
Chapter 4
Multiple Periodic Solutions of Nonlinear
Functional Differential Equations

In this chapter1, we present results on the existence of two positive periodic solutions
of the first order functional differential equation

x ′(t) = a(t)x(t) − f (t, x(h(t))), (4.1)

where a, h ∈ C(R, R+) and a(t + T ) = a(t), T > 0 is a real number, f :
R × R+ → R+, and f (t + T, x) = f (t, x). If h(t) = t − τ(t) and τ ∈ C(R, R+),
τ(t + T ) = τ(t) with τ(t) ≤ t , then (4.1) takes the form

x ′(t) = a(t)x(t) − f (t, x(t − τ(t))). (4.2)

From results on the existence of positive periodic solutions of (4.1), we can find from
the arguments in the succeeding sections that some similar results can be derived
for (4.2). The results obtained in [1, 5, 7, 12–14] can be applied to (4.1). One may
observe from the sufficient conditions assumed in Chaps. 2 and 3, that the function
f needs to be unimodal, that is, the function f first increases and then it decreases
eventually. This is because of the choice of a constant c4 needed in the use of the
Leggett-Williams multiple fixed point Theorem 1.2.2, for the existence of three fixed
points of an operator which, in turn, is equivalent to the existence of three positive
periodic solutions of (4.1) or (4.2). The above choices of functions exclude many
important class of growth functions arising in various mathematical models, such as:

(i) Logistic equation of multiplicative type with several delays

x ′(t) = x(t)

[
a(t) −

n∏
i=1

bi (t)x(t − τi (t))

]
, (4.3)

where a, bi , τi ∈ C(R, R+) are T -periodic functions;
(ii) Generalized Richards single species growth model

1 Some of the results in this chapter are taken from Padhi et al. [9–11].
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x ′(t) = x(t)

[
a(t) −

(
x(t − τ(t))

E(t)

)θ
]

, (4.4)

where a, E, τ ∈ C(R, R+) are T -periodic functions and θ > 0 is a constant;
(iii) Generalized Michaelis-Menton type single species growth model

x ′(t) = x(t)

[
a(t) −

n∑
i=1

bi (t)x(t − τi (t))

1 + ci (t)x(t − τi (t))

]
, (4.5)

where a, bi , ci , and τi ∈ C(R, R+), i = 1, 2, . . . , n, are T -periodic functions.

In this chapter, we attempt to study the existence of two positive T -periodic solu-
tions of the Eq. (4.1). Then we apply the obtained result to find sufficient conditions
for the existence of two positive T -periodic solutions of the models (4.3)–(4.5). To
prove the results, we use the Leggett-Williams multiple fixed point Theorem 1.2.1.

The following open problem was proposed by Kuang [6, open Problem 9.2]:
Obtain sufficient conditions for the existence of positive periodic solutions of the
equation

x ′(t) = x(t)[a(t) − b(t)x(t) − c(t)x(t − τ(t)) − d(t)x ′(t − σ(t))]. (4.6)

Liu et al. [8] gave a partial answer to the above problem by using a fixed point
theorem for strict set-contractions. They proved that (4.6) has at least one positive T -
periodic solution. Freedman and Wu [3] studied the existence and global attractivity
of a positive periodic solution of (4.6) with d(t) ≡ 0. In this chapter, we apply the
Leggett-Williams multiple fixed point Theorem 1.2.1 to show that (4.6) has at least
two positive T -periodic solutions (See Example 4.2.1) when d(t) ≡ 0.

The results of this chapter can be extended to

x ′(t) = a(t)x(t) − f (t, x(h1(t)), ..., x(hn(t))), (4.7)

where hi (t) ≥ 0, i = 1, . . . , n, and f ∈ C(R × Rn+, R+) is periodic with respect to
the first variable.

Observe that (4.1) is equivalent to

x(t) =
t+T∫
t

G(t, s) f (s, x(h(s))) ds,

where

G(t, s) = e
−

s∫
t

a(θ) dθ

1 − e
−

T∫
0

a(θ) dθ
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is the Green’s kernel. The lower bound, being positive, is used for defining a cone.
The Green’s kernel G(t, s) satisfies the property

0 < α = δ

1 − δ
≤ G(t, s) ≤ 1

1 − δ
= β, s ∈ [t, t + T ],

where δ = e
−

T∫
0

a(θ) dθ
< 1.

Let
X = {x ∈ C(R, R) : x(t) = x(t + T )}

with the norm ‖x‖ = sup
t∈[0,T ]

|x(t)|; then X is a Banach space with the norm ‖ · ‖.
Define a cone K in X by

K = {x ∈ X : x(t) ≥ δ‖x‖, t ∈ [0, T ]}

and an operator A on X by

(Ax)(t) =
t+T∫
t

G(t, s) f (s, x(h(s))) ds. (4.8)

If we proceed along the lines of Lemma 2.1.1 and Lemma 2.1.2 in Chap.2, we can
prove that A(K ) ⊂ K , A : K → K is completely continuous, and the existence of
a positive periodic solution of (4.1) is equivalent to the existence of a fixed point of
A in K .

4.1 Positive Periodic Solutions of the Equation
x′(t) = a(t)x(t) − f (t, x(h(t)))

In this section, we shall obtain some sufficient conditions for the existence of at least
two positive T -periodic solutions of (4.1).

Denote

f θ = lim sup
x→θ

f (t, x)

a(t)x
and Fθ = lim sup

x→θ

f (t, x)

x
.

Theorem 4.1.1 Assume that there exist constants c1 and c2 with 0 < c1 < c2 such
that

(H26)

T∫
0

f (t, x(h(t))) dt >
c2
α

f or x ∈ K , c2 ≤ x ≤ c2
δ

, and 0 ≤ t ≤ T,

http://dx.doi.org/10.1007/978-81-322-1895-1_2
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and

(H27)

T∫
0

f (t, x)) dt <
c1
β

f or x ∈ K , 0 ≤ x ≤ c1, and 0 ≤ t ≤ T .

Then Eq. (4.1) has at least two positive T -periodic solutions.

Proof Define a nonnegative concave continuous functional ψ on K by ψ(x) =
min

t∈[0,T ] x(t). Then ψ(x) ≤ ‖x‖. Set c3 = c2
δ
and φ0(t) = φ0 = c2+c3

2 . Then φ0 ∈
{x ∈ K (ψ, c2, c3) : ψ(x) > c2}. Furthermore, for x ∈ K (ψ, c2, c3), (H26) implies

ψ(Ax) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≥ α

T∫
0

f (s, x(h(s))) ds

> c2.

Now let x ∈ K c1 . Then, from (H27),

‖Ax‖ = sup
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≤ β

T∫
0

f (s, x(h(s))) ds

< c1.

Next, suppose that x ∈ K c3 with ‖Ax‖ > c3. Then,

ψ(Ax) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≥ α

T∫
0

f (s, x(h(s))) ds
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and

c3 < ‖Ax‖ ≤ β

T∫
0

f (s, x(h(s))) ds

= α

δ

T∫
0

f (s, x(h(s))) ds

≤ 1

δ
ψ(Ax)

imply that

ψ(Ax) >
c2
c3

‖Ax‖.

Hence, by Theorem 1.2.1, Eq. (4.1) has at least two positive T -periodic solutions.
This completes the proof of the theorem. 
�
Theorem 4.1.2 Assume that there exist constants c1 and c2 with 0 < c1 < c2 such
that

(H28) f (t, x(h(t))) >
c2
αT

f or x ∈ K , c2 ≤ x ≤ c2
δ

, and 0 ≤ t ≤ T

and

(H29) f (t, x(h(t))) <
c1
βT

f or x ∈ K , 0 ≤ x ≤ c1, and 0 ≤ t ≤ T .

Then Eq. (4.1) has at least two positive T -periodic solutions.

The proof of the theorem follows from Theorem 4.1.1. Indeed, (H26) and (H27)

follow from (H28) and (H29), respectively.

Theorem 4.1.3 Let

(H30) min
0≤t≤T

f ∞ = ∞

and

(H31) max
0≤t≤T

f 0 = 0.

Then Eq. (4.1) has at least two positive T -periodic solutions.

Proof From (H30), it follows that there exists c2 > 0 large enough such that
f (t, x) ≥ a(t)x for c2 ≤ x ≤ c2

δ
. Define ψ as in the proof of Theorem 4.1.1 and set
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c3 = c2
δ
and φ0(t) = φ0 = c2+c3

2 . Then φ0 ∈ {x ∈ K (ψ, c2, c3) : ψ(x) > c2}. For
x ∈ K (ψ, c2, c3), we have

ψ(Ax) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≥ min
0≤t≤T

t+T∫
t

G(t, s)a(s)x(s) ds

≥ c2 min
0≤t≤T

t+T∫
t

a(s)G(t, s) ds

= c2.

Next, by (H31), there exists ξ, 0 < ξ < c2 such that f (t, x) < a(t)x for 0 < x < ξ .
Set c1 = ξ . Then c1 < c2 and f (t, x) < a(t)c1 for 0 < x < c1. Now, for x ∈ K c1 ,
we have

‖Ax‖ = sup
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≤ sup
0≤t≤T

t+T∫
t

G(t, s)a(s)x(s) ds

< c1 sup
0≤t≤T

t+T∫
t

a(s)G(t, s) ds

= c1.

In addition, for x ∈ K c3 with ‖Ax‖ > c3, we have

ψ(Ax) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≥ α

T∫
0

f (s, x(h(s))) ds
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and

c3 < ‖Ax‖ ≤ β

T∫
0

f (s, x(h(s))) ds

= α

δ

T∫
0

f (s, x(h(s))) ds

≤ 1

δ
ψ(Ax).

The above inequalities imply that

ψ(Ax) >
c2
c3

‖Ax‖.

Hence, by Theorem 1.2.1, Eq. (4.1) has at least two positive T -periodic solutions.
This completes the proof of the theorem. 
�
Theorem 4.1.4 Suppose that there exists a constant μ, 0 < μ ≤ 1 such that

(H32) f ∞ >
1

μ

and

(H33) f 0 < μ.

Then there exist at least two positive T -periodic solutions of Eq. (4.1).

Proof Since (H32) holds, there exists c2 > 0 such that

f (t, x) >
a(t)x

μ
for c2 ≤ x ≤ c2

δ
.

Define the nonnegative concave continuous functionalψ on K byψ(x) = mint∈[0,T ]
x(t). Take c3 = c2

δ
and φ0(t) = c2+c3

2 . This shows that φ0(t) ∈ {x : x ∈
K (ψ, c2, c3), ψ(x) > c2} 
= ∅. Then for x ∈ K (ψ, c2, c3), we have

ψ(Ax) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

> min
0≤t≤T

t+T∫
t

G(t, s)
a(s)x(s)

μ
ds
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≥ c2
μ

min
0≤t≤T

t+T∫
t

a(s)G(t, s) ds

> c2.

From (H33), there exists a real ξ , 0 < ξ < c2 such that f (t, x) < a(t)μx for
0 < x ≤ ξ . Set c1 = ξ ; then c1 < c2. For x ∈ K c1 , we have

‖Ax‖ = sup
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

< sup
0≤t≤T

t+T∫
t

G(t, s)a(s)μ‖x‖ ds

≤ μ c1
< c1.

The rest of the proof is similar to that of Theorem 4.1.1 and is omitted. 
�
Corollary 4.1.1 If f 0 < 1 and f ∞ > 1, then Eq. (4.1) has at least two positive
T -periodic solutions.

Theorem 4.1.5 If

(H34) max
t∈[0,T ] F0 = α1 ∈

(
0,

1

βT

)

and there exists a constant c2 > 0 such that

(H35) f (t, x) >
1

αδT
x f or c2 ≤ x ≤ c2

δ
,

then Eq. (4.1) has at least two positive T -periodic solutions.

Remark 4.1.1 The conditions in Theorems 4.1.1–4.1.4, Corollary 4.1.1, and Theo-
rem 4.1.5 improve the results in [4, 8, 15, 16].

Theorem 4.1.6 Suppose that
(H36) f is nondecreasing with respect to x

and there are constants 0 < c1 < c2 such that

(H37)

T∫
0

f (t, c1) dt

(1 − δ)c1
< 1 <

δ
T∫
0

f (t, δc2) dt

(1 − δ)c2
.

Then Eq. (4.1) has at least two positive T -periodic solutions.



4.1 Positive Periodic Solutions of the Equation x ′(t) = a(t)x(t) − f (t, x(h(t))) 81

Proof Set c3 = c2
δ
, define ψ as in the proof of Theorem 4.1.1, and let φ0(t) = φ0 =

c2+c3
2 . Then φ0 ∈ {x ∈ K (ψ, c2, c3) : ψ(x) > c2}. For x ∈ K (ψ, c2, c3), applying

(H36) and (H37), we obtain

ψ(Ax) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≥ δ

1 − δ

T∫
0

f (s, x(h(s))) ds

≥ δ

1 − δ

T∫
0

f (s, δc2) ds

> c2.

Next, for x ∈ K c1, we have

‖Ax‖ = sup
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≤ 1

1 − δ

T∫
0

f (s, ‖x‖) ds

≤ 1

1 − δ

T∫
0

f (s, c1) ds

< c1

by using (H36) and (H37). Finally, for x ∈ K c3 with ‖Ax‖ > c3, we have

ψ(Ax) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≥ δ

1 − δ

T∫
0

f (s, x(h(s))) ds
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and

c3 < ‖Ax‖ ≤ 1

1 − δ

T∫
0

f (s, x(h(s))) ds

≤ 1

δ
ψ(Ax),

which together imply

ψ(Ax) >
c2
c3

‖Ax‖.

Thus, all the conditions of Theorem 1.2.1 are satisfied and so Eq. (4.1) has at least
two positive T -periodic solutions. This completes the proof of the theorem. 
�
Theorem 4.1.7 Suppose that (H36) holds and there are constants 0 < c1 < c2 such
that

(H38)

T max
t∈[0,T ] f (t, c1)

(1 − δ)c1
< 1 <

δ T min
t∈[0,T ] f (t, δc2)

(1 − δ)c2
.

Then Eq. (4.1) has at least two positive T -periodic solutions.

Proof Takeψ as in the proof of Theorem 4.1.1 and letφ0(t) = c2+c3
2 , where c3 = c2

δ
.

Then φ0(t) ∈ {x ∈ K (ψ, c2, c3) : ψ(x) > c2} 
= φ. Now using (H36) and (H38),
we have for x ∈ K (ψ, c2, c3),

ψ(Ax) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≥ δ

1 − δ

T∫
0

f (s, δc2) ds

≥ δ

1 − δ
min

0≤t≤T
f (t, δc2) T

> c2.

For x ∈ K c1 , we can use (H36) and (H38) to obtain

‖Ax‖ = sup
0≤t≤T

t+T∫
t

G(t, s) f (s, x(h(s))) ds

≤ 1

1 − δ

T∫
0

f (s, ‖x‖) ds
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≤ 1

1 − δ
max
0≤t≤T

f (t, c1) T

< c1.

The last part of the proof is similar to that of Theorem 4.1.1 and hence is omitted.
Therefore, (4.1) has at least two positive T -periodic solutions and this completes the
proof of the theorem. 
�

Wang [12] considered the differential equation

x ′(t) = a(t)g(x(t))x(t) − λb(t) f (x(t − τ(t))), (4.9)

where λ > 0 is a positive parameter, a, b ∈ C(R, [0,∞)) are T -periodic functions,∫ T
0 a(t) dt > 0,

∫ T
0 b(t) dt > 0, τ ∈ C(R, R) is a T -periodic function, f , g :

[0,∞) → [0,∞) are continuous, 0 < l ≤ g(x) < L < ∞ for x ≥ 0, l, L are
positive constants and f (x) > 0 for x > 0. In developing sufficient conditions for
the existence of positive T -periodic solutions he introduced the notations

i0 = number of zeros in the set { f 0, f ∞}

and
i∞ = number of infinities in the set { f 0, f ∞},

where
f 0 = lim

x→0+
f (x)

x
and f ∞ = lim

x→∞
f (x)

x
.

In what follows, we apply Theorem 1.2.2 to Eq. (4.9) to obtain some new results
different from those in [12]. The Banach space X and a cone K are same as defined
earlier in the chapter but the operator A is replaced by

(Aλx)(t) = λ

t+T∫
t

Gx (t, s)b(s) f (x(s − τ(s))) ds,

where

Gx (t, s) = e
−

s∫
t

a(θ)g(x(θ)) dθ

1 − e
−

T∫
0

a(θ)g(x(θ)) dθ

is the Green’s kernel. The Green’s kernel Gx (t, s) satisfies the property

δL

1 − δL
≤ Gx (t, s) ≤ 1

1 − δl
.

Proceeding as in the proof of Theorem 4.1.6, we obtain the following result.
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Theorem 4.1.8 Let (H36) hold. Further, assume that there are constants 0 < c1 <

c2 such that

(H39)
(1 − δL)c2

δL f (c2)
T∫
0

b(s) ds

< λ <
(1 − δl)c1

f (c1)
∫ T
0 b(s) ds

.

Then Eq. (4.9) has at least two positive T -periodic solutions.

Section2.2 of Chap. 2 deals with the existence of at least three positive T -periodic
solutions of the Eq. (4.1) with a parameter λ. Some of the results can be extended to
Eq. (4.9). In the following, we apply Theorem 1.2.2 to Eq. (4.9) to obtain a different
sufficient condition for the existence of at least three positive T -periodic solutions.

Theorem 4.1.9 Let f 0 < 1− δl and f ∞ < 1− δl hold. Assume that there exists a
constant c2 > 0 such that

(H40) f (x) >
(1 − δL)

δ2L
c2 f or c2 ≤ x ≤ (1 − δL)

δL(1 − δl)
c2.

Then Eq. (4.9) has at least three positive T -periodic solutions for

δL

T∫
0

b(t) dt

< λ <
1

T∫
0

b(t) dt

.

Proof Since f̄ ∞ < 1−δl , there exist 0 < ε < 1−δl and ξ > 0 such that f (x) ≤ εx
for x ≥ ξ . Let γ = max

0≤x≤ξ,0≤t≤T
f (x). Then f (x) ≤ εx + γ for x ≥ 0.

Choose c4 > 0 such that

c4 > max

{
γ

(1 − δl) − ε
,

1 − δL

δL(1 − δl)
c2

}
.

Then, for x ∈ K c4 ,

‖Aλx‖ = sup
0≤t≤T

λ

t+T∫
t

G(t, s)b(s) f (x(s − τ(s))) ds

≤ 1

1 − δl
λ

T∫
0

b(s) f (x(s − τ(s))) ds

http://dx.doi.org/10.1007/978-81-322-1895-1_2
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≤ 1

1 − δl
λ

T∫
0

b(s)(ε‖x‖ + γ ) ds

≤ 1

1 − δl
(εc4 + γ )

< c4,

that is, A : K c4 → K c4 .

Now, we define a nonnegative concave continuous functional ψ on K by ψ(x) =
min

t∈[0,T ] x(t). Then ψ(x) ≤ ‖x‖. Set c3 = 1−δL

δL (1−δl )
c2 and φ0(t) = φ0 = c2+c3

2 . Then

c2 < c3 and φ0 ∈ {x ∈ K (ψ, c2, c3) : ψ(x) > c2}. For x ∈ K (ψ, c2, c3), it follows
from (H40) that

ψ(Aλx) = min
0≤t≤T

λ

t+T∫
t

G(t, s)b(s) f (x(s − τ(s))) ds

≥ δL

1 − δL
λ

T∫
0

b(s) f (x(s − τ(s))) ds

≥ δL

1 − δL
λ

T∫
0

b(s)
1 − δL

δ2L
c2 ds

> c2.

Next, since f̄ 0 < 1 − δl , there exists a positive σ < c2 such that

f (x) < (1 − δl)x for 0 < x ≤ σ.

Set c1 = σ ; then c1 < c2. For x ∈ K c1 , we have

‖Aλx‖ = sup
0≤t≤T

λ

t+T∫
t

G(t, s)b(s) f (x(s − τ(s))) ds

≤ 1

1 − δl
λ

T∫
0

b(s)(1 − δl)‖x‖ ds

≤ 1

1 − δl
λ

T∫
0

b(s)(1 − δl)c1 ds

< c1.
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Finally, for x ∈ K (ψ, c2, c4) with ‖Aλx‖ > c3, we have

c3 < ‖Aλx‖ ≤ 1

1 − δl
λ

T∫
0

b(s) f (x(s − τ(s))) ds,

which, in turn implies that

ψ(Aλx) ≥ δL

1 − δL
λ

T∫
0

b(s) f (x(s − τ(s))) ds

>
δL

1 − δL
(1 − δl)c3

= c2.

Hence, by Theorem 1.2.2, Eq. (4.9) has at least three positive T -periodic solutions. 
�
Corollary 4.1.2 If i0 = 2 and there exists a constant c2 > 0 such that (H40) holds,
then Eq. (4.9) has at least three positive T -periodic solutions.

Remark 4.1.2 Wang [12] obtained three different results for the existence of at least
one positive periodic solution of (4.9) using fixed point index theory [2]. In Corollary
4.1.2, it has been shown that (4.9) has at least three positive T -periodic solutionswhen
i0 = 2.

It would be interesting to obtain sufficient conditions for the existence of at least
two or three positive periodic solutions of (4.9) when i0 ∈ {0, 1} and i0 ∈ {0, 1, 2} by
using the Leggett-Williams multiple fixed point theorems. Bai and Xu [1] obtained
a sufficient condition ([1, Theorem 3.2]) for the existence of three nonnegative
T -periodic solutions of (4.9). Although the condition i0 = 2 holds both in [1, The-
orem 3.2] and in Corollary 4.1.2 above, condition (H40) and the condition (H5) in
[1] are different. Accordingly, the ranges on the parameter λ are also different.

Finally, we generalize some of the above results to the scalar differential equation
of the form

dx

dt
= −A(t)x(t) + f (t, x(t)), (4.10)

where A ∈ C(R, R) and f ∈ C(R × R, R) satisfy A(t + T ) = A(t) and f (t +
T, x) = f (t, x). We shall apply Theorem 1.2.1 to obtain the existence of at least two
positive periodic solutions of (4.10).

Lemma 4.1.1 If x(t) is a T—periodic solution of (4.10) then it satisfies the integral
equation

x(t) =
t+T∫
t

G(t, s) f (s, x(s)) ds (4.11)
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where G(t, s) is the Green’s function given by

G(t, s) =
exp

( s∫
t

A(θ)dθ

)

exp

(
T∫
0

A(θ)dθ

)
− 1

, t, s ∈ R. (4.12)

Now, let us define

δ = exp

( T∫
0

A(θ)dθ

)
. (4.13)

Observe that δ > 1 if
T∫

0

A(θ)dθ > 0. (4.14)

Under the assumption (4.14), the Green’s function (4.12) satisfies

0 <
1

δ − 1
< G(t, s) <

δ

δ − 1
, s ∈ [t, t + T ]. (4.15)

We know that the set

X = {x ∈ C([0, T ], R) : x(0) = x(T )} (4.16)

endowed with the norm
‖x‖ = sup

0≤t≤T
x(t) (4.17)

is a Banach space where C[0, T ] is the set of all continuous functions defined on
[0, T ].
Theorem 4.1.10 Let

∫ T
0 A(s)ds > 0. Assume:

(H41) there exists c3 > 0 such that
∫ T
0 f (s, x)ds > 0 if 0 < x ≤ c3 and

T∫
0

f (s, x)ds ≥ δ − 1

δ
c3 if

c3
δ

≤ x ≤ c3; (4.18)

(H42) lim‖x‖→0

1
‖x‖

T∫
0

f (s, x)ds < δ−1
δ

.

Then Eq. (4.10) has at least two positive T-periodic solutions in K c3 .
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Proof Let us consider the Banach space X endowed with the sup norm as defined in
(4.16)–(4.17). Define a cone K on X by

K = {x ∈ X : x(t) > 0}. (4.19)

Let c3 be a positive constant satisfying the conditions in the hypotheses. Define an
operator E : K c3 → K by

(Ex)(t) =
t+T∫
t

G(t, s) f (s, x(s)) ds. (4.20)

It is clear that the existence of a fixed point of E is equivalent to the existence of a
positive periodic solution of (4.10).

We shall apply Leggett-Williams multiple fixed point theorem to the above opera-
torE to prove the existence of at least twopositive periodic solutions for theEq. (4.10).

It can be easily verified that E is well defined, completely continuous on K c3 , and
E(K c3) ⊂ K . Consider the nonnegative concave continuous functional ψ defined
on K by

ψ(x) = min
0≤t≤T

x(t). (4.21)

For c2 = c3
δ
and φ0 = 1

2 (c2 + c3) we have, c2 < φ0 < c3 and so

{x ∈ K (ψ, c2, c3) : ψ(x) > c2} 
= ∅.

For x(t) ∈ K (ψ, c2, c3),

ψ(Ex) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(s)) ds

>
1

δ − 1

T∫
0

f (s, x(s)) ds (from (4.15))

≥ 1

δ − 1

δ − 1

δ
c3 (fromH41)

= c3
δ

.

Hence, condition (i) of Theorem 1.2.1 is satisfied.
Now, we show that condition (ii) of Theorem 1.2.1 holds. From condition (H42),

there exists ξ, 0 < ξ < c2, such that
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T∫
0

f (s, x(s)) ds <
δ − 1

δ
‖x‖ for 0 ≤ ‖x‖ ≤ ξ. (4.22)

Choose c1 = ξ. Then we have 0 < c1 < c2 and for 0 ≤ x(s) ≤ c1, applying (4.15)
and (4.22), we obtain

‖Ex‖ = sup
0≤t≤T

T∫
0

G(t, s) f (s, x(s)) ds

<
δ

δ − 1

T∫
0

f (s, x(s)) ds

≤ δ

δ − 1

δ − 1

δ
‖x‖

≤ c1.

Hence, condition (ii) in Theorem 1.2.1 is established.
Now from (4.15),

ψ(Ex) = min
0≤t≤T

t+T∫
t

G(t, s) f (s, x(s)) ds

>
1

δ − 1

T∫
0

f (s, x(s)) ds. (4.23)

Let 0 < x(t) ≤ c3 be such that ‖Ex‖ > c3. For such a choice of x(t), we have

c3 < ‖Ex‖ = sup
0≤t≤T

T∫
0

G(t, s) f (s, x(s)) ds

<
δ

δ − 1

T∫
0

f (s, x(s)) ds

≤ δ
1

δ − 1

T∫
0

f (s, x(s)) ds

< δψ(Ex)

by (4.23). Therefore, ψ(Ex) > 1
δ
‖Ex‖ and this implies that ψ(Ex) > c2

c3
‖Ex‖ for

0 < x(t) ≤ c3 satisfying ‖Ex‖ > c3. Hence, condition (iii) of Theorem 1.2.1 is
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also satisfied. Therefore, by Theorem 1.2.1, the operator (4.20) has at least two fixed
points in K c3 , so Eq. (4.10) admits at least two positive T -periodic solutions. This
completes the proof. 
�

Corollary 4.1.3 Let
T∫
0

A(s) ds > 0. Assume there exists a positive constant c3 such

that
T∫

0

f (t, x)dt > 0 for 0 < x ≤ c3, (4.24)

T∫
0

f (s, x)ds = δ − 1

δ
x for x = c3, (4.25)

T∫
0

f (s, x)ds >
δ − 1

δ
c3 for

c3
δ

≤ x < c3, (4.26)

and

(H∗
42) lim

x→0

1
x

T∫
0

f (s, x)ds < δ−1
δ

.

Then Eq. (4.10) has at least two positive T-periodic solutions in K c3 .

Proof Assume that there exists c3 > 0 such that (4.24)–(4.26) hold. This implies
that

T∫
0

f (s, x) ds ≥ δ − 1

δ
c3 for

c3
δ

≤ x ≤ c3,

and hence (H∗
42) implies (H42).

Now, let us assume

lim
x→0

T∫
0

f (s, x)

x
ds <

δ − 1

δ
. (4.27)

We have 1
‖x‖

∫ T
0 f (s, x) ds = ∫ T

0
f (s,x)
‖x‖ ds ≤ ∫ T

0
f (s,x)
x(s) ds for s ∈ [0, T ]. Observe

that ‖x‖ → 0 if and only if x(s) also tends to zero for all s ∈ [0, T ]. Therefore, in
view of (4.27) we have
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lim‖x‖→0

1

‖x‖
T∫

0

f (s, x(s)) ds ≤ lim
x(s)→0

T∫
0

f (s, x(s))

x(s)
ds <

δ − 1

δ
, for all s ∈ [0, T ].

Therefore, condition (H∗
42) implies (H42), and this completes the proof of the

theorem. 
�

4.2 Applications to Some Mathematical Models

Ye et al. [15] and Zhang et al. [16] showed that the models (4.3)–(4.6) have at least
one positive periodic solution. In the following section, we apply some of the results
obtained in Sect. 4.1 to obtain sufficient conditions for the existence of at least two
positive periodic solutions of the models (4.3)–(4.6).

Example 4.2.1 The generalized logistic model for a single species

x ′(t) = x(t)[a(t) − b(t)x(t) − c(t)x(t − τ(t))] (4.28)

has at least two positive T -periodic solutions, where a(t), b(t) and c(t) are nonneg-
ative continuous periodic functions.

To see this, set f (t, x) = x(t)[b(t)x(t) + c(t)x(t − τ(t))]. Since

max
t∈[0,T ]

f (t, x)

a(t)x
≤ max

t∈[0,T ]

{
b(t)

a(t)

}
‖x‖ + max

t∈[0,T ]

{
c(t)

a(t)

}
‖x‖ → 0 as x → 0,

we see that (H31) is satisfied. Moreover,

min
t∈[0,T ]

f (t, x)

a(t)x
≥ min

t∈[0,T ] δ
{

b(t)

a(t)

}
‖x‖ → ∞ as x → ∞;

so (H30) is satisfied. Thus, by Theorem 4.1.3, Eq. (4.28) has at least two positive
T -periodic solutions.

Example 4.2.2 The logistic equation for a single species

x ′(t) = x(t)

[
a(t) −

n∑
i=1

bi (t)x(t − τi (t))

]
(4.29)

has at least two positive T -periodic solutions, where a, bi , τi ∈ C(R, R+) are
T -periodic functions.

Example 4.2.3 The logistic equation with several delays (4.3) has at least two
positive T -periodic solutions.
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Example 4.2.4 The generalized Richards single species growth model (4.4) has at
least two positive T -periodic solutions.

The verification of Examples 4.2.2–4.4.4 are similar to that of Example 4.2.1.
ApplyingCorollary 4.1.1 to the generalizedMichaelis-Menton type single species

growth model (4.5), we obtain the following result.

Example 4.2.5 If

min
t∈[0,T ]

n∑
i=1

bi (t)

a(t)ci (t)
> 1,

then (4.5) has at least two positive T -periodic solutions.
Now, we assume that the population is subject to harvesting. Under the catch-per-

unit-effort hypothesis [15], the harvested population’s growth model becomes

x ′(t) = x(t)

[
a(t) − b(t)x(t)

1 + c(t)x(t)

]
− q Ex, (4.30)

where q and E are positive constants denoting the catch-ability coefficients and
harvesting effort, respectively. Ye et al. [15] proved that if 0 < q E < 1−δ

T and(
bm

c + q E
)

> 1−δ
δ2T

, then (4.30) has at least one positive T -periodic solution, where

bm = min0≤t≤T b(t) and 0 < c(t) ≤ c.

Theorem 4.2.1 Suppose that 0 < q E < 1−δ
T and

δ
T∫
0

b(t) dt

c + q E > 1−δ
δ2T

. Then
Eq. (4.30) has at least two positive T -periodic solutions.

Proof Set f (t, x) = b(t)x2

1+c(t)x + q Ex . Then q E < 1−δ
T implies the condition (H34).

Choose c2 = δ(1−q EαδT )

αδ2T
T∫
0

b(t) dt−c(1−q EαδT )

; then
c2αδ2T

T∫
0

b(t) dt

δ+cc2
+ q EαδT = 1. Setting

c3 = c2
δ

= 1−q EαδT

αδ2T
T∫
0

b(t) dt−c(1−q EαδT )

, we have c2 < c3. Now for c2 ≤ x ≤ c3
δ
, we

have

f (t, x) >

c22
T∫
0

b(t) dt

1 + c c2
δ

+ q Ec2

= c2
αδT

⎡
⎢⎢⎢⎣

c2αδ2T
T∫
0

b(t) dt

δ + cc2
+ q EαδT

⎤
⎥⎥⎥⎦

≥ c2
αδT

,



4.2 Applications to Some Mathematical Models 93

that is, (H35) holds. Hence, by Theorem 4.1.5, (4.30) has at least two positive T -
periodic solutions. 
�
Remark 4.2.1 There are very few results in the literature on the existence of two
periodic solutions of (4.1) with its application to the models (4.3)–(4.6). Hence,
simple results on the existence of two periodic solutions of the above equations are
of immense importance.

4.3 Application to Renewable Resource Dynamics

In this section, we apply Theorem 4.1.10 and Corollary 4.1.3 to investigate the
existence of positive T -periodic solutions of the ordinary differential equation

x ′ = a(t)x(x − b(t))(c(t) − x) (4.31)

representing dynamics of a renewable resource that is subjected to Allee effects. The
transformation y(t) = c(t)x(t) transforms Eq. (4.31) in to

dy

dt
= −

(
a(t)c2(t)k(t) + c′(t)

c(t)

)
y + a(t)c2(t) ((1 + k(t)) − y) y2 (4.32)

where

k(t) = b(t)

c(t)
< 1. (4.33)

Note that (4.32) is a particular case of a general scalar differential equation of the
form

dy

dt
= −A(t)y(t) + f (t, y(t)) (4.34)

where A ∈ C(R, R) and f ∈ C(R×R, R) satisfy A(t+T ) = A(t) and f (t+T, x) =
f (t, x). Comparing (4.32) with (4.34) we have

A(t) =
(

a(t)c2(t)k(t) + c′(t)
c(t)

)
(4.35)

and
f (t, x) = a(t)c2(t) ((1 + k(t)) − x) x2. (4.36)

Let us consider a Banach space X as defined in (4.16)–(4.17). We have f (t, 0) =
0, f (t, x(t)) > 0 for 0 < x(t) < 1 + km, and f (t, x(t)) < 0 for x(t) > 1 + kM

where km = min
0≤t≤T

k(t)andkM = max
0≤t≤T

k(t).
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Henceforth, we let

M =
T∫

0

a(s)c2(s) ds and N =
T∫

0

a(s)c2(s)k(s) ds. (4.37)

Since 0 < k(t) < 1 (from 4.33), we have M > N > 0. From (4.36) we observe
that lim

x→0

1
x

∫ T
0 f (s, x) ds = 0 and hence (H∗

42) of Corollary 4.1.3 is satisfied for

Eq. (4.32). We then have the following theorem.

Theorem 4.3.1 If

(M + N ) +
√

(M + N )2 − 4M( eN −1
eN )

2M
>

e2N − 1
eN

M + N
(4.38)

then Eq. (4.31) has at least two positive T-periodic solutions.

Proof We shall use Corollary 4.1.3 to prove this theorem. From (4.35), it is easy to
observe that

∫ T
0 A(s) ds = N > 0. To complete the proof of the theorem, it suffices

to find the existence of a positive constant c3 > 0 such that (4.24)–(4.26) hold.

Take

c3 =
(M + N ) +

√
(M + N )2 − 4M( δ−1

δ
)

2M
(4.39)

and define c2 = c3
δ
. Clearly 0 < c2 < c3. It is easy to verify that p = c3 is a solution

of

− Mp2 + (M + N )p − δ − 1

δ
= 0. (4.40)

A simple calculation shows that (4.40) is equivalent to

(1 − p)p

T∫
0

a(s)c2(s) ds + p

T∫
0

a(s)c2(s)k(s) ds = δ − 1

δ
. (4.41)

The above equation can be rewritten as

T∫
0

f (s, p) ds = δ − 1

δ
p. (4.42)
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That is, p = c3 satisfies
T∫

0

f (s, c3) ds = δ − 1

δ
c3.

Next, we consider the inequality

T∫
0

f
(

s,
c3
δ

)
ds >

δ − 1

δ
c3. (4.43)

Substituting for f , we obtain

T∫
0

a(s)c2(s)
(
1 + k(s) − c3

δ

)c23
δ2

ds >
δ − 1

δ
c3. (4.44)

The above inequality is equivalent to

−Mc23 + (M + N )δc3 − δ2(δ − 1) > 0.

Since p = c3 is a solution of (4.40), the above inequality yields

c3 >
δ2 − 1

δ

(M + N )
. (4.45)

Therefore, (4.43) will be satisfied if the root p = c3 of (4.40) satisfies the inequal-
ity (4.45). Thus, (4.24)–(4.26) will be satisfied if the parameters of the associated
Eq. (4.32) satisfies (4.45), that is, (4.38) holds. Hence, the proof is complete. 
�

Observe that Theorem 4.3.1 verifiable only if M and N satisfy the inequality

(M + N )2 − 4M
(eN − 1

eN

)
> 0. (4.46)

Note that the left hand side of the inequality (4.46) is an implicit expression in M and
N and the Fig. 4.1 presents the region in the (M, N ) space where the inequality is
satisfied. From this figure we observe that (4.46) is valid in the interior of the positive
quadrant of (M, N ) space. Since we have both M and N to be positive from (4.37),
we see that (4.46) is always satisfied for the model (4.31).

Figure 4.2 presents the region in the (M, N ) space where the inequality (4.38)
is satisfied. This figure helps in identifying the coefficient functions that ensure the
existence of at least two T-periodic solutions for (4.31). Let us choose the functions
a(t), b(t) and c(t) to be the 2π periodic functions
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Fig. 4.1 The shaded region
represents the portion in the
(M, N ) space that satisfies
(4.46)

a(t) = (1.2+ sin t)2, b(t) = 1.2 + cos t

12(1.2 + sin t)
, and c(t) = 1

1.2 + sin t
. (4.47)

From (4.33), we have k(t) = b(t)
c(t) = 1.2+cos t

12 < 1. According to (4.37), we have
M = 6.28, N = 0.628. Clearly, M > N > 0. Also, we have

(M + N ) +
√

(M + N )2 − 4M
(

eN −1
eN

)
2M

= 1.0277

and
e2N − 1

eN

M + N
= 0.4310.

Therefore (4.38) is satisfied and hence (4.31) admits at least two positive solutions
with a(t), b(t), and c(t) as given in (4.47). The existence of 2π periodic solutions
can also be ascertained from Fig. 4.2 by observing presence of the point (M, N ) =
(6.28, 0.628) in the region that satisfies (4.38). In fact, Fig. 4.2 indicates that if the
positive T-periodic coefficient functions a(t), b(t) and c(t) with b(t) < c(t) are so
chosen such that the corresponding M and N in (4.37) belong to the shaded region,
this implies that the model (4.31) admits at least two positive T-periodic solutions.

In this section, we examined the existence of at least two positive T-periodic
solutions for a scalar differential equation representing the dynamics of a renewable
resource that is subjected to Allee effects. This study is physically relevant as it
takes into account the seasonally dependent (cyclic) behavior in the intrinsic growth
rate, Allee threshold, and carrying capacity for the renewable resource. While the
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Fig. 4.2 The shaded region
represents the portion in the
(M, N ) space that satisfies
(4.38)

0 1 2 3 4 5 6 7

1

2

(6.28,0.628)

N

M

equation with constant coefficients (independent of strict periodicity) admits exactly
two positive equilibrium solutions, the study undertaken in this section reveals that
the equation with periodic coefficients admits at least two positive periodic solutions.

References

1. Bai, D., Xu, Y.: Periodic solutions of first order functional differential equations with periodic
deviations. Comput. Math. Appl. 53, 1361–1366 (2007)

2. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)
3. Freedman, H.I., Wu, J.: Periodic solutions of single species models with periodic delay. SIAM

J. Math. Anal. 23, 689–701 (1992)
4. Han, F., Wang, Q.: Existence of multiple positive periodic solutions for differential equation

with state-dependent delays. J. Math. Anal. Appl. 324, 908–920 (2006)
5. Jin, Z.L., Wang, H.: A note on positive periodic solutions of delayed differential equations.

Appl. Math. Lett. 23, 581–584 (2010)
6. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic

Press, New York (1993)
7. Li, W.T., Fan, Y.H.: Existence and global attractivity of positive periodic solution for the

impulsive delay Nicholson’s blowflies model. J. Comput. Appl. Math. 201, 55–68 (2007)
8. Liu, G., Yan, J., Zhang, F.: Existence of positive periodic solutions for neutral functional

differential equations. Nonlinear Anal. 66, 253–267 (2007)
9. Padhi, S., Srinivasu, P.D.N., Kumar, G.K.: Periodic solutions for an equation governing dynam-

ics of a renewable resource subjected to allee effects. Nonlear. Anal.: Real World Appl. 11,
2610–2618 (2010)

10. Padhi, S., Srivastava, S., Pati, S.: Three periodic solutions for a nonlinear first order functional
differential equation. Appl. Math. Comput. 216, 2450–2456 (2010)

11. Padhi, S., Srivsatava, S., Pati, S.: Positive periodic solutions for first order functional differential
equations. Comm. Appl. Anal. 14, 447–462 (2010)



98 4 Multiple Periodic Solutions of Nonlinear Functional

12. Wang, H.: Positive periodic solutions of functional differential equations. J. Differ. Equ. 202,
354–366 (2004)

13. Wang, Q., Dai, B.: Three periodic solutions of nonlinear neutral functional differential equa-
tions. Nonlinear Anal.: Real World Appl. 9(3), 977–984 (2008)

14. Wu, Y.: Existence of positive periodic solutions for a functional differential equation with a
parameter. Nonlinear Anal. 68, 1954–1962 (2008)

15. Ye, D., Fan, M., Wang, H.: Periodic solutions for scalar functional differential equations.
Nonlinear Anal. 62, 1157–1181 (2005)

16. Zhang, W., Zhu, D., Bi, P.: Existence of periodic solutions of a scalar functional differential
equation via a fixed point theorem. Math. Comput. Model. 46, 718–729 (2007)


	4 Multiple Periodic Solutions of Nonlinear Functional Differential Equations
	4.1 Positive Periodic Solutions of the Equation xprime(t)=a(t)x(t)-f(t,x(h(t)))
	4.2 Applications to Some Mathematical Models
	4.3 Application to Renewable Resource Dynamics
	References


