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Abstract We present here an overview of the work done in developing a simu-
lation module for microsystems, which entails solving coupled partial differential
equations concerning multiple physical phenomena. A distinguishing feature of
this work is the use of hybrid finite elements wherein displacement and stress fields
are independently interpolated to mitigate the ill effects of widely known locking
phenomena in finite element analysis. A beneficial consequence of hybrid ele-
ments is that a single type of 3D element is suitable for structures of any pro-
portions. Furthermore, for the same accuracy, the number of degrees of freedom
needed in the hybrid finite element model is usually much lower as compared to
the displacement-based model. In this chapter, after briefly discussing the essential
aspects of hybrid elements, representative results in elastic deformation under
mechanical loads, coupled electrostatic-elastic simulation, and coupled piezore-
sistive-elastic simulation are presented. Seamless interfacing of the analysis codes
with pre- and post-processing modules of any finite element software is also noted.

Keywords Hybrid finite elements � Piezoresistitvity �Multi-physics simulations �
Pull-in analysis

1 Introduction

Most physical phenomena encountered in microelectromechanical systems
(MEMS) are governed by partial differential equations (PDEs) in the spatial
domain and ordinary differential equations in the time domain. These PDEs are
invariably coupled to one another because there is interdependence of one physical
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energy domain to another (e.g., elastic to electrostatic and electrical to thermal) [1,
2]. Finite element analysis (FEA) is the most widely used numerical technique for
solving the coupled equations in order to simulate the behavior of MEMS com-
ponents and devices. However, even now in practice, there are two shortcomings
to using FEA for the simulation of microsystems.

First, a large number of finite elements (i.e., a finely meshed model) is needed
for good accuracy. The reason for this is twofold. First, microsystems components
are often very thin in one dimension; and second, they contain relatively bulk
bodies joined with slender components in the other two dimensions. Figure 1
illustrates a typical MEMS device where it can be seen that the out-of-plane
thickness of the device is much smaller than the size in the in-plane direction.
Therefore, a very fine mesh is needed to maintain the aspect ratio of the elements
in the discretized mesh close to unity, as necessitated by the traditional finite
elements. Also noticeable in Fig. 1 are very narrow portions, namely beams,
connected to a wide plate. Bulky portions, which do not undergo much elastic
deformation, need not be meshed as finely as the slender portions, but there should
be smooth transitions in the mesh. This means that if the same type of finite
element is used for slender and bulky portions, one should be careful in changing
the density and size of elements while meshing the model. An alternative is to use
different types of elements (e.g., beam, plate, and shell) for different portions. The
mathematical implication of the type of element is the degree of the underlying
interpolating function called the shape function. Incompatibility in the interpo-
lating shape functions and the aspect ratios of elements leads to inaccurate results
due to what are known as shear or membrane locking phenomena [3]. Deciding on
the suitability of an element type for a given problem demands considerable
expertise from the users. Given the multidisciplinary nature of the microsystems
technology, it is not fair to expect all users to be aware of the intricacies of solving
PDEs using FEA. Thus, one type of elements for any structure, however complex
its geometry may be, is preferable. At the same time, too fine a mesh with one
element type is an overkill because it leads to excessive computation time.

Slender parts

Slender parts

Bulky part

Fig. 1 A typical
micromechanical structure
with bulky and slender parts
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The second shortcoming of FEA arises while solving coupled PDEs; the
method adopted by most simulation algorithms and commercial microsystem
simulation software is a staggered approach. That is, if there are two coupled
fields, the algorithm solves for one field and then takes the coupling variables to
solve for the other field and iterates between the two fields in a sequential manner.
As opposed to this, in a combined approach, all the PDEs related to multiple
phenomena are solved simultaneously. This improves the computational
efficiency.

Based on the foregoing, the aim of this chapter is to describe a simulation
strategy for microsystem components and devices using a single type of hybrid
finite element and an integrated strategy for solving coupled PDEs. While this
approach applies to a number of problems within the MEMS field, only defor-
mation and stress analysis under purely mechanical loads, coupled elastic-elec-
trostatic analysis, and coupled elastic-piezoresistive analysis are explained in
detail. Modal analysis, coupled electro-thermal-elastic analysis, etc., can also be
solved using similar methods.

The rest of the chapter is organized as follows. Section 2 describes the theory of
the hybrid finite elements. Section 3 exemplifies the efficacy of the hybrid FEA for
micromechanical structures under purely mechanical loads. Sections 4 and 5
contain discussions of coupled elastic-electrostatic and elastic-piezoresistive
simulations, respectively. Integration issues are briefly noted in Sect. 6. Section 7
has concluding remarks.

2 Hybrid Finite Element Procedure

Hybrid finite elements [4–8] are known to give high accuracy with only a few
elements. They are not prone to become artificially stiff when the elements are thin
in one direction or distorted otherwise. They are also largely free from locking
phenomena. In [7], a 27-noded hybrid finite element formulation was proposed. It
enables cost-effective FEA for structures that have narrow and thin parts in con-
junction with bulky and wide parts. This is a common occurrence in microsystems
as shown in Fig. 1. We adopt the hybrid elements for microsystem simulation as
reported in [9]. A brief theory of hybrid finite element procedure is therefore
pertinent here and is presented next for the linear problem by first discussing the
usual displacement-based FEA. Readers interested in the nonlinear formulation of
the hybrid elements may consult Ref. [10].

The PDE that governs the elastic deformation of a structural element occupying
a domain X with the boundary qX and subjected to body forces fb (e.g., gravity or
inertia forces) and boundary force ft (e.g., fluid pressure or electrostatic force), is
as follows:
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r � sþ fb ¼ 0

s ¼ Dm : e

e ¼ ruþ ruð ÞT
� �

=2

f t ¼ s n̂ on oXt

u ¼ u� on oXu

ð1Þ

where s is the stress, e the strain, Dm the constitutive matrix relating s and e, and
u the displacement vector. The force applied on the boundary qXt is ft; the
specified displacement on the boundary qXu is u*, and qX = qXt [ qXu. The
variational form of the PDE in Eq. (1) is

Z

X

eðduÞ : Dm : eðuÞ dX�
Z

oXt

du � f t d oXð Þ �
Z

X

du � fb dX ¼ 0 8du ð2Þ

where du is the variation of u. In displacement-based FEA, u and du are inter-
polated within the element using shape functions N and the nodal displacement
degree-of-freedom vector ue of an element:

u ¼ Nue and du ¼ Ndue ð3Þ

We differentiate the displacement as per the definition of the strain given in the
third line of Eq. (1) to get the strain displacement relationship for an element:

ee ¼ Bue ð4Þ

By substituting from Eqs. (3) and (4) into Eq. (2), performing integration over
all discretized elements, and assembling the global stiffness matrix K, we get

KU ¼ f ð5Þ

where

K ¼
X

All elements

Z

Xe

BTDmBdXe

f ¼
X

All elements

Z

oXet

NT f t d oXð Þ þ
Z

Xe

NT fb dX

0

B@

1

CA

ð6Þ

where U and f are the global displacement and force vectors.
Thus, the usual finite element analysis described in the preceding equations,

assumes only displacement as an independent variable in order to interpolate
within the element using the values at the nodes. Strains and stresses are then
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computed using the strain-displacement and constitutive (i.e., stress-strain) rela-
tionships, respectively. On the other hand, in the hybrid finite element, both dis-
placement and stresses are independently interpolated. Consequently, an additional
condition is necessary to ensure compatibility between independently interpolated
displacements and stresses. Thus, in addition to Eq. (2), we have

Z

X

ds : eðuÞ � D�1
m : s

� �
dX ¼ 0 8ds ð7Þ

where ds is the variation of the stress field s. The two stress fields are interpolated
as follows.

s ¼ Pse and ds ¼ Pdse ð8Þ

where se and dse denote nodal stresses of an element and their variations,
respectively. Choosing the interpolating shape functions P in Eq. (8) is crucial
here because it is to be done to avoid the so-called locking phenomena [7].

Now, Eq. (2) [after Dm: e(u) is replaced with s)] and Eq. (7) leads to the
following system of equations for the discretized model, with T denoting the
global stress vector:

0 GT

G �H

� �
U
T

� �
¼ f

0

� �
ð9Þ

where

G ¼
Z

X

PT B dX ð10aÞ

H ¼
Z

X

PT D�1
m P dX ð10bÞ

At this point, another important simplification is made to eliminate the stress
degrees of freedom of all the elements (i.e., T) by using the second equation of
Eq. (9).

T ¼ H�1GU ð11Þ

Thus, we are left with

KhU ¼ f ð12Þ
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where

Kh ¼ GT H�1G ð13Þ

is the stiffness matrix of the hybrid element. Now, even though the stress field was
interpolated, its degrees of freedom are ‘‘condensed out’’ by eliminating them in
terms of the usual displacement degrees of freedom. So, apart from the additional
computation involved in assembling and inverting Kh, the procedure is the same as
the usual finite element method. Thus, there is no difference from the user’s
viewpoint because only the stiffness matrix has changed from K in Eq. (6) to Kh in
Eq. (13).

Choosing appropriate number of nodes for a 3D element and suitable shape
functions P for them [see Eq. (8)] is the key to the hybrid FEA method. The larger
the number of nodes in an element is, the larger will be the element-level com-
putation. But much fewer elements are needed to mesh a structure. That is, it should
be noted that a 27-noded hexahedral hybrid brick element needs much fewer ele-
ments (i.e., a coarse mesh) for a given structure to give an accurate solution as
compared to an eight-noded brick element. So, there is a trade-off between the
extent of coarseness of an FE mesh and the number of nodes in an element. Based
on numerical experimentation, we had reported in [9] the relative order of accuracy
by implementing different elements. The elements in decreasing accuracy are: 27-
noded hybrid element, 8-noded hybrid brick element, 27-noded displacement brick
element, 18-noded displacement brick element, 10- and 11-noded tetrahedral dis-
placement wedge elements, and 6-noded pentahedral hybrid wedge element.

Even though the 27-noded hybrid element gives the most accuracy, it has two
limitations: (i) the meshing algorithm for 27-noded 3D elements is not common in
FEA software programs, and (ii) 27-noded element entails the inversion of a
90 9 90 element-level matrix as can be understood from Eq. (13). So, in spite of
the fact that the 27-noded element suffices to have a coarse mesh, it is not the best
element in practice. In view of the computation time, accuracy, and meshing
capability of the chosen software for integration (NISA from Cranes Software
International Limited, here), we have implemented 8-noded hybrid hexahedral and
6-noded pentahedral hybrid wedge element in this work. These elements are
shown in Fig. 2.

3 Elastic Simulation of Micromechanical Structures

In this section, we illustrate how hybrid and commonly used displacement finite
elements perform relative to each other in terms of accuracy and computational
efficiency. Toward this, we compare the results of our hybrid finite element code
with the displacement element-based FEA in commercial software. It must be
noted at the outset that this is not a comparison of our code with the commercial
software because we are not comparing with the best elements of commercial
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software for the chosen problems. It is a known fact that commercial software
adopt a variety of techniques to avoid locking phenomena. Reduced integration,
hour-glass control, etc., are some of the methods [3]. But a priori knowledge of
which element to use for which problem cannot be presumed. An element type that
works for one problem might not work for another. This is an advantage in favor of
the hybrid elements. In summary, we reiterate that in what follows we simply
compare the performance of hybrid elements in our implementation with that of
the displacement element-based implementations, without any ad hoc modifica-
tions, in commercial software. Here, we use ABAQUS (www.simulia.com) and
NISA (www.nisasoftware.com). But similar comparisons will come true with any
other software. Minor discrepancies will be there because one can never be sure of
small differences in implementation.

In all examples in this chapter, we use eight-noded hexahedral elements for the
interior and six-noded pentahedral wedge elements, the latter meeting the demands
of corners and edges, in the hybrid finite element code in our implementation. We
use the same meshed models, but with displacement-based elements in NISA and
ABAQUS. NISA uses full integration, whereas ABAQUS uses selective integra-
tion in its C3D8 (brick) and C3D6 (wedge) elements.

The following points are to be noted in interpreting the results presented next.
First, in tables and figures, we show the accuracy parameter of a result as a % value
where the reference value is either calculated using an analytical solution (when it is
available) or computed using the hybrid code with sufficiently fine mesh. Second,
sometimes, the hybrid code could not be run for very fine meshes because of the
limitation of the memory of the computer. But it does not matter because the hybrid
code gives accurate results with just a few degrees of freedom in the meshed model.
Third, computing time is also indicated for the runs on the same desktop computer
for all three implementations (hybrid code, NISA, and ABAQUS).

3.1 Example 1: Folded-Beam Suspension

The geometry of the folded-beam suspension, which is a compliant substitute for a
sliding joint, is shown in Fig. 3. It consists of two bulky portions connected with four
slender beams in the left symmetric half. The right most edge is constrained to move

(a) (b)Fig. 2 a Eight-noded
hexahedral brick element for
the interior and b six-noded
pentahedral hybrid wedge
element for the boundary

A Simulation Module for Microsystems 361

http://www.simulia.com
http://www.nisasoftware.com


along the edge, but not perpendicular to it in this symmetric half-model. An ana-
lytical solution is available [11] for the displacement of this model for a force applied
on the bulky portion, called the shuttle-mass, at the bottom, as can be seen in Fig. 3.

Three different meshes were considered with 1056, 10,806, and 3,01,830
degrees of freedom (DoF). The results are shown in Table 1. The table shows the
displacement of the shuttle-mass, the accuracy of this displacement relative to the
known analytical solution, and the computation time. Figure 4 shows accuracy vs.
DoF using results obtained by running many meshed models. In Table 1 and
Fig. 4, it can be seen that the hybrid code achieves high accuracy with very few
degrees of freedom. Therefore, its computation time is also much less as compared
to those of the displacement elements in ABAQUS and NISA.

Similar trends were seen with other examples considered. They included a
pressure-sensor diaphragm, a micromachined gripper, a gyroscope’s suspension,
etc. The latter two consisted of curved geometries and the last, the suspension of a
ring-gyroscope, had only slender segments. The efficacy of hybrid elements was
seen in all examples considered for a comparative study. The details are in [9].

The algorithm for the purely elastic analysis included geometric nonlinearity. It
also has the capability to do dynamic analysis, which is not described here. We
consider coupled analyses next. When we do coupled analysis, we use hybrid
elements only for the elastic analysis, but not for the others. The reason for this is
that the governing PDEs of the others are not known to exhibit locking phenomena.

4 Coupled Electrostatic-Elastic Simulation

Coupled electrostatic-elastic simulation is most common in microsystem simula-
tion because electrostatic actuation is the most widely used actuation technique in
microsystems. Here, we have developed algorithms for purely electrostatic

0.3 µN

30

105
20

130
90

5 
3 3 

5 

Shuttle-
mass

Fig. 3 Symmetric half-
model of the folder-beam
suspension (all dimensions
are in lm)
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simulation (i.e., capacitance calculation) and coupled electrostatic-elastic simu-
lation. The latter is developed for geometrically nonlinear elastic behavior in static
and dynamic conditions. It may be noted that only elastic analysis uses hybrid
elements. Electrostatic analysis does not require hybrid elements, as we do not see
the problems akin to locking here. One novel feature of the algorithm is that it is an
integrated (some call it monolithic [11, 12]) procedure in that the displacement and
electrical potential are solved together by combining their respective governing
equations. This is in contrast to the staggered approach where the solver routines
for the two are called alternately in an iterative procedure [13]. The direct coupling
approach followed in the work presented in this chapter makes it computationally
more efficient than the existing approaches. This approach is also useful in opti-
mization of MEMS structures [14]. The theory of the integrated formulation is
presented next.

Table 1 Comparison of displacement, accuracy relative to the analytical result, and computing
time for the folded-beam suspension

DoF Hybrid ABAQUS NISA

1,056 0.12 lm 0.03 lm 0.02 lm
97.5 % 20.7 % 17.8 %
0.23 s 0.10 s 0.08 s

10,806 0.12 lm 0.09 lm 0.09 lm
99.9 % 74.6 % 72.9 %
1.84 s 0.80 s 0.93 s

3,01,830 Not run. 0.12 lm 0.12 lm
99.9 % 99.9 %
25.1 s 281.8

Fig. 4 Comparison of
accuracy of the displacement
for the example of the folder-
beam suspension
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4.1 Coupled Electrostatic-Elastic Formulation

The governing equations of the coupled electrostatic-elastodynamic problem can
be written together as follows.

r � Fsð Þ þ q0b0 ¼ q0
o2u

ot2
on X

s ¼ smech þ selec

t0 ¼ �t
0 on oXt

u ¼ 0 on oXu

r � De ¼ 0

De ¼ reJC�1Eþ deL

E ¼ �rX/

ð14Þ

where F is the deformation gradient, s the total stress that includes elastic (i.e.,
mechanical stress) component smech and electrostatic (the so-called Maxwell
stress) component selec, q0 the mass density, b0 the body force, u the displacement

vector, X the domain over which the problem is posed, t0 the surface force and �t
0

its specified value on a portion of the boundary qXt, qXu the boundary on which
displacement is specified (i.e., anchored portion), De the electric displacement
vector, re the electrical conductivity, J the determinant of F, C the right Cauchy-
Green strain tensor, d the third-order piezoelectric tensor, eL the Lagrangian strain,
/ the electric potential, and E the electric field. The expression for the Maxwell
stress selec and the constitutive relationship for the elastic behavior are not given
here. Interested readers may refer to Ref. [15]. The permittivity is also missing
here, but it is taken implicitly as electrical conductivity as far as the numerical
values go. There is some inherent ambiguity in this issue [12], which we take care
of in the implementation.

In the usual displacement formulation, the weak form of the governing equa-
tions are:

Z

X

s : deL dX ¼
Z

X

q0du � b0 dXþ
Z

oXt

du ��t0
doXt

Z

X

rd/ � reJC�1r/þ deL

� 	
dX ¼ �

Z

oXd

d/ Den doX
ð15Þ

where Den is the normal component of De and the symbol d indicates the variation
or the weak variable. In the hybrid formulation, one more equation is added by
making stress also an independent variable.
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Z

X

dsmech : eLðuÞ � D�1
m : smech


 �
dX ¼0 8 dsmech ð16Þ

By using interpolation functions, which is the key to the hybrid element for-
mulation, the discretized equations for incremental updating of displacements and
electric potential are given by

KuuD~uþKu/D~/ ¼ Dfu

K/uD~uþK//D~/ ¼ Df/

ð18Þ

The cross-coupling terms involving Ku/ and K/u in Eq. (18) occur in only fully
coupled integrated (i.e., ‘‘monolithic’’) formulation and not in the staggered for-
mulation. It may be noticed that the stress terms are condensed out in this coupled
simulation as they would be in the purely elastic formulation.

Shown in Fig. 5 are the geometric details of a sample problem pertaining to
electrostatically actuated cantilever beam with an electrode underneath. The
simulation result is shown in Fig. 6. It can be seen in Fig. 6 that the electrostatic
pull-in result obtained using our integrated hybrid code compares well with that of
the commercial code using COMSOL MultiPhysics (www.comsol.com). This
confirms the accuracy of the code developed. More details of this problem and
other examples can be found in [15].

5 Coupled Elastic-Piezoresistive Simulation

Piezoresistors are often used in MEMS devices. Modeling of the piezoresistive
effect entails solving the electrical conduction equation because only conducting
materials show piezoresistive effect, i.e., their electrical resistivity changes by
measurable extent in response to mechanical stress. Thus, we begin with

r � Je ¼ 0 ð19Þ

+

-
V

Fig. 5 A cantilever beam
considered for the
electrostatic pull-in analysis:
lateral and side views
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where Je is the current density vector. The current density vector, at the micro-
scopic level, is related to the electric field by Ohm’s law:

Je ¼ reE ð20Þ

where re is the conductivity matrix and E the electric field, which is given by the
gradient of the electric potential, /.

E ¼ r/ ð21Þ

The conductivity is the reciprocal of electrical resistivity: re = q-1. The
resistivity of piezoresistive materials is modeled, up to first order, in terms of
stress, s.

qe ¼ q0
e Iþ p : sf g ð22Þ

where qe
0 is the resistivity in the unstressed state, p the fourth-order piezoresistivity

tensor and s the second-order stress tensor. This requires us to have both the
piezoresistive and stress tensors expressed in the same coordinate system.

The values of the piezoresistive coefficients in the piezoresistive tensor are
commonly given in a coordinate system that aligns with the \100[ crystallo-
graphic directions. On the other hand, the design of a micromechanical component
may be such that it is inconvenient to calculate the stress tensor in that coordinate
system. For instance, if a piezoresistor is embedded in a cantilever, the piezore-
sistive tensor is given along the local coordinate system aligned with crystallo-
graphic directions, while it is convenient to calculate the stress tensor in the
cantilever’s coordinate system aligned with its longitudinal axis. The transfor-
mation of the stress to the crystallographic coordinate system is tedious because
the transformation has to be carried out at every point in the domain where the
change in resistivity needs to be calculated. It may be recalled that the

Fig. 6 The displacement of
the electrostatically actuated
cantilever beam against
applied DC voltage until pull-
in: comparison of the results
of the integrated hybrid code
and staggered COMSOL code
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piezoresistivity tensor is a property of the material. Thus, once transformed from
the crystallographic direction to the cantilever’s coordinate system, it will remain
the same at every point in the domain.

Here, we observe that the transformed piezoresistive tensor can have more than
three independent coefficients contrary to only three that a cubic material has along
a coordinate system aligned with the \100[ crystal axes. We argue here that
approximation of the transformed piezoresistive tensor to one with only three
independent coefficients can sometimes lead to considerable errors in the calcu-
lated piezoresistive effect. This is a noteworthy point because some of the software
packages that simulate the piezoresistive effect (e.g., CoventorWare; www.
coventor.com) do not have convenient interfaces for the calculation of the com-
plete piezoresistivity tensor when the crystal lattice is arbitrarily oriented with
respect to the principal directions of the micromechanical component. In what
follows, we discuss how the fourth-order piezoresistive tensor can be transformed
from one Cartesian coordinate system to another. The numerical details of the next
two sections can be found in [16].

5.1 Coordinate Transformation of the Piezoresistive Tensor

The piezoresistivity tensor p in Eq. (22) has both minor and major symmetries.
Consequently, it requires only 36 independent components (instead of 81 in the
case of a general fourth-order tensor). It can therefore be written as a 6 9 6 matrix
[2]. For cubic materials, there are additional symmetries when the piezoresistivity
tensor is aligned with the \100[ lattice directions. Then, as stated earlier, the
piezoresistivity tensor contains only three independent coefficients [2]. They are as
follows:

p 100h i ¼

p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44

2

6666664

3

7777775

ð23Þ

where the indices are compressed according to the usual convention,
11 ? 1, 22 ? 2, 33 ? 3, 12 ? 4, 23 ? 5, 31 ? 6. This means that the (1, 2,
2, 3) position of the fourth-order tensor is the coefficient at the (4, 5) position in the
matrix notation. Next, consider the transformation of second-order tensors
between two Cartesian coordinate systems [17]:
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T0 ¼ RTR�1 ð24Þ

where R is the rotation matrix between the two coordinate systems given by

R ¼
l1 l2 l3
m1 m2 m3

n1 n2 n3

2

4

3

5 ð25Þ

and the directions of the coordinate axes of the rotated coordinate system
expressed in terms of the original coordinate system is

x0 ¼
l1

m1

n1

2

4

3

5; y0 ¼
l2

m2

n2

2

4

3

5; z0 ¼
l3

m3

n3

2

4

3

5 ð26Þ

Since a symmetric second-order tensor can be represented as a 6-element
column vector using the convention for compression of indices, we can write

TT ¼ T1 T2 T3 T4 T5 T6½ � ð27Þ

By using the vector representation of the symmetric second-order tensor shown
in the preceding equation, the coordinate transformation can be carried out using a
single 6 9 6 rotation matrix multiplication

T0 ¼ R6�6T ð28Þ

where R696 is given by

l2
1 m2

1 n2
1 2l1m1 2m1n1 2n1l1

l2
2 m2

2 n2
2 2l2m2 2m2n2 2n2l2

l2
3 m2

3 n2
3 2l3m3 2m3n3 2n3l3

l1l2 m1m2 n1n2 l1m2 þ l2m1 m1n2 þ m2n1 n1l2 þ n2l1

l2l3 m2m3 n2n3 l2m3 þ l3m2 m2n3 þ m3n2 n2l3 þ n3l2

l3l1 m3m1 n3n1 l3m1 þ l1m3 m3n1 þ m1n3 n1l3 þ n1l3

2

6666664

3

7777775

ð29Þ

Similar to the case of second-order tensors, the coordinate transformation of
fourth-order tensors is given by [17]

p0 ¼ R6�6pR�1
6�6 ð30Þ

When the transformed coordinate system differs from the original coordinate
system only through a rotation about the z-axis, the transformed piezoresistive
tensor expression reduces to a 6 9 6 matrix:
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p0 ¼

3p11 þ p12 þ p44 þ p11 � p12 � p44ð Þ cos 4hð Þ
4

p11 þ 3p12 � p44 � p11 � p12 � p44ð Þ cos 4hð Þ
4

p12

�p11 þ p12 þ p44ð Þ sin 4hð Þ
4
0

0

2

6666666666664

p11 þ 3p12 � p44 � p11 � p12 � p44ð Þ cos 4hð Þ
4

3p11 þ p12 þ p44 þ p11 � p12 � p44ð Þ cos 4hð Þ
4

p12

� �p11 þ p12 þ p44ð Þ sin 4hð Þ
4

0

0

p12
�p11 þ p12 þ p44ð Þ sin 4hð Þ

2
0 0

p12 � �p11 þ p12 þ p44ð Þ sin 4hð Þ
2

0 0

p11 0 0 0

0 p11 � p12 � p44ð Þ sin2 2hð Þ þ p44 0 0

0 0 p44 0

0 0 0 p44

3

777777777775

ð31Þ

where h is the angle of rotation about the z-axis of the transformed coordinate
system with respect to the original coordinate system.

5.2 An example

We now consider an example of a representative micromechanical structure where
taking only three-independent-parameter piezoresistive tensor given in Eq. (23)
leads to substantial error as opposed to taking the full transformed tensor given in
Eq. (31). This happens, as noted earlier, when the crystallographic directions are
not aligned with the longitudinal axis of the deforming slender element. Toward
this, consider a micro-mirror that twists about a single axis as shown in Fig. 7. It
has a wide plate in the middle with twisting beams on either side. When there is a
force on the vertical faces that are oriented along the longitudinal axis of the
structure, in the opposing directions so as to cause the tilting of the plate about the
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longitudinal axis, the beams must twist. Assume that there is a pair of piezore-
sistors whose \110[ axis are aligned with the longitudinal axis. Each one of this
is one of the resistors in the respective standard Wheatstone bridge circuits. When
the beams twist, there will be a change in the resistance of the piezoresistor, which
results in a change in voltage of the corresponding bridge circuit.

The stress was computed using hybrid elements and it was used in calculating
the resulting piezoresistive coefficients and the change in resistance. It was done
using the usual three-parameter piezoresistive tensor as well as the full-parameter
tensor. The difference in the computed voltage is shown in Fig. 8. It can be seen

<110>

Micro-
mirror 
plate

Twisting 
beam

Piezoresistor

Force

Fig. 7 A example micro-mirror structure in which the piezoreistor’s \110[ axis is aligned with
the longitudinal axis of the twisting beams

Fig. 8 The discrepancy in the computed voltage of the Wheatstone bridge circuit when the
transformed piezoresistor has all parameters and only three parameters
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that there is as much as 33 % error between the two. Thus, in the software module
we have developed, good accuracy is obtained irrespective of the alignment of the
crystallographic axes of the piezoresistors with the main axes of the microme-
chanical structures. Hybrid elements are used in elastic analysis in this coupled
code.

6 Integration of the Microsystem Module

As discussed in the preceding sections, by using the hybrid finite elements and
other novel features, we have developed a simulation module for microsystems. It
can be run as a stand-alone module with custom-developed graphical user interface
or by interfacing it with a commercial finite element software. Here, for the
purpose of illustration, we use NISA (www.cranessoftware.com). We use the
DISPLAY IV module of NISA as a pre- and post-processor. That is, the model is
created and material properties and boundary conditions are specified in the
DISPLAY IV environment and the data is saved in the NISA environment. This
file is read by our parser to write another data file that can be read and interpreted
by our hybrid analysis codes. The results of the hybrid code is written to a file in
the format of DISPLAY IV. The results are viewed in the GUI of NISA. This can
be done, we emphasize, in any other commercial finite element software.

Figure 9 shows the current capabilities of the integrated microsystems simu-
lation module, as can be seen in the pull-down menu item. A typical display of the
result is shown in Fig. 10.

Fig. 9 Various capabilities
of the microsystems
simulation module
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7 Conclusions

In this chapter, we have addressed a critical need in the simulation of microsystems
by allowing the users to work with a single type of finite element and obtain accurate
results with a coarse mesh. It is accomplished by using hybrid finite elements where
displacement and stress fields are both interpolated using suitable shape functions. It
was shown that, the implementation will be seamless because the stress degrees of
freedom are eliminated in terms of the nodal displacements. As a result, the new
technique can be used in the same manner as the traditional displacement-based
finite element simulation. The other important novel feature is the integrated solu-
tion strategy when more than one PDE is involved. Some other novel features are
introduced in other capabilities of the simulation module. A representative simu-
lation is presented for piezoresistive structures where it was shown that accuracy
need not be compromised when the piezoresistor’s crystallographic axes are not
aligned with the coordinate system of the device. Some other capabilities of the
microsystem module include modal, thermal, and electrothermal analyses.
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