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Abstract In this survey article, we present an introduction of split feasibility
problems, multisets split feasibility problems and fixed point problems. The split
feasibility problems and multisets split feasibility problems are described. Several
solution methods, namely, CQ methods, relaxed CQ method, modified CQ method,
modified relaxed CQ method, improved relaxed CQ method are presented for these
two problems. Mann-type iterative methods are given for finding the common solu-
tion of a split feasibility problem and a fixed point problem. Some methods and
results are illustrated by examples.
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1 Introduction

Let C and Q be nonempty closed convex sets in RN and RM , respectively, and A be
a given M × N real matrix. The split feasibility problem (in short, SFP) is to find x∗
such that

x∗ ∈ C and Ax∗ ∈ Q. (1)
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It was introduced by Censor and Elfving [14] for modeling inverse problems, which
arise from phase retrievals and in medical image reconstruction [5]. Recently, it is
found that SFP can also be used to model the intensity modulated radiation therapy
[13, 15, 16, 20]. It has also several applications in various fields of science and
technology.

If C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively, and A ∈ B(H1,H2), where B(H1,H2) denotes the space of all
bounded linear operators fromH1 toH2, then the SFP is to find a point x∗ such that

x∗ ∈ C and Ax∗ ∈ Q. (2)

A special case of the SFP (2) is the following convexly constrained linear inverse
problem (in short, CCLIP) [29] of finding x∗ such that

x∗ ∈ C and Ax∗ = b. (3)

It has extensively been investigated in the literature by using the projected Landweber
iterative method [42]. However, SFP has received much less attention so far, due to
the complexity resulted from the set Q.

The original algorithm introduced in [14] involves the computation of the inverse
A−1 (assuming the existence of the inverse of A) and thus does not become popular.
A more popular algorithm that solves SFP seems to be the C Q algorithm of Byrne
[5, 6], which is found to be a gradient-projection method in convex minimization (it
is also a special case of the proximal forward-backward splitting method [19, 21]).

Throughout the chapter, we denote by � the solution set of the SFP, that is,

� = {x ∈ C : Ax ∈ Q} = C ∩ A−1Q.

We also assume that the SFP is consistence, that is, the solution set � is nonempty,
closed and convex.

For each j = 1, 2, . . . , J , let K j , be a nonempty closed convex subset of a M-
dimensional Euclidean spaceRM with ∩J

j=1K j �= ∅. The convex feasibility problem

(in short, CFP) is to find an element of ∩J
j=1K j . Solving the SFP is equivalent to

find a member of the intersection of two sets Q and A(C) = {Ac : c ∈ C} or of
the intersection of two sets A−1(Q) and C , so the split feasibility problem can be
viewed as a particular case of the CFP.

During the last decade, SFP has been extended and generalized in many direc-
tions. Several iterative methods have been proposed and analyzed; See, for example,
references given in the bibliography.

1.1 Multiple-Sets Split Feasibility Problem

The multiple-sets split feasibility problem (in short, MSSFP) is to find a point closest
to a family of closed convex sets in one space such that its image under a linear
transformation will be closest to another family of closed convex sets in the image
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space. It can be a model for many inverse problems where constraints are imposed
on the solutions in the domain of a linear operator as well as in the operator’s range.
It generalizes the convex feasibility problems and split feasibility problems. For-
mally, given nonempty closed convex sets Ci ⊆ R

N , i = 1, 2, . . . , t , and the non-
empty closed convex sets Q j ⊆ R

M , j = 1, 2, . . . , r , in the N and M dimensional
Euclidean spaces, respectively, the multiple-sets split feasibility problem (in short,
MSSFP) is to

find x∗ ∈ C :=
t⋂

i=1

Ci such that Ax∗ ∈ Q :=
r⋂

j=1

Q j, (4)

where A is given M × N real matrix. This can serve as a model for many inverse
problems where constraints are imposed on the solutions in the domain of a linear
operators aswell as in the operator’s range. Themultiple-sets split feasibility problem
extends the well-known convex feasibility problem, which is obtained from (4) when
there are no matrix A and the set Q j present at all.

Themultiple split feasibility problems [15] arise in thefield of intensity-modulated
radiation therapy (in short, IMRT) when one attempts to describe physical dose
constraints and equivalent uniform does (EUD) within a single model. The intensity-
modulated radiation therapy is described in Sect. 1.1.1. For further details, see Censor
et al. [13].

1.1.1 Intensity-Modulated Radiation Therapy

Intensity-modulated radiation therapy (in short, IMRT) [13] is an advanced mode
of high-precision radiotherapy, that used computer-controlled linear accelerators to
deliver precise radiation doses to specific areas within the tumor. IMRT allows for
the radiation doses to confirm more precisely to the three-dimensional (3D) shape
of the tumor by modulating-or controlling the intensity of the radiation beam in
multiple small volumes. IMRT also allows higher radiation doses to be focused to
regions within the tumor while minimizing the dose to surrounding normal critical
structures. Treatment is carefully planned by using 3-D computed tomograpy (CT)
or magnetic resonance (MRI) images of the patient in conjuction with computarized
dose calculations to determine the dose intensity pattern that will best conform to
the tumor shape. Typically, combinations of multiple intensity-modulated field com-
ing from different beam directions produce a custom tailored radiation dose that
maximizes tumor dose while also minimizing the dose to adjacent normal tissues.
Because the ratio of normal tissue dose to tumor dose is reduced to a minimum with
the IMRT approach higher and more effective radiation doses can safely delivered to
tumor with fewer side effects compared with conventional radiotherapy techniques.
IMRT also has the potential to reduce treatment toxicity, even when doses are not
increased. Radiation therapy, including IMRT stops cancer cells from dividing and
growing, thus slowing or stopping tumour growth. In many cases, radiation therapy
is capable of killing all of the cancer cells, thus shrinking or eliminating tumors.
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1.1.2 The Multiple-Sets Split Feasibility Problem in Intensity-Modulated
Radiation Therapy

Let us first define the notations:
R

J : The radiation intensity space, the J -dimensional Euclidean space.
R

I : The dose space, the I -dimensional Euclidean space.
x = (x j )

J
j=1 ∈ R

J : vector of beamlet intensity.

h = (hi )
I
i=1 ∈ R

I : vector of doses absorbed in all voxels.
di j : doses absorbed in the voxel i due to radiation of unit intensity from the j th

beamlet.
St : Set of all voxels indices in the structure t .
Nt : Number of voxel in the structure St .

We divide the entire volume of patient into I voxels, enumerated by i =
1, 2, . . . , I . Assume that T + Q anatomical structures have been outlined including
planning target volumes (PTVs) and organ at risk (OAR). Let us count all PTVs and
OARs sequentially by St , t = 1, 2, . . . , T, T + 1, . . . , T + Q, where the first T
structure represents the planning target volume and the next Q structure represents
the organ at risk.

Let us assume that the radiation is delivered independently from each of the J
beamlet,which are arranged in certain geometry and indexed by j = 1, 2, . . . , J . The
intensities x j of the beamlets are arranged in a J -dimensional vector x = (x j )

J
j=1 ∈

R
J in the J dimensional Euclidean space RJ - the radiation intensity space.
The quantities di j ≥ 0, which represent the dose absorbed in voxel i due to radi-

ation of unit intensity from the j th beamlet are calculable by any forward program.
Let hi denote the total dose absorbed in the voxel i and let h = (hi )

I
i=1 be the vector

of doses absorbed in all voxels.We call the spaceRI -the dose space. we can calculate
hi as

hi =
J∑

j=1

di j x j. (5)

The dose influence matrix D = (di j ) is the I × J matrix whose elements are the
d ′

i j s mentioned above. Thus, (5) can be written as the vector equation

h = Dx . (6)

The constraint are formulated in two different Euclidean vector space. The delivery
constraints are formulated in the Euclidean vector space of radiation intensity vector
(that is, vector whose component are radiation intensities). The equivalent uniform
dose (in short, EUD) constraints are formulated in the Euclidean vector space of dose
vectors (that is, vectors whose components are dose in each voxel).

Now, let us assume that M constraints in the dose space and N constraints in the
intensity space. Let Hm be the set of dose vectors that fulfil the mth dose constraints
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and, let Xn be the set of beamlet intensity vectors that fulfil thenth intensity constraint.
Each of the constraint sets Hm and Xn can be one of the specific H and X sets,
respectively, described below.

In the dose space, a typical constraint is that given critical structure St , the dose
should not exceed an upper bound ut. The corresponding set Hmax,t is

Hmax,t = {h ∈ R
I | hi ≤ ut , for all i ∈ St }. (7)

Similarly, in the target volumes (in short, TVs), the dose should not fall below a
lower bound lt. The set Hmin,t of dose vectors that fulfil this constraint is

Hmin,t = {h ∈ R
I | lt ≤ hi for all i ∈ St }. (8)

To handle the equivalent uniform dose EUD constraint for each structure St , we
define a real-valued function Et = R

I → R, called the EUD function, is defined by

Et (h) =
⎛

⎝ 1

Nt

∑

i∈St

(hi )
αt

⎞

⎠
1/αt

. (9)

where Nt is the number of voxels in the structure St.
The parameter αt is a tissue-specific number which is negative for target volumes

TVs and positive for organ at risk OAR. For αt = 1,

Et (h) = 1

Nt

∑

i∈St

(hi ), (10)

that is, it is the mean dose of the organ for which it is calculated.
On the other hand, letting αt → ∞ makes the equivalent uniform dose EUD

function approach the maximal value, max{hi | i ∈ St }.
For each planning target volumePTVs structure St , t = 1, 2, . . . , T , the parameter

αt is chosen negative and the equivalent uniform dose EUD constraint is described
by the set

HEUD,t = {h ∈ R
I | Emin ≤ Et (h)}, (11)

where Emin is given, for each planning target volumes PTVs structure, by the treat-
ment planner. For each organ at risk OAR, Sμ, μ = T + 1, T + 2, . . . , T + Q, the
parameter is chosen αt ≥ 1 and the equivalent uniform dose EUD constraint can be
described by the set

HEUD,t = {h ∈ R
I | Et (h) ≤ Emax}, (12)

where Emax is given, for each organ at risk OAR, by the treatment planner. Due to the
non-negativity of dose, h ≥ 0 the equivalent uniform dose EUD function is convex
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for all αt ≥ 1 and concave for all αt < 1. Therefore, the constraint sets HEUD,t are
always convex sets in the dose vector space, since they are level sets of the convex
functions Et (h) for organ at risk OAR (with αt ≥ 1), or of the convex functions
−Et (h) for the targets (with αt < 0).

In the radiation intensity space, themost prominent constraint is the non-negativity
of the intensities, described by the set.

X+ = {x ∈ R
J | x j ≥ 0 ∀ j = 1, 2, . . . , J }. (13)

Thus, our unified model for physical dose and equivalent uniform dose EUD
constraints takes the form of multiple-sets split feasibility problem, where some
constraints (the non-negativity of radiation intensities) are defined in the radiation
intensity space RJ and other constraints (upper and lower bounds on dose and the
equivalent uniform dose EUD constraints) are defined in the dose space RI , and the
two spaces are related by a (known) linear transformation D (the dose matrix).

The unified problem can be formulated as follows:

find x∗ ∈ X+
⋂

(
N⋂

i=1

Xn

)
such that h∗ = Dx∗ and h∗ ∈

(
M⋂

m=1

Hm

)
. (14)

2 Preliminaries

This section provides the basic definitions and results, which will be used in the
sequel.

Throughout the chapter, we adopt the following terminology and notations.
LetH be a real Hilbert space whose norm and inner product are denoted by ‖ · ‖

and 〈., .〉, respectively. Let C be a nonempty subset of H . The set of fixed points
of a mapping T : C → C is denoted by Fix(T ). Let {xn} be a sequence in H and
x ∈ H . We use xn → x and xn ⇀ x to denote the strong and weak convergence of
the sequence {xn} to x , respectively. We also use ωw(xn) to denote the weak ω-limit
sets of the sequence {xn}, namely,

ωw(xn) := {x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}}.

The following result provides the weak convergence of a bounded sequence.

Proposition 1 [65, Proposition 2.6] Let C be a nonempty closed convex subset of
a real Hilbert space H and {xn} be a bounded sequence such that the following
conditions hold:

(i) Every weak limit point of {xn} lies in C;
(ii) lim

n→∞ ‖xn − x‖ exists for every x ∈ C.

Then, the sequence {xn} converges weakly to a point in C.
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Lemma 1 [59] Let {xn} and {yn} be bounded sequences in a real Hilbert space H
and {αn} be a sequence in [0, 1] with 0 < lim inf

n→∞ αn ≤ lim sup
n→∞

αn < 1. Suppose that

xn+1 = (1−αn)yn + αn xn for all n ≥ 0, and lim sup
n→∞

(‖yn+1− yn‖−‖xn+1−xn‖) ≤
0. Then, lim

n→∞ ‖yn − xn‖ = 0.

Lemma 2 [33]LetH be a real Hilbert space. Then, for all x, y ∈ H andλ ∈ [0, 1],

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

Definition 1 A mapping T : H → H is said to be

(a) Lipschitz continuous if there exists a constant L > 0 such that

‖T x − T y‖ ≤ L‖x − y‖, for all x, y ∈ H ; (15)

(b) contraction if there exists a constant α ∈ (0, 1) such that

‖T x − T y‖ ≤ α‖x − y‖, for all x, y ∈ H ; (16)

If α = 1, then T is said to be nonexpansive;
(c) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

〈x − y, T x − T y〉 ≥ ‖T x − T y‖2, for all x, y ∈ H . (17)

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T = 1

2
(I + S),

where S : H → H is nonexpansive;
(d) averaged mapping if it can be written as the average of the identity mapping I

and a nonexpansive mapping, that is,

T = (1 − α)I + αS, (18)

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when
Eq. (18) holds, we say that T is α-averaged.

The Cauchy-Schwartz inequality implies that every firmly nonexpansive mapping
is nonexpansive but converse need not be true.

Proposition 2 Let S, T, V : H → H be given mappings.

(a) If T = (1−α)S+αV for some α ∈ (0, 1), S is averaged and V is nonexpansive,
then T is averaged.
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(b) T is firmly nonexpansive if and only if the complement I − T is firmly nonex-
pansive.

(c) If T = (1 − α)S + αV for some α ∈ (0, 1), S is firmly nonexpansive and V is
nonexpansive, then T is averaged.

(d) The composite of finitely many averaged mappings is averaged. That is, if each
of the mappings {Ti }N

i=1 is averaged, then so is the composite T1o . . . oTN . In
particular, if T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1),
then the composite T1 ◦ T2 is α-averaged, where α = α1 + α2 − α1α2.

(e) If the mappings {Ti }N
i=1 are averaged and have a common fixed point, then

N⋂

i=1

Fix(Ti ) = Fix(T1 ◦ · · · ◦ TN ).

The notion Fix(T ) denotes the set of all fixed points of the mapping T , that is,
Fi x(T ) = {x ∈ H : T x = x}.

Definition 2 Let T be a nonlinear operator whose domain D(T ) ⊆ H , and range
is R(T ) ⊆ H . The operator T is said to be

(a) monotone if
〈x − y, T x − T y〉 ≥ 0, for all x, y ∈ D(T ). (19)

(b) strongly monotone (or β-strongly monotone) if there exists a constant β > 0
such that

〈x − y, T x − T y〉 ≥ β‖x − y‖2, for all x, y ∈ D(T ). (20)

(c) inverse strongly monotone (or ν-inverse strongly monotone) (ν-ism) if there
exists a constant ν > 0 such that

〈x − y, T x − T y〉 ≥ ν‖T x − T y‖2, for all x, y ∈ D(T ). (21)

It can be easily seen that if T is nonexpansive, then I − T is monotone.
It is well-known that if the function f : H → R is Lipschitz continuous, then

its gradient ∇ f is 1
L -ism.

Lemma 3 Let f : H → R be a Lipschitz continuous function with Lipschtiz
constant L > 0. Then, the gradient operator ∇ f : H → H is 1

L -ism, that is,

〈∇ f (x) − ∇ f (y), x − y〉 ≥ 1

L
‖∇ f (x) − ∇ f (y)‖2, for allx, y ∈ H . (22)

Proposition 3 Let T : H → H be a mapping.

(a) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(b) If T is ν-ism, then for γ > 0, γ T is ν
γ

-ism.
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(c) T is averaged if and only if the complement I − T is ν-ism for some ν > 1
2 .

Indeed, for α ∈ (0, 1), T is α-averaged if and only if I − T is 1
2α -ism.

2.1 Metric Projection

Let C be a nonempty subset of a normed space X and x ∈ X . An element y0 ∈ C is
said to be a best approximation of x if

‖x − y0‖ = d(x, C),

where d(x, C) = inf
y∈C

‖x − y‖. The number d(x, C) is called the distance from x to

C. The (possibly empty) set of all best approximations from x to C is denoted by

PC (x) = {y ∈ C : ‖x − y‖ = d(x, C)}.

This defines a mapping PC from X into 2C and it is called the metric projection
onto C . The metric projection mapping is also known as the nearest point projection,
proximity mapping or best approximation operator.

Theorem 1 Let C be a nonempty closed convex subset of a Hilbert space H . Then,
for each x ∈ H , there exists a unique y ∈ C such that

‖x − y‖ = inf
z∈C

‖x − z‖.

The above theorem says that PC (.) is a single-valued projection mapping from
H onto C .

Some important properties of projections are gathered in the followingproposition.

Proposition 4 Let C be a nonempty closed convex subset of a real Hilbert space
H . Then,

(a) PC is idempotent, that is, PC (PC (x)) = PC (x), for all x ∈ H ;
(b) PC is firmly nonexpansive, that is, 〈x−y, PC (x)−PC (y)〉 ≥ ‖PC (x)−PC (y)‖2,

for all x, y ∈ H ;
(c) PC is nonexpansive, that is, ‖PC (x) − PC (y)‖ ≤ ‖x − y‖, for all x, y ∈ H ;
(d) PC is monotone, that is, 〈PC (x) − PC (y), x − y〉 ≥ 0, for all x, y ∈ H .

2.2 Projection Gradient Method

Let C be a nonempty closed convex subset of a Hilbert space H and f : C → R

be a function. Consider the constrained minimization problem:
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min
x∈C

f (x). (23)

Assume that the minimization problem (23) is consistent.
If f : C → R is Fréchet differentiable convex function, then it is well known

(see, for example, [2, 39]) that the minimization problem (23) is equivalent to the
following variational inequality problem:

Find x∗ ∈ C such that 〈∇ f (x∗), y − x∗〉 ≥ 0, for all y ∈ C, (24)

where ∇ f : H → H is the gradient of f . The following is the general form of the
variational inequality problem:

VIP(F, C) Find x∗ ∈ C such that 〈F(x∗), y − x∗〉 ≥ 0, for all y ∈ C,

where F : C → H be a nonlinear mapping. For further details and applications
of variational inequalities, we refer to [2, 30, 39] and the references therein. The
following result provides the equivalence between a variational inequality problem
and a fixed point problem.

Proposition 5 Let C be a nonempty closed convex subset of a real Hilbert space
H and F : C → H be an operator. Then, x∗ ∈ C is a solution of the VIP(F, C) if
and only if for any γ > 0, x∗ is a fixed point of the mapping PC (I − γ F) : C → C,
that is,

x∗ = PC (x∗ − γ F(x∗)), (25)

where PC (x∗ − γ F(x∗)) denotes the projection of (x∗ − γ F(x∗)) onto C, and I is
the identity mapping.

In view of the above proposition and discussion, we have the following proposi-
tion.

Proposition 6 Let C be a nonempty closed convex subset of a real Hilbert space H
and F : C → H be a convex and Fréchet differential function. Then, the following
statement are equivalent:

(a) x∗ ∈ C is a solution of the minimization problem (23);
(b) x∗ ∈ C solves V I P(F, C) (24);
(c) x∗ ∈ C is a solution of the fixed point Eq. (25).

From the above equivalence, we have the following projection gradient method.
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Theorem 2 (ProjectionGradientMethod)Let C be a nonempty closed convex subset
of a real Hilbert space H and F : C → H be a Lipschitz continuous and strongly
monotone mapping with constants L > 0 and β > 0, respectively. Let γ > 0 be a
constant such that γ <

2β
L2 . Then,

(i) PC (I − γ F) : C → C is a contraction mapping and there exists a solution
x∗ ∈ C of the VIP(F, C).

(ii) The sequence {xn} generated by the following iterative, process:

xn+1 = PC (I − γ F)xn, for all n ∈ N,

converges strongly to a solution x∗ of the V I P(F, C).

In view of Proposition 6 and Theorem 2, we have the followingmethod for finding
an approximate solution of a convex and differentiable minimization problem.

Theorem 3 Let C be a nonempty closed convex subset of a real Hilbert space H
and f : C → R be a convex and Fréchet differentiable function such that the gradient
∇ f is Lipschitz continuous and strongly monotone mapping with constants L > 0
and β > 0, respectively. Let {γn} be a sequence of strictly positive real numbers such
that

0 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn <

2β

L2 . (26)

Then, the sequence {xn} generated by the following projection gradient method

xn+1 = PC (I − γn∇ f )xn, for all n ∈ N, (27)

converges strongly to a unique solution of the minimization problem (23).

The sequence {xn} generated by the Eq. (27) converges weakly to the unique
solution of the minimization problem (23) even when ∇ f is not necessary strongly
monotone.

We present an example to illustrate projection gradient method.

Example 1 Let C = [0, 1] be a closed convex set in R, f (x) = x2 and γn = 1/5
for all n. Then, all the conditions of the Theorem 3 are satisfied and the sequence
generated by the Eq. (27) converges to 0 with initial guess x1 = 0.01. We have the
following table of iterates:

From Table 1, it is clear that the solution x = 0 is obtained after 11th iteration.
We performed the iterative scheme in Matlab R2010 (Fig. 1).
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Table 1 Convergence of {xn} in Example 1

Number of xn Number of xn Number of xn

iterations (n) iterations (n) iterations (n)

1 0.0100 6 0.0008 11 0.0001
2 0.0060 7 0.0005 12 0.0000
3 0.0036 8 0.0003 13 0.0000
4 0.0022 9 0.0002 14 0.0000
5 0.0013 10 0.0001 15 0.0000

Fig. 1 Convergence of {xn}
in Example 1
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2.3 Mann’s Iterative Method

LetC be a nonempty closed convex subset of a real Hilbert spaceH and T : C → C
be a mapping. The well-known Mann’s iterative algorithm is the following.

Algorithm 1 (Mann’s Iterative Algorithm) For arbitrary x0 ∈ H , generate a
sequence {xn} by the recursion:

xn+1 = (1 − αn)xn + αnT xn, n ≥ 0, (28)

where {αn} is (usually) assumed to be a sequence in [0, 1].
Theorem 4 Let C be a nonempty closed convex subset of a real Hilbert space H
and T : C → C be a nonexpansive mapping with a fixed point. Assume that {αn} is
a sequence in [0, 1] such that

∞∑

n=1

αn(1 − αn) = ∞. (29)
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Table 2 Convergence of {xn} in Example 2

Iterations (n) xn Iterations (n) xn Iterations (n) xn

1 0.0100 9 0.1367 17 0.1714
2 0.4800 10 0.1919 18 0.1717
3 −0.1386 11 0.1604 19 0.1715
4 0.4784 12 0.1777 20 0.1716
5 −0.0346 13 0.1683 21 0.1716
6 0.3280 14 0.1733 22 0.1716
7 0.0770 15 0.1707 23 0.1716
8 0.2324 16 0.1720 24 0.1716

Then, the sequence {xn} generated by Mann’s Algorithm 1 converges weakly to a
fixed point of T .

Xu [65] studied the weak convergence of the sequence generated by the Mann’s
Algorithm 1 to a fixed point of an α-averaged mapping.

Theorem 5 [65, Theorem 3.5] Let H be a real Hilbert space and T : H → H be
an α-averaged mapping with a fixed point. Assume that {αn} is a sequence in [0,1/α]
such that ∞∑

n=1

αn

(
1

α
− αn

)
= ∞. (30)

Then, the sequence {xn} generated by Mann’s Algorithm 1 converges weakly to a
fixed point of T .

We illustrates Mann’s Algorithm 1 with the help of the following examples:

Example 2 Let T : [0, 1] → [0, 1] be a mapping defined by

T x = x2

4
− x

2
+ 1

4
, for all x ∈ [0, 1].

Then, T is nonexpansive. Let {αn} = { 1
n+1 }. Then, all the conditions of Theorem 4

are satisfied and the sequence {xn} generated by Mann’s Algorithm 1 converges to
a fixed point of T , that is, to x = 0.1716. We take the initial guest x1 = .01 and
perform the Mann’s Algorithm 1 by using Matlab R2010. We obtain the iterates in
Table 2.

From Table 2, it is clear that the sequence generated by the Mann’s Algorithm 1
converges to x = 0.1716 which is obtained after 19th iteration (Fig. 2).

Example 3 Let T : [0, 1] → [0, 1] be defined by

T x = 9

10
x + 1

10
Sx, for all x ∈ [0, 1].
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Fig. 2 Convergence of {xn} in Example 2

Table 3 Convergence of {xn} in Example 3

Number of xn Number of xn Number of x(n)

iterations iterations iterations

1 0.0100 5 0.1693 9 0.1715
2 0.2215 6 0.1725 10 0.1716
3 0.1550 7 0.1712 11 0.1716
4 0.17770 8 0.1717 12 0.1716

where Sx = x2
4 − x

2 + 1
4 is a nonexpansive map and {αn} = 10 − { 1n }. Then, T is a

1
10 -averaged mapping and all the conditions of Theorem 5 are satisfied. Hence, the
sequence {xn} generated byMann’s Algorithm 1 converges to a fixed point of T , that
is, to 0.1716 with initial guess x1 = 0.01.

From Table 3, it is clear that the fixed point x = 0.1716 is obtained after 9th
iteration. We performed the iterative scheme in Matlab R2010 (Fig. 3).

3 CQ-Methods for Split Feasibility Problems

In the pioneer paper [14], Censor and Elfving introduced the concept of a split feasi-
bility problem (SFP) and usedmultidistancemethod to obtain the iterative algorithms
for solving this problem. Their algorithms as well as others obtained later involves
matrix inverses at each step. Byrne [5, 6] proposed a new iterative method called
CQ-method that involves only the orthogonal projections onto C and Q and does not
need to compute the matrix inverses, where C and Q are nonempty closed convex
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subsets of RN and RM , respectively. It is one of the main advantages of this method
compare to other methods. The CQ algorithm is as follows:

xn+1 = PC

(
xn − γ A�(I − PQ)Axn

)
, n = 0, 1, . . . ,

where γ ∈ (0, 2/L), A is a M × N matrix, A� denotes the transpose of the matrix A,
L is the largest eigenvalue of the matrix A� A, and PC and PQ denote the orthogonal
projections onto C and Q, respectively. Byrne also studied the convergence of the
CQ algorithm for arbitrary nonzero matrix A. Inspired by the work of Byrne [5, 6],
Yang [68] proposed amodification of the CQ algorithm, called relaxed CQ algorithm
in which he replaced PC and PQ by PCn and PQn , respectively, where Cn and Qn are
half-spaces. One common advantage of the CQ algorithm and relaxed CQ algorithm
is that the computation of the matrix inverses is not necessary. However, a fixed
step-size related to the largest eigenvalue of the matrix A� A is used. Computing the
largest eigenvalue may be hard and conservative estimate of the step-size usually
results in slow convergence. So, Qu and Xiu [53] modified the CQ algorithm and
relaxed CQ algorithm by adopting Armijo-like searches. The modified algorithm
need not compute the matrix inverses and the largest eigenvalue of the matrix A� A,
and make a sufficient decrease of the objective function at each iteration. Zhao
et al. [75] proposed a modified CQ algorithm by computing step-size adaptively and
perform an additional projection step onto some simple closed convex set X ⊆ R

N

in each iteration. Since all the algorithms have been introduced in finite-dimensional
setting, Xu [65] proposed the relaxed CQ algorithm in infinite-dimensional setting,
and also proved the weak convergence of the proposed algorithm. In 2011, Li [45]
developed some improved relaxed CQmethods with the optimal step-length to solve
the split feasibility problem based on the modified relaxed CQ algorithm [53].
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In this section,wepresent different kinds ofCQalgorithms, namely,CQalgorithm,
relaxedCQalgorithm,modifiedCQalgorithm,modified relaxedCQalgorithm,mod-
ified projection type CQ algorithm, modified projection type relaxed CQ algorithm
and improved relaxed CQ algorithm. We present the convergence results for these
algorithms. We also present an example to illustrate CQ algorithm and its conver-
gence result.

3.1 CQ Algorithm

Let C and Q be nonempty closed convex sets in R
N and R

M , respectively, and A
be an M × N real matrix with its transpose matrix A�. Let γ > 0 and assume that
x∗ ∈ �. Then, Ax∗ ∈ Q which implies the equation (I − PQ)Ax∗ = 0 which in
turns implies the equation γ A�(I − PQ)Ax∗ = 0, hence the fixed point equation
(I − γ A�(I − PQ)A)x∗ = x∗. Requiring that x∗ ∈ C , Xu [65] considered the fixed
point equation:

PC (I − γ A�(I − PQ)A)x∗ = x∗. (31)

and also observed that solutions of the fixed point Eq. (31) are exactly solutions of
SFP.

Proposition 7 [65, Proposition 3.2] Given x∗ ∈ R
N . Then, x∗ solves the SFP if and

only if x∗ solves the fixed point Eq. (31).

Byrne [5, 6] introduced the following CQ algorithm:

Algorithm 2 Let x0 ∈ R
N be an initial guess. Generate a sequence {xn} by

xn+1 = PC

(
xn − γ A�(I − PQ)Axn

)
, n = 0, 1, 2, . . . , (32)

where γ ∈ (0, 2/L) and L is the largest eigenvalue of the matrix A� A.

It can be easily seen that the CQ algorithm does not require the computation of
the inverse of any matrix. We need only to compute the projection onto the closed
convex sets C and Q, respectively.

Byrne [5] studied the convergence of the above method and established the fol-
lowing convergence result.

Theorem 6 [5, Theorem 2.1] Assume that the SFP is consistent. Then, the sequence
{xn} generated by the CQ Algorithm 2 converges to a solution of the SFP.

Remark 1 The particular cases of the CQ algorithm are the Landweber and projected
Landweber methods [42]. These algorithms are discussed in detail in the book by
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Table 4 Convergence of {xn}
in Example 4

Number of x(n) Number of x(n)

iterations (n) iterations (n)

1 0.0100 10 0.4970
2 0.7940 11 0.5018
3 0.3236 12 0.4989
4 0.6058 13 0.5006
5 0.4365 14 0.4996
6 0.5381 15 0.5002
7 0.4771 16 0.4999
8 0.5137 17 0.5000
9 0.5049 18 0.5000

Fig. 4 Convergence of {xn}
in Example 4
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Bertero andBoccacci [8], primarily in the context of image restorationwithin infinite-
dimensional spaces of functions (see also Landweber [41]). With C = R

N and
Q = {b}, the CQ algorithm becomes the Landweber iterative method for solving the
linear equations Ax = b.

The following example illustrates the CQ Algorithm 2 and its convergence result.

Example 4 Let C = Q = [−1, 1] and A(x) = 2x . Then, A is a bounded linear
operator with norm 2. Let γ = 2/5. Then, all the conditions of Theorem 6 are
satisfied.

We perform the computation of the CQ Algorithm 2 by taking the initial guess
x1 = 0.01 and by using Matlab R2010. We obtain the iterates in Table 4.

From Table 4, it is clear that the sequence generated by the CQ Algorithm 2
converges to 0.5 after 16th iteration (Fig. 4).

Xu [65] extended Algorithm 2 in the setting of real Hilbert spaces to find the
minimum-norm solution of the SFP with the help of regularization parameter. He
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considered xmin to be the minimum-norm solution of the SFP if xmin ∈ � has the
property

‖xmin‖ = min{‖x∗‖ : x∗ ∈ �}.

3.2 Relaxed CQ Algorithm

Let C and Q be nonempty closed convex sets in R
N and R

M respectively, and A
be an M × N real matrix with its transpose matrix A�. Let PCn and PQn denote
the orthogonal projections onto the half-spaces Cn and Qn , respectively. In some
cases it is impossible or need too much time to compute the orthogonal projections
[7, 32, 34]. Therefore, if this is the case, the efficiency of the projection type methods
will be seriously affected, as would the CQ algorithm. Inexact technology plays an
important role in designing efficient, easily implemented algorithms for the opti-
mization problem, variational inequality problem and so on. The relaxed projection
method may be viewed as one of the inexact methods. Fukushima [32] proposed a
relaxed projection algorithm for solving variational inequalities and the theoretical
analysis. The numerical experiment shows the efficiency of his method.

Inspired by the work of Fukushima [32], Yang [68] proposed the relaxed CQ
algorithm. In order to describe relaxed CQ algorithm, he made some assumptions on
C and Q, which are as follow:

• The solution set of the split feasibility problem is nonempty.

C = {x ∈ R
N : c(x) ≤ 0} and Q = {y ∈ R

M : q(y) ≤ 0}. (33)

where c and q are the convex functionals on R
N and R

M , respectively.
The subgradients ∂c(x) and ∂q(y) of c and q at x and y, respectively, are defined as
follows:

∂c(x) = {z ∈ R
N : c(u) ≥ c(x) + 〈u − x, z〉, ∀u ∈ R

N } �= ∅, for all x ∈ C,

and

∂q(y) = {w ∈ R
M : q(v) ≥ q(y) + 〈v − y, w〉, ∀v ∈ R

M } �= ∅, for all y ∈ Q.

Note that the differentiability of c(x) or q(y) is not assumed. Therefore, both C and
Q are general enough. For example, suppose any system of inequalities ci (x) ≤ 0,
i ∈ J , where ci (x) are convex and J is an arbitrary index set, may be regarded as
equivalent to the single inequality c(x) ≤ 0 with c(x) = sup{ci (x) : i ∈ J }. One
may easily get an element of ∂c(x) by the expression of ∂c(x) provided all ci (x) are
differentiable.

With these assumptions, Yang [68] proposed the following relaxed CQ algorithm.



Split Feasibility and Fixed Point Problems 299

Algorithm 3 Let x0 be arbitrary. For n = 0, 1, 2, . . . , calculate

xn+1 = PCn

(
xn − γ A�(I − PQn )Axn

)
, (34)

where {Cn} and {Qn} are the sequences of closed convex sets defined as follows:

Cn = {x ∈ R
N : c(xn) + 〈ξn, x − xn〉 ≤ 0}, (35)

where ξn ∈ ∂c(xn), and

Qn = {y ∈ R
M : q(A(xn)) + 〈ηn, y − A(xn)〉 ≤ 0}, (36)

where ηn ∈ ∂q(A(xn)).

It can be easily seen that C ⊂ Cn and Q ⊂ Qn for all n. Due to special form of
Cn and Qn , the orthogonal projections onto Cn and Qn may be directly calculated
[32]. Thus, the proposed algorithm can be easily implemented.

Yang [68] proved the following convergence result for Algorithm 3.

Theorem 7 [68, Theorem 1] Let {xn} be the sequence generated by the Algorithm
3. Then, {xn} converges to a solution of the SFP.

Xu [65] further studied the relaxed CQ algorithm in the setting of Hilbert spaces.
He proposed the generalized form of the Algorithm 3 in the setting of Hilbert spaces
and studied theweak convergence of the sequence generated by the proposedmethod.

3.3 Modified CQ Algorithm and Modified Relaxed
CQ Algorithm

In CQ method and relaxed CQ method, we use a fixed step-size related to the largest
eigenvalue of the matrix A� A, which sometimes affects convergence of the algo-
rithms. Therefore, several modifications of these methods are proposed during the
recent years. This section deals with such modified CQ method and relaxed CQ
method.

By adopting Armijo-like searches, which are popular in iterative algorithms for
solving nonlinear programming problems, variational inequality problems and so on
[30, 67], Qu and Xiu [53] presented modification of CQ algorithm and relaxed CQ
algorithm. In these modifications, it is not needed to compute the matrix inverses
and the largest eigenvalue of the matrix A� A, and make a sufficient decrease of the
objective functions at each iteration.

LetC , Q and A be the same as in Sect. 3.1. Qu andXiu [53] proposed the following
modified CQ algorithm:

Algorithm 4 Given constants β > 0, σ ∈ (0, 1), γ ∈ (0, 1). Let x0 be arbitrary.
For n = 0, 1, 2, . . ., calculate
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xn+1 = PC

(
xn − αn A�(I − PQ)Axn

)
,

where αn = βγ mn and mn is the smallest nonnegative integer m such that

f (PC (xn − βγ m A�(I − PQ)Axn)) ≤

f (xn) − σ
〈
A�(I − PQ)Axn, xn − PC

(
xn − βγ m A�(I − PQ)Axn

)〉
,

where f (x) := 1
2‖Ax − PQ Ax‖2.

Algorithm 4 is in fact a special case of the standard gradient projection method
with the Armijo-like search rule for solving convexly constrained optimization.

Qu and Xiu [53] established the following convergence of the modified CQAlgo-
rithm 4.

Theorem 8 [53, Theorem 3.1] Let {xn} be a sequence generated by the Algorithm
4. Then the following conclusions hold:

(a) {xn} is bounded if and only if the solution set S of minimization problem:

min
x∈C

f (x) := 1

2
‖Ax − PQ Ax‖2,

is nonempty. In this case, {xn} must converge to an element of S.
(b) {xn} is bounded and lim

n→∞ f (xn) = 0 if and only if the SFP is solvable. In such

a case, {xn} must converge to a solution of the SFP.

Remark 2 Algorithm 4 is more applicable and it is easy to compute as compared
to CQ Algorithm 2 proposed by Byrne [5], as it need not determine or estimate the
largest eigenvalue of the matrix A� A. The step-size αn is judiciously chosen so that
the function value f (xn+1) has a sufficient decrease. It can also be identified the
existence of solution to the concerned problem by the iterative sequence.

Qu and Xiu [53] studied relaxed CQ algorithm proposed in Sect. 3.2 and proposed
amodified relaxed CQ algorithm. LetC , Q, A,Cn and Qn be the same as in Sect. 3.2.

For every n, let Fn : RN → R
N be function defined as

Fn(x) = A�(I − PQn )Ax, for all x ∈ R
N .

Modified relaxed CQ algorithm is the following:

Algorithm 5 Let x0 be arbitrary and γ > 0, l ∈ (0, 1), μ ∈ (0, 1) be given. For
n = 0, 1, 2, . . ., let

xn = PCn (xn − αn Fn(xn)) ,

where αn = γ lmn and mn is the smallest nonnegative integer m such that

‖Fn(xn) − Fn(xn)‖ ≤ μ
‖xn − xn‖

αn
. (37)
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Set
xn+1 = PCn (xn − αn Fn(xn)),

where Cn , Qn are the sequences of closed convex sets defined as in (35) and (36).

Qu and Xiu [53] established the following convergence theorem.

Theorem 9 [53, Theorem 4.1] Let {xn} be a sequence generated by Algorithm 5. If
the solution set of SFP is nonempty, then {xn} converges to a solution of SFP.

Inspired by Tseng’s modified forward-backward splitting method for finding a
zero of the sum of twomaximal monotonemappings [60], Zhao et al. [75] proposed a
modification ofCQalgorithm,which computes the step-size adaptively, and performs
an additional projection step onto some simple closed convex set X ⊆ R

N in each
iteration. Let C , Q and A be the same as in Sect. 3.1.

Algorithm 6 [75] Let x0 be arbitrary, σ0 > 0, β ∈ (0, 1), θ ∈ (0, 1), ρ ∈ (0, 1).
For n = 0, 1, 2, . . . compute

x̄n = PC (xn − γn F(xn)), (38)

where F = A�(I − PQ)A, γn is chosen to be the largest γ ∈ {σn, σnβ, σnβ2, . . .}
satisfying

γ ‖F(x̄n) − F(xn)‖ ≤ θ‖x̄n − xn‖. (39)

Let
xn+1 = PX (x̄n − γn(F(x̄n) − F(xn))) . (40)

If
γn‖F(xn+1) − F(xn)‖ ≤ ρ‖xn+1 − xn‖, (41)

then set σn = σ0; otherwise, set σn = γn .

This algorithm involves projection onto a nonempty closed convex set X rather
than onto the set C , which can be advantageous when X has a simpler structure
than C . The set X can be chosen variously. It can be chosen to be a simple bounded
subset of RN that contains at least one solution of split feasibility problem, it can
also be directly chosen as X = R

N . In fact, it can be more generally chosen to be
a dynamically changing set Xn , provided

⋂∞
n=0 Xn contains a solution of the split

feasibility problem. This does not affect the convergent result. The last step is used
to reduce the inner iterations for searching the step-size γn .

For such algorithm, we usually take

1

2
‖xn − PC (xn)‖2 + 1

2
‖Axn − PQ(Axn)‖2 < 0
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or
1

2
‖(I − PQ)Axn‖2 < ε

as the termination criterion, where ε > 0 is chosen to be sufficiently small.
Zhao et al. [75] established the following convergence result for the Algorithm 6.

Theorem 10 [75, Theorem 2.1] Let {xn} be a sequence generated by Algorithm 6, X
be a nonempty closed convex set in R

N with a simple structure. If X ∩� is nonempty,
then {xn} converges to a solution of SFP.

Remark 3 This modified C Q algorithm differs from the extragradient-type method
[38, 40, 53], whose second equation is

xn+1 = PC (xn − γn F(xn)).

It also differs from the modified projection-type method [54, 57], whose second
equation is

xn+1 = xn − γn(xn − xn + αn(F(xn) − F(xn)).

In Algorithm 6, the orthogonal projections PC and PQ had been calculated many
times even in one iteration step, so they should be assumed to be easily calculated.
However, sometimes it is difficult or even impossible to compute them. In order to
overcome such situation turn to relaxed or inexact methods [31, 32, 34, 53, 68],
which are more efficient and easily implemented. Zhao et al. [75] introduced relaxed
modified CQ algorithm for split feasibility problem. Let C , Q, A, Cn and Qn be the
same as in the Sect. 3.2:

Algorithm 7 [75, Algorithm 3.1] Let x0 be arbitrary, σ0 > 0, β ∈ (0, 1), θ ∈ (0, 1),
ρ ∈ (0, 1) for n = 0, 1, 2, . . ., compute

x̄n = PCn (xn − γn Fn(xn)) , (42)

where Fn(x) = A�(I − PQn )Axn and γn is chosen to be the largest γ ∈
{σk, σkβ, σkβ

2 . . . } satisfying

γ ‖Fn(x̄n) − Fn(xn)‖ ≤ θ‖x̄n − xn‖. (43)

Let
xn+1 = PX (x̄n − γn(Fn(x̄n) − Fn(xn))) . (44)

If
γn‖Fn(xn+1) − Fn(xn)‖ ≤ ρ‖xn+1 − xn‖, (45)

then set σn = σ0; otherwise, set σn = γn , where {Cn} and {Qn} are the sequences of
closed convex sets defined as in (35) and (36), respectively.
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Sinceprojections onto half-spaces canbedirectly calculated, the relaxed algorithm
ismore practical and easily implemented thanAlgorithm 6 [31, 32, 34, 53, 68]. Here,
we may take

1

2
‖xn − PCn (xn)‖2 + 1

2
‖Axn − PQn (Axn)‖2 < ε,

or

1

2
‖(I − PQn )Axn‖2 < ε

as the termination criterion.
We have the following convergence result for the Algorithm 7.

Theorem 11 [75, Theorem 3.1] Let {xn} be a sequence generated by Algorithm 7, X
be a nonempty closed convex set in R

N with a simple structure. if X ∩� is nonempty,
then {xn} converges to a solution of SFP.

Remark 4 In Algorithm 7, the set X can be chosen to be any closed subset of RN

with a simple structure, provided it contains a solution of split feasibility problem.
Dynamically changing it does not affect the convergence. For example, set Xn = Cn ,
then we get the following double-projection method:

x̄n = PCn (xn − γn Fn(xn)) ,

xn+1 = PCn (x̄n − γn(Fn(x̄n) − Fn(xn))) ,

for n = 0, 1, 2, . . .. This method differs from the modified relaxed CQ algorithm
in [53]. Their method is in fact an extragradient method, with the second equation
written as

xn+1 = PCn (xn − γn Fn(x̄n)) .

3.4 Improved Relaxed CQ Methods

Li [45] proposed the following two improved relaxed CQ methods and shown how
to determine the optimal step length. The detailed procedure of the new methods is
presented as follows:

Let C , Q, A, Cn and Qn be the same as in the Sect. 3.2 and Fn be the same as
defined in Sect. 3.3:

Algorithm 8 Initialization: choose μ ∈ (0, 1), ε > 0, x0 ∈ R
N and n = 0.
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Step 1. Prediction: Choose an αn > 0 such that

x̄n = PCn (xn − αn Fn(xn)) (46)

and
αn‖Fn(xn) − Fn(x̄n)‖ ≤ μ‖xn − x̄n‖ (47)

Step 2. Stopping Criterion : compute

en(xn, αn) = xn − x̄n .

If ‖en(xn, αn)‖ ≤ ε, terminate the iteration with the approximate solution xn . Oth-
erwise, go to step 3.
Step 3. Correction: The new iterate xn+1 is updated by

xn+1 = x∗
n = PCn (xn − βnαn Fn(x̄n)), (48)

where

βn = δnβ∗
n , β∗

n = 〈xn − x̄n, dn(xn, x̄n, αn)〉
‖dn(xn, x̄n, αn)‖2 , δn ∈ [δL , δV ] ⊆ (0, 2), (49)

and

dn(xn, x̄n, αn) = xn − x̄n − αn(Fn(xn) − Fn(x̄n)). (50)

Set n := n + 1 and go to step 1.

Algorithm 9 : Initialization: Choose μ ∈ (0, 1), ε > 0, x0 ∈ R
N and n = 0.

Step 1. Prediction: Choose an αn > 0 such that

x̄n = PCn (xn − αn Fn(xn)) (51)

and

αn‖Fn(xn) − Fn(x̄n)‖ ≤ μ‖xn − x̄n‖. (52)

Step 2. Stopping Criteria : Compute

en(xn, αn) = xn − xn .

If ‖en(xn, αn)‖ ≤ ε, terminate the iteration with the approximate solution xn . Oth-
erwise go to step 3.
Step 3. Correction: The corrector x∗

n is given by the following equation



Split Feasibility and Fixed Point Problems 305

x∗
n = PCn (xn − βnαn Fn(x̄n)), (53)

where

βn = γnβ∗
n , β∗

n = 〈xn − x̄n, dn(xn, x̄n, αn)〉
‖dn(xn, x̄n, αn)‖2 , δn ∈ [δL , δU ] ⊆ (0, 2), (54)

and
dn(xn, x̄n, αn) = xn − x̄n − αn(Fn(xn) − Fn(x̄n)). (55)

Step 4. Extension: The new iterate xn+1 is updated by

xn+1 = PCn (xn − ρn(xn − x∗
n )), (56)

where

ρn = γnρ∗
n
, ρ∗

n = ‖xn − x∗
n‖2 + βnαn〈x∗

n − x̄n, Fn(x̄n)〉
‖xn − x∗

n‖2 , γn ∈ [γL , γU ] ⊆ (0, 2).

(57)

Set n := n + 1 and go to step 1.

Remark 5 In the prediction step, if the selected αn satisfies 0 < αn ≤ μ/L (L is the
largest eigenvalue of the matrix A� A), from [45, Lemma 2.3], we have

αn‖Fn(xn) − Fn(x̄n)‖ ≤ αn L‖xn − x̄n‖ ≤ μ‖xn − x̄n‖, (58)

and thus condition (47) or (52) is satisfied. Without loss of generality, we can assume
that inf{αn} = αmin > 0. Since we do not know the value of L > 0 but it exist, in
practice, a self-adaptive scheme is adopted to find such a suitable αn > 0. For given
xn and a trial αn > 0, along with the value of Fn(xn), we set the trial xn as follows:

x̄n = PCn (xn − αn Fn(xn)).

Then calculate

rn := αn‖Fn(xn) − Fn(x̄n)‖
‖xn − x̄n‖ ,

if rn ≤ μ, the trial x̄n is accepted as predictor; otherwise, reduce αn by αn :=
.9μα∗

n min(1, 1/rn) to get a new smaller trial αn and repeat this procedure. In the
case that the predictor has been accepted, a good initial trialαn+1 for the next iteration
is prepared by the following strategy:

αn+1 =
{

0.9
rn

αn if rn ≤ ν,

αn otherwise,
(59)

(usually ν ∈ [0.4, 0.5]).
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Condition (47) or (52) ensure that αn‖Fn(xn)− Fn(x̄n)‖ is smaller than ‖xn − x̄n‖,
however, too small αn‖Fn(xn) − Fn(x̄n)‖ leads to slow convergence. The proposed
adjusting strategy (59) is intended to avoid such a case as indicated in [35, 36].
Actually it is very important to balance the quantity of αn‖Fn(xn) − Fn(x̄n)‖ and
‖xn − x̄n‖ in practical computation. Note that there are at least two times to utilize
the value of function in the prediction step: one is Fn(xn), and the other is Fn(x̄n) for
testing whether the condition (47) or (52) holds. When αn is selected well enough,
x̄n will be accepted after only one trial and in this case, the prediction step exactly
utilizing the value of concerned function twice in one iteration.

It follow from [45, Relation (3.16)] and [45, Relation (3.27)] that for Algorithm
8, there exists a constant τ1 > 0 such that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − τ1 · ‖xn − x̄n‖2. (60)

From [45, Relation (3.38)], for Algorithm 9, there exist a constant τ2 > 0 such that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − τ2 · {‖xn − x̄n‖2 + ‖xn − x∗
n‖2}. (61)

Finally, we have the following convergence result of the proposed methods.

Theorem 12 [45] Let {xn} be a sequence generated by the proposed methods (Algo-
rithms 8 and 9), {αn} be a positive sequence and inf {αn} = αmin > 0. If the solution
set of the SFP is nonempty, then {xn} converges to a solution of the SFP.

4 Extragradient Methods for Common Solution of Split
Feasibility and Fixed Point Problems

Korplevich [40] introduced the so-called extragradient method for finding a solution
of a saddle point problem. She/He proved that the sequences generated by this algo-
rithm converge to a saddle point. Motivated by the idea of an extragradient method,

Ceng et al. [10] introduced and analyzed an extragradient method with regular-
ization for finding a common element of the solution set � of the split feasibility
problem (SFP) and the set Fix(S) of the fixed points of a nonexpansive mapping S in
the setting of Hilbert spaces. Combining the regularization method and extragradient
method due to Nadezhkina and Takahashi [50], they proposed an iterative algorithm
for finding an element of Fix(S) ∩�. They proved that the sequences generated by
the proposed method converges weakly to an element z ∈ Fix(S) ∩�.

On the other hand, Ceng et al. [11] introduced relaxed extragradient method for
finding a common element of the solution set � of the SFP and the set Fix(S) of fixed
points of a nonexpansive mapping S in the setting of Hilbert spaces. They combined
Mann’s iterative method and extragradient method to propose relaxed extragradient
method. The weak convergence of the sequences generated by the proposed method
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is also studied. The relaxed extragradient method with regularization is studied by
Deepho and Kumam [26]. They considered the set S of fixed points of a asymptoti-
cally quasi-nonexpansive and Lipschtiz continuous mapping in the setting of Hilbert
spaces. They obtained the weak convergence result for their method.

Recently, Ceng et al. [12] proposed three different kinds of iterative methods for
computing the common element of the solution set � of the split feasibility problem
(SFP) and the set Fix(S) of the fixedpoints of a nonexpansivemapping in the setting of
Hilbert spaces. By combiningMann’s iterativemethod and the extragradient method,
they first proposed Mann-type extragradient-like algorithm for finding an element
of the set Fix(S) ∩�. Moreover, they derived the weak convergence of the proposed
algorithm under appropriate conditions. Second, they combined Mann’s iterative
method and the viscosity approximation method to introduce Mann-type viscosity
algorithm for finding an element of the Fix(S) ∩�. The strong convergence of the
sequences generated by the proposed algorithm to an element of the set Fix(S) ∩�

under mild conditions is also proved. Finally, by combiningMann’s iterative method
and the relaxed C Q methods, they introduced Mann-type relaxed C Q algorithm for
finding an element of the set Fix(S) ∩�. They also established a weak convergence
result for the sequences generated by the proposedMann type relaxed C Q algorithm
under appropriate assumptions.

Very recently, Li et al. [44] and Zhu et al. [76] developed iterative methods for
finding the common solutions of a SFP and a fixed point problem.

In this section,we discuss extragradientmethodwith regularization, relaxed extra-
gradient method and relaxed extragradient method with regularization.We also men-
tion the convergence results for these methods. Two examples are presented to illus-
trate these methods. We present Mann-type extragradient-like algorithm, Mann-type
viscosity algorithm, andMann-type relaxedC Q algorithm for computing an element
of the set Fix(S) ∩�. The weak convergence results for these methods are presented.
Some methods are illustrated by some examples.

4.1 An Extragradient Method

Throughout this section, we assume that �∩ Fix(S) �= ∅.
We present the following extragradient method with regularization for finding a

common element of the solution set � of the split feasibility problem and the set
Fix(S) of the fixed points of a nonexpansive mapping S. We also mention the weak
convergence of this method.

Theorem 13 [10, Theorem 3.1] Let C be a nonempty closed convex subset of a
real Hilbert space H1 and S : C → C be a nonexpansive mapping such that
Fix(S) ∩� �= ∅. Let {xn} and {yn} be the sequences in C generated by the following
extragradient algorithm:
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⎧
⎪⎨

⎪⎩

x0 = x ∈ C chosen arbitrarily,

yn = PC (I − λn∇ fαn )xn,

xn+1 = βn xn + (1 − βn)S PC (xn − λn∇ fαn (yn)), for all n ≥ 0,

(62)

where ∇ fαn = αn I + A∗(I − PQ)A,
∑∞

n=0 an < ∞, {λn} ⊂ [a, b] for some

a, b ∈
(
0, 1

‖A‖2
)

and {βn} ⊂ [c, d] for some c, d ∈ (0, 1). Then, both the sequences

{xn} and {yn} converge weakly to an element x̄ ∈ Fix(S) ∩�.

Furthermore, by utilizing [50, Theorem 3.1], we can immediately obtain the fol-
lowing weak convergence result.

Theorem 14 [10, Theorem 3.2] Let H1, C and S be the same as in Theorem 13.
Let {xn} and {yn} be the sequences in C generated by the following Nadezhkina and
Takahashi extragradient algorithm:

⎧
⎪⎨

⎪⎩

x0 = x ∈ C chosen arbitrarily,

yn = PC (I − λn∇ f )xn,

xn+1 = βn xn + (1 − βn)S PC (xn − λn∇ f (yn)), for all n ≥ 0,

(63)

where ∇ f = A∗(I − PQ)A, {λn} ⊂ [a, b] for some a, b ∈
(
0, 1

‖A‖2
)

and {βn} ⊂
[c, d] for some c, d ∈ (0, 1). Then, both the sequences {xn} and {yn} converge weakly
to an element x̄ ∈ Fix(S) ∩�.

By utilizing Theorem 13, we obtain the following results.

Corollary 1 [10, Corollary 3.2] Let C = H1 be a Hilbert space and S : H1 → H1
be a nonexpansive mapping such that Fix(S)∩(∇ f )−10 �= ∅. Let {xn} be a sequence
generated by

{
x0 = x ∈ C chosen arbitrarily,

xn+1 = βn xn + (1 − βn)S(xn − λn∇n fαn (I − λn∇ fαn )xn), for all n ≥ 0,
(64)

where �∞
n=0an < ∞, {λn} ⊂ [a, b] for some a, b ∈

(
0, 1

‖A‖2
)

and {βn} ⊂ [c, d]
for some c, d ∈ (0, 1). Then, the sequence {xn} converges weakly to x̄ ∈ Fix(S) ∩
(∇ f )−1.

For the definition of maximal monotone operator and resolvent operator, see
Chap.6.

Corollary 2 [10, Corollary 3.3]Let C = H1 be a Hilbert space and B : H1 → 2H1

be a maximal monotone mapping such that B−10 ∩ (∇ f )−10 �= ∅. Let j B
r be the

resolvent of B for each r > 0. Let {xn} be a sequence generated by

{
x0 = x ∈ C chosen arbitrarily,

xn+1 = βn xn + (1 − βn) j B
r (xn − λn∇ fαn (I − λn∇ fαn )xn), ∀ n ≥ 0,

(65)

http://dx.doi.org/10.1007/978-81-322-1883-8_6
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Fig. 5 Convergence of {yn}
in Example 5
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where �∞
n=0an < ∞, {λn} ⊂ [a, b] for some a, b ∈

(
0, 1

‖A‖2
)

and {βn} ⊂ [c, d] for

some c, d ∈ (0, 1). Then, the sequence {xn} converges weakly to x̄ ∈ B−10∩(∇ f )−1.

Example 5 Let C = Q = [0, 1] and S : C → C be defined as

Sx = x(x + 1)

4
, for all x ∈ C.

Then, S is a nonexpansive mapping and 0 ∈ Fix(S). Let Ax = x be a bounded linear
operator. Let αn = 1

n2
, βn = 1

2n and λn = 1
2(n+1) . All the conditions of Theorem

13 are satisfied. The sequences {xn} and {yn} generated by the scheme (62) starting
with x1 = 0.1. Then, we observe that these sequences converge to an element 0 ∈
Fix(S) ∩� (Figs. 5 and 6).

We did the computation in Matlab R2010 and got the solution 0 after 8th iterates
(Figs. 5 and 6, Table5).

4.2 Relaxed Extragredient Methods

In this section, we present a relaxed extragradiendmethod and study theweak conver-
gence of the sequences generated by this method.We also present a relaxed extragra-
diend method with regularization for finding a common element of the solution set �
of the SFP and the set Fix(S) of fixed points of a asymptotically quasi-nonexpansive
and Lipschtiz continuous mapping in the setting of Hilbert spaces. The weak con-
vergence of the sequences generated by this method is also presented.

Theorem 15 [11, Theorem 3.2] Let C be a nonempty closed and convex subset
of a Hilbert space H1 and S : C → C be a nonexpansive mapping such that
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Fig. 6 Convergence of {xn} in Example 5

Table 5 Convergence of {xn} and {yn} in Example 5

Number of yn xn Number of y(n) x(n)

iterations (n) iterations (n)

1 0.0750 0.1000 6 0.0011 0.0011
2 0.0584 0.0610 7 0.0004 0.0004
3 0.0265 0.0269 8 0.0001 0.0001
4 0.0101 0.0101 9 0.0000 0.0000
5 0.0035 0.0035 10 0.0000 0.0000

Fix(S) ∩ � �= ∅. Assume that 0 < λ < 2
‖A‖2 , and let {xn} and {yn} be the sequences

in C generated by the following Mann-type extragradient-like algorithm:

⎧
⎪⎨

⎪⎩

x0 = x ∈ C chosen arbitrarily,

yn = (1 − βn)xn + βn PC (xn − λ∇ fαn (xn)),

xn+1 = γn xn + (1 − γn)S PC (yn − λ∇ fαn (yn)), for all n ≥ 0,

(66)

where ∇ fαn = ∇ f + αn I = A∗(I − PQ)A + αn I and the sequences of parameters
{αn}, {βn}, {γn} satisfy the following conditions:

(i)
∑∞

n=0 αn < ∞;
(ii) {βn} ⊂ [0, 1] and 0 < lim inf

n→∞ βn ≤ lim sup
n→∞

βn < 1;

(iii) {γn} ⊂ [0, 1] and 0 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < 1.

Then, both the sequences {xn} and {yn} converge weakly to an element z ∈
Fix(S) ∩�.
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The following relaxed extragradiend method with regularization for finding a
common element of the solution set � of the SFP and the set Fix(S) of fixed points
of a asymptotically quasi-nonexpansive and Lipschtiz continuous mapping in the
setting of Hilbert spaces is proposed and studied by Deepho and Kumam [26]. They
also studied the weak convergence of the sequences generated by this method.

Theorem 16 [26, Theorem 3.2] Let C be a nonempty closed and convex subset of
a Hilbert space H1 and S : C → C be a uniformly L-Lipschitz continuous and
asymptotically quasi-nonexpansive mapping such that Fix(S) ∩ � �= ∅. Assume that
{kn} ∈ [0,∞) for all n ∈ N such that

∑∞
n=1(kn − 1) < ∞. Let {xn} and {yn} be the

sequences in C generated by the following algorithm:

⎧
⎪⎨

⎪⎩

x0 = x ∈ C chosen arbitrarily,

yn = PC (I − λn∇ fαn (xn)),

xn+1 = βn xn + (1 − βn)Sn(yn), f or all n ≥ 0,

(67)

where ∇ fαn = ∇ f + αn I = A∗(I − PQ)A + αn I , Sn = S ◦ S ◦ · · · ◦ S︸ ︷︷ ︸
n times

. The

sequences of parameters {αn}, {βn}, {λn} satisfy the following conditions:

(i)
∑∞

n=1 αn < ∞;

(ii) {λn} ⊂ [a, b] for some a, b ∈
(
0, 1

‖A‖2
)

and
∑∞

i=1 |λn+1 − λn| < ∞;

(iii) {βn} ⊂ [c, d] for some c, d ∈ (0, 1).

Then, both the sequences {xn} and {yn} converge weakly to an element z ∈ Fix(S)
∩�.

5 Mann-Type Iterative Methods for Common Solution of Split
Feasibility and Fixed Point Problems

In this section, we present three different kinds of Mann-type iterative methods for
finding a common element of the solution set � of the split feasibility problem and
the set Fix(S) of fixed points of a nonexpansive mapping S in the setting of infinite
dimensional Hilbert spaces.

By combining Mann’s iterative method and the extragradient method, we first
propose Mann-type extragradient-like algorithm for finding an element of the set
Fix(S) ∩ �; moreover, we drive the weak convergence of the proposed algorithm
under appropriate conditions. Second, we combine Mann’s iterative method and
the viscosity approximation method to introduce Mann-type viscosity algorithm for
finding an element of the Fix(S)∩�; moreover, we derive the strong convergence of
the sequences generated by the proposed algorithm to an element of the set Fix(S)∩
� under mild conditions. Finally, by combining Mann’s iterative method and the
relaxed C Q methods, we introduce Mann type relaxed C Q algorithm for finding
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Fig. 7 Convergence of {yn}
in Example 6
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an element of the set Fix(S) ∩ �. We also establish a weak convergence result for
the sequences generated by the proposed Mann-type relaxed C Q algorithm under
appropriate assumptions.

5.1 Mann-Type Extragradient-Like Algorithm

LetC and Q be nonempty closed convex subset ofHilbert spacesH1 andH2, respec-
tively, and A ∈ B(H1,H2). By combiningMann’s iterativemethod and the extragra-
dient method, Ceng et al. [12] proposed the following Mann-type extragradient-like
algorithm for finding an element of the set Fix(S) ∩� (Figs. 7 and 8):

The sequences {xn} and {yn} generated by the following iterative scheme:

⎧
⎪⎨

⎪⎩

x0 = x ∈ H1 chosen arbitrarily,

yn = (1 − βn)xn + βn PC (1 − λn A∗(I − PQ)A)xn,

xn+1 = αn xn + (1 − αn)S PC (I − λn A∗(I − PQ)A)yn, for all n ≥ 0,

(68)

where the sequences of parameters {αn}, {βn} and {λn} satisfy some appropriate
conditions.

The following result provides the weak convergence of the above scheme.

Theorem 17 [12, Theorem 3.2] Let S : C → C be a nonexpansive mapping
such that Fix(S) ∩� �= ∅. Let {xn} and {yn} be the sequences by the Mann-type
extragradient-like algorithm (68), where the sequences of parameters {αn}, {βn} and
{λn} satisfies the following conditions:

(i) {αn} ⊂ [0, 1] and 0 < lim inf
n→∞ αn ≤ lim sup

n→∞
< 1;



Split Feasibility and Fixed Point Problems 313

(ii) {βn} ⊂ [0, 1] and lim inf
n→∞ βn > 0;

(iii) {λn} ⊂
(
0, 2

‖A‖2
)

and 0 < lim inf
n→∞ λn ≤ lim sup

n→∞
λn <

2

‖A‖2 .

Then, both the sequences {xn} and {yn} converges weakly to an element z ∈ Fix(S)⋂
�, where

z = ‖ · ‖ − lim
n→∞ PFix(S)∩�xn .

We illustrate the above scheme and theorem by presenting the following example.

Example 6 Let C = Q = [−1, 1] be closed convex set in R. Let S : C → C be a
mapping defined by

Sx = (x + 1)2

4
, for all x ∈ C.

Then, clearly S is a nonexpansive map and 1 ∈ Fix(S) ∩�. Let Ax = x be a bounded
linear operator. If we choose αn = 1

20 − 1
n and βn = 1 − 1

2n , then all the conditions
of Theorem 17 are satisfied. We choose the initial point x1 = 2 and perform the
iterative scheme in Matlab R2010. We obtain the solution after 6th iteration (Figs. 7
and 8, Table6).

5.2 Mann-Type Viscosity Algorithm

Ceng et al. [12] modified the Mann-type extragradient-like algorithm, proposed in
the last section, to obtain the strong convergence of the sequences. This modification
is of viscosity approximation nature [9, 22, 48].

Theorem 18 [12, Theorem 4.1] Let f : C → C be a ρ-contraction with ρ ∈ [0, 1)
and S : C → C be a nonexpansive mapping such that Fix(S) ∩ � �= ∅. Let {xn} and
{yn} be the sequences generated by the following Mann-type viscosity algorithm:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0 = x1 ∈ H1 chosen arbitrarily,

yn = PC (I − λn A∗(I − PQ)A)xn,

zn = PC (I − λn A∗(I − PQ)A)yn,

xn+1 = θn f (yn) + μn xn + νnzn + δn Szn, ∀ n ≥ 0,

(69)

where the sequences of parameters {θn}, {μn}, {νn}, {δn} ⊂ [0, 1] and {λn} ⊂(
0, 2

‖A‖2
)

satisfy the following conditions:

(i) θn + μn + νn + δn = 1;
(ii) lim

n→∞ θn = 0 and �∞
n=0θn = ∞;

(iii) lim inf
n→∞ δn > 0;
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Fig. 8 Convergence of {xn} in Example 6

Table 6 Convergence of {xn} and {yn} in Example 6

Number of yn xn Number of y(n) x(n)

iterations (n) iterations (n)

1 1.500 2.000 7 1.000 1.000
2 0.7625 0.0500 8 1.000 1.000
3 1.0713 1.4275 9 1.000 1.000
4 0.9849 0.8789 10 1.000 1.000
5 1.0024 1.0242 11 1.000 1.000
6 0.9997 0.9964 12 1.000 1.000

(iv) lim
n→∞

(
νn+1

1 − μn+1
− νn

1 − μn

)
= 0;

(v) 0 < lim inf
n→∞ λn ≤ lim sup

n→∞
λn <

2

‖A‖2 and lim
n→∞(λn − λn+1) = 0.

Then, both the sequences {xn} and {yn} converge strongly to x∗ ∈ Fix(S) ∩ � which
is also a unique solution of the variational inequality (VI):

〈(I − f )x∗, x − x∗〉 ≥ 0, for all x ∈ Fix(S) ∩ �.

In other words, x∗ is a unique fixed point of the contraction PFix(S)∩� f, x∗ =
(PFix(S)∩� f )x∗.
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5.3 Mann-Type Relaxed CQ Algorithm

As pointed out earlier, the CQ algorithm (Algorithm 2) involves two projections PC

and PQ and hencemight hard to be implemented in the casewhere one of them fails to
have closed-form expression. Thus, in [65] it was shown that ifC and Q are level sets
of convex functions, then the projections onto half-spaces are just needed tomake the
C Q algorithm implementable in this case. Inspired by relaxed C Q algorithm, Ceng
et al. [12] proposed the following Mann-type relaxed C Q algorithm via projections
onto half-spaces.

Define the closed convex sets C and Q as the level sets:

C = {x ∈ H1 : c(x) ≤ 0} and Q = {x ∈ H2 : q(x) ≤ 0}, (70)

where c : H1 → R and q : H2 → R are convex functions. We assume that c and q
are subdifferentiable on C and Q, respectively, namely, the subdifferentials

∂c(x) = {z ∈ H1 : c(u) ≥ c(x) + 〈u − x, z〉, ∀u ∈ H1} �= ∅

for all x ∈ C , and

∂q(x) = {w ∈ H2 : q(v) ≥ q(y) + 〈v − y, w〉, ∀v ∈ H1} �= ∅

for all y ∈ Q. We also assume that c and q are bounded on the bounded sets.
Note that this condition is automatically satisfied when the Hilbert spaces are finite
dimensional. This assumption guarantees that if {xn} is a bounded sequence in H1
(respectively, H2) and {x∗

n } is another sequence in H1 (respectively, H2) such that
x∗

n ∈ ∂c(xn) (respectively, x∗
n ∈ ∂q(xn)) for each n ≥ 0, then {x∗

n } is bounded.
Let S : H1 → H1 be a nonexpansive mapping. Assume that the sequences of

parameters {αn}, {βn} and {λn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1] and 0 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn < 1;

(ii) {βn} ⊂ [0, 1] and lim inf
n→∞ βn > 0;

(iii) {λn} ⊂
(
0, 2

‖A‖2
)
and 0 < lim inf

n→∞ ≤ lim sup
n→∞

λn <
2

‖A‖2 .

Let {xn} and {yn} be the sequence defined by the following Mann-type relaxed C Q
algorithm:

⎧
⎪⎨

⎪⎩

x0 = x ∈ H1 chosen arbitrarily,

yn = (1 − βn)xn + βn PCn (I − λn A∗(I − PQn )A)xn,

xn+1 = αn xn + (1 − αn)S PCn (I − λn A∗(I − PQn )A)yn, for all n ≥ 0,
(71)
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where {Cn} and {Qn} are the sequences of closed convex sets defined as follows:

Cn = {x ∈ H1 : c(xn) + 〈ξn, x − xn〉 ≤ 0}, (72)

where ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn) + 〈ηn, y − Axn〉 ≤ 0}, (73)

where ηn ∈ ∂q(Axn).
It can be easily seen that C ⊂ Cn and Q ⊂ Qn for all n ≥ 0. Also, note that

Cn and Qn are half-spaces; thus, the projections PCn and PQn have closed-form
expressions.

Ceng et al. [12] established the following weak convergence theorem for the
sequences generated by the scheme (71).

Theorem 19 [12, Theorem 5.1] Suppose that Fix(S) ∩� �= ∅. Then, the sequences
{xn} and {yn} generated by the algorithm (71) converge weakly to an element z ∈
Fix(S) ∩ �, where

z = ‖ · ‖ − lim
n→∞ PFix(S)

⋂
�xn .

6 Solution Methods for Multiple-Sets Split Feasibility
Problems

For each i = 1, 2, . . . , t and each j = 1, 2, . . . , r , let Ci ⊆ H1 and Q j ⊆ H2
be nonempty closed convex set in Hilbert spaces H1 and H2, respectively. Let
A ∈ B(H1,H2). The convex feasibility problem (CFP) is to find a vector x∗ such that

x∗ ∈
t⋂

i=1

Ci . (74)

During the last decade, it received a lot of attention due to its applications in approx-
imation theory, image recovery and signal processing, optimal control, biomedical
engineering, communications, and geophysics, see, for example, [7, 17, 58] and the
references therein.

Consider the multiple-sets split feasibility problem (MSSFP) of finding a vector
x∗ satisfying

x∗ ∈ C :=
t⋂

i=1

Ci such that Ax∗ ∈ Q :=
r⋂

j=1

Q j . (75)

As we have seen in the first section that this problem can be a unified model of
several practical inverse problems, namely, image reconstruction, signal processing,
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an inverse problem of intensity-modulated radiation therapy, etc. Of course, when
i = j = 1, MSSFP reduces to SFP.

The MSSFP (75) can be viewed as a special case of the CFP (74). In fact, (75)
can be rewritten as

x∗ ∈
t+r⋂

i=1

Ci , where Ct+ j := {x ∈ H1 : A−1x ∈ Q j }, 1 ≤ j ≤ r. (76)

However, the methodologies for studying the MSSFP (75) are different from
those for the CFP (74) in order to avoid usage of the inverse A−1. In other words, the
methods for solving CFP (74) may not be applied to solve the MSSFP (75) without
involving the inverse A−1. The CQ Algorithm 2 is such an example where only the
operator A (not the inverse A−1) is relevant.

In view of Proposition 7, one can see that MSSFP (75) is equivalent to a common
fixed point problem of finitely many nonexpansive mappings. Indeed, decompose
MSSFP (75) into N subproblems (1 ≤ i ≤ t):

x∗
i ∈ Ci such that Ax∗

i ∈ Q :=
r⋂

j=1

Q j . (77)

For each i = 1, 2, . . . , t , define a mapping Ti by

Ti (x) = PCi (I − γi∇ f ) x = PCi

⎛

⎝I − γi

r∑

j=1

β j A∗(I − PQ j )A

⎞

⎠ xi , (78)

where f is defined by

f (x) = 1

2

r∑

j=1

β j‖Ax − PQ j Ax‖2, (79)

with β j > 0 for all j = 1, 2, . . . , t . Note that the gradient ∇ f of f is

∇ f (x) =
r∑

j=1

β j A∗ (
I − PQ j

)
Ax, (80)

which is L-Lipschitz continuous with constant L = ∑r
j=1 β j‖A‖2. If γi ∈ (0, 2/L),

then Ti is nonexpansive. Hence, fixed point algorithm for nonexpansive mappings
can be applied to MSSFP (75)

Now we present the optimization method to solve MSSFP (75).
If x∗ solves the MSSFP (75), then

(i) the distance from x∗ to each Ci is zero, and
(ii) the distance from Ax∗ to each Q j is also zero.
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This motivate us to consider the proximity function

p(x) := 1

2

t∑

i=1

αi‖x − PCi (x)‖2 + 1

2

r∑

j=1

β j‖Ax − PQ j (Ax)‖2, (81)

where αi > 0 for all i , β j > 0 for all j . Then the proximity function is convex and
differentiable with gradient

∇ p(x) =
t∑

i=1

αi
(
I − PCi

)
(x) +

r∑

j=1

β j A∗ (
I − PQ j

)
Ax, (82)

where ∗ is the adjoint of A.

Proposition 8 [69] x∗ is a solution of MSSFP (75) if and only if p(x∗) = 0.

Since the gradient ∇ p(x) is L ′-Lipschtiz continuous with constant

L ′ =
t∑

i=1

αi +
r∑

j=1

β j‖A‖2, (83)

one can use the project gradient method to solve the

min
x∈�

p(x), (84)

where � is a closed convex subset ofH1 whose intersection with the solution set of
MSSFP (75) is nonempty, and get a solution of the so-called constrained multiple-sets
split feasibility problem [15]:

Find x∗ ∈ � such that x∗ solves (84). (85)

In view of the above discussion, Censor et al. [15] proposed the following project
gradient algorithm to find the solution of MSSFP (75) in the setting of finite-
dimensional Hilbert spaces.

Algorithm 10 (Projection Gradient Algorithm) For any arbitrary x0 ∈ H1,
generates a sequence {xn} by

xn+1 = P� (xn − γ∇ p(xn))

= P�

(
xn − γ

(∑t
i=1 αi (I − PCi )(xn) + �r

j=1β j A∗(I − PQ j )Axn

))
, n ≥ 0,

(86)

where γ∈ (0, 2/L ′).
Censor et al. [15] established the convergence of the Algorithm 10. The fol-

lowing theorem is a version of their theorem in infinite dimensional Hilbert spaces
established by Xu [64].
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Theorem 20 Let MSSFP (75) be consistent and a minimizer of the function p over
� be inconsistent. Assume that 0 < γ < 2/L ′, where L ′ is given by (83). The
sequence {xn} generated by Algorithm 10 converges weakly to a point z which is a
solution of MSSFP (75).

In this direction, several methods and results were obtained during the last decade.
In [69], Yao et al. reviewed and presented some recent results on iterative approaches
to MSSFP (75).

Zhao et al. [75] proposed the following modified projection algorithm for MSSFP
(75) in finite dimensional Euclidean spaces.

Given closed convex sets Ci ⊆ R
N , i = 1, 2, . . . , t , and closed convex sets Q j ⊆

R
M , j = 1, 2, . . . , r , in the N and M dimensional Euclidean spaces, respectively, and

A an M × N real matrix. Let � be a closed convex subset of RN whose intersection
with the solution set of MSSFP (75) is nonempty,

Algorithm 11 For any arbitrary x0 ∈ R
N ,σ0 > 0,β ∈ (0, 1), θ ∈ (0, 1),ρ ∈ (0, 1).

For n = 0, 1, 2, . . ., compute

x̄n = P�(xn − γn∇ p(xn)), (87)

where γn is chosen to be the largest γ ∈ {σn, σnβ, σnβ2, . . . } satisfying

γ ‖∇ p(x̄n) − ∇ p(xn)‖ ≤ θ‖x̄n − xn‖. (88)

Let
xn+1 = PX (x̄n − γn(∇ p(x̄n) − ∇ p(xn))). (89)

If
γn‖∇ p(xn+1) − ∇ p(xn)‖ ≤ ρ‖xn+1 − xn‖, (90)

then set σn = σ0; otherwise, set σn = γn , where p(x) is proximity function as
defined by (81).

We can take p(xn) < ε or ‖∇ p(xn)‖ < ε as the stopping criteria in this algorithm.
We have the following result on the convergence of the sequence generated by

Algorithm 11.

Theorem 21 [75, Theorem 4.1] Let X be a nonempty closed convex set in R
N with

a simple structure and {xn} be a sequence generated by Algorithm 11. If the set
X contains at least one solution of the constrained multiple-sets split feasibility
problem, then {xn} converges to a solution of the constrained multiple-sets split
feasibility problem.

A relaxed scheme of Algorithm 11 is also presented in [75].
Censor et al. [16] proposed a perturbed projection algorithm for multiple-sets

split feasibility problem by applying the orthogonal projections onto a sequence of
supersets of the original sets of the problem. Their work is based on the results of
Santo and Scheimberg [55].
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