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Abstract In this chapter, we discuss a wide variety of important effects due to
streaming potential when fluid flow takes place through conduits of micro- and
nanometric dimensions. We first introduce this as one of the four primary elec-
trokinetic phenomena with suitable background, and describe its significance in
numerous natural and engineered settings. Its practical usage and measurement
being inordinately linked to predictive models, we present the theory behind
streaming potential. In light of recent research findings, and recognizing their
importance in micro- and nano-flows, we also highlight the influence of streaming
potential when considered together with the consideration of hydrophobic, steric,
and thermal effects.

Keywords Streaming potential � Electrokinetics � Hydrophobic effects � Steric
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1 Introduction

The colloidal scientist is perennially concerned with the charge of the particles
(s)he is handling as this charge is of paramount importance in determining the
stability of the dispersion and its overall behavior. The geophysicist interested in a
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broad spectrum of sub-surface investigations ranging from the mapping of pore
geometry to the exploration of alternative energy sources based on harnessing
geothermal energy reserves, needs to take recourse to ingenious methods that
exploit underground fluid flow in newer forms. Soil and mining engineers are
interested in various dewatering and decontamination processes. In a starkly dif-
ferent realm, biophysicists are increasingly interested in unraveling the funda-
mental mechanisms through which bone responds to external stress via its
interaction with interstitial fluids. The membrane scientist needs to take into
account the various factors contributing to the specific filtration process (s)he is
trying to develop. The motivation for such developments stems from the sophis-
tication (as far as membranes go) found in the sheath of cells, and in sub-cellular
entities. The researcher trying to develop lab-on-a-chip devices at the micro- and
nanoscales needs alternative fluid actuation mechanisms, or even when using
traditional pressure-driven ones needs to take into consideration additional factors
which might be of tremendous consequence. The common thread that binds the
interests and motivation of the aforementioned scientists and engineers is the
physicochemical phenomenon where the boundary layer between one charged
phase and another undergoes a shearing process. This phenomenon is manifested
in many different forms in various settings, and is broadly referred to as electro-
kinetics. In this chapter, we focus on one such particular form called the streaming
potential that lies at the very core of understanding electrokinetics in different
contexts.

1.1 Understanding Streaming Potential

1.1.1 The Electrical Double Layer (EDL) and Electrokinetics

The most important point to note regarding electrokinetic phenomena is that they
are critically dependent on the establishment of an electrified interface between
two phases, one of which is usually a solid. The first step in the formation of such
an electrified interface is the generation of a surface charge. Various mechanisms
through which such charge is generated include an imbalance in the number of
crystal lattice cations or anions on the surface, crystal lattice defects, surface
dissociation, and ion adsorption from solutions; the mechanism may also be some
combination of these.

This surface charge is invariably accompanied by the presence of certain ionic
species in the adjacent liquid medium. The ions in the solution of opposite charge
to that of the surface are referred to as counterions while the ions of like charges
are referred to as co-ions. It is intuitive to expect that the counterions would be
attracted towards the surface while the co-ions would be repelled by it. If the
Coulombic forces were the only factors, the counterions would stack up against the
surface—thus, perfectly shielding the rest of the ions in the solution. Such a
scenario is precluded, however, by the random thermal motion of the ions at any
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finite temperature. As a result of interplay between the Coulombic forces and the
thermal motion a distribution of the counterions and the co-ions is established in
the vicinity of the charged surface. In this distribution, the counterions outnumber
the co-ions in such a way that the charge imbalance resulting from it is perfectly
neutralized by the charge on the surface. It is the surface electric charge together
with the balancing charge in the solution that constitutes the electrified interface.
This is referred to as the electrical double layer [1] or EDL, in short.

In the most widely accepted model for the structure of the EDL (the Guoy-
Chapman-Stern model) there is a monolayer of counterions that stays attached to
the charged surface (see Fig. 1). This is called the Stern layer, or the compact
layer, or the Helmholtz layer. Just adjacent to the edge of the Stern layer is the
shear plane. The potential at the edge of the Stern layer is called the zeta potential.
The part of the EDL beyond this shear plane is called the diffuse layer because it is
susceptible to motion when the fluid is sheared past the charged surface by any
external actuation. The characteristic thickness of the EDL is defined to be the
position from the wall where the potential drops to 1/e (e being the Euler number)
of the zeta potential value; this characteristic thickness is referred to as the Debye
length. As noted earlier, this shearing motion of the diffuse part of the electrified
interface across the charged surface is what gives rise to a host of electrokinetic
phenomena, the primary four among which are electroosmosis, electrophoresis,
streaming potential, and sedimentation potential.

1.1.2 Origin of the Streaming Potential

When a pressure-gradient (or any other mechanical actuation) is used to set the
liquid in a capillary tube (or channel) or a porous plug in motion, the diffuse part of
the double layer also moves along with the flow and is sheared past the charged
surface. The current that is generated as a result of the advection of the ions is
called streaming current. The consequent transfer of ions downstream gives rise to
an electric field in the opposite direction. The potential associated with this
electric field opposes the streaming current. This happens through a back

Fig. 1 Structure of the EDL
and the distribution of the
electric potential
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conduction of ions, and also through an electroosmotic flow to a certain extent.
This current directed opposite to the streaming current is called the leak current.
The term ‘‘conduction current’’ is often used in a sense that subsumes within it
both the mechanisms of the back flow of the ions. After a very short time, a
dynamic equilibrium condition is reached when the leak current balances the
streaming current so that the total ionic current across the confinement through
which the fluid flow is taking place is zero. The potential difference measured
across the conduit in this condition is known as the streaming potential.

1.2 Many Uses of the Streaming Potential

The phenomenon of streaming potential was discovered by Georg Quincke, who
first observed that he could measure an electrical potential difference between the
ends of a tube when he pumped water through it [2]. Since then, streaming
potential has come to be used in a wide variety of settings as outlined in the
opening paragraph of Sect. 1. It is a standard practice to determine the zeta
potential of various surfaces using streaming potential or streaming current mea-
surements [3]. In the geophysical realm techniques based on downhole measure-
ments of streaming potential are developed to monitor fluid flows in hydrocarbon
reservoirs or oil fields. More generally, there is a great interest in the geophysical
community on streaming potential measurements for use in pore geometry
determination, for monitoring underground fluid flow, and rock/fluid interfacial
chemistry [4]. Additionally, streaming potential may help in monitoring and
prediction of earthquakes [5]. The study of streaming potentials at elevated tem-
perature and pressure may also be used for geothermal exploration. These have
implications in the study of volcanoes [6]. In the physiological realm, the mech-
anism behind how bones respond via interstitial fluid flow to external loading is
believed to be based on streaming potential [7]. Streaming potential may also be
able to sensitively indicate intervertebral disk degeneration [8]. In the context of
filtration processes, streaming potential can be used to study the influence that
fouling phenomena has on membrane surface properties [9]. A comprehensive
discussion on these various aspects may be found in Ref. [10].

In this chapter, we particularly focus on studies of streaming potential mediated
flows at micro- and nanofluidic scales. The motivation behind this is as follows.
Streaming potential phenomena in narrow confinements is important from the
perspective of a wide variety of practical applications encompassing the lab-on-a-
chip (LOC) technology. A critical point to note is that LOC fluidic technology is
inspired by electronic integrated circuits (interestingly, it is from ‘‘electronics’’
that the term ‘‘fluidic’’ is coined). LOC systems are created by using chip-based
micromachining techniques to shrink the size of fluid handling systems aimed at
improving chemical and biological analysis. Thus, this technology mimics both the
fabrication technology and the overall ‘‘smaller, cheaper, faster’’ paradigm of the
integrated circuit industry. Furthermore, just as ‘‘wires’’ form the basic pathways
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in electrical/electronic circuits, micro- and nanofluidic channels are the most
fundamental structures in LOC devices [11]. These not only offer suitable settings
to study the fundamental physics behind the fluidic phenomena increasingly
influenced by surface effects in general, and electrokinetics, in particular, but also
provide a basis for the design of practical devices [12–16]. A theoretical consid-
eration of such channel-like geometries may serve as a good model for certain
apparently complicated physical setups that are, however, characterized by sym-
metries or other possibilities for geometrical simplifications.

Based on the above, we present a general theoretical description of streaming
potential in Sect. 2. With this background, we then present, in the rest of the
chapter, an outline of the motivation of, and findings from a few recent investi-
gations that were carried out to understand the combined influence of streaming
potential and certain other physico-chemical phenomena on micro-/nanoscale fluid
flows.

2 Mathematical Model of Streaming Potential

We consider the model problem of streaming potential flow of a binary symmetric
electrolyte through a straight channel having either a slit or circularly symmetric
cross-section. The characteristic dimension in either cross-section, generally rep-
resented by R, is considered to be much smaller than the channel length L. The
fluid is primarily actuated by a pressure gradient. In the absence of surface het-
erogeneities, the resulting velocity field may be safely considered to be unidi-
rectional so that u ¼ uêx where êx is the unit vector along the axial direction. The
origin is located at the centerline of the channel. The surface is considered to be
negatively charged; the counterions and the co-ions are, respectively, identified by
the ‘‘+’’ and ‘‘-’’ subscripts. The valences are given by zþ ¼ �z� ¼ z. Then, for
the case of steady flow, the species transport equation reduces to

�r � D�rn� �
ze

kBT
D�n�ru

� �
þr � n�uð Þ ¼ 0; ð1Þ

where D� refers to the diffusivity of the cation, and the anion. To address the cases
of the slit channel and the circular channel simultaneously in the same framework,
we use a general representation. Toward that end, for the differential operators we
follow the notation of Stone [17]. Thus, the gradient operator is represented by
r � o

on ên þ o
ox êx, where n is the general coordinate transverse to the wall; and the

divergence by r �h ¼ 1
nd�1

o
on nd�1hn
� �

þ o
ox hx, where d = 1 for the slit cross-

section, and d = 2 for the circularly symmetric cross-section. Anticipating the use

of the Laplacian operator, we also note r2 ¼ 1
nd�1

o
on nd�1 o

on

� �
þ o2

ox2. We use the

non-dimensional variables ~n ¼ n
R ; ~x ¼ x

L ; ~n� ¼ n�
n0
; ~u ¼ ezu

kBT ; ~u ¼ uêx
U , where n0 is
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the number density of both the counterions, and the co-ions in the bulk, and U is the
scale of the unidirectional velocity along the axial direction. Further, considering
Dþ ¼ D� ¼ D to be spatially invariant, Eq. (1) reduces in non-dimensional form to

� 1
~nd�1

o

o~n
~nd�1 o~n�

o~n

� �
þ R
L

� �2
o2~n�
ox2
þ Pe

R
L

� �
o

ox
~n�~uð Þ

� 1
~nd�1

o

o~n
~nd�1~n�

o~u

o~n

� �
þ R
L

� �2
o

ox
~n�

o~u
ox

� �" #
¼ 0;

ð2Þ

where Pe ¼ URD is the ionic species Péclet number. This may be viewed as the
product of the Reynolds number Re ¼ UR=t (where t ¼ g=q is the kinematic
viscosity with g being the dynamic viscosity, and q the density of the fluid) and the
Schmidt number Sc ¼ t=D. The small value of Re � 1ð Þ, very common in micro-
and nanofluidic settings, does not necessarily ensure that Pe is small because Sc
which represents the strength of the momentum diffusivity relative to the species
diffusivity may be significantly larger than unity. For instance, with typical ionic
diffusivities, D, are of the order of 10�9 m2s�1, in aqueous solutions where
t� 10�6 m2s�1, Sc�O 103ð Þ. It is then possible for PeJO 1ð Þ. However, it is
because Pe is multiplied by the factor R=Lð Þ that the advective contribution may
indeed be safely neglected as long as R � L. Similarly, other terms multiplied by
the factor (R/L)2 may also be neglected—thus, clearly indicating that gradients
along the axial direction have negligible contribution. We further note that
u ¼ w� xES, where Es is the spatially invariant electric field. Thus, Eq. (2)
becomes

1
~nd�1

o

o~n
~nd�1 o~n�

o~n

� �
� 1

~nd�1

o

o~n
~nd�1~n�

o~u

o~n

� �
¼ 0: ð3Þ

By integrating once and using the symmetry condition at the centerline, we get

o ln ~n�ð Þ=o~n ¼ �o~w=o~n: ð4Þ

This is essentially the same equation that leads to the Boltzmann distribution in
the purely equilibrium case. Thus, we can understand that the fluid flow does not
affect the equilibrium structure of the EDL in the case of a pressure-gradient-
driven flow through straight channels with large aspect ratios R � Lð Þ. This is
complemented by the Poisson equation written for the present setting in a reduced
and dimensionless form as

1
~nd�1

o

o~n
~nd�1 o~w�

o~n

 !
¼ � R2e2z2n0

ekBT

� �
~qe; ð5Þ
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where the charge density, qe, has been non-dimensionalized by ezn0. The fluid
velocity is governed by the x-direction component of the Navier-Stokes equation,
which for the steady case is written as

q u
ou

ox

� �
¼ � op

ox
þ g

1

nd�1

o

on
nd�1 ou

on

� �
þ o2u

ox2

� 	
þ qeES; ð6Þ

where qeES is the electrokinetic body force exerted on a unit volume of the fluid
due to the streaming potential electrical field Es. In non-dimensional terms, this is
written as

Re
R
L

� �
~u

o~u

o~x
¼ �R

2Dp

gLU
o~p

o~x
þ 1

~nd�1

o

o~n
~nd�1 o~u

o~n

� �

þ R
L

� �2
o2~u

o~x2
� ekBTE0

gezU
1

~nd�1

o

o~n
~nd�1 o~w

o~n

 !
~ES

: ð7Þ

The inertial term on the left-hand side in the preceding equation is clearly
negligible because both Re and R=Lð Þ are very small. The term involving the
pressure-gradient is the primary actuator of the flow. Hence, the velocity scale U is
set by considering this term to be O 1ð Þ, giving U � R2=g

� �
Dp=Lð Þ. The viscous

term with the prefactor (R/L)2 is also neglected. The streaming potential field is
non-dimensionalized by an appropriate scale E0 (to be explicated later). Then,
Eq. (7) reduces to

�1þ 1
~nd�1

o

o~n
~nd�1 o~u

o~n

� �
�A 1

~nd�1

o

o~n
~nd�1 o~w

o~n

 !
~ES ¼ 0; ð8Þ

where A ¼ ekBTE0ð Þ= gezUð Þ. By integrating once, and using the symmetry con-
dition at the channel centreline, we have

~n
d
þ o~u

o~n
�A o~w

o~n
~ES ¼ 0: ð9Þ

By integrating again, and using the no-slip boundary condition ~u ¼ 0 and ~w ¼ ~f

(the non-dimensional value of the zeta potential) at ~n ¼ 1 (the wall), we have

~u ¼ 1
2d

1� ~n2
� �

þA ~ES
~w� ~f
� �

: ð10Þ
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The condition used to determine the as-yet-unknown streaming potential field is
to set the total ionic current across any cross-section to zero. This is given by

ZR

�R

jþxêx � j�xêxð Þ � êx 2pnð Þd�1dn ¼ 0; ð11Þ

where j�x ¼ �D on�
ox � D ez

kBT n�
ou
ox þ n�u represents the flux of the counterions, and

the co-ions in the x-direction. It follows directly from Eq. (4) that the ionic dis-
tributions are practically invariant along the x-direction. Then, the contribution of
the on�=ox term to the flux is taken to be negligible. Again, we note that
u ¼ w� xES. But just like the ionic distribution, the contribution of ow=ox to the
flux is also negligible. With these simplifications, together with expanding the
expression of u from Eq. (10), and non-dimensionalization, we get

Z1

�1

~nþ � ~n�ð Þ 1
2d 1� ~n2
� �

þA ~ES
~w� ~f
� �n o

U
þ ezD

kBT ~nþ þ ~n�ð Þ~ESE0

" #
~nd�1d~n ¼ 0; ð12Þ

from which we get the nondimensional streaming potential field as

~ES ¼
I1

I2 þKI2
; ð13Þ

where I1 ¼ 1
2d

R 1
�1 ~nþ � ~n�ð Þ 1� ~n2

� �
~nd�1d~n; I2 ¼

R 1
�1 ~nþ þ ~n�ð Þ~nd�1d~n, I3 ¼R 1

�1
~w� ~f
� �

~nþ � ~n�ð Þ~nd�1d~n, and K ¼ ek2
BT2

ge2z2D. We note that the scale of the

streaming potential field has been set as E0 ¼ � kBT
ezD

R2

g
Dp
L

� �
. Using these in Eq. (10)

gives us the velocity of the fluid flow.

3 Combined Influence of Streaming Potential and Other
Effects

Notwithstanding the wide spectrum of research contributions in flows influenced
by streaming potential in micro- and nanochannels, certain important aspects have
remained largely unexplored until recently. In the rest of this chapter, we present a
brief overview of some recent investigations that explore the concerted influence
of streaming potential and certain other micro-/nanoscale physicochemical phe-
nomena on fluid flows at such length scales.
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3.1 Hydrophobic Effects

While the influence of hydrophobic effects on microscale flows in general and
electrokinetic flows in particular have been studied widely, such influence is often
relegated to the boundary conditions in the form of a specified slip-length. Not-
withstanding the widespread success of this approach, a slip-length-based mod-
eling framework cannot, however, resolve the actual physical mechanism through
which such hydrophobic effects give rise to an overall reduction in the resistance to
the fluid flow: indeed, such reduction fundamentally arises because the hydro-
phobic substrate induces the depletion of the fluid in the near wall region thus
allowing the bulk fluid to smoothly slide over a smoothening blanket of the
depleted phase with reduced viscosity.

Departing from the traditional approaches, in a recent investigation [18], we
model this depletion mechanism through a phase-field model by expressing the
viscosity and permittivity in terms of the phase-field variable, which results in
smooth profiles of these parameters. We then utilized these in the framework
described in Sect. 2 for determining the streaming potential flow with appropriate
modifications to incorporate the implicit spatial dependence of the parameters.
Through this framework, we are able to clearly establish that there is a sensitive
interplay between the length scale of the EDL structure and that of the depleted
phase. It is this interplay together with the intrinsic strength of the hydrophobic
effects (captured in our framework through the specification of the contact angle)
that determines the overall character of the flow. Since the overall effect of the
streaming potential is to inhibit the pressure-gradient-driven flow (known as the
electroviscous effect), and since the total volumetric flow rate is of tremendous
importance in practical devices, we express the gross nature of the flow in terms of
an effective normalized viscosity ~geff that would result in the same (reduced)
volumetric flow rate had there been only a pressure-gradient-driven flow (with no
electrokinetic effects). We define: ~geff ¼ geff =gl

� �
¼ 4=ð3~QÞ
� �

where gl is the

viscosity of the undepleted liquid, and ~Q ¼
R

~u dy is the volumetric flow rate
through a slit channel of height 2H. The dependence of this effective normalized
viscosity on the contact angle (representing the degree of hydrophobicity of the
wall) reveals a sensitive interplay between the length scale of the EDL structure
and that of the hydrophobicity-induced depletion. As shown in Fig. 2, we find that
~geff assumes a value greater than unity (showing augmented hindrance to the flow)
when the EDL is characteristically thicker than the depleted phase. For high zeta
potential value, it shows an interesting transition when the length scales are equal,
and it is consistently less than unity when the EDL length scale is smaller than the
depleted length scale. Importantly, the thickness of the EDL is characterized by the
Debye screening length, kl, based on the permittivity of the liquid.
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3.2 Steric Effects

It is well known that the effects of the streaming potential get progressively strong
with increase in the magnitude of the zeta potential. At the same time, however,
such high values of the zeta potential result in diverging values of the number
density of the counterions in the near wall region as predicted by the traditional
formalism described in Sect. 2 which strictly considered the ions to be point-like
charges. This is taken care of by considering a modified Boltzmann approximation
that incorporates the finite size of the ions—thus, precluding any potential
unphysical overlap. Despite the considerably widespread use of such modified
formulations, there does exist a serious theoretical inconsistency even in this
modified modeling framework. This inconsistency arises from the fact that while
the finite size is considered for the ionic distribution, there exists no explicit link
with this finite size in the flux terms even though the diffusivity (which contributes
significantly to the flux) is indeed dependent on the size of the ions. We address
this fundamental theoretical issue by establishing this link [19], by using the

Fig. 2 Variation of the effective normalized viscosity with the contact angle for ~f ¼ �1, and
~f ¼ �4 corresponding to H=kl ¼ 5, 10, 25, 50, respectively, in panels (a)–(d). The insets in each
panel show the variation of the dimensionless streaming potential field with the contact angle
(Reproduced from Ref. [18] with permission from the American Physical Society)
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Stokes–Einstein relation: D ¼ kBT= 6pgrð Þ. The need to maintain the theoretical
consistency also necessitates the incorporation of the viscoelectric effect, i.e., the
dependence of the dynamic viscosity on the local charge density through the
relation: 1=~g ¼ 1� N. Here, ~g ¼ g=g0 is the dimensionless local viscosity with g0

being the value of the bulk viscosity, m is the steric factor, and N ¼ 1
2 m ~nþ � ~n�j j.

We then have ~D ¼ 1� Nð Þ where ~D ¼ D=D0 is the dimensionless diffusivity, with
D0 ¼ kBT= 6pg0rð Þ being the constant bulk value of the diffusivity. Then, by using
the relation m ¼ 2n0r3, we may express the bulk diffusivity directly in terms of m.
By using these and following the route outlined in Sect. 2, we obtain a modified
expression of the streaming potential field corresponding to a fluid flow through a
slit channel of height 2H as

~Es ¼
3p m

2

� �1=3 1
L1

I1

I2 � 6p 4mð Þ1=3L2
1

K2 I3

; ð14Þ

where L1 ¼ Hn1=3
0 and K ¼ H=k. It can be seen in Eq. (14) that the steric effects

influence both the ionic distributions and the factors responsible for determining
the strength of transport of the ions. Since it is this transport that is ultimately
responsible for inducing the streaming potential field, there is a far stronger
dependence of this field on the finite size effects than could be envisaged within
the formalism of prior theoretical treatments. Indeed, so much so that when the
size is considered to be vanishingly small, i.e., m ? 0, the value of the streaming
potential field itself becomes small. Most notably, for m = 0 representing a situ-
ation where the finite size of the ions is not considered, and is, hence, a reflection
of the unmodified Boltzmann distribution which rests upon the assumption of the
ions being point-like charges, no value of ~Es other than zero is possible. This
seemingly nonintuitive prediction is, however, consistent with the underlying
assumption of point-like charges; point entities cannot have ‘‘friction,’’ which is
inseparably present with diffusive transport, associated with them.

This conceptual understanding is clearly seen in Fig. 3. We note, in particular,
that streaming potential effects may be wrongly predicted in theoretical exercises
below a particular threshold of the steric factor—as indeed the plots corresponding
to K = 5 and 10 show. The correct trends, i.e., higher suppression of the volu-
metric flow due to streaming potential for lower value of K, are seen only for
mJOð10�1Þ. Further, as an extremely important implication of this study, we show
that if one were to work consistently within the framework of the traditional
Poisson-Boltzmann formalism, no value of the streaming potential other than zero
is possible, as indeed seen in the figure.
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3.3 Thermal Effects

Most of the modeling efforts in electrokinetics, in general, and streaming potential
in particular, are carried out under the assumption of isothermal conditions. This is
particularly true in the micro- and nanofluidic context. This is in spite of the fact
that most natural settings are non-isothermal in nature, and also that even in
controlled laboratory environments, strictly isothermal conditions are difficult to
realize in practice. Recognizing this, we have developed a modeling framework
where thermal effects are incorporated in a comprehensive way [20]. Notably, this
framework goes beyond the traditional route of a simplistic one-way coupling
between the fluid flow velocity and the temperature field used in the few cases that
electrokinetic flows have been studied together with thermal effects. Importantly,
in this traditional route, there is no back influence of the temperature on the
velocity field. Within our model, however, a complete two-way coupling is
achieved by including the influence of some additional, fundamental physical
phenomena. First, we include the Soret effect, which refers to the propensity of a
species to move in response to a temperature gradient, with an additional term in
the flux equation: �D�

n�q�
kBT2 rT that immediately augments the species transport

represented in Eq. (1). Here, q� denotes the ionic heat of transport of the positive,
and the negative ions, and D� denotes the now temperature-dependent diffusivity
of the same. Since generally, the values of qþ and q� are different, there is a
difference in the extent to which the cations and the anions migrate in response to
the temperature gradient. This generates a thermoelectric field through a

Fig. 3 Total volumetric flow rate Q ¼
R 2

0 ~ud~y normalized by the volumetric flow rate of the

plane-Poiseuille component (~Q0) only, (i.e.,
R 2

0 2~y� ~y2ð Þd~y) with the steric factor, m, correspond-

ing to ~f ¼ �4; 8; for K ¼ 5; 10. As m becomes vanishingly small, ~Q=~Q0 ! 1, showing that
streaming potential effects vanish in keeping with the assumption of point-like ions in the
Boltzmann formalism. The magnified region shows a reversal in the trends of ~Q=~Q0 when
mJOð10�1Þ, for the two different values of~f (Reproduced from Ref. [19] with permission from
the American Physical Society)
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mechanism that is analogous to the Seebeck effect. Second, we include the elec-
trothermal effect that brings about an extra contribution to the forcing in the
momentum equation due to the dependence of the permittivity on the temperature.
Additionally, we incorporate the dependence of the viscosity, the thermal con-
ductivity, and also the zeta potential on the temperature.

To study the concerted influence of these effects in a streaming potential flow,
we consider again a model flow situation through a slit-channel. The thermal
effects are brought about by the imposition of a linear temperature gradient on the
walls.

We can observe from Fig. 4 that depending on the polarity of the generated
thermoelectric field which, in turn, is determined by the relative thermo-diffusive
migration strengths of the cations and the anions, the suppression of the volumetric
flow rate induced by the streaming potential field may be aided or opposed. Thus,
by simply imposing an external temperature gradient, we obtain extra control over
the volumetric flow rate for streaming potential flows through the Soret effect and
the concomitant thermoelectric field. Given a specified magnitude of the externally
applied temperature gradient, we can exercise this control just by changing the
nature of the electrolyte. From Fig. 4b, we can also see the role that the electro-
thermal effect plays in the alterations of the temperature gradient-mediated
streaming potential flows. When the thermoelectric and streaming potential fields
are opposing each other, this electrothermal effect basically weakens the ther-
moelectric field, and leads to an overall reduced flow rate compared to the case
without electrothermal effects. However, when the thermoelectric and streaming

Fig. 4 Variation of the dimensionless volumetric flow rate corresponding to the variation of
K=K	/ over four orders of magnitude for four different values of c=c	. Inset in (a) shows the
variation of the dimensionless volumetric flow rate with c=c	 varying over four orders of
magnitude. In (b) differences in the volumetric flow rates with and without considering
electrothermal effects are shown. Here, K ¼ qþ=ðkBT0Þ, and c ¼ q�=qþ, and K	 and c	 are the
values of a reference alkali halide (Reproduced with slight modifications from Ref. [20] with
permission from the American Physical Society)
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potential fields are oriented along the same direction, the consideration of the
electrothermal effect enhances the overall volumetric flowrate, again by weaken-
ing the thermoelectric field. So, based on the findings of our work, it can be
unambiguously inferred that temperature gradients can be successfully employed
for tuning flows mediated by streaming potential.

4 Conclusions

It has been shown that flows influenced by streaming potential may be sensitively
tuned by changing the hydrophobicity of the confining surfaces, as well as by
exerting a temperature gradient along them. It has also been shown that a theo-
retically consistent model of streaming potential flows necessitates the incorpo-
ration of finite size effects in the diffusivity coefficient, too. Based on these
findings, the modeling of streaming potential is being currently extended on a
multitude of fronts’ comprehensive framework that will emerge and be able to
capture the various physicochemical phenomena in a concerted and consistent
manner.
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