defined as follows:

μA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x − a)wA

(b − a)
, for a ≤ x < b,

wA, for b ≤ x ≤ c,
(d − x)wA

(d − c)
, for c < x ≤ d,

0, for x < a, x > d.

(1)
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and

νA(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(b − x)+ (
x − a′

)
uA

(b − a′)
, for a′ ≤ x < b,

uA, for b ≤ x ≤ c,
(x − c)+ (

d ′ − x
)
uA

(d ′ − c)
, for c < x ≤ d ′,

1, for x < a′, x > d ′.

(2)

where 0 ≤ wA,uA ≤ 1;wA+uA ≤ 1; a, b, c, d, a′, d ′ ∈ R. For the sake of simplic-
ity, throughout this paper we have considered a = a′ and d = d ′. Symbolically, then
GTrIFN can be represented as A = [(a, b, c, d);wA,uA]. If b = c then GTrIFN
transforms to generalized triangular intuitionistic fuzzy number (GTIFN).

Definition 2 [23] Let A1 = [(a1, b1, c1, d1);w1,u1] and A2 = [(a2, b2, c2, d2);
w2,u2] be two TrIFNs and K ≥ 0 be a scalar, then

(1) A1 ⊕ A2 = [(a1 + a2, b1 + b2, c1 + c2, d1 + d2);w1 + w2 − w1w2,u1u2]
(2) A1 ⊗ A2 = [(a1a2, b1b2, c1c2, d1d2);w1w2,u1 + u2 − u1u2]
(3) K A1 = [(K a1, K b1, K c1, K d1); 1− (1− w1)

K ,uK
1 ]

(4) AK
1 = [(aK

1 , bK
1 , cK

1 , d K
1 );wK

1 , 1− (1− u1)
K ]

3 Existing Similarity Measures of IFNs

In the literature, there are very few existing similarity measures of IFNs. A brief
description of these methods is given below.

3.1 Vector Cosine Similarity Measure

For two TrIFNs A = [(a1, a2, a3, a4), 1; (b1, b2, b3, b4), 0] and B = [(a′1, a′2,
a′3, a′4), 1; (b′1, b′2, b′3, b′4), 0], vector cosine similarity measure is given as [19]

cos(A, B) =
∑4

i=1 ai a′i +
∑4

i=1 bi b′i√∑4
i=1

(
a2

i

)+∑4
i=1

(
b2

i

)√∑4
i=1

(
a′i

)2 +∑4
i=1

(
b′i

)2
(3)

3.2 Similarity Measure Using Distance Measure

The Hamming distance and Euclidean distance-based similarity measures were pro-
posed in [20]. For two TrIFNs A = [(a1, a2, a3, a4), 1; (b1, b2, b3, b4), 0] and
B = [(a′1, a′2, a′3, a′4), 1; (b′1, b′2, b′3, b′4), 0],
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Hamming distance:

dH (A, B) = 1

8

(
4∑

i=1

|ai − a′i | +
4∑

i=1

|bi − b′i |
)

(4)

and Euclidean distance:

dE (A, B) =
√√√√1

8

(
4∑

i=1

(
ai − a′i

)2 +
4∑

i=1

(
bi − b′i

)2

)
(5)

Then similarity measures are given as

SH (A, B) = 1− 1

8

(
4∑

i=1

|ai − a′i | +
4∑

i=1

|bi − b′i |
)

(6)

SE (A, B) = 1−
√√√√1

8

(
4∑

i=1

(
ai − a′i

)2 +
4∑

i=1

(
bi − b′i

)2

)
(7)

The bigger the value of SH (A, B) or SE (A, B), the more the similarity between A
and B.

3.3 Farhadinia and Ban’s Process

The similarity measure between two GTIFNs A = [(a1, a2, a3), wA; (b1, b2, b3),

uA] and B = [(a′1, a′2, a′3), wB; (b′1, b′2, b′3),uB] is given as [21]

SF (A, B) = σ p
L · σq

U , where p + q = 1. (8)

Here

σL = SF

(
(Φ(A))L , (Φ(B))L

)

=
(

1−
∑3

i=1 |ai − a′i |
3

)
× min

(
P L

A , P L
B

)+min (wA, wB)

max
(
P L

A , P L
B

)+max (wA, wB)

σU = SF

(
(Φ(A))U , (Φ(B))U

)

=
(

1−
∑3

i=1 |bi − b′i |
3

)
× 1+min

(
PU

A , PU
B

)−max(uA,uB)

1+max
(
PU

A , PU
B

)−min(uA,uB)
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P L
A = Pe

(
(Φ(A))L

)
= e
√
(a1−a2)2+(wA)

2+
√
(a2−a3)2+(wA)

2+a3−a1

and
PU

A = Pe

(
(Φ(A))U

)
= e
√
(b1−b2)2+(wA)

2+
√
(b2−b3)2+(wA)

2+b3−b1

where Φ is a mapping from GTIFN to generalized interval-valued triangular fuzzy
number and is defined as
Φ(A) = [

(Φ(A))L , (Φ(A))U
] = [((a1, a2, a3), wA), ((b1, b2, b3), 1−uA)] and

Pe(Φ(A)) denotes the exponential function value of perimeter of Φ(A). Similarly,
P L

B , PU
B and Φ(B) can be determined.

4 New Concept of Similarity Measure for IFNs

In this section, a new similarity measure between IFNs has been constructed on the
basis of distance between centroid points of IFNs. For this purpose, the centroid
point of IFNs has been introduced first.

4.1 Centroid Point of IFN

Let A = [(a, b, c, d;w,u] be a GTrIFNs. The centroid point of A according to [24]
can be given as

X A = x1

x2
,

where

x1 =
aw−au+b
w−u+1∫

a

xgL dx +
b∫

aw−au+b
w−u+1

x fLdx +
c∫

b

xwdx +
dw−du+c
w−u+1∫

c

x fRdx (9)

+
c∫

dw−du+c
w−u+1

xgRdx

x2 =
aw−au+b
w−u+1∫

a

gLdx +
b∫

aw−au+b
w−u+1

fLdx +
c∫

b

wdx +
dw−du+c
w−u+1∫

c

fRdx (10)

+
c∫

dw−du+c
w−u+1

gRdx



236 S. Das and D. Guha

and

YA = y1

y2
,

where

y1 =
w∫

0

y(h R − hL)dy +
⎡
⎢⎣

1∫

0

yd · dy −
w

w−u+1∫

0

yh Rdy −
1∫

w
w−u+1

ykRdy

⎤
⎥⎦

+
⎡
⎢⎣

w
w−u+1∫

0

yhLdy +
1∫

w
w−u+1

ykLdy −
1∫

0

aydy

⎤
⎥⎦ (11)

y2 =
w∫

0

(h R − hL)dy +
⎡
⎢⎣

1∫

0

d · dy −
w

w−u+1∫

0

h Rdy −
1∫

w
w−u+1

kRdy

⎤
⎥⎦

+
⎡
⎢⎣

w
w−u+1∫

0

hLdy +
1∫

w
w−u+1

kLdy −
1∫

0

ady

⎤
⎥⎦ (12)

where fL and fR are the left and right parts of membership function and gL and
gR are the left and right parts of non-membership function of GTrIFN A defined in
Eqs. (1) and (2), respectively (See Fig. 1). The inverse functions of fL and fR are hL

and h R , respectively, kL and kR are the inverse functions of gL and gR , respectively
(See Fig. 2). The inverse functions hL , h R , kL and kR can be computed by utilizing
Eqs. (1) and (2). See the more detailed argumentation in [24].

4.2 Distance and Similarity Measure

Let us consider two GTrIFNs A = [(a1, a2, a3, a4);wA,uA] and B = [(b1, b2,

b3, b4); wB,uB]. The centroid point of these two numbers can be determined by
Eqs. (9)–(12) and denoted by (X A, YA) and (X B, YB), respectively. The distance
between the centroid point of two GTrIFNs A and B is denoted by D(A, B) and
defined by

D(A, B) =
√
(X A − X B)2 + (YA − YB)2 (13)

The distance D(A, B) between the centroid point of two GTrIFNs A and B defined
in Eq. (13) satisfies all the metric properties.
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Fig. 1 GTrIFN A

Fig. 2 Inverse of GTrIFN A

Similarity measure is such a function that calculates the degree of similarity
between two classes. It is well known that distance measure and similarity measures
are dual concepts and so similarity measures can be obtained from distance mea-
sures. For two GTrIFNs A = [(a1, a2, a3, a4);wA,uA] and B = [(b1, b2, b3, b4);
wB,uB], similarity measure can be defined as follows:

S(A, B) = 1

1+ D(A, B)
= 1

1+√
(X A − X B)2 + (YA − YB)2

(14)
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4.3 Properties of the Proposed Similarity Measure

The proposed similarity measure between GTrIFNs satisfies the following properties:
(P1) 0 < S(A, B) ≤ 1
Proof: We have D(A, B) = √

(X A − X B)2 + (YA − YB)2

which is greater than zero.
∴ 1+ D(A, B) = 1+√

(X A − X B)2 + (YA − YB)2 ≥ 1
⇒ 1

1+D(A,B) = 1
1+
√
(X A−X B )

2+(YA−YB )
2
≤ 1

Also, 1
1+D(A,B) > 0

∴ 0 < S(A, B) ≤ 1
(P2) S(A, B) = 1⇐⇒ A = B
Proof: Since A = B implies that X A = X B and YA = YB .

Hence D(A, B) = 0.
∴ S(A, B) = 1

1+0 = 1.
Again if S(A, B) = 1, then

1
1+
√
(X A−X B )

2+(YA−YB )
2
= 1

⇒ 1 = 1+√
(X A − X B)2 + (YA − YB)2

⇒ √
(X A − X B)2 + (YA − YB)2 = 0

⇒ X A − X B = 0 and YA − YB = 0
∴ X A = X B and YA = YB ⇒ A = B.

(P3) S(A, B) = S(B, A)
Proof: We have

S(A, B) = 1
1+
√
(X A−X B )

2+(YA−YB )
2

= 1
1+
√
(X B−X A)

2+(YB−YA)
2

= S(B, A)
(P4) Let A, B, and C be three TrIFNs. If B is more similar to A than C then

S(A, B) > S(B,C).
For example, let us consider three TrIFNs

A = [(1, 3, 4, 5); 0.8, 0.1]
B = [(2, 3, 5, 6); 0.7, 0.2]
C = [(4, 6, 7, 8); 1, 0]

The centroid point of these three TrIFNs are given as
X A = 2.9947,YA = 0.3721
X B = 4.0000, YB = 0.3539
XC = 6.0385,YC = 0.4231

Then D(A, B) = 1.0054 and D(B,C) = 2.0396.
∴ S(A, B) = 0.4986 and S(B,C) = 0.3289.
We see that S(A, B) > S(B,C).
Also, the desirable result is B is more similar to A.
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Fig. 3 Sets of IFNs

5 Comparison of Similarity Measures with Existing Methods

In this section, a set of examples of IFNs have been constructed (Fig. 3) for giving
a comparative analysis of the proposed similarity measure and existing similarity
measures [19–21]. In Table 1, some shortcomings of the existing measures as well
as advantages of the proposed measure are shown and are described below.

• From Examples 1 and 2 (see Fig. 3), in both cases similarity between two TrIFNs
A and B by [19, 20] is S(A, B) = 1, although A and B have different membership
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values. But by the proposed similarity method, the similarity results for Examples
1 and 2 are S(A, B) = 0.9194 and S(A, B) = 0.9243, respectively.
• From Example 3 (see Fig. 3), it can be easily observed that the TrIFN C is more

similar to A than B . By Ye’s method [20] C has the same similarity as A and
B. By utilizing the proposed method, the similarity result is S(A,C) > S(B,C)
which implies that C is more similar to A than B as expected.
• From Example 4 (see Fig. 3), by Farhadinia and Ban’s method [21] C has the same

similarity with A and B as S(A,C) = S(B,C). But according to the proposed
method C is more similar to A than B as S(A,C) > S(B,C).

Therefore, from Table 1, it can be observed that the proposed similarity mea-
sure determines the similarity correctly and overcomes the shortcomings of existing
methods.

6 Conclusion

In this paper, a new process of similarity measure of IFNs is proposed by utilizing
distance measure. Here distance measure is the distance between centroid point
of IFNs. After calculating distance measure, a new similarity measure has been
introduced to calculate the degree of similarity between IFNs. In order to compare
the proposed similarity measure with the existing measures some examples have
been shown and we see that the proposed similarity measure can get over the faults
of the existing measures. The proposed similarity measure may be applicable to the
multi-criteria decision-making problem, pattern recognition, risk analysis, and many
other fields which will be our future research topic.
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Chapter 16
Classification Rules for Exponential Populations
Under Order Restrictions on Parameters

Nabakumar Jana, Somesh Kumar and Neeraj Misra

Abstract Classification procedures of an observation into one of two exponential
populations is considered. Assuming a known order between the population parame-
ters, a class of classification rules is proposed. Our study shows that each classification
rule in the class is better than the likelihood ratio based classification rule. Compar-
ison of these classification rules with respect to correct probability of classification
has been done by extensive simulations.

Keywords Exponential population · Classification rule · Probability of correct
classification

1 Introduction

The exponential distribution is one of the most widely used distributions. It has ex-
tensive applications in reliability and life testing problems (see for example, Rausand
and Høyland [9] and Pal et al. [8]). The problem of classification of an observation
into one of two exponential populations also arises frequently. For example, suppose
a certain machine works properly if all components connected through series work
properly. The lifetime of two different components in this series is exponentially
distributed with different means. Suppose the system fails after a certain time. It
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is desirable to know from the observed lifetime which particular component had
actually failed.

The problem of classification of an observation into one of two or more normal
populations is quite old and has been studied by many authors. One may refer to
McLachlan [7] and Wakaki and Aoshima [11] for a detailed review of the litera-
ture on this problem. The problem of classification for one parameter exponential
populations was first studied by Basu and Gupta [3]. They proposed classification
rules assuming population parameters are unknown. For this problem Adegboye [1]
numerically compared the probabilities of misclassification by taking two different
classification rules. Basu and Gupta [4] investigated in detail the problem of classi-
fication for two parameter exponential populations. They considered the cases when
some or all parameters may be known or unknown. The case of censored samples
was also studied by them.

The performance of the classification rules can be improved if some additional
information is available on unknown parameters. Long and Gupta [6] first proposed
ordered classification rules for two univariate normal population assuming the mean
of the first population is greater than that of the second population. For one parameter
exponential populations, the classification rule is proposed by Conde et al. [5] as-
suming order restrictions on parameters. They used a mixed estimator of Vijayasree
and Singh [10] to estimate parameters involved in the classification rule and showed
that the new rule is better than the earlier rule proposed by Basu and Gupta [3]. In our
study, we propose a class of classification rules based on a class of mixed estimators.
We investigate the performance of these rules in terms of probabilities of correct
classification.

The article is organized as follows. In Sect. 2, we derive the class of ordered clas-
sification rules and prove that each ordered classification rule is better than the usual
classification rule with respect to the expected probability of correct classification.
In Sect. 3, we compare between the rules with respect to each type of probability of
correct classification through extensive simulations. We give an application of the
proposed ordered classification rules in Sect. 4.

2 Classification Rules

Let�1 and�2 be two independent exponential populations. The probability density
function associated with the population �i is

fi (x) = 1

σi
exp

(
− x

σi

)
, σi > 0, x > 0, i = 1, 2. (1)

The parameters σi ’s are unknown but it is known a priori that σ1 ≤ σ2. In other
words, the expected value of the second population is larger than that of the first
population. This type of situation arises for example, when it is known a priori
that due to improved design, the mean life of the new system is more than that of
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an old system. From each population training sample is available to estimate the
parameters. Let X = (X1, X2, · · · , Xn1) be a training sample from population �1
and Y = (Y1, Y2, · · · , Yn2) be a training sample from population �2. Without any
restrictions on parameters the usual maximum likelihood estimators (MLEs) of σ1

and σ2 are σ̂1 = X̄ =
n1∑

i=1
Xi/n1 and σ̂2 = Ȳ =

n2∑
i=1

Yi/n2 respectively. Note that X̄

and Ȳ are independently distributed with respective probability density functions

g1(x̄, σ1) = nn1
1

�n1σ
n1
1

e
− x̄n1

σ1 x̄n1−1, x̄ > 0, σ1 > 0,

and

g2(ȳ, σ2) = nn2
2

�n2σ
n2
2

e
− ȳn2

σ2 ȳn2−1, ȳ > 0, σ2 > 0.

Under the considered ordered restrictions, Vijayasree and Singh [10] proposed the
mixed estimators

σ̃1 = min(X̄ , α X̄ + (1− α)Ȳ ), 0 ≤ α < 1,

and
σ̃2 = max(Ȳ , αȲ + (1− α)X̄), 0 ≤ α < 1

for σ1 and σ2 respectively. For α = n1/(n1 + n2), σ̃1, σ̃2 give the MLE of σ1, σ2
respectively. To ensure σ̃1 ≤ σ̃2, we must have 0 ≤ α < 1

2 .

Suppose x is an observation which comes from one of these two populations but
the exact population is unknown. We consider x as realization of a random variable
X whose distribution is either f1 or f2. Assume that the populations are equally
likely and the costs of misclassifications are equal. The usual classification rule RU

for these exponential population is given by Basu and Gupta [3]:

Classify x into �1 iff (x − x̂0)(σ̂2 − σ̂1) ≤ 0,

Classify x into �2 iff (x − x̂0)(σ̂2 − σ̂1) > 0, (2)

where

x̂0 = σ̂1σ̂2 log(σ̂1/σ̂2)

σ̂1 − σ̂2
.

We propose the ordered classification rule RαO based on the mixed estimators σ̃1 and
σ̃2. The classification rule is:

Classify x into �1 iff (x − x̃0) ≤ 0,

Classify x into �2 iff (x − x̃0) > 0, (3)
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where

x̃0 = σ̃1σ̃2 log(σ̃1/σ̃2)

σ̃1 − σ̃2
.

For α = 0, σ̃1 = min(X̄ , Ȳ ), σ̃2 = max(X̄ , Ȳ ) and the corresponding ordered
classification rule was studied by Conde et al. [5].

Let P�(i | j) denote the probability that an observation coming from population
j is classified in population i under the rule R�. Then the global probability of
misclassification under rule R� is P�(MC) = 1

2 (P�(1|2)+ P�(2|1)).
Theorem 1 Let RαO and RU be the classification rules defined in (3) and (2), re-
spectively. Then PO(MC) ≤ PU (MC) for any σ2 ≥ σ1 > 0 and 0 ≤ α < 1

2 .

Proof The probability of correct classification for the usual rule RU is

1− PU (MC) = 1

2
[PU (1|1)+ PU (2|2)]

= 1

2
[Pσ1(X < x̂0, σ̂1 ≤ σ̂2)+ Pσ1(X ≥ x̂0, σ̂1 > σ̂2)]

+ 1

2
[Pσ2(X > x̂0, σ̂1 ≤ σ̂2)+ Pσ2(X ≤ x̂0, σ̂1 > σ̂2)],

where Pσ1 refers to probability when X is from�1 and Pσ2 refers to probability when
X is from�2. For any fixed α (0 ≤ α ≤ 1

2 ), the probability of correct classification
for the ordered rule RαO is

1− PO(MC) = 1

2
[PO(1|1)+ PO(2|2)]

= 1

2
[Pσ1(X ≤ x̃0)+ Pσ2(X ≥ x̃0)]

= 1

2
[Pσ1(X ≤ x̃0, σ̂1 ≤ σ̂2)+ Pσ1(X ≤ x̃0, σ̂1 > σ̂2)]

+ 1

2
[Pσ2(X ≥ x̃0, σ̂1 ≤ σ̂2)+ Pσ2(X ≥ x̃0, σ̂1 > σ̂2)]

We note that under the condition σ̂1 ≤ σ̂2, σ̃1 = σ̂1 and σ̃2 = σ̂2, which implies
x̃0 = x̂0. The condition 1− PU (MC) ≤ 1− PO(MC) is then equivalent to

Pσ1(X ≤ x̃0, σ̂1 > σ̂2)+ Pσ2(X ≥ x̃0, σ̂1 > σ̂2)

≥ Pσ1(X ≥ x̂0, σ̂1 > σ̂2)+ Pσ2(X ≤ x̂0, σ̂1 > σ̂2). (4)
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We can write

Pσ1(X ≤ x̃0, σ̂1 > σ̂2) = Pσ1(X ≤ x̃0, X̄ > Ȳ )

=
∫ ∫

x̄>ȳ

Pσ1(X ≤ x̃0)g1(x̄, σ1)g2(ȳ, σ2) dx̄ d ȳ

=
∫ ∫

x̄>ȳ

(
1− exp(− x̃0

σ1
)

)
g1(x̄, σ1)g2(ȳ, σ2) dx̄ d ȳ.

Proceeding in a similar way, expressions for other terms in the inequality (4) can be
evaluated and we obtain

Pσ1(X ≤ x̃0, σ̂1 > σ̂2)+ Pσ2(X ≥ x̃0, σ̂1 > σ̂2)

− Pσ1(X ≥ x̂0, σ̂1 > σ̂2)− Pσ2(X ≤ x̂0, σ̂1 > σ̂2)

=
∫ ∫

x̄>ȳ

(
exp(− x̃0

σ2
)− exp(− x̃0

σ1
)+ exp(− x̂0

σ2
)− exp(− x̂0

σ1
)

)

× g1(x̄, σ1)g2(ȳ, σ2) dx̄d ȳ,

which is nonnegative since σ1 ≤ σ2. Hence ordered classification rule RαO is better
than the usual classification rule RU for all α ∈ [0, 1

2 ).

For each of the ordered classification rules RαO , we can also compare between
individual probabilities of the correct classification. In fact for α = 0, Conde et al.
[5] proved that for n1 = n2 = n,

(i) if n > 1, PO(1|1) > PU (1|1) for all σ2 ≥ σ1 > 0.
(ii) if n = 1, PO(2|2) ≥ PU (2|2) for all σ2 ≥ σ1 > 0.

(iii) if n = 1, there are δ0 in (0,1) such that

PO(1|1) ≥ PU (1|1) for all σ1, σ2 > 0, 0 < ρ ≤ δ0,

PO(1|1) < PU (1|1) for all σ1, σ2 > 0, δ0 < ρ < 1,

(iv) if n > 1, there are δ′0 and δ′1 in (0,1) such that

PO(2|2) ≥ PU (2|2) for all σ1, σ2 > 0, 0 < ρ ≤ δ′0,

PO(2|2) < PU (2|2) for all σ1, σ2 > 0, δ′1 < ρ < 1.

where ρ = σ1
σ2
.

For α ∈ (0, 1
2 ), we show using a Monte Carlo study that the above conclusions

(i–iv) hold true.
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Table 1 The probability of correct classification for n1 = n2 = 1

σ1/σ2 RU RO (0) RO (0.1) RO (0.2) RO (0.3) RO (0.4)

0.05 0.749700 0.759750 0.760850 0.761750 0.762500 0.762650
0.846200 0.888050 0.887900 0.887750 0.887600 0.887600

0.1 0.694600 0.707750 0.710850 0.712350 0.713200 0.713900
0.761900 0.831450 0.830650 0.830250 0.830050 0.829850

0.2 0.622700 0.642450 0.648750 0.652200 0.654300 0.655350
0.651700 0.757050 0.754650 0.753100 0.752200 0.751500

0.3 0.579150 0.599850 0.609450 0.613450 0.616550 0.618050
0.592000 0.708300 0.704150 0.701300 0.699500 0.698400

0.4 0.551000 0.564350 0.577250 0.583150 0.587400 0.588900
0.551250 0.672500 0.665450 0.661450 0.658400 0.657050

0.5 0.530650 0.537500 0.553100 0.560400 0.565100 0.567050
0.525650 0.642400 0.632550 0.626850 0.622050 0.619400

0.99 0.501200 0.448450 0.476050 0.489250 0.496150 0.500250
0.493400 0.546850 0.520050 0.506750 0.497900 0.493900

Table 2 The probability of correct classification for n1 = n2 = 5

σ1/σ2 RU RO (0) RO (0.1) RO (0.2) RO (0.3) RO (0.4)

0.05 0.920750 0.920800 0.920800 0.920800 0.920800 0.920800
0.862250 0.862300 0.862300 0.862300 0.862300 0.862300

0.1 0.879550 0.880050 0.880050 0.880050 0.880050 0.880050
0.787150 0.787450 0.787450 0.787450 0.787450 0.787450

0.2 0.815000 0.819350 0.819350 0.819350 0.819450 0.819450
0.680400 0.684650 0.684650 0.684650 0.684650 0.684650

0.3 0.753150 0.770750 0.770900 0.770950 0.771100 0.771100
0.608000 0.619400 0.619250 0.619150 0.619150 0.619150

0.4 0.697150 0.732450 0.732650 0.732700 0.732850 0.732850
0.552300 0.569600 0.569300 0.568950 0.568700 0.568700

0.5 0.653350 0.702450 0.703150 0.703450 0.704100 0.704300
0.512700 0.528900 0.528550 0.528150 0.527900 0.567600

0.99 0.503700 0.591250 0.595900 0.599550 0.601650 0.602850
0.492600 0.405150 0.400500 0.397600 0.396000 0.394500

3 Numerical Studies

We now investigate performances of the proposed class of classification rules with
respect to the probabilities of correct classification. We use Monte Carlo simulation
technique taking 20,000 replications. In Tables 1 and 2, we have taken the size of
the training samples (1,1) and (5,5) respectively. First and second row of each pair
of these tables represent P(1|1) and P(2|2) respectively. The following conclusions
are drawn from the simulation study.
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(a) When the size of the training samples are equal, the expected probability of
correct classification corresponding to the rule RαO with α = 0 is higher than
that of RαO for all α > 0.

(b) The ordered classification rules RαO are better than the usual classification rule RU

for allα ∈ [0, 1
2 )with respect to expected probability of the correct classification.

(c) The behavior of the ordered classification rules is similar to that of the usual
classification rule when the parameters σ1 and σ2 are sufficiently different.

(d) For n1 = n2 = 1, PO(2|2) is greater than or equal to PU (2|2) for all 0 < σ1 ≤ σ2
and for all α ∈ [0, 1

2 ).
(e) For n1 = n2 > 1, PO(1|1) is strictly greater than PU (1|1).
(f) As α decreases the corresponding classification rule is better than the usual

classification rule in terms of expected probabilities of correct classification.
(g) When n1 = n2 = n > 1, then PO(1|1) is higher than PU (1|1).
(h) In case the population parameters σ1 and σ2 are very close, then for small size

training samples as α (0 ≤ α < 1
2 ) increases, PO(1|1) increases but PO(2|2)

decreases.
(i) When σ1 and σ2 are far from each other then for the small sizes samples the

performance of the usual classification rule is similar to each of the ordered
classification rule.

Similar observations are made for various other values of n1, n2 and σ1/σ2.

4 Example

In this section, we consider an illustrative example to show the usefulness of the
ordered classification rules proposed in this paper. Consider the example of Barlow
et al. [2], (see page 270), where the operating times between successive failures of
air conditioning equipment in two aircraft (plane 7916 and plane 7907) are given in
terms of samples of size five.

• For plane 7916, sample values are 50, 254, 5, 283, 35.
• For plane 7907, sample values are 194, 15, 41, 29, 33.

The sample values shown to fit exponential distributions. Let us assume that due to
a design change, the expected lifetime of the air conditioners of plane 7916 is less
than the expected lifetime of the air conditioners used in plane 7907. Suppose an
observation belonging to either of plane 7916 or that of 7907 is available. However,
due to an error in record keeping, it is not clear whether the observation corresponds
to plane 7916 or 7907. We use the proposed classification rules to classify the obser-
vations 12 and 181 into one of these two populations. The observation 12 is correctly
classified to plane 7916 by the proposed ordered classification rule RαO for α ∈ [0, 1

2 )

but it will be misclassified under the usual classification rule. The observation 181
is correctly classified to plane 7907 by the proposed ordered classification rule RαO
for α ∈ [0, 1

2 ) but it will be misclassified if the usual classification rule is used.
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5 Conclusion

We have proposed classification procedures for exponential populations which are
based on improved estimators of scale parameters when a priori information is avail-
able on ordering. It is shown that the new procedure is better than the classical clas-
sification rule in terms of expected probability of correct classification. A simulation
study is also carried out to show numerically the superiority of new procedures.
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Chapter 17
Solving the Exterior Bernoulli Problem
Using the Shape Derivative Approach

Jerico B. Bacani and Gunther Peichl

Abstract In this paper, we are interested in solving the exterior Bernoulli free
boundary problem by minimizing a particular cost functional J over a class of admis-
sible domains subject to two well-posed PDE constraints: a Dirichlet boundary value
problem and a Neumann boundary value problem. The main result for this paper is
the thorough computation of the first-order shape derivative of J using the shape
derivatives of the state variables. At first, the material derivatives of the states are
rigorously justified. Then the equation and the boundary conditions satisfied by the
corresponding shape derivatives are derived directly from the definition of the shape
derivative and the variational equation for the material derivative. It becomes apparent
that the analysis of the shape derivatives of the states requires more regular domains.
Finally, it is noted that the shape gradient agrees with the structure predicted by the
Hadamard structure theorem.
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1 Introduction

The paper deals with sensitivity analysis in a particular shape optimization
formulation of exterior Bernoulli problems, which can be considered to be prototype
of free boundary problems (FBPs). They represent mathematical models describing
phenomena in different areas of physics, chemistry, medicine, industry such as phase
transitions, flows through porous media, tumor growth, electrochemical machining,
among others [1, 5, 6, 9, 10, 22]. Their common feature is the fact that equations
are solved in domains which are not known a-priori; that is, the shape of domains
is one of the unknowns. For this reason, numerical realization of FBPs is much
more complicated compared with standard boundary value problems. Shape opti-
mization approach is a possible technique which can be used for this purpose. The
idea is simple: one of the boundary conditions (Dirichlet or Neumann) which have to
be satisfied simultaneously on the free boundary in Bernoulli problems is removed
from the system and is satisfied by minimizing an appropriate cost functional. After
a discretization, we obtain a nonlinear mathematical programming problem. Mini-
mization is usually carried out by using a gradient type method for which gradient
information is needed. Therefore, sensitivity analysis is an integral part of any opti-
mization problem. The main goal of this work is to perform sensitivity analysis for
the continuous setting of the shape optimization formulation of the Bernoulli prob-
lem with the Kohn-Vogelius cost functional. In this approach, we first justify the
existence of material derivatives of the states. Then the equation and the bound-
ary conditions satisfied by their corresponding shape derivatives are derived directly
from the definition of the shape derivative and the variational equation for the mate-
rial derivative. This method is more tedious compared to differentiating directly the
variational equation for the states but it is rigorous and avoids the formal arguments
one often finds in the literature, for instance in the work of Fuji [11], Masanao and
Fuji [18], and Simon [19].

The paper is outlined as follows. In Sect. 2, the exterior Bernoulli FBP is defined
and reformulated as a shape optimization problem. Section 3 is a survey of tools in
shape optimization which are used in subsequent parts of this paper. Shape variations
are realized by deformations of admissible domains using a perturbation of identity
mapping that has an appropriate regularity. Basic properties of such mapping are
recalled. Further, the material and shape derivative of state variables are mentioned
as well as results on differentiation of domain and boundary integrals with respect
to the shape. Section 4 is devoted to the rigorous derivation of the first-order shape
derivative of the above-mentioned cost functional. Conclusion is given in Sect. 5.

2 Shape Optimization Formulation of the Bernoulli Problem

The exterior Bernoulli free boundary problem can be reformulated as follows: Given
a bounded and connected domain A ⊂ R

2 with a fixed boundary � := ∂A and a
constant λ < 0, one needs to find a bounded connected domain B ⊂ R

2 with a
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Fig. 1 The domain � for the
exterior Bernoulli problem

free boundary � and containing the closure of A, and an associated state function
u : �→ R, where� = B\ Ā, such that the overdetermined conditions are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�u = 0 in �,

u = 1 on �,

u = 0 on �,

∂u

∂n
= λ on �.

(1)

Here, n is the outward unit normal vector to�. The domain for the exterior Bernoulli
free boundary problem is illustrated in Fig. 1.

This boundary problem is ill-posed because of the presence of overdetermined
conditions on the free boundary�. To overcome the difficulty of solving the Bernoulli
problem, we reformulate it as a shape optimization problem:

min
�

J (�) ≡ min
�

1

2

∫

�

|∇(u D − uN )|2 dx (2)

over all admissible domains �, where the state function uD is the solution to the
Dirichlet problem: ⎧

⎪⎪⎨
⎪⎪⎩

−�u D = 0 in �,

u D = 1 on �,

u D = 0 on �,

(3)

and the state function uN is the solution to the Neumann problem:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−�uN = 0 in �,

uN = 1 on �,

∂uN

∂n
= λ on �.

(4)
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The functional J is introduced by Kohn and Vogelius in the context of inverse prob-
lems, and so this functional is named after them [16]. Notice that if we find� such that
uN happens to be identical to u D (that is, uN = u D = u), then the overdetermined
conditions (1) are satisfied.

3 Tools from Shape Calculus

In this work, we are interested in Ck,1-domains or domains with Ck,1 boundaries,
where k ≥ 0. Aside from being Ck,1, we also assume that these are bounded and
connected subsets of a bigger set U called the hold-all domain.

The reference domain under consideration is a bounded, connected annulus with
disjoint boundaries� and�. This domain is perturbed via the perturbation of identity
operator

Tt : Ū → R
2, Tt (x) = x + tV(x), x ∈ Ū , (5)

where V belongs to �, which is defined as

� =
{

V ∈ C1,1(Ū ,R2) : V|�∪∂U = 0
}
. (6)

One can show that the reference � and the perturbed domain �t have the same
topological structure and regularity under the transformation Tt . These properties
are given as a theorem and a corollary and can be seen in [4].

Theorem 1 Let � and U be nonempty bounded open connected subsets of R
2 with

Lipschitz continuous boundaries, such that �̄ ⊆ U, and ∂� is the union of two
disjoint boundaries � and �. Let Tt be defined as in (5) where V belongs to �,
defined as (6). Then for sufficiently small t ,

1. Tt : Ū → Ū is a homeomorphism,
2. Tt : U → U is a C1,1 diffeomorphism, and in particular, Tt : �→ �t is a C1,1

diffeomorphism,
3. �t = Tt (�) = �, and
4. ∂�t = � ∪ Tt (�).

Corollary 1 Let � and U be two domains in R
2 with C1,1 boundary. Then for

sufficiently small t ,the perturbed domain �t := Tt (�) is also of class C1,1.

In this paper, we use the following notations:

⎧
⎪⎪⎨
⎪⎪⎩

It (x) = detDTt (x), x ∈ Ū ,
Mt (x) = (DTt (x))−T , x ∈ Ū ,
At (x) = It (x)MT

t (x)Mt (x), x ∈ Ū ,
wt (x) = It (x)|(DTt (x))−T n(x)|, x ∈ �.

(7)

We now enumerate several properties of Tt that are used in the analysis.
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Lemma 1 [12, 15] Consider the transformation Tt , where the fixed vector field V
belongs to �, defined in (6). Then there exists tV > 0 such that Tt and the functions
in (7) restricted to the interval IV = (−tV , tV ) have the following regularity and
properties:

1. t 
→ Tt ∈ C1(IV ,C1,1(Ū ,R2)).
2. t 
→ It ∈ C1(IV ,C0,1(Ū )).
3. t 
→ T−1

t ∈ C(IV ,C1(Ū ,R2))

4. t 
→ wt ∈ C1(IV ,C(�)).
5. t 
→ At ∈ C(IV ,C(Ū ,R2×2)).
6. There is β > 0 such that At (x) ≥ β I for x ∈ U.

7.
d

dt
Tt |t=0 = V.

8.
d

dt
T−1

t |t=0 = −V.

9.
d

dt
DTt |t=0 = DV.

10.
d

dt
(DTt )

−1|t=0 = −DV.

11.
d

dt
It |t=0 = divV.

12.
d

dt
At |t=0 = (divV)I − (DV+ (DV)T ) ≡ A.

13. limt→0wt = 1.

14.
d

dt
wt |t=0 = div�V, where div� is defined by

div�V = divV|� − (DVn) · n.

3.1 Material and Shape Derivatives

The material and shape derivatives of state variables are defined as follows [13, 21]:

Definition 1 Let u be defined in [0, tV ] × U . An element u̇ ∈ H k(�), called the
material derivative of u, is defined as

u̇(x) := u̇(�;V) = lim
t→0+

u(t, Tt (x))− u(0, x)

t
= d

dt
u(t, x + tV(x))

∣∣∣∣
t=0

if the limit exists in (Hk(�)).

Remark 1 The material derivative can be written as

u̇(x) = lim
t→0+

ut ◦ Tt (x)− u(x)

t
= d

dt
(ut ◦ Tt (x))

∣∣∣∣
t=0
. (8)
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It characterizes the behavior of the function u at x ∈ � ⊂ U in the direction V(x).

Definition 2 Let u be defined in [0, tV ] ×U . An element u′ ∈ Hk(�) is called the
shape derivative of u at � in the direction V, if the following limit exists in Hk(�):

u′(x) := u′(�;V) = lim
t→0+

u(t, x)− u(0, x)

t
. (9)

Remark 2 If u̇ and ∇u · V exist in Hk(�) then the shape derivative can be written
as

u′(x) = u̇(x)− (∇u · V)(x). (10)

In general, if u̇(x) and ∇u · V(x) both exist in W m,p(�), then u′(x) also exists in
that space.

Remark 3 Definitions 1 and 2 are still valid if � is replaced by ∂�.

3.2 Domain and Boundary Transformations

Lemma 2 [20]

1. Let ϕt ∈ L1(�t ). Then ϕt ◦ Tt ∈ L1(�) and

∫

�t

ϕt dxt =
∫

�

ϕt ◦ Tt It dx

2. Let ϕt ∈ L1(∂�t ). Then ϕt ◦ Tt ∈ L1(∂�) and

∫

∂�t

ϕt dst =
∫

∂�

ϕt ◦ Tt wt ds

where It and wt are defined in (7).

Proofs can be found in [15, 20].

Remark 4 The function ut : �t → R can be referred to the reference domain by
composing ut with Tt ; that is,

ut = ut ◦ Tt : �→ R

and by chain rule of differentiation, we get

(∇ut ) ◦ Tt = (DTt )
−T∇ut = Mt∇ut . (11)
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3.3 Some Tools in Tangential Calculus

Here are some properties of tangential differential operators which we used in this
work (cf. [2, 7, 14, 20]). Let � be a boundary of a bounded domain � ⊂ R

n .

Definition 3 The tangential gradient of f ∈ C1(�) is given by

∇� f := ∇F |� − ∂F

∂n
n ∈ C(�,Rn), (12)

where F is any C1 the extension of f into a neighborhood of �.

Definition 4 The tangential Jacobian matrix of a vector function v ∈ C1(�,Rn) is
given by

D�v = DV|� − (DVn)nT ∈ C(�,Rn×n), (13)

where V is any C1 the extension of v into a neighborhood of �.

Definition 5 For a vector function v ∈ C1(�,Rn), its tangential divergence on � is
given by

div�v = divV|� − DVn · n ∈ C(�),= tr [DV|� − (DVn)nT ] (14)

where V is any C1 the extension of v into a neighborhood of �.

Remark 5 The details of the existence of the extension F and V can be found in [7,
pp. 361–366]. We note that Definitions 3, 4, and 5 do not depend on the choice of
the extension, cf. [20, pp. 82–83].

We now provide some useful identities in tangential calculus.

Lemma 3 [20] Consider a C2 domain � with boundary � := ∂�. Then for u ∈
H1(�) and V ∈ C1(�,Rn) the following identities hold:

(1) div�(uV) = ∇�u · V+ udiv�V (15)

(2)
∫

�

div�V ds =
∫

�

κV · n ds (16)

(3)
∫

�

(udiv�V+ ∇�u · V) ds =
∫

�

κuV · n ds (17)

(4)
∫

�

∇�u · V ds = −
∫

�

udiv�V ds, where V · n = 0. (18)

Remark 6 In Lemma 3, the first identity is the tangential divergence formula, the
second is the tangential Stoke’s formula, and the third is the tangential Green’s
formula. This lemma can also be shown to be true for C1,1 domains.
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3.4 Domain and Boundary Differentiation

The following are the formulas for the derivatives of integrals with respect to the
domain of integration. For the first theorem, it is sufficient to have at least C0,1

domains while the second theorem requires at least C1,1 domains. For proof, see
[20].

Theorem 2 (Domain Differentiation Formula) Let u ∈ C(IV ,W 1,1(U )) and sup-
pose u̇(0, ·) := d

dt u(t, Tt (·))
∣∣
t=0 exists in L1(U ). Then

d

dt

∫

�t

u(t, x) dx

∣∣∣∣
t=0
=

∫

�

u′(0, x) dx +
∫

�

u(0, s)V · n ds (19)

Theorem 3 (Boundary Differentiation Formula) Let u be defined in a neighborhood
of �. If u ∈ C(IV ,W 2,1(U )) and u̇(0, ·) ∈ W 1,1(U ), then

d

dt

∫

�t

u(t, s) ds

∣∣∣∣
t=0
=

∫

�

u′(0, s) ds +
∫

�

(
∂u

∂n
+ u(0, s)κ)V · n ds, (20)

where κ is the mean curvature of the free boundary �.

3.5 The First-Order Eulerian Derivative

Definition 6 The Eulerian derivative of the shape functional J : � → R defined
in (2) at the domain � in the direction of the deformation field V ∈ � is given by

dJ (�;V) := lim
t→0+

J (�t )− J (�)

t
, (21)

if the limit exists.

Remark 7 J is said to be shape differentiable at � if d J (�;V) exists for all V ∈ �
and is linear and continuous with respect to V.

4 Main Result

In this section, we present a rigorous derivation of the Eulerian shape derivative of
the Kohn-Vogelius functional J by employing the shape derivatives of the states.
First, due to its high importance in this study, we recall our result in [4] regarding
the higher regularity of solutions to the PDEs (3) and (4):
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Theorem 4 Let� be a bounded domain with boundary of class C1,1. Let u D, uN ∈
H1(�) be weak solutions of the BV Ps (3) and (4), respectively. Then u D and uN

also belong to H2(�). More generally, if � is of class Ck+1,1 then u D and uN are
elements of Hk+2(�).

Since, the existence of the shape derivatives of the states is based on the existence of
the material derivatives, the latter is proven first.

4.1 Material Derivatives of States

4.1.1 Material Derivative of uD

We first show the existence of the material derivative of u D . One can show that
yt = ut

D − u D ∈ H1
0 (�) is a unique solution to

(At∇ yt ,∇ϕ)� = −(At∇u D,∇ϕ)�, ∀ϕ ∈ H1
0 (�), (22)

where At is given by (7) and ut
D is the unique solution of the following variational

equation:
(At∇ut

D,∇ϕ)� = 0 (23)

for all ϕ ∈ H1
0 (�), ut

D = 1 on � and ut
D = 0 on �. The bilinear form

bt (yt , ϕ) = ∫
�

At∇ yt · ∇ϕ for all yt , ϕ ∈ H1
0 (�) is continuous and coercive.

With these characteristics, one can show that

|yt |H1
0 (�)
≤ 2|At |∞|u D|H1(�).

Therefore, the set {yt = ut
D−u D : t ∈ (0, tV )} is bounded in H1

0 (�) for sufficiently
small tV .

Note that the variational form of the Dirichlet problem (3) is given by: Find
u D ∈ H1(�) such that

⎧⎪⎪⎨
⎪⎪⎩

(∇u D,∇ψ)� = 0 ∀ψ ∈ H1
0 (�)

u D = 1 on �,

u D = 0 on �.

(24)

Using (24) we write (22) as

((At − I )∇ yt ,∇ϕ)� + (∇ yt ,∇ϕ)� = −((At − I )∇u D,∇ϕ)�
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Define zt = 1
t yt which also belongs to H1

0 (�). Then we have

(∇zt ,∇ϕ)� = −
(

1

t
(At − I )∇ yt ,∇ϕ

)

�

−
(

1

t
(At − I )∇u D,∇ϕ

)

�

. (25)

Now we choose a sequence {tn} such that limn→∞ tn = 0, and we want to show that
limn→∞ ztn exists.

Lemma 1, together with the boundedness of ytn in H1
0 (�) implies that ∇ztn is

bounded in L2(�;R2), equivalently that ztn is bounded in H1
0 (�). Thus there is a

subsequence, which we still denote by tn with tn → 0 and an element z ∈ H1
0 (�) such

that ztn ⇀ z weakly in H1
0 (�). Since ∇utn

D → ∇u D in L2(�;R2), limtn→0 Atn = I
uniformly on �̄, and using property 12 of Lemma 1 we get

(∇z,∇ϕ)� = −(A∇u D,∇ϕ)� ϕ ∈ H1
0 (�). (26)

Since this equation has a unique solution, we deduce that ztn ⇀ z for any sequence
{tn}. In order to show strong convergence we show limn→∞ |ztn |H1

0 (�)
= |z|H1

0 (�)
.

This follows from:

lim
tn→0
|ztn |2

H1
0 (�)
= − lim

tn→0

(
1

tn
(Atn − I )∇(utn

D − u D),∇ztn

)

�

− lim
tn→0

1

tn

(
(Atn − I )∇u D,∇ztn

)

�

= −(A∇u D,∇z)� = (∇z,∇z)� = |z|2H1
0 (�)

.

This, together with the weak convergence, implies that ztn strongly converges to z in
H1

0 (�).

4.1.2 Material Derivative of uN

The variational form of the Neumann problem (4) is formulated as follows.
Find uN ∈ H1(�) such that

⎧
⎨
⎩
(∇uN ,∇ϕ)� − (λ, ϕ)� = 0 ∀ϕ ∈ H1

�,0(�)

uN = 1 on �.
(27)

It is well-known that (27) has a unique solution uN ∈ H1
�,1(�), where the space

H1
�,1(�) is defined as

H1
�,1(�) =

{
ϕ ∈ H1(�) : ϕ|� = 1

}
.
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Also, the state ut
N ∈ H1

�,1(�) uniquely solves the variational equation

(At∇ut
N ,∇φ)� − (wtλ, φ)� = 0, ∀φ ∈ H1

�,0(�), (28)

where ut
N = 1 on �. Subtracting (27) from (28) for all ϕ ∈ H1

�,0(�), we have

0 =(At∇ut
N ,∇ϕ)� − (wtλ, ϕ)� − (∇uN ,∇ϕ)� + (λ, ϕ)�

=(At∇ut
N − ∇ut

N +∇ut
N −∇uN , ϕ)� + (wtλ− λ, ϕ)�. (29)

Hence we have a unique solution ut
N − uN ∈ H1

�,0(�) to

(∇(ut
N −uN ),∇ϕ)� = −((At − I )∇ut

N ,∇ϕ)�+λ(wt −1, ϕ)� ∀ϕ ∈ H1
�,0(�).

(30)
One can show that ∇ut

N is uniformly bounded in L2(�;R2) and that ∇ut
N → ∇uN

in that space. Defining yt = 1
t (u

t
N − uN ) we find that yt satisfies

(∇ yt ,∇ϕ)� = −
((

At − I

t

)
∇ut

N ,∇ϕ
)

�

+ λ
(

wt − 1

t
, ϕ

)

�

∀ϕ ∈ H1
�,0(�).

(31)
Choose a sequence {tn} with limn→∞ tn = 0. As in the Dirichlet case, we want to
show here that limn→∞ ytn exists. Since 1

tn
(Atn − I ) and 1

tn
(wtn − 1) are bounded in

L∞, ∇utn
N is bounded in L2(�;R2), and we deduce that ytn is bounded in H1

�,0(�).
Hence there exists a subsequence, which we still denote as {tn}, and this tends to
zero. Furthermore, there is an element y ∈ H1

�,0(�) such that ytn ⇀ y weakly in

H1
�,0(�). Considering ∇utn

N → ∇uN in L2(�;R2), and applying properties 12 and
14 of Lemma 1 we obtain

(∇ y,∇ϕ)� = −(A∇uN ,∇ϕ)� + λ(div�V, ϕ)�. (32)

Since this equation has a unique solution, we deduce that ytn ⇀ y for any sequence
{tn}. This implies that ytn converges strongly to y in L2(�). Now choosing ϕ =
ytn ∈ H1

�,0(�) yields the following:

lim
t→0
|ytn |2H1(�)

= − lim
tn→0

((
Atn − I

tn

)
∇utn

N ,∇ ytn

)

�

+ λ lim
tn→0

(
wtn − 1

tn
, ytn

)

�

= −(A∇uN ,∇ y)� + λ(div�V, y)� = (∇ y,∇ y)� = |y|2H1(�)
.

The convergence in norm and the weak convergence of ytn in H1
�,0(�) justifies the

strong convergence of ytn to y in that space.
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4.2 Shape Derivatives of States

The boundary value problems satisfied by the shape derivatives of the state variables
can be derived in a rigorous manner. The approach that is presented here does not
utilize the domain and boundary differentiation formulas which are usually employed
when the derivation is done formally.

4.2.1 Shape Derivative of uD

Theorem 5 Let � be a C2,1 bounded domain. The shape derivative of the state
variable u D ∈ H3(�) satisfying the pure Dirichlet problem (3) is a solution to the
following nonhomogeneous Dirichlet boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�u′D = 0 in �,

u′D = 0 on �,

u′D = −
∂u D

∂n
V · n on �.

(33)

Proof We have shown in Sect. 4.1 that u̇ D := z exists in H1
0 (�) and satisfies

(∇z,∇ϕ)� = −(A∇u D,∇ϕ)�, ϕ ∈ H1
0 (�), (34)

where u D satisfies (3) and A is given by property 12 of Lemma 1. By (10), we can

write u′D as u′D = u̇ D − ∇u D · V. Hence u′D = u̇ D − ∂u D

∂n
V · n. Since V vanishes

on �, u′D = 0 on �. On the free boundary, u̇ D = 0, thus u′D = −
∂u D

∂n
V · n.

Now we determine the variational equation satisfied by u′D .Using the relationship
between the material and shape derivatives, we write

(∇z,∇ϕ)� = (∇u′D,∇ϕ)� + (∇(∇uD · V),∇ϕ)�, (35)

which is valid for all ϕ ∈ H1
0 (�). Applying (34) we get

− (A∇u D,∇ϕ)� = (∇u′D,∇ϕ)�+ (∇(∇u D ·V),∇ϕ)�, ∀ϕ ∈ H1
0 (�). (36)

At first we choose ϕ ∈ H2(�) ∩ H1
0 (�). Using the following identity (from [4]):
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∫

�

A∇u · ∇v =
∫

�

�u(V · ∇v)+
∫

�

�v(V · ∇u)−
∫

�

∂v

∂n
(V · ∇u)

−
∫

�

∂u

∂n
(V · ∇v)+

∫

�

(∇u · ∇v)V · n.

wherein we replace u by u D and v by ϕ, we obtain

−
∫

�

A∇uD ·∇ϕ = −
∫

�

�ϕ(V ·∇u D)+
∫

�

∂ϕ

∂n
(V ·∇u D), ∀ϕ ∈ H2(�)∩H1

0 (�).

By applying Green’s formula we obtain

−
∫

�

A∇uD · ∇ϕ =
∫

�

∇ϕ · ∇(V · ∇u D), ϕ ∈ H2(�) ∩ H1
0 (�). (37)

Substituting (37) into (36), we obtain (∇u′D,∇ϕ)� = 0, whereϕ ∈ H2(�)∩H1
0 (�).

Using Green’s formula, we have (−�u′D, ϕ)� = 0. But the functions in H2(�) ∩
H1

0 (�) are dense in L2(�). Therefore−�u′D = 0 in�. In summary, we have shown
that u′D satisfies the boundary value problem (33).

Theorem 4 tells us that the solution to (3) indeed belongs to H2(�). However
this regularity of the solution is not sufficient to justify the existence of the shape
derivative of u D satisfying (33). We need higher regularity of the solution. So we
take C2,1 bounded domains and by the same theorem, u D belongs to H3(�).

4.2.2 Shape Derivative of uN

Theorem 6 Let � be a bounded C2,1 domain. The shape derivative of the state
variable uN ∈ H3(�) satisfying the Neumann problem (4) is a solution to the
following mixed boundary value problem:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�u′N = 0 in �,

u′N = 0 on �,

∂u′N
∂n
= div�(V · n∇�uN )+ κλV · n on �.

(38)

Proof It was shown in Sect. 4.1 that the material derivative w := u̇N ∈ H1
�,0(�)

satisfies

(∇w,∇ϕ)� = −(A∇uN ,∇ϕ)+ λ
∫

�

ϕdiv�V, ϕ ∈ H1
�,0(�). (39)
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First we note that uN and ut
N are both functions in H1

�,1(�). Hence
1

t
(ut

N − uN )

belongs to H1
�,0(�) for sufficiently small t . Thus u̇N = 0 on �.

Applying Green’s formula to (39), we get

(−�w, ϕ)� +
∫

�

∂w

∂n
ϕ = (div(A∇uN ), ϕ)� −

∫

�

ϕA∇uN · n + λ
∫

�

ϕdiv�V

At first, we choose ϕ ∈ H1
0 (�), so we get

(−�w, ϕ)� = (div(A∇uN ), ϕ)�.

Since H1
0 (�) is dense in L2(�)we have−�w = div(A∇uN ) in�. Then we choose

ϕ ∈ H1
�,0(�) such that ϕ is arbitrary on �, to get

∫

�

∂w

∂n
ϕ = −

∫

�

ϕA∇uN · n + λ
∫

�

ϕdiv�V.

Since the traces of functions ϕ ∈ H1
�,0(�) are dense in L2(�) we obtain

∂w

∂n
= −A∇uN · n + λdiv�V.

Therefore, w satisfies the following boundary value problem:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�w = div(A∇uN ) in �,

w = 0 on �,

∂w

∂n
= −A∇uN · n + λdiv�V on �.

(40)

Next we consider ϕ ∈ H2(�). This time we also consider uN ∈ H2(�). Applying
the identity (37) for uN and ϕ we obtain:

∫

�

A∇uN · ∇ϕ =
∫

�

�uN (V · ∇ϕ)+
∫

�

�ϕ(V · ∇uN )−
∫

�

∂ϕ

∂n
(V · ∇uN )

−
∫

�

∂uN

∂n
(V · ∇ϕ)+

∫

�

(∇uN · ∇ϕ)V · n.

Since −�uN = 0 in � and applying Green’s theorem we obtain
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−
∫

�

A∇uN ·∇ϕ =
∫

�

∇ϕ ·∇(V·∇uN )+
∫

�

∂uN

∂n
V·∇ϕ−

∫

�

(∇uN ·∇ϕ)V·n, (41)

for all ϕ ∈ H2(�) Note however that by definition of the shape derivative we have

(∇w,∇ϕ)� = (∇u′N ,∇ϕ)� + (∇(V · ∇uN ),∇ϕ)�, ϕ ∈ H1
�,0(�). (42)

Combining (39) and (42), we get

(∇u′N ,∇ϕ)� + (∇(V · ∇uN ),∇ϕ)� = −(A∇uN ,∇ϕ)� + λ
∫

�

ϕdiv�V, (43)

for ϕ ∈ H1
�,0(�). Applying Green’s formula on the left hand side of (43) , and using

(41) for the right hand side we get

(−�u′N , ϕ)� +
∫

�

∂u′N
∂n

ϕ =
∫

�

∂uN

∂n
V · ∇ϕ −

∫

�

(∇uN · ∇ϕ)V · n+ λ
∫

�

ϕdiv�V.

Choosing ϕ ∈ C∞0 (�), we obtain −�u′N = 0 in �. This implies

∫

�

∂u′N
∂n

ϕ =
∫

�

∂uN

∂n
V · ∇ϕ −

∫

�

∇uN · ∇ϕV · n + λ
∫

�

ϕdiv�V

=
∫

�

(λV−∇uN V · n) · ∇ϕ +
∫

�

λϕdiv�V ∀ϕ ∈ H2(�).

Since (λV−∇uN V · n) · n = 0 one can replace ∇ϕ|� by ∇�ϕ which leads to

∫

�

∂u′N
∂n

ϕ =
∫

�

(λV− ∇uN V · n) · ∇�ϕ +
∫

�

λϕdiv�V.

Applying (18) one finds

∫

�

∂u′N
∂n

ϕ =
∫

�

ϕdiv�(∇uN V · n).

Applying (17), and (18) (noting that V · n∇�uN · n = 0), we have
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∫

�

∂u′N
∂n

ϕ =
∫

�

κϕ(∇uN V · n) · n −
∫

�

∇�ϕ · ∇uN V · n

=
∫

�

ϕκ
∂uN

∂n
V · n −

∫

�

∇�ϕ · ∇�uN V · n

=
∫

�

ϕκλV · n +
∫

�

ϕdiv�(V · n∇�uN ).

Since the trace of functions in H2(�) is dense in L2(�), we deduce the boundary
condition on � for u′N , which is

∂u′N
∂n
= div�(V · n∇�uN )+ κλV · n.

Therefore, the shape derivative of uN satisfies the boundary value problem (38).
Using similar arguments as in the previous theorem, we take C2,1 bounded domains
and by Theorem 4, we consider uN belonging to H3(�).

4.3 The Shape Derivative of J

We now prove the following result.

Theorem 7 Let � be a C2,1 bounded domain. The shape derivative of the Kohn-
Vogelius cost functional

J (�) = 1

2

∫

�

|∇(u D − uN )|2 dx

in the direction of a perturbation field V ∈ �, where� is defined by (6) and the state
functions u D and uN satisfy the Dirichlet problem (3) and the Neumann problem
(4), respectively, is given by

d J (�;V) = 1

2

∫

�

(λ2 − (∇u D · n)2 + 2λκuN − (∇uN · τ)2)V · n ds.

Here, n is the unit exterior normal vector to �, τ is a unit tangent vector to �, and
κ is the mean curvature of �.

Proof In this approach, we need C2,1 domains�, which by elliptic regularity theory
implies u D, uN ∈ H3(�). Using the domain differentiation formula (19) we obtain
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dJ (�;V) =
∫

�

∇(u′D − u′N ) · ∇(u D − uN ) dx + 1

2

∫

�

|∇(u D − uN )|2vn ds (44)

where the shape derivatives u′D and u′N satisfy (33) and (38), respectively, and vn

refers to the normal component of V on �.
We simplify each integral in (44). For the first integral, we use the Green’s formula

and the boundary conditions for u D and uN and their shape derivatives, to obtain

∫

�

∇(u′D − u′N ) · ∇(uD − uN ) dx = −
∫

�

∂u D

∂n

(
∂u D

∂n
− λ

)
V · n

−
∫

�

(div�(V · n∇�uN )+ V · nκλ)(u D − uN ) ds

= −
∫

�

((
∂u D

∂n

)2

− λ∂u D

∂n

)
vn ds

+
∫

�

div�(vn∇�uN )uN ds +
∫

�

κλuN vn ds.

Since vn∇�uN · n = 0, one can apply (18) to get

∫

�

div�(vn∇�uN )uN ds = −
∫

�

∇�uN · (∇�uN )vn ds −
∫

�

|∇�uN |2vn ds

= −
∫

�

(∇uN · τ)2vn . (45)

Therefore, (45) can be simplified as

∫

�

(∇(u′D − u′N ) · ∇(u D − uN ) dx = −
∫

�

((
∂u D

∂n

)2

− λ∂u D

∂n

)
vn ds

−
∫

�

(∇uN · τ)2vn +
∫

�

κλuN vn ds. (46)

The second integral in (44) is simplified as follows:

1

2

∫

�

|∇(u D − uN )|2V · n ds = 1

2

∫

�

(|∇u D|2 − 2∇u D∇uN + |∇uN |2)vn ds

= 1

2

∫

�

((
∂u D

∂n

)2

− 2
∂u D

∂n
λ+ λ2 + (∇uN · τ)2

)
vn ds.

(47)
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Combining the integrals (46) and (47), we get the desired result; that is,

d J (�;V) = 1

2

∫

�

(λ2 − (∇u D · n)2 + 2λκuN − (∇uN · τ)2)V · n ds. (48)

We rewrite (48) as d J (�;V) = ∫
�

FV · n, where

F = 1

2

(
−(∇uN · τ)2 − (∇u D · n)2 + λ2 + 2λuNκ

)
. (49)

We conclude that J is shape differentiable at � because d J (�;V) exists for all
V ∈ � and the mapping V 
→ d J (�;V) is linear and continuous with respect to
V ∈ � since

|d J (�;V)| ≤ |F |L1(�)|V|C(�) ≤ |F |L1(�)|V|C1,1(Ū ).

5 Conclusion

First, we consider the solution u D ∈ H1(�) to the Dirichlet problem (3) and we orig-
inally consider C1,1 domains. By elliptic regularity theory, this solution is indeed an
element of H2(�). By definition, the shape derivative of u D exists in H1(�) because
the material derivative is in H1

0 (�) and the term ∇u D · V belongs to H1(�). Then
we determine the boundary value problem that is satisfied by this shape derivative.
It turns out that the regularity of u D is not sufficient to justify the boundary value
problem satisfied by its shape derivative. The same is true for the state uN . Thus in
this approach, we require more regular domains; that is, C2,1-domains, and we have
to consider more regular solutions; that is, u D, uN ∈ H3(�). This is in contrast to an
approach that bypasses shape derivatives of states, where C1,1 regularity of domains
is sufficient to justify the Eulerian derivative of J (cf. [4]).

The explicit form of the shape derivative of J is determined. We observe that
neither derivatives of the state variables nor the adjoint states appear in the final
form. Also, the explicit form obeys the Hadamard structure theorem [8, 17]; that is,
there is a function F defined on the free boundary � such that

d J (�;V) =
∫

�

FV · n ds.

If we perturb the domain in the direction V|� = −Fn, then we are sure that the
value of the functional J decreases.



17 Solving the Exterior Bernoulli Problem Using the Shape Derivative Approach 269

References

1. Abda, B., Bouchon, F., Peichl, G., Sayeh, M., Touzani, R.: A Dirichlet-Neumann cost functional
approach for the Bernoulli problem. J. Eng. Math. 81, 157–176 (2013)

2. Afraites, L., Dambrine, M., Kateb, D.: On second-order shape optimization methods for elec-
trical impedance tomography. Preprint, HAL-00140211, version 1, pp. 1–28 (2007)

3. Bacani, J.B.: Methods of shape optimization in free boundary problems. Ph.D. Thesis, Karl-
Franzens-Universitaet Graz (2013)

4. Bacani, J.B., Peichl, G.: On the first-order shape derivative of the Kohn-Vogeliuscost functional
of the Bernoulli problem. Abstr. Appl. Anal. 2013, 19 (2013). Article ID 384320. doi:10.1155/
2013/384320

5. Caffarelli, L.A., Salsa, S.: A Geometric Approach to Free Boundary Problems. American
Mathematical Society, Providence (2005)

6. Crank, J.: Free and Moving Boundary Problems. Oxford University Press Inc., New York
(1984)

7. Delfour, M.C., Zolesio, J.P.: Shapes and Geometries. SIAM, Philadelphia (2001)
8. Delfour, M.C., Zolesio, J.P.: Anatomy of the shape Hessian. Annali di Matematica pura ed

applicata 159, 315–339 (1991)
9. Flucher, M., Rumpf, M.: Bernoulli’s free-boundary problem, qualitative theory and numerical

approximation. J. Reine Angew. Math. 486, 165–204 (1997)
10. Friedman, A.: Free boundary problems in science and technology. Not. AMS 47, 854–861

(2000)
11. Fujii, N.: Second variation and its application in domain optimization problem, control of

distributed parameter systems. In: Proceedings of the 4th IFAC Symposium, vol. 24, pp. 346–
360. Pergamon Press (1986)

12. Haslinger, J., Ito, K., Kozubek, T., Kunisch, K., Peichl, G.: On the shape derivative for problems
of Bernoulli type. Interfaces Free Boundaries 1, 317–330 (2009)

13. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization (Theory, Approximation,
and Computation). SIAM Advances and Control, Philadelphia (2003)

14. Henrot, A., Pierre, M.: Variation et Optimisation de Formes. Springer, Berlin (2005)
15. Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives for a class of Bernoulli

problems. J. Math. Anal. Appl. 314, 126–149 (2006)
16. Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements. Commun. Pure

Appl. Math. 37, 289–298 (1984)
17. Lamboley, J., Pierre, M.: Structure of shape derivatives around irregular do- mains and appli-

cations. eprint arXiv:math/0609526, pp. 1–14 (2006)
18. Masanao, T., Fujii, N.: Second-order necessary conditions for domain optimization problems

in elastic structures, Part 1: surface traction given as a field. J. Optim. Theor. Appl. 72, 355–382
(1992)

19. Simon, J.: Second variations for domain optimization problems. Int. Ser. Numer. Math. 91,
361–378 (1989)

20. Sokolowski, J., Zolesio, J.: Introduction to Shape Optimization. Springer, Berlin (1991)
21. Tiihonen, T.: Shape optimization and trial methods for free boundary problems. RAIRO Mod-

elisation mathematique et analyse numerique 31, 805–825 (1997)
22. Toivanen, J.I., Haslinger, J., Mäkinen, R.A.E.: Shape optimization of systems governed by

Bernoulli free boundary problems. Comput. Methods Appl. Mech. Eng. 197, 3803–3815 (2008)

http://dx.doi.org/10.1155/2013/384320
http://dx.doi.org/10.1155/2013/384320
http://arxiv.org/abs/math/0609526


Chapter 18
Applications of the Hausdorff Measure
of Noncompactness on the Space
l p(r, s, t; B(m)), 1 ≤ p < ∞
Amit Maji and P. D. Srivastava

Abstract In this paper, we have introduced a sequence space l p(r, s, t; B(m)), 1 ≤
p < ∞ and proved that the space is a complete normed linear space. We have also
shown that the space l p(r, s, t; B(m)) is linearly isomorphic to l p for 1 ≤ p < ∞.
Further, we have established some identities or estimates for the operator norms and
the Hausdorff measure of noncompactness of certain matrix operators on this space.
Finally, we have characterized some classes of compact operators on this space.

Keywords Difference operator · Sequence space · Hausdorff measure of noncom-
pactness · Compact operators
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1 Introduction and Preliminaries

Let w be the space of all real or complex sequences x = (xn), n ∈ N0 = {0, 1, 2, · · · }.
We denote by l∞, c, c0 and l p(1 ≤ p <∞) for the space of all bounded, convergent,
null sequences and absolutely p-summable sequences respectively. Moreover, bs, cs
stand for the sequence spaces of all bounded and convergent series respectively. We
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denote by e = (1, 1, · · · ) and en for the sequence whose n-th term is 1 and others
are zero. A sequence space X is called a BK space if it is a Banach space with
continuous coordinates pn : X → K(n ∈ N0), where K denotes the real or complex
field and pn(x) = xn for all x = (xk) ∈ X and every n ∈ N0. For an infinite matrix
A and a sequence space λ, the matrix domain of A denoted by λA and is defined as
λA = {x ∈ w : Ax ∈ λ} [9]. An infinite matrix T = (tnk) is called a triangle if
tnn �= 0 and tnk = 0 for all k > n (n ∈ N0), and if X is a BK space then XT is also
a BK space.

In recent times, there is an approach of forming a new sequence space by using a
suitable matrix domain and give a characterization of some class of compact operators
on this space by applying the Hausdorff measure of noncompactness, which was first
introduced and studied by Goldenstein, Gohberg, and Markus in 1957. Recently,
several authors, namely Djolović [2], Djolović et al. [3], Mursaleen and Noman
[7], Kara and Başarir [4], etc., have established some identities or estimates for the
operator norms and the Hausdorff measure of noncompactness of matrix operators
from an arbitrary BK space to arbitrary BK space.

In this paper, our aim is to introduce a sequence space l p(r, s, t; B(m)) for 1 ≤
p < ∞. We have proved that the space is a complete normed linear space and
linearly isomorphic to l p. Moreover, we have obtained some identities or estimates
for the operator norms and for the Hausdorff measure of noncompactness of matrix
operators on this space and also characterized some classes of compact operators.

2 Difference Sequence Space l p(r, s, t; B(m)) for 1 ≤ p < ∞
In 2011, Mursaleen and Noman [8] introduced the notion of generalized means. Let
U and U0 be the sets defined by

U =
{

u = (un)
∞
n=0 ∈ w : un �= 0 for all n

}
and U0 =

{
u = (un)

∞
n=0 ∈ w : u0 �= 0

}
.

Let r = (rn), t = (tn) ∈ U and s = (sn) ∈ U0. The sequence y = (yn) of
generalized means of a sequence x = (xn) is defined by

yn = 1

rn

n∑
k=0

sn−k tk xk (n ∈ N0).

The infinite matrix A(r, s, t) of generalized means is defined by

(A(r, s, t))nk =
{ sn−k tk

rn
, 0 ≤ k ≤ n

0, k > n.
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The inverse of A(r, s, t) is the triangle B = (bnk)n,k , which is defined as

bnk =
{
(−1)n−k D(s)

n−k
tn

rk, 0 ≤ k ≤ n
0, k > n,

where D(s)
0 = 1

s0
and

D(s)
n =

1

sn+1
0

∣∣∣∣∣∣∣∣∣∣∣

s1 s0 0 0 · · · 0
s2 s1 s0 0 · · · 0
...

...
...

...

sn−1 sn−2 sn−3 sn−4 · · · s0
sn sn−1 sn−2 sn−3 · · · s1

∣∣∣∣∣∣∣∣∣∣∣

for n = 1, 2, 3, · · ·

The generalized difference matrix of order m denoted as B(m) = B(m)(u, v) =
(b(m)nk ), u, v �= 0 (see [1]) is defined as

b(m)nk =
⎧
⎨
⎩

( m
n−k

)
um−n+kvn−k, if max{0, n − m} ≤ k ≤ n

0, if 0 ≤ k < max{0, n − m}
0 if k > n.

In particular, if u = 1, v = −1 then the matrix B(m) reduces to �(m), a difference
operator of order m.

Now combining the generalized means and the operator B(m), we introduce a
sequence space l p(r, s, t; B(m)) for 1 ≤ p <∞ as

l p(r, s, t; B(m)) =
{

x = (xn) ∈ w : (((A(r, s, t).B(m))x)n) ∈ l p

}
.

By using matrix domain, we can write l p(r, s, t; B(m)) = (l p)A(r,s,t;B(m)) = {x ∈
w : A(r, s, t; B(m))x ∈ l p}, where A(r, s, t; B(m)) = A(r, s, t).B(m), product of two
triangles A(r, s, t) and B(m). The sequence y = (yn) is A(r, s, t).B(m)-transform of
a sequence x = (xn), i.e., for each n ∈ N0

yn =
n∑

j=0

( n∑
i= j

(
m

i − j

)
sn−i ti

rn
um+ j−i vi− j

)
x j .

3 Main Results

Theorem 1 The sequence space lp(r, s, t; B(m)) for 1 ≤ p < ∞ is a complete
normed linear space under the norm defined by
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‖x‖l p(r,s,t;B(m)) =
( ∞∑

n=0

∣∣∣
n∑

j=0

( n∑
i= j

(
m

i − j

)
sn−i ti

rn
um+ j−i vi− j

)
x j

∣∣∣
p) 1

p

=
( ∞∑

n=0

|(A(r, s, t; B(m))x)n|p
) 1

p
.

Proof Since B(m) is a linear operator, it is easy to show that l p(r, s, t; B(m)) is a
linear space and the functional ‖.‖l p(r,s,t;B(m)) defined above gives a norm on the

linear space l p(r, s, t; B(m)).
To show completeness, let (xk) be a Cauchy sequence in l p(r, s, t; B(m)), where
xk = (xk

j ) = (xk
0 , xk

1 , xk
2 , . . .) ∈ l p(r, s, t; B(m)) for each k ∈ N0. Then for every

ε > 0, there exists k0 ∈ N such that

‖xk − xl‖l p(r,s,t;B(m)) <
ε

2
for k, l ≥ k0,

i.e.,

( ∞∑
n=0

|(A(r, s, t; B(m))xk)n− (A(r, s, t; B(m))xl)n|p
) 1

p
<
ε

2
for all k, l ≥ k0, (1)

This shows that the sequence ((A(r, s, t).B(m))xk)n is a Cauchy sequence of scalars
for each n ∈ N0 and hence ((A(r, s, t).B(m))xk)n converges for each n. We write

lim
k→∞((A(r, s, t).B(m))xk)n = ((A(r, s, t).B(m))x)n for each n ∈ N0.

On taking l →∞ in (1), we obtain

( ∞∑
n=0

|(A(r, s, t; B(m))xk)n − (A(r, s, t; B(m))x)n|p
) 1

p
< ε for all k ≥ k0.

Hence ‖xk − x‖l p(r,s,t;B(m)) < ε for all k ≥ k0. This implies that the sequence (xk)

converges to x in l p(r, s, t; B(m)). Next we show that x ∈ l p(r, s, t; B(m)).
Since xk ∈ l p(r, s, t; B(m)) for k ≥ k0, we have

‖x‖l p(r,s,t;B(m)) ≤ ‖xk0‖l p(r,s,t;B(m)) + ‖xk0 − x‖l p(r,s,t;B(m)),

which is finite. Hence x ∈ l p(r, s, t; B(m)). This completes the proof.

Theorem 2 The sequence space l p(r, s, t; B(m)) is linearly isomorphic to the space
lp, i.e., l p(r, s, t; B(m)) ∼= l p for 1 ≤ p <∞.

Proof We define a map T : l p(r, s, t; B(m))→ l p by x 
−→ T x = y = (yn), where
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yn =
n∑

j=0

( n∑
i= j

(
m

i − j

)
sn−i ti

rn
um+ j−i vi− j

)
x j .

Since B(m) is a linear operator, so the linearity of T is trivial. It is clear from the
definition that T x = 0 implies x = 0. Thus T is injective. To prove T is surjective,
let y = (yn) ∈ l p. Since y = (A(r, s, t).B(m))x , so we have

x = (A(r, s, t).B(m))−1 y = (B(m))−1.A(r, s, t)−1 y.

So we can get a sequence x = (xn) as

xn =
n∑

l=0

n∑
j=l

(−1) j−l
(

m + n − j − 1

n − j

)
(−v)n− j

um+n− j

D(s)
j−l

t j
rl yl , n ∈ N0.

Then

‖x‖l p(r,s,t;B(m)) =
( ∞∑

n=0

∣∣∣∣
n∑

j=0

( n∑
i= j

(
m

i − j

)
sn−i ti

rn
um+ j−i vi− j

)
x j

∣∣∣∣
p) 1

p

=
( ∞∑

n=0

|yn|p
) 1

p = ‖y‖p <∞.

Thus x ∈ l p(r, s, t; B(m)) and this shows that T is surjective. Hence T is a linear bijec-
tion from l p(r, s, t; B(m)) to l p. Also T is norm preserving. So l p(r, s, t; B(m)) ∼= l p.
This completes the proof.

Remark 1 Since l p(r, s, t; B(m)) ∼= l p, the Schauder basis of the sequence space
l p(r, s, t; B(m)) is the inverse image of the basis of l p . Hence the space l p(r, s, t; B(m))
for 1 ≤ p <∞ is separable.

4 Compact Operators on the Space l p(r, s, t; B(m))

In this section, we apply the Hausdorff measure of noncompactness to establish
necessary and sufficient conditions for an infinite matrix to be a compact operator
on the space l p(r, s, t; B(m)).

Let X and Y be two Banach spaces. We denote by B(X, Y ), the set of all bounded
(continuous) linear operators L : X → Y , which is also a Banach space with the
operator norm given by

‖L‖ = sup
x∈SX

‖L(x)‖Y for all L ∈ B(X, Y ),



276 A. Maji and P. D. Srivastava

where SX denotes the unit sphere, i.e., SX = {x ∈ X : ‖x‖ = 1}. A linear operator
L : X → Y is said to be compact if the domain of L is X and for every bounded
sequence (xn) ⊂ X , the sequence (L(xn)) has a subsequence which is convergent
in Y . We denote by C (X, Y ), the class of all compact operators in B(X, Y ). An
operator L ∈ B(X, Y ) is said to be finite rank if dimR(L) <∞, where R(L) is the
range space of L . If X is a BK space and a = (ak) ∈ w, then we consider

‖a‖∗X = sup
x∈SX

∣∣∣
∞∑

k=0

ak xk

∣∣∣, (2)

provided the expression on the right side exists and is finite which is the case whenever
a ∈ Xβ [7].

Let (X, d) be a metric space and MX be the class of all bounded subsets of X .
Let B(x, r) = {y ∈ X : d(x, y) < r} denotes the open ball of radius r > 0 with
center at x . The Hausdorff measure of noncompactness of a set Q ∈MX , denoted
by χ(Q), is defined by

χ(Q) = inf
{
ε > 0 : Q ⊂

n⋃
i=0

B(xi , ri ), xi ∈ X, ri < ε, n ∈ N

}
.

The functionχ :MX → [0,∞) is called the Hausdorff measure of noncompactness.
The basic properties of the Hausdorff measure of noncompactness can be found in
[5, 7]. For example, if Q, Q1 and Q2 are bounded subsets of a metric space (X, d)
then

χ(Q) = 0 if and only if Q is totally bounded and

if Q1 ⊂ Q2 then χ(Q1) ≤ χ(Q2).

In addition, if X is a normed linear space, then the function χ has some additional
properties due to linear structure, namely,

χ(Q1 + Q2) ≤ χ(Q1)+ χ(Q2)

χ(αQ) = |α|χ(Q) for all α ∈ K.

Let φ denotes the set of all finite sequences, i.e., of sequences that terminate with
only zeros. Let p′ be the conjugate of p, i.e., p′ = p

p−1 for 1 < p <∞ and p′ = ∞
for p = 1.

Lemma 1 ([5], Theorem 1.29) Let X denotes any of the spaces c0, c, l∞ or lp. Then
Xβ = l1 (Xβ = l p′ for X = l p) and ‖a‖∗X = ‖a‖l1 for all a ∈ l1 (‖a‖∗X = ‖a‖l p′
for X = l p).
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Lemma 2 [7] Let X ⊃ φ and Y be BK spaces. Then (X, Y ) ⊂ B(X, Y ), i.e., every
matrix A ∈ (X, Y ) defines an operator L A ∈ B(X, Y ), where L A(x) = Ax for all
x ∈ X.

Lemma 3 [2] Let X ⊃ φ be a BK space and Y be any of the spaces c0, c or l∞. If
A ∈ (X, Y ), then

‖L A‖ = ‖A‖(X,l∞) = sup
n
‖An‖∗X <∞.

Lemma 4 [5] Let Q be a bounded subset of the normed space X, where X = l p

for 1 ≤ p < ∞ and X = c0 for p = ∞. If Pl : X → X is an operator defined by
Pl(x) = (x0, x1, · · · , xl , 0, 0, · · · ) for all x = (xk) ∈ X, then

χ(Q) = lim
l→∞

(
sup
x∈Q
‖(I − Pl)(x)‖

)
,

where I is the identity operator on X.

Lemma 5 [5] Let X, Y be two Banach spaces and L ∈ B(X, Y ). Then

‖L‖χ = χ(L(SX ))

and
L ∈ C (X, Y ) if and only if ‖L‖χ = 0.

We establish the following lemmas which are required for our study.

Lemma 6 If a = (ak) ∈ [l p(r, s, t; B(m))]β then ã = (ãk) ∈ lβp = l p′ and the
equality

∞∑
k=0

ak xk =
∞∑

k=0

ãk yk

holds for every x = (xk) ∈ l p(r, s, t; B(m)) and y = (yk) ∈ l p, where y =
(A(r, s, t).B(m))x. In addition,

ãk = rk

[
ak

s0tkum
+

k+1∑
i=k

(−1)i−k D(s)
i−k

ti

∞∑
j=k+1

(
m + j − i − 1

j − i

)
(−v) j−i

u j−i+m
a j

+
∞∑

i=k+2

(−1)i−k D(s)
i−k

ti

∞∑
j=i

(
m + j − i − 1

j − i

)
(−v) j−i

u j−i+m
a j

]
. (3)

Proof Let a = (ak) ∈ [l p(r, s, t; B(m))]β . Then by ([6], Theorem 3.2), we have

R(a) = (Rk(a)) ∈ lβp = l p′ and also
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∞∑
k=0

ak xk =
∞∑

k=0

Rk(a)Tk(x) ∀ x ∈ l p(r, s, t; B(m)),

where

Rk(a) =
∞∑
j=k

j∑
i=k

(−1)i−k
(

m + j − i − 1

j − i

)
D(s)

i−k

ti

(−v) j−i

u j−i+m
rka j

= rk

[
ak

s0tkum
+

k+1∑
i=k

(−1)i−k D(s)
i−k

ti

∞∑
j=k+1

(
m + j − i − 1

j − i

)
(−v) j−i

u j−i+m
a j

+
∞∑

i=k+2

(−1)i−k D(s)
i−k

ti

∞∑
j=i

(
m + j − i − 1

j − i

)
(−v) j−i

u j−i+m
a j

]
= ãk

and y = T (x) = (A(r, s, t).B(m))x . This completes the proof.

Lemma 7 Let 1 ≤ p <∞. Then we have

‖a‖∗l p(r,s,t;B(m)) = ‖ã‖l p′ =

⎧⎪⎪⎨
⎪⎪⎩

( ∞∑
k=0

|ãk |p′
) 1

p′
, 1 < p <∞

sup
k
|ãk |, p = 1

for all a = (ak) ∈ [l p(r, s, t; B(m))]β , where ã = (ãk) is defined in (3).

Proof Let a = (ak) ∈ [l p(r, s, t; B(m))]β . Then from Lemma 6, we have ã = (ãk) ∈
l p′ . Also x ∈ Sl p(r,s,t;B(m)) if and only if y = T (x) ∈ Sl p as ‖x‖l p(r,s,t;B(m)) = ‖y‖l p .
From (2), we have

‖a‖∗l p(r,s,t;B(m)) = sup
x∈Sl p (r,s,t;B(m))

∣∣∣
∞∑

k=0

ak xk

∣∣∣ = sup
y∈Sl p

∣∣∣
∞∑

k=0

ãk yk

∣∣∣ = ‖ã‖∗l p
.

Using Lemma 1, we have ‖a‖∗
l p(r,s,t;B(m)) = ‖ã‖

∗
l p
= ‖ã‖l p′ , which is finite as

ã ∈ l p′ . This completes the proof.

Lemma 8 Let Y be any sequence space, A = (ank)n,k be an infinite matrix and
1 ≤ p < ∞. If A ∈ (l p(r, s, t; B(m)), Y ) then Ã ∈ (l p, Y ) such that Ax = Ãy
for all x ∈ l p(r, s, t; B(m)) and y ∈ l p, which are connected by the relation y =
(A(r, s, t).B(m))x and Ã = (ãnk)n,k is given by

ãnk = rk

[
ank

s0tkum
+

k+1∑
i=k

(−1)i−k D(s)
i−k

ti

∞∑
j=k+1

(
m + j − i − 1

j − i

)
(−v) j−i

u j−i+m
anj
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+
∞∑

i=k+2

(−1)i−k D(s)
i−k

ti

∞∑
j=i

(
m + j − i − 1

j − i

)
(−v) j−i

u j−i+m
anj

]
, (4)

provided the series on the right side converges for all n, k.

Proof We assume that A ∈ (l p(r, s, t; B(m)), Y ), then An ∈ [l p(r, s, t; B(m))]β for

all n. Thus it follows from Lemma 6 that Ãn ∈ lβp = l p′ for all n and Ax = Ãy
holds for every x ∈ l p(r, s, t; B(m)), y ∈ l p, which are connected by the relation y =
(A(r, s, t).B(m))x . Hence Ãy ∈ Y . Since x = (B(m))−1(A(r, s, t))−1 y, for every
y ∈ l p, we get some x ∈ l p(r, s, t; B(m)) and hence Ã ∈ (l p, Y ). This completes the
proof.

Lemma 9 Let 1 < p < ∞, A = (ank)n,k be an infinite matrix and Ã = (ãnk)n,k
be the associate matrix defined in (4). If A ∈ (l p(r, s, t; B(m)), Y ), where Y ∈
{c0, c, l∞}, then

‖L A‖ = ‖A‖(l p(r,s,t;B(m)),l∞) = sup
n

( ∞∑
k=0

|ãnk |p′
) 1

p′
<∞.

Proof The proof follows from Lemmas 3 and 7.

Now we state and prove the main result of this section.

Theorem 3 Let 1 < p <∞. We have
(a) if A ∈ (l p(r, s, t; B(m)), c0) then

‖L A‖χ = lim sup
n→∞

( ∞∑
k=0

|ãnk |p′
) 1

p′ (5)

(b) if A ∈ (l p(r, s, t; B(m)), l∞) then

0 ≤ ‖L A‖χ ≤ lim sup
n→∞

( ∞∑
k=0

|ãnk |p′
) 1

p′
. (6)

Proof (a) Clearly the expressions in (5) and in (6) exist by Lemma 9. We write
S = Sl p(r,s,t;B(m)) in short. Then by Lemma 5, we have ‖L A‖χ = χ(AS). Since

l p(r, s, t; B(m)) and c0 are BK spaces, A induces a continuous map L A from
l p(r, s, t; B(m)) to c0 by Lemma 2. Thus AS is bounded in c0, i.e., AS ∈ Mc0 .
Now by Lemma 4,

χ(AS) = lim
l→∞

(
sup
x∈S
‖(I − Pl)(Ax)‖∞

)
,
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where the operator Pl : c0 → c0 is defined by Pl(ξ) = (ξ0, ξ1, · · · , ξl , 0, 0, · · · ) for
all ξ = (ξk) ∈ c0 and l ∈ N0. Therefore, ‖(I − Pl)(Ax)‖∞ = sup

n>l
|An(x)| for all

x ∈ l p(r, s, t; B(m)). Using (2) and Lemma 7, we have

sup
x∈S
‖(I − Pl)(Ax)‖∞ = sup

n>l
‖An‖∗l p(r,s,t;B(m))

= sup
n>l
‖ Ãn‖l p′

Therefore, χ(AS) = lim
l→∞

(
sup
n>l
‖ Ãn‖l p′

)
= lim sup

n→∞
‖ Ãn‖l p′ = lim sup

n→∞
( ∞∑

k=0

|ãnk |p′
) 1

p′ .

This completes the proof.
(b)We first define an operator Pl : l∞ → l∞ by Pl(ξ) = (ξ0, ξ1, · · · , ξl , 0, 0, · · · )

for all ξ = (ξk) ∈ l∞ and l ∈ N0. We have

AS ⊂ Pl(AS)+ (I − Pl)(AS).

By the property of χ , we have

0 ≤ χ(AS) ≤ χ(Pl(AS))+ χ((I − Pl)(AS))

= χ((I − Pl)(AS))

≤ sup
x∈S
‖(I − Pl)(Ax)‖∞

= sup
n>l
‖ Ãn‖l p′ .

Hence

0 ≤ χ(AS) ≤ lim sup
n→∞

‖ Ãn‖l p′ = lim sup
n→∞

( ∞∑
k=0

|ãnk |p′
) 1

p′
.

This completes the proof.

Corollary 1 Let 1 < p <∞.
(a) If A ∈ (l p(r, s, t; B(m)), c0), then L A is compact if and only if

lim
n→∞

( ∞∑
k=0

|ãnk |p′
) 1

p′ = 0.

(b) If A ∈ (l p(r, s, t, B(m)), l∞), then L A is compact if lim
n→∞

( ∞∑
k=0

|ãnk |p′
) 1

p′ = 0.

Proof The proof is immediate from Theorem 3.
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5 Conclusion

Here we have defined a new sequence space combining the generalized means and
difference operator, which is more general than the previous classes of sequences.
We have also shown that the new space is a complete normed linear space and also
a BK space having Schauder basis. We have characterized some classes of compact
operators on this new space using the Hausdorff measure of noncompactness. We
have also obtained some identities and estimates for the operator norms and the
Hausdorff measure of noncompactness of certain matrix operators.
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Chapter 19
Some Geometric Properties of Generalized
Cesàro–Musielak–Orlicz Sequence Spaces

Atanu Manna and P. D. Srivastava

Abstract A generalized Cesàro–Musielak–Orlicz sequence space Ces�(q)
equipped with the Luxemberg norm is introduced. It is proved that Ces�(q) is a
Banach space and also criteria for the coordinatewise uniformly Kadec–Klee prop-
erty and the uniform Opial property are obtained.
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Coordinatewise Kadec–Klee property · Uniform Opial property
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1 Introduction

In fixed point theory, geometrical properties of Banach space, such as Kadec–Klee
property, Opial property, and their several generalizations play fundamental role. In
particular, the Opial property of a Banach space has its applications in differential
equations and integral equations, etc. On the other hand the Kadec–Klee property
has several applications in Ergodic theory and many other branches of analysis [22].
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In recent times, the theory of Cesàro–Orlicz sequence spaces and Musielak–Orlicz
sequence spaces and their geometric properties has been studied extensively. Some
topological properties like absolute continuity, order continuity, separability, com-
pleteness, and relations between norm and modular as well as some geometrical
properties like Fatou property, monotonicity, Kadec–Klee property, uniform Opial
property, rotundity, local rotundity, property-β etc. are studied in [2–4, 6, 8,
13, 20, 21]. Recently, Khan (see [15, 16]) introduced Riesz–Musielak–Orlicz
sequence spaces and studied some geometric properties of this space. Quite recently,
Mongkolkeha, and Kumam [17] studied (H)-property and uniform Opial property
of generalized Cesàro sequence spaces. Some topological properties of sequence
spaces defined by using Orlicz function are also studied in [1, 5, 25]. This motivated
us to introduce generalized Cesàro–Musielak–Orlicz sequence spaces, which include
the well known Cesàro, generalized Cesàro [24], Cesàro-Orlicz, Cesàro–Musielak–
Orlicz sequence spaces etc. in particular cases. In this paper, we have made an attempt
to study some of the geometric properties in generalized Cesàro–Musielak–Orlicz
sequence spaces.

Throughout the paper, we denote N, R and R
+ as the set of natural numbers,

real numbers, and nonnegative real numbers, respectively. Let (X, ‖.‖) be a Banach
space and l0 be the space of all real sequences x = (x(i))∞i=1. Let S(X) and B(X)
denote the unit sphere and closed unit ball, respectively. A sequence (xl) ⊂ X
is said to be ε-separated sequence if separation of the sequence (xl) denoted by
sep(xl) = inf{‖xl − xm‖ : l �= m} > ε for some ε > 0 [11].

A Banach space X is said to have the Kadec–Klee property, denoted by (H), if
weakly convergent sequence on the unit sphere is strongly convergent, i.e., convergent
in norm [12]. A Banach space X is said to possess coordinatewise Kadec–Klee
property, denoted by (Hc) [7], if x ∈ X and every sequence (xl) ⊂ X such that

‖xl‖ → ‖x‖ and xl(i)→ x(i) for each i, then ‖xl − x‖ → 0.

It is known that X ∈ (Hc) implies X ∈ (H), because weak convergence in X implies
the coordinatewise convergence. A Banach space X has the coordinatewise uniformly
Kadec–Klee property, denoted by (U K Kc) [27], if for every ε > 0 there exists a
δ > 0 such that

(xl ) ⊂ B(X), sep(xl ) ≥ ε, ‖xl‖ → ‖x‖ and xl (i)→ x(i) for each i implies ‖x‖ ≤ 1− δ.

It is known that the property (U K Kc) implies property (Hc).
A Banach space X is said to have the Opial property [23] if for every weakly null

sequence (xl) ⊂ X and every nonzero x ∈ X , we have

lim inf
l→∞ ‖xl‖ < lim inf

l→∞ ‖xl + x‖.

A Banach space X is said to have the uniform Opial property [23] if for each ε > 0
there exists μ > 0 such that for any weakly null sequence (xl) in S(X) and x ∈ X
with ‖x‖ ≥ ε the following inequality hold:
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1+ μ ≤ lim inf
l→∞ ‖xl + x‖.

In any Banach space X an Opial property is important because it ensures that X has
a weak fixed point property [9]. Opial in [19] has shown that the space L p[0, 2π ]
(p �= 2, 1 < p <∞) does not have this property, but the Lebesgue sequence space
l p(1 < p <∞) has.

A map ϕ : R→ [0,∞] is said to be an Orlicz function if it is an even, convex, left
continuous on [0,∞), ϕ(0) = 0, not identically zero and ϕ(u)→∞ as u →∞. A
sequence � = (ϕn) of Orlicz functions ϕn is called Musielak–Orlicz function [18].
For a Musielak–Orlicz function �, the complementary function � = (ψn) of � is
defined in the sense of Young as

ψn(u) = sup
v≥0
{ |u|v − ϕn(v)} for all u ∈ R and n ∈ N.

Given any Musielak–Orlicz function � and x = (x(n))∞n=1 ∈ l0, a convex modular
I� : l0 → [0,∞] is defined by

I�(x) =
∞∑

n=1

ϕn

(
|x(n)|

)
and

the linear space l� = {x ∈ l0 : I�(r x) < ∞ for some r > 0} is called Musielak–
Orlicz sequence space. The space l� equipped with functional |||x |||L� defined by

|||x |||L� = inf
{

r > 0 : I�
( x

r

)
≤ 1

}

becomes a Banach space. This functional |||x |||L� is called Luxemberg norm and
the corresponding Musielak–Orlicz sequence space is denoted by l L

�. For the details
about Musielak–Orlicz sequence spaces and their geometric properties we refer to
the articles [3, 10, 13, 18]. The subspace of l� defined as

{
x = (x(n)) ∈ l0 : ∀r > 0 ∃nr ∈ N such that

∞∑
n=nr

ϕn

(
r |x(n)|

)
<∞

}
,

equipped with the Luxemberg norm induced from l� is denoted by hL
�.

A Musielak–Orlicz function � is said to satisfy the δ0
2-condition denoted by

� ∈ δ0
2 if there are positive constants a, K , a natural m and a sequence (cn) of

positive numbers such that (cn)
∞
n=m ∈ l1 and the inequality

ϕn(2u) ≤ Kϕn(u)+ cn (1)
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holds for every n ∈ N whenever ϕn(u) ≤ a. If a Musielak–Orlicz function� satisfies
δ0

2-condition with m = 1, then � is said to satisfy δ2-condition [10, 18].
For any Musielak–Orlicz function�, h� coincides with l� if and only if� satisfies

δ0
2-condition [10].

A Musielak–Orlicz function � = (ϕn)
∞
n=1 satisfies the condition (∗) [13] if for

any ε ∈ (0, 1) there is a δ > 0 such that

ϕn(u) < 1− ε implies ϕn((1+ δ)u) ≤ 1 for all n ∈ N and u ≥ 0. (2)

A Musielak–Orlicz function � is to said to vanishes only at zero, which is denoted
by � > 0 if ϕn(u) > 0 for any n ∈ N and u > 0.

2 Class Ces�(q)

Let q = (qn)
∞
n=1 be a sequence of real numbers with qk ≥ 1 for k ∈ N, and Qn =

n∑
k=1

qk . We introduce the Riesz weighted mean map Rq on l0 as Rq : l0 → [0,∞)
such that x → Rq x , where

Rq x = (Rq x(n))∞n=1,with Rq x(n) = 1

Qn

n∑
k=1

qk |x(k)| for each n = 1, 2, . . .

and x ∈ l0.

Using this Riesz weighted mean map and a Musielak–Orlicz function� = (ϕn), we
define on l0 a functional σ�(x) by

σ�(x) = I�(R
q x) =

∞∑
n=1

ϕn

( 1

Qn

n∑
k=1

qk |x(k)|
)
.

Since � is convex, so it is easy to verify that σ�(x) is a convex modular on l0(for
definition see [18]), i.e., it satisfies σ�(x) = 0 if and only if x = 0, σ�(−x) = σ�(x),
σ�(γ x+ δy) ≤ γ σ�(x)+ δσ�(y)whenever x, y ∈ l0 and γ, δ ≥ 0 with γ + δ = 1.

We now introduce the space Ces�(q) as follows:

Ces�(q) = {x ∈ l0 : Rq x ∈ l�} = {x ∈ l0 : σ�(r x) <∞ for some r > 0}.

Clearly, it is a linear space and also forms a normed linear space under the norm
‖x‖L

� = |||Rq x |||L� introduced with the help of the norm on l�. We call Ces�(q) as
the generalized Cesàro–Musielak–Orlicz sequence space.

The generalized class Ces�(q) include the following classes in particular cases:
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(i) When qn = 1, n = 1, 2, . . ., the Ces�(q) reduces to the Cesàro–Musielak
–Orlicz sequence space ces� studied by Wangkeeree [26], where

ces� =
{

x ∈ l0 :
∞∑

n=1

ϕn

( r

n

n∑
k=1

|x(k)|
)
<∞ for some r > 0

}
,

(ii) For ϕn = ϕ, ∀n the ces� becomes well-known Cesàro–Orlicz sequence space
cesϕ studied recently by Cui et al. [2], Foralewski et al. [6], Petrot and Suantai
[20],

(iii) For ϕn(x) = |x |pn , pn ≥ 1 ∀n the Ces�(q) reduces to the sequence space
Ces(p)(q) studied by Mongkolkeha and Kumam [17] and when ϕn(x) = |x |pn

with pn = p ≥ 1 ∀n then Ces�(q) reduces to the sequence space Cesp(q)
studied by Khan [14].

We consider the subspace (CesL
�(q))a of Ces�(q) as

(Ces�(q))a =
{

x ∈ Ces�(q) : ∀r > 0 ∃nr such that
∞∑

n=nr

ϕn

( r

Qn

n∑
k=1

qk |x(k)|
)
<∞

}
.

In this article, we have introduced the generalized Cesàro–Musielak–Orlicz sequence
space and have established the completeness property of the space and also obtained
criteria for some geometric properties like coordinatewise Uniform Kadec–Klee
property, uniform Opial property with respect to the Luxemberg norm.

Notations:
For any x ∈ l0 and i ∈ N, throughout the paper we use the following notations:
x |i = (x(1), x(2), x(3), . . . , x(i), 0, 0, . . .), called the truncation of x at i ,
x |N−i = (0, 0, 0, . . . , 0, x(i + 1), x(i + 2), . . .),
x |I = {x = (x(i)) ∈ l0 : x(i) �= 0 for all i ∈ I ⊆ N and x(i) = 0 for all i ∈

N \ I },
For simplifying notations, we write CesL

�(q) = (Ces�(q), ‖.‖L
�).

3 Main Results

This section contains main results of our work.

Theorem 1 Let� be a Musielak–Orlicz function. Then the following statements are
true:

(i) (Ces�(q), ‖.‖L
�) is a Banach space,

(ii) (CesL
�(q))a is a closed subspace of CesL

�(q),
(iii) if � satisfies δ2-condition then (CesL

�(q))a = CesL
�(q).
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Proof Let (xs)∞s=1 be a Cauchy sequence in CesL
�(q), where xs = (xs(k))∞k=1 and

ε > 0 be given. Then there exists a natural number T such that for every ε > 0 one
can find rε with rε < ε, we have

σ�

(
xs − xt

rε

)
≤ 1 for all s, t ≥ T .

By definition of σ� for each l ∈ N, we have

l∑
n=1

ϕn

(
1

rεQn

n∑
k=1

qk |xs(k)− xt (k)|
)
≤ 1 for all s, t ≥ T, (3)

which implies that for each l ≥ n ≥ 1

ϕn

(
1

rεQn

n∑
k=1

qk |xs(k)− xt (k)|
)
≤ 1 for all s, t ≥ T . (4)

Let pn be the corresponding kernel of the Orlicz function ϕn for each n. We choose
a constant s0 > 0 and γ > 1 such that γ s0

2 pn(
s0
2 ) ≥ 1, for each n ∈ N (which is

follows from ϕn(
s0
2 ) =

∫ s0
2

0 pn(t)dt and s0 > 0).
By the integral representation of ϕn for each n, we have

1

rεQn

n∑
k=1

qk |xs(k)− xt (k)| ≤ γ s0 for each n ∈ N and for all s, t ≥ T . (5)

Otherwise, one can find a natural n with 1
rεQn

n∑
k=1

qk |xs(k)− xt (k)| > γ s0 such that

ϕn

( n∑
k=1

qk |xs(k)− xt (k)|
rεQn

)
≥

n∑
k=1

qk |xs(k)− xt (k)|
rεQn∫

γ s0
2

pn(t)dt >
γ s0

2
pn(

s0

2
),

which contradicts (4). Hence from (5), we have (xs(k))∞s=1 is a Cauchy sequence of
real numbers for each k and hence converges for each k. Suppose for each k ∈ N,
lim

t→∞ xt (k) = x(k). Taking t →∞ in (3), we obtain for each l ∈ N

l∑
n=1

ϕn

(
1

rεQn

n∑
k=1

qk |xs(k)− x(k)|
)
≤ 1 for all s ≥ T,
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which implies that σ�
( xs−x

rε

) ≤ 1 for all s ≥ T , i.e., ‖xs − x‖L
� ≤ rε < ε for

all s ≥ T . Therefore xs → x in ‖.‖L
� as s → ∞. We omit the verification of

x ∈ CesL
�(q) as it is easy to obtain. This finishes the proof of part (i).

(ii) Clearly (CesL
�(q))a is a subspace CesL

�(q). It is sufficient to show that
(CesL

�(q))a is a closed subspace of CesL
�(q). For this, let xi = (xi (k))∞k=1 ∈

(CesL
�(q))a for each i ∈ N and ‖x − xi‖L

� → 0 as i →∞ and x ∈ CesL
�(q).

We show that x ∈ (CesL
�(q))a . By the equivalent definition of norm and modu-

lar convergence, we have σ�(r(x− xi ))→ 0 as i →∞ for all r > 0. So for all
r > 0 there exists J ∈ N such thatσ�(2r(x−xJ )) < 1. Since xJ ∈ (CesL

�(q))a

so there exists n J such that
∞∑

n=n J

ϕn

( 2r

Qn

n∑
k=1

|qk xJ (k)|
)
< ∞ ∀r > 0. We

choose nr = n J , then we have

∞∑
n=n J

ϕn

( r

Qn

n∑
k=1

qk |x(k)|
)

≤
∞∑

n=n J

ϕn

( r

2Qn

n∑
k=1

2qk |x(k)− xJ (k)| + r

2Qn

n∑
k=1

2qk |xJ (k)|
)

≤ 1

2

∞∑
n=n J

ϕn

( 2r

Qn

n∑
k=1

qk |x(k)− xJ (k)|
)
+ 1

2

∞∑
n=n J

ϕn

( 2r

Qn

n∑
k=1

qk |xJ (k)|
)

≤ 1

2
σ�(2r(x − xJ ))+ 1

2

∞∑
n=n J

ϕn

( 2r

Qn

n∑
k=1

qk |xJ (k)|
)
<∞.

Since r is arbitrary, we have x ∈ (CesL
�(q))a . This completes the proof.

(iii) We need to show here only the inclusion CesL
�(q) ⊂ (CesL

�(q))a . Let x ∈
CesL

�(q). Then for some t > 0, σ�(t x) <∞, i.e.,
∞∑

n=1

ϕn

( t

Qn

n∑
k=1

qk |x(k)|
)
<

∞. We show that for any r > 0 there exists a nr ∈ N such that

∞∑
n=nr

ϕn

( r

Qn

n∑
k=1

qk |x(k)|
)
<∞.

If r ∈ [0, t] then it is easily follows from

∞∑
n=nr

ϕn

( r

Qn

n∑
k=1

qk |x(k)|
)
≤
∞∑

n=nr

ϕn

( t

Qn

n∑
k=1

qk |x(k)|
)
<∞.

Now, we fix t and choose r > t . Since x ∈ CesL
�(q), i.e., for some t > 0, σ�(t x) <

∞, so there exists nr and a constant a such that



290 A. Manna and P. D. Srivastava

∞∑
n=nr

ϕn

( t

Qn

n∑
k=1

qk |x(k)|
)
<

a

2
.

Therefore for each n ≥ nr , we have

ϕn

( t

Qn

n∑
k=1

qk |x(k)|
)
<

a

2
.

Choose a sequence (cn)
∞
n=1 of positive real numbers such that

∞∑
n=1

cn < ∞. So for

a given ε > 0, there exists a nr such that
∞∑

n=nr

cn <
ε

2
. Let u = t

Qn

n∑
k=1

qk |x(k)|,
K > 0 be a constant and a is chosen above. Since r > t so there is a l ∈ N such that
r ≤ 2l t . Applying δ2-condition for all n ≥ nr , we have

ϕn

( r

Qn

n∑
k=1

qk |x(k)|
)
≤ ϕn

( 2l t

Qn

n∑
k=1

qk |x(k)|
)
≤ K lϕn

( t

Qn

n∑
k=1

qk |x(k)|
)

+
( l−1∑

i=0

K i
)

cn

Taking summation on both sides over n ≥ nr , we obtain

∞∑
n=nr

ϕn

( r

Qn

n∑
k=1

qk |x(k)|
)
≤ K l

∞∑
n=nr

ϕn

( t

Qn

n∑
k=1

qk |x(k)|
)
+

( l−1∑
i=0

K i
) ∞∑

n=nr

cn <∞.

Hence x ∈ (CesL
�(q))a .

We assume in the rest of this work that Musielak–Orlicz function� = (ϕn) with all
ϕn being finitely valued. The following known lemmas are useful in the sequel:

Lemma 1 Let x ∈ (CesL
�(q))a be an arbitrary element. Then ‖x‖L

� = 1 if and only
if σ�(x) = 1.

Proof The proof will run on the parallel lines of the proof of Lemma 2.1 in [2].

Lemma 2 Suppose � ∈ δ2 and � > 0. Then for any sequence (xl) in CesL
�(q),‖xl‖L

�→ 0 if and only if σ�(xl)→ 0.

Proof For the proof of this lemma see [7, 13].

Lemma 3 If � ∈ δ2, i.e., (1), then for any x ∈ CesL
�(q),

‖x‖L
� = 1 if and only if σ�(x) = 1.
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Proof Since � ∈ δ2 implies CesL
�(q) = (CesL

�(q))a . The proof follows from
Lemma 1.

Lemma 4 Let� ∈ δ2, i.e., (1) and satisfies the condition (∗), i.e., (2). Then for any
x ∈ CesL

�(q) and every ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1) such that σ�(x) ≤ 1−ε
implies ‖x‖L

� ≤ 1− δ.
Proof The proof of this lemma will be in a way similar to that of the proof of Lemma
9 in [13].

Lemma 5 [13] Let (X, ‖.‖) be normed space. If f : X → R is a convex function
in the set K (0, 1) = {x ∈ X : ‖x‖ ≤ 1} and | f (x)| ≤ M for all x ∈ K (0, 1)
and some M > 0 then f is almost uniformly continuous in K (0, 1); i.e., for all
d ∈ (0, 1) and ε > 0 there exists a δ > 0 such that ‖y‖ ≤ d and ‖x − y‖ < δ

implies | f (x)− f (y)| < ε for all x, y ∈ K (0, 1).

Lemma 6 Let� ∈ δ2, i.e., (1),� > 0 and satisfies the condition (∗), i.e., (2). Then
for each d ∈ (0, 1) and ε > 0 there exists δ = δ(d, ε) > 0 such that σ�(x) ≤ d,
σ�(y) ≤ δ imply

|σ�(x + y)− σ�(x)| < ε for any x, y ∈ CesL
�(q). (6)

Proof Since � ∈ δ2 and satisfies condition (∗), so by Lemma 4, there exists d1 ∈
(0, 1) such that ‖x‖L

� ≤ d1. Also by Lemma 2, we find a δ > 0 such that for every
δ1 > 0, σ�(y) ≤ δ implies ‖y‖L

� ≤ δ1 for any y ∈ CesL
�(q). So, if σ�(x) ≤ d

and σ�(y) ≤ δ then ‖x‖L
� ≤ d1 and ‖y‖L

� ≤ δ1. Hence by Lemma 5, we have
|σ�(x + y)− σ�(x)| < ε because the functional σ� satisfies all the assumptions of
f defined in Lemma 5.

Lemma 7 Let � ∈ δ2, i.e., (1) and satisfies the condition (∗), i.e., (2) and � > 0.
Then for any x ∈ CesL

�(q) and any ε > 0 there exists δ = δ(ε) > 0 such that
σ�(x) ≥ 1+ ε implies ‖x‖L

� ≥ 1+ δ.
Proof The proof of this lemma is parallel to the proof of the Lemma 4 in [3].

Theorem 2 Let � > 0 be a Musielak–Orlicz function satisfying condition δ2, i.e.,
(1) and (∗), i.e., (2). Then sequence space CesL

�(q) has the UKKc-property.

Proof Since � > 0 and it satisfies the condition δ2, so by Lemma 2, for a given
ε > 0 there exist a η > 0, we have

‖x‖L
� ≥

ε

4
⇒ σ�(x) ≥ η. (7)

With this η > 0, by Lemma 4, one can find a δ ∈ (0, 1) such that

‖x‖L
� > 1− δ ⇒ σ�(x) > 1− η. (8)
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Let (xl) ⊂ B(CesL
�(q)), ‖xl‖L

� → ‖x‖L
�, xl(i)→ x(i) for all i ∈ N and sep(xl) ≥

ε. We show that there exists a δ > 0 such that ‖x‖L
� ≤ 1 − δ. If possible, let

‖x‖L
� > 1 − δ. Then one can select a finite set I = {1, 2, . . . , N − 1} on which

‖x |I ‖L
� > 1− δ. Since xl(i)→ x(i) for each i ∈ N, so we obtain xl → x uniformly

on I . Consequently, by assumption ‖xl‖L
�→ ‖x‖L

� there exists lN ∈ N such that

‖xl |I‖L
� > 1− δ and ‖(xl − xm)|I‖L

� ≤
ε

2
for all l,m ≥ lN .

Using Eq. (8), first one of the above inequalities implies that σ�(xl |I ) > 1−η for l ≥
lN . Since sep(xl) ≥ ε, i.e., ‖xl − xm‖L

� ≥ ε, so second one of the above inequalities
implies that ‖(xl − xm)|N−I‖L

� ≥ ε
2 for l,m ≥ lN , l �= m. Hence for N ∈ N there

exists a lN such that ‖xlN |N−I‖L
� ≥ ε

4 . Without loss of generality, we assume that
‖xl |N−I‖L

� ≥ ε
4 for all l, N ∈ N. Therefore by (7), we have σ�(xl |N−I ) ≥ η.

By the integral representation of Musielak–Orlicz function�, we haveϕn(u+v) ≥
ϕn(u) + ϕn(v) for each n and all u, v ∈ R

+. Using this, we obtain σ�(xl |I ) +
σ�(xl |N−I ) ≤ σ�(xl) ≤ 1. This implies that σ�(xl |N−I ) ≤ 1−σ�(xl |I ) < 1− (1−
η) = η, i.e., σ�(xl |N−I ) < η, which contradicts to the fact that σ�(xl |N−I ) ≥ η.
This finishes the proof.

Theorem 3 Let � > 0 be a Musielak–Orlicz function satisfying condition δ2, i.e.,
(1) and (∗), i.e., (2). Then CesL

�(q) has the uniform Opial property.

Proof Let (xl) ⊂ S(CesL
�(q)) be any weakly null sequence and ε > 0 be given. We

show that for any ε > 0 there is a μ > 0 such that

lim inf
l→∞ ‖xl + x‖L

� ≥ 1+ μ,

for each x ∈ CesL
�(q) satisfying‖x‖L

� ≥ ε. Since� ∈ δ2 and� > 0, so by Lemma 2,
for each ε > 0 there is a number δ ∈ (0, 1) such that for each x ∈ CesL

�(q), we
have σ�(x) ≥ δ. Since � (> 0) satisfies the condition δ2, and the condition (∗), so
by Lemma 6 for any ε > 0, there exists δ1 ∈ (0, δ) such that σ�(u) ≤ 1, σ�(v) ≤ δ1
imply

|σ�(u + v)− σ�(u)| < δ

6
for any u, v ∈ CesL

�(q). (9)

Since σ�(x) <∞, so there is a number n0 ∈ N such that

∞∑
n=n0+1

ϕn

( 1

Qn

n∑
k=1

qk |x(k)|
)
≤ δ1

6
. (10)

From Eq. (10) it follows that
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δ ≤
n0∑

n=1

ϕn

( 1

Qn

n∑
k=1

qk |x(k)|
)
+

∞∑
n=n0+1

ϕn

( 1

Qn

n∑
k=1

qk |x(k)|
)

≤
n0∑

n=1

ϕn

( 1

Qn

n∑
k=1

qk |x(k)|
)
+ δ1

6
,

which implies
n0∑

n=1

ϕn

( 1

Qn

n∑
k=1

qk |x(k)|
)
≥ δ − δ1

6
> δ − δ

6
= 5δ

6
. Since xl → 0

weakly, i.e., xl(i)→ 0 for each i , so there exists a l0 such that for all l ≥ l0, the last
inequality yields

n0∑
n=1

ϕn

( 1

Qn

n∑
k=1

qk |xl(k)+ x(k)|
)
≥ 5δ

6
. (11)

Also by xl → 0 weakly, we can choose an n0 such that σ�(xl |n0)→ 0 as l →∞.
So there exists a l1 > l0 such that σ�(xl |n0) ≤ δ1 for all l ≥ l1. Since (xl) ⊂
S(CesL

�(q)), i.e., ‖xl‖L
� = 1, so by Lemma 3, we have σ�(xl) = 1, which implies

that there exists n0 such that σ�(xl |N−n0) ≤ 1. Now choose u = xl |N−n0 and
v = xl |n0 . Then u, v ∈ CesL

�(q), σ�(u) ≤ 1, σ�(v) ≤ δ1. So from (9), for all l ≥ l1
we have ∣∣σ�(xl |N−n0 + xl |n0

)− σ�
(
xl |N−n0

)∣∣ < δ

6
,

which implies that σ�(xl)− δ
6 < σ�

(
xl |N−n0

)
for all l ≥ l1, i.e.,

∞∑
n=n0+1

ϕn

( 1

Qn

n∑
k=1

qk |xl(k)|
)
> 1− δ

6 for all l ≥ l1. Again, since σ�
(
xl |N−n0

) ≤

1 and σ�
(
x |N−n0

) ≤ δ1
6 < δ1, so from the Eqs. (9) and (11), we obtain

σ�(xl + x) =
n0∑

n=1

ϕn

( 1

Qn

n∑
k=1

qk |xl(k)+ x(k)|
)

+
∞∑

n=n0+1

ϕn

( 1

Qn

n∑
k=1

qk |xl(k)+ x(k)|
)

>

n0∑
n=1

ϕn

( 1

Qn

n∑
k=1

qk |xl(k)+ x(k)|
)

+
∞∑

n=n0+1

ϕn

( 1

Qn

n∑
k=1

qk |xl(k)|
)
− δ

6

>
5δ

6
+

(
1− δ

6

)
− δ

6
= 1+ δ

2
.
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Since � ∈ δ2 and satisfies the condition (∗) and � > 0, so by Lemma 7 there is a
μ > 0 depending only on δ such that ‖xl+ x‖L

� > 1+μ. Hence lim inf
l→∞ ‖xl+ x‖L

� ≥
1+ μ. This completes the proof.

Corollary 1 (i) If ϕn = ϕ, qn = 1 ∀n and � ∈ δ2, then Cesàro–Orlicz sequence
space cesL

ϕ [20] has the uniform Opial property.
(ii) Suppose qn = 1, n = 1, 2, . . . and ϕn(u) = |u|pn for all u ∈ R, 1 < pn <∞
∀n. Then it is easy to verify that� ∈ δ2 if and only if lim sup

n→∞
pn <∞. Therefore

cesL
(p) [21] has the uniform Opial property.

(iii) If ϕn(u) = |u|pn , 1 ≤ pn < ∞ ∀n and lim sup
n→∞

pn < ∞, then CesL
(p)(q) has

the uniform Opial property [17].

4 Conclusion

In this study, we have obtained geometric properties such as coordinatewise uni-
formly Kadec–Klee property and uniform Opial property in the generalized Cesàro–
Musielak–Orlicz sequence spaces, which include the well known Cesàro [24], gen-
eralized Cesàro [21], Cesàro–Orlicz [2], Cesàro–Musielak–Orlicz [26] classes of
sequences in particular cases with respect to the Luxemberg norm. In future, our
plan is to obtain these results for a more generalized class of sequences with respect
to both the Luxemberg and Amemiya norm.
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Chapter 20
Inverting the Transforms Arising in the
G I/M/1 Risk Process Using Roots

Gopinath Panda, A. D. Banik and M. L. Chaudhry

Abstract We consider an insurance risk model for which the claim arrival process is
a renewal process and the sizes of claims occur an exponentially distributed random
variable. For this risk process, we give an explicit expression for the distribution of
probability of ultimate ruin, the expected time to ruin and the distribution of deficit at
the time of ruin, using Padé-Laplace method. We have derived results about ultimate
ruin probability and the time to ruin in the renewal risk model from its dual queueing
model. Also, we derive the bounds for the moments of recovery time. Finally, some
numerical results have been presented in the form of tables which compare these
results with some of the existing results available in the literature.
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1 Introduction

The classical risk model serves as a skeleton for more realistic risk models. Much
of the literature on ruin theory is concentrated on the classical risk model, in which
claims arrival process is a Poisson process. In 1957, Sparre Andersen introduced
a mathematical model for the risk theory based on the assumption that the claim
arrival process is an ordinary renewal process. The Sparre Andersen model in which
the inter-claim times follow an Erlang or a generalized Erlang distribution has been
studied extensively. The connection between risk theory and other applied proba-
bility areas has been initiated by Prabhu [8] in queueing theory context. Some of
the main approaches to find the probability of ultimate ruin include Laplace trans-
form inversion, matrix-analytic methods and differential and integral equations (see
Asmussen and Albrecher [2] for a survey on risk theory). Frostig [6] studied the time
to ruin, deficit at the time of ruin, and recovery times for M/G/1 and G I/M/1 risk
processes. Frostig [6] established the relation between the time to ruin and busy-
period of some queueing system and derived the bounds for expected value of time
to ruin and deficit at the time of ruin. Thampi and Jacob [9] used duality results
between the queueing theory and risk processes to derive explicit expressions for the
ultimate ruin probability and moments of time to ruin in renewal risk model.

In this paper, we investigate G I/M/1 risk process using roots of certain character-
istic equation in case of phase-type as well as nonphase-type inter-claim arrivals. We
are interested in finding explicit expressions for the distributions of the ultimate ruin
probability, time to ruin, deficit at the time of ruin, and the distribution of recovery
time using Padé-Laplace method.

2 Mathematical Description of Risk Process

The ruin problem of insurance risk theory is closely related to the problem of single-
server queue. Suppose the amount of capital at time t in one portfolio of an insurance
company is denoted by R(t). Initially R(0) = u (> 0). During each unit of time,
the portfolio receives an amount in premiums with a rate p (> 0). At random times
claims are made against the insurance company, which must pay the amount Xn(> 0)
to settle the nth claim. In risk theory, a risk reserve process {R(t), t ≥ 0} at time t is
a model for the time evolution of the reserves of an insurance company and is given
by the following expression:

R(t) = u + pt −
N (t)∑
k=1

Xk, (1)

where u is the initial reserve, p is the rate at which the premiums are received,
N (t) is the total number of claims in [0, t] and Xk is the size of the kth claim. For
renewal risk model, {N (t), t ≥ 0} is an ordinary renewal process. The renewal
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process {N (t), t ≥ 0} is independent of the claim sizes {Xk, k ≥ 1}. We denote
the inter-renewal times of claims by Ti , i ≥ 0, where T1 is the time of the first
renewal, and Ti for i = 2, 3, . . . , the time between the (i − 1)th renewal and the i th
renewal. Then, {Ti }∞i=1 is an independent and identically distributed (i.i.d.) sequence
of generally distributed random variables (r.v.’s), with distribution G(t). Let the claim
sizes Xk be i.i.d. r.v.’s distributed exponentially with rate δ. The model we consider

will have the property lim
t→∞

N (t)∑
i=1

Xi/t → ρ, where ρ represents the average amount

of claim per unit time. Another quantity of interest in ruin theory is the safety loading
factor η, defined as the relative amount by which the premium rate p exceeds ρ, i.e.,
η = (p − ρ)/ρ. The insurance company should try to ensure that η > 0. Another
process in risk theory which is more convenient to work than the risk reserve process
{R(t), t ≥ 0}, is the claim surplus process {S(t), t ≥ 0}, where

S(t) = u − R(t) =
N (t)∑
k=1

Xk − pt. (2)

A crucial quantity in risk theory is the infinite-time ruin probability (probability of
ultimate ruin) ψ(u), the probability that the reserve ever drops below zero,

ψ(u) = P(inf
t≥0

R(t) < 0|R(0) = u).

The probability of ruin before time T̄ isψ(u, T̄ ) = P

(
inf

0≤t≤T̄
R(t) < 0|R(0) = u

)
.

Let τ(u) be the time to ruin, i.e., the time for which the risk reserve of the insurance
company becomes negative for the first time, then

τ(u) = inf{t ≥ 0 : R(t) < 0} = inf{t ≥ 0 : S(t) > u}.

3 GI/M/1 Risk Process and Duality

Consider a risk process wherein the arrival of claims follow a renewal process. The
inter-arrival times of claims T1, T2, . . . are i.i.d. r.v.’s, with distribution B(t), density
b(t), moment generating function (mgf) m B(θ) = E(eθT ) and Laplace-Stieltjes
transform (LST) LT (s) =

∫∞
0 e−st dB(t) = E(e−sT ), where T is the generic of

inter-arrival times. The claim sizes X1, X2, . . . are i.i.d. r.v.’s and are exponentially
distributed with rate δ. The process of successive claim amounts is independent of
the claim number process, i.e., the claim sizes Xi are independent of the inter-arrival
times Ti . We assume through out that the premium income process has a constant
rate p = 1 per unit time. We call this risk process a GI/M/1 risk process. The average
amount of claim per unit time ρ in risk process is equal to 1/δE(T ). Let N (u)
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denote the number of claim arrivals up to time of ruin. Then N (u) is

N (u) = inf

{
n : u +

n∑
i=1

Ti −
n∑

i=1

Xi < 0

}
.

and the time to ruin and the deficit at the time of ruin are, respectively, given by

τ(u) =
N (u)∑
i=1

Ti and ζ(u) =
N (u)∑
i=1

Xi −
N (u)∑
i=1

Ti − u =
N (u)∑
i=1

Xi − τ(u)− u.

(3)

Let ζ(0) = ζ. The dual queueing system of G I/M/1 risk process is the M/G/1
queueing system, with an infinite waiting room and a single-server. Let the individual
claims arrive at time epochs 0 = t0, t1, t2, . . . , tn, . . . following an exponential
distribution with rate δ, i.e., with distribution A(x) = 1− e−δx , density a(x) = δeδx

and LST LX (s) = δ/(δ + s). The service times Tn, (n = 1, 2, . . . , ) are i.i.d. r.v.’s
with distribution B(t), probability density function (pdf) b(t), t ≥ 0, LST LT (s)
and mean service time E(T ) = ∫∞

0 t.b(t) dt = − d
ds LT (s)|s=0. The customers are

served by a single-server. The service discipline is first-come first-served (FCFS).
The traffic intensity of the queueing system ρ∗ = 1/ρ = δE(T ) is assumed to be less
than unity, i.e., the condition of stability is ρ∗ < 1. The service time of the customer
that initiates the busy-period is u+T1. Let B(u) be the length of this busy-period and
Nq(u), the number served during this busy-period. From the definition of N (u), it

follows that N (u) = Nq(u). So B(u) = T1+u+
N (u)∑
i=2

Ti = u+
N (u)∑
i=1

Ti = τ(u)+u.

Hence this busy-period of the dual queue (B(u)) is distributed as τ(u)+u. Let I (u) be

the idle period that follows the busy-period B(u). Then I (u) =
Nq (u)∑

i=1
Xi − B(u) =

Nq (u)∑
i=1

Xi − τ(u) − u = ζ(u). Hence ζ(u) is distributed as I (u). When u = 0,

B(0) = B and I (0) = I are respectively, distributed as a regular busy-period and
regular idle period. So τ(0) is distributed as B and ζ(0) is distributed as I .

4 Measures of Risk Process

A risk process is characterized by the probability of ultimate ruin, time to ruin, deficit
at the time of ruin, recovery time after a ruin, and so on. We discuss some measures
of these variables in subsequent analysis.
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4.1 Time to Ruin and Deficit at the Time of Ruin

The ruin time, (τ (u)), is the first time that the reserve becomes negative. Let ζ(u)
be the deficit at the time of ruin when the initial reserve is u. We will study the
distribution of time to ruin and deficit at the time of ruin for different values of
ρ (= 1/δE(T )).

Case 1. (ρ > 1) In this case, ruin occurs with probability 1 and all the moments
of τ(u) exist. The busy-period B of the dual queue M/G/1 is finite, since the traffic
intensity of the dual queueρ∗(= 1/ρ) < 1. We will study the busy-period distribution
of dual queue using the method of roots. The literature on queueing theory shows
that distributions having Laplace-Stieltjes transform as a rational function cover a
wide range of distributions that arise in applications, see Botta et al. [4]. In view
of this, we consider those distributions that have rational Laplace-Stieltjes transform
of the form h(s) = P(s)/Q(s), where degree of the polynomial Q(s) is n and that of
the polynomial P(s) is at most n. Here LT (s) = B1(s)/B2(s) is a rational function
satisfying the properties stated above. The LST of busy-period distribution, B∗(s),
of M/G/1 queue satisfies the functional equation

B∗(s) = LT (s + δ − δB∗(s)) (4)

We get the k-th moment E(Bk) of busy-period by differentiating both sides of Eq. (4),
k times w.r.t. s and then evaluate at s = 0. The first and second
moments obtained are, respectively, E(B) = E(T )

1−δE(T ) and E(B2) = (1+δE(B))2 E(T 2)
1−δE(T ) .

After getting E(Bk), k = 1, 2, . . ., the LST of busy-period can be obtained

as B∗(s) =
∞∑

k=0
(−1)k E(Bk) sk

k! . We use Padé-Laplace method (see Akar and

Arikan [1]) to approximate B∗(s) by a rational function of order (m, n), defined

as Rm,n(s) = Pm (s)
Qn(s)

=
m∑

i=0
pi si/{1 +

n∑
i=1

qi si }. Now replacing m by n − 1 and

making partial fractions of B∗(s), we obtain

B∗(s) = U (s)

V (s)
=

k∑
i=1

Ai

s − γi
, (5)

where B∗(s) = U (s)
V (s) is rational as stated earlier, with degree of V (s), k and degree

of U (s) is at most k and γi , i = 1, 2, . . . , k are the roots (assumed distinct) of
V (s) = 0 with Re(s) < 0. The moments of B can also be found from (5), E(B j ) =
(−1) j B∗ j (0) = (−1) j−1

k∑
i=1

j !Ai

γ
j+1

i

, where B∗ j (0) is the j th differentiation of B∗(s)

w.r.t. s, evaluated at s = 0. The mean busy-period is E(B) = −B∗′(0) =
k∑

i=1

Ai
γ 2

i
.

The LST of the busy-period B(u), initiated by the arrival of the first claim having
service time T1 + u (service time of all other claims are i.i.d., distributed as T ) is
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B∗u (s) = LT+u(s + δ(1− B∗(s))) = E
(

e−(T+u)(s+δ(1−B∗(s)))
)

= E
(

e−u(s+δ(1−B∗(s)))
)

E
(

e−(s+δ(1−B∗(s)))T
)

= e−u(s+δ(1−B∗(s)))LT (s + δ − δB∗(s))
= e−u(s+δ(1−B∗(s)))B∗(s) (6)

The moments of the busy-period can be found from the relation E(B j
u ) = (−1) j

B∗ j
u (0). For the sake of completeness, the first two moments are given as E(Bu) =
−B∗′u (0) = E(B) + u(1 + δE(B)) and E(B2

u ) = (1 + uδ)E(B2) + 2uE(B)(1 +
δE(B))+u2(1+δE(B))2. The variance of B∗u (s) is var(Bu) = E(B2

u )−E(Bu)
2 =

(1+ uδ)E(B2)− E(B)2. Using the duality relation, B(u) = τ(u)+ u and Eq. (6),
we have the LST of the time to ruin

τ ∗u (s) = E(e−sτ(u)) = E(e−s(Bu−u))

= eus Bu
∗(s) = e−uδ(1−B∗(s))B∗(s). (7)

The direct inversion of τ ∗u (s) is not possible, as it is not in rational form due to the
presence of e−uδ(1−B∗(s)). To bring τ ∗u (s) into rational form, so that we can obtain
the distribution of τ(u) for a particular value of u, we use Padé-Laplace method as
used above. Using this method, we approximate e−uδ(1−B∗(s)) by a rational function
Rm,n(s), as defined earlier.

τ ∗u (s) =
Pn−1(s)

Qn(s)
B∗(s) = Pn−1(s)

Qn(s)

U (s)

V (s)
. (8)

As the degree of the denominator is strictly greater than the degree of the numerator
of τ ∗u (s), making partial fractions, we get

τ ∗u (s) =
n∑

i=1

Ci

s − βi
+

k∑
i=1

Di

s − γi
(9)

where βi , i = 1, 2, . . . , n and γi , i = 1, 2, . . . , k are, respectively, the distinct roots
of Qn(s) and V (s) with Re(s) < 0. If the roots are repeated, we can also obtain the
coefficients using partial fraction method. The unknown coefficients can be found to
be

Ci = Pn−1(βi )

Q′n(βi )

U (βi )

V ′(βi )
, i = 1, 2, . . . , n and Di = Pn−1(γi )

Q′n(γi )

U (γi )

V ′(γi )
, i = 1, 2, . . . , k.

The density and distribution function of τ(u) are, respectively,
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fτ (t) =
n∑

i=1

Ci e
βi t +

k∑
i=1

Di e
γi t , and Fτ (t) = 1+

n∑
i=1

Ci

βi
eβi t +

k∑
i=1

Di

γi
eγi t .

(10)

The moments of the time to ruin for a particular value of u can be found from Eq. (10),
as

E(τ j (u)) =
∞∫

0

t j fτ (t)dt = (−1) j+1

{
n∑

i=1

Ci
j !

β
j+1

i

+
k∑

i=1

Di
j !

γi
j+1

}
.

The mean and variance of the time to ruin are, respectively,

E(τ (u)) =
n∑

i=1

Ci

β2
i

+
k∑

i=1

Di

γ 2
i

(11)

and

var(τ (u)) = −2

[
n∑

i=1

Ci

β3
i

+
k∑

i=1

Di

γ 3
i

]
−

[
n∑

i=1

Ci

β2
i

+
k∑

i=1

Di

γ 2
i

]2

. (12)

The deficit, ζ(u), at the time of ruin is distributed as the idle period of the dual M/G/1
queue and using the lack of memory property of the exponential distribution, it is
independent of the time to ruin τ(u). Because of the memoryless property, the idle
periods I , (time from the end of a busy-period to the start of the next one) follow
the same distribution, I ∼ Exp(δ), thence E(I ) = 1/δ. So ζ(u) is exponentially
distributed with rate δ giving E(ζ(u)) = 1/δ.

Remark 1 From Eq. (7), one can also get the moments of the time to ruin as
E(τ k(u)) = (−1)kτ ∗u k(0) with mean and second moment,

E(τ (u)) = (1+ uδ)E(B) (13)

and E(τ 2(u)) = (1+ uδ)E(B2)+ uδ(2 + uδ)(E(B))2, respectively. The variance
of the time to ruin is var(τ (u)) = E(τ 2

u ) − E(τu)
2 = (1 + uδ)E(B2) − E(B)2 =

var(B(u)).

Case 2. (ρ < 1) In this case, the ruin probability is less than 1 and the expected
time to ruin is infinite. For the dual queue ρ∗(= 1/ρ) > 1, the busy-period might be
infinite as well. Thus, to obtain E(τ (u) : τ(u) <∞), we use the technique of change
of measure via the exponential family (see Asumssen and Albrecher [2], p. 82).
Consider another renewal risk process with claim renewal density, bθ (t) = e−θ t

LT (θ)
b(t)

and exponential claim size with rate δθ = δ
LX (−θ) = δ− θ . When θ = 0, we get the

original renewal risk process. To use the change of measure, we follow the definition
stated below:
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Definition 1 Let P be the probability measure induced by a renewal process where
inter-arrival of claims distributed as T are served with rate δ . Define Pθ to be the
probability measure governing the renewal risk process with claim arrival density bθ
and claim size distribution with rate δθ . The corresponding expectation operator is
Eθ . The probability measure Pθ is the Esscher transform of P .

Define the Lundberg coefficient γ as the smallest positive root of the equation
LX (−θ)LT (θ) = 1. As LT (s) > 0, and d

ds LT (s)|s=0 = −E(T ) < −1/δ, so
LT (s) is convex and monotone decreasing function in s. Thus, there exists a solu-
tion, γ , to the equation LX (−θ)LT (θ) = 1, such that γ < δ. The changed risk
process governed by Pγ is a risk process in which the claim inter-arrival and claim
size density are, respectively,

bγ (t) = e−γ t

LT (γ )
b(t) and aγ (x) = eγ x

LX (−γ )a(x) = (δ − γ )e−(δ−γ )x .

From Asmussen and Albrecher [2, p. 86] the changed risk process has E(Xγ ) >
E(Tγ ), which then gives ργ = 1/(δγ E(Tγ )) > 1. This is the condition we have
in case 1. The traffic intensity of the dual queue ρ∗γ (= 1/ργ ) < 1. Consider the
dual queueing process of changed renewal risk process, where inter-arrival times
are exponentially distributed as Xγ with rate δγ = δ − γ and service times are
i.i.d. r.v.’s distributed as Tγ with density bγ (t) and LST LTγ (s) = E(e−sTγ ) =
LT (s+γ )/LT (γ ). Following the analysis similar to that in Case 1, the busy-period
Bpγ of the dual queue can be derived. Using the analysis similar to that followed
in Case 1, we obtain the busy-period distribution. For the sake of completeness, the
LST of Bpγ is

B∗pγ (s) =
n∑

i=1

Āi

s − αi
, (14)

where B∗pγ (s) = Ũ (s)/Ṽ (s) is rational with degree of Ṽ (s) equal to l and αi , i =
1, 2, . . . , l are the roots (assumed distinct) of Ṽ (s) = 0 with Re(s) < 0. The

unknown constants are found to be, Āi = Ũ (αi )

Ṽ ′(αi )
, i = 1, 2, . . . , n. From Eq. (14), the

distribution and density functions of busy-period can be found easily in terms of the
roots αi . Let Bγ (u), the busy-period initiated by the arrival of the first claim, having
sevice time u + Tγ and using the results obtained in Case 1, the LST of Bγ (u) is

B∗γ (s) = Eγ
(

e−s(τ (u)+u)
)
= e
−u(s+(δ−γ )

(
1−B∗pγ (s))

)
B∗pγ (s). (15)

Let ζγ (u) and τγ (u) be the deficit at the time of ruin and the time to ruin in the
changed risk process with respect to the measure Pγ . Using the analysis similar to
Case 1 and the lack of memory property of the exponential distribution implies that
ζγ (u) is exponentially distributed with parameter δ−γ and is independent of τγ (u).
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Also, ζ ∗γ (s) = δ−γ
s+δ−γ . The expected value of ζγ (u) is E(ζγ ) = 1/(δ − γ ). Under

the probability measure Pγ , τγ (u)+ u is distributed as the busy-period Bγ (u) in the
M/G/1 queue, where arrivals are according to a Poisson process with rate δ − γ
and the service time of the first customer in the busy-period is distributed as Tγ + u,
while the service times of all the other customers are distributed as Tγ . The LST of
the time to ruin τγ (u), of the changed renewal risk process is given by,

τ ∗γ (s) = Eγ (e
−sτ(u)) = e−u(δ−γ )(1−B∗pγ (s))B∗pγ (s). (16)

From Frostig [6], the LST of the time to ruin of the original risk process is

τ ∗(s) = e−γ uζ ∗γ (γ )τ ∗γ (s) =
δ − γ
δ

e−γ ue−u(δ−γ )(1−B∗pγ (s))B∗pγ (s)

= δ − γ
δ

e−uδ(1−B∗pγ (s))B∗pγ (s). (17)

The distribution and moments of τ(u) can be found for different values of u by using
Padé-Laplace method similar to Case 1. For the sake of completeness, we have given

τ ∗(s) =
n∑

i=1

C̄i

s − θi
+

l∑
i=1

D̄i

s − αi
(18)

where θi , i = 1, 2, . . . , n are the roots (assumed distinct) of Q̃n(s) with Re(s) < 0.

The unknown coefficients are, given by, C̄i = P̃n−1(θi )

Q̃′n(θi )

Ũ (θi )

Ṽ ′(θi )
, i = 1, 2, . . . , n, and

D̄i = P̃n−1(αi )

Q̃′n(αi )

Ũ (αi )

Ṽ ′(αi )
, i = 1, 2, . . . , l. The density and distribution function of τ(u)

are, respectively,

fτ (t) =
n∑

i=1

C̄i e
θi t +

l∑
i=1

D̄i e
αi t and Fτ (t) = 1+

n∑
i=1

C̄i

θi
eθi t +

l∑
i=1

D̄i

αi
eαi t .

(19)

The moments of the time to ruin for a fixed u, are given by

E(τ k(u)) = (−1)k+1

{
n∑

i=1

C̄i
k!
θk+1

i

+
l∑

i=1

D̄i
k!

αi
k+1

}
.

The expected time to ruin is

E(τ (u)) =
n∑

i=1

C̄i

θi
2 +

l∑
i=1

D̄i

αi
2 . (20)
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Also, the moments of the time to ruin can be obtained by differentiating Eq. (17) w.r.t.
s and then substituting s = 0 as E(τ k(u)) = (−1)kτ ∗u k(0). The first two moments
are, respectively,

E(τ (u)) = δ − γ
δ
[1+ u(δ − γ )]e−γ u E(Bpγ ), (21)

and E(τ2(u)) = δ−γ
δ e−γ u

{
[1+ u(δ − γ )]E(B2

pγ )+ u(δ − γ )[2+ u(δ − γ )]E(Bpγ )
2
}
.

4.2 Probability of Ultimate Ruin

The ultimate ruin probability of a risk process is ψ(u) = P{τ(u) < ∞}. It is an
important measure in the study of risk process. Different methods are used for calcula-
tion of ruin probability. Asmussen and Rolski [3] consider the probability of ultimate
ruin for the Sparre Andersen model when individual claim amounts are distributed
as phase type and they present an iterative method of evaluating this probability.
Dickson and Hipp [5] consider a risk process in which inter-arrival of claims have an
Erlang(2) distribution. They obtain explicit solution for the Laplace transform of the
ruin probability by solving a second-order integro-differential equation. We follow
Frostig [6] to find out the probability of ultimate ruin using the laplace transform
method.

Case 1. (ρ > 1) In this case, the probabilty of ultimate ruin of the G I/M/1
risk process can be obtained from (7), by substituting s = 0. Then, ψ(u) = 1. The
following proposition can be found in Asmussen and Albrecher [2, p. 3].

Proposition 1 If η < 0 then M = ∞ and hence ψ(u) = 1, ∀ u. If η > 0 then
M <∞ and hence ψ(u) < 1 for all sufficiently large u.

where M = sup
0≤t<∞

S(t) and η < 0 ≡ ρ > 1.

Case 2. (ρ < 1) In this case, the probabilty of ultimate ruin of the G I/M/1 risk
process can be obtained from (17), by substituting s = 0. Then,

ψ(u) = δ − γ
δ

e−γ u .

The same result is also found in Asmussen and Albrecher [2, p. 156].

4.3 Recovery Time

When ruin occurs, the surplus process will temporarily stay below the zero level
and after some time the process will again come to the zero level; if not, then the
company is declared insolvent or liquidated. The recovery time is the time interval
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during which the surplus is negative. The duration of this negative surplus will depend
on the severity of ruin and probability of ruin. The recovery time is distributed like
a busy-period in a G I/M/1 queue.

Case 1. (ρ > 1) Since ρ > 1 for the above renewal risk process, the associ-
ated G I/M/1 queue is unstable and the busy-period of this G I/M/1 queue can be
infifnite. As the exact expression for the recovery time is not tractable through queue-
ing parameters, we provide the bounds for their moments. To derive the bounds for
the moments, we use the technique of change of measure via the exponential fam-
ily as explained in Sect. 4.1. Define κ(θ) = δ[LT (−θ) − 1] − θ . The Lundberg
coefficient γ > 0 is the smallest positive root of the Lundberg equation, κ(θ) = 0.
The LSTs of claim arrivals and claim sizes of the changed risk process are, respec-
tively, LTγ (s) = LT (s−γ )

LT (−γ ) and LXγ (s) = δLT (−γ )
δLT (−γ )+s . From κ(γ ) = 0, we get

LT (−γ ) = 1+ γ /δ. The associated queueing model for this changed risk process
is the G I/M/1 queue, where the service times are exponentially distributed with
rate δ + γ and inter-arrival times are distributed as Tγ . As the traffic intensity ργ
becomes less than 1, the stability condition holds. From Komota et al. [7], the LST
of busy-period of G I/M/1 queue is given by,

B∗ch(s) = 1− a2(s)− a1(s)

s − ω = 1− s

s − ω, (22)

where LXγ (s) = a1(s)/a2(s) = δ+γ
δ+γ+s and ω is the unique root of the characteristic

equation 1 = LXγ (s)LTγ (−s) with Re(s) < 0. The density and distribution func-
tions of busy-period can be found to be f (t) = −ωeωt and F(t) = 1− eωt , respec-
tively. The moments of this busy-period are given by, E(Bk

ch) = (−1)k B∗ch
k(0) =

(−1)k k!
ωk , with expected value E(Bch) = −1/ω. Since the service rate (δ + γ ) of the

changed queue, obtained after applying the exponential change of measure technique,
is greater than the service rate (δ) of the original queue, the values of the moments of
busy-period of the changed queue must be greater than or equal to the corresponding
moment values of the original queue. Therefore, the moments of recovery time Vrec

is bounded by the moments E(Bk
ch).

Case 2. (ρ < 1) When ruin has occured, the recovery time is distributed like a
busy-period in a G I/M/1 queue. Since ρ < 1 for the above renewal risk process,
the associated G I/M/1 queue is stable and the busy-period of this G I/M/1 queue
is finite. The LST of busy-period of the stable G I/M/1 queue is equivalent to the
LST of the recovery time Vrec of the risk process and is given by,

V ∗rec(s) = 1− s

s − α =
−α

s − α , (23)

where α is the unique root of the characteristic equation 1 = LX (s)LT (−s) with
Re(s) < 0 and LX (s) = δ/(δ + s). The distribution and density function of Vrec

are, respectively,
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frec(t) = −αeαt and Frec(t) = 1− eαt . (24)

The moments of recovery times are given by

E(V k
rec) = (−1)k V ∗rec

k
(0) = (−1)kk!/αk .

The first and second moments of the recovery time Vrec are, respectively, given by
E(Vrec) = −V ∗rec

′(0) = 1/ − α and E(V 2
rec) = V ∗rec

′′(0) = 2
α2 . The variance of

Vrec is var(Vrec) = 1
α2 .

5 Numerical Results and Discussion

Phase-type claims arrival: We consider P H/M/1 risk process with inter-claim ar-
rivals following a phase-type distribution with representation (α, S) and claim sizes
are exponentially distributed with rate δ = 1.5, where α = (0.1, 0.6, 0, 0.3), S =⎛
⎜⎜⎝
−3 1 0 1
1 −5 1 0
0 2 −4 2
1 0 1 −4

⎞
⎟⎟⎠, E(T ) = 0.565 and E(X) = 0.66. So ρ = 1

δE(T ) = 1.18 > 1.

The dual queueing model of the above risk process is the queue M/P H/1, where the
inter-arrival times are exponentially distributed with rate δ and service times follow
a phase-type distribution with representation (α, S). For this queueing model the
offered load ρ∗ = 1/ρ = 0.848 < 1.

In our numerical computations using Maple 12 and Eq. (5), we find the mean and
variance of busy-period E(Bp) = 3.72 and var(Bp) = 192.45 respectively. Then
the busy-period initiated by the service of first arrival in M/P H/1 queue with mean
E(B̃u) = 6.58u+3.72 and variance var(B̃u) = 309.42u+192.45, are derived from
(6). These values match exactly with Frostig [6]. The mean and variance of τ(u)
are E(τ (u)) = E(B̃u) − u = 5.58u + 3.72 and var(τ (u)) = 309.42u + 192.45,
respectively (see Table 5).

Consider the above P H/M/1 risk process with claim size rate δ = 6. For this
risk process ρ = 0.295 < 1. So we can’t get a stable dual queue. The parameters
of the changed risk model are δγ = 2.07, Eγ (T ) = 0.15 and ργ = 3.16 > 1. The
dual queue of the change risk model has ρ∗γ = 1/ργ = 0.316 < 1. The expected
values of τ(u) for different values of u are presented in Table 1. The probability
of ultimate ruin is ψ(u) = 0.346e−3.93u with ψ(0) = 0.346. The expected value
of recovery time is E(V ) = 0.25. The expected values of the recovery times for
different values of ρ(< 1) are presented in Table 3. Also for ρ(> 1), the upper
bounds for the expected values of the recovery time are presented in Table 2.
Non-phase type claims arrival: We consider M E/M/1 risk process, where claim
arrivals follow a matrix exponential distribution with density f (t) = (1+ 1

4π2 )(1−
cos(2π t))e−t and LST f ∗(s) = 1+4π2

(s+1)[(s+1)2+4π2] and claim sizes are exponentially



20 Inverting the Transforms Arising in the G I/M/1 Risk Process Using Roots 309

Table 1 Expected time to ruin for P H/M/1 risk process with parameters: E(T ) = 0.565, δ = 6
and ρ = 0.295 < 1

u E(τ (u)) from (20) Frostig’s E(τ (u)) E(τ (u)) from (21)

0.0 0.076994 0.076994 0.076994
0.1 0.062768 0.062768 0.062768
0.2 0.049661 0.049661 0.049661
0.3 0.038448 0.038448 0.038448
0.4 0.029280 0.029280 0.029280
0.5 0.022011 0.022011 0.022011
0.8 0.008846 0.008846 0.008846
1.0 0.004662 0.004662 0.004662
1.5 0.000875 0.000875 0.000875
2.0 0.000154 0.000154 0.000154
2.5 0.000026 0.000026 0.000026
3.0 0.000004 0.000004 0.000004
3.5 0.000000 0.000000 0.000000
4.0 0.000000 0.000000 0.000000
.
.
.

.

.

.
.
.
.

.

.

.

Table 2 Upper bounds for expected recovery time of P H/M/1 risk process for different ρ value

ρ Frostig’s E(V ) Upper bounds E(Bch)

1.18 3.574474 4.237768
1.22 2.913513 3.576978
1.31 2.064983 2.728797
1.47 1.351542 2.015896
1.77 0.833313 1.498423
2.21 0.529036 1.194944
2.95 0.328886 0.995637
4.42 0.187223 0.854865
5.90 0.130857 0.798965
8.84 0.081678 0.750263
11.79 0.059366 0.728196
17.69 0.038392 0.707469
35.38 0.018637 0.687966
.
.
.

.

.

.
.
.
.

distributed with rate δ = 0.5. For this risk process, E(T ) = 1.05, E(X) = 2.0 and
ρ = 1.9 > 1. The offered load of the dual queue is ρ∗ = 1/ρ = 0.524 < 1. So
steady state solutions exist.

In our numerical computations using Maple 12 and Eq. (5), we find the mean and
variance of busy-period E(Bp) = 2.208 and var(Bp) = 14.258 respectively. Then
the busy-period initiated by the service of first arrival in M/P H/1 queue with mean
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Table 3 Expected value of recovery time of P H/M/1 risk process for different values of ρ

ρ Frostig’s E(V ) Our E(Vrec)

0.295 0.254656 0.254656
0.253 0.204603 0.204603
0.221 0.170805 0.170805
0.197 0.146482 0.146482
0.177 0.128158 0.128158
0.161 0.113867 0.113867
0.147 0.102416 0.102416
0.136 0.093039 0.093039
0.126 0.085222 0.085222
0.118 0.078608 0.078608
0.111 0.072939 0.072939
0.104 0.068028 0.068028
0.098 0.063733 0.063733
.
.
.

.

.

.
.
.
.

Table 4 Expected time to ruin for M E/M/1 risk process with parameters: E(T ) = 1.05, δ = 0.5
and ρ = 1.9 > 1

u E(τ (u)) from (11) Frostig’s E(τ (u)) E(τ (u)) from (13)

0 2.207909 2.207909 2.207909
1 3.311863 3.311863 3.311863
2 4.415817 4.415817 4.415817
3 5.519772 5.519772 5.519772
4 6.623726 6.623726 6.623726
5 7.727681 7.727681 7.727681
10 13.247452 13.247452 13.247452
15 18.767244 18.767244 18.767244
20 24.286996 24.286996 24.286996
30 35.326540 35.326540 35.326540
50 57.405628 57.405628 57.405628
100 112.603347 112.603347 112.603347
.
.
.

.

.

.
.
.
.

.

.

.

E(B̃u) = 2.104u + 2.208 and variance var(B̃u) = 9.566u + 14.258, are derived
from (6). Both the mean and variance match exactly with Frostig [6]. The LST of
the time to ruin is then obtained from Eq. (7). The first two moments of τ(u) are
E(τ (u)) = E(B̃u) − u = 1.104u + 2.208 and var(τ (u)) = 9.566u + 14.258,
respectively (see Tables 4 and 6).

Consider the above M E/M/1 risk process with claim size rate δ = 5. For this risk
process ρ = 0.19 < 1. Applying the change of measure technique, the parameters
of the changed risk model are δγ = 0.53, Eγ (T ) = 0.34 and ργ = 5.5 > 1. The



20 Inverting the Transforms Arising in the G I/M/1 Risk Process Using Roots 311

Table 5 Variance of the time to ruin for P H/M/1 risk process with parameters: E(T ) = 0.565,
δ = 1.5 and ρ = 1.18 > 1

u Frostig’s var(τ (u)) var(τ (u)) from (12)

0 192.449928 192.449928
1 501.874589 501.874589
2 811.299249 811.299249
3 1120.723911 1120.723911
4 1430.148572 1430.148572
5 1739.573233 1739.573233
6 2048.997894 2048.997894
7 2358.422555 2358.422555
8 2667.847216 2667.847216
9 2977.271877 2977.271877
10 3286.696538 3286.696538
.
.
.

.

.

.
.
.
.

Table 6 Variance of the time to ruin for M E/M/1 risk process with parameters: E(T ) = 1.05,
δ = 0.5 and ρ = 1.9 > 1

u Frostig’s var(τ (u)) var(τ (u)) from (12)

0 14.257609 14.257609
1 23.823844 23.823844
2 33.390078 33.390078
3 42.956313 42.956313
4 52.522548 52.522548
5 62.088783 62.088783
6 71.655018 71.655018
7 81.221253 81.221253
8 90.787488 90.787488
9 100.353723 100.353723
10 109.919958 109.919958
.
.
.

.

.

.
.
.
.

dual queue of the change risk model has ρ∗γ = 1/ργ = 0.18 < 1. In this case
we have derived the same risk measures and are match exactly with Frostig [6].
The probability of ultimate ruin is ψ(u) = 0.346e−3.93u with ψ(0) = 0.346. The
expected value of recovery time is E(V ) = 0.22.

6 Conclusion and Future Scope

In this paper, we have carried out the analysis of G I/M/1 risk process for different
cases of the average amount of claim per unit time. We presented the distributions of
time to ruin and recovery time for both cases. Also we derived the distributions for
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the deficit at the time of ruin. We obtained different bounds for the expected values
of the recovery time after ruin has happened. This model can be extended to include
batch of claims arriving to the risk process at a particular time, using a dividend
barrier and force of interest and are left for future investigations.
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Chapter 21
On Quasi-ideals in Ternary Semirings

Manish Kant Dubey and Anuradha

Abstract In this paper, we study the concept of minimal quasi-ideals in ternary
semiring and prove some standard results analogous to ring theory. We also intro-
duced the concept of a Q-simple ternary semiring and 0-Q-simple ternary semiring
and characterize 0-minimal quasi-ideals in terms of Q-simple ternary semiring.

1 Introduction and Preliminaries

Lehmer [6] initiated the concept of ternary algebraic systems called triplexes in 1932.
After that several authors have generalized the concept in many ways. In 2003, Dutta
and Kar [1] have introduced the notion of ternary semiring which is generalization of
ternary rings introduced by Lister [7]. Kar [4] have generalized the notion of quasi-
ideal in ternary semirings and gave some properties of quasi-ideals and bi-ideals
in ternary semirings. Steinfeld [8] have studied widely the notion of quasi-ideals
in rings and semigroups. In this paper, we generalize the results of quasi-ideals in
ternary semirings. Recall ([1, 4]) the following:

Definition 1.1 A nonempty set S together with a binary operation, called addition
and ternary multiplication, denoted by juxtaposition, is said to be a ternary semiring
if S is an additive commutative semigroup satisfying the following conditions:

(i) (abc)de = a(bcd)e = ab(cde),
(ii) (a + b)cd = acd + bcd,
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(iii) a(b + c)d = abd + acd,
(iv) ab(c + d) = abc + abd, for all a, b, c, d, e ∈ S.

Definition 1.2 Let S be a ternary semiring. If there exists an element 0 ∈ S such
that 0+ x = x and 0xy = x0y = xy0 = 0 for all x, y ∈ S then ′0′ is called the zero
element or simply the zero of the ternary semiring S. In this case we say that S is a
ternary semiring with zero.

Throughout this paper, S will always denote a ternary semiring with zero, unless
stated otherwise a ternary semiring means a ternary semiring with zero. Let A, B,C
be three subsets of S. Then by ABC , we mean the set of all finite sums of the form∑

ai bi ci , with ai ∈ A, bi ∈ B, ci ∈ C .

Definition 1.3 An additive subsemigroup T of S is called a ternary subsemiring if
t1t2t3 ∈ T for all t1, t2, t3 ∈ T .

Definition 1.4 An additive subsemigroup I of S is called a left (right, lateral) ideal
of S if s1s2i (respectively is1s2, s1is2) ∈ I for all s1, s2 ∈ S and i ∈ I . If I is a left,
a right, a lateral ideal of S then I is called an ideal of S.

Definition 1.5 An element a in a ternary semiring S is called regular if there exists
an element x in S such that axa = a. A ternary semiring is called regular if all of its
elements are regular.

Definition 1.6 A ternary semiring S with |S| ≥ 2 is called a ternary division semi-
ring if for any nonzero element a of S, there exists a nonzero element b in S such
that abx = bax = xab = xba = x for all x ∈ S.

Definition 1.7 An additive subsemigroup Q of a ternary semiring S is called a quasi-
ideal of S if QSS ∩ (SQS + SSQSS) ∩ SSQ ⊆ Q. A ternary subsemiring B of a
ternary semiring S is called a bi-ideal of S if BSBSB ⊆ B.

Definition 1.8 A proper ideal P of a ternary semiring S is called a semiprime if
I 3 ⊆ P implies I ⊆ P .

2 Minimal Quasi-ideals in Ternary Semiring

Steinfeld [8] had given many characterizations of minimal quasi-ideals in rings and
semigroups. In this section, we proceed with the study of minimal quasi-ideals of
ternary semiring which are analogous to ring theory.

Definition 2.1 A nonzero quasi-ideal Q of a ternary semiring S is called minimal
if Q does not properly contain any nonzero quasi-ideal.

Theorem 2.1 The intersection of a minimal right ideal R, a minimal lateral ideal
M, and a minimal left ideal L of a ternary semiring S is either 0 or a minimal
quasi-ideal of S.
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Proof Proof is similar to Theorem 3.9 [4].

Converse of above theorem is true if ternary semiring is semiprime. A ternary
semiring S is called semiprime if (0) is a semiprime ideal of S.

Theorem 2.2 Let S be a semiprime ternary semiring. Then each minimal quasi-
ideal Q of S is the intersection of a minimal right ideal R, a minimal lateral ideal
M, and a minimal left ideal L of S.

Proof Since Q is a quasi-ideal of S, therefore QSS∩(SQS+SSQSS)∩SSQ ⊆ Q.
Also Q is minimal, therefore either QSS ∩ (SQS+ SSQSS)∩ SSQ = 0 or QSS ∩
(SQS+ SSQSS)∩ SSQ = Q. Suppose that QSS∩ (SQS+ SSQSS)∩ SSQ = 0.
Then either QSS = 0 or QSS �= 0. If QSS = 0 then Q would be a nonzero right
ideal of S satisfying Q3 = 0. This contradicts our assumption. If QSS �= 0, then
QSSQSSQ ⊆ QSS ∩ (SQS + SSQSS) ∩ SSQ = 0. This implies (QSS)3 = 0
which contradicts our assumption that (0) is a semiprime ideal of S. Therefore,
QSS ∩ (SQS + SSQSS) ∩ SSQ = Q. Now, we show that QSS is a minimal
right ideal of S. Suppose that there exist a nonzero right ideal R′ of S such that
R′ ⊆ QSS. Then R′SS ∩ (SQS + SSQSS) ∩ SSQ is a quasi-ideal of S such
that R′SS ∩ (SQS + SSQSS) ∩ SSQ ⊆ Q. Since Q is minimal, therefore either
R′SS ∩ (SQS + SSQSS) ∩ SSQ = 0 or R′SS ∩ (SQS + SSQSS) ∩ SSQ = Q.
Suppose R′SS ∩ (SQS+ SSQSS)∩ SSQ = 0. Then R′QSSQ ⊆ R′SS ∩ (SQS+
SSQSS) ∩ SSQ = 0. Now R′ ⊆ QSS implies R′3 ⊆ (R′QSSQ)SS = 0. This
contradicts the condition that (0) is a semiprime ideal of S. Therefore, R′SS ∩
(SQS + SSQSS) ∩ SSQ = Q. This implies Q ⊆ R′SS ⊆ R′. Thus, QSS ⊆
R′SS ⊆ R′. Hence R′ = QSS is a minimal right ideal of S. Similarly, we can prove
that SQS + SSQSS is a minimal lateral ideal of S and SSQ is a minimal left ideal
of S.

Theorem 2.3 Let S be a ternary semiring. If S is a ternary division semiring, then
S has no nonzero proper quasi-ideals of S.

Proof Let S be a ternary division semiring and Q be a nonzero quasi-ideal of S. Let
0 �= q ∈ Q. Then there exists 0 �= s ∈ S such that qsx = sqx = xqs = xsq = x
for all x ∈ S. This implies S = QSS = SQS = SSQ. Also S = SQS =
(SSQ)Q(QSS) ⊆ SSQSS. Now, S ⊆ QSS ∩ (SQS + SSQSS) ∩ SSQ ⊆ Q.
Consequently, Q = S. Hence S has no nonzero proper quasi-ideals.

Theorem 2.4 Let S be a ternary semiring. If a quasi-ideal Q of S is a ternary
division subsemiring of S, then Q is a minimal quasi-ideal of S.

Proof Proof is trivial.

Remark 1 The following example shows that the above result does not hold for
a quasi-ideal which is a zero ternary semiring that is a ternary semiring in which
abc = 0 for all a, b, c ∈ S. Let S = M3(Z

−
0 ) be the ternary semiring of the set of
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all 3×3 lower triangular square matrices over Z−0 . Let Q =
⎧⎨
⎩

⎛
⎝

0 0 0
a 0 0
0 a 0

⎞
⎠ : a ∈ Z−0

⎫
⎬
⎭

and S =
⎧⎨
⎩

⎛
⎝

0 0 0
x 0 0
y z 0

⎞
⎠ : x, y, z ∈ Z−0

⎫⎬
⎭. It is easy to show that Q is a quasi-ideal

of S such that Q3 = 0. Clearly, Q is not a minimal quasi-ideal of S. Let Q′ =⎧
⎨
⎩

⎛
⎝

0 0 0
a 0 0
0 0 0

⎞
⎠ : a ∈ Z−0

⎫
⎬
⎭ ⊆ Q. Then Q′ is a quasi-ideal of S such that Q′ ⊆ Q.

Hence Q is not a minimal quasi-ideal of S.

3 Q-Simple and 0- Q-Simple Ternary Semirings

In this section, we study the concept of a Q-simple ternary semiring and 0-Q-simple
ternary semiring.

Definition 3.1 A ternary semiring S without zero is called Q-simple if it has no
proper quasi-ideals.

Definition 3.2 A ternary semiring S with zero is called 0-Q-simple if it has no
nonzero proper quasi-ideals and S3 �= {0}.
Proposition 3.1 Let S be a ternary semiring and A be any nonempty subset of S.
Then the principal quasi-ideal generated by a is given by
〈a〉q =

{
aSS ∩ (SaS + SSaSS) ∩ SSa + na : n ∈ Z+0

}
.

Proposition 3.2 Let S be a ternary semiring and a ∈ S. Then the principal bi-ideal
generated by a is given by 〈a〉b =

{
aSaSa + na + ma3 : n,m ∈ Z+0

}
.

Proposition 3.3 Let S be a ternary semiring. Then the set aSS∩ (SaS+ SSaSS)∩
SSa is a quasi-ideal of S for all a ∈ S.

Proof It is straight forward.

Lemma 3.1 Let S be a ternary semiring without zero. Then the following statements
are equivalent:

(i) S is Q-simple,
(ii) aSS ∩ (SaS + SSaSS) ∩ SSa = S for all a ∈ S.

(iii) 〈a〉q = S for all a ∈ S.

Proof (i)⇒(ii): By above Proposition, aSS∩ (SaS+ SSaSS)∩ SSa is a quasi-ideal
of S for all a ∈ S. Since S is Q-simple, therefore aSS∩ (SaS+ SSaSS)∩ SSa = S
for all a ∈ S.
(ii)⇒(iii): It is clear by Proposition (3.1).
(iii)⇒(i): Let Q be a quasi-ideal of S and let a ∈ Q. Then S = 〈a〉q ⊆ Q. Therefore
Q = S. Hence S is Q-simple.
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Lemma 3.2 Let S be a ternary semiring. Then the following statements hold:

(i) If S is 0-Q-simple, then 〈a〉q = S for all a ∈ S \ {0}.
(ii) If 〈a〉q = S for all a ∈ S \ {0}, then either S3 = {0} or S is 0-Q-simple.

Proof (i) Proof is straight forward by definition of 0-Q-simple.
(ii) Suppose 〈a〉q = S for all a ∈ S \ {0} and S3 �= {0}. Let Q be a nonzero quasi-
ideal of S. Let a ∈ Q \ {0}. Then S = 〈a〉q ⊆ Q. Therefore Q = S. Hence S is
0-Q-simple.

Lemma 3.3 Let Q be a quasi-ideal of a ternary semiring S and T be a ternary
subsemiring of S. Then the following statements hold:

(i) If T is Q-simple such that T ∩ Q �= ∅, then T ⊆ Q.
(ii) If T is 0-Q-simple such that (T \ {0}) ∩ Q �= ∅, then T ⊆ Q.

Proof (i) Suppose T is Q-simple such that T ∩ Q �= ∅. Let a ∈ T ∩ Q. Then by
Proposition 3.3, aT T ∩ (T aT +T T aT T )∩T T a is a quasi-ideal of T for all a ∈ T .
By Proposition 3.6 [4], {aT T ∩ (T aT +T T aT T )∩T T a}∩T is a quasi-ideal of T .
Since T is Q-simple, therefore {aT T ∩ (T aT + T T aT T )∩ T T a} ∩ T = T . Thus,
T ⊆ aT T ∩ (T aT + T T aT T ) ∩ T T a ⊆ QSS ∩ (SQS + SSQSS) ∩ SSQ ⊆ Q.
Hence T ⊆ Q.
(ii) Suppose T is 0-Q-simple such that (T \ {0}) ∩ Q �= ∅. Let a ∈ (T \ {0}) ∩ Q.
Then by Lemma (3.2)(i), we have

T = 〈a〉qT

= [aT T ∩ (T aT + T T aT T ) ∩ T T a] + Z+0 a(by Proposition 3.1)

⊆ [aSS ∩ (SaS + SSaSS) ∩ SSa] + Z+0 a = 〈a〉q ⊆ Q.

Therefore T ⊆ Q.

Theorem 3.1 Let S be a ternary semiring without zero and Q be a quasi-ideal of
S. Then the following statements hold:

(i) If Q is a minimal quasi-ideal without zero of S and Q is an ideal of S, then
either there exists a quasi-ideal A of Q such that AQ Q∩(Q AQ+Q Q AQ Q)∩
Q Q A = ∅ and Q AQ �= Q Q AQ Q or Q is Q-simple.

(ii) If Q is Q-simple, then Q is a minimal quasi-ideal of S.
(iii) If Q is a minimal quasi-ideal with zero of S and Q is an ideal of S, then

either there exists an nonzero quasi-ideal A of Q such that AQ Q ∩ (Q AQ +
Q Q AQ Q) ∩ Q Q A = {0} and Q AQ �= Q Q AQ Q or Q is 0-Q-simple.

Proof (i) Suppose an ideal Q is a minimal quasi-ideal without zero of S. Let A
be a quasi-ideal of Q such that AQ Q ∩ (Q AQ + Q Q AQ Q) ∩ Q Q A �= ∅ and
Q AQ = Q Q AQ Q. Clearly, Q is a ternary subsemiring of S. Now, ∅ �= AQ Q ∩
(Q AQ + Q Q AQ Q) ∩ Q Q A ⊆ A. Define H = {h ∈ A : h ∈ AQQ ∩ (Q AQ +
Q Q AQ Q)∩Q Q A}. Clearly H is non empty and H ⊆ A ⊆ Q. Now we show that H
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is a quasi-ideal of S. Let h1, h2, h3 ∈ H . Then h1 ∈ AQ Q∩ (Q AQ+Q Q AQ Q)∩
Q Q A. This implies h1 ∈ AQ Q, h1 ∈ Q AQ + Q Q AQ Q and h1 ∈ Q Q A. Thus
h1 =∑

ai qi pi , h1 =∑
(q j a j p j + r j s j b j u jv j ), h1 =∑

qk pkak for all ai , a j , b j ,
ak ∈ A and qi , pi , q j , p j , r j , s j , u j , v j , qk, pk ∈ Q. Similarly, we can define h2
and h3, respectively. It is easy to verify that H is a ternary subsemiring of S. Now
we show that H is a quasi-ideal of S. Let x ∈ H SS ∩ (SH S + SSH SS) ∩ SSH .
This implies x ∈ H SS, x ∈ SH S + SSH SS and x ∈ SSH . That is, x = h1SS,
x = Sh1S + SSh1SS and x = SSh1 for some h1 ∈ H . Now, since Q is an ideal of
S, x = h1SS = (∑ ai qi pi )SS ∈ AQ Q,

x = Sh1S + SSh1SS = S
( ∑

(q j a j p j + r j s j b j u jv j )
)

S

+ SS
( ∑

(q j a j p j + r j s j b j u jv j )
)

SS

⊆ Q AQ + Q Q AQ Q

and x = SS
( ∑

qk pkak

)
∈ Q Q A. Therefore x ∈ AQ Q ∩ (Q AQ + Q Q AQ Q) ∩

Q Q A. Thus x ∈ H . Therefore H SS ∩ (SH S + SSH SS) ∩ SSH ⊆ H . Hence H
is a quasi-ideal of S. Since Q is a minimal quasi-ideal of S, therefore H = Q. Thus
A = Q. Hence Q is Q-simple.
(ii) Suppose Q is Q-simple. Let A be a quasi-ideal of S such that A ⊆ Q. Then
A ∩ Q �= ∅. By Lemma 3.3(i), it follows that Q ⊆ A. Therefore A = Q. Hence Q
is a minimal quasi-ideal of S.
(iii) Similar to (i).

Theorem 3.2 Let S be ternary semiring without zero element having a proper quasi-
ideal. Then every proper quasi-ideal of S is minimal if and only if the intersection of
any two distinct proper quasi-ideals is empty.

Proof Proof is trivial.

4 Quasi-ideals and Regular Ternary Semiring

In this section, we characterize the concept of quasi-ideals in terms of regular ternary
semirings.

Theorem 4.1 Let S be a ternary semiring with zero and let R, M, and L be a minimal
right, a minimal lateral, and a minimal left ideals of S, respectively. Then RM L is
either {0} or intersection of a minimal right, a minimal lateral, and a minimal left
quasi-ideal of S satisfying RM L = R ∩ M ∩ L.

Proof Suppose RM L �= {0}. Then RM L ⊆ R ∩ M ∩ L = Q (by Theorem 3.2)
where Q is a quasi-ideal of S. Now to show that RM L is a quasi-ideal of S. That
is RM L SS ∩ (S RM L S + SS RM L SS) ∩ SS RM L ⊆ RM L . If RM L SS = {0}
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or S RM L S + SS RM L SS = {0} or SS RM L = {0}, then trivially RM L SS ∩
(S RM L S+ SS RM L SS)∩ SS RM L ⊆ RM L . Now let RM L SS �= {0}, S RM L S+
SS RM L SS �= {0} and SS RM L �= {0}. Since R, M , and L are minimal, therefore
RM L SS = R, S RM L S + SS RM L SS = M and SS RM L = L . Now RM L SS �=
{0}, therefore there exists 0 �= x ∈ RM L with x SS �= {0}. Since R is minimal, we
have x SS = R. Similarly, Sx S + SSx SS = M and SSx = L . Thus

0 �= x ∈ RM L = (x SS)(Sx S + SSx SS)(SSx) ⊆ x Sx Sx + x SSx SSx

⊆ x SSSx + x SSSSSx

⊆ x Sx .

Therefore, x is regular in S. Consequently, RM L = R ∩ M ∩ L (by Theorem 3.4
[4]). Now

RM L SS ∩ (S RM L S + SS RM L SS) ∩ SS RM L

⊆ RSS ∩ (SM S + SSM SS) ∩ SSL

⊆ R ∩ M ∩ L = RM L .

Hence RM L is a quasi-ideal of S.

Theorem 4.2 A ternary subsemiring Q of a regular ternary semiring S is a quasi-
ideal of S if and only if Q = QSQ.

Proof Since S is regular ternary semiring, therefore every bi-ideal of S is a quasi-
ideal of S. Hence, result follows by Theorem 3.28 [4].

Theorem 4.3 Let S be a ternary semiring. Then the following conditions are equiv-
alent:

(1) Each right ideal R, lateral ideal M, and left ideal L of S satisfy R ∩ M ∩ L =
RM L ⊆ L RM ∩ M L R.

(2) The set Q of all quasi-ideals of S is an idempotent ternary semiring with respect
to the “product” Q1 Q2 Q3.

(3) Each quasi-ideal Q of S satisfies Q = Q3.

Proof (1)⇒(2) The equality of condition (1) yields that S is regular (by Theorem 3.4
[2]). Now the set Q of all quasi-ideals of S is a ternary semiring with respect to the
product Q1 Q2 Q3 (by Corollary 3.32 [4]). Now we show that Q is an idempotent.
We have
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Q = QSQSQ (by Theorem 3.28 [5])

= (QSQS)(QSQ)(SQS)(QSQ)(S)(QSQ)(SQS)(QSQ)(SQ)

⊆ (QSQS){(QSS)(SQS)(SSQ)}(S){(QSS)(SQS)(SSQ)}(SQ)

⊆ (QSQS){(SSQ)(QSS)(SQS)}(S){(SQS)(SSQ)(QSS)}(SQ)

(since RML ⊆ LRM ∩MLR)

= [(QSQS)SSQ][(QSS)(SQS)S(SQS)(SSQ)][(QSS)SQ]
⊆ (QSQSQ)(QSQSQSQ)(QSQ)

= (QSQSQ)(QSQSQ)(QSQSQ) (sinceQ = QSQ)

= Q3.

Hence Q = Q3.
(2)⇒(3) Straight forward.
(3)⇒(1) Let R, M and L be right, lateral and left ideal of S respectively. By Theorem
3.8 [4], the intersection R ∩ M ∩ L is a quasi-ideal of S.

Therefore, condition (3) implies

RM L = R ∩ M ∩ L = (R ∩ M ∩ L)3 ⊆ L RM ∩ M L R.

Theorem 4.4 Let S be a regular ternary semiring. Then the following assertions
hold:

(1) Every ideal of S is an idempotent.
(2) Every bi-ideal of any lateral ideal of S is a quasi-ideal of S.

Proof (1) Straightforward by Theorem 3.4 [4].
(2) By Lemma 4.2 [1] every lateral ideal of a regular ternary semiring S is a regular
ternary semiring. Therefore result follows by Theorem 3.30 [4].

Proposition 4.1 [4] Let S be a ternary semiring and a ∈ S. Then the principal left
ideal generated by a is given by < a >l=

{∑
ri si a + na : ri , si ∈ S : n ∈ Z+0

}
,

right ideal generated by a is given by< a >r=
{∑

ari si + na : ri , si ∈ S : n ∈ Z+0
}

and lateral ideal generated by a is given by < a >m=
{∑

ri asi +∑
p j q j ar j s j

+na : ri , si , p j , q j , r j , s j ∈ S : n ∈ Z+0
}

where
∑

denote the finite sum and Z+0 is
the set of all positive integer with zero.

Theorem 4.5 Let S be a ternary semiring. Then the element a is regular in S if and
only if the principal quasi-ideal 〈a〉q of S satisfies 〈a〉q = 〈a〉q S〈a〉q S〈a〉q .

Proof Suppose a is regular in S. Clearly, 〈a〉q ⊆ 〈a〉q S〈a〉q S〈a〉q . Using The-
orem (3.8) [4], it is easy to show that 〈a〉q = 〈a〉r 〈a〉m〈a〉l . Now Let x ∈
〈a〉q S〈a〉q S〈a〉q ⊆ 〈a〉r S〈a〉m S〈a〉l = {na + aSS}S{na + SaS + SSaSS}S{na +
SSa} ⊆ aSa = a ∈ 〈a〉q .

Conversely, suppose that a ∈ 〈a〉q = 〈a〉q S〈a〉q S〈a〉q ⊆ 〈a〉r S〈a〉m S〈a〉l ⊆
aSa. Hence a is regular in S.
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Theorem 4.6 A ternary semiring S is regular if and only if for every bi-ideal B,
every lateral ideal M and every quasi-ideal Q, we have B ∩ M ∩ Q ⊆ B M Q.

Proof Suppose S is regular. Let a ∈ B ∩ M ∩ Q. Since S is regular, therefore for
a ∈ S there exist x ∈ S such that a = axa = axaxaxaxa = (axaxa)(xax)(a) ∈
(BSBSB)(SM S)(Q) ⊆ B M Q. Conversely, suppose that B ∩ M ∩ Q ⊆ B M Q.
Let a ∈ S. Consider the bi-ideal 〈a〉b of S generated by a, the lateral ideal 〈a〉m of
S generated by a and the quasi-ideal 〈a〉q of S generated by a. Then

a ∈ 〈a〉b ∩ 〈a〉m ∩ 〈a〉q ⊆ 〈a〉b〈a〉m 〈a〉q
⊆ {na + ma3 + aSaSa}{pa + SaS + SSaSS}
{qa + aSS ∩ (SaS + SSaSS) ∩ SSa}

for n,m, p, q ∈ Z+0
⊆ aSa.

Hence there exists an element x ∈ S such that a = axa. This implies that a is regular
and hence S is regular.

Remark 1 Every left ideal is a quasi-ideal (by Lemma 3.3 [4]) and every quasi-ideal
is a bi-ideal (by Lemma 3.15 [4]). Taking a left ideal L instead of a quasi-ideal Q in
Theorem 4.5, we get the following theorem.

Theorem 4.7 A ternary semiring S is regular if and only if for every bi-ideal B,
every lateral ideal M and every left ideal L, we have B ∩ M ∩ L ⊆ B M L.

Theorem 4.8 A ternary semiring S is regular if and only if for every right ideal R,
every left ideal L and every quasi-ideal Q, we have R ∩ Q ∩ L ⊆ RSQSL.

Proof Suppose S is regular. Let a ∈ R ∩ Q ∩ L . Since S is regular, therefore for
a ∈ S there exists x ∈ S such that a = axa = axaxaxaxa = (axa)xax(axa) ∈
(RSS)SQS(SSL) ⊆ RSQSL . Conversely, suppose that R ∩ Q ∩ L ⊆ RSQSL .
Let a ∈ S. Consider the right ideal 〈a〉r of S, the quasi ideal 〈a〉q of S and the left
ideal 〈a〉l of S generated by a respectively. Then

a ∈ 〈a〉r ∩ 〈a〉q ∩ 〈a〉l ⊆ 〈a〉r S〈a〉q S〈a〉l
⊆ 〈a〉r SSS〈a〉l ⊆ aSa.

Hence, there exists an element x ∈ S such that a = axa. This implies that a is
regular and hence S is regular.

5 Conclusion

In this paper, we have generalized the results of quasi-ideals in ternary semirings
which are analogous to ring theory. We also find the relation between ternary semiring
and left ideal, right ideal, quasi-ideal of ternary semirings. We have also introduced
the concept of a Q-simple ternary semiring and 0-Q-simple ternary semiring, which
can be useful for the study of various algebraic systems.
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Chapter 22
Epidemiological Models: A Study of Two
Retroviruses, HIV and HTLV-I

Dana Baxley, N. K. Sahu and Ram N. Mohapatra

Abstract HIV is an example of a disease where the pathogen mutates so that it is
not recognized by the immune system. In this paper, we have studied several models
and two retroviruses, viz., HIV and Human T-lymphotropic virus (HTLV-I). We have
used SIMULINK to draw graphs and study the associated modeling problems.

1 Introduction

Disease has played an important part throughout the history of mankind. Diseases
have influenced the growth or decline of a population and have impact on the econ-
omy. It causes more deaths than any other source, including war and natural disasters.
The manner in which diseases infect and invade a population has perplexed doctors
and scientist for many years. A branch of science called epidemiology was developed
in order to help analyze and understand the spread of disease.

Aristotle and Hippocrates of Cos started studying the transmission of diseases
during 300–400 BC. Later on, germ theory was first studied by Jacob Henle in 1840
and was later developed by Robert Koch, Joseph Lister, and Louis Pasteur. Modern
mathematics was first used in the study of diseases in 1873 by P. D. En’ko. Sir R.
A. Ross, W. H. Hamer, A. G. Mckendrick, and W. O. Kermack laid the founda-
tion of mathematics in epidemiology between 1900 and 1935 (see [18]). The study
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of epidemiology has grown tremendously since and most known communicable
diseases have been modeled and analyzed.

Epidemiology not only helps us to understand disease transmission, but also to
know how to control the spread of a particular disease. It is not a static science and
is constantly changing. Infectious diseases are constantly evolving and changing,
making them harder to control. New strains, which are immune to antibiotics, are
discovered everyday. HIV and Human T-lymphotropic virus (HTLV-I) are two new
viruses which were first discovered in the 1980s. These viruses have no known
cure but doctors are working with epidemiologists, mathematicians, and scientists
to find a cure and limit its transmission. We will use mathematical models to help
us understand the spread of these viruses in the human body and the progression of
these viruses to disease.

The memory immune responses enable humans and animals to rapidly clear, or
even prevent altogether, infection by pathogen with which they have previously been
infected. As an example, one typically contracts chicken pox at the most once in a
lifetime. One cause is the effectiveness of the memory response and the vaccines
designed around the knowledge that our immune system will efficiently fight foreign
invaders if already exposed to something similar. As a result, many pathogens use
the strategy of disguise to survive in the host population. With enough mutation,
a pathogen will ultimately be unrecognizable to the immune system of a host that
previously has been infected with one of its ancestors. This ability to mutate allows the
pathogens to escape partially the host immunity acquired from previous infections. In
influenza A and Canine parvovirus, new antigenic variants arise continually affecting
the epidemiology of the disease. In this study, we concentrate on the study of two
retroviruses and use SIMULINK for analysis.

1.1 Introduction to HIV

In 1981, the Center for Disease Control reported an unusual collection of homosexual
males that had Pneumocyctiscarinii pneumonia and Kaposi’s sarcoma. These men
were previously healthy individuals. This was a new retroviral disease later to be
named AIDS or Acquired Immunodeficiency Syndrome, a disease for which there is
still no cure and is the fourth leading cause of death worldwide. The etiologic agent
of this new epidemic is the human immunodeficiency virus or HIV, which will be
studied in detail in this paper. HIV is the retrovirus which causes AIDS. This virus
slowly destroys the immune system over many years. Once the immune system is
depleted, AIDS occurs. For more on HIV and AIDS, one may refer to [14, 23].

AIDS was first discovered in the United States but now affects the entire world and
is considered the new “plague.” It has killed more than 25 million people worldwide
and is considered the most destructive epidemic in the recorded history. AIDS is now
found in more than 163 countries with the most being in Africa and the Caribbean
being the second. Sub-Saharan Africa is considered to be the global epicenter of
the HIV epidemic (see [5]). Ninety percent of the individuals infected with HIV are
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in developing countries and 40 Individuals in the 15–24 age group are the fastest
growing segment who are being infected with HIV.

HIV can be transmitted in different ways. The virus is present in bodily fluids,
specifically in blood, therefore, any activity that results in the transfer of bodily
fluid can potentially result in the transfer of HIV. Intimate sexual contact is one
of the modes in which fluid transfer occurs. Intravenous drug use is another mode
in which HIV is transmitted between individuals because many drug users share
needles. Two other modes which are not as common due to medical advances and
new antiretroviral drugs are mother to child transmission and transmission through
blood transfusion. Mother to child transmission can occur during the birthing process
or through breast feeding. Although the rate of mother to child transmission has
dropped in many developing countries, it is still prevalent in the sub-Saharan regions
of Africa. Transmission of HIV through blood transfusions is rarely seen today due
to examination of the blood from donors for presence of HIV prior to saving them in
the blood bank for patient use. The U.S. blood supply is very safe due to the extensive
questioning of blood donors and the extensive testing of donated blood.

HIV is characterized by immunosuppression, neurologic involvement, and sec-
ondary tumors. HIV attacks the CD4+ T cells, which are responsible for the immune
system. The nature of this attack and how it occurs is modeled mathematically in
Sect. 3 in order to help us understand and predict the course of the disease. Many
graphs developed from the mathematical model help demonstrate the progression
to AIDS. The graphs were produced using Simulink and match those produced by
Stilianakis and Schenzle in Fortran.

1.2 Introduction to HTLV-I

HTLV-I was the first retrovirus to be discovered. This virus was discovered in Japan in
1980. HTLV-I is a virus which lies latent for many years before causing other diseases
to proliferate. This virus is the predominant cause of two diseases. The first one is
Adult T Cell leukemia/lymphoma or ATL, which is a T cell non-Hodgkin’s lymphoma
with a leukemic phase of circulating CD4+ T cells (see [4]). The progression from
HTLV-I to ATL is mathematically modeled and studied in Sect. 4. The discovery of
HTLV-I provided scientists with a clear proof of a relationship between viruses and
cancer. The second disease that is caused by HTLV-I is myelopathy (HAM) which
is also known as tropical spastic para paresis (TSP). Usually, this virus does not
produce disease until approximately 20 years after initial infection. HTLV-I can also
cause autoimmune or chronic inflammatory disorders such as arthropathy, Sjogren’s
syndrome, and facial nerve palsy. Identification of the HTLV-I virus facilitated the
discovery and isolation of HIV.

HTLV-I infects 10–20 million people worldwide but only produces disease in
approximately 5 % of infected individuals. Women are twice as likely to contract
HTLV-I as men. The HTLV-I infection is thought to occur in geographical clusters
which are located in southern Japan, the Caribbean, parts of Africa, the Middle East,
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South America, Pacific Melanesian islands, and Papua New Guinea. The virus is also
found in southeastern United States in certain immigrant groups.

HTLV-I is transmitted in the same way as HIV, through bodily fluid transfer. Unlike
HIV, the main transmission is through breast feeding. The HTLV-I antigen is found
in the infected mother’s milk and is transmitted most likely through lymphocytes
in the milk. The prevalence of this vertical transmission through breast feeding has
caused a clustering of cases in familial or geographically discrete groups (see [17]).
Other modes are sexual transmission, infection from blood transfusion, and sharing
needles among drug users. For more details on HTLV-I such as disease associations,
diagnosis, and treatment, one may refer to [16].

Many people can be infected with HTLV-I and will never develop a disease from
this virus. Section 4 will feature a mathematical model of the HTLV-I infection of
CD4+ T cells and the eventual progression to ATL. The stability analysis will illus-
trate two different steady states. One steady state when the virus will not progress to
ATL, and another steady state when the virus will progress to ATL. A proposition
for asymptotical stability is studied and a graph was produced using Simulink. Even
after rigorous analysis, this graph does not match the graph presented by the authors
and further work may be needed to explore the difference.

2 Mathematical Models

A mathematical model is a mathematical description of a real-world system or event
(see [15]). Epidemiologists will use mathematical models to understand and predict
the course of an infection or disease. A well-formulated model can help an epidemi-
ologist to determine where resources need to be allocated and how those resources
ca help control or eradication of the disease. In order to formulate a model for an
infectious disease, an individual must first collect an abundance of empirical data
through clinical testing. Once these data are collected and analyzed, the modelers
develop a model using the following steps. First, they note all the relevant assump-
tions and then determine the relationship between the variables and parameters used
in the model and, finally, analyze any specific patterns that are found. Deciding which
parameters and variables will be used in the model and how much importance should
be given depend on the characteristics of the disease under study and the intention
of the model (see [2]). Once the model is formulated and analyzed, it will help the
scientists to draw inferences from a set of hypotheses in order to determine the course
of the disease in an individual or in a population. For mathematical study of malaria
models, one may refer to [12].

Epidemiological models are usually formed using the general MSEIR model. This
model places individuals from a constant population into certain groups within the
model and describes the transition rate between each group. Each letter represents
a different class or group. M represents the temporary immunity that a mother can
pass on to her child through the placenta. The S describes the susceptibles, which are
the members of the population who are at risk for contracting the disease. E stands



22 Epidemiological Models: A Study of Two Retroviruses, HIV and HTLV-I 327

for exposed and describes the individuals from the population who are infected by
the disease but are not infectious due to a latent period of a disease. The I group
is the infectious group or the individuals from the population who have the ability
to pass the disease to other members of the population. R represents the group of
individuals who have recovered from the disease, whether temporary or permanent,
and also possess some type of immunity. For a detailed mathematical study on HIV
and HTLV-I, one may refer to [1].

2.1 Basic SIR Model

The first model to consider is the basic SIR model. It is a simple epidemic model
developed by Kermack and McKendrick in 1927 to predict the behavior of many
historical epidemics such as cholera, influenza, and the Great Plague. This model is
used by many epidemiologists because it ca help to predict the behavior and progress
of different diseases. This model is also a building block for many of the other more
complicated models. The SIR model considers a population that remains constant.
The population is divided into three classes: first S, the individuals who are susceptible
to the disease, second I, the individuals being exposed and infected by the disease,
and third R, the individuals who will recover from the infection and gain immunity
to the disease. This model does not consider any latent period of the disease. Once
an individual is infected, he is automatically moved into the infectious classification.
The progress of the individuals from class to class can be demonstrated by

S −−−−−−−−−−→ I −−−−−−−−−−→ R.

Some models only consider the S and I classes. Other models consider a fourth class
E, which takes in account a latent period of the disease in which the virus is present
in the host but has not infected the host. When modeling a disease like AIDS, it is
better to use a model which includes this class.

This model makes many assumptions. We must first assume the collection of
individuals in each class is a differentiable function of time. This is reasonable as
long as there are enough people in each class. Next, the model is deterministic. This
means that the behavior of the model is determined by the past behavior of diseases.
A stochastic model would be more effective if the model described classes with
small populations. Third, this model does not include a latent phase of the disease,
which means that once a susceptible becomes infected, the individual is automatically
placed into the infected class. Fourth, the model assumes that an infected individual
makes contact significant enough to transmit the disease at the contact rate β.

If βN S
N I = βSI , new cases will occur when N is the total number in the pop-

ulation, S is the number of susceptibles and I is the number of infecteds. The fifth
assumption is that the model has a mass action principle, which means every indi-
vidual within the population has an equal chance to have contact with every other
individual in the population. This information implies that β, the contact rate is the
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ratio of rate of contact to the population size. Another assumption is that the recovery
rate is proportional to the number of infecteds, and is represented by aI , where a
is the removal rate. The last assumption is that there is no entry or exit from the
population except through death. This occurs when the progression to disease is so
quick that birth and death rates can be ignored. This assumption can be changed in
certain models.

Based on these assumptions, the classic Kermack and McKendrick model is:

dS

dt
= −βSI (1)

dI

dt
= βSI − aI (2)

dR

dt
= aI. (3)

Note that only nonnegative solutions for S, I and R are of interest. Also remember
the total population is constant and is embedded in the model. If we add Eqs. (1)–(3),
we will get:

dS

dt
+ dI

dt
+ dR

dt
= 0. (4)

Solving this differential equation we get

S(t)+ I (t)+ R(t) = N , (5)

where N is the population size.

We also have the following initial conditions

S(0) = S0, I (0) = I0, R(0) = R0, (6)

where S0 > 0 and I0 > 0.
The population is constant, therefore, R can be determined if S and I are known.

For this reason, Eq. (3) can be dropped and the system can be reduced to only two
equations. This system is not possible to solve analytically but the equations can
be analyzed using a qualitative approach. Note that S′ < 0 and I ′ > 0 if S0 >

a
β

.
Since S is decreasing, I will initially increase but then will decrease to zero. The
possibility of I increasing is what indicates an epidemic because I represents the
infected individuals. If S0 <

a
β

, then I will go to zero and there is no epidemic.
If S0 >

a
β

, the number of infected individuals will first increase to S = a
β

, and
then decrease to zero. From this, we see a threshold parameter. The behavior of
the disease will depend on the threshold quantity, S0β

a . This number defines the
reproduction number. The reproduction number R0 of the system is defined as the
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number of secondary infections produced by one primary infection in the population
of susceptibles. Therefore we have

R0 = S0β

a
. (7)

This number measures how fast the infection will spread. If R0 < 1, the infection
will not continue and the disease will disappear. If R0 = 1, the infection will remain
stable in transmission. If R0 > 1, an epidemic will occur (see [3]). To find the
trajectories in the phase plane, we first divide the two equations of the model and get

dI

dS
= (βS − a)I

−βSI
= −1+ a

βS
. (8)

Separation of variables and integration yields

I = −S + a

β
log S + c, (9)

where c is an arbitrary constant of integration. Equation (9) can be defined as the
following quantity:

J (S, I ) = S + I − a

β
log S, (10)

where J (S, I ) = c. Different constants will give different trajectories and this con-
stant can be obtained by knowing the initial values of S, I, S0 and I0. Now we have

J (S0, I0) = S0 + I0 − a

β
log S0 = c. (11)

If we assume a population of size K and introduce a small number of infecteds into
the population, that is S0 ≈ K and I0 ≈ 0, we can determine R0 = βK

a from
Eq. (7). Taking the fact that limt→∞ I (t) = 0 and limt→∞ S(t) = S∞, we can find
J (S0, I0) = J (S∞, 0). This will yield

K − a

β
log S0 = S∞ − a

β
log S∞. (12)

This helps to determine the reproduction number because it will give an expression
for βa that can be determined by

K − S∞ = a

β
log

S0

S∞
(13)

β

a
= log S0

S∞
K − S∞

. (14)
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Note that S0 > S∞ because the initial number of susceptibles will be greater than
the number of susceptibles who will become infected. This will occur because there
are some who will not come into contact with the disease.

2.2 Basic SIS Model

The SIS model is another type of model to study infectious diseases. In this model,
the infected will return to the susceptible class after recovery. This model is more
effective to use when studying sexually transmitted diseases. The simplest model,
which was given by Kermack and McKendrick is

dS

dt
= −βSI + aI (15)

dI

dt
= βSI − aI. (16)

This model is different from the SIR model in that the recovered members will return
to the susceptible class at a rate of aI instead of moving to a recovered class. Just as
in the SIR model the total population is constant, since (S + I )′ = 0. Again, let the
constant population be represented by K. If K = S+ I , we can replace S by K-I and
reduce the model to a single differential equation. This equation is

dI

dt
= β I (K − I )− aI

= (βK − a)I − β I 2

= (βK − a)I
(

1− I

K − a
β

)
. (17)

This is a logistic equation with a growth rate of βK − a and carrying capacity of
K − a

β
. An analysis of this will show that if βK − a < 0 or βK

a < 1, then for any

I0 > 0, we see that limt→∞ I (t) = 0 and limt→∞ S(t) = K . If βK
a > 1, then for

any I0 > 0, we will see that limt→∞ I (t) = K − a
β

and limt→∞ S(t) = a
β

. As seen
here, there is a single limiting value for I and this limiting value is determined by the
quantity βK

a , regardless of the initial rate of infection. The infection will disappear

or the number of infected will approach zero when βK
a < 1. Hence the equilibrium

I = 0 and S = K is considered the disease free equilibrium. If βK
a > 1, the infection

will continue. The equilibrium I = K − β
a which corresponds to S = a

β
is defined

as the endemic equilibrium.
The dimensionless quantity βK

a is the reproduction number for our system, noted

as R0 = βK
a . In Sect. 2.1, we discussed that the value of R0 was the threshold
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parameter. We also defined R0, as the number of secondary infections produced by
one primary infection in the population of susceptible. The reproduction number
helps to determine the path which the disease will take. If R0 = βK

a , where βK is
the number of contacts made by an average infected per unit of time and 1

a is the
mean infected period, we can clearly see if R0 < 1, the infection will disappear and
if R0 > 1, the infection will persist.

3 Intrahost Dynamics of HIV

To understand how HIV destroys the immune system, we first must understand
how the immune system works. When a foreign substance or antigen enters the
body, the body will initiate an immune response. This immune response starts with
macrophages and monocytes. These cells are the body’s first defense against the
antigen. They will seek out the antigen surround it and overtake it. This process is
known as phagocytosis. The macrophages will then analyze the content of the antigen
and pass this information along to the CD4+ T lymphocytes, also called CD4+ T
cells (see [11]). The CD4+ T cells will call for the production of more CD4+ T cells
or will call for the production of types of T cells such as the CD+8-T cells. Another
weapon used by the body’s defense system is the B lymphocytes or B cells. These
cell produce antibodies specifically engineered to destroy the pathogen detected by
the macrophages (see [7]).

HIV is considered a lentivirus, meaning slow virus, which is a subclass of the
retrovirus. In general, a virus will insert its own DNA into the host cell. When the
host cell replicates its DNA, the virus’ DNA is also replicated. A retrovirus like HIV
will insert RNA rather than DNA into the host. Retroviruses have a unique enzyme
named reverse transcriptase (see [5]). This enzyme will prepare a DNA copy of the
RNA genome into the host. This DNA copy is eventually inserted into the genome
of the host cell where the virus will persist for years and is impossible to eradicate
(see [21]). The HIV DNA will get copied every time the host cell divides.

On the cellular level, the HIV particles target the CD4+ T lymphocyte. It attracts
the CD4+ T lymphocyte through a glycoprotein called gp120. The protein enzyme,
gp120 is located on the surface of the HIV particle and is attracted to the CD4 protein
on the surface of the T cells, macrophages, and monocytes. The CD4+T cell attaches
itself to the virus and is infected.

The HIV infection can typically be divided into three phases. The first phase is
the primary infection. During this initial phase, the virus is present in the host and
replicates in the manner describe previously. Three to six weeks after the infection,
50–75 % of the patients develop an acute viral syndrome (see [21]). There is also
a significant reduction in CD4+ T cells. The second phase of HIV infection is the
longest phase. It is the phase in which there is a long asymptomatic period and latency
occurs. There are two major features of this phase. The first feature is the permanent
viral replication in the lymphatic tissue and lymphoid organs. The second feature is
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Table 1 Variables used in the simple model

Variable

X Total number of susceptible CD4+ T cells
Y Total number of productively infected CD4+ T cells
V Total number of HIV particles
K Factor that describes the increase of the CD4+ T cell infection rate

the gradual decline of the CD4+ T cells. The final phase of the HIV infection shows
a sharp decline in CD4+ T cells and the emergence of clinical immunodeficiency
and progression to AIDS. The period of time from initial infection to the formation
of AIDS can vary from person to person. The median estimate is 8–11 years without
treatment and even longer with treatment (see [19]).

3.1 HIV Simple Model

Stilianakis and Schenzle developed this basic model to describe the long-term dynam-
ics of HIV progression through the body and the eventual development of AIDS.
The basic biomedical assumption of this model is the genetic variation of HIV. It is
assumed that the infection rate is the major source for the increase and selection of
the HIV mutants (Table 1).
The model consists of the following nonlinear differential equations:

dX

dt
= Λ− μX − κ0KVX (18)

dY

dt
= κ0KVX− δY (19)

dV

dt
= βY − γ V (20)

dK

dt
= ωK V (Kmax − K ). (21)

The biological representation of each term in each equation will now be discussed
to provide a better understanding of the system. In the first Eq. (18), Λ represents
the constant rate at which new CD4+ T cells are produced. These newly produced
CD4+ T cells are considered to be susceptible. The term μX is the rate at which
susceptible cells die. The last-term κ0KVX is considered a mass action term which
describes the rate at which susceptible cells are infected by the HIV particles. This
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Table 2 Variables used in the extended model

Variable Initial values

X Total number of nonsusceptible
CD4+ T cells

X (0) = X0 = 0.7× 2.5× 1011

S Total number of susceptible CD4+
T cells

S(0) = S0 = 0.3× 2.5× 1011

Y Total number of productively
infected CD4+ T cells

Y (0) = Y0 = 0

V Total number of HIV particles V (0) = V0 = 1
Z Anti-HIV activity of the immune

system
Z(0) = Z0 = 10−6

P Fraction of new CD4+ T cells
entering the pool of susceptible
CD4+ T cells

P(0) = P0 = 0.3

K Factor that describes the increase
of the CD4+ T cell infection
rate

K (0) = K0 = 1.0

N Total number of uninfected CD4+
T cells

N (0) = N0 = X0 + S0 =
2.5× 1011

mass action term is also seen in the first term of Eq. (19). The second term in Eq. (19)
is δY . This term describes the death rate of the infected CD4+ T cells.

The first term in Eq. (20) is βY. This term represents the rate in which infectious
viral particles infect the CD4+T cells. γV represents the rate at which virus particles
are cleared. The last Eq. (21) represents how fast the virus can reproduce within the
host and the maximum amount of virus particles that can be seen within the host at
any particular time within the evolutionary process.

The rate at which the virus reproduces is called the virus reproduction number. In
this model, it is a dynamic quantity and it changes over time. The virus reproduction
number is

R0(t) = βκ0 K (t)X0

δγ
. (22)

This reproduction number will increase monotonically toward

R∗0 =
βκ0 Kmax X0

δγ
. (23)

3.2 HIV Extended Model

The following model is an extension of the original basic model. The extended model
takes into account the total number of susceptible CD4+ T cells, and how fast new
CD4+ T cells become susceptible to the HIV infection (Table 2).

The model consists of the following nonlinear differential equations:
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dX

dt
= α(1− P)− μX (24)

dS

dt
= αP − μS − κ0 K V

S

(P + d)
(25)

dY

dt
= κ0 K V

S

(P + d)
− (μY + δY Z)Y (26)

dV

dt
= βY − (μV + δV Z)V (27)

dZ

dt
= θg(V )+ ρ[ f (S + X)Zmax − Z ] (28)

dP

dt
= ωP V (Pmax − P) (29)

dK

dt
= ωK V (Kmax − K ) (30)

where

f (N ) = 1+ bc

1+ ( bN0
N )c

and g(V ) = V

a + V
. (31)

N can be divided into the number of nonsusceptible T cells X, and the number of
susceptible T cells S. Therefore, N = X + S.

To understand the system, an understanding of what each term biologically repre-
sents must be presented. In Eq. (24), P is the fraction of new CD4+ T cells that enter
the susceptible and 1− P is the fraction of new CD4+ T cells that remain unsuscep-
tible to the HIV virus. The first term in Eq. (24) is α(1 − P), where α is the T cell
production rate. This term represents the immigration rate of new nonsusceptible T
cells. The second term isμX in whichμ is the natural death rate of the unsusceptible
cells. Therefore, this term represents how many nonsusceptible CD4+ T cells die.

Equation (25) represents the dynamics of the susceptible cells in the system. The
first term αP , describes the immigration rate of the susceptible CD4+ T cells. The
second-term μS, represents the natural death rate of the susceptible cells. The last
term in Eq. (25) is κ0 K V S

(P+d) . This is a mass action term which describes the infec-

tion process between cells and viruses. In particular, S
(P+d) describes the dynamics

changes in the susceptible cells. The variable P , in this term is very important in
helping determine the course of the infection and the progression of the disease.
In fact, P shows that more cells can be attacked and infected by the virus than the
immune system can combat.

Equation (26) has many terms and this equation determines how many produc-
tively infected cells are in the blood. The first term is the same mass action term that



22 Epidemiological Models: A Study of Two Retroviruses, HIV and HTLV-I 335

is seen in Eq. (25). The second term in Eq. (26) is (μY + δY Z)Y . μY represents the
death rate of productively infected cells and δY Z represents how fast these dead cells
are removed from the system. Equation (27) describes the number of HIV particles
that are produced and destroyed. The first term in Eq. (27) is βY . In this term, β
describes the rate at which HIV particle cells are produced from infected cells. The
second-term (μV + δV Z)V , describes the rate at which HIV particles are cleared
and eliminated. The term μV is the rate in which virus particles are cleared and δV Z
represents the anti-HIV activity and elimination.

Equation (28) is the most complicated equation within the model because not
much is known about the dynamics of the HIV-specific immune response. Therefore,
a general equation is used to model this response. The equation shows the coupling
of a time-dependent decline of the CD4+ T cells and the intrinsic features of the
immune response. The variable ρ in Eq. (28), represents the HIV-specific immune
response. This response occurs independently of the number of HIV particles that are
present in the body. The function g(V ), models how the immune response is activated
depending on the quantity of the virus. The term ρ[ f (S + X)Zmax] is the rate once
primary infection occurs in which HIV will start producing specific antibodies and
the cytotoxic cells will start multiplying. Once this occurs, the immune system will
eventually become independent of the number of HIV particles and infected cells.
In Eq. (28), the function f (N ) describes how the activity of the immune system is
related to the number of available uninfected cells. This function also takes account
of the immune system’s ability to combat HIV when the number of CD4+ T cells is
not sufficiently high.

Equation (29) describes the increase in the rate of the fraction of new cells coming
from the pool of susceptible cells and how they correspond to the generation and
selection of HIV mutants. Equation (29) describes the rate at which the HIV infection
increases due to the reproduction of each virus particle.

The virus reproduction number is also an important value to discuss. The repro-
duction number represents how quickly the virus is reproducing. The HIV reproduc-
tion number must be above one in order to show a persistent infection. The virus
reproduction number for this model is

R̄0 = βκ0 K̄ S̄

(μY + δY Z̄)(μV + δV Z̄)(P̄ + d)
. (32)

If the values S, Z, K and P could be held at fixed values S̄, Z̄ , K̄ and P̄ , the biological
interpretation would be that one HIV particle will generate R̄0 secondary particles
into the host. At initial HIV infection with time t = 0, the virus reproduction number
has a value of 10 and is represented by the following equation:

R0 = βκ0S0

(μYμV )(P0 + d)
. (33)

This is the initial reproduction number with no anti-HIV activity. A reproduction
number, which represents the presence of a fully activated anti-HIV activity with a
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Table 3 Parameter values used in the extended model

Parameter Values

α CD4+ T cell production rate 5× 109 per day
μ Natural death rate of uninfected

cells
0.02 per day

κ0 Initial rate at which a HIV particle
transforms a susceptible CD4+
T cell to a productively infected
cell

1.0× 10−12 particles per
day

μY Death rate of productively infected
cells

0.6 per day

δY Maximum additional elimination
rate of productively infected
cell through anti-HIV activity

0.6 per day

β HIV production rate from infected
cells

150 particles per cell per
day

μV Clearance rate of infectious virus
particles

6 per day

δV Maximum additional elimination
rate of virus particles through
the anti-HIV activity

5 per day

θ HIV dependent immune activation
rate

10−6

ρ Autonomous immune activation
rate

0.1 per day

ωP Rate of increase of the fraction of
susceptible cells by generation
and selection of HIV mutants

1.4× 10−14 particles per
day

ωK Rate of increase of reproduction
per virus particle

1.1× 10−15

a Constant 103

b Constant 0.2
c Constant 2.0
d Constant 10−2

Zmax Maximum ant-HIV activity 1.0
Pmax Maximum fraction of susceptible

cells
1.0

Kmax Maximum infection rate of
susceptible cells per infected
cell

20

maximum number of susceptible cells can also be found. The reproduction number
with maximum anti-HIV activity is represented by the following equation:

R′ = βκ0S0

(μY + δY )(μV + δV )(P0 + d)
. (34)



22 Epidemiological Models: A Study of Two Retroviruses, HIV and HTLV-I 337

In this equation, Z and K are held at fixed values, Z = Zmax = 1 and K = 1. If
R′ is greater tha one, the infection will persist and cannot be cured. The calculated
value of R′ is 2.75. This value confirms that a patient with HIV will not be able to
overcome the infection.

The HIV extended model is very complex and a full mathematical analysis is not
possible. However, this model is also more realistic and applicable because it takes
into account the difference between susceptible and nonsusceptible CD4+ T cells.
Modeling with specific parameters will help explaining the system better. Most of
the parameters used were found through clinical and experimental data (see [21]).
The parameter values are described in Table 3.

3.3 HIV Extended Model Graphs and Biological Interpretation

The numerical results of the model using the parameter values from Sect. 3.2 were
used to make the following graphs. Figure 1 represents the number of CD4+ T cells.
Figure 2 represents the number of HIV particles. Figure 3 represents the anti-HIV
activity. Each of the graphs represents the initial phase of the HIV infection within
the first 6 months and supports the model predictions.

During primary infection, there are a large number of virus particles which enter
the body and start infecting the CD4+ T cells. At the start of the infection, the
number of HIV particles grows exponentially. The HIV viremia causes a temporary
reduction of CD4+T cells which then recover and remain at a lower level than before
the infection. Notice in Figs. 1 and 2 the increase and decrease of HIV particles and
CD4+ T cells occur at the same time around 15 days. Right after the initial infection,
the anti-HIV activity mounts an attack against the invading virus particles and we
see a resurgence of CD4+ T cells. The anti-HIV activity increases rapidly and then
reaches its maximum. The anti-HIV activity is not the only reason the viremia starts
to break down. Note there are only a certain number of available CD4+ T cells to
infect.

During the second phase of the infection for about 10 years, the virus is slightly
suppressed and increases slowly. This is the latent period of the infection. The model
shows the immune system will hold to 50 % of the normal value for about 10 years
but will drop significantly during the two years following. After about 12 years, the
CD4+ T cells will drop below 20 % which is the definition of disease progression
to AIDS (see [21]). We see a decline of anti-HIV activity. The HIV virus particles
replicate freely and reach a higher concentration than that of the primary infection.
At this point, the immune system cannot control other infections (Figs. 4, 5 and 6).

Surprisingly, the model predicts that the initial dose of HIV particles introduced
into the host does not play an important role in progression to disease. A highly
activated CD4+ T cell pool is one of the main determinants for infection and disease
progression. If an individual is unhealthy, their CD4+ T cell pool would be larger
than normal and would favor CD4+T cell infection by the HIV virus. If an individual
has an initial value of 1,200 per mm3 CD4+ T cells, then the progression to disease
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Fig. 1 Decline of CD4+ T cells over first 6 months after initial infection

Fig. 2 Increase in HIV particles within the first 6 months of infection

occurs much faster. If the initial value was 800 per mm3 CD4+ T cells a much
smoother progression occurs. The following graph shows the impact of initial cell
count on the infection process (Fig. 7).

This model also looks at the dynamics of the susceptible and nonsusceptible cells.
The variable P, in the model represents the proportion of new CD4+T cells which are
becoming susceptible. The higher the amount of activated CD4+ T cells, the faster
the virus progresses to disease. The initial value of P is important to the dynamics
of this model. If the initial value of P is small, the immune system will hold at
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Fig. 3 Decline of anti-HIV activity within the first 6 months of initial infection

Fig. 4 Total cell count after 12 years. Progression to AIDS occurs at y = 0.2

50 % for about 12 years. However, if the initial value of P is large, the progression
to disease is much faster. This means through the generation and selection of HIV
mutants, the HIV virus will increase the range of CD4+ T cells tropism over more
and more CD4+ T cell clones, until after 12 years almost all of the clones are equally
susceptible to be infected by the HIV virus (see [21]). The variable K represents the
infection rate at which the CD4+ T cells increase by the generation and selection of
HIV mutants (Fig. 8).

The speed at which P and K change are measured by ωP and ωK . These values
also play an important role in the model and in the disease progression. If the value of
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Fig. 5 Anti-HIV activity after 12 years

Fig. 6 HIV particle increase over 12 years

ωK was increased or decreased by a factor of five, the reduction rate of the CD4+ T
cells would look similar but the end result may be different. If ωK was decreased by
a factor of five, the model predicts the individual’s life span would increase by two
years. If ωK was increased by a factor of five, the model predicts a faster progression
to disease around 8 years. There is a stark difference when the value ofωP is changed
by a factor of five. If ωP is increased by the factor, progression to disease occurs
after 6 years (Figs. 9 and 10).
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Fig. 7 Total CD4+ T cell count after a 20 % reduction of CD4+ T cell count (aqua), normal
reduction (blue), and initial increase by 20 % of CD4+ T cell count (red)

Fig. 8 Changes in the P value and the impact on the total cell count

As seen through the graphs, P, K, ωP and ωK are very important to the intrahost
dynamics of HIV. The effect of the rate of the fraction of susceptible cells by gen-
eration and selection of HIV mutants is important in determining the progression to
disease (see [21]).

HIV will affect many people in many different ways. Studies on various aspects
of this disease are ongoing. Some recent articles of interest are [8, 10, 13].

This model helps to predict the course that HIV will take during the three stages of
the disease. The model may lose applicability for the late part of the last stage of the
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Fig. 9 Impact on CD4+ T cells when the value of ωK is varied

Fig. 10 Impact on CD4+ T cells when the value of ωP is varied

disease because of many other extreme pathological conditions. In the latter stage of
the disease, the immune system is completely compromised and is no longer able to
fight infection. When this happens, a simple cold could cause death. Understanding
the course of this disease through the model presented ca help doctors and scientist
find a cure for this epidemic.
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4 HTLV-I Virus and Adult T Cell Leukemia

As we have seen in the previous section, the HIV infection takes place through cell
to cell contact with infected CD4+ T cells and eventually takes over the immune
system. A virus that is similar and related to HIV is the first form of a human T-
lymphotropic virus or HTLV. Just as HIV can lead to the AIDS virus, HTLV-I can
lead to many diseases, including adult T cell leukemia/lymphoma. Actively infected
T cells can infect other T cells and can eventually convert to ATL cells. This process
typically happens during the latent phase of the virus.

HTLV-I shares many similarities with HIV except in the range of diseases that it
causes and how it causes these diseases. There are two major virologic differences
between HIV and HTLV-I. One difference is that HTLV-I does not destroy the CD4+
T cells but in fact, causes cell proliferation and transformation. The other is that
HTLV-I has a low replication rate but a high fidelity of replication, which results in
a low viral burden and high genetic stability. This reduces the possibility of immune
escape (see [17]). HTLV-I is an enveloped double stranded RNA retrovirus which
attacks the CD4+ T cells. Transmission of HTLV-I is mainly associated with the
cells. The cells receive this virus through a glucose transporter called glut-1. Once
received, the virus inserts a DNA copy into the host cell. The virus replicates with
each mitotic cell division. As cells continue to divide, the virus spreads. HTLV-I
will remain latent for many years before the virus causes Adult T cell leukemia
to manifest. The latently infected cells contain the virus but do not produce DNA.
Therefore, the cells are incapable of contagion. This section examines a mathematical
model which examines the process of how HTLV-I causes ATL.

Adult T cell leukemia or lymphoma is a non-Hodgkins lymphoma. Adult T cell
leukemia occurs first, which is a cancer of the cells. Lymphona also occurs and is a
cancer which attacks the B lymphocytes and the lymphatic system. There are four
distinct clinical forms of ATL. The disease can be classified as acute ATL, chronic
ATL, lymphoma, and smoldering ATL. Once ATL develops, most individuals will
survive for only a year or two (see [22]). The median survival rate for the acute and
lymphoma subtypes is less than 1 year. Individuals with acute or smoldering ATL
may survive longer (see [9]). Standard chemotherapy is not effective against ATL.

4.1 Mathematical Model of HTLV-I Infection to ATL

Stilianakis and Seydel produced a basic mathematical model that describes the T cell
dynamics of the HTLV-I infection and the development of ATL (Table 4).

This model consists of the following nonlinear differential equations:

T ′ = Λ− μT T − κTAT (35)

T ′L = κTAT − (μL + α)TL (36)
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Table 4 Variables used in the Stilianakis and Sydel model

Variable

T Number of susceptible CD4+ T cells
TL Number of latently infected CD4+ T cells
TA Number of actively infected CD4+ T cells
TM Number of leukemia T cells
Λ Constant rate at which new CD4+ T cells are produced (assumed to be susceptible)
κ Rate at which CD4+ T cells come into contact with actively infected cells.
α Transmission rate in which latent cells become actively infected cells
ρ Transmission rate in which actively infected cells convert to ATL cells
β ATL proliferation rate of a classical logistic growth model
μT Removal or death rate of susceptible CD4+ T cells
μL Removal or death rate of latently infected CD4+ T cells
μA Removal or death rate of actively infected CD4+ T cells

T ′A = αTL − (μA + ρ)TA (37)

T ′M = ρTA + βTM

(
1− TM

TMmax

)
− μM TM . (38)

The terms in this model each have a biological meaning. The first term in Eq. (35) is
Λ. This term is the rate in which the new CD4+ T cells are produced. Each cell that
is produced is assumed to be susceptible to the virus. The second term in Eq. (35)
represents the rate at which all CD4+ T cells die. The last term in Eq. (35) is κTAT
and is considered the mass action term. This term represents the infection process of
susceptible cells which come into contact with actively infected CD4+ T cells.

Equation (36) starts with the same mass action term that is seen in Eq. (35). The
second term is (μL +α)TL . Let us break this term up into two terms, μL TL and αTL

and explain them separately. The term μL TL describes how fast the latently infected
cells are dying, andαTL describes how fast the latently infected cells become actively
infected cells. In general, the whole term describes the dynamics of the latently
infected cells.

The first term in Eq. (37) is αTL , which represents how fast the latently infected
cells become actively infected cells. The next term is (μA + ρ)TA. Again, lets break
this up into two terms,μATA and ρTA. The termμATA describes the death rate of the
actively infected cell, and ρTA describes how fast the actively infected cells become
ATL cells. The terms in Eq. (37) represent the dynamics of the actively infected cells
and how they change to ATL cells.

Equation (38) is the equation which represents the growth of the leukemia cells,
which follows the classical logistical growth function. This equation begins with
ρTA. This term was also seen in Eq. (37) and it describes the speed at which actively
infected cells become ATL cells. The second term is βTM (1 − TM

TMmax
). This term

describes the growth of the ATL cells, where β is the speed for which the saturation
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level for leukemia cells is reached and TMmax is the maximum amount of ATL cells
that can be attained. The last-term μM TM , describes the death rate of the ATL cells.
This equation illustrates the dynamics of the ATL or leukemia cells in the body.
The virus reproduction number for this model is

R0 = ακT0

(μL + α)(μA + ρ) . (39)

This number helps to determine how fast the disease will spread throughout the body.
R0 represents the number of secondary infections caused by one primary infected
cell introduced into the pool of susceptible CD4+ T cells during the infection period
(see [20]). If R0 > 1, a chronic infection is seen. This is typical in most HTLV-I
infections. If R0 ≤ 1, the virus cannot reproduce enough to sustain an infection.
The reproduction number will play an important role in determining the stability of
the system.

4.2 Stability of the System

To analyze the stability of this system, we must first find the equilibrium points.
In order to find the equilibrium points, we set Eqs. (35)–(38) equal to 0 and solve
them. The system has two possible solutions or steady states. This system can have
an uninfected steady state and a positively infected steady state. For the uninfected
steady state, the T cell population will have the following value:

T0 = Λ

μT
. (40)

The initial conditions would then be T (0) = T0, TL(0) = 0, TA(0) = 0, and
TM (0) = 0. Therefore the uninfected steady state would be E0 = (T0, 0, 0, 0). The
positive infected steady state would be Ē = (T̄ , T̄L , T̄A, T̄M ), where

T̄ = (μL + α)(μA + ρ)
ακ

T̄L = Λακ − μT (μL + α)(μA + ρ)
ακ(μL + α)

T̄A = Λακ − μT (μL + α)(μA + ρ)
κ(μL + α)(μA + ρ)

T̄ 2
M −

(β − μM )TMmax

β
T̄M − ρT̄ATMmax

β
= 0.

First, we examine the stability of the uninfected steady state. For this state, the
values yield the following Jacobian matrix associated with Eqs. (35)–(38):
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J =

⎛
⎜⎜⎜⎝

−μT − κTA 0 −κT 0
κTA −α − μL κT 0

0 α −μA − ρ 0

0 0 ρ β
(

1− 2 TM
TMmax

)
− μM

⎞
⎟⎟⎟⎠ . (41)

In the uninfected steady state, the characteristic polynomial is found by taking the
determinant of the Jacobian or det(J − λI ). The characteristic polynomial is

p(λ) = (β−μM−λ)(μT −λ)(λ2+λ(μL+α+μA+ρ)+(μL+α)(μA+ρ)−ακ.
(42)

The eigenvalues are

λ1 = β − μM

λ2 = −μT

λ3,4 = −(μL+α+μA+ρ)
2 ±

√
(μL+μA+α+ρ)2−4(μL+α)(μA+ρ)−ακ Λ

μT
2 .

(43)

The eigenvalues help in determining the stability of the steady state. If λ1 = β −
μM > 0, then the proliferation rate of the abnormal cells are greater than the death
rate and the infection increases. If λ1 = β−μM < 0, then the death rate of the ATL
cells is greater than the proliferation rate and the stability will actually depend on the
other eigenvalues λ3, λ4. These eigenvalues are either real or complex conjugates.
In both cases, the real parts are negative if and only if the reproduction number is
less than or equal to one, that is

R0 = ακT0

(μL + α)(μA + ρ) ≤ 1. (44)

If we assume that the ATL cells grow at an uncontrollable rate, then λ1 > 0 and the
point E0 = (T0, 0, 0, 0), where T0 = Λ

μT
, is an unstable saddle point. If λ1 < 0, the

reproduction number will determine the next steady state. If R0 ≤ 1 the uninfected
steady state is the only state and it is stable. The system will move to the endemically
infected steady state when R0 > 1 and this represents a chronic infection. When this
occurs, E0 will become unstable and Ē will exist.

For the endemically infected steady state, the Jacobian and the determinant of
Eqs. (35)–(38) will give the following characteristic equation:

λ3 + λ2 A + λB + C = 0, (45)

where
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A = μT + μL + μA + ρ + α + κ T̄A

B = μTμL + αμT + μT ρ + κμL T̄A + κμAT̄A + κρT̄A + ακ T̄A

C = κμLμAT̄A + καμAT̄A + κρμL T̄A + ακρT̄A.

(46)

We must use the Routh–Hurwitz condition in order to determine the stability of the
system. Note that A > 0, B > 0, and C > 0. By the Routh–Hurwitz condition, the
eigenvalues of Eq. (45) will have negative real parts if and only if A > 0,C > 0 and
AB − C > 0. We have already noted that A > 0 and C > 0. One can also see that
AB−C > 0. Therefore, we can determine that the eigenvalues are always negative.
When the eigenvalues are negative, we can show that steady state is stable and the
infection is chronic.

4.3 Katri and Ruan Model and the Stability of the System

In 2004, Katri and Ruan developed a similar model which takes into account the
difference between contact with the virus and infection by the virus. This is denoted
by using κ1 in certain equations. Remember that κ represents the rate at which
uninfected cells are contacted by actively infected cells. In this model, κ1 represents
the rate of infection of the T cells by the actively infected T cells. The equations for
the Katri and Ruan model are the same as the original model but in Eq. (36), κ is
replaced with κ1 and the new model is

T ′ = Λ− μT T − κTAT (47)

T ′L = κ1TAT − (μL + α)TL (48)

T ′A = αTL − (μA + ρ)TA (49)

T ′M = ρTA + βTM

(
1− TM

TMmax

)
− μM TM . (50)

This small change in the model changes the reproduction number

R0 = ακ1T0

(μL + α)(μA + ρ) . (51)

The uninfected steady state and stability analysis remains the same as the Stilianakis
and Seydel model; however, the new positive infected steady state would be Ē =
(T̄ , T̄L , T̄A, T̄M ), where
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T̄ = (μL + α)(μA + ρ)
ακ1

T̄L = Λακ1 − μT (μL + α)(μA + ρ)
ακ(μL + α)

T̄A = Λακ1 − μT (μL + α)(μA + ρ)
κ(μL + α)(μA + ρ)

T̄ 2
M −

(β − μM )TMmax

β
T̄M − ρT̄ATMmax

β
= 0.

For this state, the values yield the following Jacobian matrix associated with
Eqs. (47)–(50)

J =

⎛
⎜⎜⎜⎝

−μT − κ T̄A 0 −κ T̄ 0
κ1T̄A −α − μL κ1T̄ 0

0 α −μA − ρ 0

0 0 ρ β
(

1− 2 T̄M
TMmax

)
− μM

⎞
⎟⎟⎟⎠ . (52)

We will denote

M ′ = β
(

1− 2
TM

TMmax

)
− μM . (53)

The eigenvalues of this Jacobianare M ′ will always be negative since T̄M > TMmax

when the infection is chronic. The Jacobian will yield the following characteristic
equation:

λ3 + λ2a1 + λ(a2 + a4)+ (a3 + a5) = 0, (54)

where

a1 = κ2T̄A + κμL + κρ + κμT + ακ + κμA

a2 = κ2T̄AμL + κ2T̄Aα + μT κμL + κ2T̄AμA + κ2T̄Aρ

+μAκμL + μT κα + μAκμT + κμLρ + καμA + καρ + μT κρ

a3 = μT καρ + κ2T̄Aαρ + κ2T̄AμAα + μTμAκμL

+μT κμLρ + μT καμA + κ2T̄A(μLρ + μLμA)

a4 = −κ1αρ − κ1μLρ − κ1αμA − κ1μLμA

a5 = −(μT κ1αρ + μTμAκ1μL + μT κ1μLρ + μT κ1αμA).

Again, we must use the Routh–Hurwitz condition to further determine the stability
of the system. According to the Routh–Hurwitz condition, the eigenvalues will have
negative real parts if and only if

a1 > 0, (a3 + a5) > 0 and a1(a2 + a4)− (a3 + a5) > 0. (55)
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Table 5 Variables and parameter values for contagion used in the model

Parameter Values

T Uninfected CD4+ T cell population size 1,000/mm3

TL Latently infected CD4+ T cell density 250/mm3

TA Actively infected CD4+ T cell density 1.5/mm3

TM Leukemic CD4+ T cell density 0
μT Natural death rate of CD4+ T cells 0.6 mm3 per day
μL Blanket death rate of latently infected

CD4+ T cells
0.006 per day

μA Blanket death rate of actively infected
cells

0.05 per day

μM Death rate of leukemic cells 0.0005 per day
κ1 Rate uninfected CD4+ T cells become

latently infected
varies

κ Rate infected cells are contacted varies
β Growth rate of leukemic CD4+ T cell

population
0.0003 per day

α Rate latently infected cells become
actively infected

0.0004 per day

ρ Rate actively infected cells become
leukemic

0.00004 per day

TMmax Maximal population level of leukemic
CD4+ T cells

2,200/mm3

λ Source term for uninfected CD4+ T cells 6 per day
T0 Derived quantity which represents the

CD4+ T cell population for HTLV-I
negative persons

1,000/mm3

Proposition 41 (see [6]) The infected steady state Ē is asympototically stable if
R0 > 1 and the inequalities in (55) are satisfied. This occurs if (a) κ > κ1, or (b)
κ = κ1.

To check that this proposition is valid, we will use the following parameters and
values estimated by Stilianakis and Seydel (see [20]).

We can use these parameter values and the estimated values of κ and κ1, given
by Stilianakis and Seydel on the basis of parameter values from the HIV infection
process, to find that R0 = 1.25 if κ1 = 0.1. If we take κ = κ1 = 0.1, we find that the
inequalities in Eq. (55) are satisfied and part (b) of Proposition 41 is true. Furthermore,
the steady state, Ē = (800, 187.5, 1.5, 1.3), would be asymptotically stable. If we
take κ = 0.5 and κ1 = 0.1, we will again find that the inequalities in Eq. (55)
are satisfied and part (a) of Proposition 41 is also true. The steady state would be
Ē = (800, 37.38, 0.3, 0.6), which is also asymptotically stable. The following graph
was created using the parameter values given in Table 5. The numerical simulation
shows the number of healthy CD4+ T cells decreases dramatically while the latently
infected cells increase, and then remain steady (Fig. 11).
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Fig. 11 Latently infected CD4+ T cells versus Uninfected CD4+ T cells

HTLV-I is a virus in which only 5 % of infected individuals will ever develop any
disease such as Adult T cell Leukemia. We have shown through stability analysis
that we can predict when the infection will persist and become ATL.

5 Conclusion

The interaction between HIV and the immune system is a dynamic process. Mathe-
matical models are used to understand this dynamism to ascertain which biological
mechanisms cause disease progression. Although at the moment there is no definite
cure or vaccine for HIV, the treatment regimes used by physicians are able to extend
the lives of HIV patients. Researchers are also working to understand the pathogen,
its behavior, and transmission capability to find a vaccine. The future work should
be focused on finding the optimal treatment schedule in order to prolong the life of
patients and hopefully, find a permanent cure.

It is unclear why some HTLV-I carriers progress to disease while the majority
of them do not. It is also not known why some infected individuals develop ATL
and others develop HAM/TSP (see [9]). Further studies should focus on finding
the mechanism that causes the virus to progress to disease and finding the genetic
markers that will determine which disease the virus will trigger. HTLV-I also has no
known cure or vaccine. However, a vaccine to prevent infection is currently being
explored.

Graphs obtained from the model help us to predict what factors are important
for HIV to progress to AIDS. In Sect. 4, we have mentioned two different models
of HTLV-I progression to ATL. Our objective is to use SIMULINK to study the
mathematical models with the hope to refine them in future as new information
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becomes available to predict the course of the infection. The model can be improved
by adding other factors which influence the disease and study the relative sensitivity
of different factors.
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