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Preface

The approximation theory, optimization theory, theory of variational inequalities,
and fixed point theory constitute some of the core topics of nonlinear analysis.
These topics provide most elegant and powerful tools to solve the problems from
diverse branches of science, social science, engineering, management, etc.

The theory of best approximation is applicable in a variety of problems arising
in nonlinear functional analysis. The well-posedness and stability of minimization
problems are topics of continuing interest in the literature on variational analysis
and optimization. The variational inequality problem, complementarity problem,
and fixed point problem are closely related to each other. However, they have their
own applications within mathematics and in diverse areas of science, management,
social sciences, engineering, etc. The split feasibility problem is a general form of
the inverse problem which arises in phase retrievals and in medical image
reconstruction. This book aims to provide the current, up-to-date, and compre-
hensive literature on different topics from approximation theory, variational
inequalities, fixed point theory, optimization, complementarity problem, and split
feasibility problem. Each chapter is self-contained and contributed by different
authors. All chapters contain several examples and complete references on the
topic.

Ky Fan’s best approximation theorems, best proximity pair theorems, and best
proximity point theorems have been studied in the literature when the fixed point
equation Tx ¼ x does not admit a solution. ‘‘Best Proximity Points’’ contains some
basic results on best proximity points of cyclic contractions and relatively non-
expansive maps. An application of a best proximity point theorem to a system of
differential equations has been discussed here. Although, it is not possible to
include all the available interesting results on best proximity points, an attempt has
been made to introduce some results involving best proximity points and refer-
ences of the related work have been indicated.

‘‘Semi-continuity Properties of Metric Projections’’ presents some selected
results regarding semi-continuity of metric projections onto closed subspaces of
normed linear spaces. Though there are several significant results relevant to this
topic, only a limited coverage of the results is undertaken, as an extensive survey is
beyond our scope. This exposition is divided into three parts. The first one deals
with results from finite dimensional normed linear spaces. The second one deals
with results connecting semi-continuity of metric projection maps and duality
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maps. The third one deals with subspaces of finite codimension of infinite
dimensional normed linear spaces.

The purpose of ‘‘Convergence of Slices, Geometric Aspects in Banach Spaces
and Proximinality’’ is to discuss some notions of convergence of sequence of slices
and relate these notions with certain geometric properties of Banach spaces and
also to some known proximinality properties in best approximation theory. The
results which are presented here are not new and in fact they are scattered in the
literature in different formulations. The geometric and proximinality results dis-
cussed in this chapter are presented in terms of convergence of slices, and it is
observed that several known results fit naturally in this framework. The presen-
tation of the results in this framework not only unifies several results in the
literature, but also it allows us to view the results as geometric results and
understand some problems, which remain to be solved in this area. The chapter is
in two parts. The first part begins from the classical works of Banach and Šmulian
on the characterizations of smooth spaces and uniformly smooth spaces (or uni-
formly convex spaces) and present similar characterizations for other geometric
properties including some recent results. Similarly, the second part begins from the
classical results of James and Day on characterizations of reflexivity and strict
convexity in terms of some proximinality properties of closed convex subsets and
present similar characterizations for other proximinality properties including some
recent results.

‘‘Measures of Noncompactness and Well-Posed Minimization Problems’’ is
devoted to present some facts concerning the theory of well-posed minimization
problems. Some classical results obtained in the framework of that theory are
presented but the focus here is mainly on the detailed presentation of the appli-
cation of the theory of measures of noncompactness to investigations of the
well-posedness of minimization problem.

‘‘Well-Posedness, Regularization, and Viscosity Solutions of Minimization
Problems’’ is divided into two parts. The first part surveys some classical notions
for well-posedness of minimization problems. The main aim here is to synthesize
some known results in approximation theory for best approximants, restricted
Chebyshev centers and prox points from the perspective of well-posedness of these
problems. The second part reviews Tikhonov regularization of ill-posed problems.
This leads us to revisit the so-called viscosity methods for minimization problems
using the modern approach of variational convergence. Lastly, some of these
results are particularized to convex minimization problems, and also to ill-posed
inverse problems.

In ‘‘Best Approximation in Nonlinear Functional Analysis,’’ some results from
fixed point theory, variational inequalities, and optimization theory are presented.
At the end, convergence of approximating sequences and the sequence of iterative
process are also given.

In ‘‘Hierarchical Minimization Problems and Applications,’’ several iterative
methods for solving fixed point problems, variational inequalities and zeros of
monotone operators are presented. A generalized mixed equilibrium problem is
considered. The hierarchical minimization problem over the set of intersection of
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fixed points of a mapping and the set of solutions of a generalized mixed equilibrium
problem are considered. A new unified hybrid steepest-descent-like iterative
algorithm for finding a common solution of a generalized mixed equilibrium
problem and a common fixed point problem of uncountable family of nonexpansive
mappings is presented and analyzed.

‘‘Triple Hierarchical Variational Inequalities’’ is devoted to the theory of var-
iational inequalities. A brief introduction of variational inequalities is given. The
hierarchical variational inequalities are considered, and several iterative methods
are presented. The triple hierarchical variational inequalities are discussed in detail
along with several examples. Several solution methods are presented.

‘‘Split Feasibility and Fixed Point Problems’’ is devoted to the theory of split
feasibility problems and fixed point problems. The split feasibility problems and
multisets split feasibility problems are described. Several solution methods,
namely, CQ methods, are presented for these two problems. Mann-type iterative
methods are given for finding the common solution of a split feasibility problem
and a fixed point problem. Some methods and results are illustrated by examples.

The last chapter is devoted to the study of nonlinear complementarity problems
in a Hilbert space. A notion of *-isotone is discussed in relation with solvability of
nonlinear complementarity problems. The problem of finding nonzero solution of
these problems is also presented.

We would like to thank our colleagues and friends who, through their
encouragement and help, influenced the development of this book. In particular,
we are grateful to Prof. Huzoor H. Khan and Prof. Satya Deo Tripathi who
encouraged us (me and Prof. S. P. Singh) to hold the special session on
Approximation Theory and Optimization in the Indian Mathematical Society
Conference which was held at Banara Hindu University, Varanasi, India during
January 12–15, 2012. Prof. S. P. Singh could not participate in this conference due
to the illness. Most of the authors who contributed to this monograph presented
their talks in this special session and agreed to be a part of this project.

We would like to convey our special thanks to Mr. Shamim Ahmad, Editor,
Mathematics, Springer India for taking keen interest in publishing this book.

Last, but not the least, we would like to thank the members of our family for
their infinite patience, encouragement, and forbearance.

Aligarh, India, February 2014 Qamrul Hasan Ansari
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Best Proximity Points

P. Veeramani and S. Rajesh

Abstract Ky Fan’s best approximation theorems, best proximity pair theorems, and
best proximity point theorems have been studied in the literature when the fixed point
equation T x = x does not admit a solution. This chapter contains some basic results
on best proximity points of cyclic contractions and relatively nonexpansive maps. An
application of a best proximity point theorem to a system of differential equations
has been discussed. Though it is not possible to include all the available interesting
results in best proximity points, an attempt has been made to introduce some results
involving best proximity points and references of related work have been indicated.

Keywords Best approximant · Best proximity point · Best proximity pair · Cyclic
contraction theorem · Best proximity point theorem · Relatively nonexpansive map-
pings ·Set-valuedmaps ·Upper semicontinuity for set-valuedmaps ·Strictly normed
spaces · Banach contraction theorem

1 Introduction

Consider the equation T x = x, if the equation T x = x does not possess a solution,
then it is contemplated to resolve the problem of finding an element x such that x is
in proximity to T x . In fact, the “Ky Fan’s best approximation theorems” and “Best
proximity pair theorems” are pertinent to be explored in this direction. In the setting
of a metric space (X, d), if T : A → X , then a best approximation theorem provides
sufficient conditions that ascertain the existence of an element x0, known as best
approximant, such that
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2 P. Veeramani and S. Rajesh

d(x0, T x0) = dist(T x0, A),

where dist(A, B) := inf{d(x, y) : x ∈ A and y ∈ B} for any nonempty subsets A
and B of X . Indeed, a classical best approximation theorem, due toKyFan [14], states
that if K is a nonempty compact convex subset of a Banach space X and T : K → X
is a single-valued continuous map, then there exists an element x0 ∈ K such that

d(x0, T x0) = dist(T x0, K ).

Later, this result has been generalized by many authors [2, 5, 6, 24–26, 32]. Despite
the fact that the existence of an approximate solution is ensured bybest approximation
theorems, a natural question that arises in this direction is whether it is possible to
guarantee the existence of an approximate solution that is optimal. In other words,
if A and B are nonempty subsets of a normed linear space and T : A → B is a
mapping, then the point to be mooted is whether one can find an element x0 ∈ A
such that

d(x0, T x0) = min{d(x, T x) : x ∈ A}.

An affirmative answer to this poser is provided by best proximity pair theorems. A
best proximity pair theorem analyzes the conditions under which the optimization
problem, namely

min
x∈A

d(x, T x)

has a solution. Indeed, if T is a multifunction from A to B, then

d(x, T x) ≥ dist(A, B),

where d(x, T x) = dist(x, T x) = inf{d(x, y) : y ∈ T x}. So, the most optimal
solution to the problem of minimizing the real-valued function x → d(x, T x) over
the domain A of the multifunction T will be the one for which the value dist(A, B)

is attained. In view of this standpoint, best proximity pair theorems are considered
to expound the conditions that assert the existence of an element x0 such that

d(x0, T x0) = dist(A, B).

The pair (x0, T x0) is called a best proximity pair of T and the point x0 is called a best
proximity point of T . If the mapping under consideration is a self-mapping, it may
be observed that a best proximity pair theorem boils down to a fixed point theorem
under certain suitable conditions. Because of the fact that

d(x, T x) ≥ dist(T x, A) ≥ dist(A, B), for all x ∈ A,

an element x0 satisfying the conclusion of a best proximity pair theorem is a best
approximant but the refinement of the closeness between x0 and its image T x0 is
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demanded in the case of best proximity pair theorems. For a detailed study on fixed
point theory, one may refer [16, 17, 27, 30, 33].

Now, we will give some of the basic definitions which we use in this chapter.

Definition 1 Let X be a normed linear space over F, where F is R or C. The closed
unit ball of X is defined as {x : x ∈ X, ∇x∇ ≤ 1} and is denoted by BX . The unit
sphere of X is defined as {x : x ∈ X, ∇x∇ = 1} and is denoted by SX .

Definition 2 A normed linear space is said to be a Banach space if the metric
induced by the norm is a complete metric.

Definition 3 A normed linear space is said to be rotund or strictly convex or strictly
normed if

∥
∥ x1+x2

2

∥
∥ < 1 whenever x1 and x2 are different points of SX .

If the normed linear space X is strictly convex, then the norm ∇.∇ of X is also
called as strictly convex norm.

Example 1 [22] In R
n , for 1 < p < ∞, define ∇.∇p by ∇x∇p = {∑n

i=1 | xi |p
} 1

p

where x = (x1, x2, . . . , xn) ∈ R
n . Then (Rn, ∇.∇p) is strictly convex.

Definition 4 Let X be a nonzero normed linear space. Define a function δX :
[0, 2] → [0, 1] by the formula

δX (ε) = inf

{

1 −
∥
∥
∥
∥

1

2
(x + y)

∥
∥
∥
∥

: x, y ∈ SX , ∇x − y∇ ≥ ε

}

Then δX is called the modulus of rotundity or modulus of convexity of X . The space
X is said to be uniformly rotund or uniformly convex if δX > 0 whenever 0 < ε ≤ 2.
Also note that, if X is uniformly convex, then X is strictly convex.

Remark 1 Suppose X is a strictly convex finite dimensional normed linear space.
For ε ∈ (0, 2], let Aε = {(x, y) : x, y ∈ SX and ∇x − y∇ ≥ ε}. Since norm is a
continuous function, Aε is a closed subset of the compact set SX × SX . Hence, there
exists (x0, y0) ∈ Aε such that δX (ε) = 1 − ∇ x0+y0

2 ∇. Since X is strictly convex,
∥
∥ x0+y0

2

∥
∥ < 1. Therefore, δX (ε) > 0, for ε ∈ (0, 2]. Hence, X is uniformly convex.

Example 2 [22] For 1 < p < ∞, lp = {

x = {xn}n∈N : ∑

n∈N | xn |p< ∞}

is

uniformly convex with respect to ∇.∇p, where ∇x∇p = {∑

n∈N | xn |p
} 1

p , x ∈ lp.

Definition 5 A nonempty subset K of a normed linear space X is said to be bound-
edly compact if K ∩ B[x, r ] is compact for every x ∈ X and r > 0, where B[x, r ]
is the closed ball-centered at x and radius r .

Example 3 It is easy to see that every finite dimensional subspace of a normed linear
space is boundedly compact.

If X is a normed linear space, then the notation X∗ and the term “the dual space
of X” always refer to the dual space of X with respect to the norm topology of X .
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Definition 6 [22] Let X be a normed linear space. Then the topology for X induced
by the collection

S =
{

f −1(U ) : f ∈ X∗, U is open in F

}

, where F = R or C

is called the weak topology of X or the X∗ topology of X or the topology σ(X, X∗).

Definition 7 Let X andY be topological spaces. Amultivalued map ormultifunction
or set-valued map T from X to Y denoted by T : X → 2Y is defined to be a function
which assigns to each element of x ∈ X a nonempty subset T x of Y . A fixed point
of the multifunction T : X → 2X will be a point x ∈ X such that x ∈ T x .

Example 4 Consider X = R
2 with ∇.∇∞ norm. Then the function PBX : X →

BX defined by PBX (x) :=
{

y ∈ BX : ∇x − y∇ = inf
z∈BX

∇x − z∇
}

is a multivalued

function.

Definition 8 Let X andY be topological spaces. Let T : X → 2Y be amap. Themap
T is said to be upper semi-continuous (u.s.c) if T −1(A) := {x ∈ X : T x ∩ A 
= ∅}
is closed in X whenever A is a closed subset of Y .

In case of Y = R and T is a single-valued map, we say that T is upper semi-
continuous at x ∈ X , if T (x) ≥ lim sup

α
T (xα) = inf

α
sup
α≤β

T (xβ), whenever {xα :
α ∈ D} is a net in X such that xα converges to x , where D is a directed set and
f : D → X is defined by f (α) = xα , for α ∈ D.
We say that T is upper semi-continuous on X if it is upper semi-continuous at

each point of X .

Example 5 Let X = R
2, K = [0, 1] × {0}. Let T : K → 2X be defined by

T (a, 0) = {(0, 1)}; if a 
= 0 and T (a, 0) = the line segment joining (0, 1) and
(1, 0); if a = 0. Then T is upper semi-continuous.

Proposition 1 Let A be a compact subset of a metric space (X, d). Then the metric
projection PA : X → 2A defined as PA(x) = {y ∈ A : d(x, y) = dist(x, A)} is
upper semi-continuous.

Proof Let C be a nonempty closed subset of A. We claim that P−1
A (C) is a closed

subset of X . Let {xn} be a sequence in P−1
A (C) such that xn converges to x0, for

some x0 ∈ X . Since {xn} ⊆ P−1
A (C), for each n ∈ N there exists yn ∈ C , such that

d(xn, yn) = dist(xn, A).
As A is compact, {yn} has a subsequence, say {ynk } such that ynk converges to y0,

for some y0 ∈ A. Since the distance functions d(., .) and dist(., A) are continuous,
we have d(xnk , ynk ) converges to d(x0, y0) and d(xnk , ynk ) = dist(xnk , A) converges
to dist(x0, A). Thus, d(x0, y0) = dist(x0, A). As C is a closed subset of the compact
set A and {ynk } ⊆ C such that ynk converges to y0, y0 ∈ C. Thus, there is a y0 ∈ C
such that d(x0, y0) = dist(x0, A), that is, x0 ∈ P−1

A (C). This proves our claim. �
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Definition 9 Let X andY be topological spaces. Let T : X → 2Y be amap. Themap
T is said to be lower semi-continuous (l.s.c) if T −1(A) := {x ∈ X : T x ∩ A 
= ∅}
is open in X whenever A is an open subset of Y .

In case of Y = R and T is a single-valued map, we say that T is lower semi-
continuous at x ∈ X , if T (x) ≤ lim inf

α
T (xα) = sup

α
inf
α≤β

T (xβ), whenever {xα :
α ∈ D} is a net in X such that xα converges to x , where D is a directed set and
f : D → X is defined by f (α) = xα , for α ∈ D.
We say that T is lower semi-continuous on X if it is lower semi-continuous at

each point of X . In this case, it is easy to see that T is l.s.c if and only if −T = (−T )

is u.s.c.

Proposition 2 Suppose X is a topological space and T : X → R is a single-valued
map. Then the following statements are equivalent:

(a) T is lower semi-continuous.
(b) {x ∈ X : T (x) > α} is open, for each α ∈ R.
(c) {x ∈ X : T (x) ≤ α} is closed, for each α ∈ R.

Proof It is easy to see that (b) ⇔ (c). Hence, it is enough to prove (a) ⇔ (c).
Suppose T : X → R is l.s.c. It is claimed that, for each r ∈ R, Xr = {x ∈ X :

T (x) ≤ r} is closed in X . Let {xα} be a net in Xr such that xα converges to x0 ∈ X .
Then T (x0) ≤ lim inf

α
T (xα).

Since xα ∈ Xr , T (xα) ≤ r , for all α. Thus, for each α, inf
α≤β

T (xβ) ≤ r . Hence

T (x0) ≤ lim inf
α

T (xα) ≤ r . Therefore, x0 ∈ Xr and hence Xr is closed in X . This

establishes (a) ⇒ (c).
Conversely, suppose for each r ∈ R, Xr = {x ∈ X : T (x) ≤ r} is closed in X.

Then X\Xr is open in X . Let {xα} be a net in X such that xα converges to x0 ∈ X .
Now, for every ε > 0, let Vε = {x ∈ X : T (x) > T (x0) − ε}. Then x0 ∈ Vε

and Vε is open in X . Since xα converges to x0, there exists α0 such that xβ ∈ Vε,
for all β ≥ α0. Thus, T (x0) − ε ≤ inf

α0≤β
T (x) ≤ lim inf

α
T (xα) and hence T (x0) ≤

lim inf
α

T (xα). This proves (c) ⇒ (a). �

Remark 2 Suppose T : X → R is a map on a topological space X . Then the
following statements are equivalent:

(a) T is u.s.c.
(b) {x ∈ X : T (x) < α} is open in X , for each α ∈ R.
(c) {x ∈ X : T (x) ≥ α} is closed in X , for each α ∈ R.

Suppose T : X → R is a map on a topological space X . Then, it is easy to
verify that T is continuous if and only if T is both lower semi-continuous and upper
semi-continuous.

Proposition 3 Let X be a normed linear space. Then the norm ∇.∇ is weakly lower
semi-continuous on X (that is, ∇.∇ is l.s.c. with respect to the weak topology on X).
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Proof As norm is a continuous function, for each α ∈ R, the set Fα = {x ∈ X :
∇x∇ ≤ α} is a closed set in X . It is also clear that Fα is a convex set.Hence Fα isweakly
closed. This proves that the norm function ∇.∇ is weakly lower semi-continuous. �

Next, we prove a result which assures that a lower semi-continuous function
defined on a weakly compact set attains its infimum.

Proposition 4 Let K be a weakly compact subset of a Banach space X and let
f : K → R be a function such that f is weakly lower semi-continuous(that is, f
is l.s.c with respect to the weak topology on X). Then there exists x0 ∈ K such that
f (x0) = inf

x∈K
f (x).

Proof Given that f is l.s.c. Then for each α ∈ R, f −1(α,∞) is a weakly open set
in K and K = ⋃

α∈R f −1(α,∞).

Since K is a weakly compact set, there exists α1, α2, . . . , αm such that K ⊆
⋃m

i=1 f −1(αi ,∞) and hence K ⊆ f −1(α0,∞), where α0 = min{αi : i =
1, 2, . . . , m}.

Let β = inf
x∈K

f (x). For n ∈ N, there exists xn ∈ K such that β ≤ f (xn) < β + 1
n .

Since K is weakly compact, every sequence in K has a subsequence, which
converges weakly in K . Hence {xn} ⊆ K has a subsequence, say {xnk } such that xnk

converges weakly to x0, for some x0 ∈ K .

Since f is a lower semi-continuous function and xnk converges weakly to x0,
f (x0) ≤ lim inf f (xnk ). But β ≤ f (xnk ) ≤ β + 1

nk
, hence f (x0) = β. �

Proposition 5 Let K be a nonempty weakly compact convex subset of a Banach
space X and H be a nonempty bounded subset of X. Let f : K → R be defined
by f (x) = rx (H) = sup{∇x − y∇ : y ∈ H}. Then f is a continuous function with
respect to norm and f is a l.s.c function with respect to the weak topology on X.

Proof Suppose {xn} ⊂ K such that xn converges to x0, for some x0 ∈ K . Then for
given ε > 0 there is a N ∈ N such that for n ≥ N ,

∇xn − x0∇ < ε

| ∇xn − y∇ − ∇x0 − y∇ |≤ ∇xn − x0∇ < ε

∇xn − y∇ − ε < ∇x0 − y∇ < ∇xn − y∇ + ε

sup
y∈H

{∇xn − y∇} − ε ≤ sup
y∈H

∇x0 − y∇ < sup
y∈H

{∇xn − y∇} + ε

rxn (H) − ε ≤ rx0(H) ≤ rxn (H) + ε

| r(xn)(H) − r(x0)(H) | ≤ ε (Note f (x) = rx (H)).

Hence for n ≥ N , we have | f (xn) − f (x0) |≤ ε. Thus, f (xn) converges to f (x0).
This proves the continuity of f (x) = r(x)(H) with respect to the norm topology.

Since the norm ∇.∇ is a convex function and K is a convex set, we get that f is
a convex function. By the continuity of f , the set Fα = {x ∈ K : f (x) ≤ α} is a
closed subset of K , for each α ∈ R. Also, it is easy to see that Fα is a convex subset
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of K . But for a convex set, weak closure and norm closure are the same. Thus, for
every α ∈ R, Fα is weakly closed subset of K . Hence, f is a lower semi-continuous
function with respect to the weak topology on X . �

2 Best Proximity Pair Theorems

Let A and B be nonempty subsets of ametric space X .We use the following notations
in the sequel.

dist(A, B) := inf{d(a, b) : a ∈ A, b ∈ B}
Prox(A, B) := {(a, b) ∈ A × B : d(a, b) = dist(A, B)}

A0 := {a ∈ A : d(a, b) = dist(A, B) for some b ∈ B}
B0 := {b ∈ B : d(a, b) = dist(A, B) for some a ∈ A}

Proposition 6 [3] If A and B are nonempty subsets of a normed linear space X such
that dist(A, B) > 0, then A0 ⊆ Bd(A) and B0 ⊆ Bd(B) where Bd(K ) denotes the
boundary of K for any K ⊆ X.

Proof Let x ∈ A0. Then, there exists y ∈ B such that d(x, y) = dist(A, B). Since
dist(A, B) > 0, A and B are disjoint. Let K = {(1 − t)x + t y : 0 ≤ t ≤ 1}. As K
intersects both A and its complement X\A, it must intersect the boundary of A. So,
there exists t0 ∈ [0, 1] such that z = (1 − t0)x + t0y ∈ Bd(A). To show z = x . It
suffices to show t0 = 0. Suppose t0 > 0, then

d(z, y) = ∇(1 − t0)x + t0y − y∇
= (1 − t0)∇x − y∇
= (1 − t0)dist(A, B).

Thus, d(z, y) < dist(A, B), which is a contradiction.Hence x = z and A0 ⊆ Bd(A).
Similarly, we can prove B0 ⊆ Bd(B). �

Theorem 1 (Brouwer’s Fixed Point Theorem) Let B be the closed unit ball in R
n.

Then any continuous mapping f : B → B has at least one fixed point.

Theorem 2 [13] Let X be a Banach space and K be a nonempty compact convex
subset of X. Let C(K ) be the family of all closed convex nonempty subsets of K .
Then for any upper semi-continuous function f : K → C(K ), there exists a point
x0 ∈ K such that x0 ∈ f (x0).

The finite dimensional version of the above theorem is known as Kakutani’s fixed
point theorem for multifunctions.
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Theorem 3 (Kakutani’s Theorem) Let X be a finite dimensional Banach space and
K be a nonempty compact convex subset of X. Let C(K ) be the family of all closed
convex nonempty subsets of K . Then for any upper semi-continuous function f :
K → C(K ), there exists a point x0 ∈ K such that x0 ∈ f (x0).

Remark 3 Let A and B be nonempty closed subsets of a normed linear space and
x ∈ A0. Then there exists y ∈ B such that d(x, y) = dist(A, B). This implies that
y ∈ B0 and d(x, y) = dist(A, B) = dist(x, B) ≤ dist(x, B0) ≤ d(x, y).

Theorem 4 [28] Let A and B be nonempty compact convex subsets of a Banach
space X and let T : A → B be a continuous function. Further, assume that T (A0) ⊆
B0. Then there exists an element x ∈ A such that d(x, T x) = dist(A, B).

Proof Consider the metric projection PA : X → 2A defined as PA(x) = {a ∈ A :
∇a − x∇ = dist(x, A)}. As A is a nonempty compact convex set, for each x ∈ X ,
PA(x) is a nonempty closed, convex subset of A. By Proposition 1, PA is an upper
semi-continuous multivalued map.

Now, it is claimed that PA(T x) ⊆ A0, for x ∈ A0.
Let y ∈ A be such that y ∈ PA(T x). Then ∇T x − y∇ = dist(T x, A). As T (A0) ⊆

B0, we have T x ∈ B0. There exists a ∈ A such that ∇T x − a∇ = dist(A, B).
Now, dist(T x, A) = ∇T x − y∇ ≤ ∇T x − a∇ = dist(A, B). Hence for y ∈ A

there exist T x ∈ B, such that ∇T x − y∇ = dist(A, B). Thus, y ∈ A0. Consequently,
PA(T x) ⊆ A0, for each x ∈ A0.

Since A and B are compact sets, A0 
= ∅. Also as T is single valued, we have
PA ◦ T is a convex-valued multifunction. That is, for each x ∈ A0, PA(T x) is a
closed convex subset of A0.

By Theorem 2, there exists x0 ∈ A0 such that x0 ∈ PA(T x0) and since T x0 ∈ B0,

wehave ∇T x0−a∇ = dist(A, B), for somea ∈ A.But dist(T x0, A) = ∇x0−T x0∇ ≤
∇T x0 − a∇. Thus ∇x0 − T x0∇ = dist(A, B). �

The above result has been further generalized by Kim et al., and Kim and Lee,
for more details refer [18, 19]. In [4], Basha et al., obtained similar results.

3 Cyclic Contractions and Best Proximity Point Theorems

Definition 10 Let (X, d) be a metric space and T : X → X be a map such that
d(T x, T y) ≤ kd(x, y), for every x, y ∈ X, where k ∈ (0, 1). Then T is called a
contraction mapping on X.

Notice that a contraction mapping is always continuous.

Theorem 5 (Cyclic Contraction Version of Banach Contraction Principle) [21] Let
A and B be nonempty closed subsets of a complete metric space (X, d), and T :
A ∪ B → A ∪ B be a map satisfying:
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(i) T (A) ⊆ B and T (B) ⊆ A;
(ii) for some k ∈ (0, 1), d(T x, T y) ≤ kd(x, y), for x ∈ A, y ∈ B.

Then for any x0 ∈ A, xn = T n x0 → x, where x ∈ A ∩ B is such that T x = x .

Further d(xn, x) ≤ kn

1−k d(x1, x0).

Proof Let x0 ∈ A.Define the iterative sequence {xn : n ∈ N∪{0}} by xn+1 = T (xn),

for n ∈ N ∪ {0} (equivalently, xn = T n(x0), n ∈ N). Let us prove {xn} is a Cauchy
sequence. Now for n ∈ N,

d(xn+1, xn) ≤ kd(xn, xn−1)

≤ k2d(xn−1, xn−2)

d(xn+1, xn) ≤ knd(x1, x0)

Therefore, for n and m ∈ N, we have

d(xn, xn+m) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xn+m−1, xn+m)

≤ knd(x1, x0) + kn+1d(x1, x0) + · · · + kn+m−1d(x1, x0)

= knd(x1, x0)[1 + k + k2 + · · · + km−1]
< knd(x1, x0)[1 + k + k2 + · · · ]

d(xn, xn+m) ≤ kn

1 − k
d(x1, x0)

As k ∈ (0, 1), {xn : n ∈ N ∪ {0}} is a Cauchy sequence in the complete metric
space X . Thus, xn → x, for some x ∈ X . Since every subsequence of a convergent
sequence converges to the same limit, hence x2n → x and x2n−1 → x .

Notice that {x2n : n ∈ N} ⊆ A, {x2n−1 : n ∈ N} ⊆ B, thus x ∈ A ∩ B. Now

d(T x, x2n) ≤ kd(x, x2n−1).

Hence x2n → T x . But the limit of a convergent sequence is unique, hence T x = x .

Since d(xn, xn+m) ≤ kn

1−k d(x1, x0), d(xn, x) = lim
m→∞ d(xn, xn+m) ≤ kn

1 − k
d(x1, x0). �

In case of A = B = X , the Banach contraction principle follows as a corollary
to the above theorem.

Theorem 6 (Banach Contraction Principle) Let (X, d) be a complete metric space
and T : X → X be a contraction. Then T has a unique fixed point, say x in X, and
for each x0 ∈ X the sequence of iterates {xn = T n(x0) : n ∈ N} converges to the
fixed point. Further d(xn, x) ≤ kn

1−k d(x1, x0).

Suppose A and B are nonempty closed subsets of a metric space. Let T be a
self-map on A ∪ B satisfying T (A) ⊆ B and T (B) ⊆ A. It is to be noted that if T
satisfies the contraction condition as given in Theorem 5, then A∩ B 
= ∅. In case of
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dist(A, B) > 0, our aim is to find a contraction type condition which will guarantee
the existence of a point x ∈ A such that d(x, T x) = dist(A, B). Motivated by this,
the authors in [9] introduced the following notion of cyclic contraction.

Definition 11 [9] Let A and B be nonempty subsets of a metric space X. A map
T : A ∪ B → A ∪ B is said to be a cyclic contraction map if it satisfies:

(i) T (A) ⊆ B and T (B) ⊆ A.
(ii) for some k ∈ (0, 1), d(T x, T y) ≤ kd(x, y) + (1 − k)dist(A, B), for all x ∈

A, y ∈ B.

Since dist(A, B) ≤ d(x, y), for x ∈ A and y ∈ B, d(T x, T y) ≤ d(x, y) for all
x ∈ A, y ∈ B. Also note that the condition (ii) in the above definition can be written
as d(T x, T y) − dist(A, B) ≤ k(d(x, y) − dist(A, B)).

Example 6 In (R2, ∇.∇2), let A = {(0, t) : 0 ≤ t ≤ 1} and B = {(1, t) : 0 ≤ t ≤ 1}.
Define T : A ∪ B → A ∪ B by T (0, t) = (

1, 1−t
2

)

and T (1, t) = (

0, 1−t
2

)

. It is easy
to see that dist(A, B) = 1, T (A) ⊆ B and T (B) ⊆ A. Now, for x = (0, t1) ∈ A
and y = (1, t2) ∈ B,

∇T x − T y∇22 =
∥
∥
∥
∥

(

1,
1 − t1
2

)

−
(

0,
1 − t2
2

)∥
∥
∥
∥

2

2

=
∥
∥
∥
∥

(

1,
t2 − t1

2

)∥
∥
∥
∥

2

2

= 1

4

(

1 + (t2 − t1)
2
)

+ 1

4
+ 1

2

≤
{
1

2

√

1 + (t2 − t1)2
}2

+ 1

4
+ 1

2

√

1 + (t2 − t1)2

=
(
1

2

√

1 + (t2 − t1)2 + 1

2

)2

=
(
1

2
∇(0, t1) − (1, t2)∇2 + 1

2
dist(A, B)

)2

∇T x − T y∇2 ≤ 1

2
∇(0, t1) − (1, t2)∇2 + 1

2
dist(A, B).

Hence T is a cyclic contraction on A ∪ B.

Proposition 7 [9] Let A and B be nonempty subsets of a metric space X. Suppose
T : A ∪ B → A ∪ B is a cyclic contraction map. Then for any x0 ∈ A ∪ B,

d(xn, xn+1) → dist(A, B), where xn+1 = T xn, n = 0, 1, 2, 3, . . ..

Proof Fix x0 ∈ A ∪ B. Define xn+1 = T xn, where n = 0, 1, 2, . . .. Now for n ∈ N,
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d(xn, xn+1) = d(T xn−1, T xn)

≤ kd(xn−1, xn) + (1 − k)dist(A, B)

≤ k[kd(xn−2, xn−1) + (1 − k)dist(A, B)] + (1 − k)dist(A, B)

= k2d(xn−2, xn−1) + (1 − k2)dist(A, B).

Hence d(xn, xn+1) ≤ knd(x1, x0) + (1 − kn)dist(A, B). Since k ∈ (0, 1), we have
d(xn, xn+1) → dist(A, B). �

Next, we give a simple existence result for a best proximity point.

Proposition 8 [9] Let A and B be nonempty closed subsets of a complete metric
space X. Let T : A ∪ B → A ∪ B be a cyclic contraction map and x0 ∈ A. Define
xn+1 = T xn, n = 0, 1, 2, . . .. Suppose {x2n : n ∈ N} has a convergent subsequence
in A, then there exists x ∈ A such that d(x, T x) = dist(A, B).

Proof Let {x2nk : k ∈ N} be a subsequence of {x2n}, which converges to some x ∈ A.

Now
dist(A, B) ≤ d(x, x2nk−1) ≤ d(x, x2nk ) + d(x2nk , x2nk−1)

Since d(x2nk , x2nk−1) → dist(A, B) and d(x, x2nk ) → 0, d(x, x2nk−1) → dist
(A, B). Also dist(A, B) ≤ d(x2nk , T x) = d(T x2nk−1, T x) ≤ d(x2nk−1, x). Thus,
d(x2nk , T x) → dist(A, B).

But, lim
k→∞ d(x2nk , T x) = d(x, T x). Hence d(x, T x) = dist(A, B). �

The following proposition yields an existence result when one of the sets is bound-
edly compact.

Proposition 9 [9] Let A and B be nonempty subsets of a metric space X. Suppose
T : A ∪ B → A ∪ B is a cyclic contraction map. Then for x0 ∈ A ∪ B and
xn+1 = T xn, where n = 0, 1, 2, . . ., the sequences {x2n} and {x2n+1} are bounded.

Proof Suppose x0 ∈ A. It is enough to prove either {x2n+1} or {x2n} is bounded. For,
by Proposition 7, d(x2n, x2n+1) converges to dist(A, B) and hence boundedness of
one of the sequence will imply the boundedness of the other sequence.

Let us prove that {x2n+1} is bounded. That is to prove there exists M > 0, such
that for all n, m ∈ N, d(x2n+1, x2m+1) ≤ M. Equivalently for every y ∈ X, there
exist My > 0 such that d(y, x2n+1) < My, for all n ∈ N. But it is enough to prove
this for some x ∈ X, then by triangle inequality the result follows for every y ∈ X.

It is claimed that there exists M > 0 such that d(T 2x0, x2m+1) < M for all
m ∈ N.

Suppose {x2n+1} is not bounded. Let

M > max

{

2d(x0, T x0)
1
k2

− 1
+ dist(A, B), d(T 2x0, T x0)

}

. (1)
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Then there exists N ∈ N such that d
(

T 2x0, T 2N+1(x0)
)

> M and d
(

T 2x0,
T 2N−1(x0)

) ≤ M. Now

M < d
(

T 2x0, T 2N+1(x0)
)

≤ k d
(

T x0, T 2N (x0)
)

+ (1 − k)dist(A, B)

≤ k2 d
(

x0, T 2N−1x0
)

+ (1 − k2)dist(A, B)

M − dist(A, B) ≤ k2
[

d(x0, T 2N−1x0) − dist(A, B)
]

M − dist(A, B)

k2
+ dist(A, B) ≤ d

(

x0, T 2N−1x0
)

≤ d(x0, T x0) + d
(

T x0, T 2x0
)

+ d
(

T 2x0, T 2N−1x0
)

M − dist(A, B)

k2
+ dist(A, B) ≤ 2d(x0, T x0) + M.

(
1

k2
− 1

)

[M − dist(A, B)] < 2d(x0, T x0).

Thus M <
2d(x0,T x0)

1
k2

−1
+ dist(A, B), which is a contradiction to (1). �

Theorem 7 [9] Let A and B be nonempty closed subsets of a metric space (X, d)

and let T : A ∪ B → A ∪ B be a cyclic contraction. If either A or B is boundedly
compact, then there exists x ∈ A ∪ B such that d(x, T x) = dist(A, B).

Proof Suppose A is boundedly compact. Fix x0 ∈ A, let xn = T xn−1, n ∈ N.

Now, by Proposition 7, d(xn, T xn) → dist(A, B). Also from Proposition 9, the
sequence {x2n : n ∈ N} ⊆ A is bounded. Hence, the sequence {x2n : n ∈ N} has a
subsequence, say {x2nk : k ∈ N} which converges to x∗ ∈ A. Thus, by Proposition
8, dist(x∗, T x∗) = dist(A, B). �

As every finite dimensional space is boundedly compact, we have the following
result.

Corollary 1 [9] Let A and B be nonempty closed subsets of a normed linear space
X and let T : A ∪ B → A ∪ B be a cyclic contraction. If either the span of A or the
span of B is a finite dimensional subspace of X, then there exists x ∈ A ∪ B such
that d(x, T x) = dist(A, B).

Proof Directly follows from the above theorem. �
Next we proceed to the result which gives the existence, uniqueness, and conver-

gence of the iterative sequence to the unique best proximity point.

Lemma 1 [9]Let A be a nonempty closed convex subset and B be a nonempty closed
subset of a uniformly convex Banach space. Let {xn : n ∈ N} and {zn : n ∈ N} be
sequences in A and {yn : n ∈ N} be a sequence in B satisfying:
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(i) ∇zn − yn∇ → dist(A, B)

(ii) For every ε > 0, there exists N0 such that for all m > n ≥ N0, ∇xm − yn∇ ≤
dist(A, B) + ε.

Then, for every ε > 0, there exists N1 such that for all m > n ≥ N1, ∇xm − zn∇ ≤ ε.

Proof Suppose there exists ε0 > 0 such that for each k ∈ N, there exists mk > nk ≥
k, for which ∇xmk − znk ∇ ≥ ε0. Choose γ ∈ (0, 1) such that ε0/γ > dist(A, B) and
choose ε such that

0 < ε < min

{
ε0

γ
− dist(A, B),

dist(A, B)δX (γ )

1 − δX (γ )

}

.

As the modulus of convexity δX is strictly increasing and γ < ε0
dist(A,B)+ε

, we have

0 < δX (γ ) < δX

(
ε0

dist(A,B)+ε

)

. Also from the choice of ε, we have

ε <
dist(A, B)δX (γ )

1 − δX (γ )

(1 − δX (γ ))ε < dist(A, B)δX (γ )

= [δX (γ ) − 1 + 1]dist(A, B)

(1 − δX (γ ))(dist(A, B) + ε) < dist(A, B)

Now, by assumption (ii), for the chosen ε there exist N1 such that for all mk > nk ≥
N1, ∇xmk − ynk ∇ ≤ dist(A, B)+ε.Also by assumption (i), there exists N2 ∈ N such
that for all nk ≥ N2, ∇znk − ynk ∇ ≤ dist(A, B) + ε. Let N0 = max{N1, N2}.

From the uniform convexity of X , for all mk > nk ≥ N0,

∥
∥
∥
∥

xmk + znk

2
− ynk

∥
∥
∥
∥

≤
[

1 − δX

(
ε0

dist(A, B) + ε

)]

(dist(A, B) + ε)

< [1 − δX (γ )](dist(A, B) + ε)

< dist(A, B).

As A is convex and ynk ∈ B, dist(A, B) ≤
∥
∥
∥

xmk +znk
2 − ynk

∥
∥
∥. This gives a contra-

diction.
Hence for every ε > 0, there exists N ∈ N such that for all m > n ≥ N , we have

∇xm − zn∇ ≤ ε. �

Lemma 2 [9] Let A be a nonempty closed convex subset and B be a nonempty
closed subset of a uniformly convex Banach space X. Let {xn} and {zn} be sequences
in A and {yn} be a sequence in B satisfying:

(i) ∇xn − yn∇ → dist(A, B) and
(ii) ∇zn − yn∇ → dist(A, B).

Then ∇xn − zn∇ converges to zero.
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Proof Suppose ∇xn − zn∇ does not converge to zero. Then there exists a ε0 > 0
such that for every k ∈ N, there exists nk ∈ N such that ∇xnk − znk ∇ ≥ ε0. Choose
γ ∈ (0, 1) such that ε0/γ > dist(A, B) and choose ε such that

0 < ε < min

{
ε0

γ
− dist(A, B),

dist(A, B)δX (γ )

1 − δX (γ )

}

.

As the modulus of convexity δX is strictly increasing and γ < ε0
dist(A,B)+ε

, we have

0 < δX (γ ) < δX

(
ε0

dist(A,B)+ε

)

. Also from the choice of ε, we have

ε <
dist(A, B)δX (γ )

1 − δX (γ )

(1 − δX (γ ))ε < dist(A, B)δX (γ )

= [δX (γ ) − 1 + 1]dist(A, B)

(1 − δX (γ ))(dist(A, B) + ε) < dist(A, B)

From assumptions (i) and (ii), for the chosen ε there exists N1 and N2 ∈ N such
that ∇xn − yn∇ ≤ dist(A, B) + ε, for n ≥ N1 and ∇zn − yn∇ ≤ dist(A, B) + ε,
for n ≥ N2. Let N0 = max{N1, N2}. Then ∇xnk − ynk ∇ ≤ dist(A, B) + ε and
∇znk − ynk ∇ ≤ dist(A, B) + ε, for nk ≥ N0.

Since X is uniformly convex, for nk ≥ N0,

∥
∥
∥
∥

xnk + znk

2
− ynk

∥
∥
∥
∥

≤
[

1 − δX (
ε0

dist(A, B) + ε
)

]

(dist(A, B) + ε)

≤ [

1 − δX (γ )
]

(dist(A, B) + ε)

< dist(A, B)
∥
∥
∥
∥

xnk + znk

2
− ynk

∥
∥
∥
∥

< dist(A, B)

As A is convex and ynk ∈ B, thus dist(A, B) ≤
∥
∥
∥

xnk +znk
2 − ynk

∥
∥
∥. This gives a

contradiction. Hence ∇xn − zn∇ → 0. �

In view of the above lemmas, Suzuki et al. [29] introduced a notion of UC property
and proved the existence of best proximity points. Espínola and Fernández-León [12]
further generalized theUCproperty and shown the existence of best proximity points.
Abkar and Gabeleh [1] proved the existence of best proximity points, even if the pair
(A, B) does not satisfy the UC property. For more details refer [1, 12, 15, 23, 29]
and the references there in.

Theorem 8 [7, 9] Let A and B be nonempty closed convex subsets of a uniformly
convex Banach space. Suppose T : A ∪ B → A ∪ B is a cyclic contraction map.
Then T has a unique best proximity point in A (i.e., ∃! x ∈ A such that ∇x − T x∇ =
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dist(A, B)). Further, if x0 ∈ A and xn+1 = T xn, then the sequence {x2n} converges
to the best proximity point.

Proof Fix x0 ∈ A. Define the iterative sequence {xn : n = 0, 1, 2, . . .}where xn+1 =
T xn, n = 0, 1, 2, . . .. By Proposition 7, ∇xn − xn+1∇ = ∇xn − T xn∇ → dist(A, B)

and ∇xn+1 − xn+2∇ = ∥
∥T 2(xn) − T xn

∥
∥ → dist(A, B).

In particular ∇x2n − x2n+1∇ = ∇x2n − T x2n∇ → dist(A, B) and ∇x2(n+1) −
x2n+1∇ = ∥

∥T 2(x2n) − T (x2n)
∥
∥ → dist(A, B).

ByLemma2, ∇x2n−x2(n+1)∇ → 0.Similarly,we can show ∇T x2n−T x2(n+1)∇ →
0We want to prove {x2n} is a Cauchy sequence. It is enough to prove for every ε > 0
there exists N0 such that for all m > n ≥ N0, ∇x2m − T x2n∇ ≤ dist(A, B)+ε. Then
by Lemma 1, the result follows.

Suppose not, then there exists ε > 0 such that for all k ∈ N, there exists mk >

nk ≥ k for which ∇x2mk − T x2nk ∇ ≥ dist(A, B) + ε, this mk can be chosen such
that it is the least integer greater than nk to satisfy the above inequality. Now

dist(A, B) + ε ≤ ∇x2mk − T x2nk ∇
≤ ∇x2mk − x2(mk−1)∇ + ∇x2(mk−1) − T x2nk ∇
≤ ∇x2mk − x2(mk−1)∇ + dist(A, B) + ε

Hence lim
k→∞ ∇x2mk − T x2nk ∇ = dist(A, B) + ε. Also,

∇x2(mk+1) − T x2(nk+1)∇ ≤ k∇x2mk+1 − T x2nk+1∇ + (1 − k)dist(A, B)

≤ k(k∇x2mk − T x2nk ∇ + (1 − k)dist(A, B)) + (1 − k)dist(A, B)

∇x2(mk+1) − T x2(nk+1)∇ ≤ k2∇x2mk − T x2nk ∇ + (1 − k2)dist(A, B).

Since ∇x2n − x2(n+1)∇ → 0, ∇T x2n − T x2(n+1)∇ → 0, we have

∇x2mk − T x2nk ∇ ≤ ∇x2mk − x2(mk+1)∇ + ∇x2(mk+1) − T x2(nk+1)∇
+∇T x2(nk+1) − T x2nk ∇

≤ ∇x2mk − x2(mk+1)∇ + k2∇x2mk − T x2nk ∇ + (1 − k2)dist(A, B)

+∇T x2(nk+1) − T x2nk ∇

Letting nk → ∞, we get

dist(A, B) + ε ≤ k2(dist(A, B) + ε) + (1 − k2)dist(A, B) = dist(A, B) + k2ε

Since k < 1, the above inequality gives a contradiction. Thus, {x2n} is a Cauchy
sequence in the closed subset A of the Banach space X, hence x2n → x, for some
x ∈ A. From Proposition 8, it follows that ∇x − T x∇ = dist(A, B).

Suppose x, y ∈ A are such that x 
= y and ∇x − T x∇ = dist(A, B) = ∇y − T y∇.
Now

∥
∥T 2x − T x

∥
∥ ≤ ∇x − T x∇ = dist(A, B), thus

∥
∥T 2x − T x

∥
∥ = dist(A, B),

similarly ∇T 2y − T y∇ = dist(A, B). Let un = x, wn = T 2x and vn = T x , n ∈ N.



16 P. Veeramani and S. Rajesh

From Lemma 2, T 2x = x . Similarly, we can show T 2y = y. Therefore,

∇T x − y∇ =
∥
∥
∥T x − T 2y

∥
∥
∥ ≤ ∇x − T y∇,

∇T y − x∇ =
∥
∥
∥T y − T 2x

∥
∥
∥ ≤ ∇y − T x∇,

which implies ∇T y − x∇ = ∇y − T x∇. Also note that, ∇y − T x∇ > dist(A, B).
Now,

∇T y − x∇ =
∥
∥
∥T y − T 2x

∥
∥
∥ ≤ k∇y − T x∇ + (1 − k)dist(A, B)

< k∇y − T x∇ + (1 − k)∇y − T x∇ = ∇y − T x∇.

That is ∇T y − x∇ < ∇y − T x∇, a contradiction. Hence x = y. �

Remark 4 In the above Theorem, if the convexity assumption is dropped, then the
convergence and uniqueness is not guaranteed even in finite dimensional spaces.
Consider X = R

4, A = {e1, e3} and B = {e2, e4}. Define T (ei ) = ei+1, where
e4+i = ei . It is easy to see T is cyclic contraction, but T does not have any best
proximity point.

In [9], the authors have raised the following question, whether a best proximity
point exists when A and B are nonempty closed and convex subsets of a reflexive
Banach space? Some authors [1, 12, 29] have partially answered this question, for
more details refer [1, 12, 29].

4 Relatively Nonexpansive Mappings and Best Proximity
Point Theorems

We use the following notations in the sequel.
Let D and H be nonempty subset of a Banach space X . Define

(i) for u ∈ X , δ(u, D) = ru(D) = sup{∇u − v∇ : v ∈ D} is called the radius of D
relative to the point u;

(ii) r(D) = inf{ru(D) : u ∈ D} is called the Chebyshev radius of D;
(iii) C(D) = {u ∈ D : ru(D) = r(D)} is the set of all Chebyshev centers of D;
(iv) δ(D) = sup{ru(D) : u ∈ D} is called the diameter of D;
(v) dist(D, H) = inf{∇u − v∇ : u ∈ D, v ∈ H} is called the distance between D

and H ;
(vi) δ(D, H) = sup{∇u − v∇ : u ∈ D, v ∈ H}.
Definition 12 [20] A convex subset K , with δ(K ) > 0, in a normed linear space X is
said to have normal structure, if every bounded convex subset H of K with δ(H) > 0
has a nondiametral point (i.e., there exists x ∈ H, such that rx (H) < δ(H)).
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If every bounded convex subset with positive diameter has normal structure, then
the space is said to have normal structure.

Example 7 It is easy to see that uniformly convex spaces have normal structure.

Definition 13 [20] Let K be a nonempty subset of a normed linear space X. A map
T : K → X is said to be nonexpansive, if ∇T x − T y∇ ≤ ∇x − y∇, for all x, y ∈ K .

Definition 14 [31] Let K be a nonempty subset of a normed linear space X and
T : K → K be a map. The set K is said to be a T—regular set, if x ∈ K , then
x+T x

2 ∈ K .

Theorem 9 [31] Let K be a nonempty weakly compact T —regular subset of a
uniformly convex Banach space X and T be a nonexpansive map on K . Then T has
a fixed point in K .

Proof Let S := {F ⊆ K : F is nonempty and weakly closed} and F := {F ∈
S : T (F) ⊆ F and F is T—regular}. Clearly F is nonempty, define ≤ on F by
F1 ≤ F2 ⇔ F2 ⊆ F1. Then (F,≤) is a partially ordered set.

Suppose T is a totally ordered subset of F. Since T contains weakly compact
subsets of K , it has finite intersection property. Thus, F0 = ⋂

F∈T F is a nonempty
weakly closed subset of K . Notice that T (F0) ⊆ F0 and if x ∈ F0, then x+T x

2 ∈ F0.

Thus F0 ∈ F.
As every totally ordered subset of F has a lower bound, by Zorn’s lemma F has a

minimal element, say K0. That is, K0 is aminimal subset of K such that T (K0) ⊆ K0
and K0 is T—regular.

It is claimed that K0 is a singleton set.
Suppose δ(K0) > 0, this implies that for every x ∈ K0, T x 
= x . Let F =

co(T (K0)) ∩ K0. Then, it is easy to see that F is a nonempty weakly closed T—
regular subset of K0 and T (F) ⊆ F . Hence the minimality of K0 implies that
F = K0, that is K0 ⊆ co(T (K0)).

It is easy to see that for every nonempty subset A of X,

rx (A) = rx (co(A)), for x ∈ X .

Hence,
rx (T (K0)) = rx (co(T (K0))) = rx (K0), for all x ∈ X. (2)

Let x0 ∈ K0. Since x0 
= T x0, ∇x0 − T x0∇ = ε > 0. Also as x0, T x0 ∈ K0,
K0 is T—regular and X is uniformly convex, there exists α ∈ (0, 1) such that
rm(K0) ≤ αR, where m = x0+T x0

2 and R = δ(K0).
Let F0 = {x ∈ K0 : rx (K0) ≤ αR}. Then m ∈ F0 and F0 � K0. As K0 is

weakly closed, Proposition 5 implies that F0 is weakly closed. Now, it is claimed
that T (F0) ⊆ F0. Let x ∈ F0,
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rT x (K0) = sup{∇T x − z∇ : z ∈ K0}
= sup{∇T x − T y∇ : y ∈ K0} (from(2))

≤ sup{∇x − y∇ : y ∈ K0} (T is nonexpansive)

≤ αR.

Therefore T x ∈ F0, whenever x ∈ F0. It is easy to verify that x+T x
2 ∈ F0, if x ∈ F0.

Hence F0 is a T—regular set, T (F0) ⊆ F0 and F0 � K0. This contradicts the
minimality of K0. Thus K0 = {x0}, for some x0 ∈ K and T x0 = x0. �

If K is convex, then K is always T—regular for any self-map on K . Hence as a
corollary to the above theorem, we get the Browder-Kirk-Göhde fixed point theorem.

Theorem 10 [33]Let K be a nonempty weakly compact convex subset of a uniformly
convex Banach space X and let T : K → K be a nonexpansive map. Then T has a
fixed point in K .

The following theorem yields the existence of fixed points of nonexpansive map-
pings in Banach spaces.

Theorem 11 [20] Let K be a nonempty weakly compact convex subset of a Banach
space and T : K → K be a nonexpansive map. Suppose K has normal structure,
then T has a fixed point in K .

Definition 15 [8] Let A and B be nonempty subsets of a normed linear space X. A
map T : A∪ B → X is said to be relatively nonexpansive, if ∇T x −T y∇ ≤ ∇x − y∇,
for x ∈ A, y ∈ B.

Definition 16 Let A and B be nonempty subsets of a normed linear space such that
dist(A, B) > 0 and T : A∪ B → A∪ B be a relatively nonexpansive map satisfying
T (A) ⊆ B and T (B) ⊆ A. A point x ∈ A ∪ B is said to be a best proximity point of
T if d(x, T x) = dist(A, B).

Definition 17 [8] Let A and B be nonempty subsets of a normed linear space X.

The pair (A, B) is said to be a proximal pair, if for every (x, y) ∈ A × B there exists
(x ⇐, y⇐) ∈ A × B such that ∇x − y⇐∇ = dist(A, B) = ∇x ⇐ − y∇.

In [11], Espínola introduced a notion of proximinal pair, whichwe call as proximal
pair. Espínola proved some interesting results about proximinal pair in strictly convex
Banach space settings, for more details, see [11].

We say that the pair (A, B) has a property P , if both A and B have the property
P .

Definition 18 [8] A convex pair (K1, K2) in a Banach space is said to have proximal
normal structure, if (H1, H2) ⊆ (K1, K2), is a bounded closed convex pair such
that dist(H1, H2) = dist(K1, K2) and δ(H1, H2) > dist(H1, H2), then there exists
(x1, x2) ∈ H1 × H2 such that δ(x1, H2) < δ(H1, H2) and δ(x2, H1) < δ(H1, H2).

A Banach space X is said to have proximal normal structure, if every convex pair
in X has proximal normal structure. Note that the convex pair (K , K ) has proximal
normal structure if and only if K has normal structure.
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Example 8 It is easy to see that every compact convex proximal pair has proximal
normal structure.

Next we prove that, uniformly convex Banach spaces have proximal normal struc-
ture.

Proposition 10 Every proximal pair (K1, K2) in a uniformly convex Banach space
X has proximal normal structure.

Proof Let (H1, H2) ⊆ (K1, K2)be a nonempty bounded closed convexpair such that
d(H1, H2) = d(K1, K2) and δ(H1, H2) > d(H1, H2). It is claimed that there exists
(x1, x2) ∈ H1 × H2 such that δ(x1, H2) < δ(H1, H2) and δ(x2, H1) < δ(H1, H2).

Let R = δ(H1, H2) and x, y ∈ H1 be such that ∇x−y∇ ≥ ε, where ε = δ(H1)
2 > 0.

Now, let z ∈ H2, then ∇x − z∇ ≤ R, ∇y − z∇ ≤ R. Since ∇x − y∇ = ε > 0, by
the uniform convexity of X , we have

∥
∥
∥
∥

z − x + y

2

∥
∥
∥
∥

≤ R
(

1 − δX

( ε

R

))

sup
z∈H2

∥
∥
∥
∥

z − x + y

2

∥
∥
∥
∥

≤ R
(

1 − δX

( ε

R

))

< R
(

Since 0 <
(

1 − δX

( ε

R

))

< 1
)

.

Hence for x+y
2 ∈ H1, we get δ

( x+y
2 , H2

)

< δ(H1, H2). In a similar way, it can be
shown that there exists x ∈ H2, such that δ(x, H1) < R. �

Remark 5 Let A and B be nonempty subsets of a normed linear space X . A pair
(x, y) ∈ A × B is said to be proximal in (A, B) if d(x, y) = ∇x − y∇ = dist(A, B).

We define A0 = {x ∈ A : d(x, y⇐) = dist(A, B) for some y⇐ ∈ B} and B0 = {y ∈
B : d(x ⇐, y) = dist(A, B) for some x ⇐ ∈ A}. Then the pair (A0, B0) is a proximal
pair obtained from (A, B).

Also it is easy to verify that, if A and B are nonempty weakly compact subsets,
then A0 and B0 are nonempty weakly compact and dist(A0, B0) = dist(A, B).

Lemma 3 Let (A, B) be a nonempty weakly compact convex proximal pair in a
Banach space. Let T : A ∪ B → A ∪ B be a relatively nonexpansive map such
that T (A) ⊆ B and T (B) ⊆ A. Further, suppose (K1, K2) is a nonempty weakly
compact convex proximal pair, which is a subset of (A, B) such that dist(K1, K2) =
dist(A, B) = d and (K1, K2) is a minimal T invariant pair (i.e., there is no closed
convex pair (F1, F2) � (K1, K2) such that dist(F1, F2) = d, T (F1) ⊆ F2 and
T (F2) ⊆ F1). Then



20 P. Veeramani and S. Rajesh

(a) co(T (K1)) = K2 and co(T (K2)) = K1
(b) (K1, K2) does not have proximal normal structure (i.e., for every (x, y) ∈ K1 ×

K2, either rx (K2) = δ(K1, K2) or ry(K1) = δ(K1, K2)).

Proof Let F1 = co(T (K2)) and F2 = co(T (K1)). It is easy to see that (F1, F2) is
a weakly compact convex subset of (K1, K2), and dist(F1, F2) = d. Now T (F1) ⊆
T (K1) ⊆ F2, and similarly, T (F2) ⊆ T (K2) ⊆ F1. But (K1, K2) is a minimal
T invariant pair and (F1, F2) ⊆ (K1, K2), hence F1 = K1 and F2 = K2. This
establishes (a).

Let α = inf
y∈K1

ry(K2), β = inf
x∈K2

rx (K1) and r = max{α, β}.
By Proposition 4 and 5, there exists (x, y) ∈ K1 × K2 such that rx (K2) = α and

ry(K1) = β. Since (K1, K2) is a proximal pair, there exists (y⇐, x ⇐) ∈ K1 × K2 such

that ∇x − x ⇐∇ = ∇y − y⇐∇ = d. Let x1 = x+y⇐
2 , x2 = y+x ⇐

2 and R = (r+δ(K1,K2))
2 .

Let M1 = {x ∈ K1 : rx (K2) ≤ R}, and M2 = {y ∈ K2 : ry(K1) ≤ R}. Then
x1 ∈ M1, x2 ∈ M2 and ∇x1 − x2∇ = d and the pair (M1, M2) is a nonempty closed
convex subset of (K1, K2) such that dist(M1, M2) = d.

Since K1 = co(T (K2)), for x ∈ M1,

rT x (K1) = sup{∇T x − y∇ : y ∈ K1}
= sup{∇T x − T z∇ : z ∈ K2}
≤ sup{∇x − z∇ : z ∈ K2}
≤ R.

Thus T x ∈ M2, if x ∈ M1. Hence T (M1) ⊆ M2 and in a similar way it follows that
T (M2) ⊆ M1. Since (K1, K2) is minimal, (M1, M2) = (K1, K2).

Now δ(K1, K2) = sup
x∈M1=K1

rx (K2) = sup
y∈M2=K2

ry(K1). But for (x, y) ∈ M1 ×
M2, rx (K2) ≤ R and ry(K1) ≤ R. This implies that δ(K1, K2) ≤ R and hence
r = δ(K1, K2). That is either α = δ(K1, K2) or β = δ(K1, K2). Thus for every
(x, y) ∈ K1 × K2, either rx (K2) = δ(K1, K2) or ry(K1) = δ(K1, K2). This proves
(b). �

Lemma 4 Let (A, B) be a nonempty weakly compact convex proximal pair in a
Banach space. Let T : A ∪ B → A ∪ B be a relatively nonexpansive map such
that T (A) ⊆ A and T (B) ⊆ B. Further, suppose (K1, K2) is a nonempty weakly
compact convex proximal pair, which is a subset of (A, B) such that dist(K1, K2) =
dist(A, B) = d and (K1, K2) is a minimal T invariant pair (i.e., there is no closed
convex pair (F1, F2) � (K1, K2) such that dist(F1, F2) = d, T (F1) ⊆ F1 and
T (F2) ⊆ F2). Then

(a) co(T (K1)) = K1 and co(T (K2)) = K2.
(b) (K1, K2) does not have proximal normal structure (i.e., for every (x, y) ∈ K1 ×

K2, either rx (K2) = δ(K1, K2) or ry(K1) = δ(K1, K2)).
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Proof The proof follows exactly the same way as that of Lemma 3. �

The following theorem gives a sufficient condition for the existence of a best
proximity point for a relatively nonexpansive map.

Theorem 12 [8] Let (A, B) be a nonempty weakly compact convex pair in a Banach
space. Let T : A∪B → A∪B be a relatively nonexpansive map such that T (A) ⊆ B
and T (B) ⊆ A. Suppose (A, B) has proximal normal structure, then there exists
(x, y) ∈ A × B such that ∇x − T x∇ = ∇y − T y∇ = dist(A, B).

Proof Let dist(A, B) = d. Suppose (A0, B0) is the proximal pair obtained from
(A, B). Thendist(A0, B0) = d,T (A0) ⊆ B0 andT (B0) ⊆ A0.For, (x, y) ∈ A0×B0
is such that d(x, y) = d, then d(T x, T y) ≤ d(x, y) ≤ d. Thus, (T y, T x) ∈ A0×B0.

LetS = {(H1, H2) ⊆ (A0, B0) : (H1, H2) is closed, convex and d(H1, H2) = d}
and F = {(H1, H2) ∈ S : T (H1) ⊆ H2 and T (H2) ⊆ H1}. Then (A0, B0) ∈ F.

Define ≤ on F by (K1, K2) ≤ (H1, H2) ⇔ (K1, K2) ⊆ (H1, H2). Then (F,≤)

is a partially ordered set.
Let T be a totally ordered subset of F.As (A0, B0) is a weakly compact pair, then

T contains weakly compact subsets of (A0, B0) and it is totally ordered. Hence T
has finite intersection property. Thus, F1 =

⋂

(H1,H2)∈T
H1 and F2 =

⋂

(H1,H2)∈T
H2 are

nonempty weakly compact convex subsets of A0 and B0, respectively and T (F1) ⊆
F2, T (F2) ⊆ F1.

Also for every (H1, H2) ∈ T , let (xH1 , yH2) ∈ H1 × H2 be such that ∇xH1 −
yH2∇ = d. Then {xH1 : (H1, H2) ∈ T } and {yH2 : (H1, H2) ∈ T } are nets in
the weakly compact subsets A0 and B0 respectively. It is possible to choose weakly
convergent subnets {xα} and {yα} (with the same indices) such that weak-limα xα =
x0, for some x0 ∈ A0 and weak-limα yα = y0, for some y0 ∈ B0. Then clearly
x0 ∈ F1 and y0 ∈ F2.

By weak lower semicontinuity of the norm,

∇x0 − y0∇ ≤ dist(A0, B0) = d;

hence, dist(F1, F2) = d. Thus, (F1, F2) ∈ F.

That is every totally ordered subset of F has a lower bound. Hence by Zorn’s
lemma F has a miniimal element, say (K1, K2). Note that dist(K1, K2) = d.

It is claimed that δ(K1, K2) = d. Suppose δ(K1, K2) > d. Now from Lemma 3,
the pair (K1, K2) satisfies the following:

(i) co(T (K2)) = K1 and co(T (K1)) = K2.
(ii) (K1, K2) does not have proximal normal structure.

But (K1, K2) has proximal normal structure. Hence δ(K1, K2) = d. That is for every
x ∈ K1 ∪ K2, ∇x − T x∇ = d. �

Theorem 13 [8] Let (A, B) be a nonempty weakly compact convex pair in a strictly
convex Banach space. Let T : A ∪ B → A ∪ B be a relatively nonexpansive
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map such that T (A) ⊆ A and T (B) ⊆ B. Suppose (A, B) has proximal normal
structure, then there exists (x, y) ∈ A × B such that x = T x, y = T y, and
∇T x − T y∇ = ∇x − y∇ = dist(A, B).

Proof It is easy to see that T (A0) ⊆ A0 and T (B0) ⊆ B0, where (A0, B0) is the
proximal pair obtained from the pair (A, B).

LetS = {(H1, H2) ⊆ (A0, B0) : (H1, H2) is closed, convex and dist(H1, H2) =
d} and F = {(H1, H2) ∈ S : T (H1) ⊆ H1 and T (H2) ⊆ H2}. Then (A0, B0) ∈ F.

Define ≤ on F by (K1, K2) ≤ (H1, H2) ⇔ (K1, K2) ⊆ (H1, H2). Then (F,≤)

is a partially ordered set. Let T be a totally ordered subset of F.

Now T contains weakly compact subsets of (A0, B0) and it is totally ordered.
Hence, T has finite intersection property. Thus, F1 =

⋂

(H1,H2)∈T
H1 and F2 =

⋂

(H1,H2)∈T
H2 are nonempty weakly compact convex subsets of A0 and B0, respec-

tively. Now, it is easy to verify that T (F1) ⊆ F1, T (F2) ⊆ F2 and dist(F1, F2) = d.
Thus (F1, F2) ∈ F.

That is every totally ordered subset of F has a lower bound. Hence by Zorn’s
lemma F has a minimal element, say (K1, K2). Note that dist(K1, K2) = d.

It is claimed that δ(K1, K2) = d.
Suppose δ(K1, K2) > d. Now from Lemma 4, the pair (K1, K2) satisfies the

following:

(i) co(T (K1)) = K1 and co(T (K2)) = K2.
(ii) (K1, K2) does not have proximal normal structure.

But (K1, K2) has proximal normal structure. Hence δ(K1, K2) = d. Also the strict
convexity of X implies that K1 and K2 are singleton sets. Hence for every x ∈
K1 ∪ K2, T x = x . �

Next, we show that Kransnosel’skíi’s iteration process yields a convergence result
if X is uniformly convex and the relatively nonexpansive map T : A ∪ B → A ∪ B
satisfies T (A) ⊆ A and T (B) ⊆ B. We assume that (A0, B0) is the proximal pair
obtained from (A, B).

Theorem 14 [8] Let A and B be nonempty bounded closed convex subsets of a
uniformly convex Banach space. Suppose T : A ∪ B → A ∪ B is a relatively
nonexpansive map such that T (A) ⊆ A and T (B) ⊆ B. Let x0 ∈ A0. Define
xn+1 = (xn+T xn)

2 , n = 1, 2, . . .. Then lim
n

∇xn − T xn∇ = 0.

Moreover, if T (A) is a compact set, then {xn} converges to a fixed point of T .

Proof By Theorem 13, there exists y ∈ B0 such that T y = y. Since
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∇xn+1 − y∇ =
∥
∥
∥
∥

(xn + T xn)

2
− (y + T y)

2

∥
∥
∥
∥

≤ ∇xn − y∇
2

+ ∇T xn − T y∇
2

≤ ∇xn − y∇
2

+ ∇xn − y∇
2

∇xn+1 − y∇ ≤ ∇xn − y∇

{∇xn − y∇} is a nonincreasing sequence. Hence

lim
n

∇xn − y∇ exists, say lim ∇xn − y∇ = r ≥ 0. (3)

Suppose r = 0, then {xn} converges to the fixed point y. Also

∇T xn − y∇ ≤ ∇2xn+1 − xn − y∇
≤ 2∇xn+1 − y∇ + ∇xn − y∇

∇T xn − y∇ → 0.

Hence ∇xn − T xn∇ → 0.
Now, consider the case r > 0. Suppose∇xn−T xn∇does not converge to zero. Then

there exists an ε0 > 0 and a subsequence {xnk } of {xn} such that ∇xnk − T xnk ∇ ≥ ε0,
for all k ∈ N.

Choose γ ∈ (0, 1) such that ε0/γ > r and choose ε such that

0 < ε < min

{
ε0

γ
− r,

rδX (γ )

1 − δX (γ )

}

.

As X is uniformly convex, the modulus of convexity δX (.) is strictly increasing.

Since 0 < γ < ε0
r+ε

, 0 < δX (γ ) < δX

(
ε0

r+ε

)

. Also from the choice of ε,

ε <
rδX (γ )

1 − δX (γ )

(1 − δX (γ ))ε < rδX (γ )

= [δX (γ ) − 1 + 1]r
(1 − δX (γ ))(r + ε) < r

Therefore, [1 − δX ( ε0
r+ε

)](r + ε) < r. As ∇xn − y∇ → r, choose N ∈ N such that
∇xn − y∇ ≤ r + ε, for n ≥ N . Also as T y = y, hence for n ≥ N , ∇T xn − y∇ =
∇T xn − T y∇ ≤ ∇xn − y∇ ≤ r + ε. Therefore, for every nk ≥ N , ∇xnk − y∇ ≤ r + ε,
∇T xnk − y∇ ≤ r + ε and ∇xnk − T xnk ∇ ≥ ε0. Hence from the uniform convexity of
X ,
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∇y − xnk+1∇ =
∥
∥
∥
∥

y − xnk + T xnk

2

∥
∥
∥
∥

≤
(

1 − δX

(
ε0

r + ε

))

(r + ε)

< r

This contradicts to ∇xn − y∇ ≥ r , for n ∈ N. Hence ∇xn − T xn∇ → 0.
If T (A) is a compact set, then {T xn} has a subsequence {T xnk } which converges

to a point z ∈ T (A). Also as ∇xnk − T xnk ∇ → 0, xnk → z.
Let d = dist(A, B). Choose w ∈ B0 such that ∇z − w∇ = d. Since ∇xnk − w∇ →

∇z − w∇, ∇T xnk − T w∇ → ∇z − T w∇ and ∇T xnk − T w∇ ≤ ∇xnk − w∇, thus
∇z − T w∇ = d.

As X is a strictly convex space, T w = w. Similarlyd ≤ ∇T z−w∇ = ∇T z−T w∇ ≤
∇z − w∇ = d, thus T z = z.

Since ∇xnk − w∇ → d and {∇xn − w∇} is nonincreasing, ∇xn − w∇ → d. Thus,
by Lemma 2, ∇xn − z∇ → 0. �

Proposition 11 Suppose A is a nonempty closed convex subset of a real Hilbert
space X. For any x ∈ X, let PAx denote the unique point of A for which ∇x −PAx∇ =
dist(x, A), where dist(x, A) = inf{∇x − y∇ : y ∈ A}. Then for any z ∈ A,

⊕z − PA(x), PA(x) − x∀ ≥ 0. (4)

Proof Let y = PA(x). For any z ∈ A\{y}, we have ∇x − y∇ < ∇x − z∇. Fix
z ∈ A\{y}, and let w = (1 − r)y + r z, for 0 < r < 1. Now

∇x − w∇2 = ∇x − y + r(y − z)∇2
= ⊕x − y + r(y − z), x − y + r(y − z)∀
= ⊕x − y, x − y∀ + r⊕x − y, y − z∀

+r⊕y − z, x − y∀ + r2⊕y − z, y − z∀
= ∇x − y∇2 + r2∇y − z∇2 + 2r⊕x − y, y − z∀

∇x − w∇2 − ∇x − y∇2 − r2∇y − z∇2 = 2r⊕x − y, y − z∀

As w 
= y, ε = ∇x − w∇2 − ∇x − y∇2 > 0. Suppose ε > ∇y − z∇2, then clearly
0 < 2r⊕x − y, y − z∀, and hence, 0 < ⊕x − y, y − z∀ = ⊕z − y, y − x∀. Suppose
ε ≤ ∇y − z∇2, then choose r ∈ (0, 1) such that r2∇y − z∇2 < ε this implies that
0 < 2r⊕x − y, y − z∀, and hence, 0 < ⊕x − y, y − z∀ = ⊕z − y, y − x∀. �

The following observation provides an example of a relatively nonexpansivemap-
ping.

Theorem 15 [8] Let A and B be nonempty closed and convex subsets of a real
Hilbert space X. Let P : A ∪ B → A ∪ B be the restriction of PB on A and the
restriction of PA on B. Then P(A) ⊆ B, P(B) ⊆ A and ∇Px − Py∇ ≤ ∇x − y∇,
for all x ∈ A and y ∈ B.
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Proof Suppose x ∈ A and y ∈ B. Then from Eq. (4) in Proposition 11,

⊕y − PB(x), PB(x) − x∀ ≥ 0, ⊕x − PA(y), PA(y) − y∀ ≥ 0

Adding the above two terms, we have

⊕y − PB(x), PB(x) − x∀ − ⊕x − PA(y), y − PA(y)∀ ≥ 0.

Note that

⊕x1, y1∀−⊕x2, y2∀ = ⊕x1, y1−y2∀+⊕x1−x2, y2∀ = ⊕x1−x2, y1∀+⊕x2, y1−y2∀. (5)

Let x1 = y − PB(x), y1 = PB(x) − x , x2 = x − PA(y) and y2 = y − PA(y). Now
as ⊕x1, y1∀ − ⊕x2, y2∀ ≥ 0 and from (5), we have

⊕y − PB(x), PB(x)+ PA(y)− (x + y)∀+⊕y − x + PA(y)− PB(x), y − PA(y)∀ ≥ 0.

Similarly,

⊕y − x + PA(y)− PB(x), PB(x)− x∀+⊕x − PA(y), PB(x)+ PA(y)− (x + y)∀ ≥ 0.

Adding the above two inequality, we get

⊕(PA(y) + PB(x)) − (x + y), (x + y) − (PB(x) + PA(y))∀
+⊕y − x + PA(y) − PB(x), y − x + PB(x) − PA(y)∀ ≥ 0.

(6)

Consider the second-term in the above Eq. (6),

⊕y − x + PA(y) − PB(x), y − x + PB(x) − PA(y)∀
= ⊕y − x, y − x∀ + ⊕PA(y) − PB(x), PB(x) − PA(y)∀

+⊕y − x, PB(x) − PA(y)∀ + ⊕PA(y) − PB(x), y − x∀
= ∇y − x∇2 − ⊕PA(y) − PB(x), PA(y) − PB(x)∀

+⊕y − x, PB(x) − PA(y)∀ − ⊕y − x, PB(x) − PA(y)∀
= ∇y − x∇2 − ∇PA(y) − PB(x)∇2.

From the first-term of Eq. (6),

⊕(PA(y) + PB(x)) − (x + y), (x + y) − (PB(x) + PA(y))∀
= −⊕((x + y) − (PA(y) + PB(x)), (x + y) − (PB(x) + PA(y))∀
= −∇(x + y) − (PA(y) + PB(x)∇2.

Thus, ∇y−x∇2−∇PA(y)−PB(x)∇2−∇(x+y)−(PA(y)+PB(x))∇2 ≥ 0. Therefore,
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∇PA(y) − PB(x)∇2 ≤ ∇y − x∇2 − ∇(x + y) − (PA(y) + PB(x))∇2
≤ ∇y − x∇2

∇PA(y) − PB(x)∇2 ≤ ∇y − x∇2.

Hence, ∇PA(y) − PB(x)∇ ≤ ∇y − x∇. �

Remark 6 Suppose A and B are closed convex subsets of a real Hilbert space
and T : A ∪ B → A ∪ B is a relatively nonexpansive map satisfying T (A) ⊆ A
and T (B) ⊆ B. Define U : A ∪ B → A ∪ B by setting U x = PB T x, if
x ∈ A and U y = PAT y, if y ∈ B. Then by Theorem 15, U is a relatively non-
expansive map. By Theorem 12, there exists x0 ∈ A0 such that ∇x0 − U x0∇ =
∇x0 − PB T x0∇ = dist(A, B). Since ∇x0 − PB x0∇ = dist(A, B), and T is rela-
tively nonexpansive dist(A, B) ≤ ∇T x0 − T PB x0∇ ≤ ∇x0 − PB x0∇ = dist(A, B).
But ∇T x0 − PB T x0∇ = dist(A, B). As the best approximant is unique, we have
PB T x0 = T PB x0. Thus ∇x0 − PB T x0∇ = ∇T x0 − PB T x0∇ = dist(A, B) again by
the uniqueness of the best approximant, x0 = T x0.

Theorem 16 [8] Let A and B be nonempty bounded closed convex subsets of a real
Hilbert space such that A = A0 and B = B0. Suppose T : A ∪ B → A ∪ B is
a relatively nonexpansive map satisfying T (A) ⊆ A and T (B) ⊆ B. Then T is
nonexpansive on A ∪ B.

Proof From the above observation, we have

T (PB(u)) = PB(T u), for all u ∈ A. (7)

We claim that for x ∈ A, PA PB(x) = x . Since best approximation is unique and
∇PA PB(x) − PB(x)∇ = dist(A, B) = ∇x − PB(x)∇, thus PA PB(x) = x . Similarly,
for y ∈ B, PB PA(y) = y. Therefore for x ∈ A and y ∈ B, ∇x − y∇ = ∇PA PB(x) −
PB PA(y)∇. From Theorem 15,

∇PA PB(x) − PB PA(y)∇ ≤ ∇PB(x) − PA(y)∇
≤ ∇x − y∇.

Hence ∇PA(y) − PB(x)∇ = ∇x − y∇. From Eq. (6) in Theorem 15, we get ∇x + y −
(PB(x) + PA(y))∇ = 0. This implies that

x − PA(y) = PB(x) − y. (8)

Let u, v ∈ A and x = T u and y = PB(T v). From Eq. (8), T u − T v = PB(T u) −
PB(T v) and by Parallelogram law,
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2(∇T u − T v∇2 + ∇T v − PB(T v)∇2) = ∇T v − PB(T u)∇2 + ∇T u − PB(T v)∇2
≤ ∇T v − T (PBu)∇2 + ∇T u − T (PBv)∇2 (By (7))

≤ ∇v − PBu∇2 + ∇u − PBv∇2

= 2
(

∇u − v∇2 + ∇v − PBv∇2
)

.

Since ∇T v − PB T v∇ = ∇v − PBv∇ = dist(A, B), therefore, ∇T u − T v∇ ≤ ∇u − v∇.
�

Theorem 16 in conjunction with the fixed point theorem for nonexpansive map-
pings immediately ensures the existence of a fixed point x0 of T in A and the unique
point y0 ∈ B which is nearest to x0 satisfies T y0 = y0 and ∇x0 − y0∇ = dist(A, B).

5 Applications of Best Proximity Point Theorems

Let S = {

(x, y) ∈ R
2 :| x − x0 |≤ a, | y − y0 |≤ b

}

, for some a, b > 0 and
(x0, y0) ∈ R

2. Suppose (x, y1) and (x, y2) are two points in S, let f (x, y) and
g(x, y) be real-valued functions defined on S.

Consider the following system of differential equations.

dy

dx
= f (x, y) y(x0) = y2, (9)

dy

dx
= g(x, y) y(x0) = y1. (10)

Clearly, it does have a solution when f = g and y1 = y2. Suppose y1 
= y2
and f 
= g. Define Ca = {y ∈ C[x0 − a, x0 + a] :| y(x0) − y0 |≤ b}, A =
{y ∈ Ca : y(x0) = y2} and B = {y ∈ Ca : y(x0) = y1} . Then for any y ∈ A and
z ∈ B, ∇y − z∇ ≥| y1 − y2 | and dist(A, B) =| y1 − y2 |.

Let T : A ∪ B → X be defined as

T (y(x)) = y1 +
x∫

x0

g(t, y(t))dt, y ∈ A,

T (z(x)) = y2 +
x∫

x0

f (t, z(t))dt, z ∈ B.

It is easy to see that T (A) ⊆ B and T (B) ⊆ A. Then, under what conditions on
f and g does there exist w ∈ A ∪ B such that d(w, T w) = dist(A, B)? If such
a function w exists on an interval containing x0 in [x0 − a, x0 + a], then the pair
(w, T w) is called an optimum solution for the system of differential equations given
in (9) and (10).



28 P. Veeramani and S. Rajesh

Also note that, if φ1 is a solution of (9) and φ2 is a solution of (10), then the pair
(φ1, φ2) need not form an optimum solution.

We use the following notation in the sequel. Let a ≥ 0, define φa : R×R → R
+

by φa(x, y) = |x |
|y| , when y 
= 0 and φa(x, y) = a, if y = 0.

Theorem 17 [10] Let S, T, A, and B be as defined above and y1 < y2. Suppose f
and g are continuous functions on S satisfying:

(i) | f (x, z) − g(x, y) |≤ K(| y − z | − | y1 − y2 |), for some K > 0, whenever
| y − z |≥| y1 − y2 |.

(ii) f (x, z) ≥ g(x, y), if x ≤ x0 and f (x, z) ≤ g(x, y), if x ≥ x0, whenever
| y − z |≤| y1 − y2 |.

Then, for any β < min
{

a,
b−|y1−y0|

M ,
b−|y2−y0|

M , 1
K , φa(y1 − y2, N )

}

, there exists

w ∈ A ∪ B such that d(w, T w) = dist(A, B), where A, B ⊆ Cβ = {

y ∈ C[x0 −
β, x0 + β] : | y(x0) − y0 |≤ b

}

, M is the bound for both f and g and

N = sup {| f (x, z) − g(x, y) |:| y − z |≤| y1 − y2 |} ,

that is, (w, T w) is an optimum solution for the system of differential equations given
in (9) and (10).

Proof Let y ∈ A, then T y(x0) = y1, also

| T y(x) − y0 | = | y1 − y0 +
x∫

x0

g(t, y(t))dt |

≤ | y1 − y0 | +
x∫

x0

| g(t, y(t)) | dt

≤ | y1 − y0 | + M

x∫

x0

dt

= | y1 − y0 | + M | x − x0 |
≤ | y1 − y0 | +βM

≤ b.

Hence, T (A) ⊆ B. Similarly T (B) ⊆ A.

To prove that T is a cyclic contraction take y ∈ A, z ∈ B, and assume x ≥ x0,

|T y(x) − T z(x)| =
∣
∣
∣
∣
∣
∣

y2 − y1 +
x∫

x0

( f (t, z(t)) − g(t, y(t)))dt.

∣
∣
∣
∣
∣
∣

(11)
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Now,
x∫

x0

( f (t, z(t)) − g(t, y(t)))dt =
∫

[x0,x]
( f (t, z(t)) − g(t, y(t)))dt,

where
∫

[x0,x]( f (t, z(t)) − g(t, y(t)))dt is the Lebesgue integral of ( f (t, z(t)) −
g(t, y(t))) over the interval [x0, x]. Now, let

C1 = {t ∈ [x0, x0 + β] :| y(t) − z(t) |>| y1 − y2 |},
C2 = {t ∈ [x0, x0 + β] :| y(t) − z(t) |≤| y1 − y2 |}.

Since y and z are continuous functions, we have both C1 and C2 are disjoint mea-
surable sets. Therefore,

x∫

x0

( f (t, z(t)) − g(t, y(t)))dt =
∫

C1

( f (t, z(t)) − g(t, y(t)))dt

+
∫

C2

( f (t, z(t)) − g(t, y(t)))dt.

Hence from (11),

| T y(x) − T z(x) | =
∣
∣
∣y2 − y1 +

∫

C1

( f (t, z(t)) − g(t, y(t)))dt

+
∫

C2

( f (t, z(t)) − g(t, y(t)))dt
∣
∣
∣

≤
∣
∣
∣y2 − y1 +

∫

C2

( f (t, z(t)) − g(t, y(t)))dt
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∫

C1

( f (t, z(t)) − g(t, y(t)))dt

∣
∣
∣
∣
∣
∣
∣

.

In C2, | y(t) − z(t) |≤| y1 − y2 |, for x ≥ x0 by condition(ii), we get f (t, z(t)) ≤
g(t, y(t)), so

∫

C2
( f (t, z(t)) − g(t, y(t))) ≤ 0 and
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∣
∣
∣
∣
∣
∣
∣

∫

C2

( f (t, z(t)) − g(t, y(t)))

∣
∣
∣
∣
∣
∣
∣

≤
∫

C2

| ( f (t, z(t)) − g(t, y(t))) | dt

≤ N
∫

C2

dt ≤ N | x − x0 |

≤ Nβ <| y1 − y2 |.

Therefore,

| T y(x) − T z(x) | ≤ | y2 − y1 | +
∫

C1

| ( f (t, z(t)) − g(t, y(t))) | dt

≤ | y2 − y1 | +
∫

C1

K (| y(t) − z(t) | − | y1 − y2 |)dt

≤ | y2 − y1 | +Kβ max
t∈[x0−β,x0+β](| y(t) − z(t) | − | y1 − y2 |)

≤ | y2 − y1 | +Kβ(∇y − z∇− | y1 − y2 |)
= Kβ∇y − z∇ + (1 − Kβ) | y1 − y2 |

| T y(x) − T z(x) | ≤ Kβ∇y − z∇ + (1 − Kβ) | y1 − y2 |.

As Kβ < 1, the map T is a cyclic contraction. A similar proof can be given for the
case x ≤ x0.

Now for any y ∈ A,

| T y(x) | =
∣
∣
∣
∣
∣
∣

y1 +
x∫

x0

g(t, y(t))dt

∣
∣
∣
∣
∣
∣

≤ | y1 | +
x∫

x0

| g(t, y(t)) | dt

| T y(x) | ≤ | y1 | +Mβ.

Hence, the family {T y}y∈A is uniformly bounded. Let x1, x2 ∈ [x0 − β, x0 + β],

| T y(x1) − T y(x2) | ≤
∣
∣
∣
∣
∣
∣

y1 +
x∫

x1

g(t, y(t))dt − (y1 +
∫ x

x2
g(t, y(t))dt)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

x2∫

x1

g(t, y(t))dt

∣
∣
∣
∣
∣
∣

≤
∫ x2

x1
|g(t, y(t))| dt

| T y(x1) − T y(x2) | ≤ M | x1 − x2 |.
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Since this holds for any y ∈ A, {T y}y∈A is a family of equicontinuous functions.
Therefore, byArzela-Ascoli’s theorem, T (A) lies in a compact subset of B. Similarly,
T (B) lies in a compact subset of A. Hence by Proposition 8, there exists w ∈ Cβ

such that d(w, T w) = dist(A, B). �
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Throughout we consider only real normed linear spaces and we assume all sub-
spaces are closed.

If X is a normed linear space, X→ will denote the dual of X, BX the closed unit
ball, {x ∈ X : ≥x≥ ∇ 1} and SX the unit sphere {x ∈ X : ≥x≥ = 1}, of X . If x is in X
and r > 0 then the open and closed balls with center x and radius r are denoted by

B(x, r) = {z ∈ X : ≥x − z≥ < r},

and
B[x, r ] = {z ∈ X : ≥x − z≥ ∇ r},

respectively. Further, if A ≤ X , x ∈ X and δ > 0, then we set

B(A, δ) = {x ∈ X : d(x, A) < δ},

d(x, A) = inf{≥x − a≥ : a ∈ A}, for x ∈ X,

and
PA(x) = {a ∈ A : ≥x − a≥ = d(x, A)}.

Further, we set
A∞ = { f ∈ X→ : f ∩ 0 on A}.

We now have

Definition 1 Let A ≤ X . Then A is said to be proximinal in X if PA(x) is nonempty
for each x ∈ X . Any element in PA(x) is called a nearest element to x from A or
a best approximation to x from A. The set A is said to be Chebyshev if PA(x) is a
singleton set for all x ∈ X .

The set valued map PA defined on X , is called the metric projection from X onto
A. The following stronger notion of proximinality figures in an essential way, often
in our discussion. Note that if d = d(x, A) then

PA(x) = B[x, d] ∗ A.

For ε > 0, set

PA(x, ε) = {y ∈ A : ≥x − y≥ ∇ d(x, A) + ε}
= B[x, d + ε] ∗ A.

We now have the following definition from Godefroy and Indumathi [14].

Definition 2 Let X be a normed linear space. A proximinal subset A of X is said to
be strongly proximinal at x in X , if given δ > 0 there exists ε > 0 such that
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d(y, PA(x)) < δ for all y ∈ PA(x, ε)

or equivalently
PA(x, ε) ≤ B(PA(x), δ).

If A is strongly proximinal at each x in X , then we say A is strongly proximinal in
X .

Let F : X → Y be a set-valued map. We say F is lower semi-continuous (l.s.c.)
at x0 of X if for any open set U of X such that U ∗ F(x0) ⊆= ⇔, the set {x ∈ X :
F(x) ∗ U ⊆= ⇔} is a neighbourhood of x0 and F is upper semi-continuous (u.s.c.) at
x0 of X if for any open setU of X such that F(x0) ≤ U , the set {x ∈ X : F(x) ≤ U }
is a neighbourhood of x0.

The set-valued map F is said to be Hausdorff lower semi-continuous (H.l.s.c.)
at x0 of X if given δ > 0 there exists ε > 0 such that x ∈ B(x0, ε) implies
F(x0) ≤ B(F(x), δ).

We say F is Hausdorff upper semi-continuous (H.u.s.c.) at x0 in X if for any
δ > 0, the set {x ∈ X : F(x) ≤ B(F(x0), δ)} is a neighbourhood of x0.

The set valued map F is would be called Hausdorff semi-continuous if it is both
H.u.s.c. and H.l.s.c.

We observe that

F H.l.s.c. ⇒ F l.s.c, while F u.s.c ⇒ F H.u.s.c.

Our discussion would involve the above semi-continuity concepts with reference to
metric projections.

It is easily verified that if Y is strongly proximinal then the metric projection is
H.u.s.c.

Remark 1 Awell-known fact, that can be proved using the usual compactness argue-
ment, is that any finite dimensional subspace Y of a normed linear space X is strongly
proximinal and hence the metric projection PY is upper Hausdorff semi-continuous.
We observe that for a single-valuedmap, all the above four notions of semi-continuity
coincide with the usual notion of continuity of a single-valued map. Thus if Y is a
finite dimensional Chebychev subspace of X , then PY is continuous.

A single-valued map f on X is said to be a selection for F if f (x) ∈ F(x) for
each x in X . The set valued map F is said to have a continuous selection if it has
a selection that is continuous. Among the semi-continuity properties of the metric
projection, l.s.c. gains prominence because of the following important theorem of
Michael.

Theorem 1 (Michael Selection Theorem) [21] If X is a paracompact, Hausdorff
topological space, Y is a Banach space and F : X → 2Y is a nonempty closed
convex set valued and lower semi-continuous mapping, then F has a continuous
selection; that is, there exists a continuous s : X → Y such that s(x) ∈ F(x)
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for each x in X. In particular if Y is a subspace of a normed linear space X with
PY (x) ⊆= σ for all x ∈ X and PY lower semi-continuous on X then PY has a
continuous selection.

However, l.s.c. is not a necessary condition for the existence of a continuous
selection as the following example of Deutsch and Kenderov from [8] shows.

Example 1 [8] Let B be the convex hull of the circleα = {(x1, x2, 0) : x21 +x22 = 1}
and the two points (0, 0, 1) and (0, 0,−1) inR3. (B is double cone formed by placing
the two cones with vertices (0, 0, 1) and (0, 0,−1) in such a way that, their common
circular base coincides.) Then B is a closed convex, symmetric set with nonempty
interior. Let X be the normed linear space R3, with the norm for which B is the
closed unit ball.

Let Y = sp(1, 0, 1). Then Y is the line L through (0, 0, 0) and (1, 0, 1), which is
parallel to the line segment l , lying on the unit sphere, joining (−1, 0, 0) in α and
the vertex (0, 0, 1). If x = (x1, x2, x3) and x2 ⊆= 0 then PY (x) = {(x3, 0, x3)}.

If x2 = 0, then PY (x) is a line segment of nonzero length containing the point
(x3, 0, x3). It is clear that f (x) = (x3, 0, x3) is a continuous selection for PY but PY

is not l.s.c.

An important weaker notion than l.s.c, that is also a necessary condition for the
existence of continuous selections, is that of approximate lower semi-continuity
(a.l.s.c.).

Definition 3 [7, 8] We say F is approximate lower semi-continuous (a.l.s.c) at x0
if for each δ > 0 there exists ε > 0 such that

⋂

{B(F(x), δ) : x ∈ B(x0, ε)} ⊆= σ.

Weaker notions than a.l.s.c. can be naturally defined as follows. Let k be a positive
integer ⊂ 2. The following notion from [8] is weaker than a.l.s.c.

The set valued map F is said to be k − l.s.c at x0 if given δ > 0 there exists ε > 0
such that ∗k

i=1B(F(xi ), δ) ⊆= σ for every choice of k−points in B(x0, ε). It follows
from Helly’s theorem that if Y is a subspace of finite dimension n and F is closed
convex valued then

F is a.l.s.c ◦ F is (n+1)−l.s.c. (1)

Clearly

F l.s.c at x0 ⇒ F is a.l.s.c at x0
⇒ F is k−l.s.c at x0 for k ⊂ 2.

We refer the reader to the papers [5, 6] of Brown, for a thorough discussion
about a.l.s.c. of a set valued map and its derived maps, presenting a lucid and overall
perspective of these concepts in relation to the existence of continuous selections.
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Let δ > 0. The set valued map F is said to have an δ-approximate continuous
selection if there is a continuous map sδ : X → Y such that sδ(x) ∈ B(F(x), δ) for
each x ∈ X .

A parallel result to Michael selection theorem, for a.l.s.c, was proved in [8].

Theorem 2 [8] Let X be a paracompact space and Y be a normed linear space. Let
F : X → 2Y have closed,convex images. Then F is a.l.s.c if and only if for each
δ > 0, F has a continuous δ-approximate selection.

Examples of a.l.s.c. and u.s.c. maps with no continuous selections have long been
known. Zhivkov [27] constructed an example of a space X of dimension five- and a
three-dimensional subspace Y of X such that the metric projection PY is a.l.s.c. but
does not have a continuous selection. However, Deutsch and kenderov [8] showed
that if dim Y = 1 then

PY has a continuous selection ◦ PY is a.l.s.c.

◦ PY is 2.l.s.c.

Brown [2] and Deutsch and Kenderov [8] have independently constructed examples
of one dimensional subspace Y of a three-dimensional space X such that PY does
not have a continuous selection, which in turn implies PY is not 2.l.s.c. We observe
that by Remark 1 and Corollary 1, given later in Sect. 2, PY is u.s.c.

Example 2 [2, 7] Let X be R3 with norm generated by the unit ball B = co (l ∪
D ∪ −D), where l is the line segment joining (1, 0, 0) and (−1, 0, 0) and D is the
semicircle

{(1, y, z) : y ⊂ 0, z ⊂ 0 and y2 + z2 = 1}.

If Y is the one dimensional subspace sp(1, 0, 0) and z is a point that moves on the
circle C = {0, y, z) : y2 + z2 = 1}, we have PY (z) = {(−1, 0, 0)} if z > 0 and
PY (z) = {(1, 0, 0)} if z < 0. It is clear that PY cannot have a continuous selection.

As observed earlier, a.l.s.c. does not guarantee existence of continuous selections
for metric projections. However, we have surprising positive results when the space
C(Q) is considered and the following results of Wu Li and T. Fisher are impressive.

Theorem 3 (Li [19]) Let Q be a compact Hausdorff topological space, C(Q) the
space of real valued continuous maps defined on Q with supnorm. If Y is a finite
dimensional subspace of C(Q) then the metric projection PY has a continuous selec-
tion if and only if PY is a.l.s.c.

Theorem 4 (Fisher [18]) Let Q be a compact Hausdorff topological space, C(Q)

the space of real valued continuous maps defined on Q with supnorm. If Y is a
finite dimensional subspace of C(Q) then the metric projection PY has a continuous
selection if and only if PY is 2−l.s.c.
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The proofs of the above two theorems are elaborate and technical in nature. How-
ever, the proof of Fisher, via optimization techniques, leads to a stronger conclusion,
viz, the sufficiency of 2- l.s.c. for the existence of the continuous selection. We refer
the reader to the papers [5, 6] of Brown, for detailed discussion and comparison of
the proofs of Wu Li and Fisher.

The above results are extended to X = C0(T ), the space of real continuous
functions which vanish at infinity on a locally compact Hausdorff space T , in a later
work of Wu Li. He also proved the equivalence of a.l.s.c and existence of continuous
selections for finite dimensional subspaces of L1(T, μ).

Theorem 5 [20] Let (T, μ) be a positive measure space and X = L1(T, μ), the
space of real integrable functions on (T, μ) equipped with the usual norm. If Y is a
finite dimensional subspace of X then, PY has a continuous selection if and only if
PY is a.l.s.c.

We now discuss some geometric conditions that play a vital role in the semi-
continuity of metric projections. We need the definition of polyhedral spaces in the
discussion now and later.

Definition 4 A finite dimensional normed linear space X is said to be polyhedral
if extreme points of BX is a finite set. A normed linear space is called polyhedral if
every one of its finite dimensional subspace is polyhedral.

In Brown [3], defined property P for a normed linear space (If x and z in X
satisfy ≥x + z≥ ∇ ≥x≥, then there exist positive constants ε and β such that ≥y +
βz≥ ∇ ≥y≥ if y is in B(x, ε)) and showed that normed linear spaces with property
P are precisely those spaces in which metric projections onto all finite dimensional
subspaces are l.s.c. In [1], the equivalence of Property P to metric projection onto
every one dimensional subspace being l.s.c, was shown.

Strictly convex spaces and finite dimensional, polyhedral normed linear spaces
are examples of spaces with property (P). We recall that Singer [23] if a normed
linear space is strictly convex, then every proximinal subspace of X is Chebyshev.
Thus if X is strictly convex, every finite dimensional subspace of X is Chebyshev
and by Remark 1 above, the metric projection onto every finite dimensional space is
single-valued and continuous and equivalently, l.s.c.

A normed linear space X is said to have property (CS1) Brown et al. [7] when-
ever Y is a one dimensional subspace of X then PY has a continuous selection or
equivalently PY is 2−a.l.s.c. Clearly property (P) implies property (CS1).

In Brown et al. [7], an example of a three-dimensional space with property (CS1)
but not having property (P) was given. Further it was shown in that paper that a
normed linear space X has property (CS1) if and only if the metric projection PY is
a.l.s.c for every finite dimensional subspace Y of X .

We end this sectionwith two comments. Consider the class of thoseBanach spaces
X , for which the following hold: If Y any finite dimensional subspace of X , then
PY has a continuous selection if and only if PY is a.l.s.c. We note that the above
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class includes C(Q) and L1(T, γ). It would be desirable to have more examples of
nonstrictly convex spaces in this class.

Given a Banach space X, identifying some finite dimensional subspaces Y of X
with dim Y ⊂ 2, for which PY has a continuous selection if PY a.l.s.c, would be an
interesting problem. Using the notion of derived maps of Brown [6], the subspaces
for which the derived map of the metric projection is l.s.c, would have the above
property.

2 Pre-duality Maps and Metric Projections

In this section, we present mostly results from [9] connecting semi-continuity prop-
erties of metric projections and the pre-duality maps.

We need the following facts about upper semi-continuity of set-valued maps later,
for proving Theorem 8. The fact below is from [25].

Fact 1 [25] Let X and Y be normed linear spaces and F : X → 2Y is a set valued
map with nonempty closed convex and bounded images. Assume that F is positively
homogeneous: that is, F(φx) = φx for φ ⊂ 0 and x in X. Then F is u.s.c if and
only if F is H.u.s.c and F(x) is compact for each x ∈ X.

Proof Assume F is H.u.s.c and F(x) is compact for each x ∈ X . Fix x0 ∈ X .
Suppose F is not u.s.c at x0. Then there exists a sequence {xn} in X converging to x0,
a neighborhood U of F(x0) and a sequence {yn} in Y such that yn ∈ F(xn) \ U for
all n ⊂ 1. Since F is H.u.s.c at x0, d(yn, F(x0)) → 0 as n → ∃. Then there exists
{zn} ≤ F(x0) such that ≥zn − yn≥ < 1

n for all n ⊂ 1. Now F(x0) compact implies
{zn} has a convergent subsequence that converge to z0 ∈ F(x0) and hence {yn} has
a convergent subsequence converging to z0. Since z0 ∈ U this implies yn ∈ U for
all large enough n. This contradicts yn /∈ U for all n ⊂ 1. Hence, F is u.s.c.

Conversely assume F is u.s.c. Clearly F is H.u.s.c. We only show that F(x) is
compact for each x in X . Fix x0 in X and assume {yn} ≤ F(x0) has no convergent
subsequence. Let βn = sup{βyn : βyn ∈ F(x0)}. Then βn ⊂ 1 and since F(x0) is
closed, βn yn ∈ F(x0). Note that λβn yn /∈ F(x0) for λ > 1, for each n ⊂ 1. Let {λn}
be a sequence of scalars such that λn > 1 for all n. Clearly, the sequence {λnβn yn}
lies outside the set F(x0). We claim that the sequence {λnβn yn} does not have a
convergent subsequence.

Select M > 0 such that sup
x∈F(x0)

≥x≥ ∇ M . Since {yn} does not have a convergent
subsequence, without loss of generality we can and do assume min{≥yn≥ : n ⊂ 1} =
ε > 0. Then

sup
n⊂1

βn ∇ M

ε
and 0 <

ε

λn M
∇ 1

λnβn
∇ 1, for all n ⊂ 1.
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Assume {λnβn yn}has a convergent subsequence, say {λnk βnk ynk }. Thenby the above,
the sequence of scalars

{
1

λnk βnk

}

has a convergent subsequence that converges to a

limit in the open interval (0, 1). Thiswould imply the sequence {ynk } has a convergent
subsequence and contradict our assumption. Hence we conclude {λnβn yn} does not
have a convergent subsequence.

Let wn = βn yn and xn = n+1
n x0 for n ⊂ 1. Then n+1

n wn ∈ F(xn) for all n ⊂ 1.
Clearly (xn) converges to x0 and A = { n+1

n wn : n ⊂ 1
⎜

is a closed set, since the
sequence

{ n+1
n wn

⎜

does not have a convergent subsequence. Clearly A ∗ F(xn) is
nonempty for all n ⊂ 1, while A ∗ F(x0) is an empty set. This contradicts upper
semi-continuity of F at x0 and F(x0) is compact. �

The following corollary of the above theorem is immediate.

Corollary 1 Let X be a Banach space and Y a proximinal subspace of X. Then the
metric projection PY is u.s.c. if and only if PY is H.u.s.c. and PY (x) is compact for
each x in X.

Let X be a normed linear space and Y be a proximinal subspace of X . Set

DY = {x ∈ X : d(x, Y ) = 1}.

Then it is easy to check that the metric projection PY is H.u.s.c. (l.s.c.) on X if and
only if PY is H.u.s.c. (l.s.c.) on the set DY .

The following theorem of Morris [22] is needed for proving Theorem 8 below.

Theorem 6 [22] Let X be a normed linear space and Y be a proximinal subspace of
finite codimension in X. Then PY is u.s.c if and only if P−1

Y {0} is boundedly compact.

Proof Assume P−1
Y {0} is boundedly compact. Fix x in DY . Note that x − PY (x) ≤

P−1
Y {0}, is a bounded set and therefore is compact. By Corollary 1, we only have to

show that PY is H.u.s.c.
If PY is not H.u.s.c at x0, there exists {xn} ≤ DY and δ > 0 such that {xn}

converges to x and a sequence {yn} with yn ∈ PY (xn) for all n ⊂ 1 and

d(yn, PY (x)) ⊂ δ, for all n ⊂ 1. (2)

Now xn − yn is in P−1
Y {0} and ≥xn − yn≥ ∇ 1, for each n ⊂ 1. So {xn − yn} has

a convergent subsequence, say, xnk − ynk that converges to some z ∈ P−1
Y {0}. This

implies {ynk } converges to z − x in Y . Now

∥
∥xnk − ynk

∥
∥ → ≥x − (z − x)≥ = ≥z≥ = d(z, Y ) = d(x, Y ).

So z − x ∈ PY (x) and this contradicts (2).
Conversely assume that PY is u.s.c. Then PY is u.H.s.c and PY (x) is compact

for each x in X . Let {xn} be any sequence in P−1
Y {0} ∗ SX . Since X/Y and hence
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Y ∞ is finite dimensional, and the sequence {xn + Y } is bounded, it has a convergent
subsequence that converges to some x + Y in X/Y . W.l.o.g. we can and do assume
that the sequence {xn + Y } converges to x + Y , that is, lim

n→∃ ≥xn − x + Y≥ = 0 .

Select yn in Y such that lim
n→∃ ≥xn − x − yn≥ = 0. Then the sequence {xn − yn}

converges to x and

−yn ∈ PY (xn) − yn = PY (xn − yn), for all n ⊂ 1.

Since PY is u.s.c at x , d(−yn, PY (x)) → 0 as n → ∃. So there exists {zn} ≤ PY (x)

such that ≥yn + zn≥ → 0 as n → ∃. Now {zn} has a convergent subsequence that
converges to z ∈ PY (x), as PY (x) is compact. This implies {yn} has a convergent
subsequence, say {ynk }, that converges to z and {xnk } = {xnk − ynk + ynk } converges
to x − z ∈ P−1

Y {0}. This implies (xn) has a convergent subsequence that converges
to an element of P−1

Y {0} and this completes the proof. �

For x ∈ X , set

JX→(x) = { f ∈ X→ : ≥ f ≥ = 1 and f (x) = ≥x≥}.

Note that JX→(x) is a nonempty subset, by the Hahn-Banach theorem. The map
x → JX→(x), x ∈ X is called the duality map on X . For f in X→, define

JX ( f ) = {x ∈ SX : f (x) = ≥ f ≥}.

Note JX ( f ) can be empty. If it is nonempty, we recall that f is said to be a norm
attaining functional. We will denote the class of all norm attaining functionals on X
by N A(X). The set-valuedmap f → JX ( f ) from X→ into X is called the pre-duality
map on X→.

Remark 2 Let X be a normed linear space and Y be a subspace of X . If x is in X it
is well known that [23]

d(x, Y ) = {max{ f (x) : f ∈ Y ∞ and ≥ f ≥ = 1}.

Thus for f in SY ∞ and x is in JX ( f ), we have

1 = ≥x≥ ⊂ d(x, y) = 1

and hence equality holds. Thus, x is in P−1
Y {0}∗ SX . Conversely, if x is in P−1

Y {0}∗
SX , then x is in JX ( f ) for some f in SY ∞ .

Remark 3 Let Y be a proximinal subspace of finite codimension in a normed linear
space X . Then an useful corollary of a characterization, of proximinal subspaces of
finite codimension of Garkavi (see Godefroy and Indumathi [14]), implies that Y ∞
is contained in N A(X). In other words, JX ( f ) is nonempty for each f in Y ∞.
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We now have the following result from [9], relating continuity properties of the
metric projection with that of the pre-duality map.

Theorem 7 [9] Let X be a normed linear space and Y be a proximinal subspace of
finite codimension in X. Then the following assertions are equivalent.

(a) PY is u.s.c.
(b) PY is H.u.s.c and PY (x) is compact for each x in X.
(c) P−1

Y {0} is boundedly compact.
(d) JX |SY∞ is H.u.s.c and JX |SY∞ ( f ) is compact for each f in SY ∞ .
(e) JX |SY∞ is u.s.c.
(f) JX |Y ∞ is u.s.c.

Proof (a) ◦ (b) ◦ (c) follows from the above two theorems.
(c) ⇒ (d). Note that JX ( f ) is a closed subset of P−1

Y {0} for f in SY ∞ , so is compact.
Pick f in SY ∞ . If JX is not H.u.s.c at f then there exist δ > 0 and sequences
{ fn} ≤ SY ∞ converging to f and {xn} ≤ JX ( fn) such that

d(xn, JX ( f )) ⊂ δ, for all n ⊂ 1. (3)

Now {xn} ≤ P−1
Y {0} ∗ SX for all n ⊂ 1. Hence {xn} has a convergent subsequence

{xnk } converging to, say x0. Clearly

≥x0≥ = 1 = f (x0) = lim
k→∃ fnk (xnk ).

So, x0 ∈ JX ( f ). This contradicts (3).
(d) ◦ (e) Follows from Fact 1.
(e) ◦ (f). This is so since Jx (φ f ) = φ JX ( f ) for φ > 0 and f in X→.
(d) ⇒ (c). Suppose P−1

Y {0} is not boundedly compact. Then there exists a sequence
{xn} ≤ P−1

Y {0}∗ SX , that has no convergent subsequence. Pick fn in SY ∞ ∗ JX→(xn)

for each n ⊂ 1. Since codim Y = dim Y ∞ < ∃, without loss of generality assume
{ fn} converges to f ∈ SY ∞ . Now (d) implies d(xn, JX ( f )) → 0 as n → ∃. So
there exists {vn} ≤ JX ( f ) such that ≥xn − vn≥ < 1

n for all n ⊂ 1. Now {vn} has
a convergent subsequence, so {xn} also has a convergent subsequence. This gives a
contradiction and completes the proof. �

We observe that u.s.c can not be replaced by l.s.c in Theorem 7, as shown by the
following example from [9]. Let X = R

3 with l∃-norm and Y = {(φ, 0, 0) : φ ∈ R}.
Then PY is l.s.c since X is a finite dimensional polyhedral space (See comments at
the end of Sect. 1) but it is easy to verify that JX |SY∞ is not l.s.c in this case. In general
if 3 ∇ dim X < ∃ and Y be a subspace of X with dim Y ∇ dim X − 2 then PY is
l.s.c but JX |SY∞ is not. However, the implication in the reverse direction holds and
we describe the details below. We need some facts in the sequel. All the results given
below in this section are from [9].
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Theorem 8 Let X be reflexive. If JX |SX→ is l.s.c then X is strictly convex.

Proof Pick f0 in SX→ . Suppose JX ( f0) has two distinct elements. Since X is reflexive,
by a result of Lindenstrauss there exists { fn} ≤ SX→ such that ≥.≥X→ is smooth at fn

and { fn} → f0. Now JX is l.s.c at f0, JX ( fn) is a singleton set for each n but JX ( f0)
is not a singleton set, gives a contradiction. �

Fact 2 Let X be Banach and Y be a factor reflexive subspace. Then C = { f ∈ SY ∞ :
JX ( f ) − JX ( f ) ≤ Y } is dense in SY ∞ . Further if JX is l.s.c then C = SY ∞ .

Proof Since X/Y is reflexive, by a result of Lindenstrauss

{ f ∈ S(X/Y )→ : f is a smooth point}

is dense in S(X/Y )→ . Recall that (X/Y )→ ⇐ Y ∞ and note that if f ∈ SY ∞ is a smooth
point with f (x) = f (z) = 1 then x + Y = z + Y or equivalently x − z ∈ Y . Hence
C is dense in SY ∞ .

Now assume JX is l.s.c. Since X \ Y is open, the set

U = { f ∈ SY ∞ : [JX ( f ) − JX ( f )] ∗ (X \ Y ) ⊆= ⇔}

is open, as the map f → (JX ( f ) − JX ( f )) is l.s.c on X→. Clearly C ∗ U = ⇔, U is
open in SY ∞ , and C is dense in SY ∞ gives a contradiction if U is nonempty. Hence
U = ⇔. �

Corollary 2 If X is Banach and Y is a factor reflexive subspace of X then for every
f in SY ∞ and x in JX ( f ) we have JX ( f ) ≤ x + Y and x − PY (x) = JX ( f ).

Proof Since x is in JX ( f ) and by Remark 2, ≥x≥ = ≥x + Y≥ = 1. Let z be in JX ( f ).
Then by Fact 2, z − x ∈ Y and so z = x − y for some y in Y . Clearly, ≥x − y≥ =
≥z≥ = 1 = d(x, Y ) and y ∈ PY (x). So, z ∈ x − PY (x) and JX ( f ) ≤ x − PY (x).

Now for any y in PY (x), we have

f (x − y) = f (x) = 1 and ≥x − y≥ = ≥x + Y≥ = 1.

Thus x − PY (x) ≤ JX ( f ). �

We can now prove the main result. For a normed linear space X and x in X, we
denote by x̂ , the image of x under the canonical embedding of X into X→→.

Theorem 9 Let X be a Banach space and Y be a proximinal subspace of finite
codimension in X. If JX |SY∞ is l.s.c., then PY is l.s.c.

Proof We first observe that it is enough to prove PY is l.s.c. on DY = {x ∈ X :
d(x, Y ) = 1}. Pick any x in X with d(x, Y ) = ≥x + Y≥ = 1. It suffices to show that
PY is l.s.c. at x or equivalently I − PY is l.s.c. at x . Let σ = x̂ |Y ∞ . Then σ ∈ S(Y ∞)→ .
If f ∈ JY ∞(σ) then f (x) = x̂( f ) = σ( f ) = 1 and x ∈ JX ( f ). By the above
corollary x − PY (x) = JX ( f ). Thus we have
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JX ( f ) = x − PY (x), for all f ∈ JY ∞(σ). (4)

Hence to show I − PY is l.s.c. at x , it is enough to prove the following: Given y0 in
PY (x) and δ > 0, there exists β > 0 such that if z ∈ DY and ≥x − z≥ < β then we
have B(x − y0, δ) ∗ (z − PY (z)) ⊆= ⇔.

Pick any f in JY ∞(σ). Since JX is l.s.c. at f and (4) holds, there exists ε f > 0 such
that g ∈ SY ∞ , ≥ f − g≥ < ε f implies B(x−y0, δ)∗ JX (g) ⊆= ⇔. Since JY ∞(σ) ≤ SY ∞

is closed and compact, the open cover
{

B
⎟

f,
ε f
2

)

: f ∈ SY ∞
}

has a finite subcover,

say,
{

B
⎟

fi ,
ε fi
2

)

: 1 ∇ i ∇ k
}

. If

0 < 2ε < min{ε fi : 1 ∇ i ∇ k},

then for any f ∈ JY ∞(σ) and g ∈ SY ∞ satisfying ≥ f − g≥ < ε we have

B(x − y0, δ) ∗ JX (g) ⊆= ⇔. (5)

Now dim Y ∞ < ∃. Using usual compactness arguments, it is easily shown that
the map JY ∞ is H.u.s.c. on (Y ∞)→. In particular, JY ∞ is H.u.s.c. at σ. So there exists
β > 0 such that ψ ∈ S(Y ∞)→ , ≥σ − ψ≥ < β and g ∈ JY ∞(ψ) implies ≥ f − g≥ < ε

for some f in JY ∞(σ). Consequently, (5) holds.
Now pick any z ∈ DY satisfying ≥x − z≥ < β. Let ψ = ẑ|Y ∞ . Then ψ ∈ S(Y ∞)→ ,

≥σ − ψ≥ < β. Pick any g ∈ JY ∞(ψ). We have JX (g) = z − PY (z) and this with (5)
implies

B(x − y0, δ) ∗ (z − PY (z)) ⊆= ⇔. �
Note that PY and JX are single valued if X is strictly convex. Hence, we have the

following Corollary of the above theorem.

Corollary 3 Let X be reflexive and assume JX |SX→ is l.s.c. Then every closed linear
subspace Y of finite codimension has a continuous metric projection.

3 Metric Projection onto Subspaces of Finite Codimension

In this section,we list some recent results which derive continuity properties ofmetric
projections onto subspaces of finite codimension, using “polyhedral” related geo-
metric conditions. However, we begin with a well known result from [12], giving a
sufficient condition for continuity of metric projection in reflexive, strictly convex
spaces and then describe a striking negative result of P.D.Morris regarding conti-
nuity of metric projections onto Chebeychev subspaces of finite codimension in the
space C(Q).
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Theorem 10 (Glicksberg [12]) Let X be reflexive and strictly convex Banach space
and every f ∈ X→ is Fréchet smooth. Then the metric projection onto every closed
subspace of X is continuous.

Proof Let Y be a closed subspace of X . Then Y is Chebyshev. Pick x in DY . Then
there exists f ∈ SY ∞ such that f (x) = 1 = d(x, Y ) = ∥

∥x̂ |Y ∞
∥
∥. Let z in X→→ be the

unique norm preserving extension of x̂ |Y ∞ to X→. As X is reflexive, z is in X and
{x − z} = PY (x), equivalently QY (x) = {z}. We will show that QY is continuous at
x .

Since X is reflexive and ≥.≥X→ is Fréchet smooth at f , given δ > 0 there exists
ε > 0 such that w ∈ SX and f (w) > 1 − ε imply ≥z − w≥ < ε. Let u ∈ DY and
assume ≥x − u≥ < ε. If {v} = QY (u), then f (v) = f (u) > 1 − ε and therefore
≥z − v≥ < δ and QY is continuous at x . �

Let H be a hyperplane or a subspace of codimension 1 in X . It is well known that
H = ker f , for some f in X→ and H is proximinal in X if and only if the set JX ( f )

is nonempty.
We recall that if X is a Banach space, then using the famous James Theorem, we

have X is reflexive if and only if every hyperplane is proximinal.

Also, PH (x) =
{

x − f (x)
≥ f ≥ JX ( f )

}

for any x in X and it can be thus easily shown

that PH is Hausdorff metric continuous.
The situation is dramatically different if we consider proximinal subspaces of

codimension ⊂ 2. Below, we describe a striking negative result of P.D.Morris,
which says that if X = C(Q) and Y is a Chebychev subspace of codimension ⊂ 2,
then PY is not continuous on X .

We need the following facts about Chebyshev subspaces in the sequel.

Fact 3 [15] Let Y be a Chebyshev subspace of finite codimension of a normed linear
space X. If the metric projection PY is continuous on X, then SX/Y is homeomorphic
to SX ∗ P−1

Y {0}.
Proof Let W : X → X/Y be the quotient map, I the identity map on X and
V : X/Y → P−1

Y {0} given by V (x + Y ) = x − PY (x), x ∈ X. It is easy to check
that V is a well defined bijective map on X/Y . We now observe that the following
diagram commutes.

Since W is open and continuous, V is continuous on X/Y if PY is continuous.
Note that the inverse V −1 of V, is the restriction of the quotient map W to the set
P−1

Y {0} and hence continuous. Thus, V is a homeomorphism if and only if PY is
continuous. Further, V is an isometry and therefore, V (SX/Y ) is the set SX ∗ P−1

Y {0}.
This completes the proof. �

The characterizations, given below, of semi-Chebyshev subspaces is from [23].

Proposition 1 Let Y be a subspace of X. Then Y is semi-Chebyshev if and only if
there do not exist f ∈ SY ∞ , x ∈ X and y0 ∈ Y such that f (x0) = ≥x0≥ = ≥x0 − y0≥ .
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The following result [23, Theorem2.1] for a subspace of codimension n shows that
semi-Chebyshevity of Y restricts the dimension of the set JX ( f ), for each nonzero
f in Y ∞. If A is a set, aff A denotes the affine hull of A and rel.int A denotes the
relative interior of A (interior of A with respect to aff A).

Proposition 2 Let X be a Banach space and Y be a subspace of codimension n in
X. Then Y is semi-Chebyshev implies that for every f in Y ∞ \ {0} the set JX ( f ) is
of dimension r ∇ n − 1.

Proof Assume that there exists f in Y ∞ \ {0} with JX ( f ) having dimension ⊂ n.
Then JX ( f ) contains n +1 affinely linearly independent elements, say, {w1, w2, . . . ,

wn+1}. Let A = co{w1, w2, . . . , wn+1}. Then A is a compact and convex subset
of JX ( f ) and dim A = n. Recall rel.int A ⊆= ⇔ and pick x0 in rel.int A. Then
0 ∈ rel.int (A − x0). We have Y1 = sp(A − x0) = a f f (A) − x0. Then dim Y1 = n
and 0 ∈ int (A − x0), considered as a subset of Y1. Thus every z in Y1 is a positive
multiple of an element in A − x0.

Now if Y1∗Y = {0} then X = Y ⊕Y1, since codim Y = n = dim Y1. Now f ∩ 0
on A − x0 and therefore f ∩ 0 on Y1 and f ∩ 0 on Y . This is a contradiction to
≥ f ≥ = 1. Hence there exists y0 in Y1 ∗ Y \ {0}. Choose ε > 0 small so that −εy0 ∈
A − x0. That is, x0 − εy0 ∈ A. Note that εy0 ⊆= 0 and x0 − εy0 ∈ A ≤ JX ( f ). Since
x0 ∈ JX ( f ), using Proposition 1 we get a contradiction to Y being Chebyshev. �

We now apply the above result to the spaceC(Q). Let Y be a proximinal subspace
of finite codimension in C(Q). Assume μ ∈ SY ∞ and Q \ S(μ) has r points say
{q1, . . . , qr }. Define x and xi , 1 ∇ i ∇ r in C(Q), with norm one and satisfying

x(t) =

⎧

⎪⎨

⎪⎩

1 if t ∈ S(μ+),

−1 if t ∈ S(μ−),

0 Otherwise,

and

xi (t) =

⎧

⎪⎨

⎪⎩

1 if t ∈ S(μ+) ∪ {qi },
−1 if t ∈ S(μ−),

0 Otherwise.

Then {x, x, . . . , xr } ≤ JC(Q)(μ) is a linearly independent set. If Y is Chebyshev
then r ∇ dim JC(Q)(μ) ∇ n − 1. Hence Q \ S(μ) has at most n − 2 points. Since
this set is open, it is contained in the set of isolated points of Q.

We are now in a position to prove the result of Morris mentioned earlier.
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Theorem 11 (Morris [22]) Let Y be a Chebyshev subspace of finite codimension in
C(Q). Then PY is continuous if and only if codim Y = 1.

Proof Since Q is infinite compact, Q has a limit point, say q0. For any μ ∈ Y ∞,

Q \ S(μ) consist of isolated points. So q0 ∈ S(μ). Since μ ∈ Y ∞ was chosen
arbitrarily q0 ∈ ∗{S(μ) : μ ∈ Y ∞}.

Pick x in P−1
Y {0} ∗ SX . Then there exists a μ ∈ SY ∞ such that μ(x) = 1. Hence

|x(q0)| = 1. Set A = {x ∈ P−1
Y {0} ∗ SX : x(q0) = 1}. Thus both A and −A are non

empty closed sets, A ∗ −A = σ. Further P−1
Y {0} ∗ SX = A ∪ −A is disconnected.

Now assume PY is continuous. Then by Fact 3, SX ∗ P−1
Y {0} is homeomorphic

to SX/Y and so SX/Y is disconnected. This implies dim X/Y = 1. �

It was thought that negative results like the one above, may not occur in “nice”
spaces. For instance, it was conjectured that if X is reflexive and strictly convex, the
scenario may be different and the metric projections onto subspaces of X would be
continuous.However, in [4], Brown constructed an example of a proximinal subspace
of codimension 2 in a reflexive, strictly convex space with a discontinuous metric
projection. However, some of the recent results show that there are indeed a large
class of spaces, for which the metric projection onto subspaces of finite codimension
have strong continuity properties. We describe them below.

We recall that in a finite dimensional polyhedral space X , themetric projection PY

is l.s.c. for every subspaceY of X . The following series of results show that polyhedral
condition plays a crucial role in the continuity properties of metric projections onto
proximinal subspaces of finite codimension too. As far as we are aware, the first
result of this kind was given in [14]. Recall that N A(X) denotes the set of norm
attaining functionals on X and by N A1(X), we denote those functionals in N A(X)

of norm one.

Theorem 12 [14] Let X be a Banach space and Y be a subspace of finite codimen-
sion in X with Y ∞ polyhedral. Assume that Y ∞ ≤ N A(X). Then Y is proximinal
and the metric projection PY has a continuous selection.

The geometric notion of QP-points [26] was utilized in the same paper to get a
sufficient condition for strong proximinality and hence for H.u.s.c. of metric projec-
tions. To describe the relevant results from this paper, we need the following two
definitions that are central to this part of the discussion.

Definition 5 Let X be a Banach space and F : X → R be a convex function.
We say F is strongly subdifferentiable (SSD) at x ∈ X , if the one sided limit
lim

t→0+
F(x+t y)−F(x)

t exists uniformly for y ∈ SX .

Definition 6 [26] Let X be a Banach space. An element x in SX is called a Quasi-
polyhedral point (QP-point) if there exists ε > 0 such that JX→(y) ≤ JX→(x) for
every y in B(x, ε) ∗ SX . If every element of SX is a QP-point of X , then X is said
to be a QP-space.
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We now have the following result linking the QP-points and SSD points.

Lemma 1 [14] Let X be a Banach space and x in SX be a QP-point. Then the norm
of X is SSD at x.

Proof Since x is a QP-point, there exists ε > 0 such that if ω ∈ B(x, 2ε) ∗ SX then
JX→(ω) ≤ JX→(x). Select any y ∈ SX and fix 0 < t < ε. If ω = x+t y

≥x+t y≥ then ω ∈ SX

and ≥x − ω≥ < 2ε. Thus JX→(x + t y) = JX→(ω) ≤ JX→(x).
Pick any s such that 0 < s < t and letλ = s/t . Then x+sy = λ(x+t y)+(1−λ)x .

Now, for any f in JX→(x + t y),

≥x + sy≥ ⊂ f (x + sy) = λ≥x + t y≥ + (1 − λ)≥x≥ ⊂ ≥x + sy≥.

Hence f (x + sy) = ≥x + sy≥ and

≥x + sy≥ − ≥x≥
s

= f (x + sy) − f (x)

s
= f (y).

It is now clear that for all y in SX , we have

lim
s→0+

≥x + sy≥ − ≥x≥
s

= ≥x + t y≥ − ≥x≥
t

= f (x + t y) − f (x)

t
= f (y)

and the norm of X is SSD at x . �

The following useful characterization of SSD points of the norm of the dual space
leads to a characterization of strongly proximinal hyperplanes.

Theorem 13 [14] Let X be a Banach space and f ∈ SX→ . Then the norm of X→ is
SSD at f if and only if f ∈ N A1(X) and given δ > 0 there exists εδ > 0, such that
for x ∈ BX satisfying f (x) > 1 − εδ, we have d(x, JX ( f )) < δ.

Corollary 4 [14] Let X be a Banach space and f ∈ X→. Then H = ker f is strongly
proximinal in X if and only if the norm of X→ is SSD at f .

We now give a characterization of QP-points, that helps to visualize QP-points
on the unit sphere.

Fact 4 Let X be a Banach space and x ∈ SX . Then x is a QP-point of X if and only
if there exists δ > 0 such that if y ∈ SX and ≥x − y≥ < δ, then the line segment
[x, y] lies on the sphere SX .

Proof Since x is a QP-point, there exists δ > 0 such that JX→(y) ≤ JX→(x) for all
y ∈ SX ∗ B(x, δ). Select any y ∈ SX ∗ B(x, δ) and f ∈ JX→(y). Then f ∈ JX→(x)

and if ω ∈ [x, y] then f (x) = f (y) = f (ω) = 1. Since ≥ω≥ ∇ 1, this implies
≥ω≥ = 1 and [x, y] ≤ SX .

For the converse, let x ∈ SX and select δ > 0 so that the given condition holds. Let
φ = δ/2 and z ∈ SX ∗ B(x, φ). Considering the 2-dimensional subspace generated
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by x and z and using the given condition, we can easily get y ∈ B(x, δ) ∗ SX such
that z ∈ (x, y). So there exists λ, 0 < λ < 1, such that z = λx + (1 − λ)y. If
f ∈ JX→(z) then

f (z) = 1, f (x) ∇ 1 and f (y) ∇ 1,

and so 1 = f (z) = λ f (x) + (1 − λ) f (y) ∇ 1. This implies f (x) = f (y) = 1 and
f ∈ JX→(x). Thus JX→(z) ≤ JX→(x) for all z ∈ SX ∗ B(x, φ) and x is a QP-point of
X . �

For a norm attaining functional f in X→, the functional f being a QP-point can be
characterized in terms of the sets JX (.), instead of the sets JX→→(.), as the following
result shows.

Fact 5 Let X be a Banach space and f ∈ N A1(X). Then f is a QP-point of X→ if
there exists φ > 0 such that JX (g) ≤ JX ( f ), for all g ∈ B( f, φ) ∗ N A1(X).

Proof The necessity follows the above Fact. To prove sufficiency, let f ∈ N A1(X)

satisfy the condition of the lemma. If g ∈ N A1(X) and ≥ f − g≥ < δ, then by
assumption JX (g) ≤ JX ( f ). Pick any z in JX (g). Then f (z) = g(z) = 1 and so
( f + g)(z) = 2. Since ≥z≥ = 1, this implies ≥ f + g≥ = 2. Hence

≥ f + g≥ = 2 for all g ∈ B( f, δ) ∗ N A1(X).

By the Bishop-Phelps theorem, the set B( f, δ)∗ N A1(X), is dense in B( f, δ)∗ SX→
and this with the continuity of the norm function yields

≥ f + g≥ = 2 for all g ∈ B( f, δ) ∗ SX→ .

It is now easy to verify the above equality implies [ f, g] ≤ SX→ if g ∈ B( f, δ/2) ∗
SX→ . By Fact 4, f is a QP-point of X→. �

We now fix some notation, used hereafter. Let X be a normed linear space and
{ f1 . . . fn} ≤ X→. We define subsets JX ( f1, . . . fi ) for 1 ∇ i ∇ n inductively as
follows.

JX ( f1) = {x ∈ BX : f1(x) = ≥ f1≥}.

Having defined JX ( f1) we define

JX ( f1, . . . fi ) = {x ∈ JX ( f1 . . . fi−1) : fi (x) = sup{ fi (y) : y ∈ JX ( f1 . . . fi−1)}}

for 2 ∇ i ∇ n. Note that JX ( f1) ⊆= ⇔ ◦ f1 ∈ N A(X). The sets JX ( f1 . . . fi ) can
be empty and if nonempty, they are faces of BX .

However, if X is finite dimensional then the sets JX ( f1 . . . fi ) are nonempty for
1 ∇ i ∇ n. Further if dim X = n and ( f1 . . . fn) is a basis of X→, then JX ( f1 . . . fn)

is a singleton set. We set
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φi = sup { fi (x) : x ∈ JX ( f1, . . . , fi−1)} , for 2 ∇ i ∇ n.

Clearly,

JX ( f1 . . . fi ) = {x ∈ JX ( f1 . . . fi−1) : fi (x) = φi }

=
i

⋂

j=1

{

x ∈ BX : f j (x) = φ j
⎜

for 2 ∇ i ∇ n. Further if x0 ∈ JX ( f1 . . . fi ) then,

JX ( f1 . . . fi ) = {

x ∈ BX : f j (x) = f j (x0) for 1 ∇ j ∇ i
⎜

, for 1 ∇ i ∇ n.

Theorem 14 Let X be a Banach space and Y be a proximinal subspace of finite
codimension n in X. Then Y is strongly proximinal if and only if for every basis
f1, . . . , fn of Y ∞

lim
δ→0

sup{d(y, JX ( f1 . . . fi )) : y ∈ JX ( f1 . . . , fi , δ)} = 0

for 1 ∇ i ∇ n.

Remark 4 It can be shown that [14] if X is a Banach space and Y is a subspace of
finite codimension in X such that each functional in Y ∞ ∗ SX→ is a QP-point of X→,
then Y is proximinal in X .

We are now in a position to prove the following theorem.

Theorem 15 [14] Let X be a Banach space such that every f in N A(X) ∗ SX→ is
a QP-point of X→. Then every subspace Y of finite codimension Y ∞ ≤ N A(X) is
strongly proximinal and PY is H.u.s.c.

Proof By the above Remark, Y is proximinal in X . By Lemma 1, every f ∈ N A1(X)

is a SSD point of X→.
Let ( f1, . . . , fn) be a basis of Y ∞.We now show that we can select positive scalars

λi , 1 ∇ i ∇ n, such that

JX ( f1, . . . , fi ) = JX

⎛

⎝

i
∑

j=1

λ j f j

⎞

⎠ , for 1 ∇ i ∇ n. (6)

We use induction on n. We take λ1 = 1 and note that the case n = 1 is trivial.
Inductively assume that λ j > 0 for 1 ∇ j ∇ i − 1 have been chosen so that if

gi−1 =
i−1∑

j=1
λ j f j then JX (gi−1) = JX ( f1, f2, . . . , fi−1). Now gi−1 ∈ Y ∞ and so

is a QP-point of X→, by assumption. Using Fact 5, choose λi > 0 small enough so
that
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JX (gi−1 + λi fi ) ≤ JX (gi−1).

By induction assumption,

JX (gi−1, fi ) = JX ( f1, f2, . . . , fi−1, fi ).

We have JX (gi−1 + λi fi ) ≤ JX (gi−1) and λi > 0. It is now easy to verify that
JX (gi−1, fi ) = JX (gi−1 + λi fi ) and we have

JX

⎛

⎝

i
∑

j=1

λ j f j

⎞

⎠ = JX (gi−1 + λi fi ) = JX (gi−1, fi ) = JX ( f1, f2, . . . , fi−1, fi ). (7)

This completes the induction and (6) holds. It now follows that

x ∈ JX

⎛

⎝

i
∑

j=1

λ j f j

⎞

⎠ ⇒ fi (x) = φi for 1 ∇ i ∇ n,

where φ1 = ≥ f1≥ and φi = sup{ fi (y) : y ∈ JX ( f1, f2, . . . , fi−1)}, for 2 ∇ i ∇ n.

We now proceed to show that the condition of Theorem 13 holds for the basis
( f1, f2, · · · , fn). Recall that

JX ( f1 . . . , fi , δ) =
i

⋂

j=1

{x ∈ BX : f j (x) > φ j − δ}.

Now
i∑

j=1
λ j f j ∈ Y ∞ ≤ N A(X) ≤ QP-points of X→, for 1 ∇ i ∇ n. Thus the norm

of X→ is SSD at
i∑

j=1
λ j f j for 1 ∇ i ∇ n. So by Theorem 13

lim
δ→0

sup

⎧

⎨

⎩
d

⎛

⎝y, JX

⎛

⎝

i
∑

j=1

λ j f j

⎞

⎠

⎞

⎠ : y ∈ JX

⎛

⎝

i
∑

j=1

λ j f j , δ

⎞

⎠

⎫

⎬

⎭
= 0

for 1 ∇ i ∇ n. It is easy to check that this with (7) implies

lim
δ→0

sup {d(y, JX ( f1 . . . fi )) : y ∈ JX ( f1 . . . , fi , δ)} = 0

for 1 ∇ i ∇ n. By Theorem 14, Y is strongly proximinal in X . �
It is a natural question to ask whether a stronger conclusion in Theorem 12

is possible. More precisely, can we conclude PY is l.s.c. under the conditions of
Theorem 12?



52 V. Indumathi

The proof of Theorem 12 is rather short and essentially makes use of a property
of finite dimensional polyhedral space that allows continuous selection for measures
supported on extreme points. However, an imitation of the same proof did not seem
to carry further. Relatively long and elaborate proofs were used to show that PY is
l.s.c. in Theorem 12 if

(i) X is a subspace of c0. Indumathi [17]
(ii) X is a separable Banach space with Property (*) (V.P.Fonf and J.Lindenstrauss,

Pre-print 2003. See also Fonf et al. [13])

where Property (*) as in Definition 9, below.
We observe that (ii) is a generalization of the earlier result (i). However, it was

shown in [16] that no additional condition on the Banach space X is , in fact , needed.
More precisely,

Theorem 16 [16] Let X be a Banach space and Y be a proximinal subspace of finite
codimension in X with Y ∞ polyhedral. Then PY is l.s.c.

We need some definitions and preliminary results to prove the above theorem. Let
X be a Banach space, Y be a closed subspace of finite codimension in X . Set

QY (x) = x − PY (x), x ∈ X

and for a finite subset { f1, . . . , fk} of Y ∞, let

Q f1,..., fk (x) =
k

⋂

i=1

{y ∈ BX : fi (y) = fi (x)}.

Clearly, Q f1,..., fk (x) is either empty or convex and the domain of the set valued
map Q f1,..., fk will be taken as the set DY = {x ∈ X : d(x, Y ) = 1} in the sequel.
Note that if { f1, . . . , fk} ≤ Y ∞ then Q f1,..., fk (x) ≤ QY (x) and equality holds if
{ f1, . . . , fk} is a basis of Y ∞. Further if Y is proximinal, QY (x) is nonempty for each
x and hence Q f1,..., fk (x) is nonempty in this case. For k > 1 and x ∈ DY , define

φx,k = inf{ fk(z) : z ∈ Q f1,..., fk−1(x)}

and
βx,k = sup{ fk(z) : z ∈ Q f1,..., fk−1(x)}.

We now have the following Proposition from [17].

Proposition 3 Let X be a Banach space, Y be proximinal in X and x ∈ DY . Assume
that there exists a finite subset { f1, . . . , fk+1}, 1 ∇ k < n, of Y ∞ such that the map
Q f1,..., fk is H.l.s.c at x and further

φx,k+1 < fk+1(x) < βx,k+1.
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Then Q f1,..., fk+1 is H.l.s.c at x.

Proof Let 2β = min{βx,k+1 − fk+1(x), fk+1(x) − φx,k+1}. Then β > 0. Since
Q f1,..., fk is H.l.s.c at x , given δ > 0, there exists ε > 0 such that for any z in
Q f1,..., fk (x) and y in DY with ≥x − y≥ < ε, there exists w in Q f1,..., fk (y) such that
≥z − w≥ <

βδ
8 . Without loss of generality we assume that 0 < ε <

βδ
8 , 0 < δ < 1,

and ≥ fi≥ = 1 for 1 ∇ i ∇ n. Now, if y ∈ DY and ≥x − y≥ < ε, it follows easily that

βy,k+1 > βx,k+1 − β

8
, φy,k+1 < φx,k+1 + β

8
(8)

φy,k+1 < fk+1(y) < βy,k+1. (9)

Fix z ∈ Q f1,..., fk+1(x). We have to show that there exists v in Q f1,..., fk+1(y) such
that ≥z − v≥ < δ.

Since Q f1,..., fk+1(x) ≤ Q f1,..., fk (x), there exists w in Q f1,..., fk (y) such that
≥z − w≥ <

βδ
8 . We have

fk+1(z) = fk+1(x), ≥w − z≥ <
β

8
, ≥x − y≥ <

βδ

8
<

β

8
.

This together with (8) and (9) implies

βy,k+1 − fk+1(w) = βy,k+1 − βx,k+1 + βx,k+1 − fk+1(x)

+ fk+1(x) − fk+1(z) + fk+1(z) − fk+1(w) > 2β − β

8
+ β

8
> β. (10)

Similarly we can show that

fk+1(w) − φy,k+1 > β. (11)

Also,

| fk+1(y) − fk+1(w)| ∇ | fk+1(w) − fk+1(z)| + | fk+1(z) − fk+1(x)|
+ | fk+1(x) − fk+1(y)|

<
βδ

8
+ βδ

8
= βδ

4
<

β

4
. (12)

If fk+1(w) = fk+1(y), then w ∈ Qk+1(y) and ≥w − z≥ < δ. Take v = w in this
case. Otherwise, we slightly perturb w to get an element of Q f1,..., fk+1(y) as follows.
Note that using (10)–(12), we can get w1 in Q f1,..., fk (y) such that

| fk+1(w1) − fk+1(w)| > β, (13)

and fk+1(y) lies in between fk+1(w) and fk+1(w1). Choose 0 < λ < 1 such that

fk+1(λw + (1 − λ)w1) = fk+1(y)
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and take v = λw+(1−λ)w1. Sincew andw1 are in Q f1,..., fk (y), v is in Q f1,..., fk+1(y).
Also,

(1 − λ)[ fk+1(w1) − fk+1(w)] = fk+1(y) − fk+1(w).

This together with (12) and (13) gives

1 − λ <
βδ

4β
= δ

4
.

Hence

≥w − v≥ = (1 − λ) ≥w − w1≥ ∇ 2(1 − λ) <
2δ

4
= δ

2
,

≥z − v≥ ∇ ≥z − w≥ + ≥w − v≥ <
δ

2
+ δ

2
= δ.

Hence the proof is complete. �

Definition 7 Let Y be a proximinal subspace of codimension n in a Banach space
X and x , an element of DY . We say x is a k-corner point, 1 ∇ k ∇ n, with respect
to a linearly independent set of functionals { f1, . . . , fk} in Y ∞ if Q f1,..., fk (x) =
∗k

i=1 JX ( fi ).

We now require some well known facts about finite dimensional convex sets. Let
E be a finte dimensional normed linear space. For C ≤ A ≤ E, where C is convex
and A is affine, by “interior of C with respect to A”, we mean the interior of C ,
considered as a subset of the affine space A. The set of all extreme points of C would
be denoted by extC . A subset D of C is called extremal if D contains an interior
point of a line segment l in C then D contains l. Clearly, a singleton extremal set is
an extreme point.

We now state the following result from [16].

Lemma 2 Let X be a Banach space, Y be a proximinal subspace of finite codimen-
sion n in X with Y ∞ polyhedral. For each x0 in DY , there is a basis { f1, . . . , fn} of
Y ∞ such that Q f1,..., fn (x0) = ⋂k

i=1 JX ( fi ) either with k = n, or with 1 ∇ k ∇ n.

In the later case we have

φx0, j < f j (x0) < βx0, j , for k + 1 ∇ j ∇ n.

The following theorem is an immediate from Proposition 3 and Lemma 2.

Theorem 17 [16] Let X be a Banach space, Y a proximinal subspace of finite
codimension n in X with Y ∞ polyhedral. Assume that, whenever x in DY is a
k-corner point with respect to a set of linearly independent functionals { f1, . . . , fk}
in Y ∞ for some positive integer k, 1 ∇ k ∇ n, then the map Q f1,..., fk is H.l.s.c at x.
Then the metric projection PY is H.l.s.c on X.
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The result below shows that the conditions of the above theoremhold under natural
assumptions. More specifically, we have

Lemma 3 Let X be a Banach space and Y be a proximinal subspace of finite codi-
mension in X, with Y ∞ polyhedral. If x0, in DY , is a k-corner point with respect to a
set of linearly independent functionals { f1, . . . , fk} in Y ∞, then the set valued map
Q f1,..., fk is H.l.s.c at x0.

It is now easily seen that Theorem 16 follows from Theorem 17 and Lemma 3
above. Hence to complete the proof of Theorem 16, it suffices to prove Lemma 3.

To prove Lemma 3, we need the result quoted below. By (R+), we denote the set
of non-negative real numbers.

Proposition 4 Let E be a finite dimensional polyhedral space and let ext BE =
{e1, . . . , em}. Then there exists a continuous map A : BE → (R+)m such that, if
A(x) = (μi (x))m

i=1, then

m
∑

i=1

μi (x) = 1, and x =
m

∑

i=1

μi (x)ei

for all x in BE .

We now continue the proof of Lemma 3.

Proof The finite dimensional space Y ∞ is polyhedral and so is its dual, (Y ∞)→. Thus
B(Y ∞)→ has only finite number of extreme points. As

S(Y ∞)→ = {σx : x ∈ DY },

there exists a finite subset {x1, . . . , xm} of DY such that

ext B(Y ∞)→ = {σx1, . . . , σxm }.

Let x be in DY . Then σx is in S(Y ∞)→ . Taking E = (Y ∞)→ in Proposition 4, let
A(σx ) = (μi (σx ))

m
i=1. Since the map x → σx is continuous, the map x → A(σx ))

is continuous from DY into (R+)m . We abbreviate, μi (σx ) as μi (x) for 1 ∇ i ∇ m.

Then
∑m

i=1 μi (x) = 1 and

σ(x) =
m

∑

i=1

μi (x)σxi . (14)

By assumption, x0 is in DY and is a k-corner point with respect to a set of linearly
independent functionals { f1, . . . , fk} in Y ∞. We need to show that the set valued
map Q f1,..., fk is H.l.s.c at x0. For this purpose, we first define a set valued map Tk

on DY as follows:
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Tk(x) =
m

∑

i=1

μi (x)Q f1,..., fk (xi ), for x ∈ DY .

We now claim that Tk is H.l.s.c on DY .

To see this, fix x in DY and δ > 0. Since the map x → (μi (x))m
i=1 is continuous

from DY into (R+)m, there exists ε > 0 such that for z in DY ∗ B(x, ε), we have

m
∑

i=1

|μi (z) − μi (x)| < δ.

For any v in Tk(x), there is a vi in Q f1,..., fk (xi ), for 1 ∇ i ∇ m, such that v =
∑m

i=1 μi (x)vi . Let w = ∑m
i=1 μi (z)vi . Clearly w is in Tk(z) and ≥v − w≥ < δ as

≥vi≥ ∇ 1, for 1 ∇ i ∇ m. It now follows that

Tk(x) ≤ Tk(z) + B(0, δ),

for any z in B(x, ε). Hence the map Tk is H.l.s.c at x and hence, on DY .

We now proceed to show that Q f1,..., fk is l.s.c at x0. In order to do this, we first
show that

Tk(x0) = Q f1,..., fk (x0) and Tk(x) ≤ Q f1,..., fk (x), for all x ∈ DY .

To begin with, note that

Q f1,..., fk (x0) = ∗m
j=1 JX ( f j ). (15)

Now for x in DY , by Eq. (14), we have

f j (x) =
m

∑

i=1

μi (x) f j (xi ), for 1 ∇ j ∇ k.

Select any z in Tk(x). Then there are elements zi ∈ Q f1,..., fk (xi ) for 1 ∇ i ∇ m,

such that z = ∑m
i=1 μi (x)zi . Note that ≥z≥ ∇ 1, as ≥zi≥ ∇ 1 for 1 ∇ i ∇ m. Also

for 1 ∇ j ∇ k,

f j (z) =
m

∑

i=1

μi (x) f j (zi ) =
m

∑

i=1

μi (x) f j (xi ) = f j (x).

Since ≥z≥ ∇ 1, this implies z is in Q f1,..., fk (x) and we have

Tk(x) ≤ Q f1,..., fk (x), ∀x ∈ DY .

Now σx0 = ∑m
i=1 μi (x0)σxi , and by Eq. (15),
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f j (x0) = σx0( f j ) = ∥
∥ f j

∥
∥ =

m
∑

i=1

μi (x0)σxi ( f j ), for 1 ∇ j ∇ k.

Since σxi are norm one elements of (Y ∞)→, we must have

f j (xi ) = σxi ( f j ) = ∥
∥ f j

∥
∥ , for 1 ∇ j ∇ k,

whenever μi (x0) ⊆= 0. Hence

Q f1,..., fk (xi ) =
k

⋂

j=1

JX ( f j ) = Q f1,..., fk (x0),

whenever μi (x0) ⊆= 0, 1 ∇ i ∇ m. It is now easy to see that

Tk(x0) =
m

∑

i=1

μi (x0)Q f1,..., fk (xi ) = Q f1,..., fk (x0).

Thus

Tk(x0) = Q f1,..., fk (x0) and Tk(x) ≤ Q f1,..., fk (x), for all x ∈ DY . (16)

Since the map Tk is H.l.s.c at x0, it now easily follows from Eq. (16) that the map
Q f1,..., fk is also H.l.s.c at x0. This completes the proof of the Lemma. �

Dutta andNarayana [10] proved that ifY is a strongly proximinal subspace of finite
codimension in C(Q) then PY is Hausdorff metric continuous. Here too, polyhedral
condition plays an important role. They in fact show that Y ∞ is polyhedral in this
case and use it to prove their conclusion.

Dutta and Shanmugaraj [11] quantified strong proximinality through

δ(x, t) = inf{r > 0 : PY (x, t) ≤ PY (x) + r BY }

for x ∈ X\Y and t ⊂ 0. They have proved that if Y is a strongly proximinal subspace
of finite codimension, PY is Hausdorff semi-continuous at x in X if and only if δ(t)
is continuous at x for every t > 0.

Recently, in 2011, a long and comprehensive paper “Best Approximation in poly-
hedral spaces” by Fonf et al. [13] presents significant results, linking geometric
properties of a Banach space X with that of the continuity properties metric projec-
tion onto subspaces of finite codimension. We need the following definitions to state
the results.

Definition 8 [13] A setB ≤ SX→ is a boundary for X if for each x in X there exists
f ∈ B with f (x) = ≥x≥.
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Definition 9 [13] A Banach Space X satisfies a property (→) if there exists a bound-
aryB ≤ SX→ such thatB′∗N A(X) ⊆= ⇔,whereB′ is the set of allw→-accumulation
points of B.

Definition 10 [13] A Banach Space X satisfies a property () if there exists a
boundary B ≤ SX→ such that the set

{ f ∈ B : f (x) = 1} = JX→(x) ∗ B

is finite for each x ∈ SX .

It is known that if X is a QP-space then X is polyhedral. The result below from
[13] explains the relation between the above geometric conditions.

Fact 6 [13] Let X be a Banach space. Then

X has Property (→) ⇒ X is Q P with .

◦ X is polyhedral with .

Definition 11 Let X be a Banach space and Y be a closed subspace of X . Then the
effective domain of PY , denoted by domPY , is the set {x ∈ X : PY (x) ⊆= σ}.
Theorem 18 [13] Let Y be a closed subspace of X. Then

(a) If X is polyhedral with (), then PY is H.l.s.c on domPY . In particular, PY

restricted to domPY admits a continuous selection by Michael’s selection theo-
rem.

(b) If X is polyhedral with (), PY is not necessarily H.u.s.c on domPY , even when
Y is proximinal with a finite codimension.

(c) If X satisfies (→), then PY is Hausdorff continuous on domPY .

Remark 5 We would like to mention here that Theorem 5.1 of [13], which says that
a proximinal subspace Y of a Banach space X is strongly proximinal if and only if
the metric projection PY is H.u.s.c, is incorrect. While it is easy to prove that strong
proximinality of Y implies PY is H.u.s.c., the implication in the reverse direction is
not true.

To see this, let X be a Banach space and H =ker f , where f is in N A(X). Then
H is a proximinal hyperplane and it is easily shown that PH is H.u.s.c. However,
many examples of proximinal hyperplanes which are not strongly proximinal are
known [14]. Thus the conclusion of Theorem 5.1 of [13] does not hold.

Before concluding the article, we make two observations. The notion of a.l.s.c.
has not been discussed much in the context of metric projections onto subspaces of
infinite dimension and in particular, onto subspaces finite codimension. It is desirable
to characterize the class of Banach spaces X such that for every proximinal subspace
Y of finite codimension in X , the metric projection map PY is a.l.s.c.

We are not aware of any characterization of a proximinal subspace of finite codi-
mension Y in C(Q) with the metric projection PY having a continuous selection or
PY is a.l.s.c. It would be desirable to obtain some results in that direction.
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Convergence of Slices, Geometric Aspects
in Banach Spaces and Proximinality

P. Shunmugaraj

Abstract Some geometric properties of Banach spaces and proximinality properties
in best approximation theory are characterized in terms of convergence of slices. The
paper begins with some basic geometric properties of Banach spaces involving slices
and their geometric interpretations. Two notions of convergence of sequence sets,
called Vietoris convergence and Hausdorff convergence, with their characterizations
are presented. It is observed that geometric properties such as uniform convexity,
strong convexity, Radon-Riesz property, and strong subdifferentiability of the norm
can be characterized in terms of the convergence of slices with respect to the notions
mentioned above. Proximinality properties such as approximative compactness and
strong proximinality of closed convex subsets of a Banach space are also character-
ized in terms of convergence of slices.

Keywords Slices · Convergence of slices · Proximinality · Strict convex normed
spaces · Smooth normed spaces · Uniform convex spaces · Radon-Riesz property ·
Strong subdifferentiability · Convergence of sequences of sets · Vietoris conver-
gence · Hausdorff convergence · Measure of noncompactness · Continuity of set-
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1 Introduction

The purpose of this chapter is to discuss some notions of convergence of sequence of
slices and relate these with certain geometric properties of Banach spaces and also
to some known proximinality properties in best approximation theory. The results
which are presented here are not new and in fact they are scattered in the literature in
different formulations. We present these results in terms of convergence of slices and
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we observe that several known results fit naturally in this framework. The presentation
of the results in this framework not only unifies several results in the literature, it
also allows us to view the results as geometric results and understand some problems
which remain to be solved in this area.

The chapter is in two parts. In the first part, we begin from the classical works
of Banach and Šmulian on the characterizations of smooth spaces and uniformly
smooth spaces (or uniformly convex spaces) and present similar characterizations
for other geometric properties including some recent results. Similarly, in the second
part, we begin from the classical results of James and Day on characterizations of
reflexivity and strict convexity in terms of some proximinality properties of closed
convex subsets and present similar characterizations for other proximinality proper-
ties including some recent results. To be more specific, let us now define the slices
formally.

Let X be a real Banach space and X→ its dual. We denote the closed unit ball and
the unit sphere of X by BX and SX respectively. For x→ ∈ SX→ and 0 ≥ δ < 1, we
define

S(X, x→, δ) = {

x ∈ BX : x→(x) ∇ 1 − δ
}

.

The set S(X, x→, δ) is called a slice of BX defined by x→ and δ. The geometric in-
terpretation of a slice is given in the Sect. 2 (see Fig. 2). Similarly for x ∈ SX and
0 ≥ δ < 1, we define the slice S(X→, x, δ) of BX→ , defined by x and δ, as follows

S(X→, x, δ) = {

x→ ∈ BX→ : x→(x) ∇ 1 − δ
}

.

In the first part of the chapter, it is observed that geometric properties such as
uniform convexity, strong convexity, Radon-Riesz property, and strong subdifferen-
tiability of the norm can be characterized in terms of the convergence of sequence
of slices

S(X, x→, 1/n), S(X→, x, 1/n) and S(X→→, x→, 1/n) as n ≤ ∞.

Observe that these are sequences of sets in X, X→ and X→→, respectively. A sequence
of slices is shown in Fig. 7.

In the second part, proximinality properties such as strong proximinality and
approximative compactness in best approximation theory are characterized in terms
of convergence of slices. To be more specific, we need some notions from best
approximation theory.

Let C be a nonempty, closed, and convex subset in a Banach space X and x ∈ X.
For δ ∇ 0, consider the following set

PC(x, δ) = {y ∈ C : ∩x − y∩ ≥ d(x, C) + δ} ,

where d(x, C) denotes the distance between x and C. The set PC(x, 0) is called the
set of best approximations to x in C and the set PC(x, δ), for δ > 0, is called the
set of nearly best approximations to x in C. The set PC(x, 0) could be empty but
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PC(x, δ) ∗= ∅, for δ > 0. The geometric interpretation of the set PC(x, δ) is given
Sect. 5 (see Fig. 10).

Wewill see that the proximinality propertiesmentioned above canbe characterized
in terms of convergence of sequence of sets (PC(x, 1/n)) as n ≤ ∞. In the second
part of the paper, we will relate the convergence of slices with the convergence of the
sets PC(x, 1/n). This will illustrate that the slice convergence connects the geometry
of Banach spaces and the theory of best approximation.

The chapter is organized as follows. In Sect. 2, we recall some basic results in-
volving slices and present their geometric interpretations. We use two notions of
convergence of sequence of sets, called Vietoris convergence and Hausdorff conver-
gence which are presented with their characterizations in Sect. 3. The characteriza-
tions of the geometric properties of Banach spaces in terms of convergence of slices
are discussed in Sect. 4. Section5 is devoted to relate proximinality properties and
geometric properties of Banach spaces through the convergence of slices.

2 Preliminaries

In this section, we present the geometric interpretation of the slices and some basic
results in Functional Analysis involving slices which are required in the sequel.
The geometric visualization presented here would help, at least for the beginners, to
appreciate the results presented in this and the subsequent sections. Throughout the
section we assume that X is a real Banach space.

In Functional Analysis, there are several results which involve elements of X→ or
SX→ .Many such results are geometric in nature and their proofs also use the geometric
visualizations. To visualize the results geometrically, the nonzero elements of X→ are
associated with hyperplanes.

A setH = {x ∈ X : x→(x) = c} for some x→ ∈ SX→ and c ∈ R is called ahyperplane
(see Fig. 1). If x→ ∈ SX→ , we associate this element of the dual spacewith a hyperplane

{

x ∈ X : x→(x) = c
}

, for some c ∈ R\{0}.

So, the elements of dual spaces are geometrically visualized as hyperplanes in X.
For example if X = R

3 then the hyperplanes are planes in R
3.

2.1 Distance Formula and Slices

The formula appearing in the following result is a generalization of the distance
formula in R

3. The formula helps us to locate a hyperplane or, at least, to know the
distance between the origin and a hyperplane. The formula is illustrated in Fig. 1.
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Fig. 1 Distance between
the point x0 and hyperplane
H := {x ∈ X : x→(x) = c}

x0 H

Theorem 1 (Ascoli’s Formula) Let x→ ∈ X→\{0}, x0 ∈ X and

H = {

x ∈ X : x→(x) = c
}

, for some c ∈ R.

Then,

d(x0, H) = |x→(x0) − c|
∩x→∩ .

Proof For any h ∈ H, |x→(x0)−x→(h)| ≥ |x→(x0)−c| ≥ ∩x→∩ ∩x0−h∩. This implies
that |x→(x0) − c| ≥ ∩x→∩d(x0, H).

To prove ∩x→∩d(x0, H) ≥ |x→(x0) − c|, it is sufficient to show that

εd(x0, H) < |x→(x0) − c|,

for all ε such that 0 < ε < ∩x→∩. For 0 < ε < ∩x→∩, find y ∈ SX such that
|x→(y)| > ε. Define

h = x0 −
(

x→(x0) − c

x→(y)

)

y.

It is easy to verify that h ∈ H and ε∩x0 − h∩ < |x→(x0) − c|. This shows that
εd(x0, H) < |x→(x0) − c|. �

We use the formula given above as follows. Let x→ ∈ SX→ , H0 = {x ∈ X : x→(x) =
1} and Hn = {

x ∈ X : x→(x) = 1 − 1
n

}

. Then from the previous formula we get that
d(0, H0) = 1 and d(0, Hn) = 1 − 1

n . We can also verify that

d(BX , H0) = inf {∩x − y∩ : x ∈ BX and y ∈ H0} = 0

and d(H0, Hn) = 1
n .

We can easily visualize that a hyperplane H = {x ∈ X : x→(x) = c} divides the
space X into two parts H+ = {x ∈ X : x→(x) ∇ c} and H− = {x ∈ X : x→(x) ≥ c}.
Note that H = H+ ⊆ H− and the half space H+ or H− lies on one side of H.
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Fig. 2 Slice S(X, x→, δ)
formed by slicing BX
by the hyperplane Hδ

= {x ∈ X : x→(x) = 1 − δ}

slice

Hδ

B x

slice

Hδ
B x

A slice S(X, x→, δ), 0 ≥ δ < 1, x→ ∈ SX→ , is the intersection of the unit
ball BX and the half space {x ∈ X : x→(x) ∇ 1 − δ}. We cut the unit ball into two
pieces with the hyperplane {x ∈ X : x→(x) = 1 − δ} and take the slice lying in
{x ∈ X : x→(x) ∇ 1 − δ}. The slice S(X, x→, δ) is illustrated in Fig. 2.

In case 0 < δ < 1, the slice S(X, x→, δ) is nonempty. Observe that if we take

Y = {

x ∈ X : x→(x) = 0
}

and x0 ∈ S(X, x→, δ) then d(x0, Y) ∇ 1 − δ. Does this resemble Riesz Lemma?
Let us discuss the slice for the case δ = 0. It can be easily verified that if x→ ∈ SX→ ,

then the hyperplane H = {x ∈ X : x→(x) = 1} does not intersect the interior of the
unit ball BX . If S(X, x→, 0) ∗= ∅, then geometrically it is clear in this case that
the hyperplane H touches the unit ball at all points of S(X, x→, 0). Therefore if
S(X, x→, 0) ∗= ∅we say that the hyperplane {x ∈ X : x→(x) = 1}, defined by x→ ∈ SX→ ,
is a supporting hyperplane supporting BX at every point of S(X, x→, 0) and x→ is a
support functional. Since the setS(X, x→, 0) is the intersection ofSX and a hyperplane,
it is sometimes called a face of BX . See Figs. 3 and 4 for the illustration of supporting
hyperplanes and faces.

Remark 1 Observe that S(X→, x, δ), x ∈ X, is a slice of the ball BX→ generated by
the element x ∈ X→→ and S(X, x→, δ) = S(X→→, x→, δ) ⊆ X.

Let see the geometric interpretation of some well-known results in Functional
Analysis which would help us to visualize several other geometric results.

The following geometric result is an immediate consequence of the Hahn-Banach
extension theorem.

Theorem 2 For every x0 ∈ SX, there exists x→ ∈ SX→ such that x→(x0) = 1.

Theorem 2 says that for a given point x0 in SX we can always find a supporting
hyperplane {x ∈ X : x→(x0) = 1}, defined by some x→ ∈ SX→ , supporting BX at x0
and hence S(X→, x, 0) is always nonempty for all x ∈ SX . The following question is
natural.

Question 1 For given x→ ∈ SX→ , is it possible to find an element x ∈ SX such that
x→(x) = 1?
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Fig. 3 Hyperplane
H = {x ∈ X : x→(x) = 1}
supporting BX at x0 ∈
S(X, x→, 0)

x0

H

Bx

x0

H

Bx

Fig. 4 Multiple
hyperplanes supporting BX
at x ∈ S(X, x→, 0)

x

Bx

The question can be geometrically interpreted as follows. Suppose we are given a
hyperplane H = {x ∈ X : x→(x) = 1}. Does H support BX at some point? The same
question can also be posed as follows. Is it necessary that every x→ ∈ SX→ is a support
functional or S(X, x→, 0) ∗= ∅ for every x→ ∈ SX→? The following simple example
illustrates that S(X, x→, 0) could be empty for some x→ ∈ SX→ .

Example 1 Let X = {x ∈ (C[0, 1], ∩ ∩∞) : x(0) = x(1) = 0} and define x→(x) =
∫ 1
0 x(t)dt. It can be verified that x→ ∈ SX→ and x→(x) < 1 for all x ∈ BX . Therefore

S(X, x→, 0) = ∅.
Observe that for x→ ∈ SX→ , S(X, x→, 0) = BX ⊆H0 where H0 = {x ∈ X : x→(x) =

1}. The above example illustrates that although d(BX , H0) = 0 and d(0, H0) = 1,
the hyperplane H0 may not touch the unit ball BX , that is, it may happen that the slice
S(X, x→, 0) could be empty for some x→. So the following question is also natural.

Question 2 Under what condition on X, every x→ ∈ SX→ is a support functional?

It follows from theBanach-Alaoglu theorem that ifX is reflexive thenBX isweakly
compact and hence every x→ ∈ SX→ is a support functional. What about the converse?
This question remained open for about thirty years and finally it was settled by James
[27].

Theorem 3 (James Theorem) X is reflexive if and only if every x→ ∈ SX→ is a support
functional.
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Fig. 5 Norm of x0 is equal to
the supremum of the distances
between 0 and the hyperplanes
passing through x0

x0

O

d(0,x  ) 0 

d(0,H)

H

In terms of slices the James theorem can be stated as follows: X is reflexive if and
only S(X, x→, 0) ∗= ∅ for all x→ ∈ SX→ . We refer to [29] for the proof of the James
theorem.

We discussed some geometric results above and their geometric interpretations
by associating each x→ ∈ SX→ with a hyperplane. We will consider one more result
involving elements from SX→ and see its geometric interpretation.

The following result is an immediate consequence of the Hahn-Banach theorem.

Theorem 4 Let x0 ∈ X such that x0 ∗= 0. Then ∩x0∩ = sup {|x→(x0)| : x→ ∈ SX→}.
The above result is a kind of a duality result. The geometric interpretation will

explain this. For x→ ∈ SX→ , consider the hyperplane Hx→ = {x ∈ X : x→(x) = x→(x0)}.
Then by Ascoli’s formula d(0, Hx→) = |x→(x0)|. Now Theorem 4 can be rewritten as
follows:

∩0 − x0∩ = sup{d(0, Hx→) : x→ ∈ SX→}.

The above observation says the following: Consider all hyperplanes passing through
the point x0 and find the supremum of the distances between 0 and these hyperplanes
which is same as the minimum distance between the points 0 and x0. This geometric
interpretation is shown in Fig. 5.

We considered the origin and a point x0 above and wrote ∩0 − x0∩ as max of
d(0, Hx→). One can ask the following question. Is it possible to write the distance
between a point x0 and a closed convex subset C as a maximum of the distances
between x0 and all hyperplanes separating x0 and C? This is explained in Fig. 6. This
is possible and this is one of the duality results in minimum norm problems [28].

We will use the basic results in Functional Analysis such as the Hahn-Banach
separation theorem and Hanh-Banach extension theorem in general forms, Goldstine
theorem and Eberlian-Šmulian theorem. For the statements of these theorems and
their proofs, we refer to [29].
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Fig. 6 Distance between a
point x0 and the set C is
equal to the supremum of the
distances between x0 and the
separating hyperplanes

d(x ,H ) 0 

x   0 

H

C

2.1.1 Notes and Remarks

Generally a hyperlane in X is defined as a translate of a maximal proper subspace of
X or a translate of a subspace of codimension one [4, 24, 28]. It can be shown that
a set H is a closed hyperplane in X (with respect to the definition mentioned above)
if and only if there exist x→ ∈ SX→ and c ∈ R such that H = {x ∈ X : x→(x) = c}.

Figure6 is used in [28] for illustration of the minimum norm problems and a
similar figure can be seen on the cover page of the journal “Numerical Functional
Analysis and Optimization”.

2.2 Strict Convexity and Smoothness

We define two basic geometric properties of Banach spaces called “strictly convex”
and “smooth” in terms of faces of BX and BX→ , respectively. We show that the notion
of smoothness is associated with a notion of differentiability of the norm. We will
also see the relation between strict convexity and smoothness.

The space X is called strictly convex if for any x→ ∈ SX→ , the face S(X, x→, 0) is a
singleton whenever it is nonempty. So if X is strictly convex then every supporting
hyperplane can support or say touch BX at only one point (see Figs. 3 and 4).

Theorem 5 The space X is strictly convex if and only if SX does not contain a line
segment.

Proof Let X be strictly convex. Suppose x, y ∈ SX , x ∗= y and the line segment [x, y]
containing x and y is contained in SX . By the Hahn-Banach separation theorem there
exists a hyperplane H0 = {x ∈ X : x→(x) = 1}, x→ ∈ SX→ , separating [x, y] and BX .
It is easy to very that [x, y] ⇔ S(X, x→, 0) which is a contradiction. The converse is
obvious from the definition. �

The space X is said to be smooth if for any x ∈ SX , the face S(X→, x, 0) in BX→ is a
singleton. Note that the smoothness of X is defined by the faces of BX→ whereas strict
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convexity is defined by the faces of BX . If X is smooth then for every point x ∈ SX ,
there exits a unique supporting hyperplane which supports BX at x. One might ask
whether the notion of smoothness corresponds to any differentiability.

We will first relate the Gâteaux differentiability of the norm and the support
functionals. Note that the smoothness is related to the support functionals.

Let x ∈ SX . Suppose the norm ∩ · ∩ of X is Gâteaux differentiable at x and f is its
derivative. Then, for h ∈ SX ,

|f (h)| =
∣
∣
∣
∣
lim
t≤0

∩x + th∩ − ∩x∩
t

∣
∣
∣
∣
≥ lim

t≤0

∩th∩
|t| = 1.

and

f (x) = lim
t≤0+

∩x + tx∩ − ∩x∩
t

= ∩x∩ = 1.

This shows that if the norm ∩ · ∩ of X is Gâteaux differentiable at x ∈ SX , then its
derivative f is in S(X→, x, 0) or f is a support functional which supports BX at x. The
natural questions are:

1. Is every element of S(X→, x, 0) associated with some kind of differentiability of
the norm of X?

2. Suppose S(X→, x, 0) is a singleton, can we say that the norm of X is Gâteaux
differentiable at x?

Wewill address these questions below. The results of this subsection and their proofs
will be used in Sect. 4. Let us first express the set S(X→, x, 0) in different forms which
will reveal the relation between the set S(X→, x, 0) and some kind of differentiability
of the norm.

Lemma 1 Let x0 ∈ SX. Then

S(X→, x0, 0) = {

x→ ∈ X→ : x→(x) − x→(x0) ≥ ∩x∩ − ∩x0∩ ⇒ x ∈ X
}

= {

x→ ∈ X→ : x→(h) ≥ ∩x0 + h∩ − ∩x0∩ ⇒ h ∈ X
}

.

Proof If x→ ∈ S(X→, x0, 0) then it is clear that x→(x)−x→(x0) ≥ ∩x∩−1 for all x ∈ X.

Conversely, suppose

x→(x) − x→(x0) ≥ ∩x∩ − ∩x0∩

for all x ∈ X. If we take x = x0 + y then x→(y) ≥ ∩x0 + y∩ − ∩x0∩ ≥ ∩y∩ for any
y ∈ X. This shows that ∩x→∩ ≥ 1. If x = 0, x→(x0) ∇ ∩x0∩ and if x = 2x0 then
x→(x0) ≥ ∩x0∩. This proves that x→ ∈ S(X→, x0, 0). �
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In Convex Analysis (see [16, 35]), the elements in the set

{x→ ∈ X→ : x→(x) − x→(x0) ≥ ∩x∩ − ∩x0∩ ⇒ x ∈ X}

are called subdifferentials of the convex function ∩ · ∩ at x0.
The second form of the set S(X→, x0, 0) that we are going to write will give a

better picture about the relation between the set and the differentiability of the norm
function. We need some definitions and basic results.

It is known [29, p. 483] that, for a fixed x ∈ SX the function t ≤ ∩x+th∩−∩x∩
t

is increasing on R\{0} for any h ∈ X and hence the one sided limits (at x in the
direction h)

d+(x, h) = lim
t≤0+

∩x + th∩ − ∩x∩
t

,

and

d−(x, h) = lim
t≤0−

∩x + th∩ − ∩x∩
t

exist. Moreover, the map d+(x, ·) is positive homogeneous and finitely subadditive.
The following lemma is a consequence of Lemma 1.

Lemma 2 Let x ∈ SX. Then

S(X→, x, 0) = {

x→ ∈ SX→ : d−(x, h) ≥ x→(h) ≥ d+(x, h) ⇒ h ∈ X
}

.

Proof It is easy to see from Lemma 1 that

S(X→, x, 0) ⇔ {x→ ∈ SX→ : d−(x, h) ≥ x→(h) ≥ d+(x, h) ⇒ h ∈ X}.

If x→ ∈ SX→ satisfies the condition d−(x, h) ≥ x→(h) ≥ d+(x, h) ⇒ h ∈ X, then

1 = d−(x, x) ≥ x→(x) ≥ d+(x, x) = 1.

This shows that x→ ∈ S(X→, x, 0). �

It is clear from Lemma 2 that if the norm of X is Gâteaux differentiable at x ∈ SX

then S(X→, x, 0) is a singleton. In fact, the converse is also true which is stated in the
following result which is due to Banach. We will also use the proof of the following
theorem in Sect. 4.

Theorem 6 Let x ∈ SX. Then S(X→, x, 0) is a singleton if and only if the norm ∩ · ∩
of X is Gâteaux differentiable at x.

Proof Suppose that the norm ∩ · ∩ of X is not Gâteaux differentiable at x. Then
there exist h ∈ X and ε ∈ R such that d−(x, h) < ε < d+(x, h). Define
M = span{h} and a linear functional g on M by g(σh) = σε for all σ ∈ R. By
using the fact that d+(x, ·) is positive homogeneous and d−(x, h) = −d+(x,−h)
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we get that g(y) ≥ d+(x, y) for all y ∈ M. By the Hahn-Banach extension theorem
[29, p. 73] there is a linear functional x→

ε on X such that x→
ε(y) ≥ d+(x, y) for all

y ∈ X. Moreover, for all y ∈ X,

d−(x, y) = −d+(x,−y) ≥ −x→
ε(−y) = x→

ε(y).

To prove x→
ε ∈ SX→ , observe that

x→
ε(y) ≥ d+(x, y) ≥ 1

1
∩x + 1y∩ − ∩x∩ ≥ ∩y∩,

for all y ∈ X and 1 = d−(x, x) ≥ x→
ε(x) ≥ d+(x, x) = 1. This proves that x→

ε ∈ SX→
and S(X→, x, 0) is not a singleton. �

Corollary 1 The space X is smooth if and only if the norm ∩ · ∩ of X is Gâteaux
differentiable on SX.

The following result is a consequence of the fact that X ⇔ X→→.

Theorem 7 The space X is smooth if X→ is strictly convex. Similarly, X is strictly
convex if X→ is smooth.

Proof Suppose X→ is strictly convex. Then S(X→, x→→, 0) is at most a singleton for
every x→→ ∈ SX→→ . This implies that S(X→, x, 0) is a singleton for every x ∈ SX as
SX ⇔ SX→→ . This proves that X is smooth.

Suppose X→ is smooth. Then for every x→ ∈ SX→ , S(X→→, x→, 0) is a singleton. This
implies that S(X, x→, 0) = S(X→→, x→, 0) ⊆ X which is either empty or a singleton.
This proves the result. �

The proof of the following result is immediate from Theorem 7.

Theorem 8 Suppose X is reflexive. Then X is smooth if and only if X→ is strictly
convex and X is strictly convex if and only if X→ is smooth

We define a notion called uniformly convex which is a stronger notion compared
to strictly convex. We do not define this notions in terms of slices; however, it will
be characterized in terms of slices in Sect. 4.

Suppose X is strictly convex. We have seen in Theorem 5 that if x, y ∈ SX , x ∗= y,

then 1 −
∥
∥
∥

x+y
2

∥
∥
∥ > 0. But this quantity need not be uniformly bounded from below.

We say that X is uniformly convex if for every α > 0 (0 < α ≥ 2) there is a δ > 0

such that for all x, y ∈ BX with ∩x − y∩ ∇ α we have 1 −
∥
∥
∥

x+y
2

∥
∥
∥ > δ.

Remark 2 For examples of strictly convex spaces, smooth spaces, and uniformly
convex spaces, we refer to [13, 24, 29]. We will discuss some other geometric prop-
erties which are stronger than strict convexity and weaker than uniform convexity.
However, we will not present examples for spaces satisfying such properties and we
refer to [29] for examples.
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3 Convergence of Sequence of Sets

Since the slices are sets, for studying the convergence of sequence of slices we need
to know the convergence of sequence sets which is discussed in this section.

There are several notions of convergence of sequence of sets but in this section,
we will discuss only two notions of convergence called Vietoris and Hausdorff con-
vergence. For other notions of convergence of sequence of sets, we refer to [4, 31].
Since the continuity of the set-valued mappings can be defined in terms of the con-
vergence of sequence of sets, we also touch upon the definitions of the continuity of
the set-valued mappings at the end of this section.

In this section, we assume that X and Y are metric spaces. Let CL(X) denote the
set of all nonempty closed subsets of X. The set of all nonempty closed and bounded
subsets will be denoted by CLB(X). Throughout the section, we assume that {Cn} is
a sequence in CL(X) and C0 ∈ CL(X). For C ∈ CL(X) and β > 0 we write Bβ(C) for
{x ∈ X : d(x, C) < β}. Whenever we write {nk}, it is understood that it is a strictly
increasing sequence in N.

3.1 Definitions of Vietoris and Hausdorff Convergence

We present the definitions of the convergence of sequence of sets in the sense of
Vietoris and Haudorff and some examples.

3.1.1 Vietoris Convergence

Each notion of convergence of sequence of sets has two parts, called upper and lower
parts, which are analogous to limsup and liminf of a sequence of real numbers.

Let us first define the upper part of the Vietoris convergence, called V+ conver-
gence.

We say that Cn
V+−≤ C0 if whenever C0 ⇔ V for an open set V of X, then Cn ⇔ V

eventually. The intuitive idea of this notion of convergence is that if C0 is small
enough to be contained in an open set V then C⊂

ns are also small enough to be
contained in V .

The lower part of the Vietoris convergence, called V−, is defined as follows.

We say that Cn
V−−≤ C0 if C0 ⊆ V ∗= ∅ for an open set V of X, then Cn ⊆ V ∗= ∅

eventually. The intuitive idea of this convergence is that if C0 is big enough to hit an
open set V then C⊂

ns are also big enough to hit V .

The sequence (Cn) converges to C0 in the Vietoris sense, denoted by Cn
V−≤ C0,

if Cn
V+−≤ C0 and Cn

V−−≤ C0. The Vietoris convergence is a topological convergence,
in the sense that there is a topology γV on CL(X), called Vietoris topology, such that
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Cn
V−≤ C0 if only if Cn −≤ C0 in the topology γV . We refer to the book [4] for more

details about the Vietoris topology.

3.1.2 Hausdorff Convergence

We first define the upper part of the Hausdorff convergence, called H+ convergence.

We say that Cn
H+−≤ C0 if for every α > 0, Cn ⇔ Bα(C0) eventually.

We say that Cn
H−−≤ C0 if for every α > 0, C0 ⇔ Bα(Cn) eventually.

The sequence (Cn) converges toC0 in theHausdorff sense, denoted byCn
H−≤ C0,

if Cn
H+−≤ C0 and Cn

H−−≤ C0.

The Hausdorff convergence is also a topological convergence. In fact, if Cn, C0 ∈
CLB(X) for all n, then Cn

H−≤ C0 if and only if Cn −≤ C0 in the Hausdorff metric
H on CLB(X). The well-known Hausdorff metric H is defined below

For A, B ∈ CL(X), we define h(A, B) = sup{d(a, B) : a ∈ A} and

H(A, B) = max{h(A, B), h(B, A)}.

It is easily seen that h(A, B) < α if and only if A ◦ Bα(B). This shows that

h(Cn, C0) ≤ 0 if and only if Cn
H+−≤ C0. Similarly, h(C0, Cn) ≤ 0 if and only

if Cn
H−−≤ C0.

Note that if A is unbounded then h(A, B) could be infinite. It can be easily verified
thatH is an infinite-valued pseudo-metric onCL(X) and it is a metric onCLB(X). We
refer to [4] for more details on the Hausdorff metric and infinite-valued Hausdorff
seudometric.

Remark 3 It is clear from the definitions that Cn
V+−≤ C0 implies Cn

H+−≤ C0. On

the other hand, it can be easily derived from the definitions that Cn
H−−≤ C0 implies

Cn
V−−≤ C0. The converses need not be true which are illustrated in the following

examples.

Example 2 (a) Let C0 = {(x, 0) ∈ R
2 : x ∈ R} and Cn = {(

x, 1
n

) : x ∈ R
}

. Then

Cn
H+−≤ C0 but Cn

V+
/−≤ C0.

(b) Let C0 = R and Cn = [−n, n], n ∈ N. Then Cn
V−−≤ C0 but Cn

H−
/−≤ C0.

(c) Let C0 = {(x, 0) ∈ R
2 : x ∈ R} and Cn = {

t
(

1, 1
n

) : t ∈ R
}

for all n ∈ N. Then

Cn
V−−≤ C0 but Cn

H−
/−≤ C0.
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Remark 4 It is clear from the definition that Vietoris convergence can be defined
for a sequence of subsets of a topological space. Hausdorff convergence can also
be defined for sequence of subsets of certain nonmetrizable spaces. For example,

in a normed linear space, we say that Cn
H+

w−≤ C0 if Cn ⇔ C0 + N for every weak
neighborhood N of 0. Similarly, we can define H−

w , V+
w , V−

w , H−
w→ , V+

w→ and V−
w→

convergence. These convergence notions are used for studying the convergence of
slices. However, in this chapter we will present only the Vietoris and Hausdorff
convergence of slices with respect to the metric associated with the given norm.

3.2 Characterizations of Convergence of Sequence of Sets

We now characterize the convergence of sequence of sets in terms of the sequence of
elements from the sequence of sets. We will use these characterizations in the later
sections for the convergence of slices and of sets of nearly best approximations.

Let us see a characterization of the upper part of the Hausdorff convergence.

Theorem 9 Consider the following statements.

(a) Cn
H+−≤ C0.

(b) If (xn) is such that xn ∈ Cn for every n then d(xn, C0) ≤ 0.
(c) If (xk) is such that xk ∈ Cnk for every k and xk ≤ x0 for some x0 then x0 ∈ C0.

Then (a) ∪ (b) ∃(c).

Proof This can be easily derived from the definition. �

Some characterizations of the upper part of the Vietoris convergence are derived
in the following result.

Theorem 10 Consider the following statements.

(a) Cn
V+−≤ C0.

(b) Every sequence (xnk ) such that xnk ∈ Cnk \C0, k = 1, 2, . . . has a convergent
subsequence converging to some element x0 ∈ C0.

(c) Cn
H+−≤ C0 and every sequence (xnk ) such that xnk ∈ Cnk \C0, k = 1, 2, . . . has

a convergent subsequence.

(d) Cn
H+−≤ C0.

(e) Every sequence (xnk ) such that xnk ∈ Cnk , k = 1, 2, . . . has a convergent subse-
quence converging to some element x0 ∈ C0.

Then (a) ∪ (b) ∪ (c) ∃ (d) ⇐ (e). If C0 is compact then all five statements are
equivalent.
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Proof (a) ∃ (b): Suppose Cn
V+−≤ C0 and let xnk ∈ Cnk \C0, k = 1, 2, . . .. We will

first show that it has a convergent subsequence. If not, then the set F = {xnk :
k = 1, 2, . . .} is closed and C0 ⇔ Fc but Cn ∅ Fc eventually which is a contra-
diction. Suppose xnk ≤ x0 for some x0. If x0 does not belong to C0, then the set
F = {xnk : k = 1, 2, . . .} ⊕ {x0} is closed and C0 ⇔ Fc but Cn ∅ Fc eventually
which is a contradiction.

(b) ∃ (a): Let us assume that there exists an open set V and a sequence nk such that
C0 ⇔ V but Cnk ∅ V for every k. Choose xnk such that xnk ∈ Cnk \V for every k.
By (b) there exists a subsequence of (xnk ) converging to some x0 ∈ V which is a
contradiction.

(a) ∃ (c): This follows easily from (a) and (b).

(c) ∃ (d): This is obvious.

(e) ∃ (d): Since (e) implies (b) and (b) is equivalent to (a), (e) implies (d).

Suppose that C0 is compact and (d) holds. To prove (c), let (xnk ) be such that

xnk ∈ Cnk \C0, k = 1, 2, . . . .

Since Cn
H+−≤ C0, by Theorem 9, d(xnk , C0) ≤ 0. Therefore there exists ynk ∈

C0 such that d(xnk , ynk ) ≤ 0. Since (ynk ) has a convergent subsequence, (xnk )

has a convergent subsequence. This proves (d)∃ (c) under the assumption that C0
is compact.
If C0 is compact then the proof of (d) ∃ (e) follows from (b). �

Let us make some observations on the convergence V+ and H+. Suppose that

(xn) is a sequence such that xn ∈ Cn, for every n. Then, in case of Cn
H+−≤ C0, the

sequence (xn) is close to the set C0. On the other hand when Cn
V+−≤ C0, the sequence

(xn) is not only close to the setC0 but it has a convergent subsequence if the sequence
(xn) is not eventually inC0. Observe that a kind of compactness argument is involved
when we deal with V+ but which is missing when we deal withH+. This observation
leads to the following characterization.

We need two definitions.
For a sequence (Cn) in CL(X), we define lim Cn as follows:

lim Cn = {x ∈ X : there exists a sequence (xk) such that xk ∈ Cnk and xk ≤ x}.
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3.2.1 Measure of Noncompactness

Let A be a nonempty bounded subset of X. Then the Hausdorff index of noncom-
pactness ε(A) of A is defined as follows [2]:

ε(A) = inf{β > 0 : A ⇔ Bβ(F) for some finite set F ⇔ X}.

It is clear that ε(A) = 0 if and only if A is totally bounded.
In the following result, we write Fn for

⋃∞
i=n(Ci\C0) for a given sequence (Cn)

in CL(X) and C0 ∈ CL(X).
The proof of the following theorem is similar to the proof of [9, Lemma 1].

Theorem 11 Let X be a complete metric space. Then the following statements are
equivalent.

(a) Cn
V+−≤ C0.

(b) lim Cn = C0 and ε(Fn) ≤ 0.

Proof (a) ∃ (b): Let Cn
V+−≤ C0. Then Theorem 10 implies that lim Cn = C0.

Suppose lim ε(Fn) ∗= 0. As (Fn) is a descending sequence, there exists β > 0 such
that ε(Fn) > 2β for every n. Choose some x1 ∈ F1 and find x2 ∈ F2 such that
d(x1, x2) > β. Find x3 ∈ F3 such that d(x1, x3) > β and d(x2, x3) > β. Repeat the
process and find a sequence (xn) such that xn ∈ Fn for every n and d(xi, xj) > β when
i ∗= j. Observe that (xn) does not have a convergent subsequence which contradicts
(a) ∃ (b) of Theorem 10
(b)∃ (a):Wewill use (b)∃ (a) of Theorem 10. Suppose that (xk) is a sequence such
that xk ∈ Cnk \C0, k = 1, 2, . . .. Then xk ∈ Fnk for every k and by (b), ε(Fnk ) ≤ 0.
This implies that ε({x1, x2, . . .}) = 0. Therefore (xk) has a Cauchy subsequence and
hence (xk) has a convergent subsequence converging to some x0. Since lim Cn = C0,
x0 ∈ C0. Therefore (a) follows from (b) ∃ (a) of Theorem 10. �

We will now present the characterizations for the lower parts of the Vietoris and
Hausdorff convergence without proofs. The proofs can be easily derived from the
definitions.

Theorem 12 The following statements are equivalent.

(a) Cn
V−−≤ C0.

(b) For every x0 ∈ C0 there exists xn ∈ Cn, n ∇ 1, such that xn ≤ x0.

Theorem 13 The following statements are equivalent.

(a) Cn
H−−≤ C0.

(b) For any sequence (xn) in C0 there exists yn ∈ Cn, n ∇ 1, such that d(xn, yn)

≤ 0.
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It is clear from Theorems 12 and 13 that Cn
H−−≤ C0 ∃ Cn

V−−≤ C0. The reverse
implication need not be true in general which is illustrated in Example 2.

The following result follows from Theorems 12 and 13.

Theorem 14 If C0 is compact then Cn
V−−≤ C0 ∪ Cn

H−−≤ C0.

3.3 Convergence of Sequence of Nested Sets

In this subsection, we assume that the sequence (Cn) satisfies the condition that

Cn+1 ⇔ Cn for all n. It is clear from the definitions that in this case Cn
V+−≤ C0 ∪

Cn
V−≤ C0. Similarly, Cn

H+−≤ C0 ∪ Cn
H−≤ C0. Observe that the sequence of slices(

S
(

X, x→, 1
n

))

is a nested sequence.

Theorem 15 Suppose that X is complete and (Cn) is a sequence in CL(X) satisfying
the condition Cn+1 ⇔ Cn for all n. Let C0 = ⋂

n∇1 Cn. Consider the following
statements.

(a) C0 is nonempty and Cn
V−≤ C0.

(b) Every sequence (xn) such that xn ∈ Cn\C0, n = 1, 2, . . . has a convergent
subsequence converging to some element x0 ∈ C0.

(c) Every sequence (xn) such that xn ∈ Cn, n = 1, 2, . . . has a convergent subse-
quence converging to some element x0 ∈ C0.

(d) ε(Cn) ≤ 0.
(e) diam(Cn) ≤ 0.
(f) There exists x0 such that C0 = {x0} and every sequence (xn) satisfying xn ∈

Cn, n ∈ N, has a convergent subsequence converging to x0.

Then (a) ∪ (b) ⇐ (c) ∪ (d) ⇐ (e) ∪ (f). If C0 is compact, then (b) ∃ (c). If C0 is
a singleton then, (d) ∃ (e).

Proof (a) ∪ (b): Since the sequence is nested, the equivalence follows from (a) ∪
(b) of Theorem 10.

(c) ∃ (b): This is obvious.

(c) ∃ (d): Observe that (c) implies that C0 is nonempty and compact. Note that, by

Theorem 10, (c) implies that Cn
V−≤ C0. Therefore, (d) follows from Theorem 11.

(d) ∃ (c): Observe that (d) implies that C0 is nonempty and compact. Moreover, if
xk ∈ Cnk and xk ≤ x0, then x0 ∈ Cnk for every k. Therefore, x0 ∈ C0. This proves
that limCn = C0. Therefore, (c) follows from (b) ∃ (a) of Theorem 11 and (a) ∃
(e) of Theorem 10.
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(e) ∃ (d): Since ε(Cn) ≥ diam(Cn), the implication is obvious.

(e) ∃ (f): Since X is complete and diam(Cn) ≤ 0, C0 = {x0} for some x0. Let (xn)

be a sequence such that xn ∈ Cn, n ∈ N. Then, by (e), the sequence (xn) is Cauchy
and hence it converges to x0.

(f) ∃ (e): By (b) ∃ (a), Cn
V−≤ C0. Since C0 is a singleton, (e) follows.

If C0 is compact, then (b) ∃ (c) follows from the fact that the sequence is nested
and (e) ∃ (b) of Theorem 10.

If C0 is a singleton, then (a) ∃ (e). This proves (d) ∃ (e). �

3.4 Continuity of Set-Valued Mappings

In this section, we define semicontinuities of set-valued mappings in terms of con-
vergence of sequence of sets. We need these definitions for Sect. 4.

Let F : X ≤ CL(Y) and x ∈ X. The set-valued map F is said to be upper

semicontinuous (in short, usc) at x if F(xn)
V+−≤ F(x) whenever a sequence (xn) in

X converges to x. If F is usc at every point of x, we say that F is usc (on X). The

map F is called lower semicontinuous (in short, lsc) at x if F(xn)
V−−≤ F(x)whenever

xn ≤ x. The map F is continuous at x if it is lsc and usc at x. If F is continuous at
every point of x, we say that F is continuous (on X).

Hausdofff semicontinuities are defined as follows.
The map F is Hausdorff upper semicontinuous (in short, Husc) at x if

F(xn)
H+−≤ F(x) whenever xn ≤ x. Similarly F is Hausdorff lower semicontinuous

(in short, Hlsc) at x if F(xn)
H−−≤ F(x) whenever xn ≤ x.

Since the semicontinuities of F are defined in terms of convergence of sets, for
every result presented in Sect. 3.2, there is a counterpart for F. For example, we can
use Theorem 10 to relate the usc of F at a point x with the behavior of the sequence
of elements from F(xn) when xn ≤ x.

It is clear from the definitions that usc implies Husc and Hlsc implies lsc. The
converses need not be true which are illustrated in the following examples. The
following examples are modifications of the examples presented in Example 2.

Example 3 (a) Let F : R ≤ CL(R) be defined by F(x) =
[

− 1
|x| ,

1
|x|

]

if x ∗= 0 and

F(0) = R. The function is not Hlsc at x = 0 and it is continuous on R.

(b) Let F : R ≤ CL(R2) be defined by F(x) =
{

(x, y) ∈ R
2 : 0 ≥ y ≥ 1

|x|
}

if x ∗= 0

and F(0) = {

(0, y) ∈ R
2 : y ∇ 0

}

. The function is Husc but not usc.

(c) Let F : R ≤ CL(R2) be defined by F(x) = {

(t, xt) ∈ R
2 : t ∈ R

}

. Then F is lsc
but not Hlsc.
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Fig. 7 Sequence of slices
S(X, x→, 1

n ) of BX formed by
the hyperplanes Hn = {x ∈
X : x→(x) = 1 − 1

n }
H   n 

B  x 

H   n 

B  x 

4 Convergence of Slices and Geometry of Banach Spaces

In this section, some known geometric properties of Banach spaces are characterized
in terms of convergence of sequence of slices

S
(

X, x→, 1/n
)

, S
(

X→, x, 1/n
)

and S
(

X→→, x→, 1/n
)

as n ≤ ∞.

A sequence of slices is illustrated in Fig. 7.
We first present two results of Šmulian characterizing smooth and uniformly

convex spaces. Throughout this section, we assume that X is a real Banach space.

4.1 Characterization of Strictly Convex and Smooth Spaces

We present characterizations of strictly convex and smooth spaces in terms of se-
quence of slices. The following result is due to Šmulian [32].

Theorem 16 The following two statements are equivalent.

(a) X is smooth.
(b) Let x ∈ SX and x→

n ∈ S
(

X→, x, 1
n

)

for every n. Then (x→
n) is a w→-convergent

sequence.

Proof (a) ∃ (b): Suppose x ∈ SX and x→
n ∈ S

(

X→, x, 1
n

)

for every n. Since X is
smooth, S(X→, x, 0) is a singleton, say {x→

0}. Since x→
n(x) ≤ 1 = x→

0(x), if (x→
n) is

w→-convergent then x→
n

w→−≤ x→
0 . In fact every w→-convergent subnet of (x→

n) converges

to x→
0 in the w→-topology. So we claim that x→

n
w→−≤ x→

0 . Suppose that there exist β

and y ∈ SX such that
∣
∣(x→

nk
− x→

0)(y)
∣
∣ ∇ β for some subsequence nk . Since BX→ is

w→-compact, (x→
nk

− x→
0) has a subnet converging to 0 in the w→-topology which is a

contradiction.

(b) ∃ (a): Suppose that S(X→, x, 0) has two distinct elements x→
0 and y→

0. Then the
sequence (x→

n) = (x→
0 , y→

0, x→
0 , y→

0, . . .) satisfies the condition that x→
n ∈ S

(

X→, x, 1
n

)

for
every n but (x→

n) is not a w→-convergent sequence which is a contradiction. �
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In the following result, we present a characterization of strictly convex spaces
which is analogous to the previous result.

Corollary 2 Consider the following statements.

(a) X is strictly convex.
(b) Let x→ ∈ SX→ and xn ∈ S

(

X, x→, 1
n

)

for every n. Then every weakly convergent
subsequence of (xn) converges weakly to the same limit.

(c) Let x→ ∈ SX→ and x→→
n ∈ S

(

X→→, x→, 1
n

)

for every n. Then (x→→
n ) is a w→-convergent

sequence.
(d) The norm of X→ is Gâteaux differentiable on SX→ ; that is, X→ is smooth.

Then (a) ∪ (b) ⇐ (c) ∪ (d). If X is reflexive then all four statements are equivalent.

Proof (a) ∃ (b): Let X be strictly convex. Suppose x→ ∈ SX→ and xn ∈ S
(

X, x→, 1
n

)

for every n. If (xn) has a weakly convergent subsequence converging weakly to some
x0, then x0 ∈ S(X, x→, 0). Since S(X, x→, 0) is a singleton, (b) follows.

(b) ∃ (a): Suppose for some x→ ∈ SX→ , S(X, x→, 0) has two distinct elements x0
and y0. Then the sequence (xn) = (x0, y0, x0, y0, . . .) satisfies the condition that
xn ∈ S

(

X, x→, 1
n

)

for every n but (xn) has two subsequential limits.

Theproof of (c)∪ (d) follows fromTheorem16and (d)∃ (a) is proved inTheorem7.

If X is reflexive, by Theorem 8, (a) implies (d). Therefore all four statements are
equivalent. �

Observe, from the previous two results, that the smoothness of X is characterized
by the slices of BX→ whereas the strict convexity of X is characterized by the slices
of BX or BX→→ .

4.2 Characterizations of Uniformly Convex Spaces

The following result which characterizes uniformly convex spaces is due to Šmulian
[33].

Theorem 17 The following statements are equivalent.

(a) X is uniformly convex.
(b) diam

(

S
(

X, x→, 1
n

)) ≤ 0 uniformly for all x→ ∈ SX→ .
(c) diam

(

S
(

X→→, x→, 1
n

)) ≤ 0 uniformly for all x→ ∈ SX→ .
(d) The norm of X→ is uniformly Fréchet differentiable on SX→ .

Proof (a) ∃ (b): Let X be uniformly convex and 0 < β ≥ 2. Since X is uni-
formly convex, there is a δ > 0 such that for every x, y ∈ BX with ∩x − y∩ ∇ β
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we have
∥
∥
∥

x+y
2

∥
∥
∥ < 1 − δ. We show that diam

(

S
(

X, x→, δ
2

))

< β for all x→ ∈ SX→

which proves (b). Suppose that for some x→ ∈ SX→ there exist x, y ∈ S
(

X, x→, δ
2

)

such that ∩x − y∩ ∇ β. Then x→
(

x+y
2

)

≥
∥
∥
∥

x+y
2

∥
∥
∥ < 1 − δ which contradicts that

x+y
2 ∈ S

(

X, x→, δ
2

)

.

(b) ∃ (c): Since X is Banach and diam
(

S
(

X, x→, 1
n

)) ≤ 0 for all x→ ∈ SX→ ,

S(X, x→, 0) =
⋂

{

S

(

X, x→, 1
n

)

: n ∈ N

}

∗= ∅, for all x→ ∈ SX→ .

Therefore by the James theorem, X is reflexive. This proves (c).

The proof of (c) ∃ (b) is obvious as S
(

X, x→, 1
n

) ⇔ S
(

X→→, x→, 1
n

)

.

(b)∃ (a): First observe that (b) implies thatX is strictly convex. Suppose β > 0. Then
by (b), there exists a δ > 0 such that diam(S (X, x→, δ)) < β for all x→ ∈ SX→ . We

claim that for all x, y ∈ SX such that ∩x − y∩ ∇ β we have
∥
∥
∥

x+y
2

∥
∥
∥ < 1− δ

2 . Suppose

that there exist x, y ∈ SX such that ∩x−y∩ ∇ β but
∥
∥
∥

x+y
2

∥
∥
∥ ∇ 1− δ

2 . Find x→ ∈ SX→ such

that x→
(

x+y
2

)

=
∥
∥
∥

x+y
2

∥
∥
∥ . Therefore, by assumption, x→

(
x+y
2

)

=
∥
∥
∥

x+y
2

∥
∥
∥ > 1 − δ

2 .

This implies that x→(x) > 1− δ and x→(y) > 1− δ. Hence x, y ∈ S(X, x→, δ). There-
fore ∩x − y∩ < β which is a contradiction.

The proof of (a) ∪ (d) is involved and we refer to [29] for the proof. �

The following result, called Milman-Pettis Theorem, can be obtained as a conse-
quence of the previous result.

Theorem 18 Every uniformly convex Banach space is reflexive.

Proof This follows from the proof of (b) ∃ (c) of Theorem 17. �

In Theorem 17 and Corollary 2, we characterized the geometric properties uni-
form convexity and strict convexity, respectively. Several geometric properties which
are weaker than uniform convexity and stronger than strict convexity have been in-
troduced in the literature. Our aim is to present characterizations, similar to the ones
presented in Theorem 17 or Corollary 2, to the other geometric properties.

4.3 Strong Convexity and Its Characterizations

Theorem 17 motivates the introduction of the following geometric property which
is weaker than uniform convexity.
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We say that the space X is strongly convex if

diam

(

S

(

X, x→, 1
n

))

≤ 0, for all x→ ∈ SX→ .

The notion of strong convexity was actually introduced in a different formulation in
[14] which is explained at the end of this section.

We use the term strongly convex which is also used in [36]. However, the term
strongly rotund is used for strongly convex in [29].

It is clear from the proof of (b) ∃ (c) of Theorem 17 that every strongly con-
vex space is strictly convex and reflexive. But a space which is strictly convex and
reflexive need not be strongly convex. So we need some additional property for
characterizing the strong convexity. The following result helps to get the required
additional property.

We say that X has the Radon-Riesz property if the relative weak and norm topolo-
gies coincide on the unit sphere SX of X.

The Radon-Riesz property is also called Kadec-Klee property [12, 29].
In the rest of the section, whenever we write S

(

X, x→, 1
n

) ≤ S(X, x→, 0) in the
sense of V or H, it is understood that the limiting set S(X, x→, 0) is nonempty.

The following result is from [7, 8].

Theorem 19 The following statements are equivalent.

(a) For every x→ ∈ SX→ , S
(

X, x→, 1
n

) V−≤ S(X, x→, 0) and S(X, x→, 0) is compact.
(b) X is reflexive and has the Radon-Riesz property.

Proof (a) ∃ (b): Since S(X, x→, 0) is nonempty for all x→ ∈ SX→ , X is reflexive.

Let xn, x ∈ SX , for every n and xn
w−≤ x. Find x→ ∈ SX→ such that x→(x) = 1.

Then x→(xn) ≤ x→(x) = 1 and hence xn ∈ S(X, x→, δn) for some δn ≤ 0. Without
loss of generality, we assume that δn = 1

n . Since S(X, x→, 0) is compact and

S

(

X, x→, 1
n

)

V−≤ S(X, x→, 0),

by Theorem 17, (xn) has a convergent subsequence converging to x. In fact, we can
show that every subsequence of (xn) has a convergent subsequence converging to x.
Therefore, xn ≤ x. This proves that X has the Radon-Riesz property.

(b) ∃ (a): Let xn ∈ S
(

X, x→, 1
n

)

for all n. By reflexivity of X, there exists a subse-

quence (xnk ) of (xn) such that xnk

w−≤ x for some x ∈ BX . Since

x→(xnk ) ≤ x→(x),

x→(x) = 1. Therefore ∩x∩ = 1 and by the weak lower semicontinuity of the norm,
∩xnk ∩ ≤ 1. Therefore, by the Radon-Riesz property, xnk ≤ x. Since x ∈ S(X, x→, 0),



Convergence of Slices, Geometric Aspects in Banach Spaces and Proximinality 83

S(X, x→, 0) ∗= ∅.

Since S(X, x→, 0) ⇔ S(X, x→, 1
n ) for all n, the above argument shows that S(X, x→, 0)

is compact. Moreover, by Theorem 10, S
(

X, x→, 1
n

) V−≤ S(X, x→, 0). �

We will now characterize strongly convex spaces.

Theorem 20 The following statements are equivalent.

(a) X is strongly convex.
(b) X is reflexive, strictly convex and has the Radon-Riesz property.

Proof (a) ∃ (b): From the proof of (b) ∃ (c) of Theorem 17 we get that X is re-
flexive and strictly convex. By Theorem 15, diam

(

S
(

X, x→, 1
n

)) ≤ 0 implies that

S
(

X, x→, 1
n

) V−≤ S(X, x→, 0). Therefore, by Theorem 19, X has the Radon-Riesz
property.

(b) ∃ (a): By Theorem 19, for every x→ ∈ SX→ , S
(

X, x→, 1
n

) V−≤ S(X, x→, 0) and
S(X, x→, 0) is nonempty. Since X is strictly convex, S(X, x→, 0) is a singleton for
every x→ ∈ SX→ . Now (a) follows from Theorem 15. �

The following characterization of strong convexity is analogous to Corollary 2
and Theorem 17. We basically drop the condition “uniformly” from Theorem 17 for
obtaining the following result.

Theorem 21 The following statements are equivalent.

(a) X is strictly convex, reflexive and has the Radon-Riesz property.
(b) diam

(

S
(

X, x→, 1
n

)) ≤ 0 for all x→ ∈ SX→ .
(c) diam

(

S
(

X→→, x→, 1
n

)) ≤ 0 for all x→ ∈ SX→ .
(d) The norm of X→ is Fréchet differentiable on SX→ .

Proof The proof of (a) ∪ (b) follows from Theorem 20 and proof of (b) ∪ (c)
follows from the proof of (b) ∪ (c) of Theorem 17. We refer to [29] for the proof of
(a) ∪ (d). �

The implications (a) ∪ (b) of Theorem 21 are due to [14]. The implication (c) ∪
(d) of Theorem 21 is due to Šmulian [33].

In the following characterization of strong convexity, we see that the strong con-
vexity property is equivalent to a property which was introduced by Ky Fan and
Glicksberg. The following result is due to Ky Fan and Glicksberg [14].

Theorem 22 The following statements are equivalent.

(a) X is strongly convex.
(b) For every nonempty convex subset C of X, diam(C ⊆ tBX) ≤ 0 as t ∀ d(0, C).
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Proof (a) ∃ (b): Let C be a nonempty convex subset of X. Suppose d(0, C) = 0
and t ∀ d(0, C). Since (C ⊆ tBX) ⇔ tBX , diam(C ⊆ tBX) ≤ 0.

Let d(0, C) > 0. In this case we can assume that d(0, C) = 1. Because, if k > 0
and A is a nonempty subset of X, then d(0, kA) = kd(0, A) and

diam (kA ⊆ ktBX) = diam (k(A ⊆ tBX)) = k diam(A ⊆ tBX).

Let d(0, C) = 1. Find x→ ∈ SX→ such that the hyperplane H = {x ∈ X : x→(x) = 1}
separates BX and C. We can assume that C ⇔ H+ = {x ∈ X : x→(x) ∇ 1}. We show
that diam

(

H+ ⊆ (1 + 1
n )BX

) ≤ 0 as n ≤ 0 which proves (b). Let

xn ∈ H+ ⊆
(

1 + 1

n

)

BX , for all n.

Then,

yn =
(

1 − 1

n2

)
xn

∩xn∩ ∈ S

(

X, x→, 1
n

)

and ∩xn − yn∩ ≤ 0.

Since diam
(

S
(

X, x→, 1
n

)) ≤ 0, by Theorem 15, (yn) converges to S(X, x→, 0)which
is a singleton. Hence (xn) converges to S(X, x→, 0). Therefore, by Theorem 15,
diam

(

H+ ⊆ (

1 + 1
n

)

BX
) ≤ 0.

(b) ∃ (a): This proof is exactly similar to the proof given above. Let x→ ∈ SX→ and
xn ∈ S

(

X, x→, 1
n

)

. Consider C = H+ := {x ∈ X : x→(x) ∇ 1}. Then

yn =
(

1 − 1

n

)−1 xn

∩xn∩ ∈ H+ ⊆
(

1 − 1

n

)−1

BX and ∩xn − yn∩ ≤ 0.

Repeat the steps of the proof of (a) ∃ (b). �

The following corollary is an immediate consequence of Theorem 22 and the
definition of nearly best approximation given in the introduction.

Corollary 3 Let X be a strongly convex and C a nonempty closed convex subset of
X. Then diam

(

PC
(

0, 1
n

)) ≤ 0.

In Sect. 5, we will show that the converse of the previous corollary is also true.

4.4 Reflexive Space with Radon-Riesz Property

In this subsection we discuss a property which is weaker than strong convexity.
We need the following lemma which will also be used in Sect. 5.
The following result is from [8].
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Lemma 3 Let x→ ∈ SX→ . If S
(

X, x→, 1
n

) V−≤ S(X, x→, 0), then S(X, x→, 0) is com-
pact.

Proof Let (xn) be a sequence in S(X, x→, 0) for some x→ ∈ SX→ . Choose a sequence
(yn) inX such that ∩yn∩ < 1 for all n ∈ N and ∩xn−yn∩ ≤ 0. Since x→(xn−yn) ≤ 0,
x→(yn) ≤ 1. Therefore there exists a subsequence (ynk ) of (yn) such that

ynk ∈ S

(

X, x→, 1
k

)
∖

S(X, x→, 0), for all k ∈ N.

ByTheorem10, there exists a subsequence (ynkj
) of (ynk ) converging to some element

y ∈ S(X, x→, 0). Therefore, xnkj
≤ y which proves that S(X, x→, 0) is compact. �

Lemma 3 says that the convergence of slices in the Vietoris sense forces the face
contained in the slices to be compact. This does not happen when we deal with
the Hausdorff convergence of slices. This illustrates as to how strong the Vietoris
convergence of slices is compared to the Hausdorff convergence.

We will relax the condition “strict convexity” in Theorem 21 to get a characteri-
zation for the space which is reflexive and has the Radon-Riesz property.

We need the following lemma proved in [17].

Lemma 4 Let x→ ∈ SX→ and 0 < δ < 1. Then S(X→→, x→, δ) is contained in the
weak→ closure of S(X, x→, δ) (in X→→).

Proof Let x→→
0 ∈ S(X→→, x→, δ) and N be a weak→ neighborhood of x→→

0 in X→→. Now
N1 defined by

N1 = N ⊆ {x→→ ∈ X→→ : x→→(x→) > 1 − δ}

is also a weak→ neighborhood of x→→
0 . Note that, by the Goldstine Theorem [29], BX

is weak→ dense in BX→→ . Therefore, N1 ⊆ BX ∗= ∅ and hence N1 ⊆ S(X, x→, δ) ∗= ∅.
This proves the lemma. �

We will now prove the main result of this subsection.

Theorem 23 The following statements are equivalent.

(a) X reflexive and has the Radon-Riesz property.

(b) For every x→ ∈ SX→ , S
(

X, x→, 1
n

) V−≤ S(X, x→, 0).
(c) For every x→ ∈ SX→ , S

(

X→→, x→, 1
n

) V−≤ S(X→→, x→, 0).

Proof (a) ∃ (b) follows from Theorem 19.

(b) ∃ (a): By Lemma 3, (b) implies that S(X, x→, 0) is compact. Therefore the proof
of (b) ∃ (a) follows from (a) ∃ (b) of Theorem 19.
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As proved in Lemma 3, we can also show that (c) implies that S(X→→, x→, 0) is com-
pact for every x→ ∈ SX→ .

(c) ∃ (b): Let (nk) be an increasing sequence of integers and

xnk ∈ S

(

X, x→, 1

nk

)
∖

S(X, x→, 0), for k = 1, 2, . . . .

Then xnk ∈ S(X→→, x→, 1
nk

) for k = 1, 2, . . . Therefore (c) implies, by
Theorem 10, that the sequence (xnk ) has a subsequence converging to some point
x ∈ S(X→→, x→, 0). Since (xnk ) ∈ X, x ∈ S(X, x→, 0). Hence by Theorem 10,

S
(

X, x→, 1
n

) V−≤ S(X, x→, 0).

(b) ∃ (c): Let β > 0. Then (b) implies that there exists m ∈ N such that

S

(

X, x→, 1

m

)

⇔ S(X, x→, 0) + βBX ⇔ S(X, x→, 0) + βBX→→ .

Observe that S(X, x→, 0) + βBX→→ is a w→-closed subset of X→→. Since, by Lemma 4,
S

(

X→→, x→, 1
m

)

is contained in the w→-closure of S(X, x→, 1
m ), we have

S

(

X→→, x→, 1

m

)

⇔ S(X, x→, 0) + βBX→→ ⇔ S(X→→, x→, 0) + βBX→→ .

This shows that

S

(

X→→, x→, 1
n

)

H−≤ S(X→→, x→, 0)

and S(X→→, x→, 0) ⇔ S(X, x→, 0) + βBX→→ . The compactness of S(X, x→, 0) implies
that ε(S(X→→, x→, 0) ≥ 2β where ε denotes the Hausdorff index of noncompactness
(see Sect. 2). Since β is arbitrary, ε(S(X→→, x→, 0) = 0. Therefore S(X→→, x→, 0) is
compact and hence S

(

X→→, x→, 1
n

) V−≤ S(X→→, x→, 0). �

The implication (b) ∃ (c) of Theorem 23 is proved in [18].
Theorem 23 can also be stated as follows because of Lemma 3 and Theorem 10.

Theorem 24 The following statements are equivalent.

(a) X reflexive and has the Radon-Riesz property.

(b) For every x→ ∈ SX→ , S
(

X, x→, 1
n

) H−≤ S(X, x→, 0) and S(X, x→, 0) is compact.

(c) For every x→ ∈ SX→ , S
(

X→→, x→, 1
n

) H−≤ S(X→→, x→, 0) and S(X→→, x→, 0) is com-
pact.

Remark 5 (a) If we compare Theorem 23 with Theorems 17 and 21, the fourth
condition regarding a differentiability of the dual norm ismissing in Theorem 23.
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One may ask the following question: Is there any kind of differentiability of the
dual norm which can characterize the space which is reflexive with Radon-Riesz
property? We will give a partial answer to this question in the next section.

(b) A reflexive space with Radon-Riesz property is also called Efimov-Stechkin
property in [29, 34] and drop property in [18].

4.5 Space with SSD Dual Norm

We relaxed the condition “uniformly” from Theorem 17 and stated Theorem 21.
Similarly, the condition strict convexity was relaxed from Theorem 21 to come to
Theorem 23. Now we relax the compactness of S(X, x→, 0) in Theorem 24. So we
want to see a characterization for the space in which

S

(

X, x→, 1
n

)

H−≤ S(X, x→, 0),

whenever S(X, x→, 0) is nonempty. A characterization of this space, analogous to
Theorem 21, was achieved in two papers [15, 20] which will be discussed in this
subsection.

We need a definition and two lemmas
We say that the norm of X is strongly subdifferentiable (in short ssd) at x ∈ SX if

the one sided limit

lim
t≤0+

∩x + th∩ − ∩x∩
t

exists uniformly for h ∈ SX .

Lemma 5 Let x ∈ SX. Then for h ∈ SX, there exists x→ ∈ S(X→, x, 0) such that
x→(h) = d+(x, h).

Proof It follows from Lemma 2 that

d−(x, h) ≥ x→(h) ≥ d+(x, h), for all x→ ∈ S(X→, x, 0).

If d−(x, h) < ε < d+(x, h) for some ε ∈ R, then from the proof of Theorem 6, it
follows that there exists x→

ε ∈ S(X→, x, 0) such that

x→
ε(h) = ε < d+(x, h).

This proves that
d+(x, h) = sup{x→(h) : x→ ∈ S(X→, x, 0)}.

Since S(X→, x, 0) is weak→ compact there exits x→ ∈ S(X→, x, 0) such that x→(h) =
d+(x, h). �
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In the following lemma we discuss the convergence of faces.

Lemma 6 Let x ∈ SX and S
(

X→, x, 1
n

) H−≤ S(X→, x, 0). Then for β > 0, there exists
a δ > 0 such that S(X→, y, 0) ⇔ Bβ(S(X→, x, 0)) whenever ∩x − y∩ < δ and y ∈ SX;

that is, S(X→, xn, 0)
H−≤ S(X→, x, 0) whenever xn ≤ x and xn ∈ SX.

Proof Let S
(

X→, x, 1
n

) H−≤ S(X→, x, 0) and β > 0. Then there exists m ∈ N such that
S

(

X→, x, 1
m

) ⇔ Bβ(S(X→, x, 0). Suppose ∩x − y∩ < 1
m and y→ ∈ S(X→, y, 0). Then,

y→(x) = y→(y) − y→(y − x) > 1 − 1

m
.

Therefore, y→ ∈ S
(

X→, x, 1
m

) ⇔ Bβ(S(X→, x, 0)). �
Interestingly the converse of the previous lemma is also true and is discussed in

Sect. 4.6. The convergence of faces is illustrated in Fig. 8.

We now present a characterization of the convergence of slices in the Hausdorff
sense.

Theorem 25 Let x ∈ SX. Then the following statements are equivalent.

(a) S
(

X→, x, 1
n

) H−≤ S(X→, x, 0).
(b) The norm of X is ssd at x.

Proof (a) ∃ (b): Let β > 0. By Lemma 6, there exists a δ > 0 such that 0 < δ < 1
and

S(X→, y, 0) ⇔ Bβ(S(X→, x, 0))

whenever y ∈ SX and ∩x − y∩ < δ. We claim that for all h ∈ SX ,

∩x + th∩ − ∩x∩
t

− d+(x, h) < β, for all t satisfying 0 < t <
δ

4

which proves that the norm of X is ssd at x. Let 0 < t < δ
4 and h ∈ SX . Find x→

t ∈ SX→
such that x→

t (x + th) = ∩x + th∩. Now

∩x + th∩ ∇ ∩x∩ − t∩h∩ ∇ 1 − δ

4
>

1

2
.

Let xt = x+th
∩x+th∩ and observe that x→

t ∈ S(X→, xt, 0) and

∩xt − x∩ ≥ 1

2
[(1 − ∩x + th∩)∩x∩ + t∩h∩] ≥ 1

2

[
δ

4
+ t∩h∩

]

< δ.

Therefore, by Lemma 6, there exists x→ ∈ S(X→, x, 0) such that ∩x→
t −x→∩ < β. Since,

by Lemma 2, x→(h) ≥ d+(x, h),
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∩x + th∩ − 1

t
− d+(x, h) ≥ x→

t (x + th) − x→
t (x)

t
− x→(h) ≥ x→

t (h) − x→(h) < β.

(b) ∃ (a): Suppose that (a) is not true. Then there exists β > 0 and a sequence (x→
n)

such that x→
n ∈ S(X→, x, 1

n ) and d(x→
n , S(X→, x, 0)) > β for all n ∈ N. We will find a

sequence (zn) in SX and a real positive sequence (tn) converging to 0 such that

∩x + tnzn∩ − ∩x∩
tn

− d+(x, zn) /−≤ 0 as tn ≤ 0,

which contradicts (b).

Note that S(X→, x, 0) is a weak→ compact convex subset of X→ and

Bβ(x
→
n) ⊆ S(X→, x, 0) = ∅, for all n ∈ N.

Therefore, by the separation theorem in X→ with weak topology [29] there exists
zn ∈ SX , for each n, such that

x→
n(zn) − β ∇ sup{x→(zn) : x→ ∈ S(X→, x, 0)}.

By Lemma 5, there exists z→
n ∈ S(X→, x, 0) such that z→

n(zn) = d+(x, zn) for all n.
Therefore, for t > 0,

∩x + tzn∩ − ∩x∩
t

− d+(x, zn) ∇ x→
n(x + tzn) − z→

n(x)

t
− z→

n(zn) ∇ (x→
n − z→

n)(x)

t
+ β.

Observe that (z→
n − x→

n)(x) ≤ 0 because x→
n ∈ S

(

X→, x, 1
n

)

and z→
n ∈ S(X→, x, 0).

Therefore, if we define

tn = 2(z→
n − x→

n)(x)

β
,

then tn ∇ 0, tn ≤ 0 and

∩x + tnzn∩ − ∩x∩
tn

− d+(x, zn) ∇ −β

2
+ β = β

2
.

This proves the claim and hence it proves (a). �

Theorem 25 is proved in [15] and the proof of (b) ∃ (a) is adopted from [26].
We now present a characterization of the space whose dual norm is ssd. We need

the following Lemma.

Lemma 7 Let β > 0, y→→ ∈ BX→→ and x→ ∈ SX→ . If Bβ(y→→)⊆S(X→→, x→, 0) ∗= ∅ then
Bβ(y→→) ⊆ S

(

X, x→, 1
n

) ∗= ∅ for every n ∈ N.
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Proof Suppose

x→→ ∈ Bβ(y
→→) ⊆ S(X→→, x→, 0).

By the Goldstine theorem there exists a net {xε}ε∈I in BX such that xε ≤ x→→ in the
weak→ topology. Let

C = co{xε : ε ∈ I}

and n ∈ N. Without loss of generality, we assume that C ⇔ S
(

X, x→, 1
n

)

. We claim
that C ⊆ Bβ(y→→) ∗= ∅ which will prove the result. Suppose C ⊆ Bβ(y→→) = ∅. Then
by the separation theorem [29, Theorem 1.8.5], there exists h→ ∈ SX→ such that

h→(y→→) − β ∇ h→(c), for all c ∈ C.

This implies that h→(y→→ − x→→) ∇ β > ∩y→→ − x→→∩ which is a contradiction. �

We now state the main result of this subsection.

Theorem 26 The following statements are equivalent.

(a) For every x→ ∈ SX→ , S
(

X, x→, 1
n

) H−≤ S(X, x→, 0).
(b) For every x→ ∈ SX→ , S

(

X→→, x→, 1
n

) H−≤ S(X→→, x→, 0).
(c) The norm of X→ is ssd on SX→ .

Proof The proof of (a) ∃ (b) follows from the first part of the proof of (b) ∃ (c) of
Theorem 23. The equivalance of (b) and (c) follows from Theorem 25.

(b) ∃ (a): Let x→ ∈ SX→ . Suppose that for β > 0 there exists a δ > 0 such that

S(X→→, x→, δ) ⇔ B β
2
(S(X→→, x→, 0)).

We will show that S(X, x→, 0) ∗= ∅ and S(X, x→, δ) ⇔ Bβ(S(X, x→, 0)).
Let x ∈ S(X, x→, δ). Since B β

2
(x) ⊆ S(X→→, x→, 0) ∗= ∅, by Lemma 7,

B β
2
(x) ⊆ S

(

X, x→, 1
n

)

∗= ∅, for all n,

and hence by (b),

B β
2
(x) ⊆ S

(

X, x→, 1
n

)

⇔ B β
4
(S(X→→, x→, 0)

eventually. Therefore, find x1 ∈ BX such that

∩x − x1∩ <
β

2
and d(x1, S(X→→, x→, 0) <

β

22
.
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Repeating the same steps, construct inductively a sequence (xn) in BX such that

∩xn−1 − xn∩ <
β

2n
and d(xn, S(X→→, x→, 0)) <

β

2n+1 .

Therefore (xn) converges to some x0 ∈ X ⊆ S(X→→, x→, 0) = S(X, x→, 0). This proves
that S(X, x→, 0) ∗= ∅. Since for any n,

∩x − xn∩ ≥ ∩x − x1∩ + ∩x1 − x2∩ + · · · + ∩xn−1 − xn∩ <
β

2
+ β

22
+ · · · + β

2n
,

we get ∩x − x0∩ < β. This shows that S(X, x→, δ) ⇔ Bβ(S(X, x→, 0)). �

The following result is a consequence of Theorem 26.

Corollary 4 If the norm of X→ is ssd on SX→ then X is reflexive.

Proof Since any one of the three statements in Theorem 26 implies that

S(X, x→, 0) ∗= ∅

for every x→ ∈ SX→ , the space X is reflexive. �

In view of Theorem 26, we can restate Theorem 24 as follows.

Theorem 27 The following statements are equivalent.

(a) X reflexive and has the Radon-Riesz property.

(b) For every x→ ∈ SX→ , S
(

X, x→, 1
n

) H−≤ S(X, x→, 0) and S(X, x→, 0) is compact.

(c) For every x→ ∈ SX→ , S
(

X→→, x→, 1
n

) H−≤ S(X→→, x→, 0) and S(X→→, x→, 0) is com-
pact.

(d) The norm of X→ is ssd on SX→ and S(X, x→, 0) is compact for all x→ ∈ SX→ .

In Theorem 27, we obtained a characterization similar to Theorem 21. However,
the statement (d), in particular the compactness condition in (d), looks bit superficial.
It would be interesting if the statement (d) in Theorem 27 is characterized in terms
of a differentiability of the norm of X→ which is stronger than ssd.

Compared to Theorem 17 and Theorem 21, the characterization given in Theorem
26 looks incomplete. It is clear from Theorem 26 that if the norm of X→ is ssd on
SX→ then X is reflexive. However, the dual norm of a reflexive space need not be ssd
on SX→ . It would be interesting to see as to what additional geometric property is
required to characterize the ssd of the dual norm on SX→ . From Theorem 27 one can
see that such an additional geometric property has to be weaker than the Radon-Riesz
property.
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4.6 Duality and Preduality Mappings

The set-valued mappings

D : SX −≤ 2SX→ defined by D(x) = S(X→, x, 0),

and
PD : SX→ −≤ 2SX defined by PD(x→) = S(X, x→, 0)

are called, respectively, the duality and preduality mappings for X. Note that the map
D is a nonempty valued map whereas the map PD could be empty valued. We have
seen in Sect. 2, that X is smooth if and only if D is single valued. Moreover, X is
strictly convex and reflexive if and only if the map PD is single valued.

The geometrical implications of the semicontinuities, especially the usc andHusc,
of the duality and preduality mappings have been studied by several authors [3, 15,
17, 18, 20, 21, 25]. In this subsection, we relate the convergence of slices and the
semicontinuities of the mappings D and PD.

Let x ∈ SX . As per the definition,

D is usc at x if S(X→, xn, 0)
V+−≤ S(X→, x, 0) whenever (xn) in SX converges to x,

and

D is Husc at x if S(X→, xn, 0)
H+−≤ S(X→, x, 0) whenever (xn) in SX converges to x.

Similarly we define the usc and Husc of PD.
In Lemma 6, we noticed that

{

S

(

X→, x,
1

n

)

H+−≤ S(X→, x, 0)

}

∃
{

S(X→, xn, 0)
H+−≤ S(X→, x, 0) if xn ≤ x

}

.

This implication says that the convergence of slices in the H+ sense implies the Husc
of the duality mapping D. In other words, it says that the convergence of slices in
X→ in the H+ sense implies the convergence of the faces in X→ in the H+ sense. We
will also see that the statements in the above implications are equivalent. We will
also discuss a similar equivalence for the V+ convergence of faces and slices in X→.
Further, we will take up the equivalence of convergence of the slices and of faces in
X. These will illustrate the geometrical implications of the semicontinuities of the
mappings D and PD. See Fig. 8.

We need the following result called Bishop-Phelps-Bollobas Theorem. This result
is a generalization of the famous Bishop-Phelps theorem [5] which says that the
collection of support functionals of the unit ball BX is dense in SX→ . The proof of the
following result is involved, and we refer to [6] for its proof.

Theorem 28 For β such that 0 < β < 1, let x ∈ SX and x→ ∈ SX→ be such that

|x→(x) − 1| <
β2

4
.
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Fig. 8 Sequence of faces
S(X, x→

n , 0) of BX formed by
the hyperplanes Hn = {x ∈
X : x→

n(x) = 1}

H   n 

B  x 

Then there exist y ∈ SX and y→ ∈ SX→ such that

y→(y) = 1, ∩x→ − y→∩ ≥ β and ∩x − y∩ ≥ β.

The following result reveals the relation between the convergence of slices and
of faces in X→.

Theorem 29 Let x ∈ SX. Consider the following statements.

(a) S(X→, xn, 0)
H+−≤ S(X→, x, 0) whenever (xn) in SX converges to x.

(b) S(X→, x, 1
n )

H+−≤ S(X→, x, 0).

(c) S(X→, x, 1
n )

V+−≤ S(X→, x, 0).

(d) S(X→, xn, 0)
V+−≤ S(X→, x, 0) whenever (xn) in SX converges to x.

Then (a) ∪ (b) ⇐ (c) ∃ (d). If S(X→, x, 0) is compact then the four statements are
equivalent.

Proof (a) ∃ (b): We will use Theorem 28 and Theorem 10 to prove this impli-
cation. Let x→

n ∈ S(X→, x, 1
n ) for all n. By Theorem 28, there exists yn ∈ SX and

y→
n ∈ S(X→, yn, 0) such that yn ≤ x and ∩x→

n − y→
n∩ ≤ 0. Since yn ≤ x, by (a), there

exists z→
n ∈ S(X→, x, 0) such that ∩y→

n − z→
n∩ ≤ 0. Consequently, ∩x→

n − z→
n∩ ≤ 0.

This proves (b).

(b) ∃ (a): This is proved in Lemma 6.

(c) ∃ (b): This is obvious.

(c) ∃ (d): Lemma 3 implies that S(X→, x, 0) is compact. Since S(X→, x, 0) is com-
pact, (c) ∃ (d) follows from the implication (b) ∃ (a).

If S(X→, x, 0) is compact, then it follows from Theorem 10 that all four statements
are equivalent. �
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The implication (a) ∃ (b) is due to [17].

The following corollary reveals the geometrical implication of the Husc of the
duality mapping.

Corollary 5 Let x ∈ SX. Then the following statements are equivalent.

(a) The norm of X is ssd at x.
(b) The duality mapping D is Husc at x.

Proof The equivalence follows immediately from Theorem 25 and (a) ∪ (b) of
Theorem 29. �

Let us now discuss the relation between the convergence of slices and faces in X.

Theorem 30 Let X be reflexive and x→ ∈ SX→ . Consider the following statements.

(a) S(X, x→
n , 0)

H+−≤ S(X, x→, 0) whenever (x→
n) in SX→ converges to x→.

(b) S
(

X, x→, 1
n

) H+−≤ S(X, x→, 0).

(c) S
(

X, x→, 1
n

) V+−≤ S(X, x→, 0).

(d) S(X, x→
n , 0)

V+−≤ S(X, x→, 0) whenever (x→
n) in SX→ converges to x→.

Then (a) ∪ (b) ⇐ (c) ∃ (d). If S(X, x→, 0) is compact then all statements are
equivalent.

Proof The theorem follows immediately from Theorem 29 and the fact that
X = X→→. �

4.7 Notes and Remarks

In this section, we studied V+ and H+ convergence of slices and of faces and their
geometric implications. We refer to [7, 8, 17, 18, 21] for the convergence of slices
and of faces in the sense of V+

w , H+
w , V+

w→ , H+
w→ and their geometric implications.

A characterization of the Wijsman convergence [4, 31] of slices is obtained in [8].
It will be interesting to relate other geometric properties and the other notions of
convergence of sets.

It is observed in [1, 8, 19, 22, 23] that the results stated in this section have their
counterparts for the set of subdifferentials and the set of β-subdifferentials of convex
function and its conjugate.
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5 Slices and Proximinality

In this section, we assume that X is a real Banach space. LetC be a nonempty, closed,
and convex subset of X and x ∈ X. For δ ∇ 0, recall that the set

PC(x, δ) = {y ∈ C : ∩x − y∩ ≥ d(x, C) + δ}.

is called the set of nearly best approximations to x in C and the set PC(x, 0) is called
the set of best approximations to x in C. The set PC(x, 0) could be empty but the set
PC(x, δ) is always nonempty when δ > 0. For simplicity, we will denote PC(x, 0)
as PC(x).

In this section, we will relate the geometric properties of Banach spaces discussed
in the previous section with some properties in best approximation theory. As a con-
sequence, wewill see that the slices and their convergence determine some properties
in best approximation theory. In fact, we have already seen in Corollary 3 that there
is a relation between the convergence of the sets PC

(

x, 1
n

)

and the convergence of
slices S

(

X, x→, 1
n

)

as n ≤ ∞ (see Fig. 11).

5.1 Slices and Set of Nearly Best Approximations

Wewill make some observations which relate the faces and slices with the set of best
approximations and the set of nearly best approximations.

For c > 0, we denote Bc(0) = {x ∈ X : ∩x∩ ≥ c}.
Throughout this section, we will assume that C is a nonempty closed convex

subset of X. Suppose d(0, C) = 1 and H = {x ∈ X : x→(x) = 1}, where x→ ∈ SX→ , is
a hyperplane separating the unit ball BX and the set C. Then,

PC(0) = BX ⊆ C ⇔ PH(0) = BX ⊆ H = S(X, x→, 0) (1)

and in fact
PC(0) = S(X, x→, 0) ⊆ C

(see Fig. 9). Observe that if PC(0) ∗= ∅ then S(X, x→, 0) ∗= ∅ and if S(X, x→, 0) = ∅
then PC(0) = ∅. Moreover, every face is a set of best approximations to 0 in a
hyperplane and

PC

(

0,
1

n

)

= B(

1+ 1
n

)(0) ⊆ C

(see Fig. 10).
The following result, which is illustrated in Fig. 11, reveals the relationship be-

tween the slices and sets of nearly best approximations.
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Fig. 9 Separation of BX and
C by the hyperplane H and
PC(0) as a subset of the face
S(X, x→, 0)

B  x 

H   

face of B  x 

C  

p (0)  c

Fig. 10 Set of nearly best
approximations PC(0, 1

n ) as
the intersection of C and the
ball B1+ 1

n
(0)

C 

B  x 

B(1+1/n)(0)  

P  c(0) 

P  c (0,   )

We denote by CC(X) the collection of all nonempty closed convex subsets of X
and by CH(X) the collection of all hyperplanes H of the form

H = {x ∈ X : x→(x) = ε}, for some real ε ∇ 0 and x→ ∈ SX→ .

The set {H ∈ CH(X) : d(0, H) = 1} is denoted by CH1(X). It follows from Ascoli’s
formula (Theorem 1) that if H ∈ CH1(X) then

H = {x ∈ X : x→(x) = 1}, for some x→ ∈ SX→ .



Convergence of Slices, Geometric Aspects in Banach Spaces and Proximinality 97

Fig. 11 Sequence of slices
S(X, x→, 1

n ) and sequence
of sets of nearly best
approximations PC(0, 1

n )

B  x 

O  

C  

Lemma 8 Suppose d(0, C) = 1 and for x→ ∈ SX→ , H = {x ∈ X : x→(x) = 1} is a
hyperplane separating the unit ball BX and the set C. Then for every sequence (xn)

satisfying

(a) xn ∈ S
(

X, x→, 1
n

)

for all n, there exist sequences {yn} and {δn} such that δn ≤ 0,
yn ∈ PH(0, δn) and ∩xn − yn∩ ≤ 0.

(b) xn ∈ PH
(

0, 1
n

)

for all n, there exist sequences {yn} and {δn} such that δn ≤ 0,
yn ∈ S(X, x→, δn) and ∩xn − yn∩ ≤ 0.

(b) xn ∈ PC
(

0, 1
n

)

for all n, there exist sequences {yn} and {δn} such that δn ≤ 0,
yn ∈ PH(0, δn) and ∩xn − yn∩ ≤ 0.

Proof To prove the first statement, let xn ∈ S(X, x→, 1
n ) for all n > 1. Let yn = xn

x→(xn)

and δn = 1
n−1 for n > 1. Then yn ∈ PH(0, δn) and ∩xn − yn∩ ≤ 0.

If xn ∈ PH(0, 1
n ) for all n > 1, let yn = xn∩xn∩ and δn = 1

n+1 . Then
yn ∈ S(X→, x→, δn) and ∩xn − yn∩ ≤ 0 which proves the second statement. If
xn ∈ PC(0, 1

n ) for all n, let yn = xn
x→(xn)

and δn = 1
n for n. Then yn ∈ PH(0, δn)

and ∩xn − yn∩ ≤ 0. �

5.2 Reflexivity and Strict Convexity

We will present some characterizations of reflexivity and strict convexity in terms of
some properties in best approximation theory.

We need some basic definitions from the theory of best approximation.
We say that the set C is proximinal if PC(x) ∗= ∅ for every x ∈ X. The set C is

called Chebyshev if it is proximinal and PC(x) is a singleton for all x ∈ X.
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We will first see under what conditions on X, C is proximinal or Chebyshev. We
need the following facts which are easy to verify.

Fact 1. For x0 ∈ X, y ∈ PC(x0) if and only if y − x0 ∈ P−x0+C(0).

Fact 2. If d(0, C) > 0 then d
(

0, C
d(0,C)

)

= 1 and 1
d(0,C)

C is a closed convex subset.

The following result which is an immediate consequence of the James theorem
characterizes the reflexivity.

Theorem 31 The following statements are equivalent.

(a) X is reflexive.
(b) Every C ∈ CC(X) is proximinal.
(c) Every H ∈ CH(X) is proximinal.
(d) Every H ∈ CH1(X) is proximinal.

Proof (a) ∃ (b): Let X be reflexive. If x ∈ X and C is a nonempty closed convex
subset, then the set PC(x, 1

n ) is weakly compact for each n. Therefore

∞
⋂

n=1

PC

(

x,
1

n

)

= PC(x) ∗= ∅.

(b) ∃ (c) ∃ (d): This is obvious.

(d) ∃ (a): Let x→ ∈ SX→ and H = {x ∈ X : x→(x) = 1} ∈ CH1(X). Since

PH(0) = S(X, x→, 0) ∗= ∅,

by the James Theorem, X is reflexive. �

The following characterization of strict convexity is a consequence of the fact that
the unit sphere of a strictly convex space does not contain line segments.

Theorem 32 The following statements are equivalent.

(a) X is strictly convex.
(b) PC(x) is at most a singleton for every C ∈ CC(X) and x ∈ X.
(c) PH(x) is at most a singleton for every H ∈ CH(X) and x ∈ X.
(d) PH(x) is at most a singleton for every H ∈ CH1(X) and x ∈ X.

Proof (a) ∃ (b): Let X be strictly convex. This implies that S(X, x→, 0) is at most
a singleton for every x→ ∈ SX→ . Let x ∈ X and C be a closed convex subset of X.
Because of Facts 1 and 2 given above we can assume that x = 0 and d(0, C) = 1.
Since, by equation (1), PC(0) ⇔ S(X, x→, 0) for some x→ ∈ SX→ , (b) follows.
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Fig. 12 The set H+(x→, c) ⊆
Bc+δ(0) as the intersection of
the ball Bc+δ(0) and the half
space H+

B  c (0)

B  c+δ    (0)

O  H  

H +

(b) ∃ (c) ∃ (d): This is obvious.

(d) ∃ (a): Let x→ ∈ SX→ . Then for H = {x ∈ X : x→(x) = 1}, PH(0) = S(X, x→, 0)
and hence, by (d), S(X, x→, 0) is at most a singleton. �

The following result is an immediate consequence of the previous two results.

Theorem 33 The following statements are equivalent.

(a) X is reflexive and strictly convex.
(b) Every C ∈ CC(X) is Chebyshev.
(c) Every H ∈ CH(X) is Chebyshev.
(d) Every H ∈ CH1(X) is Chebyshev.

5.3 Characterizations of Uniform Convexity

In Sect. 4, we characterized the uniformly convex spaces in terms of convergence
of slices of X and X→→. In this section, we will characterize the notion of uniform
convexity in terms of convergence of sets of nearly best approximations.

For given x→ ∈ SX→ and a positive real number c, we denote

H+(x→, c) = {x ∈ X : x→(x) ∇ c}.

Lemma 9 Let X be a uniformly convex space and c be a positive real number. Then,
for β > 0 there exists a δ > 0 such that

diam
(

H+(x→, c) ⊆ Bc+δ(0)
)

< β

uniformly for every x→ ∈ SX→ (see Fig. 12).
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Proof Let x→ ∈ SX→ and β > 0. In the proof of (a) ∃ (b) of Theorem 17, we have
already seen that there exists a δ > 0 such that δ < 1 and

diam(S(X, x→, δ)) < β. (2)

Case I Let c ∇ 1. We claim that

diam
(

H+(x→, c) ⊆ Bc+δ(0)
)

< (1 + c)β. (3)

Suppose x, y ∈ H+(x→, c) ⊆ Bc+δ(0). Define x = x
c+δ

and y = y
c+δ

. Then x, y ∈ BX

and

x→(x) = x→(x)
c + δ

∇ c

c + δ
= 1 − δ

c + δ
> 1 − δ.

Similarly x→(y) > 1 − δ. Therefore, by (2), ∩x − y∩ < β. This implies that

∩x − y∩ < (c + δ)β < (1 + c)β.

Case II Let 0 < c < 1. We claim that

diam
(

H+(x→, c) ⊆ Bc+cδ(0)
)

< 2β.

Suppose x, y ∈ H+(x→, c)⊆Bc+cδ(0). Define x = x
c and y = y

c . Then x, y ∈ B1+δ(0)
and

x→(x) = x→(x)
c

∇ 1

Similarly x→(y) ∇ 1. Therefore

x, y ∈ H+(x→, 1) ⊆ B1+δ(0).

Hence by (3), ∩x − y∩ < 2β. This implies that ∩x − y∩ < c2β < 2β. �

We will now state the main result.

Theorem 34 The following statements are equivalent.

(a) X is uniformly convex.
(b) diam

(

S
(

X, x→, 1
n

)) ≤ 0 uniformly for all x→ ∈ SX→ .
(c) diam

(

PH
(

0, 1
n

)) ≤ 0 uniformly for all H ∈ CH1(X).
(d) For ε ∈ R

+, diam
(

PH
(

x, 1
n

)) ≤ 0 uniformly for all x ∈ X and H ∈ CH(X)

such that d(x, H) = ε.
(e) For ε ∈ R

+, diam
(

PC
(

x, 1
n

)) ≤ 0 uniformly for all x ∈ X and C ∈ CC(X)

such that d(x, C) = ε.

Proof (a) ∪ (b): This follows from Theorem 17.
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(a) ∃ (e): Let ε > 0 and β > 0. Suppose that x ∈ X and C ∈ CC(X) is such that
d(x, C) = ε. By Facts 1 and 2 we can assume, without loss of generality, that x = 0.
Find x→ ∈ SX→ such that the hyperplane

H = {x ∈ X : x→(x) = ε}

separates Bε(0) and C. By Lemma 9, there exists a δ > 0 such that

diam(H+(x→, ε) ⊆ Bε+δ(0)) < β.

Since
PC(0, δ) ⇔ (H+(x→, ε) ⊆ Bε+δ(0)),

diam(PC(0, δ)) < β. This proves (e).

(e) ∃ (d) ∃ (c): This is obvious.

(c) ∃ (b): Suppose β > 0. By (c), there exists a δ > 0 such that δ < β and

diam(PH(0, δ)) < β, (4)

for any H = {x ∈ X : x→(x) = 1}, x→ ∈ SX→ . We claim that

diam(S(X, x→, δ)) < 3β.

Let x, y ∈ S(X, x→, δ). Then define x = PH(x) and y = PH(y). Now ∩x−x∩ < δ < β

and ∩y − y∩ < β. Therefore ∩x∩ ≥ ∩x − x∩ + ∩x∩ ≥ δ + 1 and ∩y∩ ≥ 1 + δ. Hence
x and y are in PH(0, δ) and therefore, by (4), ∩x − y∩ < β. Consequently

∩x − y∩ ≥ ∩x − x∩ + ∩x − y∩ + ∩y − y∩ ≥ 2δ + β < 3β.

This proves (b). �

5.4 Characterizations of Strong Convexity

We present some characterizations of the strong convexity property in terms of the
convergence of sets of nearly best approximations.

We need some definitions from the theory of best approximation.
Let C ∈ CC(X) and x ∈ X. A sequence (xn) in C is called a minimizing sequence

for x ∈ X in C if
∩x − xn∩ ≤ d(x, C).



102 P. Shunmugaraj

The set C is called approximatively compact if every minimizing sequence in C
has a convergent subsequence.

A proximinal set C is said to be strongly proximinal at x if d(xn, PC(x)) ≤ 0
whenever (xn) is a minimizing sequence for x in C. If C is strongly proximinal at
every x ∈ X then we say that C is strongly proximinal.

From the definition it is clear that every approximatively compact set C is prox-
iminal and PC(x) is compact for every x.

We will now see the behavior of the sets PC(x, 1
n ), n ∈ N, in case C is approxi-

matively compact or strongly proximinal.

Proposition 1 Let C ∈ CC(X). Consider the following statements.

(a) C is approximatively compact.

(b) For every x ∈ X, PC(x, 1
n )

H−≤ PC(x) and PC(x) is compact.

(c) For every x ∈ X, PC(x, 1
n )

H−≤ PC(x).
(d) C is strongly proximinal.

Then (a) ∪ (b) ∃ (c) ∪ (d).

Proof (a) ∃ (b): Suppose C is approximatively compact and x ∈ X. Then PC(x) is
compact. We will use Theorem 10. Suppose yn ∈ PC

(

x, 1
n

)

, n ∈ N. Then (yn) is a
minimizing sequence and hence it has a convergent subsequence converging to an
element of PC(x). This proves (b).

(b) ∃ (a): Let (yn) be a minimizing sequence in C for x ∈ X. Then there exists a
subsequence (ynk ) such that ynk ∈ PC

(

x, 1
k

)

for all k ∈ N. Therefore, by Theorem
10, (ynk ) has a convergent subsequence.

(b) ∃ (c): This is obvious.

(c) ∪ (d): This follows easily from the definitions. �

It is clear from the previous result that approximative compactness is stronger than
strong proximinality. Moreover, Proposition 1 motivates us to relate the properties
approximative compactness and strong proximinality with geometrical properties of
X as the convergence of sets PC

(

x, 1
n

)

is related to the convergence of slices (see
Lemma 8 and Fig. 11).

We will first characterize the strong convexity property in terms of approximative
compactness.We relax the condition “uniformly” fromTheorem 34 for the following
result.

Theorem 35 The following statements are equivalent.

(a) X is strongly convex.
(b) diam

(

S
(

X, x→, 1
n

)) ≤ 0 for all x→ ∈ SX→ .
(c) diam

(

PH
(

0, 1
n

)) ≤ 0 for all H ∈ CH1(X).
(d) diam

(

PH
(

x, 1
n

)) ≤ 0 for all x ∈ X and H ∈ CH(X).
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(e) diam
(

PC
(

x, 1
n

)) ≤ 0 for all x ∈ X and C ∈ CC(X).
(f) Every C ∈ CC(X) is Chebyshev and approximatively compact.

Proof The proof of the equivalence of (a) and (b) is given in Theorem 21.

(b) ∃ (c): We will use Lemma 8 and Theorem 15. Let H = {x ∈ X : x→(x) = 1}
for some x→ ∈ SX→ . Then d(0, H) = 1. Suppose xn ∈ PH(0, 1

n ) for all n. Then by
Lemma 8, there exist sequences (yn) and (δn) such that

δn ≤ 0, yn ∈ S(X→, x→, δn) and ∩xn − yn∩ ≤ 0.

Condition (b) implies that diam
(

S
(

X, x→, 1
n

)) ≤ 0 and S(X, x→, 0) = {x0} for some
x0 ∈ SX . Therefore yn ≤ x0 and hence xn ≤ x0. Now (c) follows from Theorem 15.

(c) ∃ (d): This follows from Facts 1 and 2.

(d) ∃ (e): Let C ∈ CC(X) and x ∈ X. By Facts 1 and 2, we assume, without loss of
generality, that d(0, C) = 1 and x = 0. Let H = {x ∈ X : x→(x) = 1}, x→ ∈ SX→ , be
a hyperplane separating C and BX . Let xn ∈ PC(0, 1

n ) for all n. Use Lemma 8 and
Theorem 15 and follow the steps of the proof of (b) ∃ (c).

(e) ∃ (f): Let C ∈ CC(X) and x ∈ X. If yn ∈ PC(x, 1
n ) for every n, then by (e), (yn)

is Cauchy, hence it converges to an element of PC(x). This shows that C is proxim-
inal and (e) further implies that diam(PC(x)) = 0. Therefore, C is Chebyshev. The
approximative compactness follows from Proposition 1 and Theorem 15.

(f) ∃ (b): Let x→ ∈ SX→ and C = {x ∈ X : x→(x) = 1}. Suppose xn ∈ S
(

X, x→, 1
n

)

for every n ∈ N. Then there exist sequences (yn) and (δn) such that

δn ≤ 0, yn ∈ PC(0, δn) and ∩xn − yn∩ ≤ 0.

Since (yn) is a minimizing sequence for 0 in C, by (f ), every subsequence of (yn)

has a convergent subsequence converging to PC(0) which is a singleton. Therefore
(xn) converges to PC(0) = S(X, x→, 0). Hence (b) follows from Theorem 15. �

5.5 Characterizations of Radon-Riesz Property

We now generalize Theorem 35 by relaxing the condition “strict convexity”.

Theorem 36 The following statements are equivalent.

(a) X is reflexive and has the Radon-Riesz property.

(b) S(X, x→, 0) compact and S(X, x→, 1
n )

H−≤ S(X, x→, 0) for all x→ ∈ SX→ .
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(c) PH(0) is compact and PH(0, 1
n )

H−≤ PH(0) for all H ∈ CH1(X).

(d) PC(x) compact and PC(x, 1
n )

H−≤ PC(x) for all C ∈ CC(X) and x ∈ X.
(e) Every C ∈ CC(X) is approximatively compact.

Proof The equivalence (a) ∪ (b) is a part of Theorem 24.

(b)∃ (c): LetH = {x ∈ X : x→(x) = 1}, x→ ∈ SX→ and xn ∈ PH
(

0, 1
n

)

for all n. Then,
by Lemma 8, there exist sequences (yn) and (δn) such that δn ≤ 0, yn ∈ S(X→, x→, δn)

and ∩xn − yn∩ ≤ 0. By (b) and Theorem 10, (yn) has a convergent subsequence
and hence (xn) has a convergent subsequence converging to an element in PH(0). By
Theorem 10, (c) follows.

(c) ∃ (d): Let C ∈ CC(X) and x ∈ C. By Facts 1 and 2 we can assume that x = 0
and d(0, C) = 1. Let xn ∈ PC(0, 1

n ) for all n. Use Lemma 8 and repeat the proof of
(b) ∃ (c).

(d) ∃ (e): This follows from Proposition 1.

(e) ∃ (b): This is a consequence of Lemma 8 and Theorem 10. The proof is similar
to the proof of (b) ∃ (c). �

5.6 Characterizations of Strong Subdifferentiability
of the Dual Norm

Theorem 36 leads to the following theorem if we drop the compactness condition.

Theorem 37 Consider the following statements.

(a) The norm of X→ is ssd on SX→ .

(b) S
(

X, x→, 1
n

) H−≤ S(X, x→, 0) for all x→ ∈ SX→ .

(c) PH
(

0, 1
n

) H−≤ PH(0) for all H ∈ CH1(X).

(d) PH
(

x, 1
n

) H−≤ PH(x) for all H ∈ CH(X) and x ∈ X.

(e) PC
(

x, 1
n

) H−≤ PC(x) for all C ∈ CC(X) and x ∈ X.
(f) Every C ∈ CC(X) is strongly proximinal.

Then (a) ∪ (b) ∪ (c) ∪ (d) ⇐ (e) ∪ (f).

Proof The equivalence (a) ∃ (b) is a part of Theorem 26. For the proofs of the
implications (b) ∪ (c) ∪ (d), use Lemma 8 and Theorem 9 and follow the same
lines of proof of (b) ∃ (c) of Theorem 36.
(e) ∪ (f): This is stated in Proposition 1.

(e) ∃ (d): This is obvious. �
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Remark 6 If we compare Theorem 37 with Theorems 34, 35 and 36, it is expected
that all the statements in the previous result should be equivalent. Interestingly the
implication (d) ∃ (e), in Theorem 37, is not true. Surprisingly, (e) forces the set
PC(x) to be compact for every C ∈ CC(X) and x ∈ X, which will be proved below.

We need the following result of Osman [30].

Lemma 10 For x→ ∈ SX and c > 0, let H = {x : x→(x) = c}. Suppose that (xn) is a
sequence in X such that xn ≤ x0 weakly for some x0. Let x→(xn) > c for all n. Then
(co{xn : n ∈ N}) ⊆ H ∗= ∅ if and only if x0 ∈ H, and in this case

(co{xn : n ∈ N}) ⊆ H = {x0}.

Theorem 38 The following statements are equivalent.

(a) X is reflexive and has the Radon-Riesz property.
(b) The norm of X→ is ssd on SX→ and S(X, x→, 0) is compact for all x→ ∈ SX→ .
(c) Every C ∈ CC(X) is approximatively compact.
(d) Every C ∈ CC(X) is strongly proximinal.

Proof The equivalence (a) ∪ (b) is stated in Theorem 27 and (a) ∪ (c) is stated in
Theorem 36.

(c) ∃ (d): This is obvious.

(d) ∃ (b): By Theorem 37, (d) implies that the norm of X→ is ssd on SX→ . It remains
to show that S(X, x→, 0) is compact for all x→ ∈ SX→ .

Note that, by Corollary 4, (d) implies that X is reflexive. Suppose x→ ∈ SX→ .
Then S(X, x→, 0) is nonempty and weakly compact. Let (xn) be a sequence in
S(X, x→, 0). Define yn = (1 + 3

n )xn for every n. Then x→(yn) > 1 for every n and
d(yn, S(X, x→, 0)) ≤ 0. Since (yn) is bounded, it has a weakly convergent subse-
quence. Let us denote the subsequence as (yn) for simplicity and let yn ≤ y0 weakly
for some y0 ∈ S(X, x→, 0). By Lemma 10,

(co{yn : n ∈ N}) ⊆ H = {y0}

where H = {x ∈ X : x→(x) = 1}. Since y0 ∈ SX and

(co{yn : n ∈ N}) ⊆ SX ⇔ (co{yn : n ∈ N}) ⊆ H,

we have co{yn : n ∈ N}) ⊆ SX = {y0}.
Take C = co{yn : n ∈ N}. Since ∩yn∩ ≤ 1, d(0, C) = 1 and yn ∈ PC(0, δn) for

some δn ≤ 0. By the strong proximinality of C, we have d(yn, PC(0)) ≤ 0. Since

PC(0) = (co{yn : n ∈ N}) ⊆ SX ,
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we have yn ≤ y0 ∈ S(X, x→, 0). This implies that (xn) has a convergent subsequence
which converges to y0 and the proof is complete. �

The implication (d) ∃ (b) in the previous theorem is proved in [12].

5.7 Notes and Remarks

The property strong proximinality is relatively recent compared to the property ap-
proximative compactness. The properties associated with approximative compact-
ness can be seen in [29, 34, 36]. Strong proximinality of certain subspaces of some
classical Banach spaces are studied in the literature [10, 11, 20, 26].

We observed that the statement (d) in Theorem 37 is equivalent to the ssd of the
norm of X→ and (f) forces the faces S(X, x→, 0) to be compact for all x→ ∈ SX→ (see
Theorem 38). The natural question is the following: Is there a condition which is
stronger than (d) and weaker than (f) and is equivalent to (a) of Theorem 37? The
question can also be posed as follows: Can we find a class F of subsets of X such
that CH(X) ◦ F ◦ CC(X) and the norm of X→ is ssd on SX→ if and only if every
C ∈ F is strongly proximinal?

In this section, we studied V+ and H+ convergence of (PC(x, 1
n )) and associ-

ated the convergence with the corresponding convergence of slices. Convergence of
(PC(x, 1

n )) with respect to other convergence notions can still be explored.
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31. Sonntag, Y., Zălinescu, C.: Set convergence : an attempt of classifications. Trans. Amer. Math.

Soc. 340, 199–226 (1993)
32. Šmulian, V.L.: On some geometrical properties of the sphere in a space of the type (B). Mat.

Sb. (N.S.) 6, 77–94 (1939)
33. Šmulian, V.L.: Sur la dérivabilité de la norme dans l’espace de Banach. C. R. (Doklady) Acad.

Sci. URSS (N.S.) 27, 643–648 (1940)
34. Vlasov, L.P.: Approximative properties of sets in normed linear spaces (Russian). Uspehi Mat.

Nauk. (Russian Math. Surveys 28, 1–66 (1973)) 28, 3–66 (1973)
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Measures of Noncompactness and Well-Posed
Minimization Problems

Józef Banaś

Abstract This chapter presents facts concerning the theory of well-posed
minimization problems. We recall some classical results obtained in the framework
of the theory but focus mainly on the detailed presentation of the application of the
theory of measures of noncompactness to investigations of the well-posedness of
minimization problem.

Keywords Measure of noncompactness ·Kuratowskimeasure of noncompactness ·
Hausdorff measure of noncompactness ·Minimization problems ·Well-posedness ·
Well-posedness in the sense of Tikhonov · Well-posedness in the sense of Levitin
and Polyak · Nearly uniform convex spaces

1 Introduction

Numerous problems of control theory and optimization theory are connected with
finding of a sequenceminimizing some functional related to an investigated problem.
It turns out that in practice we are often not able to find an exact solution of a
considered minimum (or maximum) problem. Nevertheless, sometimes it is possible
to construct a sequence (the so-called minimizing or maximizing sequence) that is
convergent to the solution of an investigated minimum or maximum problem. Such
a situation is very desirable since it creates the possibility to obtain an approximate
solution of an investigated minimum (maximum) problem.

Such an approach generates, in a natural way, the problem associated with the
structure of possible minimizing (or maximizing) sequences.
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Indeed, we can raise the following questions: Does the minimizing sequence
converge? In the case of a positive answer we can ask about the accuracy of the
approximation of a point realizing minimum of a considered functional with help of
a constructed minimizing sequence.

The next question arising naturally in the situation when a minimizing sequence
is not convergent, is connected to the structure of the set containing all accumulation
points of obtained minimizing sequence. Thus, we can ask if the set of all accumula-
tion points of an arbitrary minimizing (maximizing) sequence is compact or, in some
sense, is a set being “almost” compact etc. Obviously, the above approach creates
further questions related to the posedness of a considered minimum problem.

Before further relevant discussion of the above raised problem let us establish that
in what follows we will always consider the minimum problem only. Obviously, the
considerations of the maximum problem are similar and can be therefore conducted
in the same way as the minimum problem.

To explain our approach let us take into account the well-known and, simultane-
ously, the fundamental problem considered in several branches of mathematics; the
problem of the existence and uniqueness of a solution of the equation having the
form

x = F(x), (1)

where F is a given operator defined on a metric space X and with values in the same
space X .

The above formulated problem may be studied as the problem of the minimum of
the functional J : X → R (R denotes the set real numbers) defined in the following
way:

J (x) = d(F(x), x), (2)

where d is a metric given in the assumed metric space X . It is clear that the values of
the functional J defined by (2) are located in the positive real half-axisR+ = [0,∈).
This implies that there exists infimum of the functional J in the metric space X . On
the other hand, Eq. (1) has a solution if and only if the functional J has minimum
equal to zero. Moreover, Eq. (1) has exactly one solution if and only if the functional
J attains its minimum exactly at one point belonging to the metric space X . Apart
from this every minimizing sequence of the functional J defined by (2) is a sequence
approximating a fixed point of the operator F related to Eq. (1). The behavior of the
minimizing sequence of the functional J is reflected by the behavior of the sequence
approximating solutions of Eq. (1).

This connection suggests the possibility of the use of tools of fixed point theory
[17, 18] in the theory of optimization (cf. [2]).

In this chapter we follow the ideas presented above. More precisely, we show that
the tools associated with the technique of measures of noncompactness (cf. [12] and
references therein) can be used in the study of well-posed minimum problems.
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2 The Minimization Problem and Its Well-Posedness in the
Classical Sense of Tikhonov

In this section we recall the fundamental classical concepts and results related to the
minimization problem of a functional J acting from a nonempty subset D of a metric
space X (X = (X, d)) into the set R of real numbers.

Following A. N. Tikhonov [33] we state that the minimization problem for the
functional J is well posed if and only if every minimizing sequence of the functional
J is convergent in the metric space X .

To express the above concept more precisely, let us recall that the sequence {xn},
{xn} ≥ D, is called minimizing for the functional J if

lim
n→∈ J (xn) = inf{J (x) : x ∇ D}. (3)

It is clear that if J is bounded from below then the sequence {J (xn)} is also bounded
from below and the infimum inf{J (x) : x ∇ D} is a real number. In such a case we
obtain a refinement of the above definition which is discussed below.

Let us regard some simple consequences of the above accepted definition of the
well-posedness of minimization problem in the sense of Tikhonov.

First of all observe that if {xn} is a minimizing sequence of the functional J then
its limit must be the cluster point of the set D.

Further, it is also worthwhile noticing that the requirement that the minimizing
sequence {xn} of the functional J is convergent implies that {xn} has always a unique
limit, i.e., every minimizing sequence of the functional J tends to the same limit,
say x , being the cluster point of the set D.

Consequently, if the minimization problem for the functional J is well-posed in
the sense of Tikhonov, then J has exactly one minimum in the set D.

It turns out that there are some natural problems considered, for example, in func-
tional analysis, when the corresponding minimization problem is well-posed.

We provide the following well-known example:

Example 1 Let D be a nonempty subset of a metric space X with a metric d. Fix an
element y ∇ X and consider the functional Jy defined on D by the formula

Jy(x) = d(x, y). (4)

Obviously such a functional has always a real infimum and

inf
x∇D

Jy(x) = dist(y, D). (5)

On the other hand it is also well known that the mentioned infimum need not be
unique and not every minimizing sequence is convergent.
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To guarantee that infimum of the functional Jy on the set D is attained we impose
some additional requirements [20].

Thus, assume that our space under consideration is a reflexive Banach space
(E, || · ||). Further, let D be a nonempty, closed, and convex subset of E and, as
before, let y be an arbitrarily fixed point in E .

It is well known that the functional Jy defined by (4), which can be now written
in the form

Jy(x) = ||x − y||, (6)

attains its infimum on the set D.
To prove this fact denote by dD(y) the distance dist(y, D) i.e., dD(y) =

dist(y, D). Next, consider the closed ball B(y, dD(y) + r) centered at y and with
radius dD(y) + r , where r > 0 is an arbitrary number.

Now, consider the family {Dr }r>0 of the sets Dr defined as the intersection of the
ball B(y, dD(y) + r) and the set D:

Dr = B(y, dD(y) + r) ≤ D. (7)

It is clear that the set Dr is nonempty, closed, and convex. In view of reflexivity of
the space E this implies that Dr is weakly compact (and, of course, weakly closed)
[15]. Thus, {Dr }r>0 is a centered family of weakly compact sets (i.e., compact with
respect to the weak topology in the Banach space E). This yields that the intersection
of this family

D0 =
⋂

r>0

Dr (8)

is nonempty, convex, and weakly compact. Obviously, the set D0 is contained in the
sphere S(y, dD(y)) centered at the point y and with radius dD(y), i.e.,

S(y, dD(y)) = {x ∇ E : ||x − y|| = dD(y)}. (9)

Finally, observe that this allows us to conclude that the functional Jy attains its
minimum on the nonempty set D0.

Now, let us observe that if we additionally assume that the space E is strictly
convex (this means that spheres in E do not contain nontrivial segments [17]) then
the functional Jy defined by (6) attains its minimum at exactly one point of the set D.

Let us recall that such a situation is realized if we assume, among others, that
the Banach space E is uniformly convex (for definition of uniformly convex Banach
spaces and their properties we refer to [2, 17]). Thus, in uniformly convex Banach
spaces the functional Jy defined by (6) attains its minimum at exactly one point.

From the above presented reasoningwe infer that everyminimizing sequence {xn}
of the functional Jy (in the case when E is reflexive and strictly convex) is convergent
to one point at which the functional Jy attains its minimum.
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To what extent we can generalize the above assertion is an interesting question,
i.e., which assumptions should be imposed on a Banach space in order to guarantee
that the set My consisting of points at which the considered functional Jy attains
its minimum is not a “big” set. For example, the set My is compact in the strong
topology of the Banach space E .

In the next section we will discuss the above problem.

3 Some Generalizations of the Concept of Well-Posed
Minimization Problem and Their Consequences

In this section we discuss some generalizations of the concept of the well-posed
minimization problem in the sense of Tikhonov, which was presented in the previous
section.

Similarly as in the previous section, for the sake of generality, we place our
considerations in a metric space X (with a metric d).

The following definition by Levitin and Polyak [26] generalizes the concept of
the well-posed minimization problem in the sense of Tikhonov.

Definition 1 Let J : X → R be a given functional. We state that the problem of
minimization of the functional J is well-posed in the sense of Levitin and Polyak if
each minimizing sequence of the functional J is compact.

Obviously, if the minimization problem for the functional J is well-posed in the
sense of Tikhonov then that problem is also well-posed in the sense of Levitin and
Polyak. Below we provide an example showing, among others, that the converse
implication is not always true.

To this end we provide first the definition of the concept of nearly strictly convex
Banach space, which will be needed further on. This definition is taken from [8].

Definition 2 A Banach space E is said to be nearly strictly convex (NSC, in short)
if its unit sphere SE = {x ∇ E : ||x || = 1} does not contain noncompact convex
sets.

In order to formulate the concept of NSC Banach space in another, equivalent
way, denote by E∞ the dual space of E . Let S∞ denote the unit sphere in E∞. Then, a
Banach space E is NSC if and only if for every functional x∞ ∇ S∞ the set {x ∇ SE :
x∞(x) = 1} is nonempty and compact [7].

Observe that every strictly convex Banach space is NSC but the converse impli-
cation is not always true [7].

Next, we discuss an example being the extension of the previously considered
Example 1.

Example 2 Similarly as in Example 1 take a nonempty, closed, and convex subset D
of a Banach space E . We will assume additionally that the space E is reflexive and
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NSC.Next, fix arbitrarily a point y ∇ E anddenote by Jy the functional definedby (6).
Obviously, the same reasoning as that conducted in Example 1 leads to the conclusion
that the set D0 consisting of all points belonging to D at which the functional Jy

attains its minimum, is nonempty, convex, and weakly compact. To describe the set
D0 more precisely, recall the notation introduced previously in Example 1, i.e.,

dD(y) = dist(y, D). (10)

Observe that the set D0 is contained in the sphere S(y, dD(y)). Thus, in view of
the imposed assumption that E is NSC, we conclude that the set D0 is compact.

On the other hand consider a minimizing sequence {xn} for the functional Jy ,
{xn} ≥ D. This means that

lim
n→∈ ||y − xn|| = dist(y, D). (11)

Without loss of generality we can assume that the sequence {||y − xn||} is nonin-
creasing, i.e., ||y − xn+1|| ∩ ||y − xn|| for n = 1, 2, . . .. Next, for arbitrarily fixed
natural number n consider the ball B

(

y, ||y − xn|| + 1
n

)

.
Further, consider the set Dn defined as follows:

Dn = D ≤ B

(

y, ||y − xn|| + 1

n

⎜

, for n = 1, 2, . . . . (12)

Obviously the set Dn is nonempty, closed, and convex. Apart from this we see that
the set Dn is weakly compact in view of reflexivity of the space E . Moreover, xn ∇ D
for any n = 1, 2, . . ..

Now, observe that the set D0 =
∈⋂

n=1
Dn is nonempty, closed, and convex. It is

clear that D0 is a subset of the sphere S(y, dD(y)).
On the other hand the set D0 contains all accumulation points of the sequence

{xn}. Since the space E is assumed to be NSC, this allows us to deduce that the set
A of those accumulation points is compact.

This means that the minimization problem for the functional Jy on the set D is
well-posed in the sense of Levitin and Polyak.

In order to recall a generalization of the well-posed minimization problem given
by Furi and Vignoli [16] we need to give the concept of the so-called Kuratowski
measure of noncompactness.

To this end assume that X is a given completemetric spacewith ametric d. Denote
by MX the family of all nonempty and bounded subsets of the space X and by NX

its subfamily consisting of all relatively compact sets.
Now, for A ∇ MX , denote by δ(A) the nonnegative number defined in the fol-

lowing way:
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δ(A) = inf{ε > 0 : A can be covered by a finite number of sets of diameters
smaller than ε}.

(13)

Equivalently, we have

δ(A) = inf
{

ε > 0 : A ≥
n⎟

i=1
Ai , Ai ≥ X, diamAi < ε (i = 1, 2, . . . , n), n is

an arbitrary natural number
}

,

(14)

where the symbol diamB denotes the diameter of the set B (B ≥ X). The quantity
δ(A) is called the Kuratowski measure of noncompactness of the set A and was
introduced by Kuratowski [24].

Observe that the function δ : MX → R+ = [0,∈) and has the following
properties being an immediate consequence of the definition:

δ(A) = 0 ∗ A ∇ NX , (15)

A ≥ B ⇒ δ(A) ∩ δ(B), (16)

δ(A) = δ(A), (17)

where the symbol A denotes the closure of the set A.
Moreover, for any set A ∇ MX the following inequality holds:

δ(A) ∩ diamA. (18)

Indeed, the above inequality is an immediate consequence of the definition of the
Kuratowski measure of noncompactness δ.

The most important and useful property of the Kuratowski measure of noncom-
pactness δ is contained in the below formulated theorem.

Theorem 1 Let {An} be a sequence of nonempty, bounded, and closed subsets of
the space X such that An ⊆ An+1 for n = 1, 2, ... and lim

n→∈ δ(An) = 0. Then the

intersection set A∈ of the sequence {An}, i.e., the set

A∈ =
∈
⋂

n=1

An, (19)

is nonempty and compact.

The above theorem was proved by Kuratowski and it creates the generalization
of the well-known Cantor intersection theorem.

Note that in the case when we consider the Kuratowski measure of noncompact-
ness δ in a Banach space E it has some additional useful properties related to the
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algebraic structure of the space E . The presentation of these properties are given in
detail in the next chapter.

Now,we formulate the definition of the concept ofwell-posedness ofminimization
problem in the sense of Furi and Vignoli.

Thus, analogously as earlier, assume that D is a nonempty and closed subset of
a complete metric space X with a metric d. Let J : D → R be a given functional
which is lower semicontinuous and lower bounded on the set D. Hence we infer that
the functional J has a real minimum m J on the set D, i.e., there exists a real number
m J such that

m J = inf
x∇D

J (x). (20)

Next, for an arbitrary given number ε > 0 denote:

Dε = {x ∇ D : J (x) ∩ m J + ε}. (21)

Note that in view of lower semicontinuity of the functional J we conclude that the
set Dε is closed.

Further observe that if 0 < ε1 < ε2 then Dε1 ≥ Dε2 .
In what follows we always assume that there exists a number ε0 > 0 such that the

set Dε0 is bounded. Thus, for every ε such that 0 < ε ∩ ε0 the set Dε is bounded.
It is worth noting that if the set D is bounded then set Dε is bounded for every

ε > 0.

Definition 3 We say that the minimization problem for the functional J is well-
posed on the set D in the sense of Furi and Vignoli if

lim
ε→0

δ(Dε) = 0. (22)

If the minimization problem is well-posed in the sense of Furi and Vignoli then
it is well-posed in the sense of Levitin and Polyak.

To prove this fact note first that the set D0 defined as the intersection of the family
{Dε}ε>0, i.e.,

D0 =
⋂

ε>0

Dε (23)

is nonempty, closed, and compact. The assertion concerning the compactness of the
set D0 is a consequence of Theorem 1.

On the other hand, the set D0 contains of all accumulation points of an arbitrary
minimizing sequence of the functional J on the set D. This means that the set of all
accumulation points of all minimizing sequences of functional J is compact and the
minimization problem is well-posed in the sense of Levitin and Polyak.

It is worth mentioning that the relations among various types of well-posed min-
imization problems were discussed in several papers (cf. [13, 14, 21, 27, 29, 34],
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for example). Obviously, in these papers well-posed minimization problems were
mostly discussed for functionals under some additional constraints.

In the example given below we discuss the well-posedness for the “distance”
functional considered in Examples 1 and 2.

Example 3 Assume that (E, || · ||) is a Banach space with the zero element σ . Denote
by BE the unit ball, i.e., BE = B(σ, 1) and let SE stand for the unit sphere in E .
Similarly as before, let E∞ denote the dual space of E . Denote by S∞ = SE∞ . Further
assume that δ is the Kuratowski measure of noncompactness in the space E .

We will say that the space E is nearly uniformly convex (NUC, in short) [22] if
for any ε > 0 there exists α > 0 such that whenever a closed convex subset X of the
ball BE has dist(σ, X) ⇔ 1 − α then δ(X) ∩ ε.

It is well known that every NUC space E is reflexive and has some additional
properties [4, 5, 7, 18, 22, 28, 30–32].

There is also another approach to the concept of NUC space. Namely, for an
arbitrary ε ∇ (0, 1] define the quantity βE (ε) in the following way [5]:

βE (ε) = sup {δ(X) : X ≥ BE , X is convex, dist(σ, X) ⇔ 1 − ε} . (24)

Function βE : [0, 1] → [0, 2] is a kind of a modulus of near convexity (cf. [5], for
details). It is easily seen that E is NUC if and only if lim

ε→0
βE (ε) = 0.

Moreover, we need also some other characterization of NUC spaces. To this end,
for a fixed functional f ∇ S∞ denote by F( f, ε) the slice of the unit ball BE defined
as follows:

F( f, ε) = {x ∇ EE : f (x) ⇔ 1 − ε} . (25)

Then we have the following result [5]:

Theorem 2 A space E is NUC if and only if

lim
ε→0

δ(F( f, ε)) = 0 (26)

uniformly with respect to f ∇ S∞.

Particularly, from the above theorem we deduce that if a Banach space E is NUC
then for an arbitrarily fixed functional f belonging to the sphere S∞ we have that
lim
ε→0

δ(F( f, ε)) = 0.

Additionally note that every NUC space is NSC [4] but the converse implication
is not always true [32].

In what follows, extending the considerations conducted in Examples 1 and 2,
assume that (E, || · ||) is an NUC Banach space and D is a nonempty, closed, and
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convex subset of the space E . Fix an element y ∇ E and consider distance functional
Jy defined on the set D by formula (6), i.e.,

Jy(x) = ||x − y||. (27)

We show that the minimization problem for the functional Jy on the set D is well-
posed in the sense of Furi and Vignoli.

For the proof observe that the functional Jy attains its minimum m J on the set D
and

m J = dist(y, D). (28)

This is an immediate consequence of the above-mentioned reflexivity of the space
E and the facts established in Example 1.

Further, let us fix arbitrarily a number ε > 0 and consider the set

Dε = {x ∇ D : Jy(x) ∩ m J + ε} = {x ∇ D : ||x − y|| ∩ m J + ε}
= D ≤ B(y, m J + ε). (29)

Since the set Dε is closed and convex and there exists a point z ∇ Dε such that
||z − y|| = dist(y, D), then from some well-known facts (cf. [15, p. 452]) we infer
that there exists a functional f ∇ E∞ supporting the set Dε at the point z (in fact,
f is the functional tangent to Dε at z). Multiplying the functional f by a suitable
positive number we see that the set Dε may be considered as a subset of the slice

F( f, ε) = {x ∇ B(y, m J + ε) : f (x) ⇔ dy + ε}. (30)

Since the space E is assumed to beNUCwe deduce fromTheorem 2 that lim
ε→0

δ(F( f,

ε)) = 0. This implies that lim
ε→0

δ(Dε) = 0. Thismeans that theminimization problem

for the functional Jy is well-posed in the sense of Furi and Vignoli.

4 Measures of Noncompactness

In this section we present basic facts concerning measures of noncompactness. We
focus here on the axiomatic approach to this concept contained in the monograph
[9]. Such an approach is sufficiently general although there are some more general
definitions of the concept of a measure of noncompatness (cf. [1]). Nevertheless, our
definition admits several natural realizations. Apart from this measures of noncom-
pactness satisfying our axiomatics have useful properties and are handy in numerous
applications (cf. [9, 12] and references therein). Moreover, based on the mentioned
axiomatic definition we are able to construct measures of noncompactness in those
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Banach spaces in which we do not know necessary and sufficient conditions for
relative compactness of sets.

The considerations of this section will be mainly conducted in Banach spaces
although some of them have also sense in the setting of metric spaces.

Thus, let us assume that (E, || · ||) is a given Banach space. For subsets X, Y of
E and for a number c ∇ R denote by X + Y , cX the usual algebraic operations on
sets. By the symbol ConvX we denote the closed convex hull of X , while the symbol
convX stands for the convex hull of X .

For completeness of our considerations recall that the ball centered at x and with
radius r is denoted by B(x, r).Wewrite BE to denote the unit ball B(σ, 1).Moreover,
the symbol X stands for the closure of the set X .

If X is a given nonempty subset of E then the symbol B(X, r) denotes the ball
centered at the set X and with radius r , i.e.,

B(X, r) =
⎧

x∇X

B(x, r). (31)

For an arbitrary family P of some subsets of E we denote by Pc the family of all
closed sets belonging toP .

Further, similarly as in the preceding section, denote by ME the family of all
nonempty and bounded subsets of the space E and by NE its subfamily consisting
of all relatively compact sets.

If X, Y ∇ ME then by h(X, Y ) we denote the so-called nonsymmetric Hausdorff
distance between sets X and Y , defined as follows:

h(X, Y ) = inf {r > 0 : X ≥ B(Y, r)} . (32)

Finally, we put

H(X, Y ) = max {h(X, Y ), h(Y, X)} . (33)

The quantity H(X, Y ) is called the Hausdorff distance between sets X and Y . This
distance generates the pseudometric on the family ME and it is a complete metric
on the familyMc

E [25].
IfZ is a nonempty subfamily of the familyME then for an arbitrary X ∇ ME we

denote by H(X,Z ) the distance of X to Z with respect to the Hausdorff distance
H , i.e.,

H(X,Z ) = inf {H(X, Z) : Z ∇ Z } . (34)

We accept the following definition of a measure of noncompactness [9]:

Definition 4 The function μ : ME → R+ = [0,∈) is said to be a measure of
noncompactness in the space E if it satisfies the following conditions:
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(i) The family kerμ = {X ∇ ME : μ(X) = 0}; is nonempty and kerμ ≥ ME ;
(ii) X ≥ Y ⇒ μ(X) ∩ μ(Y );
(iii) μ(X) = μ(X);
(iv) μ(ConvX) = μ(X);
(v) μ(γX + (1 − γ)Y ) ∩ γμ(X) + (1 − γ)μ(Y ) for γ ∇ [0, 1];
(vi) If {Xn} is a sequence of closed sets from ME such that Xn+1 ≥ Xn for n =

1, 2, . . . and if lim
n→∈ μ(Xn) = 0 then the intersection set X∈ =

∈⋂
n=1

Xn is

nonempty.

The family kerμ described in axiom (i) is called the kernel of the measure of
noncompactness μ.

Observe that in axiom (vi), from the inclusion X∈ ≥ Xn which is valid for
n = 1, 2, . . ., we infer that μ(X∈) ∩ μ(Xn) which implies that μ(X∈) = 0 i.e.,
the set X∈ is a member of the family kerμ.

Let us point out also that we frequently use an equivalent approach to the concept
of ameasure of noncompactness. In that approach the role of the kernel of themeasure
of noncompactness is exposed.

Definition 5 A nonempty family P ≥ NE is called the kernel (of a measure of
noncompactness) provided the following conditions are satisfied:

(i) X ∇ P ⇒ X ∇ P;
(ii) X ∇ P , Y ≥ X , Y ⇒= ⊂ ⇒ Y ∇ P;
(iii) X ∇ P ⇒ ConvX ∇ P;
(iv) X, Y ∇ P ⇒ γX + (1 − γ)Y ∇ P for γ ∇ [0, 1];
(v) Pc is closed inMc

E with respect to Hausdorff metric.

Observe that the family NE may serve as an example of the kernel of a mea-
sure of noncompactness. Indeed, it is easily seen that NE satisfies all conditions of
Definition 5. Another example of the kernel of a measure of noncompactness may
serve the family N0

E consisting of all singletons belonging to E .
In what follows we provide the definition of a measure of noncompactness related

to the concept of the kernel given in Definition 5.

Definition 6 The functionμ : ME → R+ is said to be ameasure of noncompactness
with the kernel P (kerμ = P) if it satisfies the following conditious:

(i) μ(X) = 0 ∗ X ∇ P;
(ii) X ≥ Y ⇒ μ(X) ∩ μ(Y );
(iii) μ(X) = μ(X);
(iv) μ(ConvX) = μ(X);
(v) μ(γX + (1 − γ)Y ) ∩ γμ(X) + (1 − γ)μ(Y ) for γ ∇ [0, 1];
(vi) If Xn ∇ ME , Xn = Xn and Xn+1 ≥ Xn for n = 1, 2, . . . and if lim

n→∈ μ(Xn) =
0 then the set X∈ =

∈⋂
n=1

Xn is nonempty.
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Let us pay attention to the situation when we consider a complete metric space
X instead of a Banach space E . Then the above given Definitions 4, 5, and 6 can
be adopted to such a situation. To this end we have to delete axioms connected with
algebraic structure of the familyME . For example, in this case the definition of the
kernel runs as follows:

Definition 7 Let X be a complete matric space. A nonempty family P ≥ NX is
referred to as the kernel (of a measure of noncompactness) if it satisfies the following
conditions:

(i) X ∇ P ⇒ X ∇ P;
(ii) X ∇ P , Y ≥ X, Y ⇒= ⊂ ⇒ Y ∇ P;
(iii) Pc is closed in Mc

X with respect to the topology generated by Hausdorff’s
metric.

In a similar way we can formulate the definition of a measure of noncompactness
in the space X . Indeed, the functionμ : MX → R+ is a measure of noncompactness
provided it satisfies conditions (i), (ii), (iii), and (vi) of Definition 4 or the same
conditions of Definitions 6.

Now, note the fact that Kuratowski’s measure of noncompactness δ discussed in
Sect. 3 is themeasure of noncompactness in the sense ofDefinition 4 (orDefinition 6).
Indeed, from (15) we infer that the function δ satisfies condition (i) of Definition 4
and kerμ = NE .Moreover, from (16), (17) and Theorem 1we deduce thatδ satisfies
conditions (ii), (iii), and (vi) of Definition 4 (or Definition 6). Thus, δ is the measure
of noncompactness in any metric space. It can be also shown [9] that the function
δ satisfies also axioms (iv) and (vi) of Definition 4 or 6 when we consider it in a
Banach space E .

Below we provide further examples of measures of noncompactness in the sense
of Definitions 4 and 6.

Example 4 Assume that E is a Banach space (although we can also treat the case
of a metric space X ). For X ∇ ME let us consider the quantity φ(X) defined in the
following way (cf. [9, 19]):

φ(X) = inf{ε > 0 : X can be covered by a finite number of balls of radii ε}.
(35)

The function φ is called the Hausdorff measure of noncompactness.

It is not hard to show that the function φ satisfies the conditions of Definition 4.
Indeed, the equivalence

φ(X) = 0 ∗ X is relatively compact (36)

is an easy consequence of the famous Hausdorff theorem. Thus condition (i) of
Definition 4 is satisfied with ker φ = NE . For the proof of the remaining conditions
we refer to [9].
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It is worth mentioning that the Hausdorff measure of noncompactness can be
expressed in terms of the Hausdorff distance H . In fact, we can show that for an
arbitrary set A ∇ ME the following equality holds:

φ(A) = H(A,NE ). (37)

It turns out that this equality is also true if we replace the Banach space E by a
complete metric space X . The details of the proof can be found in [9].

Example 5 Now, according to Definitions 5 and 6 let us take as the family P
described by Definition 5 the family N0

E consisting of all singletons in E . It is
easily seen that the familyN0

E is the kernel (of a measure of noncompactness) in the
sense of Definition 5.

Further, for X ∇ ME , let us put

μ(X) = diamX, (38)

i.e., μ(X) is equal to the diameter of the set X .

It is easy to verify that the function μ defined by formula (38) is the measure of
noncompactness in the sense of Definition 6 (or Definition 4). For example, axiom
(vi) of Definition 6 coincides with the classical Cantor intersection theorem.

Note the fact that formula (38) defines the measure of noncompactness in an
arbitrary complete metric space.

In what follows we see that every kernel generates at least one measure of non-
compactness. Indeed, for the sake of generality assume that X is a givenmetric space.
Let P ≥ NX be an arbitrary kernel (of a measure of noncompactness) in the sense
of Definition 7. For A ∇ MX let us put

μ(A) = H(A,P), (39)

where H(A,P) denotes the Hausdorff distance of the set A to the familyP .
It can be shown that formula (39) defines a measure of noncompactness in the

metric space X such that kerμ = P . This theorem was given in [9] but the detailed
proof can be found in [10].

It is also worth mentioning that formula (39) defines also the measure of noncom-
pactness in the sense of Definitions 6 and 4, in the setting of a Banach space.

It turns out that the most convenient and useful in applications seems to be the
Hausdorffmeasure of noncompactness. It is, among others, a consequence of equality
(37). But another, very important reason is a result of the fact that in some Banach
spaces we are able to express the Hausdorff measure φ with the help of a convenient
formula associated with the structure of a Banach space under considerations. We
illustrate this assertion by a few examples.
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Example 6 Let C[a, b] denote the classical Banach space consisting of all real func-
tions defined and continuous on the interval [a, b]. We consider C[a, b] furnished
with the standard maximum norm, i.e.,

||x || = max {|x(t)| : t ∇ [a, b]} . (40)

Keeping in mind the Arzéla-Ascoli criterion for compactness in C[a, b] we can
express the Hausdorff measure of noncompactness in the below described manner.

Namely, for x ∇ C[a, b] denote by ω(x, ε) the modulus of continuity of the
function x :

ω(x, ε) = sup{|x(t) − x(s)| : t, s ∇ [a, b], |t − s| ∩ ε}, for ε > 0. (41)

Next, for an arbitrary set X ∇ MC[a,b] let us put:

ω(X, ε) = sup{ω(x, ε) : x ∇ X}, (42)

ω0(X) = lim
ε→0

ω(X, ε). (43)

It can be shown [9, 19] that for X ∇ MC[a,b] the following equality holds:

φ(X) = 1

2
ω0(X). (44)

This equality is very useful in applications.

Example 7 Let c0 denote the space of all real sequences x = {xn} converging to
zero and endowed with the maximum norm, i.e.,

||x || = ||{xn}|| = max{|xn| : n = 1, 2, . . .}. (45)

To describe the formula expressing the Hausdorff measure φ in the space c0 fix
arbitrarily a set X ∇ Mc0 . Then, it can be shown that the following equality holds
(cf. [9]):

φ(X) = lim
n→∈

⎪

sup
x∇X

{max{|xk | : k ⇔ n}}
⎨

. (46)

In the space c consisting of real sequences converging to a proper limit and
furnished with the supremum norm

||x || = ||{xn}|| = sup{|xn| : n = 1, 2, . . .}, (47)

the situation is more complicated and we only know estimates of the Hausdorff
measure φ . Indeed, the function μ : Mc → R+ defined by the formula
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μ(X) = lim
n→∈

⎪

sup
x∇X

⎪

sup

⎪

|xk − lim
i→∈ xi | : k ⇔ n

⎨⎨⎨

(48)

satisfies the following inequalities:

1

2
μ(X) ∩ φ(X) ∩ μ(X), (49)

which were proved in [9].
On the other hand observe that the function μ defined by (48) may serve as an

example of a measure of noncompactness in the space c with the kernel kerμ = Nc.
The formula expressing the Hausdorff measure of noncompactness is also known

in the space l p for 1 ∩ p < ∈ [9]. On the other hand in the classical Banach
spaces L p(a, b) and l∈ we only know some estimates of the Hausdorff measure of
noncompactness with the help of formulas that define measures of noncompactness
in those spaces. Refer to [9] for details.

Finally, note that there are some Banach spaces in which we do not know the
criteria for compactness similar to those of Arzéla-Ascoli in the space C[a, b] or
Riesz and Kolmogorov in the space L p(a, b).

In Banach spaces of such type we do not know how to construct formulas for
measures of noncompactness with kernels equal to the family of all nonempty and
relatively compact sets.

In the below example we discuss a Banach space of such type.

Example 8 Denote by BC(R+) the space consisting of all functions defined, con-
tinuous, and bounded on the real half-axis R+ and having real values. This space is
furnished with the supremum norm, i.e., for x ∇ BC(R+) we put

||x || = sup{|x(t)| : t ∇ R+}. (50)

In the space BC(R+) the Arzéla-Ascoli criteriion for relative compactness of sets
fails to work.What is more, we do not even know a necessary and sufficient condition
for the relative compactness of sets which is connected with the structure of this
space. By these regards we can only define measures of noncompactness such that
their kernels are essentially smaller than the family NBC(R+).

In order to construct the mentioned measures in the space BC(R+) take an arbi-
trary set X ∇ MBC(R+) and choose a function x ∇ X . Next, fix numbers ε > 0,
T > 0 and let us define the following quantities:

ωT (x, ε) = sup{|x(t) − x(s)| : t, s ∇ [0, T ], |t − s| ∩ ε}, (51)

ωT (X, ε) = sup{ωT (x, ε); x ∇ X}, (52)

ωT
0 (X) = lim

ε→0
ωT (X, ε), (53)
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ω0(X) = lim
T →∈ ωT

0 (X). (54)

Further, let us define the set-functions a(X), b(X), c(X) by putting

a(X) = lim
T →∈

⎪

sup
x∇X

{sup{|x(t)| : t ⇔ T }}
⎨

, (55)

b(X) = lim
T →∈

⎪

sup
x∇X

{sup{|x(t) − x(s)| : t, s ⇔ T }}
⎨

, (56)

c(X) = lim sup
t→∈

diamX (t), (57)

where X (t) = {x(t) : x ∇ X} and the symbol diamX (t) stands for the diameter of
the set X (t) i.e.,

diamX (t) = sup{|x(t) − y(t)| : x, y ∇ X}. (58)

Finally, let us take the functions μa, μb, μc defined on the familyMBC(R+) in the
following way:

μa(X) = ω0(X) + a(X), (59)

μb(X) = ω0(X) + b(X), (60)

μc(X) = ω0(X) + c(X). (61)

It can be shown [3] (cf. also [6]) that these functions aremeasures of noncompactness
in the space BC(R+)with kernels essentially smaller than the familyNBC(R+). Note
also that the kernel kerμa consists of all bounded sets X such that functions from
X are locally equicontinuous on R+ and tend to zero at infinity with the same rate.
Similarly, the kernel kerμb contains bounded sets X such that functions from X are
locally equicontinuous on R+ and tend to limits at infinity with the same rate (i.e.,
uniformly with respect to the set X ).

Finally, the kernel kerμc contains all bounded subsets X of the space BC(R+)

such that functions from X are locally equicontinuous on R+ and the thickness
of the bundle formed by graphs of functions from X tends to zero at infinity. As
we mentioned above, we have that kerμy ≥ NBC(R+) but kerμy ⇒= NBC(R+) for
y ∇ {a, b, c}.
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5 Generalized Definition of the Well-Posed Minimum
Problem

The final section of this chapter is devoted to present some generalization of the
concept of well-posed minimization problem in the sense of Furi and Vignoli. Our
generalization contains, as special cases, all definitions of the well-posedness of
minimization problem discussed previously in this chapter.

Let us assume that X is a given complete metric space and let D be a nonempty
and closed subset of the space X . Further, let J : D → R be a lower semicontinuous
and lower bounded functional on the set D. Similarly as in Sect. 3 denote by m J the
minimum of J on the set D, i.e., m J = inf

x∇D
J (x). Next, for ε > 0 let us put

Dε = {x ∇ D : J (x) ∩ m J + ε}. (62)

In the sequel we always assume that there exists ε0 > 0 such that the set Dε0 is
bounded (cf. Sect. 3).

Now assume that the family P ≥ NX is a kernel (of a measure of noncompact-
ness) in the sense of Definition 7.

Definition 8 We say that the minimization problem for the functional J is well-
posed on the set D with respect to the kernelP if there exists a measure of noncom-
pactness μ in the space X with kerμ = P and such that

lim
ε→0

μ(Dε) = 0. (63)

From the above definition it follows that the set D0 = {x ∇ D : J (x) = m J }
consisting of all points belonging to D at which the functional J attains its minimum,
is compact, and belongs to the kernel P .

Indeed, similarly as in Sect. 3 observe that D0 = ⋂

ε>0
Dε. Hence, in view of axiom

(vi) from Definition 6 we infer that the set D0 is a member of the familyP (cf. also
[9]). Moreover, keeping in mind the assumption requiring the lower semicontinuity
of the functional J we obtain that D0 is closed. Thus the set D0 is compact.

As a consequence of Definition 8 we derive a few properties of the well-posed
minimization problem with respect to a kernel. These properties are formulated in
the theorems given below.

Theorem 3 If the minimization problem for the functional J on the set D is well-
posed with respect to the kernels P1 and P2, then this problem is well-posed with
respect to the kernel P = P1 ≤ P2.

Proof Let D0 be the set defined above, i.e., D0 = {x ∇ D : J (x) = m J }. Then,
from the properties of the set D0 established above we deduce that D0 ∇ P1 and
D0 ∇ P2. Hence D0 ∇ P1 ≤ P2 which implies that the family P = P1 ≤ P2 is
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nonempty. It is easy to check that the familyP satisfies the conditions of Definition
7 which means that it is a kernel (of a measure of noncompactness).

In view of imposed assumptions there exist measures of noncompactness μ1, μ2
defined in X with kerμ1 = P1, kerμ2 = P2 and such that

lim
ε→0

μ1(Dε) = lim
ε→0

μ2(Dε) = 0. (64)

Further, let us define the measure of noncompactness μ in the space X by putting
μ = μ1 + μ2. It is easy to check that the kernel of the measure μ is equal toP i.e.,
kerμ = P . Moreover, from equalities (64) we get

lim
ε→0

μ(Dε) = lim
ε→0

[μ1(Dε) + μ2(Dε)] = 0 (65)

which means that the minimization problem for the functional J on the set D is
well-posed with respect to the kernel P . The proof is complete. �

Theorem 4 Assume that the minimization problem for the functional J on the set
D is well-posed with respect to the kernel P1. If P2 is such a kernel that P1 ≥ P2
then the minimization problem for the functional J is well-posed with respect to the
kernel P2.

Proof In view of our assumptions there exists a measure of noncompactnessμ1 with
kerμ1 = P1 such that the minimization problem for the functional J is well-posed
with respect toP1 i.e.,

lim
ε→0

μ1(Dε) = 0. (66)

Next, let us define the measure of noncompactness μ2 in the space X by putting

μ2(A) = μ1(A)H(A,P2), (67)

where H(A,P2) denotes the distance of the set A to the familyP2 with respect to
the Hausdorff distance. It is easy to verify that μ2 is a measure of noncompactness
in the space X such that kerμ2 = P2. Moreover, from (66) and (67) we obtain

lim
ε→0

μ2(Dε) = lim
ε→0

μ1(Dε)H(Dε,P2) = 0, (68)

and the proof is complete. �

Remark 1 Observe that if the minimization problem for a functional J on the set D
is well-posed with respect to the kernel P then it does not guarantee that for every
measure of noncompactness μ with kerμ = P equality (63) is satisfied.

Indeed, if μ1 is a measure of noncompactness with kerμ1 = P and such that
(63) is satisfied, then not every measure of noncompactness μ2 with kerμ2 = P
has to satisfy condition (63) even ifP = NX (cf. [11])



128 J. Banaś

In light of Remark 1 and Theorems 3 and 4 we can raise the problem of the
existence of the minimal kernel P (with respect to the relation of inclusion) such
that forP the minimization problem for the functional J is well-posed.

Below we present the solution of this problem.

Theorem 5 Assume that {Pγ}γ∇λ is a family of kernels in X such that for any
γ ∇ λ the minimization problem for the functional J on the set D is well-posed with
respect to the kernel Pγ, i.e., there exists a measure of noncompactness μγ with
kerμγ = Pγ such that (63) holds with μ = μγ. Then, the minimization problem for
the functional J is well-posed on the set D with respect to the kernel P defined as
intersection of all kernels Pγ, i.e.,

P =
⋂

γ∇λ

Pγ. (69)

Proof Arguing in the same way as in the proof of Theorem 3 we see that the family
P is nonempty. On the other hand, in the standard way we can show that P is the
kernel in the sense of Definition 7.

Now, let us consider the function μ : MX → R+ defined by the formula

μ(A) = sup{μγ(A) : γ ∇ λ}, (70)

for an arbitrary set A ∇ MX . Obviously we have that kerμ = P . Moreover, it is
easily seen that the function μ is a measure of noncompatness in the metric space X
which means that μ satisfies conditions (i), (ii), (iii), and (vi) of Definition 6. This
completes the proof. �

Note that Theorem 5 describes the best possible kernel with respect to which the
minimization problem is well-posed for the functional J on the set D.

Obviously, Theorem 5 is a generalization of Theorem 3.
Now, we provide a few theorems on the connection of the well-posedness of

minimization problem for the functional J on the set D with some properties of
minimizing sequences.

Theorem 6 If the minimization problem for the functional J on the set D is well-
posed with respect to the kernel P then the set of all accumulation points of each
minimizing sequence {xn} for the functional J on the set D is a member of the
family P .

Proof Let {xn} be a minimizing sequence for the functional J on the set D, i.e.,

lim
n→∈ J (xn) = m J , (71)

where the number m J was defined previously. Then, the set all accumulation points
of the sequence {xn} can be represented in the form
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Ã =
∈
⋂

n=1

An, (72)

where

An = {xi : i ⇔ n}. (73)

Next, let μ be a measure of noncompactness in X chosen according to Definition 8.
Then, in view of (66) we infer that

lim
n→∈ μ(An) = 0. (74)

But this yields that Ã ∇ P and the proof is complete. �

Theorem 7 If each minimizing sequence for the functional J on the set D has at
least one accumulation point and D0 ∇ P , then the minimization problem for the
functional J on the set D is well posed with respect to the kernel P .

Proof Let us define the measure of noncompactness on the space X by putting
μ(A) = H(A,P) for an arbitrary set A ∇ MX (cf. (39)). To prove our assertion it
is sufficient to show that

lim
n→∈ μ(D1/n) = 0. (75)

Suppose contrarily, i.e., there exists a constant ψ > 0 such that

lim
n→∈ H(D1/n,P) = ψ. (76)

Observe that the above limit does exist since the sequence of sets {D1/n} is decreasing.
Thus, in virtue of (76) we get

H(D1/n, D0) ⇔ H(D1/n,P) ⇔ ψ. (77)

Based on the above inequality we can find a sequence {xn} such that

xn ∇ D1/n, for n = 1, 2, . . . , (78)

and

dist(xn, D0) ⇔ ψ

2
. (79)

From (78) we infer that {xn} is a minimizing sequence for the functional J on
the set D. On the other hand inequality (79) allows us to deduce that {xn} has no
accumulation points. The obtained contradiction completes the proof. �
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Nowwe formulate a theoremcharacterizing functional forwhich theminimization
problem is well posed in the generalized sense accepted in Definition 8.

Theorem 8 The minimization problem for the functional J on the set D is well posed
with respect to the kernel P if and only if there exists a measure of noncompactness
μ with kerμ = P such that for any A ∇ MX the following inequality holds:

m J + μ(A) ∩ sup J (A). (80)

Proof First, let us assume that the minimization problem for the functional J is well
posed on the set D with respect to the kernel P . Then there exists a measure of
noncompactness μ with kerμ = P and such that

lim
ε→0

μ(Dε) = 0. (81)

Now, let us consider the function ω acting from the set R+ = [0,∈] into itself and
defined in the following way:

ω(r) =

⎩

⎛⎛⎝

⎛⎛

0, if r = 0,
μ(Dr ), if diamDr < ∈,

∈, if diamDr = ∈,

∈, if r = ∈.

(82)

It is easily seen that ω is nondecreasing. Moreover, ω is continuous at the point r = 0.
Further, denote by r the constant

r = sup{r > 0 : diamDr < ∈}. (83)

In what follows we define the measure of noncompactness μ on the space X with
kerμ = P by putting

μ(A) = min
{

1, r , inf ω−1([μ(A),∈])
}

. (84)

To finish this part of the proof it is sufficient to show that inequality (80) is satisfied.
To this end, let us fix a set A ∇ MX . If sup J (A) = ∈ then inequality (80) does hold.
So, assume that sup J (A) < ∈. Further, choose the number r1 = sup J (A) − m J .
Let r ∇ [1,∈). If r1 ⇔ r , we have

m J + μ(A) ∩ m J + r ∩ m J + r1 = sup J (A). (85)

If r1 < r then diamDr1 < ∈ and we get

A ≥ Dr1 = {x ∇ D : J (x) ∩ sup J (A)}. (86)
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Hence, we obtain

m J + μ(A) ∩ m J + μ(Dr1) ∩ m J + r1 = sup J (A). (87)

Similarly, we show the validity of inequality (80) in the case r < 1.
Conversely, suppose that inequality (80) is satisfied with a measure of noncom-

pactness μ. Fix ε ∇ (0, ε0), where ε0 is such a number that diamDε0 < ∈. Then we
have

m J + μ(Dε) ∩ sup J (Dε) ∩ m J + ε. (88)

This implies that μ(Dε) ∩ ε. Consequently we derive that

lim
ε→0

μ(Dε) = 0 (89)

and the proof is complete. �

In what follows we provide a few examples illustrating our considerations and
obtained results.

Example 9 Let X be a complete metric space and let J be a lower semicontinuous
and lower bounded functional defined on a nonempty and closed subset D of the space
X . Next, letN0

X denote the kernel consisting of all singletons in X (cf. Example 5).
Then we can assert that the minimization problem for the functional J on the set D
is well-posed with respect to the kernelN0

X if and only if it is well-posed in the sense
of Tikhonov.

Indeed, it suffices to put μ(A) = diamA for A ∇ MX .

If we take the kernelP = NX , then the minimization problem for the functional
J on the set D is well-posed with respect toNX if and only if it is well-posed in the
sense of Furi and Vignoli. In fact, it is sufficient to put μ(A) = δ(A) for A ∇ NX ,
where δ denotes the Kuratowski measure of noncompactness (cf. Sect. 3).

Example 10 Assume thatP is an arbitrarily fixed kernel (of a measure of noncom-
pactness) in a Banach space E . Further, let μ be a measure of noncompactness in
the space E with the kernel kerμ = P , which is defined by the formula

μ(A) = H(A,P), for A ∇ ME . (90)

Next, assume that D is a nonempty, bounded, closed, and convex subset of theBanach
space E and T : D → D is a continuous operator such that

μ(T (A)) ∩ kμ(A), (91)

for any nonempty subset A of the set D, where k is a constant from the interval [0, 1).



132 J. Banaś

Then the minimization problem for the functional J : D → D, defined by the
formula

J (x) = ||T x − x ||, (92)

is well-posed with respect to the kernel P .

Indeed, we have

m J = inf{J (x) : x ∇ D} = 0, (93)

since the operator T has a fixed point in the set D [9]. Moreover, we have

μ(A) = H(A,P) ∩ H(A, T (A)) + H(T (A),P)

= H(A, T (A)) + μ(T (A)) ∩ H(A, T (A)) + kμ(A)

∩ sup J (A) + kμ(A).

(94)

Hence, we obtain

(1 − k)μ(A) ∩ sup J (A) (95)

which means that inequality (80) is satisfied for the measure of noncompactness
(1 − k)μ.

Example 11 Similarly to the preceding example assume that E is a Banach space.
Further, let D be a nonempty, closed, and convex subset of the space E . Consider a
functional J : D → D which is quasiconvex in the set D, i.e., for all x1, x2 ∇ D
and for each δ ∇ [0, 1] the following inequality is satisfied:

J (δx1 + (1 − δ)x2) ∩ max{J (x1), J (x2)}. (96)

Next, let us assume that there exists a measure of noncompactness in the Banach
space E (cf. Definition 4) with the kernel kerμ and such that

m J + μ(A) ∩ sup J (A), (97)

for any convex set A ∇ ME . Then the minimization problem for the functional J on
the set D is well-posed with respect to kerμ.

To prove, this fact let us take an arbitrary set A ∇ ME . Then, in view of (97) we
obtain

m J + μ(A) = m J + μ(convA) ∩ sup J (convA). (98)
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Since the functional J is assumed to be quasiconvex, we have

sup J (convA) ∩ sup J (A). (99)

Joining inequalities (98) and (99) we deduce that inequality (80) is satisfied. This
completes the proof of our assertion.

Finally, let us mention that considerations presented in this section are partly
based on [23].
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Well-Posedness, Regularization, and Viscosity
Solutions of Minimization Problems

D. V. Pai

Abstract This chapter is divided into two parts. The first part surveys some classical
notions for well-posedness of minimization problems. The main aim here is to syn-
thesize some known results in approximation theory for best approximants, restricted
Chebyshev centers, and prox points from the perspective of well-posedness of these
problems. The second part reviews Tikhonov regularization of ill-posed problems.
This leads us to revisit the so-called viscosity methods for minimization problems
using the modern approach of variational convergence. Lastly, some of these results
are particularized to convex minimization problems, and also to ill-posed inverse
problems.

Keywords Well-posedness · Best approximants · Well-posedness of restricted
Chebyshev centers · Best simultaneous approximation · Prox pairs · Well-posedness
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1 Introduction and Preliminaries

Well-posedness, regularization, and viscosity methods are topics of continuing inter-
est in the literature on variational analysis and optimization (cf., e.g., [3–5, 12, 15,
24, 26, 43, 47, 48]). In the present chapter, we will attempt to highlight the following
scheme of development:

Well-posedness → Regularization of ill-posed problems → Viscosity solutions .
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In Sect. 2, we review some well-posedness notions for minimization problems start-
ing from the classical notion due to Tikhonov [47]. This leads us to Sect. 3 where our
main goal is to synthesize some classical as well as newer results in approximation
theory from the angle of well-posedness of the underlying minimization problems.
In Sect. 4 we begin by considering some more standard results on Tikhonov well-
posedness as well as a classical example motivating Tikhonov regularization. The
main result here (Theorem 14) apparently originated in [27]. Its present refinement
could be traced to [15].

Section 5 is devoted to viscosity solutions. Viscosity methods have been used for
a longtime in diverse problems arising in variational analysis and optimization (cf.,
e.g., [4, 14, 16, 26, 48]). A central feature of these methods is to come up, as a limit
of solutions of a sequence of approximating problems, a particular solution of the
underlying problem, the so-called viscosity solution which enjoys interesting prop-
erties. Although the first abstract formulation for studying viscosity approximations
was given in [47], it is really the elegant article due to Attouch [4], which provided an
efficient abstract framework for exploring the viscosity solutions using the modern
tools of variational convergence for sequences of functions and operators. Here, our
main aim is to revisit some of these results in [4] with a view to provide a greater
flexibility to these results.

1.1 Preliminaries

In the sequel, X will be a convergence space endowed with convergence of nets
(or sequences) denoted by →, satisfying the “Kuratowski” axioms [22, pp. 83–
84]. When X is a topological space, the convergence of nets (or sequences) will be
understood as the one induced by the given topology. For the most part X will be a
normed linear space over K (either R or C). Its normed dual will be denoted by X∈
and w (resp. w∈) will denote the weak topology (resp. weak∈ topology). S (resp. S∈)
will denote the unit sphere (norm one elements) of X (resp. X∈). The closed unit ball
of X (resp. X∈) is denoted by U (resp. U∈). The open (resp. closed) ball of center x
and radius r will be denoted by B(x, r) (resp. B[x, r ]). We distinguish the following
classes of normed spaces:

• (R f ) := the reflexive Banach spaces
• (R) := the rotund (strictly convex) normed spaces
• (A) := the normed spaces for which the norm satisfies the Kadec property: w

convergence of a sequence in S entails its norm convergence
• (U R) := the uniformly convex Banach spaces

Following [50], we denote the class of spaces (R f ) ≥ (A) by (C D) and the class of
spaces (C D) ≥ (R) = (R f ) ≥ (R) ≥ (A) by (D). It is well known [19, pp. 147–149]
that the class (D) coincides with the class of Banach spaces whose dual norms are
Fréchet differentiable except at the origin.

We also distinguish the following classes of subsets of X :
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• C L(X) := the nonempty closed subsets of X
• C L B(X) := the nonempty closed and bounded subsets of X
• C LC(X) := the nonempty closed and convex subsets of X
• C L BC(X) := the nonempty closed, bounded, and convex subsets of X
• K (X) := the nonempty compact subsets of X
• K C(X) := the nonempty compact and convex subsets of X
• WC L(X) := the nonempty w-closed subsets of X
• W K (X) := the nonempty w-compact subsets of X
• W K C(X) := the nonempty weakly compact and convex subsets of X

Recall that in case X is a normed space, the Hausdorff distance H between sets A, B
in C L(X) is defined by

H(A, B) := inf {δ : A ∇ B + δU and B ∇ A + δU }.

Equivalently, H(A, B) = max{e(A, B), e(B, A)}, where e(A, B) := sup{d(a, B) :
a ≤ A} denotes the Hausdorff excess of A over B. Hausdorff distance so de-
fined yields an infinite-valued metric on C L(X), which is complete when X is
complete [21]. We denote the topology of the Hausdorff distance by εH . Since
C L B(X), C L BC(X), K (X), K C(X) are closed subsets of ∞C L(X), εH ∩, Haus-
dorff distance restricted to these classes yields a metric on them which is complete
if X is complete [21, p. 45].

During the last 40 years or so, Mosco convergence [32] of convex sets—a much
weaker notion of convergence than Hausdorff metric convergence—has been a con-
vergence notion of choice in convex analysis and approximation theory, especially in
the framework of reflexive Banach spaces. Specifically, a sequence {Cn} in C LC(X),

is said to be Mosco convergent to an element C in C LC(X), written Cn
M→ C, pro-

vided that: (M1) for each x ≤ C there exists a sequence {xn} convergent to x such
that eventually xn ≤ Cn, and (M2) whenever {n(i)} is an increasing sequence of
positive integers and xn(i) ≤ Cn(i) for each i, then the w-convergence of {xn(i)} to
x in X implies x ≤ C. In the framework of reflexive Banach spaces, Mosco con-
vergence on the hyperspace C LC(X) has been shown to be a fundamental notion
for the convergence of metric projections and distance functions [3, 16, 44, 49] as
well as for the convergence of restricted Chebyshev centers and restricted Cheby-
shev radii [10, 39, 40, 42]. This convergence has been observed to be stable with
respect to duality [8, 33]. In [7], a Vietoris-type topology on C LC(X) compatible
with Mosco convergence was introduced. This topology was considered for the larger
class WC L(X) in [11]. This topology now called the Mosco-Beer topology εM B is
generated by all sets of the form V − := {A ≤ WC L(X) : A≥V ∗= ∅}, where V runs
over norm open subsets of X, and all sets of the form (K c)+ := {A ≤ WC L(X) :
A ∇ K c} = {A ≤ WC L(X) : A ≥ K = ∅}, where K runs over W K (X). It is the
weakest topology on WC L(X) for which the gap functional A → d(A, K ), where
d(A, K ) := inf{⊆a − k⊆ : a ≤ A, k ≤ K }, is continuous [11, Theorem 3.1]. Thus,
identifying each A ≤ WC L(X) with the distance functional d(., A) as an element
of C(X), where d(x, A) := inf{⊆x − a⊆ : a ≤ A}, this topology is the topology
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of uniform convergence of the distance functionals d(., A), A ≤ WC L(X) on the
members of the class W K (X). Clearly, this topology is weaker than the Hausdorff
distance topology εH on WC L(X), which can be identified with the topology of
uniform convergence of the distance functionals d(., A) on X, and it is stronger than
the Wijsman topology [9, Chap. 2] on WC L(X) which can be identified with the
topology of pointwise convergence of the distance functionals d(., A) as A varies
over WC L(X).

Let us recall that a function f in X → (−⇔,⇔] is called proper, if it is finite
somewhere. Given a function f : X → R and δ ≤ R, we denote by slev( f ;δ) (resp.
lev ( f ;δ)) the sublevel set {x ≤ X : f (x) ⇒ δ} (resp. the level set {x ≤ X : f (x) =
δ}) of f at height δ. The function f is said to be inf-bounded (resp. w-inf-compact)
if slev( f ;δ) is bounded (resp. w-compact) for each δ ≤ R. Let us denote by

∑
(X)

(resp. σ(X)) the class of all real functions on X which are continuous and w-inf
compact (resp. convex, continuous, and inf-bounded). Clearly, if X ≤ (R f ), then
σ(X) ∇ ∑

(X).

The following weak topology result for WC L(X) was already noted in [42] for
C LC(X).

Theorem 1 Suppose X ≤ (R f ). Then εM B is the weakest topology on WC L(X) for
which the function C → inf I (C) := vC (I ) of ∞WC L(X), εM ∩ into R is continuous
for each I ≤ ∑

(X).

2 A Review of Some Well-Posedness Notions
for Minimization Problems

Given a nonempty subset V of a convergence space X and a function f : E →
(−⇔,⇔] which is a proper extended real-valued function, let us consider well-
posedness of the following abstract minimization problem:

min f (v), for all v ≤ V,

which we denote by (V, f ). Let vV ( f ) := inf{ f (v) : v ≤ V } denote the optimal
value function. We assume f to be lower bounded on V, i.e., vV ( f ) > −⇔, and
let arg minV ( f ) denote the (possibly void) set {v ≤ V : f (v) = vV ( f )} of optimal
solutions of problem (V, f ). For α ⊂ 0, let us also denote by α-arg minV ( f ) the
nonempty set {v ≤ V : f (v) ⇒ vV ( f )+α} of α-approximate minimizers of f. Recall
(cf., e.g., [15, p. 1]) that problem (V, f ) is said to be

(a) Tikhonov well-posed if f has a unique global minimizer on V toward which every
minimizing sequence (i.e., a sequence {vn} ∇ V, such that f (vn) → vV ( f ))

converges. Put differently, there exists a point v0 ≤ V such that arg minV ( f ) =
{v0}, and whenever a sequence {vn} ∇ V is such that f (vn) → f (v0), one has
vn → v0;
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(b) generalized well-posed (abbreviated g.w.p) if arg minV ( f ) is nonempty and
every minimizing sequence for (V, f ) has a subsequence convergent to an ele-
ment of arg minV ( f ).

In case V ≤ WC L(X), where X is a normed linear space, the problem (V, f ) is
said to be w-T.w.p. (resp. w-g.w.p.), if it is Tikhonov well-posed (resp. generalized
well-posed) for w-convergence of sequences and simply T.w.p. (resp. g.w.p.) if it
is Tikhonov well-posed (resp. generalized well-posed) for strong convergence of
sequences.

Proposition 1 Let V ∇ X, a convergence space (resp. V ≤ WC L(X), X a normed
space). Then problem (V, f ) is T.w.p. (resp. w-T.w.p.) if and only if arg minV ( f ) is
a singleton and (V, f ) is g.w.p. (resp. w-g.w.p).

The concept of Tikhonov well-posedness has been extended to minimization prob-
lems admitting nonunique optimal solutions. For our purpose here, the most appro-
priate well-posedness notion for such problems is the one introduced in Bednarczuk
and Penot [6] (cf. also [15, p. 26]):

In case X is a metric space and V ∇ X , problem (V, f ) is called metrically well-
set (or M-well set) if arg minV ( f ) ∗= ∅ and for every minimizing sequence {vn}, one
has

dist(vn, arg min
V

( f )) → 0 as n → ⇔.

(Here dist(x, S) denotes the distance of x from the set S.) Equivalently, it is easily
seen that problem (V, f ) is M-well set if and only if arg minV ( f ) ∗= ∅ and the
multifunction

α ⇒ α − arg min
V

( f )

is upper Hausdorff semicontinuous (uHsc) at α = 0. We mention that in [15, p. 46],
problem (V, f ) is also called stable in this case.

Tikhonov well-posedness as well as M-well setness of problem (V, f ) are conve-
niently characterized in terms of the notion of a firm function (or a forcing function).
A function c : T → [0,⇔) is called a firm function or a forcing function if

0 ≤ T ∇ [0,⇔), c(0) = 0 and tn ≤ T, c(tn) → 0 ◦ tn → 0.

It is well known (cf., e.g., [15, p. 6]) that problem (V, f ) is Tikhonov well-posed if
and only if there exists a firm function c and a point v0 ≤ V such that

f (v) ⊂ f (v0) + c[d(v, v0)], for all v ≤ V .

Likewise, it is well known (cf. [6]) that if f is a proper lower semicontinuous function
then problem (V, f ) is M-well set if and only if arg minV ( f ) ∗= ∅ and f is firmly
conditioned, i.e., there exists a firm function c on R

+ := {x ≤ R : x ⊂ 0} such that

f (v) ⊂ vV ( f ) + c(dist(v, arg min
V

( f ))), for all v ≤ V .
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3 Well-Posedness in Approximation Theory

We will be mainly concerned below with well-posedness of minimization problems
involving best approximants, restricted Chebyshev centers, and prox-points.

3.1 Well-Posedness of Best Approximants

Let X be a normed linear space over K (either R or C), V ≤ C L(X) and x ≤ X.

The problem of finding a best approximant v0 to x in V : ⊆x − v0⊆ = d(x, V ) =
infv≤V ⊆x − v⊆, is the problem (V, Ix ), where Ix (v) = ⊆x − v⊆. Recall that the set
V is called

(i) Chebyshev if each x ≤ X has a unique best approximant in V ;
(ii) almost Chebyshev if each x in a dense and Gβ subset X0 of X admits a unique

best approximant in V ;
(iii) approximatively compact (resp. approximatively w-compact) if each minimiz-

ing sequence has a subsequence convergent (resp. w-convergent) to an element
of V .

Here, the multifunction x ⇒ PV (x) of X to V, where PV (x) = arg minV (Ix ) is
called the metric projection of X onto V .

Remark 1 It follows from Proposition 1 that

(a) the best approximation problems (V, Ix ), x ≤ X are all T.w.p. (resp. w-T.w.p) if
and only if the set V is Chebyshev and approximatively compact (resp. approx-
imatively w-compact).

(b) If X is a Hilbert space and V ≤ C LC(X), then the best approximation problems
(V, Ix ), x ≤ X are all T.w.p. This result also holds for a uniformly convex
Banach space. More generally, the following result is well known [50].

(c) A Banach space X is in the class (D) = (R f ) ≥ (R) ≥ (A) if and only if
each member of C LC(X) is Chebyshev and approximatively compact. Hence,
it follows from the first remark that a Banach space X is in the class (D) if and
only if for each V ≤ C LC(X), each problem (V, Ix ), x ≤ X is T.w.p.

Let us recall the following definitions from [13].

Definition 1 A subset V of a Banach space X is called boundedly relatively w-
compact if V ≥ B[0, r ] has a w-compact closure for each r > 0.

Definition 2 Given V ≤ C L(X) where X is a Banach space, let γ(V ) denote the
following set as defined in [13].

γ(V ) = {x ≤ X\V : ∪x∈ ≤ S∈ such that ∃α > 0, ∪β > 0 so that

inf{∞x∈, x − v∩ : v ≤ V ≥ B(x, dV (x)) > (1 − α)dV (x)}.
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Let us recall here the following theorem in [13].

Theorem 2 If X is a Banach space and V ≤ C L(X) is a bounded relatively w-
compact set then γ(V ) is a dense Gβ subset of X\V .

Let us be given a set C in C LC(X) and V ≤ C L(X). We need the following
definitions from [2].

Definition 3 The set C is said to be rotund (strictly convex) w.r.t. V , written V -
rotund if

x, y ≤ C, x − y ≤ V − V, ⊆x⊆ = ⊆y⊆ =
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

◦ x = y.

Definition 4 The set C is said to be sequentially Kadec w.r.t. V , written V -Kadec
if {xn} ∇ C , x0 ≤ C , xn − x0 ≤ V − V , w − lim xn = x0, and

lim ⊆xn⊆ = ⊆x0⊆ ◦ ⊆xn − x0⊆ → 0.

The proof of the next proposition follows on the same lines as in the proof of [13,
Theorem 6.1].

Proposition 2 Let X be a Banach space, C ≤ C LC(X) and V ≤ C L(X). If C is
V -rotund then V is semi-Chebyshev w.r.t. C ≥ γ(V ).

The proof of the next proposition follows on similar lines as in the proof of [13,
Corollary 8].

Proposition 3 Let X be a Banach space, V ≤ C L(X) be boundedly relatively w-
compact, and C ≤ C LC(X) be V -Kadec. Then problem (V, Ix ) is g.w.p. for each
x ≤ C ≥ γ(V ).

The next proposition is due to [29].

Proposition 4 If V ≤ C L(X) is boundedly relatively w-compact and C ≤ C L(X)

then C ≥ γ(V ) is a dense Gβ-subset of C\V .

The last two propositions in conjunction with Theorem 11 (Lau-Konjagin) in [13]
yields:

Theorem 3 For a Banach space X, the following statements are equivalent.

(a) X ≤ (C D) = (R f ) ≥ (A).

(b) For each V ≤ C L(X), the family of problems (V, Ix ), x ≤ X\V is generically
g.w.p.

The proof of the next theorem due to [29] follows easily from Propositions 2, 3,
and 4.

Theorem 4 Let X be a Banach space and V ≤ C L(X) be boundedly relatively
w-compact. If C ≤ C LC(X) is V -rotund and V -Kadec then problem (V, Ix ) is
T.w.p. for each x ≤ C ≥ γ(V ). Thus, the family of problems (V, Ix ), x ≤ C\V is
generically T.w.p.
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3.2 Well-Posedness of Restricted Chebyshev Centers
(Best Simultaneous Approximation)

Let X be a normed linear space, V ≤ C L(X) and F ≤ C L B(X). Let

r(F; x) := sup{⊆x − y⊆ : y ≤ F}.

The function x → r(F; x) is a proper continuous and w-l.s.c. convex function on
X. Its sublevel set at height δ is the set

slev(r(F; .), δ) = {x ≤ X : r(F; x) ⇒ δ} =
⋂

y≤F

B[y, δ].

For simplicity, we denote this set by slevF (δ). Let IF : V → R denote the function
IF (v) = r(F; v), and let

radV (F) := inf IF (V )

and
CentV (F) := arg minV (IF ).

The number radV (F) is called the Chebyshev radius of F in V and in case
CentV (F) ∗= ∅, a typical element v0 ≤ CentV (F) is called a restricted (Cheby-
shev) center or a best simultaneous approximant of F in V .

Let F ∇ C L B(X). Then a set V ≤ C L(X) is called cent-compact for F
(resp. w-cent-compact for F in case X is a Banach space) if each minimizing se-
quence for problem (V, IF ) has a subsequence convergent (resp. w-convergent) in
V . Clearly V is cent-compact (resp. w-cent-compact) if and only if (V, IF ) is g.w.p.
(resp. w-g.w.p.). The terminology was employed in [10] in terms of minimizing
nets rather than sequences. We note, however, that since for a subset of a Banach
space X , w-compactness is equivalent to its w-sequential compactness by Eberlain-
Smulyan theorem, this stronger requirement is really not necessary. Let us denote
by remoteV (X) the family of all sets in C L B(X) which are “remotal,” w.r.t. V, i.e.,
possessing farthest points for points of V . For the proofs of the next lemma and the
following proposition, we refer the reader to [37] (See also Theorems 5 and 9 in
Sect. 5.4, Chap. viii of [31]) .

Lemma 1 If X ≤ (R f ) ≥ (A) and V ≤ C LC(X), then V is cent-compact for
remoteV (X).

Proposition 5 (a) If X ≤ (D), V ≤ C LC(X) and F ≤ remoteV (X), then problem
(V, IF ) is T.w.p.

(b) If X ≤ (U R), V ≤ C LC(X) and F ≤ C L B(X), then problem (V, IF ) is T.w.p.

By [7, Theorem 4.3], when X is reflexive and separable, C LC(X) equipped with
the Mosco-Beer topology εM B is a Polish space (second countable and completely
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metrizable). Since ∞C LC(X), εM B∩ is a Baire space, it is of interest to consider the
following generic theorem for Tikhonov well-posedness of restricted centers.

Theorem 5 Let X in (R f ) ≥ (A) be separable. Let K (X) be equipped with the
topology εH , let, C LC(X) be equipped with the topology εM B, and let the set

γ = {(F, V ) ≤ (K (X) × C LC(X)) : CentX (F) ≥ V = ∅}

be equipped with the relative topology. Then there exists a dense Gβ subset γ0 of γ

such that for each (F, V ) in γ0, the problem (V, IF ) is T.w.p.

Proof We observe that ∞K (X), εH ∩ is complete. Also note that if X ≤ (R f ) ≥ (A)

and V ≤ C LC(X), then by Lemma 1, V is cent-compact for K (X). The desired
result now follows from [10, Theorem 4.3] in conjunction with Proposition 1. �

For exploring generic well-posedness of restricted centers, a somewhat different
approach was followed recently in [29] using the following embedding theorem due
to Radstrom [41].

Theorem 6 Given a Banach space X, there exists a Banach space (E, ⊆ · ⊆) such
that (K C(X), H) is embedded as a convex cone in E in such a manner that:

(i) The embedding is isometric: H(A, B) = ⊆A − B⊆,∃A, B ≤ K C(X);
(ii) X is a linear subspace of E;

(iii) Addition and multiplication by nonnegative scalars in E induce the correspond-
ing operations in KC(X).

Furthermore, if X is reflexive, then the above statements also hold for C L BC(X).

The following lemma and the next theorem are given in [29].

Lemma 2 Let X be a Banach space, V ≤ C L(X), and let E be as given in the
preceding theorem. If X ≤ (R) ≥ (A), then K C(X) is both V -rotund and V -Kadec.

In view of Theorem 5, Lemma 2, and Theorem 6, one obtains the next theorem.

Theorem 7 Let X ≤ (R)≥ (A), and V ≤ C L(X) be bounded relatively w-compact.
Then there exists a dense Gβ subset φ of K C(X)\V such that problem (V, IF ) is
T.w.p. for each F ≤ φ. Put differently, the family of problems (V, IF ), F ≤ K C(X)

is generically T.w.p.

Observing that if X ≤ (D) and V ≤ C L(X) , then V is boundedly relatively
w-compact, the preceding theorem in conjunction with Theorem 6.6 in [13] yields:

Theorem 8 For a Banach space X, the following statements are equivalent.

(a) X ≤ (D) = (R f ) ≥ (R) ≥ (A).

(b) For each V ≤ C L(X), the family of problems (V, IF ), F ≤ K C(X)

is generically T.w.p.
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3.3 Well-Posedness of the Prox Pairs

Let X be a normed linear space over K. Given A, B in C L(X), a pair (b, a) in B×A
is called a prox pair of the pair (B, A) of sets if

⊆b − a⊆ = d(B, A) := inf{⊆b − a⊆ : b ≤ B, a ≤ A}.

We denote the (possibly void) set of all prox pairs of (B, A) by Prox (B, A). Note
that (b, a) ≤ Prox (B, A) if and only if a − b is a best approximant to 0 in A − B.

Prox pairs of pairs of convex sets are studied in [34] in relation to mutually nearest
points giving rise to a characterization of smooth normed linear spaces. More general
results of this type are given in [35] for multioptima and Nash equilibrium points
of convex functionals defined on (finite) products of locally convex spaces. In [11,
Theorem 4.3], a generic uniqueness result is given for prox points. Here, we will
revisit this theorem as a generic Tikhonov well-posedness result.

It is easily seen that Prox (B, A) ∗= ∅ whenever X is in (R f ) and (B, A) is in
W K C(X)×C LC(X). In what follows, we consider the multifunction

Prox : W K C(X)×C LC(X) ⇒ X×X.

As observed in [11], if W K C(X) is equipped with the topology TH and C LC(X)

is equipped with εM B , then the product space W K C(X)×C LC(X) is completely
metrizable whenever X is reflexive and separable. The same thing can be said about
its subspace K C(X)×C LC(X), since εH restricted to K C(X) is complete. It is
therefore meaningful to ask generic well-posedness questions about the multifunction
Prox defined on K C(X)×C LC(X).

Let B ≤ K C(X) and A ≤ C LC(X). We equip B × A with the convergence
structure: a sequence (bn, an) in B × A converges to (b, a) in B × A if and only
if bn → b and an → a. Let I : B×A → R be defined by: I (b, a) = ⊆b − a⊆,
(b, a) ≤ B×A. We need the next lemma, whose proof is left to the reader.

Lemma 3 Let X ≤ (R f ) ≥ (A). If (B, A) ≤ K C(X)×C LC(X), then problem
(B×A, I ) is g.w.p.

In conjunction with [11], the above lemma yields:

Theorem 9 Let X ≤ (R f ) ≥ (A) be separable. Suppose K C(X) is equipped with
εH and C LC(X) is equipped with εM B . Then there exists a dense Gβ subset γ0 of

γ := {(B, A) ≤ K C(X)×C LC(X) : d(B, A) > 0}

such that for each (B, A) ≤ γ0, problem (B×A, I ) is T.w.p.
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3.4 Strong Uniqueness of Best Simultaneous Approximation

In the classical Chebyshev theory (cf., e.g., [31, 45]) as well as in the more recent
theory of best approximants in normed linear spaces, there has been a lot of interest
in studying “strong unicity” of best approximants: An element v0 ≤ V, a finite
dimensional linear subspace of a normed linear space X, is called a strongly unique
best approximant (SUBA) to x in V if there exists a constant λ = λ(x), 0 < λ < 1,

such that
⊆x − v⊆ ⊂ ⊆x − v0⊆ + λ⊆v − v0⊆, for all v ≤ V .

Put differently, the strong uniqueness of a best approximant v0 ≤ V to x is precisely
the Tikhonov well-posedness of problem (V, Ix ) where Ix (v) := ⊆x − v⊆, v ≤ V,

with the associated firm function being linear: c(t) = λt, t ≤ T . The problem
(V, Ix ) is also said to be linearly conditioned in this case.

Given a finite dimensional subspace V of a normed linear space X and x ≤ X,

let us denote by PV (x) the (nonempty) set {v0 ≤ V : ⊆x − v0⊆ = dist(x, V )} of
best approximants to x in V . In this case the multifunction X : x ⇒ PV (x) of
X into V is called the metric projection multifunction is said to be Chebyshev if
PV (x) ∗= ∅, for each x ≤ X. In case V is not Chebyshev, Li [30] introduced the
following definition: The metric projection multifunction PV : X ⇒ V is said to be
Hausdorff strongly uniquely at x ≤ X if there exists a constant λV (x) > 0, such that
⊆x − v⊆ ⊂ dist(x, V ) + λV (x)dist(v, PV (x)), for all v ≤ V . Note that Hausdorff
strong uniqueness of the multifunction PV at x is precisely M-well setness of the
problem (V, Ix ) with the associated firm function cx being linear: cx (t) = λV (x)t.
In this case problem (V, Ix ) is also said to be linearly conditioned.

Consider the problem of approximating simultaneously a data set in a given space
by a single element of an approximating family. Such a problem arises naturally in
many practical situations (cf., e.g., [18, 19, 25]). One way to treat this is to cover
the given dataset (assumed to be bounded) by a ball of minimal radius among those
centered at the points of the approximating family. The problem of best simultane-
ous approximation in this sense coincides with problem (V, IF ), where V, a finite
dimensional subspace of a normed linear space X, is the approximating family, and
F, a nonempty bounded subset of X, is the dataset. The objective function in this
problem is IF : V → R, which measures “worstness” of an element v ≤ V as a
representer of F, defined by

IF (v) = r(F; v), where r(F; v) := sup{⊆ f − v⊆ : f ≤ F}.

The optimal value function vV (IF ) in this case is denoted by radV (F). Thus the
“intrinsic error” in the problem of approximating simultaneously all the elements
f ≤ F by the elements of V is the number radV (F) := inf{r(F; v) : v ≤ V }, called
the Chebyshev radius of F in V . It is the minimal radius of a ball (if one such exists)
centered at a point in V and covering F. The centers of all such balls are precisely the
elements of the set arg minV (IF ) which in this case will be denoted by CentV (F).
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A typical element of the set

CentV (F) := {v0 ≤ V : r(F; v0) = rV (F)}

is called a best simultaneous approximant or a restricted center of F in V . When the
bounded sets F are allowed to range over a certain family F of nonempty closed and
bounded subsets of X, the multifunctions CentV : F ⇒ V, with values CentV (F),
F ≤ F , is called the restricted center multifunction. Note that in case F is a singleton
{x}, x ≤ X , rV (F) is the distance of x from V, denoted by dist(x, V ), and CentV (F)

is precisely the set PV (x) of all best approximants to x in V .

Let F ≤ F . Analogously, as in the case of a SUBA, an element v0 ≤ V is called
a strongly unique best simultaneous approximant (SUBSA) to F in V if there exists
a constant λ = λV (F) > 0 such that

r(F; v) ⊂ r(F; v0) + λ⊆v − v0⊆, for all v ≤ V .

Likewise, in case CentV (F) is not a singleton, the set F is said to admit Hausdorff
strongly unique best simultaneous approximant (H-SUBSA) in V if there exists a
constant λ = λV (F) > 0 such that for all v ≤ V,

r(F; v) ⊂ rV (F) + λdist(v, CV (F)).

Clearly, F admits a SUBSA (resp. a H-SUBSA) in V if and only if problem
(V, IF ) is Tikhonov well-posed (resp. M-well set) and linearly conditioned. The
triplet (X, V,F ) is said to satisfy property SUBSA (resp. property H-SUBSA) if
F admits SUBSA (resp. H-SUBSA) in V for every F ≤ F . Let us recall that
C0(T ) consists of all continuous functions f : T → K vanishing at infinity, i.e., a
continuous function f is in C0(T ) if and only if, for every α > 0, the set {t ≤ T :
⊆ f (t)⊆ ⊂ α} is compact. The space C0(T ) is endowed with the norm:

⊆ f ⊆ := max{| f (t)| : t ≤ T }, f ≤ C0(T ).

Let us now take X = C0(T ) and V a finite dimensional subspace of X . Recall that V
is called a Haar subspace or that it satisfies the Haar condition if for each v ≤ V \{0},
card Z(v) ⇒ dim V − 1. Here, we use the notation card(A) to denote the cardinality
of A and Z(v) to denote the set of all zeros of v. Let

γV (X) := {F ≤ C L B(X) : rX (F) < rV (F)}.

Although uniqueness of best simultaneous approximants was studied previously in
many articles (cf., e.g., [1, 23, 25]), strong uniqueness was not treated in these
articles. See, however, [28, 36, 38]. Triplets (X, V,F ) satisfying SUBSA and other
related properties were investigated in [36].

For finite dimensional subspaces V of C0(T ), the following extension of Haar
condition is due to Li [30].



Well-Posedness, Regularization, and Viscosity Solutions 147

Definition 5 V is said to satisfy property (Li) if for every v ≤ V \{0},

card bd Z(v) ⇒ dim
{

p ≤ V : p|intZ(v) = 0
} − 1.

Note that if T is connected, then property (Li) coincides with the Haar condition.
Li [30] has shown that this property (Li) of V is equivalent to Hausdorff Lipschitz
continuity of the metric projection multifunction PV : X ⇒ V . This result was
extended in [20] to the restricted center multifunction as follows.

Theorem 10 [20] For a finite dimensional subspace V of C0(T ) the following state-
ments are equivalent.

(i) The multifunction CV : KV (X) ⇒ V is lsc.
(ii) V satisfies property (Li).

We also recall here the following theorem which was established in [20]. This
theorem extends to restricted center multifunction a similar result due to Li [30] for
metric projection multifunction.

Theorem 11 [20] Let V be a finite dimensional subspace of C0(T ). If V satisfies
property (Li) then the triplet (C0(T ), V, KV (X)) satisfies property H-SUBSA.

4 Tikhonov Regularization

Let us begin by recalling the following theorem which lists some classical sufficient
conditions for Tikhonov well-posedness of problem (X, f ).

Theorem 12 Under any one of the following conditions, problem (X, f ) is T.w.p.

(i) X is sequentially compact, f is proper and sequentially lower semicontinuous,
arg minX ( f ) is a singleton.

(ii) X = R
n, f : X → R is strictly convex, and coercive:

f (x) → +⇔ as ⊆x⊆ → ⇔.

(iii) E is a reflexive Banach space, X ∇ E is a nonempty closed convex set, f :
X → R ⇐ {+⇔} is proper, strictly convex, l.s.c., and coercive.

(iv) X = R
k, f : X → R is convex and l.s.c., arg minX ( f ) is a singleton.

Proof We will only prove Tikhonov well-posedness of (X, f ) under the last set of
conditions:

X = R
k, f : X → R is convex and l.s.c., arg minX ( f ) is a singleton.
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Indeed, by replacing f by x → f (x + x0) − f (x0), one may assume, without loss
of generality, that f (0) = 0 < f (x), x ∗= 0. Let < xn > be a minimizing sequence.
We claim that < xn > is bounded. Indeed, if we assume the contrary that ⊆xn⊆ → ⇔
for some subsequence, then by convexity of f ,

0 ⇒ f

(
xn

⊆xn⊆
)

⇒ 1

⊆xn⊆ f (xn) → 0.

Again, for a subsequence, xn⊆xn⊆ → y with ⊆y⊆ = 1. However, the lower semiconti-

nuity of f gives 0 < f (y) ⇒ lim inf f
(

xn⊆xn⊆
)

= 0, which is a contradiction. The

proofs of the remaining parts are left to the reader. �

In what follows, we need the following definition and the next theorem.

Definition 6 Let K be a nonempty convex subset of a normed space. Recall that a
function f : K → R is said to be uniformly quasi-convex if there exists a forcing
function c : [0,+⇔) → [0,+⇔) such that

f (δx + (1 − δ)y) ⇒ max{ f (x), f (y)} − c(⊆x − y⊆), ∃x, y ≤ K and δ ≤ (0, 1).

(1)

Theorem 13 [15] Let K be a nonempty closed and convex subset of a Banach space
X,and f : K → R be lower semicontinuous, bounded below, and uniformly quasi-
convex. Then problem (K , f ) is T.w.p.

Proof Let < xn > be a minimizing sequence for (K , f ). Then

vK ( f ) ⇒ f

(
xn + xm

2

)

⇒ max{ f (xn), f (xm)} − c(⊆xn − xm⊆).

Let α > 0 be given. Pick N ≤ N such that

f (xn) < vK ( f ) + α, f (xm) < vK ( f ) + α, ∃n, m ⊂ N .

Hence, vK ( f ) < vK ( f ) + α − c(⊆xn − xm⊆) ◦ c(⊆xn − xm⊆) < α. This implies
<xn> is Cauchy, and if xn → x0, by lower semicontinuity of f , x0 ≤ arg minK ( f ).

Uniform quasi-convexity of f entails arg minK ( f ) = {x0}. �

To motivate the idea of Tikhonov regularization, let us begin with the following
interesting example.

Example 1 [15] Let X := U (L2(0, 1)) be equipped with the strong convergence.
Given u ≤ X , let xu denote the unique absolutely continuous solution of the IVP:

.
x= u, a.e. in (0, 1) , x(0) = 0.
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Let

f (u) =
1∫

0

x2
u (t)dt, g(u) =

1∫

0

u2(t)dt . (2)

Then (X, f ) is not T.w.p.; but (X, f + αg) is T.w.p. for every α > 0. This follows
from the fact that un(t) = sin nt

⊆ sin nt⊆ is a minimizing sequence for (X, f ), which does
not converge to 0 in X.

Let us consider problem (K , f ) where K ∇ X , a Banach space and f : X → R

are such that (K , f ) is Tikhonov ill-posed. Our aim here is to explore a strongly
convergent minimizing sequence for (K , f ) by approximately solving appropriate
perturbations of (K , f ) by adding to f a small regularizing term. This procedure
originally due to Tikhonov [47] is robust since only approximate knowledge of f is
all that is required.

Fix up sequences δn > 0, αn ⊂ 0 such that δn → 0 and αn → 0. For regularizing
(K , f ), we add to f a small nonnegative uniformly convex term δng defined on the
whole of X . So, g satisfies:

g(δx + (1 − δ)y) ⇒ δg(x) + (1 − δ)g(y) − c(⊆x − y⊆) (3)

for all x, y ≤ X , δ ≤ (0, 1) and for some forcing function c : [0,+⇔) → [0,+⇔).
The following theorem is an extension of Theorem 5 in Levitin-Polyak [27] ap-

parently due to Dontchev and Zolezzi [15].

Theorem 14 Let X be a Banach space, f : X → R be w-sequentially l.s.c., K ∇ X
be nonempty w-compact, and g : X → [0,+⇔) be l.s.c. and uniformly convex. Let
δn > 0, αn ⊂ 0 be given sequences of numbers such that δn → 0 and αn → 0. Then
the following conclusions hold:

(a) If f and K are both convex, then problem (K , f +δg) is T.w.p. for every δ > 0.

(b) If un ≤ αn − arg minK ( f +δng), n ≤ N, then < un > is a minimizing sequence
for (K , f ) : f (un) → vK ( f ).

Also, if αn
δn

→ 0, then we have:
(c) ∅ ∗= lim supn[αn − arg minK ( f + δng)] ∇ arg minarg minK ( f )(g).

Furthermore, if K and f are both convex, then we have:
(d) arg minarg minK ( f )(g) is a singleton and denoting this set by {ũ}, we have un → ũ

if un ≤ αn − arg minK ( f + δng),n ≤ N.

Proof (a) Note that since f is w-l.s.c. and K is w-compact, arg minK ( f ) ∗= ∅.

Also, since f is convex and g is uniformly convex, f + δg is uniformly convex. By
Theorem 13, (K , f + δg) is T.w.p.

(b) Let v ≤ arg minK ( f ) and un ≤ arg minK ( f + δng), n ≤ N. Then

f (un) + δng(un) ⇒ vK ( f + δng) + αn

⇒ f (v) + δng(v) + αn

⇒ f (un) + δng(v) + αn .
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This gives

g(un) ⇒ g(v) + αn

δn
. (4)

Also, f (v) ⇒ f (un) ⇒ f (v) + δn[g(v) − g(un)] + αn ⇒ f (v) + δng(v) + αn . This
implies limn f (un) = f (v) = vK ( f ), i.e., < un > is a minimizing sequence for
problem (K , f ). Next, let αn

δn
→ 0.

(c) By w-compactness of K , we may assume by passing to a subsequence that
un

w→ ũ ≤ K . Note that since g is convex and l.s.c., it is w-l.s.c. Therefore, by (4),

g(ũ) ⇒ lim inf
n

g(un) ⇒ g(v).

This shows that ũ ≤ arg minarg minK ( f )(g). We claim that un
⊆.⊆→ ũ. Indeed, by uniform

convexity of g, c(⊆un − ũ⊆) ⇒ 1
2 g(un) + 1

2 g(ũ) − g
(

un+ũ
2

)

. This implies

c (⊆un − ũ⊆) ⇒ 1

2

[

g(v) + αn

δn

]

+ 1

2
g(ũ) − g

(
un + ũ

2

)

This implies

lim sup
n

c(⊆un − ũ⊆) ⇒ g(ũ) − lim inf
n

g

(
un + ũ

2

)

⇒ 0,

since g is w-l.s.c. This implies un
⊆.⊆→ ũ, which proves (c).

(d) The assumptions K and f are convex ◦ arg minK ( f ) is convex. This implies
arg minarg minK ( f )(g) is a singleton, since g is uniformly convex. �

5 Viscosity Solutions

Viscosity methods provide a very effective approach for tackling many global mini-
mization problems arising in variational analysis and optimization (cf., for example,
[4, 15, 16, 26, 46]). In various problems originating in the classical calculus of vari-
ations, viscosity method was also called elliptic regularization. It is convenient to
begin with the following abstract framework which seems to have been first perfected
in [4].

An Abstract Setting

• Let X be an arbitrary set to be equipped with a suitable topology ε .
• Let f : X → R⇐{+⇔} be a given extended real-valued function whose definition

may include some constraints.
• Consider the minimization problem
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(P) min{ f (x) : x ≤ X}.

• Given g : X → R
+ ⇐{+⇔} called the viscosity function and a sequence αn ∇ R

+
convergent to 0, consider the sequence of perturbed minimization problems:

(Pn) min{ f (x) + αng(x) : x ≤ X}.

• It is assumed that for each n ≤ N, there exists a solution un of (Pn).

Our central goal here is to study the convergence of the sequence <un> and to
characterize its limit. To this end, we use the notion of variational convergence of
functions called epi-convergence also called λ-convergence given below.

5.1 Epi-convergence

Given a topological space (X, ε ) and functions < f, fn : X → R⇐{+⇔}, n ≤ N >,
the sequence < fn > is said to epi-converge to f , written ε − epi − lim

n→⇔ fn = f,

if for each x ≤ X , we have:

(i) There exists < xn > which is ε -convergent to x for which

lim sup
n→⇔

fn(xn) ⇒ f (x);

(ii) Whenever < xn > is ε -convergent to x , we have

f (x) ⇒ lim inf
n→⇔ fn(xn).

For convenience, we simply write fn
epi→ f, whenever fn epi-converges to f .

Remark 2 Recall that in case X is a first countable topological space and the sequence
<An>n≤N ∇ C L(X), we define

lim inf
n

An = {x ≤ X : ∪ <xn> ∇ <An>, such that xn → x},

and
lim sup

n
An = {x ≤ X : ∪ <xnk> ∇ <Ank>, such that xnk → x}.

The sequence <An> is said to converge to A in C L(X) in the Painlevé–Kuratowski

sense, written, An
P−K→ A if

A = lim sup
n

An = lim inf
n

An .
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Given < f, fn : X → R ⇐ {+⇔}, n ≤ N>, a sequence of extended real-valued func-
tions, we note that:

fn
epi→ f ⊕ epi( fn)

P−K→ epi( f ).

We may also recall that the Painlevé-Kuratowski convergence of sequence of non-
empty closed subsets of X (assumed first countable) is compatible with the Fell topol-
ogy [17] εF of C L(X) generated by the families V −, V ∇ X open and (K c)+,K
nonempty and compact.

Remark 3 In case X is a reflexive Banach space and we use for ε the strong topology
(the topology of the norm ⊆.⊆) in (i) and the weak topology w in (ii), then the sequence

< fn> is said to converge to f in the Mosco sense [32], written: fn
M→ f.

Epi-convergence of Monotone Sequences

In general, there is no compatibility between epi-convergence and pointwise conver-
gence. However, an important case frequently encountered in applications, where,
these two notions coincide (up to some closure operations) is this case of monotone
sequences:

(i) If
f1 ⇒ f2 ⇒ · · · ⇒ fn ⇒ · · · ,

then
ε − epi − lim

n→⇔ fn = sup
n≤N

(lscε fn);

(ii) If
f1 ⊂ f2 ⊂ · · · ⊂ fn ⊂ · · · ,

then
ε − epi − lim

n→⇔ fn = lscε (infn fn).

Here lscε f denotes the lower semicontinuous regularization of f . It is partly due
to this reason that the monotone approximation schemes and viscosity methods are
popular tools in variational analysis and optimization.

The next theorem clarifies the epi-convergence approach.

Theorem 15 Let us be given a sequence < αn >∇ R
+ such that αn → 0 and a

sequence of minimization problems

(Pn) min{ fn(x) : x ≤ X}.

Assume that there exists a topology ε on X such that:

(i) For every n ≤ N, there exists an αn-approximate solution un to (Pn), un ≤
αn − arg minX ( fn), n ≤ N, such that the sequence < un : n ≤ N > is
ε -relatively compact;
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(ii) f = ε − epi − lim
n→⇔ fn .

Then
lim

n→⇔ vX ( fn) = vX ( f ),

and every ε -cluster point û of < un > minimizes f on X, i.e., û ≤ arg minX ( f ).

Proof Since un ≤ αn − arg minX ( fn), n ≤ N, we have

fn(un) ⇒ vX ( fn) + αn .

By assumption (i) and property (ii) of epi-convergence, we may assume, without loss
of generality, that un → ũ and that

vX ( f ) ⇒ f (ũ) ⇒ lim inf
n

fn(un) ⇒ lim inf
n

vX ( fn). (5)

Also, by property (i) of epi-convergence, we have, for each x ≤ X, there is a sequence
<xn> ∇ X such that fn(xn) → f (x). Thus

lim sup
n

vX ( fn) ⇒ lim sup
n

fn(xn) ⇒ f (x). (6)

Thus, lim supn vX ( fn) ⇒ vX ( f ), and (5) completes the proof. �

The next theorem is a modified version of [4, Theorem 2.1].

Theorem 16 Let f : X → R ⇐ {+⇔} be a given function which is proper and
bounded below. Consider the associated minimization problem:

(P) min{ f (x); x ≤ X}.

Assume that the following conditions hold.

(1) Let <αn>,<δn>, n ≤ N be given sequences in R
+, αn ∗= 0, such that αn →

0, δn → 0, and letting ψn := δn
αn

, ψn → 0.

(2) Let us be given a function g : X → R
+(called the viscosity function), and for

each n ≤ N,

consider the perturbed minimization problem

(Pn) min{ f (x) + αng(x) : x ≤ X}.

(3) Assume that there exists an δn-approximate solution of (Pn) : un ≤ δn −
arg minX ( fn), n ≤ N, where fn := f + αng such that for some topology ε on
X, we have:

(i) The sequence <un>n≤N is ε -relatively compact;
(ii) The functions f and g are both ε -l.s.c.
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Then every ε -cluster point û of <un> minimizes f on X and satisfies for all v ≤
arg minX ( f ),

(a) the so-called viscosity selection criterion

(V SC) û ≤ arg min
X

( f ), g(û) ⇒ g(v) ⊕ û ≤ arg minarg minX ( f )(g).

Moreover, the sequence <un> is a minimizing sequence for problem (P):

lim
n→⇔

1

αn
( f (un) − vX ( f )) = 0, (7)

(b) and also
lim

n→⇔ g(un) = varg minX ( f )(g). (8)

Proof Since g is a nonnegative finite-valued function, the sequence of functions
fn = f + αng is pointwise convergent and monotonically decreases to f . This
implies that

fn
epi→ lscε f = f.

Since un ≤ δn − arg min( fn), and δn → 0, by epi-convergence, if a subsequence
<unk> of <un> converges to û, then

arg min
X

( fn) → arg min
X

( f ) and û ≤ arg min
X

( f ).

Next, we rescale the minimization problem (Pn). Let

hn = 1

αn
[ fn − vX ( f )] = 1

αn
[ f − vX ( f )] + g(x).

Note that

vX (hn) = 1

αn
(vX ( fn) − vX ( f )),

and
un ≤ δn − arg min

X
( fn) ◦ fn(un) ⇒ vX ( fn) + δn .

This implies

hn(un) = 1

αn
( fn(un) − vX ( f )) ⇒ vX (hn) + ψn,

which implies that un ≤ ψn − arg minX (hn).

Next, note that since f − vX ( f ) is a nonnegative function, hn monotonically

increases to the function h := g + βarg minX ( f ). Hence, hn
epi→ h, and by variational
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properties of epi-convergence,

vX (hn) → vX (h), û ≤ arg min
X

(h) = arg minarg minX ( f )(g).

Also note that, we have

hn(un) = 1

αn
( fn(un) − vX ( f )) = 1

αn
( f (un) − vX ( f )) + g(un).

Hence,
hn(un) ⇒ vX (hn) + ψn ⇒ hn(v) + ψn

This gives

hn(un) =
(

1

αn

)

( f (v) − vX ( f )) + g(v) + ψn, ∃v ≤ X. (9)

Thus, g(un) ⇒ g(v) + ψn,∃v ≤ arg minX ( f ) which implies that

lim sup
n

g(un) ⇒ g(v) ◦ lim sup
n

g(un) ⇒ g(û).

By ε -lower semicontinuity of g, we have

g(û) ⇒ lim inf
k

g(un(k)) ⇒ lim sup
k

g(un(k)) ⇒ g(û).

This implies
lim

k
g(un(k)) = g(û) = varg minX ( f )(g).

This being true for any extracted subsequence, g(un) converges:

lim
n→⇔ g(un) = varg minX ( f )(g). (10)

Let us again go back to (9). Using (10), and taking v = û in (9), we obtain

lim sup
n→⇔

1

αn
( f (un) − vX ( f )) + g(û) ⇒ g(û).

This implies lim
n→⇔

( f (un) − VX ( f ))

αn
= 0, and the proof is complete. �

Definition 7 Following [4, Definition 2.2], we call a solution û of the minimization
problem (P) as in the last theorem, a viscosity solution corresponding to the viscosity
function g : X → R

+ ⇐ {+⇔} if û is a minimizer of g over arg minX ( f ).
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Following [4], we consider below a natural extension of the preceding theorem
where g takes on infinite values. Here, we need to assume that all the required
information can be recovered just from the knowledge of f on the effective domain
dom(g) of g.

Theorem 17 Let the hypothesis of the previous theorem be all fulfilled except that
we take the viscosity function g : X → R

+ ⇐ {+⇔} to be extended real-valued, and
that in place of

(ii) f, g are ε -l.s.c., we assume
(ii)∀ lscε ( f + βdom(g)) = lscε ( f ).

Here βA denotes the indicator function of A. Then every ε -cluster point û of < un >

minimizes the function lscε f on X and satisfies

lim
n→⇔ f (un) = vX ( f ).

Furthermore, assume that the following hypotheses hold:

(iii) g is ε -l.s.c.;
(iv) lscε ( f + αng) = lscε f + αng,∃n ≤ N;
(v) dom(g) ≥ arg minX (lscε f ) ∗= ∅.

Then û ≤ arg minX (lscε f ) satisfies the following viscosity selection criterion

(VSC) û ≤ arg min
arg minX (lscε f )

(g).

Proof We imitate the proof of the previous theorem. Indeed, note that the sequence
< fn> is pointwise convergent and monotonically decreases to f + βdom(g). Thus,
by assumption (ii),

fn
epi→ lscε ( f + βdom(g)) = lscε ( f ).

By variational properties of epi-convergence, û ≤ arg minX (lscε ( f )). As in Theo-
rem 16, the rescaled minimization problem is

min{hn(x) : x ≤ X}, hn = 1

αn
( fn − vX (lscε f )) = 1

αn
[ f − vX (lscε f )] + g.

By hypothesis (iv), this can be expressed as

hn = 1

αn
[lscε f − vX (lscε f )] + g,

which monotonically increases to the function h := g + βarg minX (lscε f ). Hence,
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hn
epi→ h = g + βarg minX (lscε f ).

Using variational properties of epi-convergence, we conclude that û minimizes g on
arg minX (lscε f ). The hypothesis (v) ensures that the function on the right-hand side
is proper. �

5.2 Hierarchial Minimization

As before, given a function f : X → R⇐{+⇔}, consider the minimization problem

(P) min{ f (x) : x ≤ X}

which is approximated by the sequence

(Pn) min{ f (x) + αng(x) + α2
n h(x) : x ≤ X}

of minimization problems. Observe that we can write f (x) + αng(x) + α2
n h(x) =

f (x) + αngn(x), where gn(x) = g(x) + αnh(x). Clearly, it would be desirable if

gn
epi→ g. To this end, we have:

Lemma 4 (Attouch) [4] Let {δn : X → R ⇐ {+⇔} : n ≤ N} and {ψn : X →
R⇐{+⇔} : n ≤ N} be two sequences of functions that are converging both pointwise
as well as ε -epi-convergence sense, respectively to some functions g and h. Then

(δn + ψn)
epi→ (g + h).

The next theorem extends Theorem 16 to the situation as mentioned above, where
g is replaced by a sequence gn .

Theorem 18 Let f : X → R ⇐ {+⇔} be a given function which is proper and
bounded below. Consider the associated minimization problem:

(P) min{ f (x); x ≤ X}.

Assume that the following conditions hold.

(1) Let <αn>,<δn>, n ≤ N be given sequences in R
+, αn ∗= 0, such that αn →

0, δn → 0, and letting ψn := δn
αn

, ψn → 0.

(2) Let us be given functions g, gn : X → R
+, n ≤ N, that are nonnegative and

finite-valued.
(3) For each n ≤ N, consider the perturbed minimization problem

(Pn) min{ f (x) + αngn(x) : x ≤ X}.
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(4) Assume that there exists an δn-approximate solution of (Pn) : un ≤ δn −
arg minX ( fn), n ≤ N, where fn := f + αngn such that for some topology ε on
X, we have:

(i) The sequence <un>n≤N is ε -relatively compact;
(ii) The function f is ε -l.s.c.;

(iii) The sequence <gn> converges to g both pointwise as well as in ε -epi-
convergence sense.

Then every ε -cluster point û of <un> minimizes f on X and satisfies for all v ≤
arg minX ( f ),

(a) the so-called viscosity selection criterion

(VSC) û ≤ arg min
X

( f ), g(û) ⇒ g(v) ⊕ û ≤ arg minarg minX ( f )(g).

Moreover, the sequence <un> is a minimizing sequence for problem (P):

lim
n→⇔

1

αn
( f (un) − vX ( f )) = 0, (11)

(b) and also
lim

n→⇔ gn(un) = varg minX ( f )(g). (12)

Proof The proof is a straight forward imitation of the proof of Theorem 17. We need
to apply the preceding lemma to the sequences { f +αngn} and { 1

αn
( f −vX ( f ))+gn :

n ≤ N}, noting that the sequence αngn → 0 both in the pointwise as well as in the
ε -epi-convergence sense and that the sequence { 1

αn
( f − vX ( f ))} converges both in

the pointwise as well as in the ε -epi-convergence sense to βarg minX ( f ). �

For the sake of completeness, we will merely state here the following theorem,
whose proof is left to the reader.

Theorem 19 Let f0 : X → R ⇐ {+⇔} be a given function which is proper and
bounded below. Consider the associated minimization problem:

(P) min{ f0(x); x ≤ X}.

Let <αn>,<δn>, n ≤ N be given sequences in R
+, αn ∗= 0, such that αn →

0, δn → 0, and letting ψn := δn
αn

, ψn → 0. Let f1, f2 : X → R
+ be given functions.

Consider the sequence of approximate minimization problems

(Pn) min{ f0(x) + αn f1(x) + αn
2 f2(x) : x ≤ X}

Let us denote M0 = arg minX ( f0), M1 = arg minM0( f1), M2 = arg minM1( f2).
Assume that there exists an δn-approximate solution of (Pn) : un ≤ δn −
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arg minX ( fn), n ≤ N, where fn := f0 + αn f1 + αn
2 f2 such that for some topology

ε on X, we have:

(i) the sequence <un> is ε -relatively compact:
(ii) f0, f1, f2 are ε -l.s.c.

Then every ε -cluster point û of the sequence < un > belongs to M1, limn f0(un) =
vX ( f0), and limn f1(un) = vM0( f1). In addition, if we assume

lim inf
n→⇔

1

αn
( f1(un) − vM0( f1)) ⊂ 0,

then we have û ≤ M2.

6 Convex Minimization and the Viscosity Approach

In what follows X will be either a reflexive Banach space or the normed dual E∈ of
a separable normed linear space E . We will denote the weak (resp. weak∈) topol-
ogy of X by w (resp.w∈). Recall that a function g : X → R is called coercive if
lim⊆x⊆→+⇔ g(x) = +⇔. The next result is a modified version of [4, Theorem 5.1].

Theorem 20 Let X be a reflexive Banach space (resp. the dual E∈ of a separable
normed space E). Consider the minimization problem:

(P) min{ f (x) : x ≤ X}

where f : X → R⇐ {+⇔} is a proper, convex, l.s.c. (resp. w∈-l.s.c.) function which
is bounded below. Let <δn> ∇ R

+ and <αn> ∇ R
+\{0} be sequences such that

δn → 0, αn → 0 and ψn = δn
αn

→ 0. Let g : X → R
+ be convex, l.s.c.(resp. w∈-

l.s.c.) and coercive. For each n ≤ N, consider the perturbed minimization problem:

(Pn) min{ fn(x) : x ≤ X}, fn := f + αng,

and consider a sequence<un>of δn-approximate solutions: un ≤ δn−arg minX ( fn)

of (Pn). We have:

• The sequence <un> is bounded if and only if arg minX ( f ) ∗= ∅.

In that case, every w-(resp. w∈-) cluster point û of the sequence <un> minimizes
f on X and satisfies the viscosity selection criterion:

•

(VSC) û ≤ arg minarg minX ( f )(g).

Moreover, the sequence <un> is a minimizing sequence of problem (P):
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lim
n→⇔

1

αn
( f (un) − vX ( f )) = 0,

and also,
lim

n→⇔ g(un) = varg minX ( f )(g).

Proof The conclusion follows easily from Theorem 16 by taking the topology ε to
be w (resp.w∈). If <un> is bounded, its w-(resp. w∈-) cluster point û ≤ arg minX ( f ).

Conversely, if arg minX ( f ) ∗= ∅, then as in the proof of Theorem 16,

g(un) ⇒ g(v) + ψn,∃v ≤ arg min
X

( f ).

From the coercivity of g we conclude that <un> is bounded. �

Let X be a Hilbert space and take g(x) = 1
2⊆x⊆2. The Fenchel-Moreau conjugate

of g is:

g∈ = sup{∞x, y∩ − 1

2
⊆x⊆2 : x ≤ X} = 1

2
⊆y⊆2, y ≤ X.

This gives:
y ≤ ωg(un) ⊕ g(un) + g∈(y) = ∞un, y∩.

(Here ωg(un) denotes the subdifferential of g at un .) The last step gives

1

2
⊆un⊆2 + 1

2
⊆y⊆2 = ∞un, y∩ ⊕ y = un .

Let f : X → R ⇐ {+⇔} be convex, l.s.c., proper function, and let fn := f + αng.

Then
z ≤ ω fn(un) ⊕ 0 ≤ ω( fn − ∞., z∩)(un).

Since the function fn −∞., z∩ = ( f −∞., z∩)+αng is strictly convex, arg minX ( fn −
∞., z∩) is a singleton. Given a sequence <αn> ∇ R

+ such that αn → 0, observing
that

ω fn(un) = ω f (un) + αnun, n ≤ N,

the previous theorem leads us to the next corollary.

Corollary 1 [4] Let X be a Hilbert space and f : X → R ⇐ {+⇔} be a proper
convex function which is l.s.c. Let us be given a sequence <αn>n≤N ∇ R

+ such that
αn → 0. Fix z ≤ X. Then for each n ≤ N, there exists a unique solution un of the
equation:

z ≤ ω f (un) + αnun . (13)

The sequence <un> remains bounded if and only if the set (ω f )−1z is nonvoid. In
that case
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lim
n→⇔ un = proj(ω f )−1z(0) = û,

where û is the unique element of the minimum norm of (ω f )−1z.

Proof Let us first note that (ω f )−1z = arg minX ( f − ∞., z∩). The previous theorem
yields (for a subsequence) un

w→ û and g(un) → g(û), i.e., ⊆un⊆ → ⊆û⊆. Since
norm in a Hilbert space is a Kadec norm, we conclude that un → û in the norm. This
completes the proof. �

6.1 A Revisit to Tikhonov Regularization

Under the same hypothesis as in Theorem 20: X is a reflexive Banach space (resp. the
dual E∈ of a separable normed space E), f : X → R⇐{+⇔} a proper convex, l.s.c.
(resp. w∈-l.s.c.) function which is bounded below. Assume problem (P)(= (X, f ))

is Tikhonov ill-posed. Let us be given a function g : X → R
+ which is uniformly

convex:

g(δx + (1 − δ)y) ⇒ δg(x) + (1 − δ)g(y) − c(⊆x − y⊆), ∃x, y ≤ X, δ ≤ (0, 1)

for some forcing function c : [0,+⇔) → [0,+⇔) and a sequence <αn> ∇ R
+

such that αn → 0.

Consider, following the standard Tikhonov regularization, the sequence of per-
turbed problems

(Pn) min{ f (x) + αng(x) : x ≤ X}, n ≤ N.

In addition, assume that g is l.s.c. (resp. w∈-l.s.c.), bounded below and coercive. Since
the function fn := f + αng is strictly convex, l.s.c., bounded below and coercive,
problem (Pn) is Tikhonov well-posed for every n ≤ N. Let un denote the unique
solution of (Pn) for each n ≤ N. Theorem 20 reveals that:

(i) The sequence <un> is bounded ⊕ arg minX ( f ) ∗= ∅;
(ii) The sequence <un> is a minimizing sequence of problem (P);

(iii) If arg minX ( f ) ∗= ∅, then arg minarg minK ( f )(g) is a singleton and denoting this
set {û} we have

un → û.

This covers the standard Tikhonov regularization in which case X is a Hilbert space
and g(x) = 1

2⊆x⊆2.
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6.2 Regularization of Ill-Posed Operator Equations

Let X and Y be Hilbert spaces and T : X → Y be a bounded linear operator. Given
y ≤ Y, consider the operator equation

T x = y, (14)

The Eq. (14) is called well-posed, if for every y ≤ Y , there exists a unique solution
x ≤ X which depends continuously on the data y; otherwise, it is called ill-posed.

Let us recall that if T is a compact operator of infinite rank, then its range R(T )

is not closed. Hence, a solution of (14) may not exist for every y ≤ Y. Even if unique
solution exists for some y ≤ Y , it need not depend continuously on the data y. (Recall
the result: If T : X → Y is an injective compact operator, then T −1 : R(T ) → X is
bounded if and only if T is of finite rank.) In this case one looks for a least-residual
norm (LRN) solution which is the least squares solution of the convex quadratic
minimization problem:

(P) min{⊆T x − y⊆2 : x ≤ X}.

The Euler equation characterizing a solution of (P) is

T ∈T (x) = T ∈(y),

whose solution exists if and only if the following compatibility condition holds:

y ≤ R(T ) + R(T )⊥.

Tikhonov regularization overcomes the lack of stability of problem (P). Given a
sequence <αn> ∇ R

+ such that αn → 0, the perturbed problem

(Pn) min{⊆T x − y⊆2 + αn⊆x⊆2 : x ≤ X}

is T.w.p. for each n ≤ N , with a unique solution un . The sequence <un> remains
bounded in X if and only if problem (P) has a solution, in which case this sequence
norm converges to an element û in X , which is the unique element of minimum norm
in arg minX ( f ):

⊆û⊆ ⇒ ⊆v⊆, ∃v ≤ arg min
X

( f ),

Here, f (x) = ⊆T x − y⊆2, x ≤ X.
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Best Approximation in Nonlinear Functional
Analysis

S. P. Singh and M. R. Singh

Abstract An introduction to best approximation theory and fixed point theory are
presented. Several known fixed point theorems are given. Ky Fan’s best approxima-
tion is studied in detail. The study of approximating sequences followed by conver-
gence of the sequence of iterative process is studied. An introduction to variational
inequalities is also presented.

Keywords Best approximation theory · Fixed point theory ·Ky Fan’s best approxi-
mation · Iterative process ·Variational inequalities ·Hartman-Stampacchia theorem

1 Introduction

In this chapter the material organized is as follows. We have introduction, then
best approximation theory, followed by fixed point theory. We cover Ky Fan’s best
approximation and after that the study of approximating sequences followed by
convergence of the sequence of iterative process. In the end, a list of references is
given.

The nonlinear analysis covers areas like fixed point theory, best approximation,
variational inequality, complementarity problems, and nonlinear problems arising in
economics, engineering, and physical sciences.

Multivalued analog of the present theory is not presented in this chapter. Though
this topic is very useful in optimization theory, game theory, and mathematical eco-
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nomics, Ky Fan’s best approximation theory has important applications in fixed
point theory, approximation theory, minimax theory, variational inequalities, and
complementarity problems. The fixed point theory is a very useful tool in the study
of nonlinear problems of mathematics and engineering. Recently, this theory has
been applied in biology, chemistry, economics, game theory, optimization theory,
and physics. Fixed point theory is mainly used in the study of existence of solutions
for nonlinear problems arising in physical and biological sciences and engineering.
It plays a very important role in the existence theory of differential equation, integral
equations, functional equation, partial differential equations, eigen-value problems,
and two-point boundary value problems. The study of variational inequality has
become a very powerful tool for solving a wide variety of problems arising in phys-
ical sciences including engineering. The other applications are in the area of fluid
dynamics, transportation and economic equilibrium problems, free boundary value
problems, elasticity problems, and hydrodynamics. The well-known result of varia-
tional inequality, due to Hartman and Stampacchia [29], in finite dimensional case,
is stated below:

Let C be a compact convex subset of Rn and f : C → R
n a continuous function.

Then there exists a point x ∈ C such that

≥ f (x), y − x∇ ≤ 0, for all y ∈ C. (1)

TheComplementarity Problem (CP) provides a unifiedmodel for problems arising
in game theory, engineering, and mathematical economics.

Let f : R
n → R

n be a continuous function. Then the (CP) [62] is to find a
solution of the system

y = f (x), x ≤ 0, y ≤ 0 and ≥x, y∇ = 0. (2)

In this system x and y are nonnegative vectors in R
n , so either x and y are

orthogonal ≥x, y∇ = 0, or the component wise product of x and y is the zero vector.
The (CP) requires to find a nonnegative vector whose image is also nonnegative and
such that the two vectors are orthogonal.

The equilibrium problem (EP) has applications in optimization theory, fixed point
theory, and other related areas. It is stated below.

Let X be a real topological vector space, C a closed convex subset of X and
f : C × C → R such that f (x, x) = 0 for all x ∈ C . Then the equilibrium problem
is to find an x0 ∈ X such that

x0 ∈ C, f (x0, y) ≤ 0, for all y ∈ C. (3)

For details see Blum and Oettli [3, 8]. It is worth to mention that the optimization
problems, variational inequalities, minimax problems, complementarity problems,
and fixed point problems are particular cases of an equilibrium problem.

In Sect. 5, on convergence of approximating sequences with applications, we give
the following: If a sequence of contraction maps { fn}with a sequence of fixed points
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{xn} is given and the sequence { fn} converges to a function f , then we discuss the
convergence of {xn} to a fixed point of f .

In case the limit function f is a nonexpansive map, then it is also given in detail.
In the last section, detailed discussion on the convergence of the sequence of the

iterative process is given. The tools available in fixed point theory on the conver-
gence of iterative process can be applied to the study of variational inequalities and
approximation theory.

For example, if C1 and C2 are closed convex sets in Hilbert space H and P1, P2
are projection operators, then a fixed point of composition of P1 ∞ P2 is a point of
C1 nearest C2 [18].

If C1 and C2 are closed convex sets in Hilbert space H and g the composition
P1 ∞ P2 of their projection operators. Let x ∈ C1 be arbitrary. Then convergence
of {gnx} to a fixed point of g is guaranteed if one set is finite dimensional and the
distance between the sets is attained [18].

The following result is in variational inequality [42].
Let C be a closed convex subset of Hilbert space H and f : C → H a continuous

function such that I −r f is a contraction function (r is a constant). Then there exists
a unique solution u ∈ C of

≥ f u, v − u∇ ≤ 0, for all v ∈ C, (4)

and u = limn→∩ un , where un+1 = P(I − r f )un , u0 ∈ C . P is the proximity map
on C .

2 Theory of Best Approximation

Let C be a subset of a Banach space X and let x ∈ X , x /∈ C . We define the
distance between x and C by d(x, C) = inf{∗x − z∗ : z ∈ C}. The problem of best
approximation is to find an element y ∈ C such that

∗y − x∗ = d(x, C).

The element y ∈ C is said to be a nearest point or a closest point or an element of
best approximation to x ∈ X .

In other words, an element y ∈ C is called an element of best approximation to
x , if

∗x − y∗ = d(x, C) = inf{∗x − z∗ : z ∈ C}.

Let Px denote the set of all points in C closest to x , that is,

Px = {y ∈ C : ∗x − y∗ = d(x, C)}.
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If Px is nonempty for each x ∈ X , then the set C is said to be proximinal. If Px
is singleton for each x ∈ X , then C is said to be Chebyshev set. Thus, if C is a
Chebyshev set, then P is a single-valued map.

The mapping P : X → 2C is a multivalued map and it is called the metric
projection or the best approximation operator [17, 18, 62, 65].

We have the following properties of a proximinal set C :

(i) A proximinal set is always closed.
(ii) A compact set is always a proximinal set.
(iii) A closed convex subset of a Hilbert space is a proximinal set.
(iv) A closed convex subset of a reflexive Banach space is a proximinal set.

Remark 1 (a) If C is a compact set of a Banach space X , then the problem of best
approximation is considered as an optimization problem. In this case, the projection
map P is a continuous function and attains its minimum on set C .
(b) If X is a finite dimensional normed linear space andC is a closed, bounded subset
of X , then, for each point x ∈ X , there is a unique nearest point in C .

The geometry of spaces plays a key role in the theory of projection operators.

Definition 1 A normed linear space X is said to be strictly convex if ∗x∗ ≤ r and
∗y∗ ≤ r imply that ∗x + y∗ < 2r , unless x = y. In other words, if ∗x + y∗ =
∗x∗ + ∗y∗ for all x, y ∈ X , then x = r y, for r > 0.

Definition 2 A Banach space is called uniformly convex if for all ε > 0, there is a
δ > 0 such that

∗x∗ = ∗y∗ = 1 and ∗x − y∗ ≤ ε ⊆ ∗(x + y)/2∗ ≤ 1 − δ.

The strict convexity is a sufficient condition for the uniqueness of the best
approximation. Indeed, let y and z be two distinct elements nearest to x . Then
∗x − y∗ = ∗x − z∗ = d(x, C) = d. Since ∗x − y∗ and ∗x − z∗ are distinct,
strict convexity implies that ∗x − y + x − z∗ < 2d, that is, ∗x − (z + y)/2∗ < d,
a contradiction to the fact that d is the infimum. Hence y = z and the nearest point
are unique.

In case X is not strictly convex, then the nearest point need not be unique. The
following example illustrates the fact. In case the normonafinite dimensional normed
linear space X is not the Euclidean, then the nearest point need not be unique. For
example, let X = R

2 with norm ∗(x, y)∗ = max(∗x∗, ∗y∗). Let C be the set of
all point (a, 0) with x = (2, 1). Then d ((2, 1), (a, 0)) = max (∗2 − a∗, ∗1 − 0∗),
which takes a minimum value 1 for all (a, 0) such that 1 < a < 3.

This example suggests that the uniqueness question may have a different answer
if the norm is replaced by an equivalent norm. If we take Euclidean norm then there
is a unique nearest point.

Remark 2 A Hilbert space is the uniformly convex Banach space and so strictly
convex.
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Definition 3 Let C be a nonempty set of a normed linear space X . A sequence {xn}
in C is called a minimizing sequence for x ∈ X , if {∗x − xn∗} converges to d(x, C).

If a minimizing sequence converges weakly to y ∈ C , then y is closest to x .

Definition 4 [56] A set C in a normed linear space X is called an approximatively
compact if each minimizing sequence has a convergent subsequence.

If C is an approximatively compact subset of a normed linear space X , then

(i) C is a set of existence, that is, each point x /∈ C has a nearest point in C ,
(ii) C is closed.
(iii) C is P-compact.

If C is an approximatively compact subset of X and Px is a singleton for some
x ∈ X , then every minimizing sequence for x converges to Px .

A compact set is approximatively compact, but not conversely. A closed ball of a
uniformly convex Banach space is approximatively compact, but it is not compact.

A closed convex subset C of an uniformly convex Banach space X is approxima-
tively compact. If C is an approximatively compact set in a Banach space X , then
for each x ∈ X , Px = {y ∈ C : ∗x − y∗ = d(x, C)} is nonempty and the map
P : X → 2C is upper semicontinuous.

Let C be a nonempty, approximatively compact subset of a Banach space X and
P : X → 2C be a metric projection of X onto C . Then, for x ∈ X , we have the
following:

(i) P(x) is nonempty,
(ii) P(x) is compact,
(iii) P(x) is convex if C is convex,
(iv) P(A) is compact for every compact set A of C .

The following result holds in Hilbert space.

Theorem 1 If C is a nonempty closed convex subset of a Hilbert space H, then each
x ∈ H has a unique nearest point in C.

Proof Let d = inf{∗x − z∗ : z ∈ C}. Then we take a sequence of points {yn} in C
such that {∗yn − x∗} converges to d. Now, by using the parallelogram law, we show
that {yn} is a Cauchy sequence. For n, m ∈ N, we have

2∗yn − x∗2 + 2∗ym − x∗2 = ∗yn − ym∗2 + ∗yn + ym − 2x∗2,

it follows that

∗yn − ym∗2 = 2∗yn − x∗2 + 2∗ym − x∗2 − 4∗(yn + ym)/2 − x∗2.

Since C is a convex set, (yn + ym)/2 ∈ C . Then d ≤ ∗(yn + ym)/2− x∗ and hence

∗yn − ym∗2 ≤ 2∗yn − x∗2 + 2∗ym − x∗2 − 4d2 → 0, as n and m → ∩.



170 S. P. Singh and M. R. Singh

Hence, {yn} is a Cauchy sequence. Since C is a closed subset of Hilbert space H ,
therefore {yn} converges to y ∈ C. Hence, ∗yn − x∗ → d = ∗y − x∗. It is easy to
show that y is a unique nearest point to x ∈ H. �

Let C be a closed convex subset of a Hilbert space H . Then, for each x ∈ H ,
there is a unique closest point y ∈ C , called its projection Px . Thus,

∗x − y∗ = ∗x − Px∗ = d(x, C),

and
∗x − Px∗ ≤ ∗x − z∗ for all z ∈ C.

Here P is called the proximity map of H onto C .
The proximity map P has the following properties:

(i) Px = x for all x ∈ C ;
(ii) ≥x − Px, Px − Py∇ ≤ 0 for all x and y ∈ H ;
(iii) P is nonexpansive, i.e, ∗Px − Py∗ ≤ ∗x − y∗ for all x, y ∈ H ;
(iv) ∗x − Px∗2 + ∗Px − y∗2 ≤ ∗x − y∗2 for all y ∈ C .

Remark 3 If H is a Hilbert space and f : H → H is a nonexpansive map, then
I − f satisfies ≥(I − f )x − (I − f )y, x − y∇ ≤ 0 for all x, y ∈ H , that is, I − f is
monotone, where I is the identity map on H .

To show this, let g = I − f and x, y ∈ H . Then g : H → H . Since f is
nonexpansive, we have ∗ f x − f y∗ ≤ ∗x − y∗, and

∗ f x − f y∗2 ≤ ∗x − y∗2 + ∗gx − gy∗2.

Note

∗(I − g)x − (I − g)y∗2 = ∗(x − y) − (gx − gy)∗2
= ∗x − y∗2 + ∗gx − gy∗2 − 2≥gx − gy, x − y∇
≤ ∗x − y∗2 + ∗gx − gy∗2,

only if ≥gx − gy, x − y∇ ≤ 0. Therefore, g = I − f is monotone.

Theorem 2 Let C be a nonempty convex subset of a Hilbert space H. Then a point
x ∈ H (x /∈ C) has a closest element y ∈ C if and only if ≥x − y, y − z∇ ≤ 0 for all
z ∈ C.

Proof Let x ∈ H with x /∈ C.Assume that y ∈ C is nearest to x and take any z ∈ C .
Since C is convex, αz + (1 − α)y ∈ C for all α ∈ [0, 1]. Note

0 ≤ ∗x − (αz + (1 − α)y)∗2 − ∗x − y∗2 = α2∗y − z∗2 + 2α≥x − y, y − z∇.

If ≥x − y, y − z∇ < 0, then for small α we find that the right hand side is < 0, a
contradiction since left hand side is positive. Hence, ≥x − y, y − z∇ ≤ 0 for all z ∈ C .
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On the other hand, if ≥x − y, y − z∇ ≤ 0, then

∗x − z∗2 − ∗x − y∗2 = ∗y − z∗2 + 2≥x − y, y − z∇ ≤ 0 for all z ∈ C.

Consequently, ∗x − y∗2 ≤ ∗x − z∗2, and hence ∗x − y∗ = inf{∗x − z∗ : z ∈ C}.
This means that x ∈ H has a closest element y ∈ C . �

We briefly introduce the variational inequalities [4, 10, 16, 35, 62].
Let f : [a, b] → R be a differentiable function with continuous derivative. Then

one tries to solve min f x for x ∈ [a, b]. Let x0 ∈ [a, b] such that

f x0 = min{ f x : x ∈ [a, b]}.

Then x0 is called the solution of the minimization problem. It is easy to see that
f ⇔x0 = 0 for all x ∈ (a, b), f ⇔x0 ≤ 0 if x0 = a, and f ⇔x0 ≤ 0 if x0 = b. Thus,

f ⇔x0(x − x0) ≤ 0, for all x ∈ [a, b].

Inequality of this type is termed as the variational inequality (VI). The variational
inequalities are useful in the study of calculus of variations and in general, in the
study of optimization problems like minimize f on a given domain and thus we need
to solve f ⇔x = 0.

In general, f ⇔x = 0 may not hold. For example, if we have f : [2, 4] → R given
by f x = x , then f (2) = 2 is theminimumbut f ⇔2 = 1 ⇒= 0. However, the inequality
of the type ≥ f ⇔x, y−x∇ ≤ 0 holds for all y ∈ [2, 4]. If we replace f ⇔x by a continuous
function say gx , then ≥gx, y − x∇ ≤ 0 for all y, is called the variational inequality.
The theory of variational inequality has many applications in nonlinear functional
analysis like fixed point theory and best approximation. There are also applications
to the study of mathematical economics, engineering, and applied mathematics.

The study of variational inequality has become a very powerful tool for solving a
wide range of problems arising in physical sciences including engineering. The other
applications to the area of fluid dynamics, transportation, and economic equilibrium
problems, free boundary value problems, and hydrodynamics are well known.

3 Fixed Point Theory

The fixed point theory is a very useful tool in the study of nonlinear problems of
mathematics, engineering, and other physical sciences. Recently fixed point theo-
rems have been applied in biology, chemistry, economics, game theory, optimization
theory, and physics. This theory is useful in the study of existence of solutions of
nonlinear problems arising in physical, biological, and social sciences and in prob-
lems of mathematical economics, optimization theory, and game theory. The main
application is to find the solution of the nonlinear problems arising in mathematics,
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physics, social sciences, economics, engineering, and other sciences. The applica-
tions in the existence theory of differential equations, integral equations, partial dif-
ferential equations, functional equations, eigen-value problems, periodic solutions
to the Navier-Stokes equations, and two-point boundary value problems are well
known.

Definition 5 Let X be a nonempty set. If f : X → X is a function such that f y = y
for y ∈ X , then y is said to be a fixed point of f .

Fixed point theory is useful in determining zeros of polynomial equations. A
polynomial equation Px = 0 can be written as f x − x = Px = 0. For example, if
x2−5x +4 = 0, where Px = x2−5x +4.We canwrite f x −x = Px = x2−5x +4,
so x = (x2 + 4)/5 = f x . Here f has two fixed points, f 1 = 1, and f 4 = 4.
Consequently, Px = 0 has two zeros x = 1 and x = 4.

The well-known Brouwer’s fixed point theorem [11] is given below:

Theorem 3 (Brouwer’s Fixed Point Theorem) (see [1, 10, 22, 27, 44, 62, 65]). If
f : B → B is a continuous function where B is a closed unit ball in R

n, then f has
a fixed point.

Brouwer fixed point theorem simply guarantees the existence of a solution, but
gives no information about the uniqueness and determination of the solution. For
example, if f : [0, 1] → [0, 1] is given by f x = x2, x ∈ [0, 1], then f 0 = 0 and
f 1 = 1, that is, f has two fixed points.
Several mathematicians have given different proofs of this theorem. Effective

methods have been developed to approximate the fixed points.
Brouwer fixed point theorem is not true in infinite dimensional spaces. For exam-

ple, if B is a closed unit ball in an infinite dimensional Hilbert space and f : B → B
is a continuous function, then f does not have a fixed point [33].

The first fixed point theorem in an infinite dimensional Banach space was given
by Schauder in 1930 stated below.

Theorem 4 (Schauder Fixed Point Theorem) [54] If B is a compact, convex subset
of a Banach space X and f : B → B is a continuous function, then f has a fixed
point.

The Schauder fixed point theorem has applications in approximation theory, game
theory, and other areas like engineering, economics, and optimization theory. It is
natural to prove the theorem by relaxing the condition of compactness. Schauder
proved the following theorem.

Theorem 5 (Schauder Fixed Point Theorem) [54] If B is a closed, bounded convex
subset of a Banach space X and f : B → B is a continuous map such that f (B) is
compact, then f has a fixed point.

A very useful result in fixed point theory is known as the Banach contraction
principle [7] (see [1–3, 25, 27, 62] for details). The Banach contraction principle is
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important as a source of existence and uniqueness theorems in different branches of
sciences.

This theorem provides an illustration of the unifying power of functional analytic
methods and usefulness of fixed point theory in analysis. The important feature of
the Banach contraction principle is that it gives the existence, uniqueness, and the
sequence of the successive approximation converges to a solution of the problem.
The important aspect of the result is that existence, uniqueness, and determination
all are answered by the Banach contraction principle.

Definition 6 A map f : X → X is said to be a contraction map on a metric space
X if there exists a constant k ∈ (0, 1) such that

d( f x, f y) ≤ kd(x, y), for all x, y ∈ X.

Every contraction map is a continuous map, but a continuous map need not be a
contraction map. For example, f x = x2, x ∈ [0, 1] is not a contraction map.

Theorem 6 (Banach Contraction Principle) If X is a complete metric space and
f : X → X is a contraction map, then f has a unique fixed point, or f x = x has a
unique solution.

Proof It is easy to see the uniqueness. If f x = x and f y = y with x ⇒= y, then we
get

d(x, y) = d( f x, f y) ≤ kd(x, y),

a contradiction. Hence fixed point of f is unique.
We now define xn+1 = f xn for n = 0, 1, 2, 3, . . ., starting with any x0 ∈ X . Here

x1 = f x0 and x2 = f x1 and so on. Note

d(x2, x1) = d( f x1, f x0) ≤ kd(x1, x0),

d(x3, x2) = d( f x2, f x1)

≤ kd(x2, x1)

≤ k2d(x1, x0).

Inductively, we have
d(xn+1, xn) ≤ kn(x1, x0).

We now show that {xn} is a Cauchy sequence. For m > n, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

≤ knd(x1, x0)[1 + k + k2 + · · · + km−n−1]
≤ knd(x1, x0)[1 + k + k2 + · · · + km−n−1 + · · · ]
≤ knd(x1, x0)[1/(1 − k)] → 0 as n → ∩, (5)
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since k < 1. It follows that {xn} is a Cauchy sequence. Since X is a complete metric
space, xn → y for some y ∈ X . From (5), we have d(xn+1, xn) → 0 as n → ∩ and
hence limn→∩ xn+1 = y. Since f is continuous,

y = lim
n→∩ xn+1 = lim

n→∩ f xn = f y. �

Definition 7 If X is a metric space and f : X → X is a mapping such that
d( f x, f y) < d(x, y) for all x, y ∈ X with x ⇒= y, then f is said to be a con-
tractive map.

A contractive map need not have a fixed point in a complete metric space. For
example, if we take f : R → R defined by f x = x + π/2 − arctan x , then f is a
contractive map but does not have a fixed point. Here arctan x < π/2 for all x . In
case a contractive map f has a fixed point, then it is always unique. For example,
if x = f x and y = f y, and x ⇒= y then d(x, y) = d( f x, f y) < d(x, y), a
contradiction. So, x = y.

Theorem 7 If X is a compact metric space and f : X → X is a contractive map,
then f has a unique fixed point.

Proof Consider gx = d(x, f x). Then g is continuous and has a minimum. Let
gx0 be a minimum. Then f x0 = x0. If it is not, then, by taking d( f x0, f f x0) <

d(x0, f x0) = gx0 for some x0 and we get a contradiction to the fact that gx0 is a
minimum. Hence, f x0 = x0. �
Definition 8 Let X be a metric space and f : X → X a mapping. Then f is said to
be a nonexpansive if d( f x, f y) ≤ d(x, y) for all x, y ∈ X .

If f : R → R
⇔⇔ given by f x = x + p, a translation map for some p ⇒= 0, then f

is a nonexpansive map, but f has no fixed point.

Theorem 8 [58, 62] If C is a compact, convex nonempty subset of Banach space
X, and f : C → C, is a nonexpansive map, then f has a fixed point.

Proof Let 0 ∈ C . Define a sequence of maps fri = ri f , where 0 < ri < 1, ri → 1
as i → ∩. Then each fri is a contraction map, and by the Banach contraction
principle, each fri has a unique fixed point say xri , that is, fri xri = xri . Now

∗xri − f xri ∗ = ∗ fri xri − f xri ∗ = ∗ri f xri − f xri ∗ = (1 − ri )∗ f xri ∗.

Since C is compact and f is a continuous map so f (C) is compact. By taking limit
we have ∗xri − f xri ∗ → 0 as i → ∩. Let {xri } converge to y ∈ C , since C is
compact so each sequence in C has a convergent subsequence. Then

∗|y − fy || ≤ ||y − xri || + ||xri − f xri || + || f xri − fy ||,

which gives y = f y. Since {xri } converges to y, { f xri } converges to f y and ∗xri −
f xri ∗ → 0. Hence f has a fixed point. �
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Remark 4 A nonexpansive map, unlike contraction map, need not have a fixed point
and if it has a fixed point, then it may not be unique. For example, if f : R → R

given by f x = x + 10, then f does not have a fixed point, and if identity function
I : R → R, is taken then each point of I is a fixed point.

The fixed point theorem for nonexpansive maps, given by Browder [12], Gohde
[26] and Kirk [36] independently, is stated below. Here it is given in a Hilbert Space.

Theorem 9 [12, 26, 36] If B is a closed, convex bounded subset of a Hilbert space
H and f : B → B is a nonexpansive map, then f has a fixed point.

Browder [13] proved the following results.

Theorem 10 Suppose H is a real Hilbert space and f : H → H is a nonexpansive
map. Let there be a closed convex bounded subset C of H and f : C → C. Then
F( f ) is nonempty closed and convex. If y ∈ H, then there is a unique nearest point
x ∈ F( f ) and is given by

≥y − x, x − z∇ ≤ 0, for all z ∈ F( f ).

Proof It is easy to see that F( f ), the set of fixed points of f , is closed set. Let x
and y be fixed points in F . If z = (1 − t)x + t y, a linear combination of x and y,
t ∈ [0, 1], then ∗ f z − x∗ + ∗ f z − y∗ ≤ ∗z − x∗ + ∗z − y∗ = ∗x − y∗. Since H is
strictly convex so f z = z and the set F( f ) is convex set. Thus, F( f ) is closed and
convex set. Existence and uniqueness of the closest point x ∈ F = F( f ) to w ∈ H
follows from Theorem 1 and Theorem 2, since F( f ) is closed and convex subset of
H . �

Theorem 9 has been generalized by many researchers. The demiclosedness prop-
erty is very useful in the theory of nonexpansive mappings.

Definition 9 Let H be a Hilbert space and C a closed convex subset H . If f : C →
C , then f is said to be demiclosed when xn → y weakly and f xn → z strongly,
imply that z = f y.

Theorem 11 [13] Let H be a Hilbert space and f : H → H a nonexpansive map.
If {xn} is a sequence in H converging weakly to x and {xn − f xn} → 0 converging
strongly, then x is a fixed point of f .

Proof Let g = I − f . Then g is monotone, that is, ≥gx − gy, x − y∇ ≤ 0 for all
x, y ∈ H . It is given that gxn → 0, converges strongly. We claim that gx = 0,
to get x = f x . Let u ∈ H . Then 0 ≤ ≥gu − gxn, u − xn∇ → ≥gu, u − x∇, since
xn − f xn = gxn → 0. Set ut = x + t z, where z ∈ H is arbitrary, t > 0. Now
we have t≥gut , z∇ ≤ 0. If we cancel t , then we get ≥gut , z∇ ≤ 0. If t → 0+, then
≥gx, z∇ ≤ 0. Since this is true for all z ∈ H , so gx = 0, that is, (I − f )x = 0, and
x = f x . �
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Theorem 11 provides demiclosedness principle for the class of nonexpansive
mappings. Here proof is based on theory of monotone operators. Another proof of
Theorem 11 can be found in Chap.7 based on Opial condition.

We now give existence theorem for nonself, nonexpansive mappings, which was
is proved in [1].

Theorem 12 [1] Let C be a closed bounded convex subset of a uniformly convex
Banach space X, and 0 ∈ C. Let f : C → X be a nonexpansive map. Then either

(i) f has a fixed point, or
(ii) there exists an r ∈ (0, 1) such that u = r f u, for u ∈ ∂C (boundary of C).

One can see also [5] for maps when domain and range are different.
In the following result, C is not necessarily a bounded set but f (C) is bounded.

Theorem 13 Let C be a closed convex subset of a uniformly convex Banach space
X with 0 ∈ C. Let f : C → X be a nonexpansive map with f (C) bounded. Then
one of the following holds:

(i) f has a fixed point or
(ii) there is a k ∈ (0, 1) such that u = k f u for u ∈ ∂C (boundary of C).

The study of iterated contraction was initiated by Rheinboldt [50] in 1969. The
concept of iterated contraction proves to be very useful in the study of certain iterative
process and has wide applicability (for further work see [59]).

Definition 10 Let X be a metric space. If f : X → X is map such that
d( f x, f f x) ≤ kd(x, f x), for all x ∈ X , 0 ≤ k < 1, then f is said to be an
iterated contraction map.

In case d( f x, f f x) < d(x, f x), x ⇒= f x , then f is an iterated contractive map.

Remark 5 A contraction map is continuous and is an iterated contraction.

For example, if y = f x , then d( f x, f f x) ≤ kd(x, f x) is satisfied.
However, converse is not true. for example, if f : [−1/2, 1/2] → [−1/2, 1/2] is

given by f x = x2, then f is an iterated contraction but not a contraction map.
If f : R → R, is a mapping defined by f x = 0 for x ∈ [0, 1/2) and f x = 1 for

x ∈ [1/2, 1], then f is not continuous at x = 1/2, and f is an iterated contraction.
An iterated contraction map may have more than one fixed point. For example,

the iterated contraction function f x = x2 on [0, 1] has f 0 = 0 and f 1 = 1, two
fixed points.

A discontinuous function need not always be an iterated contraction. Let X =
[0, 1]. Define f : [0, 1] → [0, 1] by f x = 1/2, x ∈ [0, 1/2), and f x = 0,
x ∈ [1/2, 1]. Then f is discontinuous and is not an iterated contraction. If we take
x = 1/4, then d( f x, f f x) ≤ kd(x, f x), 0 ≤ k < 1, is not satisfied and hence f is
not an iterated contraction.

If f : [0, 1] → [0, 1] is defined by f x = 0 for x ∈ [0, 1/2), and f x = 1
2 for

x ∈ [1/2, 1], then f is discontinuous at x = 1/2 and f is an iterated contraction
map and has a fixed point f (1/2) = 1/2.

http://dx.doi.org/10.1007/978-81-322-1883-8_7
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Theorem 14 If f : X → X is an iterated contraction map, and X is a complete
metric space, then the sequence of iterates {xn} converges to y ∈ X. In case f is
continuous at y, then y = f y, that is, f has a fixed point.

Proof Let xn+1 = f xn , n = 1, 2, . . . for x1 ∈ X . It is easy to show that {xn} is
a Cauchy sequence, since f is an iterated contraction. The Cauchy sequence {xn}
converges to y ∈ X , since X is a complete metric space. Moreover, if f is continuous
at y, then {xn} converges to f y. It then follows that y = f y. �

Remark 6 A continuous iterated contraction map on a complete metric space has a
unique fixed point.

We give the following example to show that if f is an iterated contraction that is
not continuous, then f may not have a fixed point.

Let f : R → R, be a mapping defined by f x = x/5 + 1/5 for x ≤ 0, and
f x = x/5 for x > 0. Then f does not have a fixed point. Here f is discontinuous
at x = 0.

Continuity of an iterated contraction map is sufficient but not necessary to have
fixed point. For example, if f : [0, 1] → [0, 1] is defined by f x = 0 on [0, 1

2 ),
and f x = 2/3, for x ∈ [1/2, 1]. Then f is an iterated contraction and f 0 = 0,
f (2/3) = 2/3, but f is not continuous.
The following is a fixed point theorem for iterated contractive map.

Theorem 15 If f : X → X is a continuous iterated contractive map and the
sequence of iterates {xn} defined by xn+1 = f xn, n = 1, 2, . . . for x1 ∈ X, has a
subsequence converging to y ∈ X, then f has a fixed point.

Proof Note xn+1 = f xn , n = 1, 2, . . .. Then the sequence {d(xn+1, xn)} is a non-
increasing sequence. It is bounded below by 0, and therefore has a limit. Since the
subsequence converges to y and f is continuous on X , so f (xni ) converges to f y
and f ( f (xni ) converges to f ( f y). Thus,

d( f y, y) = lim
n→∩ d(xni , xni +1) = lim

n→∩ d(xni +1, xni +2) = d( f f y, f y).

If y ⇒= f y, then d( f f y, f y) < d( f y, y), since f is an iterated contractive map.
Consequently, d( f y, y) = d( f f y, f y) < d( f y, y), a contradiction and f y = y. �

Theorem 16 If f : C → C is a continuous iterated contraction , where C is closed
subset of a metric space X, with f (C) is compact, then f has a fixed point.

Remark 7 It is shown that the sequence {xn} has a convergent subsequence. By
using iterated contraction and continuity of f we get that f has a fixed point as in
Theorem 16.

Definition 11 Let X be a metric space and f : X → X . Then f is said to be an
iterated nonexpansive map if d( f x, f f x) ≤ d(x, f x) for all x ∈ X .
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The following is a fixed point theorem for the iterated nonexpansive map.

Theorem 17 Let X be a metric space and f : X → X an iterated nonexpansive
map satisfying the following :

(i) if x ⇒= f x, then d( f f x, f x) < d( f x, x),
(ii) for some x1 ∈ X, the sequence of iterates xn+1 = f xn has a convergent

subsequence converging to y say and f is continuous at y.

Then f has a fixed point.

Proof It is easy to show that the sequence {d(xn+1, xn)} is a nonincreasing sequence
of positive reals bounded below by 0. The sequence has a limit. Hence

d( f y, y) = lim
n→∩ d(xni , xni +1) = lim

n→∩ d(xni +1, xni +2) = d( f f y, f y).

This is a contradiction to (i). Therefore, f has a fixed point, that is, f y = y. �

Noticing that if C is a compact subset of a metric space X and f : C → C is a
continuous iterated nonexpansive map satisfying condition (i) of the above theorem,
then f has a fixed point.

Remark 8 If C is compact, then condition (ii) of Theorem 17 is satisfied, as f is
continuous iterated nonexpansive map, and hence the result.

The result given below is due to Cheney and Goldstein [18].

Theorem 18 Let f be a map of a metric space X into itself such that

(i) f is a nonexpansive map on X, that is, d( f x, f y) ≤ d(x, y) for all x, y ∈ X,
(ii) if x ⇒= f x, then d( f x, f f x) < d(x, f x), and
(iii) the sequence xn+1 = f (xn) has a convergent subsequence converging to y say.

Then the sequence {xn} converges to a fixed point of f .

Kannan [34] considered the following map.

Definition 12 Let X be a metric space. Let f : X → X satisfy

d( f x, f y) ≤ k[d(x, f x) + d(y, f y)]

for all x, y ∈ X , where 0 ≤ k < 1/2. Then f is said to be a Kannan map.

A Kannan map is an iterated contraction map. For example, if y = f x , then we
get d( f x, f f x) ≤ k[d(x, f x) + d( f x, f f x)]. This gives d( f x, f f x) ≤ k/(1 −
k)d(x, f x), where 0 ≤ k/(1 − k) < 1, that is, f is an iterated contraction.
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The following result due to Kannan [34] is valid for iterated contraction map.

Theorem 19 Let X be a metric space. Let f : X → X satisfy d( f x, f y) ≤
k[d(x, f x) + d(y, f y)] for all x, y ∈ X, 0 ≤ k < 1/2, f continuous on X and let
the sequence of iterates {xn} have a subsequence {xni } converging to y. Then f has
a fixed point.

Several researchers have used fixed point theory to prove results in approximation
theory.

For example, let f : X → X,where X is a normed linear space,C a closed convex
subset of X, f : C → C , and f y = y, y /∈ C. If the set D of best C−approximation
to y is nonempty closed convex and f : D → D is nonexpansive map with f (D)

compact, then f has a fixed point which is best approximation to y [58]. (see also
[57, 62]). In this direction, Hicks and Humphries have shown that if f (∂C) ⊂ C ,
then f : D → D [30].

4 Ky Fan’s Best Approximation

Thewell-known best approximation theorem of K y Fan has been of great importance
in nonlinear analysis, approximation theory,minimax theory, game theory, fixedpoint
theory, and variational inequalities.

Let C be a nonempty subset of a normed linear space X and f : C → X . We seek
a point x ∈ C which is a best approximation for f x , that is, seek an x ∈ C such that

∗x − f x∗ = d( f x, C) = inf{∗ f x − y∗ : y ∈ C}. (6)

Several researchers have contributed to this field [16, 48, 49, 61].

Remark 9 We know that y is a solution of (6) if and only if y is a fixed point of
P ∞ f (composition of P and f ), where P is the metric projection onto C .

We state the Ky Fan’s best approximation theorem below.

Theorem 20 (Fan’s Best Approximation Theorem) [22] Let C be a nonempty com-
pact convex subset of a normed linear space X and f : C → X a continuous
function. Then there exists a y ∈ C such that ∗y − f y∗ = d( f y, C).

Reich [49] proved the following where compactness of C has been relaxed.

Theorem 21 [49] Let C be a closed convex and nonempty subset of Banach space
X such that the metric projection on C is upper semicontinuous. If f : C → X
is continuous and f (C) is relatively compact, then there exists a y ∈ C such that
∗y − f y∗ = d( f y, C).
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Proof Let P be the metric projection on C . Define F(x) = (P ∞ f )(x) for each
x ∈ C . Then F is upper semicontinuous and F(x) is nonempty, compact convex
subset of C for x ∈ C . Since f (C) is relatively compact, so F(C) is also rela-
tively compact because the image of a compact set under an upper semicontinuous
map with compact point images is compact. The result follows from Himmelberg’s
theorem. �

The Himmelberg theorem is stated below [31].
IfC is a nonempty convex subset of a locally convex Hausdorff topological vector

space E and F : C → C is an upper semicontinuous multifunction with nonempty
closed, convex values with F(C) is contained in a compact set of C , then F has a
fixed point.

The following result given inRn is known as the Fan’s best approximation theorem
[22, 23]:

Theorem 22 (Fan’s Best Approximation Theorem) Let C be a closed bounded con-
vex subset of Rn and f : C → R

n a continuous function. Then there is a y ∈ C such
that

∗y − f y∗ = d( f y, C), (7)

where d(x, C) = inf{∗x − y∗ for all y ∈ C}, x ∈ R
n, x /∈ C.

Proof We note that y is a solution of (7) if and only if y is a fixed point of P ∞ f ,
where P is the metric projection from R

n onto C . Then P is a continuous function.
Thus, P ∞ f : C → C is a continuous function and has a fixed point in C by Brouwer
fixed point theorem. On the other hand, if P ∞ f has a fixed point say, (P ∞ f )y = y
, y ∈ C , then ∗y − f y∗ = d( f y, C). �

Theorem22 has application in fixed point theory [1, 12, 30, 57, 61]. The following
is the Brouwer fixed point theorem.

Theorem 23 Let f : C → C be a continuous function, where C is a closed bounded
convex subset of Rn. Then f has a fixed point.

In this case d( f y, C) = 0 and therefore, f y = y. In case f : C → R
n is a

continuous function and C is a closed bounded convex subset of Rn , then f has a
fixed point provided additional condition f (∂C) ◦ C is satisfied.

Theorem 22 has application in approximation theory. For example, a closed con-
vex bounded subset of Rn is a set of existence, that is, for each x ∈ R

n , x /∈ C , there
is a y ∈ C such that ∗y − x∗ = d(x, C). We define f : C → R

n by f y = x for all
y ∈ C , then ∗y − f y∗ = d( f y, C), that is, ∗y − x∗ = d(x, C).

Remark 10 ∗y − x∗ = d(x, C) if and only if ≥x − y, y − z∇ ≤ 0 for all z ∈ C .

Theorem 22 is also applicable in deriving results of variational inequalities [29].

Theorem 24 If C is a closed bounded and convex subset of Rn, and f : C → R
n is

a continuous function, then there is a y ∈ C such that ≥ f y, x − y∇ ≤ 0 for all x ∈ C.
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Proof Let g = I − f . Then g : C → R
n , is a continuous function and by Theorem

22, we have ∗y − gy∗ = d(gy, C). Thus ∗y − gy∗ ≤ ∗gy − x∗ for all x ∈ C , that
is, ≥gy − y, y − x∇ ≤ 0. Hence, ≥ f y, x − y∇ ≤ 0 for all x ∈ C . �

Theorem 25 [61, 62] Let C be a closed convex subset of a Hilbert space H and
f : C → H a nonexpansive map with f (C) bounded. Then there is a y ∈ C such
that ∗y − f y∗ = d( f y, C).

It is easy to see that P ∞ f has a fixed point y ∈ C and the result follows [13],
where P : H → C is a metric projection, and is a nonexpansive map.

Remark 11 If in Theorem 25, f : C → C , then f has a fixed point.

The following theorem was proved independently by Browder [12], Gohde [26]
and Kirk [36] in the Banach space setting. Here it is derived as a corollary from
Theorem 25 in Hilbert space.

Theorem 26 If C is a closed bounded convex subset of a Hilbert space H and
f : C → C is a nonexpansive map, then f has a fixed point.

In case we take Br = {x ∈ H : ∗x∗ ≤ r}, a ball of radius r and center 0, in place
of C in Theorem 21, then the following result holds [1]:

(A) Let f : Br → H be a nonexpansive map. Then there is a y ∈ Br such that
∗y − f y∗ = d( f y, Br ). If f : Br → Br , then f has a fixed point.

(B) If in (A) we have one of the following additional boundary conditions, then f
has a fixed point:

For y ∈ ∂ Br ,

(i) ∗ f y∗ ≤ ∗y∗
(ii) ≥y, f y∇ ≤ ∗y∗2
(iii) ∗ f y∗ ≤ ∗y − f y∗
(iv) If f y = ky, then k ≤ 1
(v) ∗ f y∗2 ≤ ∗y∗2 + ∗y − f y∗2.
For example, if ≥y, f y∇ ≤ ∗y∗2, then ∗ f y∗ ≤ ∗y∗ = r , implies that f y ∈ Br .

Hence, f has a fixed point.
Hartman and Stampacchia [29] proved the following interesting result of varia-

tional inequalities, that is applicable in mathematical, physical and economic prob-
lems.

Theorem 27 (Hartman–Stampacchia Theorem) Let C be a compact convex subset
of Rn and f : C → R

n a continuous function. Then the following problem has a
solution:

(VIP) find y ∈ C such that ≥ f y, x − y∇ ≤ 0, for all x ∈ C.

The study of variational inequality is said to find a solution of the variational
inequality problem (VIP).
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Remark 12 The variational inequality problem (VIP) has a solution if and only if
P(I − f ) : C → C has a fixed point [16, 60].

The following is given in Hilbert space.

Theorem 28 Let C be a closed bounded convex subset of H and f : C → H a
monotone, continuous map. Then there is a y ∈ C such that ≥ f y, x − y∇ ≤ 0, for all
x ∈ C.

Recall that f : C → H is monotone if ≥ f x − f y, x − y∇ ≤ 0 for all x, y ∈ C .
An application of Theorem 28 is to prove the following [12].

Theorem 29 Let C be a closed convex bounded subset of a Hilbert space H and
f : C → C a nonexpansive map. Then f has a fixed point.

Proof Since f is a nonexpansive map, it is continuous. Consider g : C → H , where
g = I − f . Then g is a continuous map. It is easy to see that g is monotone, that is,
≥gx − gy, x − y∇ ≤ 0. Since g is continuous and monotone, therefore, by Theorem
28, there is a y ∈ C such that ≥gy, x − y∇ ≤ 0 for all x ∈ C , that is,

≥y − f y, x − y∇ ≤ 0, for all x ∈ C.

Since f : C → C , so by taking x = f y we get that

≥y − f y, f y − y∇ ≤ 0,

that is,
≥y − f y, y − f y∇ ≤ 0.

But ∗y − f y∗2 ≤ 0, therefore, y = f y. �

The following theorem is an application of Theorem 28 in approximation theory
[29, 58].

Theorem 30 Let C be a closed convex bounded subset of a Hilbert space H. Then
for each y /∈ C, there is an x ∈ C such that ∗x − y∗ = d(y, C).

The following result for a closed ball B of radius r and center the origin, in a
Banach space X is given by Lin [38]. The definition and properties of a densifying
map are discussed in Sect. 6.

Theorem 31 Let B be a ball of radius r and center 0 in a Banach space X and
f : B → X a continuous densifying map. Then there is an x ∈ B such that
∗x − f x∗ = d( f x, B).

Proof Let R : X → B be a retraction map, defined by Rx = x if ∗x∗ ≤ r ,
and Rx = r x/∗x∗ if ∗x∗ ≤ r . Then R is a continuous and 1-set contraction map
[23, 43]. Let gx = R f x . Then g is a continuous densifying map and g : B → B.
Hence gx = x for some x ∈ B. It follows that ∗x − f x∗ = d( f x, B). �
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If f : B → R
n , then f is said to be a nonself map. Most of the fixed point

theorems have been given for self maps like f : B → B. Rothe gave the following
fixed point theorem for nonself maps ([6, 58]).

Theorem 32 Let B be the closed unit ball of a Banach space X with 0 ∈ B, and
let f : B → X be continuous. Further, assume that cl( f (B)) is compact and
f (∂ B) ⊂ B, Then f has a fixed point.

The following result due to Petryshyn [45] is derived from Theorem 31.

Theorem 33 Let f : B → X be a continuous densifying map, where B is a closed
ball of radius r and center at the origin in a Banach space X. Then f has a fixed
point provided that one of the following conditions is satisfied for x ∈ ∂ B:

(i) If f x = λx, then λ ≤ 1, (Leray Schauder condition).
(ii) f (∂ B) ⊂ B, (Rothe condition)
(iii) ∗ f x∗2 ≤ ∗ f x − x∗2 + ∗x∗2 (Altman condition) [62].

Some further work has been also given by Prolla [47], Carbone [14], Sehgal and
Singh [55, 56] and Takahashi [63]. Approximatively compact set has been taken in
[56].

5 Convergence of the Approximating Sequences

In this section, we give results dealingwith convergence of approximating sequences.
The following is given by Bonsall [9].

Theorem 34 [9, Theorem1.2]Let X be a complete metric space and { fn} a sequence
of contraction mappings of X into itself with the same Lipschitz constant k < 1 such
that fnun = un, n ∈ N. Let lim

n→∩ fn x = f x for every x ∈ X, where f is a contraction

map with Lipschitz constant k < 1 with fixed point u. Then lim
n→∩ un = u.

Remark 13 In Theorem 34, it is not necessary to assume that f is a contraction map.
As a matter of fact, it follows that f is a contraction map with the same Lipschitz
constant k < 1.

The following result is given in general setting and extends Theorem 34.

Theorem 35 Let X be a complete metric space and { fn} a sequence of mappings
with fixed points un. Suppose that lim

n→∩ fn x = f x for every x ∈ X such that f is

a contraction map with Lipschitz constant k < 1. Then f has a unique fixed point
u ∈ X, and lim

n→∩ un = u.
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Proof It is easy to derive that f has a unique fixed point u. Since lim
n→∩ fn x = f x

for every x ∈ X , therefore, for given ε > 0, there exists n0 ∈ N such that for n ≤ n0,
we have d( fnu, f u) ≤ (1 − k)ε. Now, for n ≤ n0,

d(u, un) = d( f u, fnun) ≤ d( f u, fnu) + d( fnu, fnun) ≤ (1 − k)ε + kd(u, un).

It follows that d(u, un) ≤ ε for n ≤ n0. Therefore, lim
n→∩ un = u. �

In case we do not have a k as a constant, then the result need not be valid. For
example, if we have a sequence of contraction maps converging to a nonexpansive
map f say, then the sequence of fixed points of fn need not converge to a fixed point
of nonexpansive map f . There are examples of a nonexpansive mapping without
fixed points, like translation map. Theorem 35 is valid if the sequence {kn} of the
contraction constants is a decreasing sequence. In this case, we can replace kn by k1
since kn < k1 for all n.

The following simple example illustrates the facts.

Example 1 For n ∈ N, let fn : R → R be given by

fn x = 1 − x

n + 1
, for all x ∈ R.

Then fn is a contraction map with contraction constant kn = 1/(n +1). Here k1 = 1
2

so one could take 1
2 as a contraction constant for all the maps. The unique fixed point

for each fn is xn = (n + 1)/(n + 2). Also, lim
n→∩ fn x = f x = 1 for every x and

lim
n→∩ xn = lim

n→∩(n + 1)/(n + 2) = 1. Here f 1 = 1 is a unique fixed point of f .

In case {kn} is an increasing sequence, then the result is false. For example, let
fn : R → R be given by fn x = p + n/(n + 1)x for all x ∈ R, where p ∈ R. Then
kn = n/(n+1) → 1. The sequence of fixed points is given by fn xn = xn = (n+1)p.
Now the sequence { fn} of contraction maps converges to f , where f x = p + x for
every x ∈ R and f is a translation map has no fixed points. In this example, lim

n→∩ xn

does not exist.
In case of uniform convergence, we have the following

Theorem 36 [40, Theorem 1] Let X be a metric space and { fn} a sequence of
mappings of X into itself with fixed points xn and f : X → X a contraction map
with fixed point x. If the sequence { fn} converges uniformly to f , then the sequence
of fixed points xn of fn converges to x = f x.

Proof Since fn converges uniformly to f , therefore, for each ε > 0, there exists an
n0 ∈ N with

d( fn x, f x) < (1 − k)ε for all x ∈ X, n ≤ n0,

where 0 < k < 1 is a contraction constant of f . Note



Best Approximation in Nonlinear Functional Analysis 185

d(xn, x) = d( fn xn, f x) ≤ d( fn xn, f xn) + d( f xn, f x)

≤ d( fn xn, f xn) + kd(xn, x),

which implies that
(1 − k)d(xn, x) ≤ d( fn xn, f xn).

Hence, we derive that d(xn, x) < ε since fn converges uniformly to f . Hence {xn}
converges to x = f x . �

We give the following [59, 64].

Theorem 37 Let X be a metric space and { fn} a sequence of mappings of X into
itself with fixed points un. Let { fn} converge uniformly to f , where f is a contraction
mapping with contraction constant k < 1. Let f (X) be compact. Then the sequence
{un} converges to u, a unique fixed point of f .

Proof Since f is a contraction map and f (X) is compact, so by Schauder fixed point
theorem f has a unique fixed point say f u = u. To prove this, let B = f (X). Then
B is compact. Define a sequence {xn} by Picard method:

xn+1 = f xn, n = 0, 1, 2, · · · .

The sequence {xn} has a convergent subsequence since B is compact. Let {xni } be
a subsequence of {xn}, and let {xni } converge to z. Since f is continuous, so f xni

converges to f z. Now

d(z, f z) ≤ d(z, xni +1) + d(xni +1, f z) = d(z, xni +1) + d( f xni , f z)

≤ d(z, xi+1) + kd(xni , z) → 0 as i → ∩.

Thus, z = f z, that is, f has a fixed point. Since f is a contraction map so f has a
unique fixed point.

Now, since { fn} converges uniformly to f , so for given ε > 0, there exists n0 ∈ N

such that n ≤ n0 implies that d( fn x, f x) < (1 − k)ε for all x ∈ X . Hence

d(un, u) = d( fnun, f u) ≤ d( fnun, f un) + d( f un, f u) ≤ (1 − k)ε + kd(un, u).

Thus, d(un, u) < ε, that is, limn→∩ un = u. �

We give the following result due to Nadler [40].

Theorem 38 Let X be a metric space and { fn} a sequence of contraction mappings
of X into itself with fixed point un. Suppose that the sequence { fn} converges pointwise
to f , where f : X → X is contraction mapping with a unique fixed point x. If there
exists a sequence {uni } of {un} such that {uni } converges to u, then u = x.

Now we give results dealing with contractive approximation of a sequence of
contraction mappings to a nonexpansive map.



186 S. P. Singh and M. R. Singh

Let C be a nonempty closed convex subset of a Banach space X , and let f : C →
C be a nonexpansive mapping. Let {rn} be a sequence in (0, 1). For any x0 ∈ C and
n ∈ N, define a mapping frn by

frn x = rn f x + (1 − rn)x0, x ∈ C.

Then frn maps C into itself and is a contraction map with Lipschitz constant rn . By
Banach contraction principle each frn has a unique fixed point say xrn . Thus,

xrn = frn xrn = rn f xrn + (1 − rn)x0.

It is easy to see that if {rn} converges to 1, then the sequence { frn } of contraction
mappings converges pointwise to the nonexpansive mapping f .

As the function f is a contractive approximation of frn , so does the fixed point
of f is the limit of the sequence of fixed points xrn (Browder [13]).

There are nonexpansive mappings without a fixed point, therefore, in general the
convergence of xrn = frn xrn to a fixed point of f is not guaranteed. However, when
F( f ), is nonempty, then under suitable restrictions the answer is positive.

Before to give an affirmative answer, we need the following:

Theorem 39 Let C be a closed convex subset of a Hilbert space H and f : C → H
a nonexpansive map with f (C) bounded. Then there is a y ∈ C such that ∗y− f y∗ =
d( f y, C).

Browder [13] proved the following result using the monotonicity of I − f , where
f is a nonexpansive mapping.

Theorem 40 Let C be a closed convex bounded subset of a Hilbert space H and
f : C → C a nonexpansive map. Define frn x = rn f x + (1 − rn)u, where u ∈ C,

0 < rn < 1 and rn → 1. Let frn xrn = xrn . Then the sequence {xrn } converges to y,
where y is a fixed point of f closest to u.

Remark 14 If C is a closed convex subset of H and f : C → C is a nonexpansive
map, then f (C) is weakly compact.

Proof We know that f has a fixed point and the set of fixed points is closed and
convex. Therefore, there is a unique nearest point to u say x∪ = f x∪ ∈ F( f ), that
is,

≥u − x∪, x∪ − z∇ ≤ 0, for all z ∈ F( f ).

In order to show that {xrn } converges strongly to x∪, it suffices to show that there is
a subsequence {xrni

} with rni → 1 converges strongly to x∪. Let vi = xrni
. Since all

the xrn lie in weakly compact set f (C), we may assume that {vi } converges weakly
to v for some v ∈ H . We now show that v = f v. Note

∗vi − f vi∗ = ∗rni f vi + (1 − rni )u − f vi∗ = (1 − rni )∗u − f vi∗.
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Since { f vi } is bounded, so vi − f vi → 0 as i → ∩. Set g = I − f . Then g is
monotone. Now,

0 ≤ ≥gu − gvi , u − vi ∇,

which implies that ≥gu, u −v∇ ≤ 0 , for any u ∈ C . Set ut = v + t z for z arbitrary in
C and 0 < t < 1. So ≥gut , ut − v∇ ≤ 0. Since t z = ut − v, therefore t≥gut , z∇ ≤ 0,
that is, ≥gut , z∇ ≤ 0 for all z. Taking limit as t → 0, we get ≥gv, z∇ ≤ 0. Putting
z = 0, we have gv = 0, that is, v = f v. Since v lies in f (C) as f (C) is weakly
closed, and v = f v ∈ F( f ).

Finally, we prove that {vi } converges strongly to x∪. Observe that

(1 − rni )vi + rni (vi − f vi ) = (1 − rni )u, since gvi = 0 (8)

and since x∪ = f x∪, we get

(1 − rni )x∪ + rni (x∪ − f x∪) = (1 − rni )x∪. (9)

Taking (8) and (9) and inner product with vi − x∪ we get

(1− rni )≥vi − x∪, vi − x∪∇ + rni ≥gvi − gx∪, vi − x∪∇ = (1− rni )≥u − x∪, vi − x∪∇.

Hence,

∗vi − x∪∗2 ≤ ≥u − x∪, vi − x∪∇

since g is monotone. Note

≥u − x∪, vi − v + v − x∪∇ = ≥u − x∪, xi − v∇ + ≥u − x∪, v − x∪∇.

On the right hand side xi converges weakly to v and

≥u − x∪, v − x∪∇ ≤ 0,

since v lies in F , and x∪ is the closest point to u in F( f ), therefore, {vi } converges
strongly to x∪. �

The following result is a general one and derives Theorem 40 as a corollary.

Theorem 41 [61] Let C be a closed convex subset of a Hilbert space H and f :
C → H a nonexpansive map with f (C) bounded and f (∂C) ◦ C. Define frn x =
rn f x + (1 − rn)x0, where 0 < rn < 1 and rn → 1. Let frn xrn = xrn . Then the
sequence of fixed points {xrn } of frn {xrn } converges to y where y is a fixed point of
f closest to x0.

Proof First, we note that F( f ) is nonempty [12]. Here F( f ) is a closed and convex
set [12], so has a unique nearest point from any point /∈ F( f ). Thus, x0 has a unique
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nearest point in F( f ) say y = f y. For the sake of convenience, we take x0 = 0 and
we write r for rn . Note

∗xr/r − y∗2 = ∗ f xr − y∗2 = ∗ f xr − f y∗2 ≤ ∗xr − y∗2.

On simplification we get that ∗xr∗2 ≤ ≥xr , y∇. Hence, ∗xr∗ ≤ ∗y∗, and {xr } is a
bounded sequence. The sequence {xr } has a subsequence {xk} converging weakly to
x . Further,

∗xk − f xk∗ = ∗rk f xk − f xk∗ = (1 − rk)∗ f xk∗ → 0

as k → ∩. Then {xk − f xk} converges strongly to zero.
Since I − f is demiclosed, therefore we get that (I − f )x = 0. Thus x is a fixed

point of f . Since ∗xn∗ ≤ ∗y∗ so ∗x∗ ≤ ∗y∗. But y is closest to x = 0 and the
nearest point is unique, therefore x = y. Hence {xk} converges weakly to y. Again,

∗y∗2 ≤ ∗xk∗2 = ∗xk − y + y∗2 = ∗xk − y∗2 + ∗y∗2 + 2≥xk − y, y∇.

The last part of right hand side goes to 0 as k → ∩. Therefore,∗xk − y∗ → 0,
and the subsequence {xk} converges strongly to y. Since {xk} is any subsequence of
{xrn }, therefore the sequence {xrn } converges strongly to y. �

Halpern [28] gave the following.

Theorem 42 Let C be a closed convex bounded subset of a Hilbert space H and
f : C → C is a nonexpansive mapping. Let {tn} be a sequence in (0, 1), and define
a sequence {xn} by

xn+1 = tnz + (1 − tn) f xn, n ≤ 0.

Then the sequence {xn} converges strongly to y, a fixed point of f , closest to
z if limn→∩ tn = 0,

∑∩
n=0 tn = ∩, and either

∑∩
n=0 ∗tn+1 − tn∗ < ∩ or

limn→∩ tn/tn+1 = 1 (for example, if tn = 1/(n + 1)).

If 0 ∈ C , then both results are good to find y ∈ F( f ), as ft = (1 − t) f is a
mapping from C into itself.

Remark 15 If C is a closed convex subset of a Hilbert space H and f : C → C is a
nonexpansive mapping, and for x ∈ C , the sequence { f n x} is bounded, then F( f )

is nonempty.

Recently, the following result is given by Cui and Liu [19].

Theorem 43 Let H be a real Hilbert space, C a nonempty closed convex subset of H
and f : C → C a nonexpansive mapping with F( f ) nonempty. Let {tn} be a sequence
in (0, 1) such that limn→∩ tn = 0,

∑∩
n=0 tn = ∩, and either

∑∩
n=0 ∗tn+1−tn∗ < ∩

or limn→∩ tn/tn+1 = 1. Then the sequence the sequence {xn} defined by xn+1 =
P((1 − tn) f xn), n ≤ 0 converges strongly to y = f y closest to 0.
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6 Convergence of the Sequence of Iterates

The method of successive approximation is useful in determining solutions of inte-
gral, differential, algebraic, and nonlinear operator equations. This technique is used
in approximation theory and variational inequalities as well. The method of succes-
sive approximations is quite useful in approximating fixed points, in finding solution
of nonlinear equations [9, 42, 64]. The sequence of successive approximation for a
contraction map f : X → X , given by xn+1 = f xn , n = 0, 1, . . . converges to a
unique fixed point of f .

For example, if x2 = 2, then writing f x = 1
2 (x + 2/x), f is a contraction map

and xn+1 = f xn , n = 0, 1, . . . converges to
∃
2.

On the other hand, a sequence {xn} of iterates for nonexpansive map need not
converge. For example, if f : R → R defined by f x = −x , then xn+1 = f xn need
not converge if x0 ⇒= 0. Krasnoselskii [37] considered the iterative sequence given
below:

Let f 1
2

x = 1
2 x + 1

2 f x . Then f 1
2
is a nonexpansive map. Also, F( f ) = F( f 1

2
). It

is easy to see that if f 1
2

x = x , then f x = x and conversely.
The sequence of iterates for the function f 1

2
under suitable restrictions converges

to a fixed point of f . Schaefer [53] considered fr x = r f x + (1 − r)x , 0 < r < 1.
In this case F( f ) = F( fr ) and fr is a nonexpansive map.

For example, if f x = x , then we show that fr x = x . Since fr x = r f x +(1−r)x ,
therefore fr x = r x + (1 − r)x = x . Further, if fr x = x , then f x = x .

Definition 13 Let X be a Banach space and C a subset of X . The map f : X → X
with F( f ) ⇒= ⇐ is said to be quasi-nonexpansive if

∗ f x − p∗ ≤ ∗x − p∗

for all x ∈ C and p ∈ F( f ).

The quasi-nonexpansive map need not be continuous. A quasi-nonexpansive map
need not be nonexpansive. However, a nonexpansive map with at least one fixed
point is a quasi-nonexpansive. [2, 20, 21, 60]. The following example illustrates the
facts.

Example 2 Let f : [0, 1] → [0, 1] be given by f x = 0 for 0 ≤ x < 2/3 and
f x = 2/3 for 2/3 < x ≤ 1. Note f 0 = 0 and f is a quasi-nonexpansive map,
though f is discontinuous. However, f is not a nonexpansive map. Indeed, for
x = 2/3 and y = 1, we have

| f x − f y| = |2/3 − 0| = 2/3 > |x − y| = |2/3 − 1| = 1/3.

Mann [39] introduced the sequence of iterative process as follows:
If xn+1 = (1− cn)xn + cn f xn , 0 < cn < 1, lim

n→∩ cn = 0 and
∑∩

n=1 cn diverges,

then the sequence {xn} converges to a fixed point of f under suitable conditions on
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domain and space. In this case F( f ) = F( fcn ), where fcn x stands for (1 − cn)x +
cn f x .

Let f x = x, then fcn x = cn x + (1 − cn)x = x . If fcn x = x , then x =
cn f x + (1 − cn)x , so cn f x = cn x and hence, f x = x .

It is shown that fcn is quasi-nonexpansive, that is, if p ∈ F( fcn ), then

∗ fcn x − p∗ = ∗ fcn x − fcn p∗ ≤ ∗x − p∗, for all x ∈ C.

Note

∗cn f x +(1−cn)x − p∗ = ∗cn f x −cn p+(1−cn)x − p∗ ≤ cn∗ f x − p∗+(1−cn)∗x − p∗.

We know that ∗ f x − p∗ ≤ ∗x − p∗, we have

∗ fcn x − p∗ ≤ cn∗x − p∗ + (1 − cn)∗x − p∗ = ∗x − p∗.

Therefore, fcn is a quasi-nonexpansive map.
Ishikawa [32] considered the following.

xn+1 = tn f (rn f xn + (1 − rn)xn) + (1 − tn)xn,

0 < rn < 1 and 0 < tn < 1 with suitable restrictions on rn and tn . In each case, it is
shown that xn − f xn → 0 as n → ∩. If f (C) is compact, then the sequence {xn}
converges to a fixed point of f .

The following result due to Krasnoselskii [37] deals with the convergence of the
iterative sequence of nonexpansive mappings..

Theorem 44 [37] Let X be a uniformly convex Banach space and C a closed convex
bounded subset of X. If f : C → C is a nonexpansive map with closure ( f (C))

compact, then the sequence of iteration of the map defined by

xn+1 = 1

2
xn + 1

2
f xn, n ≤ 1

converges to a fixed point of f .

Theorem 45 [20] Let C be a closed subset of a Banach space X and f : C → C a
quasi-nonexpansive map with F( f ), nonempty. For x1 ∈ C, let {xn} be a sequence
of Mann iteration defined by

xn+1 = cn f xn + (1 − cn)xn, n ≤ 1.

Then {xn} converges to a fixed point of f , provided that lim
n→∩ d(xn, F) = 0.
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The following result due to Naimpally and Singh [41] is given in general setting.

Theorem 46 Let X be a normed linear space and C a nonempty closed convex
subset of X. Let f : C → C be a mapping satisfying

∗ f x − f y∗ ≤ k max{∗x − y∗, ∗x − f x∗, ∗y − f y∗, ∗x − f y∗+∗y − f x∗}, for all x, y ∈ C,

where 0 ≤ k < 1 and let {xn} be a sequence defined by

{

yn = (1 − βn)xn + βn f xn,

xn+1 = (1 − αn)xn + αn f yn, n ≤ 0,

x0 ∈ C, where 0 ≤ αn, βn ≤ 1. If {αn} is bounded away from 0 and if {xn} converges
to p, then p is a fixed point of f .

For the proof and details see [41].
The following result is worth mentioning.

Theorem 47 Let C be a closed convex subset of a Banach space X and f : C → X
a function with F( f ) nonempty and satisfying the following:

∗ f x − p∗ ≤ ∗x − p∗, for all x ∈ C and p ∈ F( f ).

Define xn+1 = cn f xn + (1 − cn)xn, n ≤ 0 for x0 ∈ C, where cn ∈ [a, b] with
0 < a < b < 1, and lim

n→∩ d(xn, F( f )) = 0. Then {xn} converges to a fixed point of

f .

Proof Let us denote xn+1 = fcn xn = cn f xn + (1 − cn)xn . Then F( f ) = F( fcn ).
The remaining proof follows on the lines as given in [20]. �

The contraction, contractive, and nonexpansive maps have been further extended
to densifying, and 1- set contraction maps. In 1969 several interesting results of fixed
points were given for densifying maps.

We now give results dealing with densifying mappings. First, we need a few
preliminaries ([24, 43, 52]).

Definition 14 Let C be a bounded subset of a metric space X. Define the measure
of noncompactness

α(C) = inf{ε > 0 : C has a finite covering of subsets of diameter ≤ ε}.

The following properties of α are well known.
Let A be a bounded subset of a metric space X . Then

(i) α(A) ≤ δ(A), δ(A) is the diameter of A.
(ii) α(closure of A) = α(A).
(iii) If A ⊂ B, then α(A) ≤ α(B).
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(iv) α(A ⊕ B) = max{α(A), α(B)}.
(v) α(A) = 0 if and only if A is precompact.

A continuous mapping f : X → X is called a densifying map if for any bounded
set A with α(A) > 0, we have α f (A) < α(A). If α f (A) ≤ kα(A) , 0 < k < 1, then
f is a k-set contraction.
In case α f (A) ≤ α(A), then f is said to be 1-set contraction. A nonexpansive

map is an example of 1-set contraction.
A contraction map is densifying and so is a compact mapping.
There are results in fixed point theory dealing with combination of two maps- say

f + g, where f is a contraction map and g is a compact map.

Remark 16 If f and g both are continuous functions, then f +g is also a continuous
map and the fixed point theorem for continuousmap is applicable for f +g. However,
if f is a contraction map, then Banach contraction Principle is applied and if g is
a compact map, then Schauder fixed point theorem is applicable. If f is densifying
and g is densifying, then f + g is also densifying.

The following is a well-known result [24, 43, 52].

Theorem 48 Let f : C → C be a densifying map, where C is closed convex
bounded subset of a Banach space X. Then f has at least one fixed point in C.

For future work Nussbaum [43] is worth mentioning.
The following result is for densifying mappings [16, 24, 52].

Theorem 49 Let C be a closed convex subset of a Banach space and f : C → C
a nonexpansive densifying map such that f (C) is bounded. Then the sequence of
iterates xn+1 = f xn converges strongly to a fixed point of f in C.

Proof Define fr by fr x = r f x + (1 − r)u for some u ∈ C , 0 < r < 1. Then
we get xr = fr xr . By using the Banach contraction principle, it is easy to see that
xr − f xr = 0 as r → 1. Let A = ⊕{xn : n = 0, 1, 2, . . .}. Then f (A) = ⊕{ f xn :
n = 0, 1, 2, 3} and α( f (A)) = α(A), and hence α(A) = 0, since f is densifying.
Thus, A is relatively compact and {xn} has a convergent subsequence converging to
y. Denote the subsequence of {xn} by {xi }. Let {xi } converge to y. Now using the fact
that f is continuous, we get that f xi converges to f y. Since xi − f xi → 0, we get
that y − f y = 0. Hence, {xi } converges to y = f y. Since {xi } is any subsequence
of {xn}, therefore, {xn} converges to y a fixed point of f . �

Theorem 50 Let C be a closed convex subset of a Banach space X and f : C → C
a nonexpansive map. If the following conditions are satisfied, F( f ) ⇒= φ and
lim

n→∩ d(xn, F( f )) = 0, then the sequence of iterates xn+1 = rn f xn +(1−rn)xn ∈ C

for x1 ∈ C, where rn ∈ [a, b] with 0 < a < b < 1, converges to a fixed point of f .

Proof Since F( f ) ⇒= φ, therefore for p ∈ F( f ), we have

∗xn+1 − p∗ ≤ ∗xn − p∗.
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Since lim
n→∩ d(xn, F( f )) = 0, therefore for given ε > 0, there exists a positive

integer N such that d(xn, F) < ε/2 for all n ≤ N . Hence for large n, m we get for
p ∈ F( f ),

∗xn − xm∗ ≤ 2∗xN − p∗ < ε.

Thus, {xn} is a Cauchy sequence and converges in C since C is a closed subset of
a Banach space X and is therefore complete. Let z ∈ C such that limn→∩ xn = z.
From lim

n→∩ d(xn, F) = 0 we get that z ∈ F( f ). Since for any p ∈ F( f ), ∗z− f z∗ ≤
2∗z − p∗, therefore ∗z − f z∗ ≤ 2d(z, F) = 0. Hence, the sequence of iterates {xn}
converges to a fixed point of f (see [20] for details). �

The following is given by Petryshyn [45, 46].

Theorem 51 Let X be a strictly convex Banach space, C a closed convex bounded
subset of X, and f : C → C a densifying nonexpansive mapping. Let fr x =
r x + (1− r) f x for real r , 0 < r < 1. Then the sequence xn+1 = r xn + (1− r) f xn,
n = 0, 1, . . . converges to a fixed point of f in C.

Remark 17 In case f : C → C is a nonexpansive densifying map and C is a
closed bounded convex subset of a Banach space X , then the sequence of iterates
xn+1 = cn f xn + (1 − cn)xn , where {cn} ∈ (0, 1), cn ≤ k < 1 and

∑∩
n=1 cn = ∩

has the property that lim
n→∩ ∗xn+1 − xn∗ = 0 [21, 41, 51]. Hence, if the range of f

is compact, then the sequence converges to a fixed point of f .

The following result deals with the convergence of the sequence of iterates [42]
in variational inequalities.

Theorem 52 Let C be a closed convex subset of a Hilbert space H and f : C → H
a continuous function such that I − λ f is a contraction function. Then there is a
unique solution u ∈ C of ≥ f u, v − u∇ ≤ 0 for all v ∈ C and u = lim

n→∩ un, where

un+1 = P(I − λ f )un , u0 ∈ C. (Here P is a proximity map onto C).

It can be easily seen that if f is of Lipschitz class and strongly monotone, then
I − λ f is contraction for suitable λ > 0. For example, if f : C → H satisfies
∗ f x − f y∗ ≤ k∗x − y∗ for all x, y ∈ C and for some k > 0, and f is strongly
monotone, that is,

α∗x − y∗2 ≤ ≥ f x − f y, x − y∇, for all x, y ∈ C and for some k > 0,

then I − λ f is a contraction map for 0 < λ < 2α/k2.
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It is seen as follows: For x, y ∈ C , we have

∗(I − λ f )x − (I − λ f )y∗2 = ∗x − y∗2 − 2λ≥ f x − f y, x − y∇ + λ2∗ f x − f y∗2
= (1 − 2λα + k2λ2)∗x − y∗2.

Thus, I − λ f is a contraction map if 1 − 2λα + k2λ2 < 1, that is, λ < 2α/k2.
Bae [6] has discussed results related to the generalized nonexpansivemaps defined

below.

Definition 15 Let X be a metric space. If f : X → X satisfies d( f x, f y) ≤
ad(x, y) + b{d(x, f x) + d(y, f y)} + c{d(x, f y) + d(y, f x)} for all x, y ∈ X ,
where a > 0, b > 0, c > 0, a + 2b + 2c ≤ 1, then f is said to be a generalized
nonexpansive mapping.

If a + 2b + 2c < 1 and X is a complete metric space, then f has a unique fixed
point and the sequence of iterates converges to the fixed point of f . The following
is also due to Bae [6].

Theorem 53 Let (X, d) be a compact metric space and f : X → X a map satisfying

d( f x, f y) ≤ ad(x, y) + bd(x, f y) + cd(y, f x) for all x, y ∈ X, (B)

where a ≤ 0, c > 0, and a + 2c = 1. Then f has a fixed point and the sequence of
iterates xn+1 = f xn,n = 0, 1, 2, . . . for any x0 ∈ X converges to a fixed point of f .

Definition 16 Let (X, d) be a metric space. A map f : X → X is called asymptot-
ically regular if, for any x ∈ X , d( f n+1x, f n x) → 0 as n → ∩.

We give the following when X need not be compact.

Theorem 54 Let X be a metric space and f : X → X satisfy Condition (B).
Further, if X is bounded and the sequence of iterates xn+1 = f xn, n = 0, 1, 2, · · ·
has a convergent subsequence, then f has a fixed point and the sequence of iterates
converges to the fixed point of f .

Proof Let x0 ∈ X and xn+1 = f xn be a sequence of iterates. Then there is a
subsequence {xni } of {xn} converging to y ∈ X . Let us write xi for xni for the sake
of convenience. Then, by (B), we have

d( f y, xni ) = d( f y, xi ) ≤ ad(y, xi−1) + cd(y, xi ) + cd( f y, xi−1)

= ad(y, xi ) + ad(xi , xi−1) + cd(y, xi ) + cd( f y, xi ) + cd(xi , xi−1).

Hence

d( f y, xni ) ≤ (a + c)/(1 − c)[d(y, xi ) + d(xi , xi−1)] = d(y, xi ) + d(xi , xi−1).
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Letting limit as i → ∩, we get

d( f y, y) ≤ 0,

since f is asymptotically regular [6, 62], therefore d(xi , xi−1) → 0 as i → ∩.
Hence f y = y. Again, by using (B) we have

d(xn+1, y) ≤ ad(xn, y) + cd(xn, y) + cd(xn+1, y),

so d(xn+1, y) ≤ (a + c)/(1 − c)d(xn, y) = d(xn, y). Thus, {d(xn, y)} a bounded
decreasing sequence and hence {xn} converges to y. �

Theorem 55 Let C be a closed convex bounded subset of a Banach space X and
f : C → C a densifying map satisfying

∗ f x − f y∗ ≤ a∗x − y∗+b{∗x − f x∗+∗y− f y∗}+c{∗x − f y∗+∗y− f x∗} (10)

for all x, y ∈ C with a ≤ 0,b ≤ 0, c ≤ 0, and a + 2b + 2c ≤ 1. Then the sequence
of iterates xn+1 = f xn converges to a fixed point of f .

Proof Since C is a closed convex bounded subset of a Banach space and f is a
densifying map, so F( f ) is nonempty [24]. Let p = f p. Then, for x ∈ C , we have

∗ f x − p∗ = ∗ f x − f p∗ ≤ a∗x − p∗ + b∗x − f x∗ + c{∗x − p∗ + ∗p − f x∗}.

By (10), we have

(1 − c)∗ f x − p∗ ≤ (a + c)∗x − p∗ + b∗p − f x∗.

Note
∗x − f x∗ = ∗x − p + p − f x∗ ≤ ∗x − p∗ + ∗p − f x∗,

it follows that

(1 − c)∗ f x − p∗ ≤ (a + c)∗x − p∗ + b∗x − p∗ + b∗p − f x∗,

and hence, (1−b−c)∗ f x−p∗ ≤ (a+b+c)∗x−p∗. Therefore, ∗ f x−p∗ ≤ ∗x−p∗.
Thus. the sequence {∗xn − p∗} is a nonincreasing sequence and it is bounded below
by 0. Hence it converges. Now, in order to show that the sequence {xn} converges
strongly to a fixed point in F( f ), it is enough to show that the sequence {xn} has a
subsequence converging to a point in F( f ).

For any x0 ∈ C , the sequence ({xn} such that n = 0, 1, 2 . . .) = A0 is bounded
and is transformed to ({xn} such that n = 1, 2, . . .) = A1. Henceα(A0) = α(A1) and
therefore α(A0) = 0 since f is densifying. Thus, {xn} has a convergent subsequence.
Let z = limn→∩ xni . Then z ∈ F( f ) and the sequence {xn} converges to z. �
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Hierarchical Minimization Problems
and Applications

D. R. Sahu and Qamrul Hasan Ansari

Abstract In this chapter, several iterative methods for solving fixed point problems,
variational inequalities, and zeros ofmonotoneoperators are presented.Ageneralized
mixed equilibrium problem is considered. The hierarchical minimization problem
over the set of intersection of fixed points of a mapping and the set of solutions of a
generalized mixed equilibrium problem is considered. A new unified hybrid steepest
descent-like iterative algorithm for finding a common solution of a generalizedmixed
equilibrium problem and a common fixed point problem of uncountable family of
nonexpansive mappings is presented and analyzed.

Keywords Fixed point problems · Variational inequalities · Monotone operators ·
Generalized mixed equilibrium problems · Hierarchical minimization problem ·
Hybrid steepest descent-like iterative method ·Nonexpansive mappings · Resolvent
operators · Demiclosed principle · Projection gradient method

1 Introduction and Formulations

It is well known that the standard smooth convex optimization problem [47], given
a convex, Fŕechet differentiable function g : H → R and a closed convex subset C
of a real Hilbert space H , find a point x∈ ≥ C such that
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g(x∈) = min{x ≥ C : g(x)},

can be formulated equivalently as the variational inequality problem VIP(∇g, H)

over C (see [18]):
≤∇gx∈, y − x∈∞ ∩ 0, for all y ≥ C,

where ∇g : H → H is the gradient of g.
Convex minimization problems have a great impact and influence in the devel-

opment of almost all branches of pure and applied sciences, see for example [3, 11,
13, 29]. Iterative methods for nonexpansive mappings have recently been applied to
solve convex minimization problems.

Let H be a real Hilbert space. Let A : H → H be a bounded linear strongly
positive operator with coefficient δ̄ > 0 (that is, there exists a constant δ̄ > 0 such
that ≤Ax, x∞ ∩ δ̄ ∗x∗2 for all x ≥ H ), f : H → H be a contraction, δ > 0 be a
constant and h be a potential function for δ f (that is, h′(x) = δ f (x) for all x ≥ H ).
We consider the following general convex minimization problem over the set D:

min
x≥D

1

2
≤Ax, x∞ − h(x), (1)

where D is a nonempty closed convex subset of H .
Aminimization problem defined over the set of solutions of another minimization

problem or over the set of solutions of an equilibrium problem is called a bilevel
programming problem. For further details on bilevel programming problems, we
refer to [20, 24] and the references therein. If theminimization problem (1) is defined
over the constrained set D which is solution set of another problem, then problem
(1) is called the hierarchical minimization problem (in short, HMP) over the solution
set D.

A typical problem to minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping T : H → H is the following:

min
x≥Fix(T )

1

2
≤Ax, x∞ − ≤x, b∞, (2)

where b is a given point in H and Fix(T ) denotes the set of all fixed points of T . The
minimization problem (2) is a particular case of the general convex minimization
problem (1).

On the other hand, in a variety of scenarios, the constrained set D can be expressed
as the fixed point set of a nonexpansivemapping. Afixed point problemover the set of
solutions of another fixed point problem is called a hierarchical fixed point problem.
Since problem (2) is a minimization problem defined over the set of fixed points
of an operator T , we call it hierarchical minimization problem (in short HMP). Xu
[45] proposed an iterative method for finding the approximate solution of HMP (2)
and studied the strong converge of the sequence generated by the proposed method
to a unique solution of the HMP (2). Marino and Xu [21] introduced a general
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explicit iterative scheme by the viscosity approximationmethod for theminimization
problem (1), where D is the set of fixed points of a nonexpansive mapping T and
studied the strong convergence of the explicit iterative scheme. The HMP (1) over
suitable solution set D has been extensively studied in recent years, see for example
[16, 17, 27, 28, 35], and the references therein).

The hierarchicalminimization problemover some solution set D (for example, the
set of fixed point and generalized mixed equilibrium problem) has a very important
role for the study of applied and computational mathematics.

In many applications, the family T = {T (t) : 0 < t < ⊆} of nonexpansive
self-mappings on C is not necessarily a semigroup, namely, the family of resolvents
of maximal monotone operators and equilibrium problems.

In view of broad applicability of arbitrary family T = {T (t) : 0 < t < ⊆}
of nonexpansive self-mappings, in this survey chapter, we propose an iterative
algorithm for computing solutions of the hierarchical VIP defined over the set
D = Fix(T ) ⇔ ε[GMEP(σ,α, β)], where Fix(T ) is the set of common fixed
points of a family T = {T (t) : 0 ⇒ t < ⊆} of nonexpansive self-mappings on
C , and ε[GMEP(σ,α, β)] is the set of solutions of generalized mixed equilibrium
problem (see GMEP (14)). Then we establish the strong convergence of an iterative
algorithm to the unique solution of the hierarchical minimization problem (1) over
the set D = Fix(T ) ⇔ ε[GMEP(σ,α, β)]. In view of general theory of nonex-
pansive mappings, we also derive several known convergence theorems for zeros of
monotone operators and fixed points of semigroups that have appeared in Hilbert
space setting.

2 Preliminaries and Notations

Let H be a real Hilbert space whose inner product and norm are denoted by ≤·,·∞ and
∗ · ∗, respectively. For all x, y ≥ H , we have

∗x + y∗2 ⇒ ∗x∗2 + 2≤y, x + y∞. (3)

Let C be a nonempty subset of H . A mapping T : C → H is said to be

(a) γ-strongly monotone if there exists a positive real number γ such that

≤T x − T y, x − y∞ ∩ γ||x − y||2, for all x, y ≥ C;

(b) φ-inverse strongly monotone if there exists a positive real number φ such that

≤T x − T y, x − y∞ ∩ φ||T x − T y||2, for all x, y ≥ C.

A subset C of H is called a retract of H if there exists a continuous mapping P
from H onto C such that Px = x for all x in C . We call such P a retraction of X
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onto C . It follows that if a mapping P is a retraction, then Py = y for all y in the
range of P .

A retraction P is said to be sunny if P (Px + t (x − Px)) = Px for each x in H
and t ∩ 0. If a sunny retraction P is also nonexpansive, then C is said to be a sunny
nonexpansive retract of H .

Let C be a nonempty subset of H and let x ≥ H . An element y0 ≥ C is said to
be a best approximation to x if ∗x − y0∗ = d(x, C), where d(x, C) = inf

y≥C
∗x − y∗.

The set of all best approximations from x to C is denoted by:

PC (x) = {y ≥ C : ∗x − y∗ = d(x, C)}.

This defines a mapping PC from H into 2C and is called the nearest point pro-
jection mapping (metric projection mapping) onto C .

It is well known that if C is a nonempty closed convex subset of a real Hilbert
space H , then the nearest point projection PC from H onto C is the unique sunny
nonexpansive retraction of H onto C . It is also known that PC x ≥ C and

≤x − PC x, PC x − y∞ ∩ 0, for all x ≥ H, y ≥ C. (4)

A Banach space X is said to satisfy the Opial condition if for each sequence {xn}
in X which converges weakly to a point x ≥ X , we have

lim inf
n→⊆ ∗xn − x∗ < lim inf

n→⊆ ∗xn − y∗, for all y ≥ X, y ⊂= x .

Note that “lim inf
n→⊆ ” can be replaced by “lim sup

n→⊆
.” It is well that every Hilbert space

enjoys the Opial condition (see [1]).

The following lemma is a consequence of the Opial condition.

Lemma 1 (Demiclosed Principle) Let C be a nonempty closed convex subset of a
Hilbert space H and T : C → C a nonexpansive mapping. Then I −T is demiclosed
at zero, that is, if {xn} is a sequence in C converges weakly to x and {(I − T )xn}
converges strongly to zero, then (I − T )x = 0.

Proof Suppose that {xn} is a sequence in C such that it converges weakly to x and
{(I − T )xn} converges strongly to zero. Suppose, for contradiction, that x ⊂= T x .

Then, by the Opial condition, we have

lim sup
n→⊆

∗xn − x∗ < lim sup
n→⊆

∗xn − T x∗
⇒ lim sup

n→⊆
(∗xn − T xn∗ + ∗T xn − T x∗)

⇒ lim sup
n→⊆

∗xn − x∗,

a contradiction. This proves that (I − T )x = 0.
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We present some lemmas which will be used in the sequel. Some of them are
known and others are not hard to prove.

Lemma 2 Let C be a nonempty closed convex subset of a Hilbert space H and
T : C → C be a nonexpansive mapping. Then Fix(T ) is closed and convex.

Proof If Fix(T ) = ◦, then clearly Fix(T ) is closed and convex. Next, we assume
that Fix(T ) ⊂= ◦. Let {xn} be a sequence in C such that xn → x ≥ H as n → ⊆.

Then T xn = xn for all n ≥ N and limn→⊆ ∗xn − x∗ = 0. Now,

∗T x − x∗ ⇒ ∗T x − T xn∗ + ∗T xn − x∗
⇒ ∗x − xn∗ + ∗xn − x∗ → 0 as n → ⊆.

This implies that x ≥ C , which shows that C is closed.
Now, let x, y ≥ Fix(T ) and α ≥ [0, 1]. Then for z = αx + (1 − α)y, we have

∗x − T z∗ = ∗T x − T z∗ ⇒ ∗x − z∗ = (1 − α)∗x − y∗

and
∗y − T z∗ = ∗T y − T z∗ ⇒ ∗y − z∗ = α∗x − y∗.

Hence

∗x − y∗ ⇒ ∗x − T z∗ + ∗T z − y∗ ⇒ ∗x − z∗ + ∗y − z∗ = ∗x − y∗.

This implies that ∗x − T z∗ = ∗x − z∗ and ∗y − T z∗ = ∗y − z∗. Since H is
strictly convex, we have T z = z. This shows that Fix(T ) is convex. ∪∃
Lemma 3 [21] Let C be a nonempty closed convex subset of a Hilbert space H.
Let f : C → H be an α-contraction mapping and A be a strongly positive linear
bounded operator on H with the coefficient δ̄ > 0. Then, for 0 < δ < δ̄ /α,

≤(A − δ f )x − (A − δ f )y, x − y∞ ∩ (δ̄ − δα)∗x − y∗2, for all x, y ≥ C.

That is, A − δ f : C → H is strongly monotone with coefficient δ̄ − αδ .

Remark 1 Taking δ = 1 and A = I , the identity mapping, we have the following
inequality:

≤(I − f )x − (I − f )y, x − y∞ ∩ (1 − α)∗x − y∗2, for all x, y ≥ C.

Furthermore, if f is a nonexpansive mapping, then we have

≤(I − f )x − (I − f )y, x − y∞ ∩ 0, for all x, y ≥ C.
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Lemma 4 [21] Assume that A is a strongly positive linear bounded self-adjoint
operator on a real Hilbert space H with coefficient δ̄ > 0 and 0 < λ ⇒ ∗A∗−1.
Then ∗I − λ A∗ ⇒ 1 − λδ̄ .

Proof Recall that if T is a bonded linear self-adjoint operator on H , then

∗T ∗ = sup{|≤T x, x∞| : x ≥ H, ∗x∗ = 1}.

Now, for x ≥ H with ∗x∗ = 1, we see that

≤(I − λ A)x, x∞ = 1 − λ ≤Ax, x∞ ∩ 1 − λ ∗A∗ ∩ 0,

that is, I − λ A is positive. It follows that

∗I − λ A∗ = sup{| ≤(I − λ A)x, x∞ | : x ≥ H, ∗x∗ = 1}
= sup{≤(I − λ A)x, x∞ : x ≥ H, ∗x∗ = 1}
= sup{1 − λ ≤Ax, x∞ : x ≥ H, ∗x∗ = 1}
⇒ 1 − λδ . ∪∃

Lemma 5 Let C be a nonempty subset of a real Hilbert space H and ψ : C → H
be an inverse strongly monotone mapping with coefficient φ > 0. Let 0 < s < 2φ.
Then I − sα is nonexpansive.

Proof For x, y ≥ C , we have

∗(I − sα)x − (I − sα)y∗2 ⇒ ∗(I − sα)x − (I − sα)y∗2
= ∗x − y∗2 − 2s≤αx − αy, x − y∞ + s2∗αx − αy∗2
⇒ ∗x − y∗2 − 2sφ∗αx − αy∗2 + s2∗αx − αy∗2
= ∗x − y∗2 − s(2φ − s)∗αx − αy∗2 (5)

⇒ ∗x − y∗2. ∪∃
Lemma 6 [44] Let {αn} be a sequence of nonnegative real numbers such that

αn+1 ⇒ (1 − δn)αn + δnωn, ⇐n ∩ 0, (6)

where {δn} is a sequence in (0, 1) and {ωn} is a sequence of real numbers such that

(i)
∑⊆

n=0
δn = ⊆,

(ii) either lim sup
n→⊆

ωn ⇒ 0 or
∑⊆

n=0
|δnωn| < ⊆.

Then {αn}⊆n=0 converges to zero.

Proof For any ε > 0, let N be an integer big enough so that

ωn < ε, n ∩ N .
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Using (6) and by induction, we obtain, for n > N ,

αn+1 ⇒
(

n
∏

k=N

(1 − δk)

)

αN +
(

(1 −
n
∏

k=N

(1 − δk)

)

ε.

Then condition (ii) implies that lim sup
n→⊆

αn ⇒ 2ε. ∪∃

3 Variational Inequality Problems

The classical VIP is to find a point x∈ ≥ C such that

≤F x∈, y − x∈∞ ∩ 0, for all y ≥ C,

where C is a nonempty closed convex subset of a real Hilbert space H andF : C →
H is a given operator. This problem is denoted by VIP (F , C).

It is important to note that the theory of variational inequalities has been play-
ing an important role in the study of many diverse disciplines, for instance, partial
differential equations, optimal control, optimization, mathematical programming,
mechanics, finance, etc., see, for example, [18, 46, 47] and the references therein.

The relationship between VIP (F , C) and a fixed point problem can be made
through the characterization (4) of the projection operator PC as follows:

Theorem 1 Let C be a nonempty closed convex subset of a real Hilbert space H and
F : C → H a given operator. Then x∈ ≥ C is the solution of variational inequality
problem VIP(F , C) if and only if, for any μ > 0, x∈ is the fixed point of the mapping
PC (I − μF ) : C → C, that is,

x∈ = PC (I − μF )x∈.

Proof Suppose that x∈ ≥ C is a solution of VIP(F , C), that is,

≤F x∈, y − x∈∞ ∩ 0, for all y ≥ C. (7)

Let μ > 0 such that PC (I − μF ) : C → C . Multiplying −μ in (7) and adding
≤x∈, y − x∈∞ both sides we get

≤x∈ − μF x∈, y − x∈∞ ⇒ ≤x∈, y − x∈∞, for all y ≥ C.

From (4), we get x∈ = PC (I − μF )x∈.
Conversely, suppose that μ > 0 and x∈ is the fixed point of the mapping PC (I −

μF ) : C → C . It is easy to see from (4) that x∈ ≥ C is a solution of VIP(F , C). ∪∃
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This equivalence formulation is useful for existence, uniqueness, and computation
of solutions of the varialtional ineqauality problem VIP(F , C). In particular, the
Banach contraction principle guarantees that VIP(F , C) has unique solution x∈ and
the sequence of Picard iteration process converges strongly to x∈. In fact, we have

Theorem 2 (Projection Gradient Method) [36, 47] Let C be a nonempty closed
convex subset of a real Hilbert space H and F : C → H a κ-Lipschitzian and
γ-strongly monotone. Let μ be a positive constant such that μ < 2γ/κ2. Then

(a) PC (I − μF ) : C → C is contraction and there exists the unique solution
x∈ ≥ C of varialtional ineqauality problem VIP(F , C).

(b) The sequence {xn} of Picard iteration process, given by,

xn+1 = PC (I − μF )xn, for all n ≥ N (8)

converges strongly to x∈.

Proof Let x, y ≥ C. Then

∗PC (I − μF )x − PC (I − μF )y∗2 ⇒ ∗(I − μF )x − (I − μF )y∗2
= ∗x − y∗2 − 2μ≤F x − F y, x − y∞ + μ2∗F x − F y∗2
⇒ (1 − 2μγ + μ2κ2)∗x − y∗2.

Thus, Theorem 2 follows from the Banach contraction principle. ∪∃
Motivated by nonexpansiveness of PC in Theorem 2, Yamada [46] introduced the

following hybrid steepest descent method for solving the V I P(F ,Fix(T )):

un+1 = T un − λnμFT un, for all n ≥ N, (9)

where 0 < μ < 2γ/κ2, T : H → H is a nonexpansive mapping with Fix(T ) ⊂= ◦
and F : H → H is a κ-Lipschitzian and γ-strongly monotone. Yamada proved
that hybrid steepest descent method converges strongly to the unique solution x∈ ≥
Fix(T ) of variational inequality problem VIP(F , Fix(T )).

Note that, by letting xn = T un ({un} being the sequence given by (9)) we imme-
diately obtain

xn+1 = T (xn − λnμF xn), for all n ≥ N. (10)

The hybrid steepest descent method (HSDM) has been extensively studied in
recent years (see, e.g., [6, 31, 32, 45], and references therein).

If F : H → H is monotone and hemicontinuous and if C ⊕ H is nonempty,
compact, and convex, the existence of a solution of the V I P for F over C is
guaranteed.



Hierarchical Minimization Problems and Applications 207

4 Zeros of Monotone Operators

Let H be a real Hilbert space and letA ⊕ H × H be an operator on H . The set D(A)

defined by
D(A) = {x ≥ H : Ax ⊂= ◦}

is called the domain of A, the set R(A) defined by

R(A) =
⎜

x≥X

Ax

is called the range of A and the set G(A) defined by

G(A) = {(x, y) ≥ H × H : x ≥ D(A), y ≥ Ax}

is called the graph of A.
An operator A ⊕ H × H with domain D(A) is said to be monotone if for each

xi ≥ D(A) and yi ≥ Axi (i = 1, 2), we have

≤x1 − x2, y1 − y2∞ ∩ 0.

A monotone operator A is said to be maximal monotone if the graph G(A) is not
properly contained in the graphof anyothermonotone operator on H . IfA : H → 2H

is maximal monotone, then we can define, for each λ > 0, a nonexpansive single-
valued mapping JA

λ : H → H by

JA
λ := (I + λA)−1.

It is called the resolvent of A.
Let A−10 = {x ≥ D(A) : 0 ≥ Ax}. It is easy to see that A−10 is closed and

convex. It is well known, from [38], that if A ⊕ H × H is a maximal monotone
operator, then

1

r

∥
∥
∥Jt x − JA

r JA
t x

∥
∥
∥ ⇒ 1

t

∥
∥
∥x − JA

t x
∥
∥
∥ , for all x ≥ H and r, t > 0. (11)

It is well also known that [38] for each λ,μ > 0 and x ≥ H ,

∥
∥
∥JA

λ x − JA
μ x

∥
∥
∥ ⇒ |λ − μ|

λ

∥
∥
∥x − JA

λ x
∥
∥
∥. (12)

One of the most interesting and important problems in the theory of maximal
monotone operators is to find an efficient iterative algorithm to compute approxi-
mately zeroes ofmaximalmonotone operators. Onemethod for solving zeros ofmax-
imal monotone operators is proximal point algorithm. LetA be a maximal monotone



208 D. R. Sahu and Q. H. Ansari

operator in a Hilbert space H . The proximal point algorithm generates, for starting
x1 ≥ H, a sequence {xn} in H by

xn+1 = JA
cn

xn, for all n ≥ N, (13)

where {cn} is a regularization sequence in (0,⊆). This iterative procedure is based
on the fact that the proximal map JA

cn
is single-valued and nonexpansive. Note that

(13) is equivalent to

xn ≥ xn+1 + cnAxn+1, for all n ≥ N.

This algorithm was first introduced by Martinet [22]. If ψ : H → R ∀ {⊆} is a
proper lower semicontinuous convex function, then the algorithm reduces to

xn+1 = argminy≥H

{

ψ(y) + 1

2cn
∗xn − y∗2

⎟

, for all n ≥ N.

Rockafellar [29] studied the proximal point algorithm in the framework of Hilbert
space and he proved that ifA ⊕ H×H is amaximalmonotone operatorwithA−10 ⊂=
◦ and {xn} is a sequence in H defined by (13), where {cn} is a sequence in (0,⊆)

such that lim infn→⊆ cn > 0, then {xn} converges weakly to an element of A−10.
The proximal point algorithm has been improved and generalized by Ceng et al.

[6], Lehdili and Moudafi [19], Sahu et al. [31, 32], Song and Yang [34], Takahashi
[39], Tossings [42],and Xu [43] in different aspects.

5 Generalized Mixed Equilibrium Problems

LetC be a nonempty closed convex subset of a realHilbert space H . Letσ : C×C →
R be the equilibrium-bi function, i.e.,

(σ0) σ(u, u) = 0, for all u ≥ C.

Assume the bifunction σ : C × C → R holds the following conditions :

(σ1) σ(x, x) = 0 for all x ≥ C ;
(σ2) σ is monotone, that is, σ(x, y) + σ(y, x) ⇒ 0 for all x, y ≥ C;
(σ3) for each x ≥ C , y �→ σ(x, y) is convex and lower semicontinuous;
(σ4) for all x, y, z ≥ C , lim sup

t↓0
σ
(

t z + (1 − t)x, y
⎧ ⇒ σ(x, y).

Let α : C → H be a nonlinear mapping, β : C → R a convex function and
σ : C × C → R a bifunction. Then, we consider the following generalized mixed
equilibrium problem (in short, GMEP (σ,α, β)) of finding u ≥ C such that

σ(u, v) + ≤αu, v − u∞ + β(v) − β(u) ∩ 0, for all v ≥ C. (14)
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We denote by ε[GMEP(σ,α, β)] the set of solutions of GMEP (14). The GMEP
(14) is considered and studied in [7, 9].

Such types of nonlinear inequalities model some equilibrium problems drawn
from operations research, as well as some unilateral boundary value problems stem-
ming from mathematical physics. Several problems arising in optimization, such
as fixed point problems, (Nash) economic equilibrium problems, complementarity
problems, and generalized set-valued mixed variational inequalities, for instance,
have the same mathematical formulation (see [5, 12, 15]), which may be formulated
as GMEP (σ,α, β).

Given a real-valued function β : H → R on a real Hilbert space H , we consider
the following generalized mixed equilibrium problem (in short, GMEP (σ,α, β)) of
finding u ≥ H such that

σ(u, v) + ≤αu, v − u∞ + β(v) − β(u) ∩ 0, for all v ≥ H. (15)

We denote by ε[GMEP(σ,α, β)] the set of solutions of GMEP (15).
Ceng et al. [7–9] studied and developed extragradient-like method and relaxed

extragradient-like method for generalized mixed equilibrium problem (15). For dif-
ferent choices of σ, α and β, we get different kinds of equilibrium problems and
variational inequalities; see, for example, [2, 5, 9, 12, 14, 15, 18, 23, 25, 41] and
the references therein. For instance, we have the following:

(1) If α ≡ 0, then GMEP (14) reduces to the following mixed equilibrium problem
(for short, MEP (σ,β)):

find u ≥ C such thatσ(u, v) + β(v) − β(u) ∩ 0, for all v ≥ C. (16)

The computation of solutions of such problems is studied in Ceng and Yao [9].
(2) If β ≡ 0, then GMEP (14) reduces to the following generalized equilibrium

problem (for short, GEP (σ,α)):

find u ≥ C such that σ(u, v) + ≤αu, v − u∞ ∩ 0, for all v ≥ C. (17)

The problem (17) was studied by Moudafi [23] and Takahashi and Takahashi
[41].

(3) If α ≡ 0 and β ≡ 0, then GMEP (14) reduces to the following equilibrium
problem:

E P(σ) find u ≥ C such thatσ(u, v) ∩ 0, for all v ≥ C.

We denote ε[EP(σ)] for the set of solutions of EP (σ).
(4) If σ ≡ 0 and β ≡ 0 , then GMEP (14) reduces to the classical variational

inequality:

find u ≥ C such that ≤α(u), v − u∞ ∩ 0, for all v ≥ C. (18)
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6 Hierarchical Minimization Problem Over Set of Fixed
Point and Generalized Mixed Equilibrium Problem

In this section, we deal with existence and approximation of solutions of the hierar-
chical minimization problem (1) over D = Fix(T ) ⇔ ε[GMEP(σ,α, β)], where
Fix(T ) is the set of common fixed points of a family T = {T (t) : 0 ⇒ t < ⊆}
of nonexpansive self-mappings on a nonempty closed and convex subset C of a real
Hilbert space H , and ε[GMEP(σ,α, β)] is the set of solutions of GMEP (14).

The following auxiliary mixed equilibrium problem is an important tool for finding
solution of MEP (16):

Let r > 0. For a given point x ≥ H ,

find z ≥ C such that σ(z, w)+β(w)−β(z)+ 1

r
≤w−z, z−x∞ ∩ 0, ⇐w ≥ C. (19)

The existence of the solution of auxiliary mixed equilibrium problem (19) is
guaranteed by the following result.

It is well known ([48]) that if C is a nonempty closed convex subset of a real
Hilbert space H ; σ : C × C → R is a bifunction satisfy the conditions (σ1)-
(σ4); β : C → R is a proper lower semicontinuous convex function, r > 0 and
T (σ,β)

r : H → C is a mapping defined by

T (σ,β)
r (x) :=

{

z ≥ C : σ(z, y) + β(y) − β(z) + 1

r
≤y − z, z − x∞ ∩ 0, ⇐y ≥ C

⎟

, x ≥ H,

then, the following assertions hold:

(a) T (σ,β)
r (x) ⊂= ◦ for each x ≥ H and T (σ,β)

r is single-valued;
(b) T (σ,β)

r is firmly nonexpansive, that is,

∥
∥
∥T (σ,β)

r x − T (σ,β)
r y

∥
∥
∥

2 ⇒
⎪

T (σ,β)
r x − T (σ,β)

r y, x − y
⎨

, for all x, y ≥ H ;

(c) Fix
⎩

T (σ,β)
r

⎛

= ε[MEP(σ, β)];
(d) Ω[M E P(σ, β)] is closed and convex.

Following [30], first we collect some properties of T (σ,β)
r in the following propo-

sitions.

Proposition 1 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let α : C → H be an inverse strongly monotone mapping with coefficient φ > 0.
Let 0 < r < 2φ and Tr : H → C be a firmly nonexpansive mapping. Assume that
x∈ is an element in C such that x∈ = Tr (I − rα)x∈. Then

∥
∥Tr (I − rα)x − x∈∥∥2 ⇒ ∗x−x∈∗2−∥

∥x − Tr (I − rα)x − r(αx − αx∈)
∥
∥
2
, for all x ≥ C.
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Proof Lemma 5 shows that I − rα is nonexpansive. For x ≥ C , we have

∗Tr (I − rα)x − x∈∗2 = ∗Tr (I − rα)x − Tr (I − rα)x∈∗2
⇒ ≤Tr (I − rα)x − x∈, (I − rα)x − (I − rα)x∈∞
⇒ 1

2
[∗(I − rα)x − (I − rα)x∈∗2 + ∗Tr (I − rα)x − x∈∗2

− ∗Tr (I − rα)x − x∈ − ((I − rα)x − (I − rα)x∈)∗2]
⇒ 1

2
[∗x − x∈∗2 + ∗Tr (I − rα)x − x∈∗2

− ∗x − Tr (I − rα)x − r(αx − αx∈)∗2],

which implies that

∗Tr (I − rα)x − x∈∗2 ⇒ ∗x − x∈∗2 − ∗x − Tr (I − rα)x − r(αx − αx∈)∗2. ∪∃
Proposition 2 [30] Let C be a nonempty closed convex subset of a real Hilbert space
H. Let σ : C × C → R be a bifunction satisfying the conditions (σ1)-(σ4) and
let β : C → R be a proper lower semicontinuous convex function. For r > 0 and
x ≥ H, define a mapping T (σ,β)

r : H → C by

T (σ,β)
r (x) :=

{

z ≥ C : σ(z, y) + β(y) − β(z) + 1

r
≤y − z, z − x∞ ∩ 0, for all y ≥ C

⎟

.

Let α : C → H be an inverse strongly monotone mapping with coefficient φ > 0.
Let {rn} be sequence of real numbers such that 0 < a ⇒ rn ⇒ b < 2φ for all n ≥ N.
Let {xn} be a bounded sequence in C such that it converges weakly to x̄ ≥ C and∥
∥
∥xn − T (σ,β)

rn (I − rnα)xn

∥
∥
∥ → 0 as n → ⊆. Then x̄ ≥ ε[GMEP(σ,α, β)].

Proof Set un := T (σ,β)
rn (I − rnα)xn , we have

σ(un, v)+≤αxn, v −un∞+β(v)−β(un)+ 1

rn
≤un − xn, v −un∞ ∩ 0, for all v ≥ C.

(20)
From (σ2), we have

≤αxn, v − un∞ + β(v) − β(un) + 1

rn
≤un − xn, v − un∞ ∩ σ(v, un), for all v ≥ C.

Let v ≥ C. Put ut = tv + (1− t)x̄ for all t ≥ (0, 1]. Then ut ≥ C , and from (20),
we have

≤αxn, ut − un∞ + β(ut ) − β(un) + 1

rn
≤un − xn, ut − un∞ ∩ σ(ut , un).
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By monotonicity of α, we have

≤αut , ut − un∞ ∩ ≤αut , ut − un∞ − ≤αxn, ut − un∞ + σ(ut , un)

+ β(un) − β(ut ) − 1

rn
≤un − xn, ut − un∞

= ≤αut − αun, ut − un∞ + ≤αun − αxn, ut − un∞ + σ(ut , un)

+ β(un) − β(ut ) − 1

rn
≤un − xn, ut − un∞

∩ ≤αun − αxn, ut − un∞ + σ(ut , un)

+ β(un) − β(ut ) − 1

rn
≤un − xn, ut − un∞.

Since ∗xn − un∗ → 0 as n → ⊆, we obtain by Lipschitz continuity of α that
∗αxn − αun∗ → 0 as n → ⊆. Moreover,

∗un − xn∗
rn

⇒ ∗un − xn∗
a

→ 0 as n → ⊆

By (σ3), weak lower semicontinuity of β and un ⇀ x̄ , we have

≤αut , ut − x̄∞ ∩ σ(ut , x̄) + β(x̄) − β(ut ).

From (σ1) and (σ3), we get

0 = σ(ut , ut ) + β(ut ) − β(ut )

⇒ tσ(ut , v) + (1 − t)σ(ut , x̄) + tβ(v) + (1 − t)β(x̄) − β(ut )

= t [σ(ut , v) + β(v) − β(ut )] + (1 − t) [σ(ut , x̄) + β(x̄) − β(ut )]

⇒ t [σ(ut , v) + β(v) − β(ut )] + (1 − t)≤αut , ut − x̄∞
= t [σ(ut , v) + β(v) − β(ut )] + (1 − t)t≤αut , v − x̄∞.

It follows that

0 ⇒ σ(ut , v) + β(v) − β(ut ) + (1 − t)≤αut , v − x̄∞.

Letting t → 0, we have, for each v ≥ C ,

0 ⇒ σ(x̄, v) + β(v) − β(x̄) + ≤α x̄, v − x̄∞.

This implies that x̄ ≥ ε[GMEP(σ,α, β)]. ∪∃
Proposition 3 [30] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let α : C → H be an inverse strongly monotone mapping with coefficient
φ > 0. Let σ : C × C → R be satisfy conditions (σ1)–(σ4) and β : C → R be
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a proper lower semicontinuous convex function. Then for r, s > 0 with r < 2φ and
s < 2φ, we have

∥
∥
∥T (σ,β)

s (I − sα)y − T (σ,β)
r (I − rα)x

∥
∥
∥ ⇒ ∗y − x∗+ |1− r/s| ∗v − y∗, for all x, y ≥ C,

where v := T (σ,β)
s (I − sα)y.

Proof Let x, y ≥ C . Set u := T (σ,β)
r (I − rα)x and v := T (σ,β)

s (I − sα)y. Then,
we have

σ(u, w) + β(w) − β(u) + 1

r
≤w − u, u − (I − rα)x∞ ∩ 0, for all w ≥ C (21)

and

σ(v, w) + β(w) − β(v) + 1

s
≤w − v, v − (I − sα)y∞ ∩ 0, for all w ≥ C. (22)

Put w = v in (21) and w = u in (22), we get

σ(u, v) + β(v) − β(u) + 1

r
≤v − u, u − (I − rα)x∞ ∩ 0 (23)

and

σ(v, u) + β(u) − β(v) + 1

s
≤u − v, v − (I − sα)y∞ ∩ 0. (24)

Adding inequalities (23) and (24), we obtain

0 ⇒
⎝

v − u,
1

r
[u − (I − rα)x] − 1

s
[v − (I − sα)y]

〉

,

and hence,

0 ⇒
⎪

v − u, [u − (I − rα)x] − r

s
[v − (I − sα)y]

⎨

=
⎪

v − u, u − v +
⎩

1 − r

s

⎛

(v − y) − (x − rαx) + y − rαy
⎨

,

which implies that

∗v − u∗2 ⇒ ∗v − u∗[|1 − r/s| ∗v − y∗ + ∗x − rαx − (y − rαy)∗].

By Lemma 5, we obtain

∗v − u∗ ⇒ ∗y − x∗ + |1 − r/s| ∗v − y∗. ∪∃
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6.1 Existence and Uniqueness of Solutions of Hierarchical
Variational Inequality Problem

First, we show that the solution of a certain hierarchical VIP over the set D =
Fix(T ) ⇔ ε[GMEP(σ,α, β)] is unique.
Proposition 4 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T = {T (t) : t ≥ (0,⊆)} be a family of nonexpansive self-mappings on C such
that Fix(T ) ⊂= ◦. Assume that A : H → H is a strongly positive linear bounded
self-adjoint operator with the coefficient δ̄ > 0, f : C → H is L -contraction,
α : C → H is an inverse strongly monotone mapping with coefficient φ > 0,
β : C → R is a lower semicontinuous convex functional and σ : C × C → R is a
bifunction satisfying conditions (σ1)–(σ4). Then, for δ ≥ (0, δ /L ), the mapping
Q(I − A + δ f ) : C → C has a unique fixed point x∈ ≥ C and x∈ ≥ Fix(T ) ⇔
ε[GMEP(σ,α, β)], where Q = PFix(T )⇔ε[GMEP(σ,α,β)].

Proof Let Q = PFix(T )⇔ε[GMEP(σ,α,β)] and δ ≥ (0, δ /L ). First, we show that
Q(I − A + δ f ) is a contraction mapping from C into itself. Let x, y ≥ C , From
Lemma 4, we have

∗Q(I − A + δ f )x − Q(I − A + δ f )y∗
⇒ ∗(I − A + δ f )x − (I − A + δ f )y∗
⇒ ∗(I − A)x − (I − A)y∗ + δ ∗ f x − f y∗
⇒ ∗I − A∗∗x − y∗ + δ ∗ f x − f y∗
⇒ (1 − δ )∗x − y∗ + δL ∗x − y∗
= (1 − (δ − δL ))∗x − y∗.

Since Q(I − A + δ f ) is a contraction, therefore, there exists a unique element
x∈ ≥ C such that x∈ = Q(I − A + δ f )x∈. Since Q is onto, it follows that x∈ ≥
Fix(T ) ⇔ ε[GMEP(σ,α, β)]. ∪∃

6.2 Computation of Unique Solution of Hierarchical
Optimization Problem

Let C be a nonempty closed convex subset of a real Hilbert space H and let
T = {T (t) : t ≥ (0,⊆)} be a family of nonexpansive self-mappings on C with
Fix(T ) ⊂= ◦. Let {ωn : n ≥ N} be a sequence of nonexpansive self-mappings on
C such that Fix(T ) ⊆ ⎞

n≥N Fix(ωn). Assume that A : H → H is a strongly
positive linear bounded self-adjoint operator with the coefficient δ̄ > 0 such that
(I −αA)(C) ⊆ C for each α ≥ (0, 1), f : C → H isL -contraction,α : C → H is
an inverse strongly monotone mapping with coefficient φ > 0, β : C → R is a lower
semicontinuous convex functional and σ : C × C → R is a bifunction satisfying
conditions (σ1)–(σ4).
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Proposition 4 guarantees that, for δ ≥ (0, δ /L ), the mapping

PFix(T )⇔ε[GMEP(σ,α,β)](I − A + δ f ) : C → C

has a unique fixed point x∈ ≥ Fix(T ) ⇔ ε[GMEP(σ,α, β)] =: D. It means that
x∈ ≥ C is the unique solution of the following hierarchical VIP:

find z ≥ D such that ≤(δ f − A)z, z − v∞ ∩ 0, for all v ≥ D. (25)

We remark that if C = H , then the hierarchical variational inequality problem
(25) reduces to the hierarchical optimization problem (1) over the set Fix(T ) ⇔
ε[GMEP(σ,α, β)].

To compute x∈ ≥ D = Fix(T ) ⇔ ε[GMEP(σ,α, β)], we propose the following
iterative algorithm:

⎠

⎫

⎬

x1 ≥ C;
σ(un, v) + ≤αxn, v − un∞ + β(v) − β(un) + 1

rn
≤un − xn, v − un∞ ∩ 0, ⇐v ≥ C;

zn = βn xn + (1 − βn)ωn(un);
xn+1 = δαn f xn + (I − αn A)zn, for all n ≥ N,

(26)
where {αn} and {βn} are sequences in (0, 1] and {rn} is a sequence in (0,⊆).

For convergence of algorithm (26), we use the method employed in [30]. We
investigate the asymptotic behavior of the sequence {xn} generated, from an arbitrary
point x1 ≥ C , by algorithm (26) under the following conditions:

(C1) lim
n→⊆ αn = 0 and

∑⊆
n=1

αn = ⊆,

(C2) 0 < a ⇒ βn ⇒ b < 1 for all n ≥ N and lim
n→⊆ |βn − βn+1| = 0,

(C3) 0 < r ⇒ rn ⇒ r < 2φ for all n ≥ N and lim
n→⊆ |rn − rn+1| = 0,

(C4) lim
n→⊆ ∗ωn(un) − ωn+1(un)∗ = 0.

Some basic properties of Algorithm (26) are detailed below:

Lemma 7 Let {xn} be a sequence of Algorithm (26). Then

(a) {xn} is bounded, and
(b) lim

n→⊆ ||xn+1 − xn|| = lim
n→⊆ ||un+1 − un|| = lim

n→⊆ ||zn+1 − zn|| = 0.

Proof (a) Define vn := ωn(un). Note that un = T (σ,β)
rn (I − rnα)xn and x∈ =

T (σ,β)
rn (I − rnα)x∈ for all n ≥ N. Since T (σ,β)

r is nonexpansive, it follows from

Lemma5 that T (σ,β)
r (I −rα) is also nonexpansive for each r > 0. Thus, ∗un−x∈∗ ⇒

∗xn − x∈∗, and hence, ∗vn − x∈∗ ⇒ ∗xn − x∈∗ for all n ≥ N. Moreover,

∗zn − x∈∗ ⇒ βn∗xn − x∈∗ + (1 − βn)∗ωn(un) − x∈∗
⇒ βn∗xn − x∈∗ + (1 − βn)∗un − x∈∗
⇒ ∗xn − x∈∗, ⇐n ≥ N.
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Noticing that lim
n→⊆ αn = 0, we may assume, without loss of generality, that αn <

∗A∗−1 for all n ≥ N. From (26), we have

∗xn+1 − x∈∗ = ∗δαn f xn − αn Ax∈ + (I − αn A)(zn − x∈)∗
⇒ αn∗δ f xn − Ax∈∗ + (1 − αnδ )∗zn − x∈∗
⇒ αn(∗δ f xn − δ f x∈∗ + ∗δ f x∈ − Ax∈∗) + (1 − δαn)∗xn − x∈∗
⇒ [1 − αn(δ − δL )]∗xn − x∈∗ + αn∗δ f x∈ − Ax∈∗
⇒ max

{

∗xn − x∈∗, ∗δ f x∈ − Ax∈∗
δ − δL

⎟

⇒ max

{

∗x1 − x∈∗, ∗δ f x∈ − Ax∈∗
δ − δL

⎟

, for all n ≥ N. (27)

Therefore, {xn} is bounded.
(b) Part (a) implies that iterates {xn} of Algorithm (26) is bounded. Therefore,

{un}, {vn}, and {zn} are bounded.
Taking y = xn+1, x = xn , s = rn+1 and r = rn in Proposition 3, we have

∗un+1 − un∗ =
∥
∥
∥T (σ,β)

rn+1 (xn+1 − rn+1αxn+1) − T (σ,β)
rn (xn − rnαxn)

∥
∥
∥

⇒ ∗xn+1 − xn∗ +
⎭
⎭
⎭
⎭
1 − rn

rn+1

⎭
⎭
⎭
⎭

∗un+1 − xn+1∗

⇒ ∗xn+1 − xn∗ + |rn+1 − rn|
r

∗un+1 − xn+1∗.

(28)

We rewrite xn+1 as
xn+1 = (1 − λn)xn + λnwn,

where

wn = 1

λn

[

αnβn(I − A)xn + (1 − βn)(I − αn A)vn + αnδ f (xn)
]

. (29)

and
λn = 1 − (1 − αn)βn .

From the assumptions lim
n→⊆ αn = 0 and 0 < a ⇒ βn ⇒ b < 1 for all n ≥ N, we

have
0 < lim inf

n→⊆ λn ⇒ lim sup
n→⊆

λn < 1.
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By (29), we have

wn+1 − wn

= 1

λn+1

[

αn+1βn+1(I − A)xn+1 + (1 − βn+1)(I − αn+1A)vn+1 + αn+1δ f xn+1
]

− 1

λn

[

αnβn(I − A)xn + (1 − βn)(I − αn A)vn + αnδ f xn
]

= αn+1βn+1

λn+1
(I − A)xn+1 − αnβn

λn
(I − A)xn + 1 − βn+1

λn+1
(vn+1 − vn)

+
(
1 − βn+1

λn+1
− 1 − βn

λn

)

vn − αn+1(1 − βn+1)

λn+1
A(vn+1 − vn)

− (1 − βn+1)

(
αn+1

λn+1
− αn

λn

)

Avn + (βn+1 − βn)
αn

λn
Avn

+ αn+1δ

λn+1

[

f xn+1 − f xn
] +

(
αn+1

λn+1
− αn

λn

)

δ f xn .

Consequently,

||wn+1 − wn|| − ||xn+1 − xn||
⇒ αn+1βn+1

λn+1
∗(I − A)xn+1∗ + αnβn

λn
∗(I − A)xn∗

+ 1 − βn+1

λn+1
(∗ωn+1(un+1) − ωn+1(un)∗ + ∗ωn+1(un) − ωn(un)∗)

+
(
1 − βn+1

λn+1
− 1 − βn

λn

)

∗vn∗ + αn+1(1 − βn+1)

λn+1
∗A(vn+1 − vn)∗

+
[

(1 − βn+1)

⎭
⎭
⎭
⎭

αn+1

λn+1
− αn

λn

⎭
⎭
⎭
⎭
+ αn|βn+1 − βn|

λn

]

∗Avn∗ − ||xn+1 − xn||

+ αn+1δ

λn+1
∗ f xn+1 − f xn∗ +

⎭
⎭
⎭
⎭

αn+1

λn+1
− αn

λn

⎭
⎭
⎭
⎭
δ ∗ f xn∗. (30)

Note that 1−βn+1
λn+1

< 1 for all n ≥ N, 1−βn+1
λn+1

→ 1 and αn → 0. Using (28) and (30),
we obtain

lim sup
n→⊆

(||wn+1 − wn|| − ||xn+1 − xn||) ⇒ 0,

and hence, by [37, Lemma 2.2], we deduce that lim
n→⊆ ||wn − xn|| = 0. Therefore,

lim
n→⊆ ||xn+1 − xn|| = lim

n→⊆ λn||wn − xn|| = 0.



218 D. R. Sahu and Q. H. Ansari

From (28), we immediately have lim
n→⊆ ||un+1−un|| = 0. Further, since {ωn : n ≥ N}

is a sequence of nonexpansive self-mappings, we have

||zn − zn−1||
= ∗βn xn + (1 − βn)ωn(un) − βn−1xn−1 − (1 − βn−1)ωn−1(un−1)∗
= ∗βn(xn − xn−1) + (βn − βn−1)xn−1 + (1 − βn)ωn(un) − ωn−1(un−1)

− (βn − βn−1)ωn−1(un−1)∗
⇒ βn∗xn − xn−1∗ + (1 − βn)∗ωn(un) − ωn−1(un−1)∗

+ |βn − βn−1| ∗xn−1 − ωn−1(un−1)∗
⇒ βn∗xn − xn−1∗ + (1 − βn)(∗ωn(un) − ωn(un−1)∗ + ∗ωn(un−1) − ωn−1(un−1)∗)

+ |βn − βn−1| ∗xn−1 − ωn−1(un−1)∗
⇒ βn∗xn − xn−1∗ + (1 − βn)(∗un − un−1∗ + ∗ωn(un−1) − ωn−1(un−1)∗)

+ |βn − βn−1| ∗xn−1 − ωn−1(un−1)∗.

Therefore,

||zn − zn−1||
⇒ βn∗xn − xn−1∗ + (1 − βn)(∗xn − xn−1∗ + |rn − rn−1|

r
∗ un − xn∗

+ ∗ωn(un−1) − ωn−1(un−1)∗) + |βn − βn−1|∗xn−1 − ωn−1(un−1)∗
⇒ ∗xn − xn−1∗ + (1 − βn)

( |rn − rn−1|
r

∗ un − xn∗ + ∗ωn(un−1) − ωn−1(un−1)∗
)

+ |βn − βn−1|∗xn−1 − ωn−1(un−1)∗.

By the conditions (C2)–(C4), we obtain that ∗zn+1 − zn∗ → 0 as n → ⊆. ∪∃
Now we prove strong convergence of the sequence generated by the proposed

algorithm (26) to the unique solution of the hierarchical VIP (25) over the set D =
Fix(T ) ⇔ ε[GMEP(σ,α, β)].
Theorem 3 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T = {T (t) : t ≥ (0,⊆)} be a family of nonexpansive self-mappings on C with
Fix(T ) ⊂= ◦, and � = {ωtn : n ≥ N} be a sequence of nonexpansive self-mappings
on C such that Fix(T ) ⊆ ⎞

n≥N Fix(ωtn ) and Fix(T ) ⇔ ε[GMEP(σ,α, β)] ⊂= ◦.
For given x1 ≥ C, let {xn} be a sequence in C generated by (26), where {αn}
and {βn} are two sequence in (0, 1] and {rn} is a sequence in (0,⊆) satisfying
conditions (C1)–(C4). Assume that 0 < δ < δ̄ /L and {ωn(un)} is an approximating
fixed point sequence of the family T . Then, the sequence {xn} converges strongly to
x∈ ≥ Fix(T )⇔ε[GMEP(σ,α, β)], which solves the hierarchical VIP (25) over the
set Fix(T ) ⇔ ε[GMEP(σ,α, β)].
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Proof First, we show that lim sup
n→⊆

≤(δ f − A)x∈, xn+1 − x∈∞ ⇒ 0.

Set vn := ωn(un) and Υn := ≤δ f (xn) − Ax∈, xn+1 − x∈∞. Note that {ϒn} is
bounded. Indeed,

|ϒn| = |≤δ f (xn) − δ f (x∈) + δ f (x∈) − Ax∈, xn+1 − x∈∞|
⇒ (

δ ∗ f (xn) − δ f (x∈)∗ + ∗δ f (x∈) − Ax∈∗⎧ ∗xn+1 − x∈∗
⇒ (

δL ∗xn − x∈∗ + ∗δ f (x∈) − Ax∈∗⎧ ∗xn+1 − x∈∗ for all n ≥ N.

Since {xn} is bounded and so is {ϒn}. Using (5), we have

∗un − x∈∗2 = ∗T (σ,β)
rn

(I − rnα)xn − T (σ,β)
rn

(I − rnα)x∈∗2
⇒ ∗(I − rnα)xn − (I − rnα)x∈∗2
⇒ ∗xn − x∈∗2 − rn(2φ − rn)∗αxn − αx∈∗2. (31)

From (3), we have

∗xn+1 − x∈∗2 ⇒ ∗(I − αn A)(zn − x∈)∗2 + 2αn≤δ f (xn) − Ax∈, xn+1 − x∈∞.

So, from (31), we have

∗xn+1 − x∈∗2 ⇒ (1 − αnδ )2∗zn − x∈∗2 + 2αn≤δ f (xn) − Ax∈, xn+1 − x∈∞
⇒ (1 + α2

nδ 2)[βn∗xn − x∈∗2 + (1 − βn)∗ωn(un) − x∈∗2] + 2αnϒn

⇒ (1 + α2
nδ 2)[βn∗xn − x∈∗2 + (1 − βn)∗un − x∈∗2] + 2αnϒn

⇒ (1 + α2
nδ 2)[βn∗xn − x∈∗2 + (1 − βn)(∗xn − x∈∗2

− rn(2φ − rn)∗αxn − αx∈∗2)] + 2αnϒn

⇒ (1 + α2
nδ 2)∗xn − x∈∗2

− rn(2φ − rn)(1 − βn)(1 + α2
nδ 2)∗αxn − αx∈∗2 + 2αnϒn .

(32)

It follows that

rn(2φ − rn)(1 − βn)(1 + α2
nδ 2)∗αxn − αx∈∗2

⇒ ∗xn − x∈∗2 − ∗xn+1 − x∈∗2 + α2
nδ 2∗xn − x∈∗2 + 2αnϒn

⇒ ∗xn+1 − xn∗(∗xn − x∈∗ + ∗xn+1 − x∈∗) + α2
nδ 2∗xn − x∈∗2

+ 2αnϒn .

Since r ⇒ rn ⇒ r < 2φ and βn ⇒ b for all n ≥ N, lim
n→⊆ αn = 0 and lim

n→⊆ ∗xn+1−
xn∗ = 0, we obtain that ∗αxn − αx∈∗ → 0 as n → ⊆. From Proposition 1,
we get
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∗un − x∈∗2 ⇒ ∗xn − x∈∗2 − ∗xn − un − r(αxn − αx∈)∗2
= ∗xn − x∈∗2 − ∗xn − un∗2 + 2rn≤xn − un, αxn − αx∈∞

− r2n ∗αxn − αx∈∗2. (33)

From (32) and (33), we have

∗xn+1 − x∈∗2 ⇒ (1 + α2
nδ 2)[βn∗xn − x∈∗2 + (1 − βn)(∗xn − x∈∗2 − ∗xn − un∗2

+ 2rn≤xn − un, αxn − αx∈∞ − r2n ∗αxn − αx∈∗2)] + 2αnϒn

⇒ (1 + α2
nδ 2)∗xn − x∈∗2 + (1 + α2

nδ 2)(1 − βn)[2rn∗xn − un∗∗αxn − αx∈∗
− ∗xn − un∗2 − r2n ∗αxn − αx∈∗2] + 2αnϒn,

and hence,

(1 + α2
nδ 2)(1 − b)∗xn − un∗2

⇒ (1 + α2
nδ 2)∗xn − x∈∗2 − ∗xn+1 − x∈∗2

+ (1 + α2
nδ 2)(1 − βn)[2rn∗xn − un∗∗αxn − αx∈∗

− r2n ∗αxn − αx∈∗2] + 2αnϒn

⇒ (1 + α2
nδ 2)∗xn − x∈∗2 − ∗xn+1 − x∈∗2

+ 2rn(1 + α2
nδ 2)(1 − βn)∗xn − un∗∗αxn − αx∈∗ + 2αnϒn

⇒ ∗xn+1 − xn∗(∗xn − x∈∗ + ∗xn+1 − x∈∗) + α2
nδ 2∗xn − x∈∗2

+ 2rn(1 + α2
nδ 2)∗xn − un∗∗αxn − αx∈∗ + 2αnϒn .

Since rn ⇒ r < 2φ for all n ≥ N, lim
n→⊆ αn = 0 and lim

n→⊆ ∗xn+1 − xn∗ = 0, we

have ∗xn − un∗ → 0 as n → ⊆. From the condition lim
n→⊆ αn = 0, we have

∗xn+1 − zn∗ = αn∗δ f xn − Azn∗ → 0 as n → ⊆,

which gives, lim
n→⊆ ∗xn − zn∗ = 0. Observe that

∗xn − vn∗ ⇒ ∗xn − zn∗ + ∗zn − vn∗
⇒ ∗xn − zn∗ + βn∗xn − vn∗,

and hence,

(1 − b)∗xn − vn∗ ⇒ (1 − βn)∗xn − vn∗ ⇒ ∗xn − zn∗ → 0 as n → ⊆.



Hierarchical Minimization Problems and Applications 221

Define

D0 :=
{

w ≥ C : ∗w − x∈∗ ⇒ max

{

∗x1 − x∈∗, ∗δ f x∈ − Ax∈∗
δ̄ − δL

⎟⎟

. (34)

From (27) we see that D0 is a nonempty closed convex bounded subset ofC which
is T (t)-invariant for each t ≥ (0,⊆) and it contains {xn}, {un}, {vn}, {zn}. Therefore,
without loss of generality, we may assume that T = {T (t) : t ≥ (0,⊆)} is a family
of nonexpansive self-mappings on D0. Taking a suitable subsequence {xni } of {xn},
we see that

lim sup
n→⊆

≤(δ f − A)x∈, xn − x∈∞ = lim
i→⊆≤(δ f − A)x∈, xni − x∈∞. (35)

Since the sequence {xn} is bounded in C , we may assume that xni ⇀ x̄ ≥ C . Note
that {vn} is an approximating fixed point sequence of family T , that is,

lim
n→⊆ ∗vn − T (s)vn∗ = 0 for all s ≥ (0,⊆). (36)

Using (36) we obtain, from the demiclosedness principle, that x̄ ≥ Fix(T ).

Since ∗xni − uni ∗ → 0 as i → ⊆, by Proposition 2, we obtain that x̄ ≥
ε[GMEP(σ,α, β)]. Thus, x̄ ≥ Fix(T ) ⇔ ε[GMEP(σ,α, β)]. Therefore, from
(35), we have

lim sup
n→⊆

≤(δ f − A)x∈, xn+1 − x∈∞ = lim
i→⊆≤(δ f − A)x∈, xni − x∈∞

= ≤(δ f − A)x∈, x − x∈∞ ⇒ 0.

Observe that

∗xn+1 − x∈∗2 = ∗αn(δ f xn − δ f x∈ + δ f x∈ − Ax∈) + (I − αn A)(zn − x∈)∗2
⇒ ∗(I − αn A)(zn − x∈) + αn(δ f xn − δ f x∈∗2

+ 2αn≤δ f x∈ − Ax∈, xn+1 − x∈)∞
⇒ (∗(I − αn A)(zn − x∈)∗ + δαn∗ f xn − δ f x∈∗)2 + 2αnϒn

⇒ ((1 − αnδ )∗zn − x∈∗ + δαn∗ f xn − f x∈∗)2 + 2αnϒn

⇒ (1 − αn(δ − δL ))2∗xn − x∈∗2 + 2αnϒn .

Therefore,

∗xn+1 − x∈∗2 ⇒ (1 − αn(δ − δL ))∗xn − x∈∗2 + 2αnϒn .

Note
∑⊆

n=1
αn = ⊆ and lim sup

n→⊆
ϒn ⇒ 0. Therefore, we conclude from Lemma 6

that {xn} converges strongly to x∈. ∪∃
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We now establish strong convergence of the sequence generated by the
algorithm (37) to a solution of minimization problem (1) over the set D =
Fix(T ) ⇔ ε[GMEP(σ,α, β)].
Corollary 1 [30, Theorem 3.1] Let T = {T (t) : t ≥ (0,⊆)} be a family of
nonexpansive self-mappings on H with Fix(T ) ⊂= ◦, and � = {ωtn : n ≥ N} be a
sequence of nonexpansive self-mappings on H such that Fix(T ) ⊆ ⎞

n≥N Fix(ωtn )

and Fix(T ) ⇔ ε[GMEP(σ,α, β)] ⊂= ◦. For given x1 ≥ H, let {xn} be a sequence
in H generated by

⎠

⎫

⎬

x1 ≥ C;
σ(un, v) + ≤αxn, v − un∞ + β(v) − β(un) + 1

rn
≤un − xn, v − un∞ ∩ 0, ⇐v ≥ C;

zn = βn xn + (1 − βn)ωn(un);
xn+1 = δαn f xn + (I − αn A)zn, for all n ≥ N,

(37)
where {αn} and {βn} are two sequence in (0, 1] and {rn} is a sequence in (0,⊆)

satisfying conditions (C1)–(C4). Assume that 0 < δ < δ̄ /L and {ωn(un)} is an
approximating fixed point sequence of the family T . Then, the sequence {xn} con-
verges strongly to x∈ ≥ Fix(T ) ⇔ ε[GMEP(σ,α, β)], which solves optimization
problem (1) over the set Fix(T ) ⇔ ε[GMEP(σ,α, β)].

Corollary 1 is a far more general result than those in the existing literature of this
nature. Therefore, it unifies a number of results and includes several convergence
theorem of this nature. In particular, Kamraksa and Wangkeeree [17] considered the
optimization problem (1)when D = Fix(T )⇔ε[G E P(σ,α)], where Fix(T ) is the
set of common fixed points of a nonexpansive semigroup T = {T (t) : 0 ⇒ t < ⊆}
andε[GEP(σ,α)] is the set of solutions of the generalized equilibrium problem (in
short, GEP (σ,α)) [2].

7 Special Cases of Hierarchical Equilibrium Problems

7.1 When T is a Semigroup Nonexpansive Self-Mappings

Let C be a nonempty subset of a (real) Hilbert space H. We call a one parameter
familyT := {T (t) : t ≥ [0,+⊆)} ofmappings fromC intoC a strongly continuous
semigroup of nonexpansive mappings if

(S1) for each t > 0,

∗T (t)x − T (t)y∗ ⇒ ∗x − y∗ for all x, y ≥ C;

(S2) T (0)x = x for all x in C;
(S3) T (s + t) = T (s)T (t) for all s, t in R+;
(S4) for each x in C , the mapping T (·)x from R

+ into C is continuous.
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We need the following:

Lemma 8 [33]Let C be a nonempty closed convex bounded subset of a Hilbert space
H and T = {T (t) : t ∩ 0} be a strongly continuous semigroup of nonexpansive
mappings from C into itself. Let ωt (x) := 1

t

∫ t
0 T (s)xds. Then

lim
t→⊆ sup

x≥C
∗ωt (x) − T (h)ωt (x)∗ = 0, ⇐h > 0.

Proof Fix h > 0 and let t > h. Then, for n ≥ N, there is a nonnegative integer in,

such that ( t
n )in ⇒ h ⇒ ( t

n )(in + 1). Thus, we have lim
n→⊆(

t

n
)in = h. Now, by an idea

in [4], for {xi,n}⊆i,n=1 ⊆ C and yn = 1
n

∑n
i=1 xi,n ≥ C , we have

∗yn − v∗2 = 1

n

n
∑

i=1

∥
∥xi,n − v

∥
∥2 − 1

n

∑n

i=1

∥
∥xi,n − yn

∥
∥2 , for each v ≥ H.

Put xi,n = T (( t
n )i)x , for x ≥ C and v = T (( t

n )in)yn . Then, we have

∥
∥
∥
∥

yn − T ((
t

n
)in)yn

∥
∥
∥
∥

2

= 1

n

n
∑

i=1

∥
∥xi,n − v

∥
∥2 − 1

n

n
∑

i=1

∥
∥xi,n − yn

∥
∥2

= 1

n

in∑

i=1

∥
∥xi,n − v

∥
∥2 + 1

n

n
∑

i=in+1

∥
∥xi,n − v

∥
∥2 − 1

n

n
∑

i=1

∥
∥xi,n − yn

∥
∥2

= 1

n

in∑

i=1

∥
∥xi,n − v

∥
∥2 + 1

n

n
∑

i=in+1

∥
∥
∥
∥
∥

{

T

(
t

n

)⎟i

x −
{

T

(
t

n

)⎟in

yn

∥
∥
∥
∥
∥

2

− 1

n

n
∑

i=1

∥
∥xi,n − yn

∥
∥2

⇒ 1

n

in∑

i=1

∥
∥xi,n − v

∥
∥2 + 1

n

n
∑

i=in+1

∥
∥
∥
∥
∥

{

T

(
t

n

)⎟i−in

x − yn

∥
∥
∥
∥
∥

2

− 1

n

n
∑

i=1

∥
∥xi,n − yn

∥
∥2

= 1

n

in∑

i=1

∥
∥xi,n − v

∥
∥2 + 1

n

n−in∑

i=1

∥
∥xi,n − yn

∥
∥2 − 1

n

n
∑

i=1

∥
∥xi,n − yn

∥
∥2

= 1

n

in∑

i=1

∥
∥xi,n − v

∥
∥2 − 1

n

n
∑

i=n−in+1

∥
∥xi,n − yn

∥
∥2

⇒ 1

n

in∑

i=1

∥
∥xi,n − v

∥
∥2 ⇒ in

n
diam (C).
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For ε > 0, from in
n ⇒ h

t , there is a positive real number t1 such that 0 <
in
n diam (C) ⇒ h

t diam (C) < ε2, for each t ∩ t1. Hence, we have
∥
∥yn − T (( t

n )in)yn
∥
∥

< ε, for each t ∩ t1, n ≥ N, and x ≥ C . We also have that

lim
n→⊆ yn = lim

n→⊆
1

n

n
∑

i=1

T

(
t

n
i

)

x = lim
n→⊆

1

t

n
∑

i=1

t

n
T

(
t

n
i

)

x = 1

t

t∫

0

T (s)xds = ωt (x),

for each x ≥ C . Hence, for each x ≥ C , we have lim
n→⊆ ∗yn − ωt (x)∗ = 0.

On the other hand, we have

∗ωt (x) − T (h)ωt (x)∗ ⇒ ∗ωt (x) − yn∗ +
∥
∥
∥
∥

yn − T

(
t

n
in

)

yn

∥
∥
∥
∥

+
∥
∥
∥
∥

T

(
t

n
in

)

yn − T

(
t

n
in

)

ωt (x)

∥
∥
∥
∥

+
∥
∥
∥
∥

T

(
t

n
in

)

ωt (x) − T (h)ωt (x)

∥
∥
∥
∥

⇒ 2 ∗yn − ωt (x)∗ +
∥
∥
∥
∥

yn − T

(
t

n
in

)

yn

∥
∥
∥
∥

+
∥
∥
∥
∥

T

(
t

n
in

)

ωt (x) − T (h)ωt (x)

∥
∥
∥
∥

< 2 ∗yn − ωt (x)∗ +
∥
∥
∥
∥

T

(
t

n
in

)

ωt (x) − T (h)ωt (x)

∥
∥
∥
∥

+ ε,

for each t ∩ t1, n ≥ N, and x ≥ C . From lim
n→⊆ ∗yn − ωt (x)∗ = 0 and lim

n→⊆(
t

n
)in =

h, we have ∗ωt (x) − T (h)ωt (x)∗ ⇒ ε for each t ∩ t1 and x ≥ C . Therefore,

lim
t→⊆ sup

x≥C
∗ωt (x) − T (h)ωt (x)∗ = 0

for each h > 0. ∪∃
Weobserve thatTheorem3extends and improves [10,Theorem4.1], [17,Theorem

4.1] and [27, Theorem 3.1] from semigroup of nonexpansive self-mappings to the
general family of nonexpansive self-mappings. We now derive the following result
as corollary:

Corollary 2 Let C be a nonempty subset of a Hilbert space H and let T = {T (t) :
t ≥ [0,⊆)} be a strongly continuous semigroup of nonexpansive self-mappings on
C such that Fix(T ) ⇔ ε[GMEP(σ,α, β)] ⊂= ◦. Assume that 0 < δ < δ̄ /L and

that {tn} is a positive real divergent sequence such that lim
n→⊆

|tn − tn−1|
tn

= 0. For

given x1 ≥ C, let {xn} be a sequence in C generated by the following algorithm:
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⎠

⎫

⎬

x1 ≥ C;
σ(un, v) + ≤αxn, v − un∞ + β(v) − β(un) + 1

rn
≤un − xn, v − un∞ ∩ 0, ⇐v ≥ C;

zn = βn xn + (1 − βn) 1
tn

∫ tn
0 T (s)un ds;

xn+1 = δαn f xn + (I − αn A)zn, ⇐n ≥ N,

where {αn} and {βn} are two sequences in (0, 1] and {rn} is a sequence in (0,⊆)

satisfying conditions (C1)ˇ(C4). Then {xn} converges strongly to x∈ ≥ Fix(T ) ⇔
ε[GMEP(σ,α, β)], which solves optimization problem (1) over the set Fix(T ) ⇔
ε[GMEP(σ,α, β)].
Proof For each n ≥ N, define ωn(x) = 1

tn

∫ tn
0 T (s)x ds, x ≥ C . Note that {ωn(un)} is

in a bounded set D0 defined by (34). Set vn := ωn(un). As in the proof of Theorem
3, T = {T (t) : 0 ⇒ t < ⊆} is a semigroup of nonexpansive self-mappings on
D0. It follows from Lemma 8 that {vn} is an approximating fixed point sequence of
semigroup T . Observe that

∗ωn(un−1) − ωn−1(un−1)∗ =
∥
∥
∥
∥

(
1

tn
− 1

tn−1

)∫ tn−1

0
[T (s)un−1 − x∈] ds

+ 1

tn

∫ tn

tn−1

[T (s)un−1 − x∈] ds

∥
∥
∥
∥

⇒ 2|tn − tn−1|
tn

∗un−1 − x∈∗

⇒ 2|tn − tn−1|
tn

K1

for some constant K1 > 0. From the condition limn→⊆ |tn−tn−1|
tn

= 0, we conclude
that the condition (C4) holds. Therefore, Corollary 2 follows from Theorem 3. ∪∃
Remark 2 (a) If C = H and β ≡ 0, then Corollary 2 reduces a main result of
Kamraksa andWangkeeree [17]. In Corollary 2, the conditions

∑⊆
n=1

⎭
⎭αn −αn+1

⎭
⎭ <

⊆ and
∑⊆

n=1

⎭
⎭rn − rn+1

⎭
⎭ < ⊆ are not used, therefore, Corollary 2 is a significant

improvement on [10, Theorem 4.1].
(b) If C = H and f = I − F , where F : H → H is δ-strongly monotone and
λ-strictly pseudocontractive, then Corollary 2 reduces to [30, Corollary 3.2]

Remark 3 Compared with the results obtained in [8, 26, 27, 40, 41, 45], Theorem
3 deals with the problem of finding an element of Fix(T ) ⇔ ε[GMEP(σ,α, β)]
which involves the fixed point problem of uncountable nonexpansive mappings and
the generalized mixed equilibrium problem.
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7.2 When T is a Family of Resolvent Operators of Monotone
Operators

FromCorollary 1, we derive an interesting result, which is a combination of proximal
point algorithm for zeros of maximal monotone operators and an iterative method
for finding solutions of the generalized mixed equilibrium problems.

Corollary 3 [30] Let H be a real Hilbert space. Let A ⊆ H × H be a maximal
monotone operator such that A−10 ⇔ ε[G M E P(G, α)] ⊂= ◦. Assume that 0 <

δ < δ̄ /L and {tn} is a divergent sequence of positive real numbers such that

lim
n→⊆

|tn − tn−1|
tn

= 0. For given x1 ≥ H, let {xn} be a sequence in H generated by

the following algorithm:

⎠

⎫

⎬

x1 ≥ H ;
σ(un, v) + ≤αxn, v − un∞ + β(v) − β(un) + 1

rn
≤un − xn, v − un∞ ∩ 0, ⇐v ≥ H ;

zn = βn xn + (1 − βn)JA
tn xn ds;

xn+1 = δαn f xn + (I − αn A)zn, ⇐n ≥ N,

where {αn} and {βn} are two sequences in (0, 1] and {rn} is a sequence in (0,⊆)

satisfying conditions (C1)–(C4). Then {xn} converges strongly to x∈ ≥ A
−10 ⇔

ε[GMEP(σ,α, β)], which solves optimization problem (1) over the set A−10 ⇔
ε[GMEP(σ,α, β)].
Proof Set ωn := JA

tn . Then {ωn} is a sequence of firmly nonexpansive mappings
from H into itself such that Fix(ωn) = A

−10 for every n ≥ N. Set vn := ωn(un). We
show that {vn} is an approximating fixed point sequence of the family {JA

t : t > 0}
of resolvent operators of A. As in the proof of Theorem 3, we can see that {vn} is
bounded. Then, there exists a positive real number M such that ∗un − JA

tn un∗ ⇒ M
for all n ≥ N. For any fixed r > 0, by (11), we have

∥
∥
∥JA

tn un − JA
r JA

tn un

∥
∥
∥ ⇒ r

tn

∥
∥
∥un − JA

tn un

∥
∥
∥

⇒ r

tn
M.

Thus, in particular, we derive
∥
∥vn − JA

r vn
∥
∥ → 0 as n → ⊆ for all r > 0.

We now show that the condition (C4) holds. From (12), we have

∥
∥
∥JA

tn un−1 − JA
tn−1

un−1

∥
∥
∥ ⇒ |tn − tn−1|

tn

∥
∥
∥un−1 − JA

tn un−1

∥
∥
∥ .

Since lim
n→⊆

|tn − tn−1|
tn

= 0, we conclude that the condition (C4) holds. ∪∃
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Abstract In this chapter, we give a survey on hierarchical variational inequality
problems and triple hierarchical variational inequality problems. By combining
hybrid steepest descent method, Mann’s iteration method, and projection method,
we present a hybrid iterative algorithm for computing a fixed point of a pseudo-
contractive mapping and for finding a solution of a triple hierarchical variational
inequality in the setting of real Hilbert space. We prove that the sequence generated
by the proposed algorithm converges strongly to a fixed point which is also a solu-
tion of this triple hierarchical variational inequality problem. On the other hand, we
also propose another hybrid iterative algorithm for solving a class of triple hierarchi-
cal variational inequality problems concerning a finite family of pseudo-contractive
mappings in the setting of real Hilbert spaces. Under very appropriate conditions,
we derive the strong convergence of the proposed algorithm to the unique solution
of this class of problems.
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1 Introduction

The theory of variational inequalities has tremendous applications in many areas
of science, social science, engineering, and management. It is a powerful unified
methodology to study partial differential equations, optimization problems, opti-
mal control problems, mathematical programming problems, financial management
problems, industrial management problems, equilibrium problems from traffic net-
work, spatial price equilibrium problems, oligopolisticmarket equilibrium problems,
financial equilibrium problems, migration equilibrium problems, environmental net-
work problems, knowledge network problems, and so on. It was started by the pio-
neer work of Fichera [22] and Stampacchia [69] in connection with Signorini’s
contact problem. Subsequently, Stampacchia gave out a series of classical papers
[26, 45, 49, 70] on variational inequalities. In 1980, Dafermos [20] recognized that
the traffic network equilibrium conditions as stated by Smith [68] is a structure of
a variational inequality in the setting of finite dimensional spaces. Since then, the
variational inequalities have been extended, generalized, and studied in the setting
of finite/infinite dimensional spaces. For further details on variational inequalities,
their generalizations and applications, we refer to [1–3, 21, 24, 25, 35, 40, 42, 43,
58, 63] and the references therein.

A constrained optimization problem in which the constrained set is a solution set
of another optimization problem is called a bilevel programming problem. In the last
two decades, such problems have been extensively studied in the literature because
of their applications in mechanics, network design, etc. For further details on bilevel
programming problems, we refer two monographs [46, 62]. If the first-level problem
is a variational inequality problemand the second-level problem is a set of fixed points
of a mapping, then the bilevel problem is called hierarchical variational inequality
problem. In other words, variational inequality problem defined over the set of fixed
points of amapping is called a hierarchical variational inequality problem, also known
as hierarchical fixed point problem. The signal recovery [18], beamforming [67] and
power control [30] problems can be written in the form of a hierarchical variational
inequality problem.For further details on hierarchical variational inequality problems
and their applications, we refer to [8, 10, 17, 18, 30, 34, 47, 52, 56, 57, 67, 78,
82–84, 92] and the references therein. In the recent past, several iterative methods
have been proposed and analyzed by several authors, see, for example [10, 17, 19,
28, 30, 34, 47, 48, 50, 52, 56, 57, 78, 80–83, 85, 92] and the references therein.

Recently, Iiduka [27, 29] considered a problem which has triple structure, that is,
a variational inequality problem defined over the set of solutions of another varia-
tional inequality problem which is defined over the set of fixed points of a mapping.
Because of the triple structure of the problem, it is called triple hierarchical varia-
tional inequality problem. So, a variational inequality problem defined over the set of
solutions of a hierarchical variational inequality problem is called a triple hierarchi-
cal variational inequality problem (in short, THVIP). Iiduka [27, 29] proposed some
iterative methods for computing the approximate solutions of THVIP. The strong
convergence of the sequences generated by the proposed methods is also studied.
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Some examples of triple hierarchical variational inequality problems are provided
in [29]. Subsequently, Iiduka [31] translated the nonconcave utility bandwidth allo-
cation problem with compoundable constraints into a triple hierarchical variational
inequality problem. Then, he suggested some iterative method, so-called fixed point
optimization algorithm, to find the solution of THVIP. The strong convergence of the
iterative method is studied. Recently, several iterative methods for finding the solu-
tions of THVIP have been proposed and analyzed; See, for example, [9, 11–13, 27,
29, 31, 36, 37, 41, 73, 89] and the references therein. Ceng et al. [11] combined the
regularization method, hybrid steepest descent method, and the projection method to
propose an implicit scheme that generates a net in an implicit way. They studied its
convergence to a unique solution of THVIP. They also introduced an explicit scheme
that generates a sequence via an iterative algorithm and proved that this sequence
converges strongly to a unique solution of THVIP. Ceng et al. [12] considered a
monotone variational inequality problem defined over the set of solutions of another
variational inequality problem which is defined over the intersection of the fixed
point sets of N nonexpansive mappings. They proposed two relaxed hybrid steepest
descent algorithms with variable parameters for computing the approximate solu-
tions of these two problems. The strong convergence of these two algorithms is also
studied. Recently, Zeng et al. [89] presented strong convergence of relaxed hybrid
steepest descent method under some mild conditions on parametric sequences. The
THVIP is further investigated and generalized in [13, 36, 37, 73].

Yamada [80] considered a hierarchical variational inequality problem defined
over the set of common fixed points of a finite family of nonexpansive mappings.
Such problem is called hierarchical variational inequality problem for a family of
nonexpansive mappings. An application of this kind of problem is given in [80].
Motivated by thework of Yamada [80], Ceng et al. [12, 89] considered the variational
inequality problem with the variational inequality constraint which is defined over
the intersection of the fixed point sets of a family of N nonexpansive mappings
Ti : H → H , where N ∈ 1 an integer. Such problem is called triple hierarchical
variational inequality problem for a family of nonexpansive mappings.

In this chapter, we give a survey on hierarchical variational inequality problems
and triple hierarchical variational inequality problems. By combining hybrid steepest
descent method, Mann’s iteration method and projection method, we also present
a hybrid iterative algorithm for computing a fixed point of a pseudo-contractive
mapping and for finding a solution of a triple hierarchical variational inequality in
the setting of real Hilbert space. Under very mild assumptions, we prove that the
sequence generated by the proposed algorithm converges strongly to a fixed point
which is also a solution of this triple hierarchical variational inequality problem.
On the other hand, we also propose another hybrid iterative algorithm for solving a
class of triple hierarchical variational inequality problems concerning a finite family
of pseudo-contractive mappings in the setting of real Hilbert spaces. Under very
appropriate conditions, we derive the strong convergence of the proposed algorithm
to the unique solution of this class of problems. Our algorithms are quite general and
very flexible and include some other iterative algorithms in the literature as special
cases.
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2 Preliminaries

Throughout the chapter, we use the following notations: “δ” and “→” stand for
the weak convergence and strong convergence, respectively. Moreover, we use the
following notation: for a given sequence {xn} ≥ H ,εw(xn) denotes the weakε-limit
set of {xn}, that is,

εw(xn) := {

x ∇ H : xn j δ x for some subsequence {n j } of {n}}.

The following lemma is an immediate consequence of an inner product.

Lemma 1 Let H be a real Hilbert space. Then, for all x, y ∇ H,

(a) ≤x − y≤2 = ≤x≤2 − ≤y≤2 − 2∞x − y, y∩.
(b) ≤x + y≤2 ∗ ≤x≤2 + 2∞y, x + y∩.

Let C be a nonempty closed convex subset of a real Hilbert space H . For each
point x ∇ H , there exists a unique nearest point in C , denoted by PC (x), such that

≤x − PC (x)≤ ∗ ≤x − y≤, for all y ∇ C,

where PC is called the metric projection of H onto C . It is known that PC is a
nonexpansive mapping.

The following lemmas are well known.

Lemma 2 Let C be a nonempty closed convex subset of a real Hilbert space H.
Given x ∇ H and z ∇ C. Then, z = PC (x) if and only if

∞x − z, y − z∩ ∗ 0, for all y ∇ C.

Lemma 3 [53] Let C be a nonempty closed convex subset of a real Hilbert space H.
Let {xn} be a sequence in H, u ∇ H and q = PC (u). If {xn} is such that εw(xn) ≥ C
and

≤xn − u≤ ∗ ≤u − q≤, for all n ∈ 0.

Then, xn → q.

Definition 1 A mapping T : H → H is called

(a) L-Lipschtz continuous if there exists a constant L > 0 such that for all x, y ∇ H ,

≤T (x) − T (y)≤ ∗ L≤x − y≤;

Further, if L = 1, then T is called nonexpansive; if L ∇ (0, 1), then T is called
contraction.
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(b) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

∞T (x) − T (y), x − y∩ ∈ ≤T (x) − T (y)≤2, for all x, y ∇ H ;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T = 1

2
(I + S),

where S : H → H is nonexpansive; projections are firmly nonexpansive;
(c) pseudo-contractive if

∞T (x) − T (y), x − y∩ ∗ ≤x − y≤2, for all x, y ∇ H ; (1)

(d) σ -strictly pseudo-contractive if there exists a constant σ ∇ [0, 1) such that

≤T (x)−T (y)≤2 ∗ ≤x − y≤2+σ≤(I −T )(x)−(I −T )(y)≤2, for all x, y ∇ H.

(2)

The condition (1) is equivalent to the following condition.

≤T x − T y≤2 ∗ ≤x − y≤2 + ≤(I − T )x − (I − T )y≤2, for all x, y ∇ H. (3)

Indeed, observe that

≤T x − T y≤2
= ≤x − y − [(I − T )x − (I − T )y]≤2
= ≤x − y≤2 − 2∞x − y, (I − T )x − (I − T )y∩ + ≤(I − T )x − (I − T )y≤2
= ≤x − y≤2 − 2[≤x − y≤2 − ∞T x − T y, x − y∩] + ≤(I − T )x − (I − T )y≤2.

It is well known that the class of strictly pseudo-contractive mappings strictly
includes the class of nonexpansive mappings.

Definition 2 A mapping A : H → H is said to be

(a) monotone if
∞A(x) − A(y), x − y∩ ∈ 0, for all x, y ∇ H ; (4)

Further, if strict inequality holds in (4) for all x 
= y, then A is called strictly
monotone.

(b) strongly monotone or α-strongly monotone if there is a constant α > 0 such that

∞A(x) − A(y), x − y∩ ∈ α≤x − y≤2, for all x, y ∇ H ;
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(c) β-inverse strongly monotone (β-ism) (also called cocoercive) if there exists con-
stant β > 0 such that

∞A(x) − A(y), x − y∩ ∈ β≤A(x) − A(y)≤2, for all x, y ∇ H.

Lemma 4 [32] Let A : H → H be an γ-inverse strongly monotone operator. For
φ ∇ [0, 2γ], define Sφ : H → H by Sφx := x − φAx, for all x ∇ H. Then, Sφ is
nonexpansive.

Lemma 5 [80, Lemma 3.1] Let A : H → H be α-strongly monotone and L-
Lipschitz continuous and μ ∇ (0, 2α/L2). For φ ∇ [0, 1], define T φ : H → H
by

T φ(x) := x − φμA(x), for all x ∇ H.

Then,
≤T φ(x) − T φ(y)≤ ∗ (1 − φτ)≤x − y≤, for all x, y ∇ H,

where, τ := 1 − √

1 − μ(2α − μL2) ∇ (0, 1].
A Banach space X is said to satisfy Opial’s condition if whenever {xn} is a

sequence in X which converges weakly to x , then

lim inf
n→⊆ ≤xn − x≤ < lim inf

n→⊆ ≤xn − y≤, for all y ∇ X, y 
= x .

It is well known that every Hilbert space H satisfies Opial’s condition (see, for
example, [23]).

Definition 3 Let X be aBanach space andC be a closed convex subset X . Amapping
T : C → C is said to be demiclosedwhen xn δ y (converges weakly) and T (xn) →
z (converges strongly), imply that z = T y.

Lemma 6 [94] Let X be a real reflexive Banach space which satisfies Opial’s condi-
tion. Let C be a nonempty closed convex subset of X and T : C → C be a continuous
pseudo-contractive mapping. Then, I − T is demiclosed at zero.

Lemma 7 [23,Demiclosed Principle]Let C ⇔ H be a nonempty, closed, and convex
set and T : C → C be a nonexpansive mapping. If T has a fixed point, then I − T is
demiclosed, that is, whenever {xn} is a sequence in C and weakly converges to some
x ∇ C and the sequence {(I − T )xn} strongly converges to some y, it follows that
(I − T )x = y, where I is the identity operator on H.

Proposition 1 [23] Let C be a nonempty closed convex subset of a real Hilbert space
H and T : H → H be a nonexpansive mapping. Then,

(a) Fix(T ) is closed and convex;
(b) Fix(T ) is nonempty if C is bounded.
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3 Variational Inequalities

Throughout the section, unless otherwise specified, let H be a real Hilbert space
whose inner product and norm are denoted by ∞., .∩ and ≤ · ≤, respectively. Let C be a
nonempty closed convex subset of H and A : H → H be a nonlinear operator. The
variational inequality problem is to find x⇒ ∇ C such that

∞A(x⇒), x − x⇒∩ ∈ 0, for all x ∇ C. (5)

The solution set of the variational inequality problem defined on the set C and by
the operator A is denoted by VIP(C, A). The inequality (5) is called a variational
inequality. When the operator A is monotone, it is called monotone variational
inequality. This kind of variational inequality was first introduced and studied by
Browder [5]. However, a more general form of the variational inequality was intro-
duced by Fichera [22] and Stampacchia [69] in connection with Signorini’s contact
problem. As we have pointed out in the first section that the theory of variational
inequalities is well established and well recognized. Nowadays, people are using this
theory as a tool to solve the problems from mechanics, partial differential equations,
game theory, optimization, etc.

Geometrically speaking, a variational inequality problem is to find a vector x⇒
in a closed, convex set C of a Hilbert Space H such that the vector A(x⇒) forms a
nonobtuse angle with every vector of the form x − x⇒, for all x ∇ C .

For further details on variational inequalities and their applications, we refer to
[1–3, 5, 20–22, 24–26, 35, 40, 42–45, 54, 58, 63, 69, 70] and the references therein.

During the last three decades, the theory of variational inequalities has been stud-
ied in different directions, namely, applications, existence results and solution meth-
ods. A large number of solution methods has been proposed. Among all the solution
methods, the simplest iterative procedure for variational inequality problem is the
projection gradient method, whose iterative scheme is

xn+1 = PC (xn − μA(xn)), n = 0, 1, 2, . . . ,

where PC : H → C is a projection operator from H onto C and μ is a positive real
number.

When A is strongly monotone and Lipschitz continuous, the projection gradient
method with any initial choice x0 ∇ C and μ > 0, generates a sequence {xn} that
converges strongly to a unique solution of the variational inequality problem (5).

Proposition 2 [29, Proposition 2.3] Let C be a nonempty closed convex subset of a
real Hilbert space H and A : H → H be γ-inverse strongly monotone. Then, for
φ ∇ [0, 2γ], the mapping Sφ : H → H, defined by

Sφ(x) := PC (x − φA(x)), for all x ∇ H,

is nonexpansive and Fix(Sφ) = VIP(C, A).



238 Q. H. Ansari et al.

Definition 4 Let C be a nonempty convex subset of a real Hilbert space H . A
mapping A : C → H is said to be hemicontinuous if for any fixed x, y ∇ C , the
mapping φ ⊂→ A(x + φ(y − x)) defined on [0, 1] is continuous, that is, if A is
continuous along the line segments in C .

The following proposition is well known and the proof can be found in [1, 40,
42, 43, 63].

Proposition 3 Let C ≥ H be a nonempty closed and convex subset of real Hilbert
space H and A : C → H be a mapping.

(a) If A is monotone and hemicontinuous, then VIP(C, A) is equivalent to

MV I P(C, A) := {x⇒ : ∞Ay, y − x⇒∩ ∈ 0, for all y ∇ C}.

(b) VIP(C, A) 
= ◦, when C is bounded and A is monotone and hemicontinuous.
(c) VIP(C, A) = Fix(PC (I − φA)), for all φ > 0, where I is identity map on H.
(d) VIP(C, A) consists only one point, if A is strongly monotone and Lipschitz

continuous.
(e) VIP(C,∪ f ) = argminx∇C f (x) := {x⇒ ∇ C : f (x⇒) = minx∇C f (x)}, where

f : C → R is a convex and Fréchet differentiable function and ∪ f is the
gradient of f .

4 Hierarchical Variational Inequalities

A variational inequality problem defined over a set of fixed points of a mapping on
a Hilbert space H , is called hierarchical variational inequality problem.

Let H be a real Hilbert space, T : H → H be a nonexpansive mapping, and
A : H → H be a mapping. We assume that the set Fix(T ) of all fixed points of T is
nonempty.

The hierarchical variational inequality problem (in short, HVIP) is to find x⇒ ∇
Fix(T ) such that

∞A(x⇒), y − x⇒∩ ∈ 0, for all y ∇ Fix(T ), (6)

that is, to find

x⇒ ∇ VIP(Fix(T ), A) := {x⇒ ∇ Fix(T ) : ∞A(x⇒), y − x⇒∩ ∈ 0, for all y ∇ Fix(T )}.

Several problems, namely, image recovery problem in 3D electron microscopy [65],
quadratic signal recovery problem [18], robust wideband beamforming problem [67],
power control problem in code-division multiple-access (CDMA) data network [30],
etc can be modeled as a HVIP. Sezan [65] formulated the image recovery problem
in the form of a hierarchical minimization problem, that is, a minimization problem
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defined over the set of fixed points of a mapping. She / He used projection method to
study this problem.Combettes [18] proposed a block-iterative parallel decomposition
method to solve quadratic signal recovery problem. Slavakis and Yamada [67] used
hybrid steepest descent method (HSDM) to design robust smart antennas. Iiduka
[30] formulated a power control problem for a CDMA data network in the form
of a hierarchical variational inequality problem. He proposed an iterative algorithm
to solve this problem. Because of the applications of HVIP, it has been extensively
studied during the last decade by several researchers; See, for example [8, 10, 17,
19, 28, 30, 34, 47, 48, 50, 52, 56, 57, 67, 78, 80–85, 92] and the references therein.

Yamada [80] proposed a hybrid steepest descent method for solving variational
inequality problem which is defined over the set of fixed points of a nonexpansive
mapping. He also studied the solution method for HVIP defined by means of the set
of common fixed points of N nonexpansive mappings. He presented the following
result.

Lemma 8 [80, Lemma 3.1] Let T : H → H be a nonexpansive mapping with
Fix(T ) 
= ◦. Suppose that A : H → H is L-Lipschitzian and α-strongly monotone

over T (H). By using arbitrary fixed μ ∇
(

0, 2α
L2

⎜

, define T φ : H → H by

T φ(x) := T (x) − φμA(T (x)), for all φ ∇ [0, 1]. (7)

Then,

(a) G := μA − I satisfies

≤G(x)−G(y)≤2 ∗
[

1 − μ(2α − μL2)
]

≤x − y≤2, for all x, y ∇ T (H), (8)

which implies that G is strictly contractive over T (H), where T (H) denotes the
range of T . Moreover, the obvious relation 0 < τ := 1 − √

1 − μ(2α − μL2)

∗ 1 ensure that the closed ball

C f :=
⎟

x ∇ H : ≤x − f ≤ ∗ ≤μA( f )≤
τ

}

is well defined, for all f ∇ Fix(T ).
(b) T φ : H → H satisfies T φ(C f ) ⇔ C f , for all f ∇ Fix(T ) and φ ∇ [0, 1]. In

particular, T (C f ) ⇔ C f , for all f ∇ Fix(T ).
(c) T φ : H → H, for all φ ∇ (0, 1], is strictly contractive mapping having its

unique fixed point λφ ∇ ⎧

f ∇Fix(T ) C f .

(d) Suppose that the sequence of parameters {φn} ⇔ (0, 1] satisfies limn→⊆ φn = 0.
Let λn be the unique fixed point of T<n> := T φn , that is,

λn := λφn ∇ Fix(T<n>), for all n.
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Then, the sequence {λn} converges strongly to the unique solution u⇒ ∇ Fix(T )

of VIP(Fix(T ), A).

The conclusion (d) in Lemma 8 is a generalization of a pioneer result by Browder
[6].

Yamada [80] presented the following hybrid steepest descent method for solving
HVIP (6).

Algorithm 1 Let T : H → H be a nonexpansive mapping with Fix(T ) 
= ◦.
Suppose that a mapping A : H → H is L-Lipschitz continuous and α-strongly

monotone over T (H). Start with any initial choice x0 ∇ H , any μ ∇
(

0, 2α
L2

⎜

and

generate a sequence {xn} by

xn+1 := T φn+1(xn) := T (xn) − φn+1μA(T (xn)). (9)

The Yamada [80] established the following strong convergence result for the
sequence generated by the Algorithm 1.

Theorem 1 Let T : H → H be a nonexpansive mapping withFix(T ) 
= ψ. Suppose
that a mapping A : H → H is L-Lipschitz continuous and α-strongly monotone

over T (H). Then with any x0 ∇ H, any μ ∇
(

0, 2α
L2

⎜

and any sequence {φn} ⇔ (0, 1]
satisfying

(i) limn→⊆ φn = 0,
(ii)

⎪⊆
n=1 φn = +⊆,

(iii) limn→⊆ φn−φn+1

φ2n+1
= 0,

the sequence {xn} generated by (9) converges strongly to the uniquely existing solu-
tion of VIP(Fix(T ), A).

An example of the sequence {φn} of real numbers that satisfies conditions (i)–(iii)
of Theorem 1 is φn = 1

nt for 0 < t < 1.
In 2004, Yamada and Ogura [81] extended Theorem 1 for quasi-nonexpansive

mappings.
Recently, Iiduka [30] considered HVIP (6) in the setting of finite dimensional

Euclidean space for fimrly nonexpansive mapping. He present an application of this
problem to a power control problem for a direct-sequence code-division multiple-
access data network. He considered the following problem.

Problem 1 Assume that

(A1) C ⇔ R
n is a nonempty, closed convex set and the explicit form of PC is known;

(A2) T : Rn → R
n is a firmly nonexpansive mapping such that Fix(T ) ⇔ C and

Fix(T ) 
= ◦;
(A3) A : Rn → R

n is a continuous mapping.

The problem is to find x⇒ ∇ VIP(Fix(T ), A) (⇔ C).
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He presented the following, so-called, fixed point optimization algorithm.

Algorithm 2 [30] Step 0. Choose x0 ∇ C , φ1 ∇ (0,⊆) and γ1 ∇ [0, 1) arbitrary,
and set n := 1.
Step 1.Given xn ∇ C , choose φn ∇ (0,⊆) and γn ∇ [0, 1), and compute xn+1 ∇ C
as follows:

yn := T (xn − φn A(xn)) ,

xn+1 := PC (γn xn + (1 − γn)yn).
(10)

Update n := n + 1, and go to Step 1.

Iiduka [30] established the following convergence theorem for Algorithm 2.

Theorem 2 [30, Theorem 6] In addition to the assumptions of Problem 1, we further
assume that {A(xn)} is bounded, VIP(Fix(T ), A) 
= ◦, and there exists n0 ∇ N such
that VIP(Fix(T ), A) ⇔ ω := ⎧⊆

n=n0{x ∇ Fix(T ) : ∞A(xn), xn − x∩ ∈ 0}. If
{γn} ⇔ [0, 1) and {φn} ⇔ (0,⊆) satisfy the following conditions:

(i) lim sup
n→⊆

γn < 1,

(ii)
⎪⊆

n=1 φ2n < ⊆,

then, the sequence {xn} generated by the Algorithm 2 has the following properties:

(a) For every y ∇ ω, limn→⊆ ≤xn − y≤ exists, and {xn} and {yn} are bounded.
(b) limn→⊆ ≤xn − yn≤ = 0 and limn→⊆ ≤xn − T (xn)≤ = 0.
(c) If ≤xn − yn≤ = o(φn), then {xn} converges to a point in VIP(Fix(T ), A).

Iiduka [30] also studied the conditions under which {A(xn)} is bounded, VIP
(Fix(T ), A) 
= ◦, and the condition “there exists n0 ∇ N such that VIP(Fix(T ), A) ⇔
ω := ⎧⊆

n=n0{x ∇ Fix(T ) : ∞A(xn), xn − x∩ ∈ 0}” holds (see, Remark 7 (a)–(c) in
[30]).

Moudafi and Maingé [57] considered the following general form of hierarchical
variational inequality problem (HVIP).

Find x⇒ ∇ Fix(T ) such that ∞x⇒ − S(x⇒), y − x⇒∩, for all y ∇ Fix(T ), (11)

where S, T : H → H are nonexpansive mappings and Fix(T ) = {x ∇ C : x =
T (x)} is the set of all fixed points of T and C is a nonempty closed convex subset of
a real Hilbert space H .

It can be easily seen that the HVIP (11) is equivalent to the fixed point problem
of finding x⇒ ∇ C such that

x⇒ = PFix(T ) ∃ S(x⇒), (12)

where PFix(T ) is the metric projection on the convex set Fix(T ). By using the defin-
ition of a normal cone to Fix(T ), that is,
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NFix(T ) : x ⊂→
⎟ {d ∇ H : ∞d, y − x∩ ∗ 0, ⇐y ∇ Fix(T )}, if x ∇ Fix(T ),

◦, otherwise,
(13)

we can easily see that theHVIP (11) is equivalent to the following variational inequal-
ity:

0 ∇ (I − S)x⇒ + NFix(T )(x⇒). (14)

When the solution set of the HVIP (11) is a singleton set (which is the case, for
example, when S is a contraction) the problem reduces to the viscosity fixed point
solution introduced in [55] and further developed in [19, 76].

Example 1 [57] Let A : H → H be L-Lipschitz continuous and α-strongly

monotone and S = I − γ A where γ ∇
(

0, 2L
α2

⎜

. Then, the HVIP (11) reduces

to the HVIP (6).
On the other hand, if we take C = H , T = J A

φ and S = J B
φ with A, B are two

maximal monotone operators and J A
φ , J B

φ are the corresponding resolvent mappings,
then the HVIP (11) reduces to the problem of finding x⇒ ∇ H such that

0 ∇
(

I − J B
φ

⎜

(x⇒) + NA−1(0)(x⇒), (15)

where NA−1(0) denotes the normal cone to A−1(0) = Fix(J A
φ ), the set of zeros of A.

The inclusion (15) can be written as to find x⇒ such that

0 ∇ Bφ(x⇒) + NA−1(0)(x⇒),

where Bφ := ⎨

φI + B−1
⎩−1

is the the Yosida approximation of B.

Example 2 [57] Let κ : H → R be a convex function such that ∪κ is a α-strongly
monotone and L-Lipschitz continuous (which is equivalent to the fact that ∪κ is
L−1 cocoercive), ψ : H → R be a lower semicontinuous convex function and
Q = I − γ∪κ with γ ∇ (0, 2/L). Setting

T = proxφψ := argmin

⎟

ψ(y) + 1

2φ
≤. − y≤2

}

. (16)

Then by the fact that Fix(proxφκ) = (∂ψ)−1(0) = argmin ψ, the HVIP (11) reduces
to the following hierarchical minimization problem:

min
x∇argmin ψ

κ(x). (17)

We denote by δψ and δκ the subdifferential operators of lower secontinuous
convex functionsψ andκ , respectively.On the other hand, ifwe consider A = δψ and
B = δκ in (15), the HVIP (11) reduces to the following hierarchical minimization
problem:
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min
x∇argmin ψ

κφ(x),

where κφ(x) = inf
y

{κ(y) + (1/2φ)≤x − y≤2} is the Moreau-Yosida approximate of

κ.

Example 3 [57] Let κ : H → R be a convex function such that ∪κ is α-strongly
monotone and L-Lipschitz continuous (which is equivalent to the fact that ∪κ is
L−1 cocoercive). Setting S = I − γ∪ψ with γ ∇ (0, 2/L). The HVIP (11) reduces
to the following hierarchical minimization problem studied by Yamada [80].

min
x∇Fix(T )

ψ(x).

On the other hand, when T is a nonexpansive mapping and S = I − γ̃

(A − γ f ), where A is a bounded linear γ̃ -strongly monotone operator, f is a given
γ-contraction, and γ > 0with γ̃ ∇ (0, ≤A≤+γ̄ ). TheHVIP (11) reduces to the prob-
lem of minimizing a quadratic function over the set of fixed points of a nonexpansive
mapping studied by Marino and Xu [50], namely

∞(A − γ f )(x⇒), y − x⇒∩ ∈ 0, for all y ∇ Fix(T ), (18)

which is optimality condition for the following minimization problem:

min
x∇Fix(T )

1

2
∞Ax, x∩ − h(x), (19)

where h is the potential function for γ f, that is, h⊕(x) = γ f (x), for x ∇ H .

Moudafi [56] extended Krasnoselski–Mann (KM) iterative method for HVIP (11)
and proposed the following algorithm:

Algorithm 3 [56]

xn+1 = (1 − γn)xn + γn (φn S(xn) + (1 − φn)T (xn)) , for all n ∈ 0, (20)

where x0 ∇ C , {φn} and {γn} ⇔ (0, 1).

Moudafi [56] andYao andLiou [83] studied theweak convergence of the sequence
generated by the Algorithm 3.

Theorem 3 [83] Let C be a nonempty closed convex subset of a real Hilbert space
H and T, S : C → C be two nonexpansive mappings such that Fix(T ) 
= ◦. Let {xn}
be a sequence generated by the Algorithm 3. Let {γn} ⇔ (0, 1) and {φn} ⇔ (0, 1) be
two sequences of real numbers satisfying the following conditions:

(i)
⎪⊆

n=0 φn < ⊆;

(ii) limn→⊆ ≤xn+1−xn≤
γnφn

= 0.
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Then,

(a) {xn} converges weakly to a fixed point of T ;
(b) {xn} is asymptotically regular, namely limn→⊆ ≤xn+1 − xn≤ = 0;
(c) {xn} converges weakly to a solution of HVIP (11).

Yao and Liou [83] also showed that the conclusion of the Theorem 3 still holds if
we replace the condition (i) in Theorem 3 by the following condition.

(i)
⎪⊆

n=0 γnφn < ⊆, and limn→⊆ φn = 0.

When S is a contraction mapping, Yao and Liou [83] proved the following strong
convergence theorem under different restriction on parameters.

Theorem 4 [83, Theorem 3.3] Let C be a nonempty closed convex subset of a real
Hilbert space H and T, S : C → C be nonexpansive and contraction mappings,
respectively, such that Fix(T ) 
= ◦. Let {xn} be a sequence generated by Algorithm
3. Let {γn} ⇔ (0, 1) and {φn} ⇔ (0, 1) be two sequences of real numbers satisfying
the following conditions:

(i) 0 < lim inf
n→⊆ γn ∗ lim sup

n→⊆
γn < 1;

(ii) limn→⊆ φn = 0 and
⎪⊆

n=0 φn = ⊆.

Then,

(a) {xn} converges strongly to a fixed point of T ;
(b) {xn} is asymptotically regular, namely limn→⊆ ≤xn+1 − xn≤ = 0;
(c) {xn} converges strongly to a solution of HVIP (11).

In 2007, Mainge and Moudafi [48] proposed the following viscosity-like method
for approximating a specific solution of HVIP (11).

xn+1 = φn f (xn) + (1 − γn) (γn S(xn) + (1 − φn)T (xn)) , for n ∈ 0, (21)

where the initial guess x0 ∇ C , f : C → C is a contraction mapping and {φn} and
{γn} are sequences in (0, 1) satisfying certain conditions. Note that this method can
be regarded as a generalization of Halpern’s algorithm. The strong convergence of
the sequence generated by this method is also studied in [48].

Lu et al. [47] proposed the following generalization of iterative scheme (21).

xn+1 = φn [γn f (xn) + (1 − γn)S(xn)] + (1 − φn)T (xn), for n ∈ 0, (22)

where the initial guess x0 ∇ C , f : C → C is a contraction mapping and {φn} and
{γn} are sequences in (0, 1) satisfying certain conditions. The strong convergence of
the sequence generated by the above method is also studied. An application of HVIP
to hierarchical minimization problem is also studied.

A fairly common method in solving some nonlinear problems is to replace the
original problem by a family of regularized (perturbed) problems and each of these
regularized problems has a unique solution. A particular (viscosity) solution of the
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original problem is obtained as a limit of these unique solutions of the regularized
problems. This idea is used byMoudafi andMainge [57] and considered the viscosity
method for hierarchical fixed point problems of nonexpansive mappings as follows:

Let C be a nonempty closed convex subset of a real Hilbert space H . Given a
contraction mapping f : C → C and two nonexpansive mappings S, T : C → C .
Then for s, t ∇ (0, 1), the mapping

x ⊂→ s f (x) + (1 − s) [t S(x) + (1 − t)T (x)]

is a contraction mapping on C . So it has a unique fixed point, denoted by xs,t ∇ C ;
thus

xs,t = s f (xs,t ) + (1 − s)
⎛

t S(xs,t ) + (1 − t)T (xs,t )
⎝

. (23)

It is interesting to know the behavior of {xs,t } when s, t → 0 separately or jointly.
Moudafi and Mainge [57] initiated the investigation of the behavior of the net {xs,t }
as s → 0 first and then as t → 0. It is further studied by Cianciaruso et al. [17],
Marino and Xu [52], Xu [78], Yao et al. [82], and Zeng et al. [92].

Yamada [80] considered the following variational inequality problem defined
over the intersection of the fixed point sets of a family of N nonexpansive mappings
Ti : H → H , where N ∈ 1 an integer.

Problem 2 For all i = 1, 2, . . . , N , assume that

(B1) Ti : H → H is a nonexpansive mapping with
⎧N

i=1 Fix(Ti ) 
= ◦,
(B2) A : H → H is α-strongly monotone and L-Lipschitz continuous.

The hierarchical variational inequality problem defined over the set
⎧N

i=1 Fix(Ti ) is
to find x⇒ ∇ ⎧N

i=1 Fix(Ti ) such that

∞A(x⇒), y − x⇒∩ ∈ 0, for all y ∇
⋂N

i=1
Fix(Ti ), (24)

that is, to find

x⇒ ∇ VIP

⎞
N⎧

i=1
Fix(Ti ), A

⎠

:=
⎟

x⇒ ∇
N⎧

i=1
Fix(Ti ) : ∞A(x⇒), y − x⇒∩ ∈ 0, for all y ∇

N⎧

i=1
Fix(Ti )

}

.

Yamada [80] proposed the following iterativemethod to compute the approximate
solutions of HVIP (Problem 2).

Algorithm 4 Start with any initial choice x0 ∇ H , any μ ∇
(

0, 2α
L2

⎜

and generate a

sequence {xn} by

xn+1 := T φn+1
[n+1](xn) := T[n+1](xn) − φn+1μA

⎨

T[n+1](xn)
⎩

, (25)
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where [·] is the modulo N function defined by [i] := [i]N := {i − k N : k =
0, 1, 2, . . .} ∀ {1, 2, . . . , N }.

The Yamada [80] established the following strong convergence result for the
sequence generated by the Algorithm 4.

Theorem 5 [80, Theorem 3.3] For i = 1, 2, . . ., let Ti : H → H be a nonexpansive
mapping with

⎧N
i=1 Fix(Ti ) 
= ◦ and

N⎧

i=1
Fix(Ti ) = Fix (T1 ∃ T2 ∃ T3 ∃ · · · ∃ TN )

= Fix (TN ∃ T2 ∃ T3 ∃ · · · ∃ TN−1)
...

= Fix (TN−1 ∃ TN−2 ∃ · · · ∃ TN ∃ T1).

Suppose that a mapping A : H → H is L-Lipschitz continuous and α-strongly

monotone over Ω = ⎧N
i=1 Fix(Ti ). Then with any x0 ∇ H, any μ ∇

(

0, 2α
L2

⎜

and

any sequence {φn} ⇔ [0, 1] satisfying

(i) limn→⊆ φn = 0,
(ii)

⎪⊆
n=1 φn = +⊆,

(iii)
⎪⊆

n=1 |φn − φn+N | < +⊆,

the sequence {xn} generated by (25) converges strongly to the uniquely existing
solution of HVIP 2.

An example of the sequence {φn} of real numbers that satisfies conditions (i)–(iii)
of Theorem 5 is φn = 1

n .
Very recently, Ceng et al. [10] proposed the following iterative method to find the

approximate solutions of HVIP (Problem 2).

Algorithm 5 Start with any initial choice x0 ∇ H , any μ ∇
(

0, 2α
L2

⎜

, {φn} ⇔ [0, 1),
{γn} ⇔ (0, 1), {αn} ⇔ (0, 2γ) and generate a sequence {xn} by

xn+1 := γn xn−1 + (1 − γn)T φn[n](x̄n)

:= γn xn−1 + (1 − γn)
⎛

T[n](xn − γn F(xn)) − φnμA ∃ T[n] (xn − γn F(xn))
⎝

,

(26)
for n ∈ 1, where F : H → H is an γ-inverse strongly monotone mapping.

Ceng et al. [10] establish the following weak convergence result for the sequence
generated by (26).

Theorem 6 [10, Theorem 3.1] Let F : H → H be an γ-inverse strongly monotone
mapping, A : H → H is L-Lipschitz continuous and α-strongly monotone for some
constants L , α > 0. For each i = 1, 2, . . . , N, let Ti : H → H be nonexpansive

with
⎧N

i=1 Fix(Ti ) 
= ◦. Suppose thatVIP
(
⎧N

i=1 Fix(Ti ), A
⎜


= ◦. Let μ ∇
(

0, 2α
L2

⎜

,

{φn} ⇔ [0, 1), {γn} ⇔ (0, 1), {αn} ⇔ (0, 2γ) be such that
⎪⊆

n=1 φn < ⊆, αn ∗ φn
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and a ∗ γn ∗ b for all n ∈ 1, for some a, b ∇ (0, 1). Then, the sequence {xn}
generated by (26) converges weakly to an element of

⎧N
i=1 Fix(Ti ) 
= ◦.

If, in addition, ≤xn −T[n](x̄n)≤ = o(αn), then the sequence {xn} converges weakly

to an element of VIP
(
⎧N

i=1 Fix(Ti ), A
⎜

.

They also provided the following strong convergence result.

Theorem 7 [10, Theorem 3.4] Under the hypothesis of Theorem 6, the sequence

{xn} generated by (26) converges strongly to an element of VIP
(
⎧N

i=1 Fix(Ti ), A
⎜

if and only if lim inf
n→⊆ d(xn, C) = 0, where C := VIP

(
⎧N

i=1 Fix(Ti ), A
⎜

.

5 Triple Hierarchical Variational Inequalities

A variational inequality problem defined over the set of solutions of hierarchical
variational inequality problem is called a triple hierarchical variational inequality
problem.

Problem 3 Let H be a real Hilbert space. Assume that

(B1) T : H → H is a nonexpansive mapping with Fix(T ) 
= ◦;
(B2) A1 : H → H is an γ-inverse strongly monotone mapping;
(B3) A2 : H → H is a α-strongly monotone and L-Lipschtiz continuous mapping;
(B4) VIP(Fix(T ), A1) 
= ◦.
The triple hierarchical variational inequality problem (in short, THVIP) is to find
x⇒ ∇ VIP (Fix(T ), A1) such that

∞A2(x⇒), v − x⇒∩ ∈ 0, for all v ∇ VIP (Fix(T ), A1), (27)

that is, to find

x⇒ ∇ VIP (VIP (Fix(T ), A1) , A2)

= {x⇒ ∇ VIP(Fix(T ), A1) : ∞A2(x⇒), v − x⇒∩ ∈ 0, ⇐v ∇ VIP(Fix(T ), A1)}.

Example 4 [29] LetC be a nonempty closed convex subset of a real Hilbert space H ,
f0 : H → R be a convex function with 1

γ
-Lipschitz continuous gradient, f1 : H →

R be a convex function with 1
γ
-Lipschitz continuous gradient, and f2 : H → H be

a strongly convex function with a Lipschitz continuous gradient. Define

T := PC (I − φ∪ f0), for φ ∇ (0, 2γ ],

and
Ai := ∪ fi , for i = 1, 2.
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Then, by Proposition 2 and Proposition 3 (c) and (e), T is nonexpansive with
Fix(T ) = argminz∇C f0(z). Then, THVIP (Problem 3)with T := PC (I −φ∪ f0), for
φ ∇ (0, 2γ ] and Ai := ∪ fi , for i = 1, 2, reduces to the following triple hierarchical
constrained convex optimization problem (in short, THCCOP):

Minimize f2(x) subject to x ∇ arg min
y∇argmin

z∇C
f0(z)

f1(y).

This problem is called double-hierarchical constrained convex optimization in [8].

Example 5 [29] Let A0 : H → H be a γ -inverse strongly monotone and f1, f2 :
H → R be the same as in Example 4. Consider

T := PRn+(I − φA0), for φ ∇ (0, 2γ ],

and
Ai := ∪ fi , for i = 1, 2.

Then, the set VIP(Fix(T ), A1) coincides with the solution set of the following
mathematical program with the complementarity constraint (MPCC) [46, 62]:

Minimize f1(x) subject to x ∇ R
n+, A0(x) ∇ R

n+, ∞x, A0(x)∩ = 0.

Then THVIP (Problem 3) reduces to the following convex optimization problem over
solution set of MPCC:

Minimize f2(x), subject to x ∇ Sol(MPCC),

where Sol(MPCC) denotes the set of solutions of MPCC.

Example 6 [29] Let H be a real Hilbert space and S, T : H → H be nonexpansive
mappings with nonempty fixed point set. Let f2 : H → R be defined as in Example
4. Define

A1 := 1

δ
(I − S), for δ > 0, and A2 := ∪ f2,

where I denotes the identity mapping. Then, A1 is δ2

2 -inverse strongly monotone and
VIP(Fix(T ), A1) can be represented as the solution set of the following hierarchical
fixed point problem (HFPP) for nonexpansive mappings [48, 56]:

find x̄ ∇ HFPP(S, T ) := {

x̄ ∇ Fix(T ) : x̄ = PFix(T )S(x̄)
}

.

Therefore, THVIP (Problem 3) reduces to the following minimization problem over
hierarchical fixed point problem:

Minimize f2(x), subject to x ∇ HFPP(S, T ).



Triple Hierarchical Variational Inequalities 249

Iiduka [27, 29] proposed the following iterative method to compute the solutions
of THVIP (Problem 3).

Algorithm 6 [27, 29] Step 0. Take μ > 0, {γn} ⇔ (0, 1], {φn} ⇔ (0,⊆), choose
x0 ∇ H arbitrarily, and let n := 0.
Step 1. Given xn ∇ H , compute xn+1 ∇ H as

yn := T (xn − φn A1(xn)),

xn+1 := yn − μγn A2(yn).
(28)

Update n := n + 1 and go to Step 1.

Iiduka [27] established the following convergence result for Algorithm 6:

Theorem 8 [27, Theorem 3.2] Assume that the Assumptions (B1)–(B4) are satisfied
and {yn} in Algorithm 6 is bounded. Let μ ∇ (0, 2α

L2 ), {γn} ⇔ (0, 1] and {φn} ⇔
(0, 2γ] be such that the following conditions hold:

(i)
⎪⊆

n=1 γn = ⊆;

(ii) limn→⊆ 1
γn+1

∣
∣
∣

1
φn+1

− 1
φn

∣
∣
∣ = 0;

(iii) limn→⊆ 1
φn+1

∣
∣
∣1 − γn

γn+1

∣
∣
∣ = 0;

(iv) limn→⊆ φn = 0;
(v) limn→⊆ γn

φn
= 0;

(vi) limn→⊆ φ2n
γn

= 0.

Then, the sequence {xn} generated by Algorithm 6 satisfies the following properties:

(a) {xn}, {A1(xn)} and {A2(yn)} are bounded.
(b) limn→⊆ ≤xn+1−xn≤

φn
= 0, limn→⊆ ≤xn−yn≤

φn
= 0 and limn→⊆ ≤xn − T (xn)≤ = 0.

(c) If there exists k > 0 such that ≤x−T (x)≤ ∈ k inf
y∇Fix(T )

≤x−y≤ for all x ∇ H, then

the sequence {xn} converges strongly to the unique existing solution of THVIP
(Problem 3).

Iiduka [29] further studied the convergence of the sequence generated by the
Algorithm 6 by making some changes in the parametric sequences. He established
the following convergence result.

Theorem 9 [29, Theorem 4.1] Assume that the assumptions (B1)–(B4) are satisfied

and {yn} in Algorithm 6 is bounded. Let μ ∇
(

0, 2α
L2

⎜

, {γn} ⇔ (0, 1] and {φn} ⇔
(0, 2γ] be sequences of real numbers such that the following conditions hold:

(i) limn→⊆ γn = 0;
(ii)

⎪⊆
n=1 γn = ⊆;

(iii)
⎪⊆

n=1 |γn+1 − γn| < ⊆;
(iv)

⎪⊆
n=1 |φn+1 − φn| < ⊆;

(v) φn ∗ γn for all n ∇ N.
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Then, the sequence {xn} generated by Algorithm 6 satisfies the following properties:

(a) {xn} is bounded.
(b) limn→⊆ ≤xn − yn≤ = 0 and limn→⊆ ≤xn − T (xn)≤ = 0.
(c) If ≤xn − yn≤ = o(φn), then {xn} converges strongly to the unique solution of

THVIP (Problem 3).

Recently, Ceng et al. [12] extended Algorithm 6 by taking variable parameters
and proposed the following iterative method.

Algorithm 7 [12] Step 0. Take {γn} ⇔ (0, 1], {φn} ⇔ (0, 2γ) and {μn} ⇔
(

0, 2α
L2

⎜

,

choose x0 ∇ H arbitrarily, and let n := 0,
Step 1. Given xn ∇ H, compute xn+1 ∇ H as

yn := T (xn − φn A1(xn)),

xn+1 := yn − μnγn A2(yn). (29)

Update n := n + 1 and go to Step 1.

In Algorithm 7, a sequence {μn} of positive parameters is introduced so as to take

into account possible inexact computation. For μ ∇
(

0, 2α
L2

⎜

whenever μn = μ for

all n ∈ 0, then Algorithm 7 reduces to Algorithm 6.
The following convergence result for the sequence generated by Algorithm 7 is

established by Ceng et al. [12].

Theorem 10 [12, Theorem 3.1] Assume that the Assumptions (B1)–(B4) are satis-
fied and the sequence {yn} generated by Algorithm 7 is bounded. Let {γn} ⇔ (0, 1],
{φn} ⇔ (0, 2γ) and {μn} ⇔

(

0, 2α
L2

⎜

such that

(i)
⎪⊆

n=0 γn = ⊆ and limn→⊆ γn = 0,

(ii)
∣
∣
∣μn − α

L2

∣
∣
∣ ∗

√
α2−cL2

L2 , for some c ∇
(

0, α2

L2

⎜

,

(iii) limn→⊆
(

μn+1 −
(

γn
γn+1

⎜

μn

⎜

= 0,

(iv)
⎪⊆

n=0 |φn+1 − φn| < ⊆ and φn ∗ γn, for all n ∈ 0.

Then, the sequence generated by Algorithm 7 satisfies the following properties:

(a) {xn} is bounded.
(b) limn→⊆ ≤xn − yn≤ = 0 and limn→⊆ ≤xn − T (xn)≤ = 0.
(c) {xn} converges strongly to a unique solution of THVIP (Problem 3) provided

≤xn − yn≤ = o(φn).

Remark 1 For μ ∇
(

0, 2α
L2

⎜

, whenever μn = μ for all n ∈ 0, then the condition (ii)

in Theorem 10 holds.
Indeed, since

lim
t→0+

α − √

α2 − t L2

L2 = 0 < μ,
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and

lim
t→0+

α + √

α2 − t L2

L2 = 2α

L2 > μ,

there exist some δ1, δ2 ∇
(

0, α2

L2

⎜

such that

α − √

α2 − t L2

L2 < μ, for all t ∇ (0, δ1),

and
α + √

α2 − t L2

L2 > μ, for all t ∇ (0, δ2).

Therefore, it is obvious that we can pick a number c ∇
(

0, α2

L2

⎜

such that

α − √

α2 − cL2

L2 < μ <
α + √

α2 − cL2

L2 ,

that is,
∣
∣
∣
∣
μ − α

L2

∣
∣
∣
∣
<

√

α2 − cL2

L2 .

Also, for μ ∇
(

0, 2α
L2

⎜

whenever μn = μ for all n ∈ 0, condition (iii) in Theorem

10 is equivalent to

lim
n→⊆

γn

γn+1
= 1.

This condition is different from the condition (iii) in Theorem 9.

The conclusion of Theorem 10 is also proved by Zeng et al. [89, Theorem 3.1] by
assuming the following parametric conditions.

(i)
⎪⊆

n=0 γn = ⊆ and limn→⊆ γn = 0,
(ii) limn→⊆ γn−γn+1

γn+1
= 0 or

⎪⊆
n=0 |γn+1 − γn| < ⊆,

(iii) limn→⊆ φn−φn+1
φn+1

= 0 or
⎪⊆

n=0 |φn+1 − φn| < ⊆,
(iv) φn ∗ γn for all n ∈ 0.

Theypresented an application ofTHVIP (Problem3) to constrainedpseudoinverse
problem.

We now present an example to illustrate the Algorithm 7 and Theorem 10.

Example 7 Let H = R
2 with inner product ∞., .∩ and norm ≤ · ≤ are defined by

∞x, y∩ = ac + bd and ≤x≤ =
√

a2 + b2,
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for all x, y ∇ R
2 with x = (a, b) and y = (c, d). Let C = {

x ∇ R
2 : ≤x≤ ∗ 1

}

.
Clearly, C is a nonempty, bounded, closed and convex subset of R2. Let

A1 =
⎟ 1

3 − 1
3− 1

3
1
3

}

.

Then, A1 is γ-inverse strongly monotone with γ = 1
2 .

Let

A2 = 1

2
I =

⎟ 1
2 0
0 1

2

}

.

Then, A2 : C → C is a L-Lipschitz continuous and α-strongly monotone oper-
ator with constants L = 1

2 and α = 1
2 , respectively. Take μ = 2 such that

0 < μ < 2α/L2.

Let T be a 2× 2 positive definite matric such that ≤T ≤ = 1, for instance, putting

T =
⎫ 3

5
2
5

2
5

3
5

⎬

.

Then, ≤T ≤ = 1 and T : C → C is a nonexpansive mapping with

Fix(T ) = {(a, a) : |a| ∗ 1} 
= ◦.

Further, we observe that the solution set HVIP (Fix(T ), A1) of the HVIP is the
following:

HVIP (Fix(T ), A1) = {z⇒ ∇ Fix(T ) : ∞A1(z⇒), z − z⇒∩ ∈ 0, for all z ∇ Fix(T )}
= {z⇒ ∇ Fix(T ) : ∞0, z − z⇒∩ ∈ 0, for all z ∇ Fix(T )}
= Fix(T ) = {(a, a) : |a| ∗ 1} 
= ◦.

It is easy to see that there exists a unique solution x⇒ = (0, 0) to the followingTHVIP:
Find x⇒ ∇ HVIP (Fix(T ), A1) (= Fix(T )) such that

∞A2(x⇒), v − x⇒∩ ∈ 0, for all v ∇ HVIP (Fix(T ), A1) .

By using Matlab programming, we analyze the convergence of the sequences
generated by Algorithms 6 and 7.
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For μ = 1 ∇ (0, 2α/L2), we generate the sequence xn+1 by Algorithm 6.

No. of iterations yn xn+1

1 (0.001, 0.001) (0.001, 0.001)
2 (0.001, 0.001) (0.0095, 0.0095)
3 (0.0095, 0.0095) (0.0086, 0.0086)
4 (0.0086, 0.0086) (0.0073, 0.0073)
5 (0.0073, 0.0073) (0.0058, 0.0058)
6 (0.0058, 0.0058) (0.0044, 0.0044)
7 (0.0044, 0.0044) (0.0031, 0.0031)
8 (0.0031, 0.0031) (0.0020, 0.0020)
9 (0.0020, 0.0020) (0.0012, 0.0012)
10 (0.0012, 0.0012) (1.0e−003)(0.6545, 0.6545)
11 (1.0e−003)(0.6545, 0.6545) (1.0e−003)(0.3274, 0.3274)
12 (1.0e1.0e−003)(0.3274, 0.3274) (1.0e1.0e−003)(0.1473, 0.1473)
13 (1.0e1.0e−003)(0.1473, 0.1473) (1.0e1.0e−004)(0.5893, 0.5893)
14 (1.0e1.0e−004)(0.5893, 0.5893) (1.0e1.0e−004)(0.2062, 0.2062)
15 (1.0e1.0e−004)(0.2062, 0.2062) (1.0e1.0e−005)(0.6187, 0.6187)
16 (1.0e1.0e−005)(0.6187, 0.6187) (1.0e1.0e−005)(0.1547, 0.1547)
17 (1.0e1.0e−005)(0.1547, 0.1547) (1.0e1.0e−006)(0.3094, 0.3094)
18 (1.0e1.0e−006)(0.3094, 0.3094) (1.0e1.0e−007)(0.4640, 0.4640)
19 (1.0e1.0e−007)(0.4640, 0.4640) (1.0e1.0e−008)(0.4640, 0.4640)
20 (1.0e1.0e−008)(0.4640, 0.4640) (1.0e1.0e−009)(0.2320, 0.2320)
21 (1.0e1.0e−009)(0.2320, 0.2320) (0, 0)

For μn ⇔ (0, 2α/L2), we generate the sequence xn+1 by Algorithm 7

No. of iterations yn xn+1

1 (0.0100, 0.0100) (0.0100, 0.0100)
2 (0.0100, 0.0100) (0.0099, 0.0099)
3 (0.0099, 0.0099) (0.0095, 0.0095)
4 (0.0095, 0.0095) (0.0086, 0.0086)
5 (0.0086, 0.0086) (0.0073, 0.0073)
6 (0.0073, 0.0073) (0.0054, 0.0054)
7 (0.0054, 0.0054) (0.0035, 0.0035)
8 (0.0035, 0.0035) (0.0018, 0.0018)
9 (0.0018, 0.0018) (1.0e1.0e−003)(0.6402, 0.6402)
10 (1.0e1.0e−003)(0.6402, 0.6402) (1.0e1.0e−003)(0.1216, 0.1216)
11 (1.0e1.0e−003)(0.1216, 0.1216) (0, 0)

Among classes of nonlinear mappings, the class of pseudo-contraction mappings
is one of the most important classes because it is closely related to the class of
monotone mappings. Up to now, considerable research efforts have been devoted to
develop the iterative methods for computing the approximate fixed points of pseudo-
contraction mappings; See for example [16, 51, 61, 72, 85, 86, 90, 94, 95] and the
references therein.
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We propose the following hybrid iterative algorithm for computing a fixed point
of a pseudo-contraction mapping and finding a solution of THVIP (Problem 3) in
the setting of real Hilbert spaces.

Algorithm 8 Suppose that the assumptions (B1)–(B4) in Problem 3 are satisfied.
Step 1. Take μ > 0. Put C1 = H , choose x0 ∇ H , φ1 ∇ (0, 2γ], γ1 ∇ (0, 1],
α1 ∇ (0, 1) arbitrarily, and let n := 1.
Step 2. Given xn ∇ Cn , choose φn ∇ (0, 2γ], γn ∇ (0, 1] and αn ∇ (0, 1) and
compute xn+1 ∇ Cn+1 as

⎭





yn := (1 − αn)xn + αn(I − γnμA2)Tn(xn),

Cn+1 :=
⎭





z ∇ Cn : ≤αn(I − (I − γnμA2)Tn)(yn)≤2
∗ 2αn[∞xn − z, (I − (I − γnμA2)Tn)(yn)∩

− ∞γnμA2Tn(yn) + φn A1(T (yn)), yn − z∩]






,

xn+1 := PCn+1(x0), n ∈ 0,

(30)

where Tn := (I − φn A1)T for all n ∈ 1.
Update n := n + 1 and go to Step 2.

We now present the criteria for the strong convergence of the sequence generated
by the Algorithm 8.

Theorem 11 Let T : H → H be a L-Lipschitz continuous pseudo-contractive
self-mapping defined on a real Hilbert space H such that Fix(T ) 
= ◦. Assume that

{αn} ⇔ [a, b] for some a, b ∇
(

0, 1
L+1

⎜

and {γn} ⇔ (0, 1] and {φn} ⇔ (0, 2γ] such

that limn→⊆ γn = limn→⊆ φn = 0. Take a fixed number μ ∇
(

0, 2α
L2

⎜

. Then, the

sequence {xn} generated by Algorithm 8 satisfies the following properties:

(a) {xn} is bounded;
(b) limn→⊆ ≤xn − yn≤ = 0 and limn→⊆ ≤xn − T (xn)≤ = 0;
(c) {xn} converges strongly to PFix(T )(x0);
(d) If T is nonexpansive and A1 is injective, PFix(T )(x0) is a unique solution of

THVIP (Problem 3) provided limn→⊆ (≤xn − yn≤ + γn) /φn = 0.

Proof We first show that PFix(T ) and {xn} are well defined.
From [51, 94], we note that Fix(T ) is closed and convex. Indeed, by Zhou [94],

we can define a mapping g : H → H by

g(x) = (2I − T )−1(x), for all x ∇ H.

It is clear that g is a nonexpansive self-mapping such that Fix(T ) = Fix(g). Hence, by
Matinez-Yanes and Xu [53, Proposition 2.1 (iii)], we conclude that Fix(g) = Fix(T )

is a closed convex set. This implies that the projection PFix(T ) is well defined. It is
obvious that {Cn} is closed and convex. Thus, {xn} is also well defined.

We now show that Fix(T ) ≥ Cn for all n ∈ 0. Indeed, taking p ∇ Fix(T ), we
note that (I − T )p = 0 and (1) is equivalent to
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∞(I − T )(x) − (I − T )(y), x − y∩ ∈ 0, for all x, y ∇ H. (31)

By using Lemma 1 and the inequality (31), we obtain

≤xn − p − αn(I − (I − γnμA2)Tn)(yn)≤2
= ≤xn − p≤2 − ≤αn(I − (I − γnμA2)Tn)(yn)≤2

− 2αn ∞(I − (I − γnμA2)Tn)(yn), xn − p − αn(I − (I − γnμA2)Tn)(yn)∩
= ≤xn − p≤2 − ≤αn(I − (I − γnμA2)Tn)(yn)≤2

− 2αn ∞(I − T )(yn) − (I − T )(p) + φn A1(T (yn)), yn − p∩
− 2αn ∞Tn(yn) − (I − γnμA2)(Tn(yn)), yn − p∩
− 2αn ∞(I − (I − γnμA2)Tn)(yn), xn − yn − αn(I − (I − γnμA2)Tn)(yn)∩

∗ ≤xn − p≤2 − ≤αn(I − (I − γnμA2)Tn)(yn)≤2
− 2αn∞Tn(yn) − (I − γnμA2)Tn(yn) + φn A1(T (yn)), yn − p∩
− 2αn∞(I − (I − γnμA2)Tn)(yn), xn − yn − αn(I − (I − γnμA2)Tn)(yn)∩

= ≤xn − p≤2 − ≤xn − yn + yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤2
− 2αn∞γnμA2Tn yn + φn A1(T (yn), yn − p∩
− 2αn ∞(I − (I − γnμA2)Tn)(yn), xn − yn − αn(I − (I − γnμA2)Tn)(yn)∩

= ≤xn − p≤2 − ≤xn − yn≤2 − ≤yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤2
− 2 ∞xn − yn, yn − xn + αn(I − (I − γnμA2)Tn)(yn)∩
+ 2αn ∞(I − (I − γnμA2)Tn)(yn), yn − xn + αn(I − (I − γnμA2)Tn)(yn)∩
− 2αn ∞γnμA2(Tn(yn)) + φn A1(T (yn)), yn − p∩

= ≤xn − p≤2 − ≤xn − yn≤2 − ≤yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤2
− 2∞xn − yn − αn(I − (I − γnμA2)Tn)(yn), yn − xn

+ αn(I − (I − γnμA2)Tn)(yn)∩
− 2αn ∞γnμA2Tn(yn) + φn(A1(T (yn)), yn − p∩

∗ ≤xn − p≤2 − ≤xn − yn≤2 − ≤yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤2
+ 2

∣
∣
∣∞xn − yn − αn(I − (I − γnμA2)Tn)(yn), yn − xn

+ αn(I − (I − γnμA2)Tn)(yn)∩
∣
∣
∣

− 2αn ∞γnμA2Tn(yn) + φn A1(T (yn)), yn − p∩.
(32)

Since T is a L-Lipschitz continuous mapping, by Lemma 4 and Proposition 5, we
have

≤(I − (I − γnμA2)Tn)(xn) − (I − (I − γnμA2)Tn)(yn)≤
∗ ≤xn − yn≤ + ≤(I − γnμA2)Tn(xn) − (I − γnμA2)Tn(yn)≤
∗ ≤xn − yn≤ + (1 − γnτ)≤Tn(xn) − Tn(yn)≤
= ≤xn − yn≤ + (1 − γnτ)≤(I − φn A1)T (xn) − (I − φn A1)T (yn)≤
∗ ≤xn − yn≤ + ≤(I − φn A1)T (xn) − (I − φn A1)T (yn)≤
∗ ≤xn − yn≤ + ≤T (xn) − T (yn)≤
∗ (L + 1)≤xn − yn≤,

(33)

where τ = 1 − √

1 − μ(2η − μκ2). From (30), we observe that
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xn − yn = αn (I − (I − γnμA2)Tn) xn .

Hence, by utilizing (33), we obtain

|∞xn − yn − αn(I − (I − γnμA2)Tn)(yn), yn − xn + αn(I − (I − γnμA2)Tn)(yn)∩|
= αn |∞(I − (I − γnμA2)Tn)(xn) − (I − (I − γnμA2)Tn)(yn), yn − xn

+ αn(I − (I − γnμA2)Tn)(yn)∩|
∗ αn≤(I − (I − γnμA2)Tn)(xn) − (I − (I − γnμA2)Tn)yn≤·

≤yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤
∗ αn(L + 1)≤xn − yn≤ ≤yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤
∗ αn(L+1)

2

(

≤xn − yn≤2 + ≤yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤2
⎜

.

(34)
Combining (32) and (34), we get

≤xn − p − αn(I − (I − γnμA2)Tn)(yn)≤2
∗ ≤xn − p≤2 − ≤xn − yn≤2 − ≤yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤2

+ αn(L + 1)
⎨≤xn − yn≤2 + ≤yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤2⎩

− 2αn∞γnμA2(Tn(yn)) + φn A1(T (yn)), yn − p∩
= ≤xn − p≤2 + [αn(L + 1) − 1](≤xn − yn≤2

+ ≤yn − xn + αn(I − (I − γnμA2)Tn)(yn)≤2)
− 2αn∞γnμA2(Tn(yn)) + φn A1(T (yn)), yn − p∩

∗ ≤xn − p≤2 − 2αn∞γnμA2(Tn(yn)) + φn A1(T (yn)), yn − p∩.
(35)

We observe that

≤xn − p − αn(I − (I − γnμA2)Tn)(yn)≤2
= ≤xn − p≤2 − 2αn∞xn − p, (I − (I − γnμA2)Tn)(yn)∩

+ ≤αn(I − (I − γnμA2)Tn)(yn)≤2.
(36)

Therefore, from (35) and (36), we have

≤αn(I − (I − γnμA2)Tn)(yn)≤2 ∗ 2αn[∞xn − p, (I − (I − γnμA2)Tn)(yn)∩
−∞γnμA2(Tn(yn)) + φn A1(T (yn)), yn − p∩],

which implies that

p ∇ Cn, that is, Fix(T ) ≥ Cn, for all n ∈ 1.

Since xn = PCn (x0), we have

∞x0 − xn, xn − y∩ ∈ 0, for all y ∇ Cn .

Since Fix(T ) ≥ Cn , we obtain

∞x0 − xn, xn − u∩ ∈ 0, for all u ∇ Fix(T ).
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Therefore, for all u ∇ Fix(T ), we have

0 ∗ ∞x0 − xn, xn − u∩
= ∞x0 − xn, xn − x0 + x0 − u∩
= −≤x0 − xn≤2 + ∞x0 − xn, x0 − u∩
∗ −≤x0 − xn≤2 + ≤x0 − xn≤≤x0 − u≤,

which implies that

≤x0 − xn≤ ∗ ≤x0 − u≤, for all u ∇ Fix(T ). (37)

Thus, {xn} is bounded and so are {yn}, {T (yn)}, {Tn(yn)}.
From xn = PCn (x0) and xn+1 = PCn+1(x0) ∇ Cn+1 ⇔ Cn , we have

∞x0 − xn, xn − xn+1∩ ∈ 0. (38)

Hence,
0 ∗ ∞x0 − xn, xn − xn+1∩

= ∞x0 − xn, xn − x0 + x0 − xn+1∩
= −≤x0 − xn≤2 + ∞x0 − xn, x0 − xn+1∩
∗ −≤x0 − xn≤2 + ≤x0 − xn≤≤x0 − xn+1≤,

and therefore,
≤x0 − xn≤ ∗ ≤x0 − xn+1≤.

Thus, limn→⊆ ≤xn − x0≤ exists.
From Lemma 2 and the inequality (38), we obtain

≤xn+1 − xn≤2 = ≤(xn+1 − x0) − (xn − x0)≤2
= ≤xn+1 − x0≤2 − ≤xn − x0≤2 − 2∞xn+1 − xn, xn − x0∩
∗ ≤xn+1 − x0≤2 − ≤xn − x0≤2 → 0.

Since xn+1 ∇ Cn+1 ≥ Cn , from ≤xn − xn+1≤ → 0, φn → 0 and γn → 0, it follows
that

≤αn(I − (I − γnμA2)Tn)(yn)≤2
∗ 2αn[∞xn − xn+1, (I − (I − γnμA2)Tn)(yn)∩

− ∞γnμA2(Tn(yn)) + φn A1(T (yn)), yn − xn+1∩]
∗ 2αn[≤xn − xn+1≤≤(I − (I − γnμA2)Tn)(yn)≤

+ ≤γnμA2(Tn(yn)) + φn A1(T (yn))≤≤yn − xn+1≤]
∗ 2αn[≤xn − xn+1≤(≤yn≤ + ≤Tn(yn)≤ + γnμ≤A2(Tn(yn))≤)

+ (γnμ≤A2(Tn(yn))≤ + φn≤A1(T (yn))≤)≤yn − xn+1≤] → 0.
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We note that αn ∇ [a, b] for some a, b ∇
(

0, 1
L+1

⎜

, we thus obtain

≤yn − (I − γnμA2)Tn(yn)≤ → 0.

We also note that

≤T (yn) − (I − γnμA2)Tn(yn)≤ = ≤T (yn) − Tn(yn) + γnμA2(Tn(yn))≤
∗ ≤T (yn) − (I − φn A1)T (yn)≤ + γnμ≤A2(Tn(yn))≤
= φn≤A1(T (yn))≤ + γnμ≤A2(Tn(yn))≤ → 0.

Therefore, we get

≤yn −T (yn)≤ ∗ ≤yn −(I −γnμA2)Tn(yn)≤+≤T (yn)−(I −γnμA2)Tn(yn)≤ → 0.

On the other hand, by utilizing Lemma 4 and Proposition 5, we deduce that

≤xn − (I − γnμA2)Tn(xn)≤
∗ ≤xn − yn≤ + ≤yn − (I − γnμA2)Tn(yn)≤

+ ≤(I − γnμA2)Tn(yn) − (I − γnμA2)Tn(xn)≤
∗ ≤xn − yn≤ + ≤yn − (I − γnμA2)Tn(yn)≤

+ (1 − γnτ)≤Tn(yn) − Tn(xn)≤
∗ ≤xn − yn≤ + ≤yn − (I − γnμA2)Tn(yn)≤

+ ≤(I − φn A1)T (yn) − (I − φn A1)T (xn)≤
∗ ≤xn − yn≤ + ≤yn − (I − γnμA2)Tn(yn)≤ + ≤T (yn) − T (xn)≤
∗ ≤xn − yn≤ + ≤yn − (I − γnμA2)Tn(yn)≤ + L≤yn − xn≤
= (L + 1)≤xn − yn≤ + ≤yn − (I − γnμA2)Tn(yn)≤
= αn(L + 1)≤xn − (I − γnμA2)Tn(xn)≤ + ≤yn − (I − γnμA2)Tn(yn)≤,

that is,

≤xn − (I − γnμA2)Tn(xn)≤ ∗ 1

1 − αn(L + 1)
≤yn − (I − γnμA2)Tn(yn)≤ → 0.

We note that

≤T (xn) − (I − γnμA2)Tn(xn)≤ = ≤T (xn) − Tn(xn) + γnμA2(Tn(xn))≤
∗ ≤T (xn) − (I − φn A1)T (xn)≤ + γnμ≤A2(Tn(xn))≤
= φn≤A1(T (xn))≤ + γnμ≤A2(Tn(xn))≤ → 0.

Consequently,

≤xn −T (xn)≤ ∗ ≤xn −(I −γnμA2)Tn(xn)≤+≤T (xn)−(I −γnμA2)Tn(xn)≤ → 0.
(39)

Relation (39) and Lemma 6 guarantee that every weak limit point of the sequence
{xn} is a fixed point of T , that is, εw(xn) ≥ Fix(T ). This fact, the inequality (37) and
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Lemma 1 ensure the strong convergence of {xn} to PFix(T )(x0). Since ≤xn − yn≤ =
≤αn(I − (I − γnμA2)Tn)(xn)≤ → 0, it immediately follows that the sequence {yn}
converges strongly to PF(T )(x0).

Finally, we prove that whenever T is nonexpansive and A1 is injective and (≤xn −
yn≤ + γn)/φn → 0 (as n → ⊆), PFix(T )(x0) is the unique solution of Problem 3.

Indeed, put x̂ := PFix(T )(x0). By condition (B4), we can take an arbitrarily fixed
element y ∇ VI(Fix(T ), A1) and put M := sup {≤xn − y≤ + ≤yn − y≤ : n ∈ 1} <

⊆. Then, from the condition (B3) and Lemmas 4 and 6, it follows that for all n ∈ 1,

≤(I − γnμA2)Tn(xn) − y≤2
= ≤(I − γnμA2)Tn(xn) − (I − γnμA2)Tn(y) + (I − γnμA2)Tn(y) − y≤2
∗ ≤(I − γnμA2)Tn(xn) − (I − γnμA2)Tn(y)≤2

+ 2∞(I − γnμA2)Tn(xn) − y, (I − γnμA2)Tn(y) − y∩
∗ (1 − γnτ)2≤Tn(xn) − Tn(y)≤2

+ 2∞y − (I − γnμA2)Tn(xn), φn A1(y) + γnμA2(Tn(y))∩
∗ ≤(I − φn A1)T (xn) − (I − φn A1)T (y)≤2

+ 2∞y − (I − γnμA2)Tn(xn), φn A1(y) + γnμA2(Tn(y))∩
∗ ≤T xn − T y≤2 + 2∞y − (I − γnμA2)Tn(xn), φn A1(y) + γnμA2(Tn(y))∩
∗ ≤xn − y≤2 + 2∞y − (I − γnμA2)Tn(xn), φn A1(y) + γnμA2(Tn(y))∩
= ≤xn − y≤2 + 2∞y − Tn(xn), φn A1(y) + γnμA2(Tn(y))∩

+ 2γnμ∞A2(Tn(xn)), φn A1(y) + γnμA2(Tn(y))∩
∗ ≤xn − y≤2 + 2∞y − (I − φn A1)T (xn), φn A1(y) + γnμA2(Tn(y))∩

+ 2γnμ≤A2(Tn(xn))≤≤φn A1(y) + γnμA2(Tn(y))≤
∗ ≤xn − y≤2 + 2(∞y − T (xn), φn A1(y) + γnμA2(Tn(y))∩

+ φn∞A1(T (xn)), φn A1(y) + γnμA2(Tn(y))∩)
+ 2γnμ≤A2(Tn(xn))≤≤φn A1(y) + γnμA2(Tn(y))≤

∗ ≤xn − y≤2 + 2(∞y − T (xn), φn A1(y) + γnμA2(Tn(y))∩
+ (φn≤A1(T (xn))≤ + γnμ≤A2Tn(xn)≤)≤φn A1(y) + γnμA2(Tn(y))≤),

and hence,

≤yn − y≤2 = ≤(1 − αn)(xn − y) + αn[(I − γnμA2)Tn(xn) − y]≤2
∗ (1 − αn)≤xn − y≤2 + αn≤(I − γnμA2)Tn(xn) − y≤2
∗ (1 − αn)≤xn − y≤2 + αn[≤xn − y≤2

+ 2(∞y − T (xn), φn A1(y) + γnμA2(Tn(y))∩
+ (φn≤A1(T (xn))≤ + γnμ≤A2(Tn(xn))≤)≤φn A1(y) + γnμA2(Tn(y))≤)]

= ≤xn − y≤2 + 2αn[∞y − T (xn), φn A1(y) + γnμA2(Tn(y))∩
+ (φn≤A1(T (xn))≤ + γnμ≤A2(Tn(xn))≤)≤φn A1(y) + γnμA2(Tn(y))≤].
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This implies that

0 ∗ 1
φn

{≤xn − y≤2 − ≤yn − y≤2 + 2αn[∞y − T (xn), φn A1(y) + γnμA2(Tn(y))∩
+(φn≤A1(T (xn))≤ + γnμ≤A2(Tn(xn))≤)≤φn A1(y) + γnμA2(Tn(y))≤]}

= (≤xn − y≤ + ≤yn − y≤) ≤xn−y≤−≤yn−y≤
φn

+ 2αn[∞y − T (xn), A1(y) + μ
γn
φn

A2(Tn(y))∩
+(≤A1(T (xn))≤ + μ

γn
φn

≤A2(Tn(xn))≤)≤φn A1(y) + γnμA2(Tn(y)≤]
∗ M ≤xn−yn≤

φn
+ 2αn[∞y − T (xn), A1(y) + μ

γn
φn

A2(Tn(y))∩
+(≤A1(T (xn))≤ + μ

γn
φn

≤A2(Tn(xn))≤)≤φn A1(y) + γnμA2(Tn(y))≤],

that is,

0 ∗ M
2αn

· ≤xn−yn≤
φn

+
〈

y − T (xn), A1(y) + μγn
φn

A2(Tn(y))
〉

+
(

≤A1(T (xn))≤ + μγn
φn

≤A2(Tn(xn))≤
⎜

≤φn A1(y) + γnμA2(Tn(y))≤. (40)

Since T is nonexpansive, it is known that L = 1 and {αn} ⇔ [a, b] for some a, b ∇
⎨

0, 1
2

⎩

. In terms of the conditions thatγn → 0,φn → 0 and (≤xn − yn≤ + γn) /φn →
0, we deduce from (40) and xn → x̂ (=: PFix(T )(x0)) that

∞y − x̂, A1(y)∩ ∈ 0, for all y ∇ Fix(T ).

The condition (B1) ensures

∞y − x̂, A1(x̂)∩ ∈ 0, for all y ∇ Fix(T ),

that is, x̂ ∇ VIP(Fix(T ), A1). Furthermore, from the conditions (A2) and (A4), we
conclude that Problem 3 has a unique solution. Hence, VIP (VIP(Fix(T ), A1), A2)

is a singleton. Thus we may assume that VIP (VIP(Fix(T ), A1), A2) = {x⇒}. This
implies that x⇒ ∇ VIP (Fix(T ), A1).

Now we show that x̂ = x⇒. Indeed, since x̂, x⇒ ∇ VIP(Fix(T ), A1), we have

∞A1(x̂), y − x̂∩ ∈ 0, for all y ∇ Fix(T ), (41)

and
∞A1(x⇒), y − x⇒∩ ∈ 0, for all y ∇ Fix(T ). (42)

Setting y = x⇒ in inequality (41) and y = x̂ in inequality (42), and then adding the
resultant inequalities, we obtain

∞A1(x̂) − A1(x⇒), x̂ − x⇒∩ ∗ 0.

Since A1 is γ-inverse-strongly monotone, we have

γ≤A1(x̂) − A1(x⇒)≤2 ∗ ∞A1(x̂) − A1(x⇒), x̂ − x⇒∩ ∗ 0.
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Consequently, A1(x̂) = A1(x⇒). Since A1 is injective, we have x̂ = x⇒. ��
Ceng et al. [11] considered the following more general problem than Problem 3.

Problem 4 Let C be a nonempty closed convex subset of a real Hilbert space H and
f : C → H be a ρ-contractionmapping with constant ρ ∇ [0, 1). Let S, T : C → C
be two nonexpansive mappings with Fix(T ) 
= ◦ and F : C → H be L-Lipschitz
continuous and α-strongly monotone with

0 < μ <
2α

L2 and 0 < γ < τ,

where, τ = 1 − √

1 − μ(2α − μL2). The triple hierarchical variational inequality
problem is to find x⇒ ∇ Υ such that

∞(μF − γ f )(x⇒), v − x⇒∩ ∈ 0, for all v ∇ Υ, (43)

whereΥ denotes the solution set of the following hierarchical variational inequality
problem:

⎟

Find z⇒ ∇ Fix(T ) such that
∞(μF − γ S)(z⇒), z − z⇒∩ ∈ 0, for all v ∇ Fix(T ),

(44)

where we assume that the solution set of above hierarchical variational inequality is
nonempty.

Now we present two examples of above mentioned triple hierarchical variational
inequality problem.

Example 8 [11] Let H = R
2 with inner product ∞., .∩ and norm ≤ · ≤ are defined by

∞x, y∩ = ac + bd and ≤x≤ =
√

a2 + b2,

for all x, y ∇ R
2 with x = (a, b) and y = (c, d). Let C =

{

x ∇ R
2 : ≤x≤ ∗ √

2
}

.

Clearly, C is a nonempty, bounded and closed convex subset of R2. Let f be a 2× 2
positive semidefinite matrix such that 0 < ≤ f ≤ < 1, for instance, letting

f =
⎫

1
3 − 1

3

− 1
3

1
3

⎬

.

Then, ≤ f ≤ = 2
3 and f : C → C is a ρ-contraction mapping with contractivity

constant ρ = 2
3 . Let F = 1

2 I =
⎟ 1

2 0
0 1

2

}

. Then F : C → C is L-Lipschitz

continuous and α-strongly monotone with constants L = 1
2 and α = 1

2 , respectively.
Take μ = 2 and γ = 1 such that 0 < μ < 2α/L2 and 0 < γ ∗ τ , where
τ = 1 − √

1 − μ(2α − μL2) = 1. Let T and S be two 2 × 2 positive definite
matrices such that ≤T ≤ = ≤S≤ = 1, for instance, letting
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T =
⎫

2
3

1
3

1
3

2
3

⎬

and S =
⎫

3
5

2
5

2
5

3
5

⎬

.

Then, ≤T ≤ = ≤S≤ = 1 and S, T : C → C are nonexpansive with Fix(T ) = {(a, a) :
|a| ∗ 1} 
= ◦.

We observe that the solution set Υ of the HVIP (Problem 4) is the following:

Υ = {z⇒ ∇ Fix(T ) : (μF − γ S)z⇒, z − z⇒∩ ∈ 0, for all z ∇ Fix(T )}
= {z⇒ ∇ Fix(T ) : ∞(I − S)(z⇒), z − z⇒∩ ∈ 0, for all z ∇ Fix(T )}
= {z⇒ ∇ Fix(T ) : ∞0, z − z⇒∩ ∈ 0, for all z ∇ Fix(T )}
= Fix(T ) = {(a, a) : |a| ∗ 1} 
= ◦.

It is easy to see that there exists a unique solution x⇒ = (0, 0) to the following
THVIP: find x⇒ ∇ Υ (= Fix(T )) such that

∞(μF − γ f )(x⇒), x − x⇒∩ ∈ 0, for all x ∇ Υ,

that is,
∞(I − f )(x⇒), x − x⇒∩ ∈ 0, for all x ∇ Υ.

Example 9 [9] Let C be a nonempty closed convex subset of a real Hilbert space
H and f : C → H be l-Lipschitz continuous with constant l > 0. Suppose that
g0 : H → R is a convex function with a 1/γ0-Lipschitz continuous gradient,
g1 : H → R is a convex function with a 1/γ1-Lipschitz continuous gradient, and
g2 : H → R is an γ-strongly convex function with a γ2-Lipschitz continuous
gradient. Define T := PC (I − φ∪g0) for φ ∇ (0, 2γ0], V := PC (I − φ̃∪g1) for
φ̃ ∇ (0, 2γ1] and F := ∪g2. Then T, V : C → C are nonexpansive mappings
with Fix(T ) = argminz∇C g0(z) and Fix(V ) = argminz∇C g1(z), and F is L-
Lipschitzian and α-strongly monotone with L = 1/γ2 and α = γ. Assume that
argminz∇C g0(z) ∀ argminz∇C g1(z) 
= ◦. Then, we have

◦ 
= argminz∇C g0(z) ∀ argminz∇C g1(z)
= Fix(T ) ∀ Fix(V )

⇔ {z⇒ ∇ Fix(T ) : ∞(I − V )(z⇒), z − z⇒∩ ∈ 0, for all z ∇ Fix(T )}
= HVIP(Fix(T ), (I − V )).

When 0 < μ < 2γγ2
2 and 0 ∗ γ l < τ , where τ = 1 −

√

1 − μ

⎞

2γ − μ

γ2
2

⎠

, we

have
0 < μ < 2α/L2 and 0 ∗ γ l < τ,
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where τ = 1 − √

1 − μ(2α − μL2). In particular, when μ = α/L2 = γ γ2
2, we

have

0 ∗ γ l < τ = 1 −
√
√
√
√1 − μ

(

2γ − μ

γ2
2

)

= 1 −
√

1 − γ2 γ2
2 .

In this case, when γ = 1
2l γ

2 γ2
2

⎞

obviously,
√

1 − γ2 γ2
2 < 1 − 1

2γ
2 γ2

2

⎠

,

the triple hierarchical variational inequality problem of finding x⇒ ∇ HVIP (Fix(T ),

(μF − γ f )) such that

∞(μF − γ f )(x⇒), x − x⇒∩ ∈ 0, for all x ∇ HVIP(Fix(T ), (μF − γ f )),

reduces to the following THVIP: find x⇒ ∇ HVIP (Fix(T ), (μF − γ f )) such that

〈(

∪g2 − γ

2l
f
⎜

(x⇒), x − x⇒〉 ∈ 0, for all x ∇ HVIP (Fix(T ), (μF − γ f )).

Ceng et al. [11] combined the regularization method, the hybrid steepest descent
method, and the projectionmethod to propose an implicit scheme that generates a net
in an implicit way. They studied the strong convergence of the sequence generated
by the proposed scheme to the unique solution of THVIP (Problem 4).

Further,Cent et al. [9] proposed an approximationmethod to compute the solutions
of above mentioned THVIP (Problem 4). They combined the hybrid steepest descent
method, viscosity method, and the projection method to propose their method. The
strong convergence of the net generated by the proposed method is also studied.

We consider the following THVIPwhere the HVIP is defined over the intersection
of fixed point set of a nonexpansive mapping and fixed point set of strictly pseudo-
contractive mapping.

Problem 5 Let C a nonempty closed convex subset of a real Hilbert space H and
F : C → H be L-Lipschitz continuous and α-strongly monotone, where L > 0
and α > 0 are constants. Let V : C → H be ρ-contraction with coefficient ρ ∇
[0, 1), S, T1 : C → C be nonexpansive mappings, and T2 : C → C be σ -strictly
pseudo-contractive mapping with Fix(T1) ∀ Fix(T2) 
= ◦. Let 0 < μ < 2α/L2 and
0 < γ ∗ τ , where τ = 1 − √

1 − μ(2α − μL2). The problem is to find x⇒ ∇ Υ

such that
∞(μF − γ V )(x⇒), x − x⇒∩ ∈ 0, for all x ∇ Υ, (45)

where Υ denotes the solution set of the following hierarchical variational inequality
problem (HVIP) of finding z⇒ ∇ Fix(T1) ∀ Fix(T2) such that

∞(μF − γ S)(z⇒), z − z⇒∩ ∈ 0, for all z ∇ Fix(T1) ∀ Fix(T2). (46)

Whenever T1 and T2 are strictly pseudo-contraction, Problem 5 is considered in
[41].
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Whenever T1 ≡ T is a nonexpansive mapping and T2 ≡ I is an identity mapping,
then Problem 5 reduce to Problem 3.

We also consider the following triple hierarchical variational inequality problem:

Problem 6 Let C a nonempty closed convex subset of a real Hilbert space H and
F : C → H be L-Lipschitz continuous and α-strongly monotone, where L > 0 and
α > 0 are constants. Let A : C → H be a monotone and κ-Lipschitz continuous
mapping, V : C → H beρ-contractionwith coefficientρ ∇ [0, 1), S, T : C → C be
nonexpansive mappings with Fix(T )∀ϒ 
= ◦. Let 0 < μ < 2α/L2 and 0 < γ ∗ τ ,
where τ = 1 − √

1 − μ(2α − μL2). The problem is to find x⇒ ∇ Υ such that

∞(μF − γ V )(x⇒), x − x⇒∩ ∈ 0, for all x ∇ Υ, (47)

where Υ denotes the solution set of the following hierarchical variational inequality
problem (HVIP) of finding z⇒ ∇ Fix(T ) ∀ ϒ such that

∞(μF − γ S)(z⇒), z − z⇒∩ ∈ 0, for all z ∇ Fix(T ) ∀ ϒ, (48)

where ϒ = VIP(C, A).

We remark that Problem 6 is a generalization of Problem 5. Indeed, in Problem 6,
if we put T = T1 and A = I −T2, where T1 : C → C is a nonexpansivemapping and
T2 : C → C is a σ2-strictly pseudo-contractive mapping. Then from the definition
of strictly pseudo-contractive mapping, we have

∞T2(x) − T2(y), x − y∩ ∗ ≤x − y≤2 − 1 − σ2

2
≤(I − T2)(x) − (I − T2)(y)≤2,

for all x, y ∇ C.

It is clear that the mapping A = I − T2 is
1−σ2
2 -inverse strongly monotone. Letting

κ = 2
1−σ2

, then A : C → H is monotone and κ-Lipschitz continuous. In this case,
ϒ = Fix(T2). Therefore, Problem 6 reduces to Problem 5.

Motivated and inspired by Korpelevich’s extragradient method [73], the iterative
method proposed in [11] andmultistep hybrid extragradientmethod proposed in [41],
we propose the following multistep explicit and implicit hybrid extragradient-like
methods for solving Problem 6.

Algorithm 9 Let C be a nonempty closed convex subset of a real Hilbert space H
and F : C → H be L-Lipschitz continuous and α-strongly monotone A : C →
H be monotone and κ-Lipschitz continuous, V : C → H be ρ-contraction with
coefficient ρ ∇ [0, 1) and S, T : C → C be nonexpansive mappings. Suppose that
{γn} ⇔ [0,⊆), {αn}, {γn} ⇔ [0, 1] and {φn}, {δn} ⇔ (0, 1). Let 0 < μ < 2α/L2,
0 < γ ∗ τ and An = γn I + A for all n ∈ 0, where τ = 1 − √

1 − μ(2α − μL2).
The sequence {xn} is generated by the following iterative scheme:
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⎭





x0 = x ∇ C chosen arbitrarily,
yn = (1 − αn)xn + αn PC (xn − φAn(xn)),

zn = γn xn + (1 − γn)T (PC (yn − φAn(yn))),

xn+1 = PC [φnγ (δn V (xn) + (1 − δn)S(xn)) + (I − φnμF)(T (zn))], for all n ∈ 0.

(49)

In particular, if V ≡ 0, then (49) reduces to the following iterative scheme:

⎭





x0 = x ∇ C chosen arbitrarily,
yn = (1 − αn)xn + αn PC (xn − φAn(xn)),

zn = γn xn + (1 − γn)T (PC (yn − φAn(yn))),

xn+1 = PC [φn(1 − δn)γ S(xn) + (I − φnμF)(T (zn))], for all n ∈ 0.

(50)

If S ≡ V , then (49) reduces to the following iterative scheme:

⎭





x0 = x ∇ C chosen arbitrarily,
yn = (1 − αn)xn + αn PC (xn − φAn(xn)),

zn = γn xn + (1 − γn)T (PC (yn − φAn(yn))),

xn+1 = PC [φnγ V (xn) + (I − φnμF)(T (zn))], for all n ∈ 0.

(51)

Moreover, if S ≡ V ≡ 0 then (49) reduces to the following iterative scheme:

⎭





x0 = x ∇ C chosen arbitrarily,
yn = (1 − αn)xn + αn PC (xn − φAn(xn)),

zn = γn xn + (1 − γn)T (PC (yn − φAn(yn))),

xn+1 = PC [(I − φnμF)(T (zn))], for all n ∈ 0.

(52)

We now present the convergence analysis of Algorithm 9 for solving Problem 6.

Theorem 12 Let C be a nonempty closed convex subset of a real Hilbert space H,
F : C → H be L-Lipschitz and α-strongly monotone with constants L, α > 0,
A : C → H be 1/κ-inverse strongly monotone, V : C → H be ρ-contraction with
coefficient ρ ∇ [0, 1) and S, T : C → C be nonexpansive mappings. Let 0 < φ <

2/κ , 0 < μ < 2α/L2 and 0 < γ ∗ τ , where τ = 1−√

1 − μ(2α − μL2). Assume
that the solution set Υ of HVIP (48) is nonempty and the sequences {γn} ⇔ [0,⊆),
{αn}, {γn} ⇔ [0, 1] and {φn}, {δn} ⇔ (0, 1) satisfy the following condition.

(i)
⎪⊆

n=0 γn < ⊆;
(ii) 0 < lim inf

n→⊆ αn ∗ lim sup
n→⊆

αn < 1 and 0 < lim inf
n→⊆ γn ∗ lim sup

n→⊆
γn < 1;

(iii) limn→⊆ φn = 0, limn→⊆ δn = 0 and
⊆
∑

n=0

δnφn = ⊆;

(iv) there are constants k̄, θ > 0 such that

≤x − T x≤ ∈ k̄[d(x,Fix(T ) ∀ ϒ)]θ , ⇐x ∇ C;
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(v) limn→⊆
φ
1/θ
n

δn
= 0.

Then, the following assertions hold.

(a) If {xn} is the sequence generated by the scheme (49) and {Sxn} is bounded, then
{xn} converges strongly to a point x⇒ ∇ Fix(T ) ∀ ϒ which is a unique solution
of Problem 6 provided ≤xn+1 − xn≤ + ≤xn − zn≤ = o(φn).

(b) If {xn} is a sequence generated by the scheme (50) and {S(xn)} is bounded, then
{xn} converges strongly to a unique solution x⇒ of the following VIP provided
≤xn+1 − xn≤ + ≤xn − zn≤ = o(φn):

find x⇒ ∇ Υ such that ∞F(x⇒), x − x⇒∩ ∈ 0, for all x ∇ Υ. (53)

6 Triple Hierarchical Variational Inequalities for a Family of
Nonexpansive Mappings

Ceng et al. [12, 89] considered the following monotone variational inequality with
the variational inequality constraint which is defined over the intersection of the fixed
point sets of a family of N nonexpansive mappings Ti : H → H , where N ∈ 1 an
integer.

Problem 7 For each i = 1, 2, . . . , N , assume that

(C1) Ti : H → H is a nonexpansive mapping with
N⎧

i=1
Fix(Ti ) 
= ◦,

(C2) A1 : H → H is an γ-inverse strongly monotone mapping,
(C3) A2 : H → H is a α-strongly monotone and L-Lipschitz continuous mapping,

(C4) VIP

⎞
N⎧

i=1
Fix(Ti ), A1

⎠


= ◦.

The problem is to

find x⇒ ∇ VIP

⎞

VIP

⎞
N⎧

i=1
Fix(Ti ), A1

⎠

, A2

⎠

:=
⎟

x⇒ ∇ VIP

⎞
N⎧

i=1
Fix(Ti ), A1

⎠

: ∞A2(x⇒), v − x⇒∩ ∈ 0, ⇐v ∇ VIP

⎞
N⎧

i=1
Fix(Ti ), A1

⎠}

.

Wewrite T[k] := Tk mod N for integer k ∈ 1with themod function taking values in
the set {1, 2, . . . , N }, that is, if k = j N +q for some integers j ∈ 0 and 0 ∗ q < N ,
then T[k] = TN if q = 0 and T[k] = Tq if 0 < q < N .

Zeng et al. [89] proposed the following relaxed hybrid steepest descent method
for finding the solution of Problem 7.

Algorithm 10 [89] Step 0: Take {γn} ⇔ (0, 1], {φn} ⇔ (0, 2γ], μ ⇔ (0, 2α/L2),
choose x0 ∇ H arbitrarily, and let n := 0.
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Step 1: Given xn ∇ H, compute xn+1 ∇ H as

yn := T[n+1](xn − φn A1(xn)),

xn+1 := yn − μγn A2(yn).
(54)

Update n := n + 1 and go to Step 1.

Zeng et al. [89] proved that the sequence {xn}generated beAlgorithm10converges
strongly to a unique solution of THVIP (Problem 7).

Theorem 13 [89, Theorem 3.2] An addition to the assumptions of Problem 7,
assume that the sequence {yn} generated by the Algorithm 10, is bounded. Let
{γn} ⇔ (0, 1], {φn} ⇔ (0, 2γ] and μn ⇔ ⎨

0, 2α/L2
⎩

such that

(i)
⎪⊆

n=0 γn = ⊆ and limn→⊆ γn = 0;
(ii) limn→⊆ γn−γn+N

γn+N
= 0 or

⎪⊆
n=0 |γn+N − γn| < ⊆;

(iii) limn→⊆ φn−φn+N
φn+N

= 0 or
⎪⊆

n=0 |φn+N − φn| < ⊆;
(iv) φn ∗ γn for all n ∈ 0.

Assume, further, that

N⎧

i=1
Fix(Ti ) = Fix (T1 ∃ T2 ∃ T3 ∃ · · · ∃ TN )

= Fix (TN ∃ T2 ∃ T3 ∃ · · · ∃ TN−1)
...

= Fix (T2 ∃ T3 ∃ · · · ∃ TN ∃ T1) .

Then, the sequence {xn} generated by Algorithm 10 satisfies the following properties:

(a) {xn} is bounded.
(b) limn→⊆ ≤xn+N − xn≤ = 0 and limn→⊆

∥
∥xn − T[n+N ] ∃ · · · ∃ T[n+1](xn)

∥
∥ = 0.

(c) {xn} converges strongly to a unique solution of THVIP (Problem 7) provided
≤xn − yn≤ = o(φn).

Ceng et al. [12] extended Algorithm 10 by considering the variable parameter.
They proposed the following iterative method to find the solution of Problem 7.

Algorithm 11 [12]Step 0:Take {γn} ⇔ (0, 1], {φn} ⇔ (0, 2γ], {μn} ⇔ (0, 2α/L2),
choose x0 ∇ H arbitrarily, and let n := 0.
Step 1: Given xn ∇ H, compute xn+1 ∇ H as

yn := T[n+1](xn − φn A1(xn),

xn+1 := yn − μnγn A2(yn).
(55)

Update n := n + 1 and go to Step 1.

Ceng et al. [12] proved that the sequence {xn} generated be Algorithm 10 con-
verges strongly to a unique solution of THVIP (Problem 7).
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Theorem 14 [12, Theorem 3.2] In addition to the assumption of Problem 7, assume
that the sequence {yn} generated by the Algorithm 10, is bounded. Let {γn} ⇔ (0, 1],
{φn} ⇔ (0, 2γ] and {μn} ⇔ ⎨

0, 2α/L2
⎩

such that

(i)
⎪⊆

n=0 γn = ⊆ and limn→⊆ γn = 0;

(ii)
∣
∣
∣μn − α

L2

∣
∣
∣ ∗

√
α2−cL2

L2 , for some c ∇
(

0, α2

L2

⎜

;

(iii) limn→⊆
(

μn+N −
(

γn
γn+N

⎜

μn

⎜

= 0;

(iv)
⎪⊆

n=0 |φn+N − φn| < ⊆ and φn ∗ γn for all n ∈ 0.

Assume, further, that

N⎧

i=1
Fix(Ti ) = Fix (T1 ∃ T2 ∃ T3 ∃ · · · ∃ TN )

= Fix (TN ∃ T2 ∃ T3 ∃ · · · ∃ TN−1)
...

= Fix (T2 ∃ T3 ∃ · · · ∃ TN ∃ T1) .

Then, the sequence {xn} generated by Algorithm 10 satisfies the following properties:

(a) {xn} is bounded.
(b) limn→⊆ ≤xn+N − xn≤ = 0 and limn→⊆

∥
∥xn − T[n+N ] ∃ · · · ∃ T[n+1](xn)

∥
∥ = 0.

(c) {xn} converges strongly to a unique solution of THVIP (Problem 7) provided
≤xn − yn≤ = o(φn).

Now we study the Problem 7, where Ti (i = 1, 2, . . . , N ) is a Lipschitz contin-
uous and pseudo-contraction mapping on H with N ∈ 1 an integer. In this case,
we propose a hybrid iterative algorithm for solving Problem 7 concerning a finite
family of mappings {Ti }N

i=1 with
⎧N

i=1 Fix(Ti ) 
= ◦. Under some appropriate con-
ditions, we derive the strong convergence of our algorithm to the unique solution of
Problem 7.

Letω be the intersection of the fixed point sets of N pseudo-contractive mappings
Ti : H → H with N ∈ 1 an integer, that is,

ω =
N
⋂

i=1

Fix(Ti ).

We propose the following hybrid iterative algorithm for computing a common fixed
point of a finite family {Ti }N

i=1 of pseudo-contractive mappings and a solution of
Problem 7 in the setting of a real Hilbert space H .

Algorithm 12 Suppose that the assumptions (C1)–(C4) in Problem 7 are satisfied.
Step 1. Take μ > 0. Put C1 = H , choose x0 ∇ H , φ1 ∇ (0, 2γ], γ1 ∇ (0, 1],
α1 ∇ (0, 1) arbitrarily, and let n := 1.
Step 2. Given xn ∇ Cn , choose φn ∇ (0, 2γ], γn ∇ (0, 1] and αn ∇ (0, 1) and
compute xn+1 ∇ Cn+1 as
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⎭





yn := (1 − αn)xn + αn(I − γnμA2)T̃n(xn),

Cn+1 :=

⎭





z ∇ Cn : ∥∥αn(I − (I − γnμA2)T̃n)(yn)
∥
∥
2

∗ 2αn

[

∞xn − z, (I − (I − γnμA2)T̃n)(yn)∩
− ∞γnμA2T̃n(yn) + φn(A1(Tn(yn)), yn − z∩

]







,

xn+1 := PCn+1(x0), for all n ∈ 0,

(56)

where

T̃n := (I − φn A1)Tn and Tn := Tn mod N , for integer n ∈ 1, (57)

with the mod function taking values in the set {1, 2, . . . , N }.
Update n := n + 1 and go to Step 2.

Under quite appropriate conditions,we establish the following strong convergence
theorem for the sequence {xn} generated by the Algorithm 12.

Theorem 15 For each i = 1, 2, . . . , N, let Ti : H → H be a L-Lipschitz contin-
uous pseudo-contractive self-mapping defined on a real Hilbert space H such that

ω = ⎧N
i=1 Fix(Ti ) 
= ◦. Assume that {αn} ⇔ [a, b] for some a, b ∇

(

0, 1
L+1

⎜

and

{γn} ⇔ (0, 1] and {φn} ⇔ (0, 2γ] such that limn→⊆ γn = limn→⊆ φn = 0. Take a
fixed number μ ∇ ⎨

0, 2η/κ2
⎩

. Then the sequence {xn} generated by the Algorithm
12 satisfies the following properties:

(a) {xn} is bounded.
(b) limn→⊆ ≤xn − yn≤ = 0 and limn→⊆ ≤xn −Tl(xn)≤ = 0 for all l = 1, 2, . . . , N.
(c) {xn} converges strongly to Pω(x0).
(d) If Tl is nonexpansive for each 1 ∗ l ∗ N and A1 is injective, Pωx0 is the unique

solution of Problem 7 provided limn→⊆(≤xn − yn≤ + γn)/φn = 0.

Proof As stated in the proof of Theorem 11, we can readily see that each Fix(Ti ) is
closed and convex for i = 1, 2, . . . , N . Hence ω is a closed and convex set. This
implies that the projection Pω is well defined. It is clear that the sequence {Cn} is
closed and convex. Thus, {xn} is also well defined.

We show that ω ≥ Cn for all n ∈ 0. Indeed, taking p ∇ ω, we note that
(I − Tn)(p) = 0 and

∞(I − Tn)(x) − (I − Tn)(y), x − y∩ ∈ 0, for all x, y ∇ H. (58)
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By Lemma 1 and inequality (58), we obtain

≤xn − p − αn(I − (I − γnμA2)T̃n)(yn)≤2
= ≤xn − p≤2 − ≤αn(I − (I − γnμA2)T̃n)(yn)≤2

− 2αn∞(I − (I − γnμA2)T̃n)(yn), xn − p − αn(I − (I − γnμA2)T̃n)(yn)∩
= ≤xn − p≤2 − ≤αn(I − (I − γnμA2)T̃n)(yn)≤2

− 2αn∞(I − Tn)(yn) − (I − Tn)(p) + φn A1(Tn(yn)), yn − p∩
− 2αn∞T̃n(yn) − (I − γnμA2)T̃n(yn), yn − p∩
− 2αn∞(I − (I − γnμA2)T̃n)(yn), xn − yn − αn(I − (I − γnμA2)T̃n)(yn)∩

∗ ≤xn − p≤2 − ≤αn(I − (I − γnμA2)T̃n)(yn)≤2
− 2αn∞T̃n(yn) − (I − γnμA2)T̃n(yn) + φn A1(Tn(yn)), yn − p∩
− 2αn∞(I − (I − γnμA2)T̃n)(yn), xn − yn − αn(I − (I − γnμA2)T̃n)(yn)∩

= ≤xn − p≤2 − ≤xn − yn + yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤2
− 2αn∞γnμA2 T̃n(yn) + φn A1(Tn(yn)), yn − p∩
− 2αn∞(I − (I − γnμA2)T̃n)(yn), xn − yn − αn(I − (I − γnμA2)T̃n)(yn)∩

= ≤xn − p≤2 − ≤xn − yn≤2 − ≤yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤2
− 2∞xn − yn, yn − xn + αn(I − (I − γnμA2)T̃n)(yn)∩
+ 2αn∞(I − (I − γnμA2)T̃n)(yn), yn − xn + αn(I − (I − γnμA2)T̃n)(yn)∩
− 2αn∞γnμA2(T̃n(yn)) + φn A1(Tn(yn)), yn − p∩

= ≤xn − p≤2 − ≤xn − yn≤2 − ≤yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤2
− 2∞xn − yn − αn(I − (I − γnμA2)T̃n)(yn), yn − xn + αn(I − (I − γnμA2)T̃n)(yn)∩
− 2αn∞γnμA2(T̃n(yn)) + φn A1(Tn(yn)), yn − p∩

∗ ≤xn − p≤2 − ≤xn − yn≤2 − ≤yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤2
+ 2|∞xn − yn − αn(I − (I − γnμA2)T̃n)(yn), yn − xn + αn(I − (I − γnμA2)T̃n)(yn)∩|
− 2αn∞γnμA2(T̃n(yn)) + φn A1(Tn(yn)), yn − p∩.

(59)
Since each Ti is L-Lipschitz continuous for i = 1, 2, . . . , N , by Lemmas 4 and 5,
we obtain

≤(I − (I − γnμA2)(T̃n)(xn)) − (I − (I − γnμA2)(T̃n)(yn))≤
∗ ≤xn − yn≤ + ≤(I − γnμA2)(T̃n(xn)) − (I − γnμA2)(T̃n(yn))≤
∗ ≤xn − yn≤ + (1 − γnτ)≤T̃n(xn) − T̃n(yn)≤
= ≤xn − yn≤ + (1 − γnτ)≤(I − φn A1)(Tn(xn)) − (I − φn A1)(Tn(yn))≤
∗ ≤xn − yn≤ + ≤(I − φn A1)(Tn(xn)) − (I − φn A1)(Tn(yn))≤
∗ ≤xn − yn≤ + ≤Tn(xn) − Tn(yn)≤
∗ (L + 1)≤xn − yn≤,

(60)

where τ = 1 − √

1 − μ(2η − μκ2). From (56), we observe that

xn − yn = αn(I − (I − γnμA2)T̃n)(xn).
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Hence, by utilizing (60), we get

∣
∣∞xn − yn − αn(I − (I − γnμA2)T̃n)(yn), yn − xn + αn(I − (I − γnμA2)T̃n)(yn)∩∣∣
= αn

∣
∣∞(I − (I − γnμA2)T̃n)(xn) − (I − (I − γnμA2)T̃n)(yn), yn − xn

+ αn(I − (I − γnμA2)T̃n)(yn)∩∣∣
∗ αn≤(I − (I − γnμA2)T̃n)(xn) − (I − (I − γnμA2)T̃n)(yn)≤

≤yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤
∗ αn(L + 1)≤xn − yn≤≤yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤
∗ αn(L+1)

2

(

≤xn − yn≤2 + ≤yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤2
⎜

.

(61)
Combining (59) and (61), we get

≤xn − p − αn(I − (I − γnμA2)T̃n)(yn)≤2
∗ ≤xn − p≤2 − ≤xn − yn≤2 − ≤yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤2

+ αn(L + 1)(≤xn − yn≤2 + ≤yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤2)
− 2αn∞γnμA2(T̃n(yn)) + φn A1(Tn(yn)), yn − p∩

= ≤xn − p≤2 + [αn(L + 1) − 1](≤xn − yn≤2
+ ≤yn − xn + αn(I − (I − γnμA2)T̃n)(yn)≤2)
− 2αn∞γnμA2(T̃n(yn)) + φn A1(Tn(yn)), yn − p∩

∗ ≤xn − p≤2 − 2αn∞γnμA2(T̃n(yn)) + φn A1(Tn(yn)), yn − p∩.
(62)

We observe that

≤xn − p − αn(I − (I − γnμA2)T̃n)(yn)≤2
= ≤xn − p≤2 − 2αn∞xn − p, (I − (I − γnμA2)T̃n)(yn)∩

+ ≤αn(I − (I − γnμA2)T̃n)(yn)≤2.
(63)

Therefore, from (62) and (63), we have

≤αn(I − (I − γnμA2)T̃n)(yn)≤2 ∗ 2αn[∞xn − p, (I − (I − γnμA2)T̃n)(yn)∩
− ∞γnμA2(T̃n(yn)) + φn A1(Tn(yn)), yn − p∩],

which implies that

p ∇ Cn, that is, ω ⇔ Cn, for all n ∈ 1.

From xn = PCn (x0), we have

∞x0 − xn, xn − y∩ ∈ 0, for all y ∇ Cn .
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Since ω ≥ Cn , we have

∞x0 − xn, xn − u∩ ∈ 0, for all u ∇ ω.

So, for all u ∇ ω we have

0 ∗ ∞x0 − xn, xn − u∩
= ∞x0 − xn, xn − x0 + x0 − u∩
= −≤x0 − xn≤2 + ∞x0 − xn, x0 − u∩
∗ −≤x0 − xn≤2 + ≤x0 − xn≤≤x0 − u≤,

which implies that

≤x0 − xn≤ ∗ ≤x0 − u≤, for all u ∇ ω. (64)

Thus, {xn} is bounded and so are {yn} and {T̃n(yn)}.
From xn = PCn (x0) and xn+1 = PCn+1(x0) ∇ Cn+1 ⇔ Cn , we have

∞x0 − xn, xn − xn+1∩ ∈ 0. (65)

Hence,
0 ∗ ∞x0 − xn, xn − xn+1∩

= ∞x0 − xn, xn − x0 + x0 − xn+1∩
= −≤x0 − xn≤2 + ∞x0 − xn, x0 − xn+1∩
∗ −≤x0 − xn≤2 + ≤x0 − xn≤≤x0 − xn+1≤,

and therefore,
≤x0 − xn≤ ∗ ≤x0 − xn+1≤.

This implies that the limit limn→⊆ ≤xn − x0≤ exists.
From Lemma 1 and (65), we obtain

≤xn+1 − xn≤2 = ≤(xn+1 − x0) − (xn − x0)≤2
= ≤xn+1 − x0≤2 − ≤xn − x0≤2 − 2∞xn+1 − xn, xn − x0∩
∗ ≤xn+1 − x0≤2 − ≤xn − x0≤2 → 0, as n → ⊆.

Thus,
lim

n→⊆ ≤xn+1 − xn≤ = 0.

It is easy to see that limn→⊆ ≤xn − xn+i≤ = 0 for each i = 1, 2, . . . , N . Since
xn+1 ∇ Cn+1 ≥ Cn , ≤xn − xn+1≤ → 0 and φn → 0, we have
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≤αn(I − (I − γnμA2)T̃n)(yn)≤2
∗ 2αn[∞xn − xn+1, (I − (I − γnμA2)T̃n)(yn)∩

− ∞γnμA2(T̃n(yn)) + φn A1(Tn(yn)), yn − xn+1∩]
∗ 2αn[≤xn − xn+1≤≤(I − (I − γnμA2)T̃n)(yn)≤

+ ≤γnμA2(T̃n(yn)) + φn A1(Tn(yn))≤≤yn − xn+1≤]
∗ 2αn[≤xn − xn+1≤(≤yn≤ + ≤T̃n(yn)≤ + γnμ≤A2(T̃n(yn))≤)

+ (γnμ≤A2(T̃n(yn))≤ + φn≤A1(Tn(yn))≤)≤yn − xn+1≤] → 0.

Since αn ∇ [a, b] for some a, b ∇
(

0, 1
L+1

⎜

, we obtain

∥
∥yn − (I − γnμA2)(T̃n(yn))

∥
∥ → 0.

We also note that
∥
∥Tn(yn) − (I − γnμA2)(T̃n(yn))

∥
∥

= ∥
∥Tn(yn) − T̃n(yn) + γnμA2(T̃n(yn))

∥
∥

∗ ≤Tn(yn) − (I − φn A1)(Tn(yn))≤ + γnμ
∥
∥A2(T̃n(yn))

∥
∥

= φn ≤A1(Tn(yn))≤ + γnμ
∥
∥A2(T̃n(yn))

∥
∥ → 0.

Therefore, we get

≤yn − Tn(yn)≤ ∗ ∥
∥yn − (I − γnμA2)(T̃n(yn))

∥
∥

+ ∥
∥Tn(yn) − (I − γnμA2)(T̃n(yn))

∥
∥ → 0.

By Lemmas 4 and 5, we deduce that

∥
∥xn − (I − γnμA2)(T̃n(xn))

∥
∥

∗ ≤xn − yn≤ + ∥
∥yn − (I − γnμA2)(T̃n(yn))

∥
∥

+ ∥
∥(I − γnμA2)(T̃n(yn)) − (I − γnμA2)(T̃n(xn))

∥
∥

∗ ≤xn − yn≤ + ∥
∥yn − (I − γnμA2)(T̃n(yn))

∥
∥ + (1 − γnτ)

∥
∥T̃n(yn) − T̃n(xn)

∥
∥

∗ ≤xn − yn≤ + ∥
∥yn − (I − γnμA2)(T̃n(yn))

∥
∥

+ ≤(I − φn A1)(Tn(yn)) − (I − φn A1)(Tn(xn))≤
∗ ≤xn − yn≤ + ∥

∥yn − (I − γnμA2)(T̃n(yn))
∥
∥ + ≤Tn(yn) − Tn(xn)≤

∗ ≤xn − yn≤ + ∥
∥yn − (I − γnμA2)(T̃n(yn))

∥
∥ + L≤yn − xn≤

= (L + 1)≤xn − yn≤ + ∥
∥yn − (I − γnμA2)(T̃n(yn))

∥
∥

= αn(L + 1)
∥
∥xn − (I − γnμA2)(T̃n(xn))

∥
∥ + ∥

∥yn − (I − γnμA2)(T̃n(yn))
∥
∥,

that is,
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∥
∥xn − (I − γnμA2)(T̃n(xn))

∥
∥

∗ 1

1 − αn(L + 1)

∥
∥yn − (I − γnμA2)(T̃n(yn))

∥
∥ → 0.

Also, ∥
∥Tn(xn) − (I − γnμA2)(T̃n(xn))

∥
∥

= ∥
∥Tn(xn) − T̃n(xn) + γnμA2(T̃n(xn))

∥
∥

∗ ≤Tn(xn) − (I − φn A1)(Tn(xn))≤ + γnμ
∥
∥A2(T̃n(xn))

∥
∥

= φn ≤A1(Tn(xn))≤ + γnμ
∥
∥A2(T̃n(xn))

∥
∥ → 0.

Consequently,

≤xn − Tn(xn)≤ ∗ ∥
∥xn − (I − γnμA2)(T̃n(xn))

∥
∥ (66)

+ ∥
∥Tn(xn) − (I − γnμA2)(T̃n(xn))

∥
∥ → 0, (67)

and hence, for each i = 1, 2, . . . , N ,

≤xn − Tn+i (xn)≤ ∗ ≤xn − xn+i ≤ + ≤xn+i − Tn+i (xn+i )≤ + ≤Tn+i (xn+i ) − Tn+i (xn)≤
∗ (L + 1)≤xn − xn+i ≤ + ≤xn+i − Tn+i (xn+i )≤ → 0 as n → ⊆.

So, we obtain limn→⊆ ≤xn − Tn+i (xn)≤ = 0 for each i = 1, 2, . . . , N . This implies
that

lim
n→⊆ ≤xn − Tl(xn)≤ = 0, for all l = 1, 2, . . . , N . (68)

The relation (68) and Lemma 6 guarantee that every weak limit point of {xn} is a
fixed point of Tl . Since l is an arbitrary element in the finite set {1, 2, . . . , N }, every
weak limit point of {xn} lies in ω, that is, εw(xn) ⇔ ω. This fact, the inequality (64)
and Lemma 3 ensure the strong convergence of {xn} to Pωx0. Since

≤xn − yn≤ = ∥
∥αn(I − (I − γnμA2)T̃n)(xn)

∥
∥ → 0,

it follows that {yn} converges strongly to Pω(x0).
Finally, we prove that whenever Ti is nonexpansive for each 1 ∗ i ∗ N , and A1

is injective and ≤xn − yn≤ + γn)/φn → 0 as n → ⊆, Pω(x0) is the unique solution
of Problem 7.

Indeed, put x̂ := Pω(x0). By condition (C4), we can take an arbitrarily fixed
y ∇ VI(ω, A1) and put M := sup{≤xn − y≤ + ≤yn − y≤ : n ∈ 1} < ⊆. Then, from
the condition (C3) and Lemmas 4 and 5, it follows that for all n ∈ 1,
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≤(I − γnμA2)(T̃n(xn)) − y≤2
= ≤(I − γnμA2)(T̃n(xn)) − (I − γnμA2)(T̃n(y)) + (I − γnμA2)(T̃n(y)) − y≤2
∗ ≤(I − γnμA2)(T̃n(xn)) − (I − γnμA2)(T̃n(y))≤2

+ 2∞(I − γnμA2)(T̃n(xn)) − y, (I − γnμA2)(T̃n(y)) − y∩
∗ (1 − γnτ)2≤T̃n(xn) − T̃n(y)≤2

+ 2∞y − (I − γnμA2)(T̃n(xn)), φn A1(y) + γnμA2(T̃n(y))∩
∗ ≤(I − φn A1)(Tn(xn)) − (I − φn A1)(Tn(y))≤2

+ 2∞y − (I − γnμA2)(T̃n(xn)), φn A1(y) + γnμA2(T̃n(y))∩
∗ ≤Tn(xn) − Tn(y)≤2 + 2∞y − (I − γnμA2)(T̃n(xn)), φn A1(y) + γnμA2(T̃n(y))∩
∗ ≤xn − y≤2 + 2∞y − (I − γnμA2)(T̃n(xn)), φn A1(y) + γnμA2(T̃n(y))∩
= ≤xn − y≤2 + 2∞y − T̃n(xn), φn A1(y) + γnμA2(T̃n(y))∩

+ 2γnμ∞A2(T̃n(xn)), φn A1(y) + γnμA2(T̃n(y))∩
∗ ≤xn − y≤2 + 2∞y − (I − φn A1)(Tn(xn)), φn A1(y) + γnμA2(T̃n(y))∩

+ 2γnμ≤A2(T̃n(xn))≤≤φn A1(y) + γnμA2(T̃n(y))≤
∗ ≤xn − y≤2 + 2(∞y − Tn(xn), φn A1(y) + γnμA2(T̃n(y))∩

+ φn∞A1(Tn(xn)), φn A1(y) + γnμA2(T̃n(y))∩)
+ 2γnμ≤A2(T̃n(xn)≤≤φn A1(y) + γnμA2(T̃n(y))≤

∗ ≤xn − y≤2 + 2(∞y − Tn(xn), φn A1(y) + γnμA2(T̃n(y))∩
+ (φn≤A1(Tn(xn))≤ + γnμ≤A2(T̃n(xn))≤)≤φn A1(y) + γnμA2(T̃n(y))≤),

and hence,

≤yn − y≤2 = ≤(1 − αn)(xn − y) + αn[(I − γnμA2)(T̃n(xn)) − y]≤2
∗ (1 − αn)≤xn − y≤2 + αn≤(I − γnμA2)(T̃n(xn)) − y≤2
∗ (1 − αn)≤xn − y≤2 + αn[≤xn − y≤2

+ 2(∞y − Tn(xn), φn A1(y) + γnμA2(T̃n(y)∩
+ (φn≤A1(Tn(xn))≤ + γnμ≤A2(T̃n(xn))≤)≤φn A1(y) + γnμA2(T̃n(y))≤)]

= ≤xn − y≤2 + 2αn[∞y − Tn(xn), φn A1(y) + γnμA2(T̃n(y))∩
+ (φn≤A1(Tn(xn))≤ + γnμ≤A2(T̃n(xn))≤)≤φn A1(y) + γnμA2(T̃n(y))≤].

This implies that

0 ∗ 1
φn

{

≤xn − y≤2 − ≤yn − y≤2 + 2αn

[ 〈

y − Tn(xn), φn A1(y) + γnμA2(T̃n(y))
〉

+ ⎨

φn ≤A1(Tn(xn))≤ + γnμ
∥
∥A2(T̃n(xn))

∥
∥
⎩ ∥
∥φn A1(y) + γnμA2(T̃n(y))

∥
∥

]}

= (≤xn − y≤ + ≤yn − y≤) ≤xn−y≤−≤yn−y≤
φn

+ 2αn

[ 〈

y − Tn(xn), A1(y) + μγn
φn

A2(T̃n(y))
〉
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+
(

≤A1(Tn(xn))≤ + μγn
φn

∥
∥A2(T̃n(xn))

∥
∥

⎜ ∥
∥φn A1(y) + γnμA2(T̃n(y))

∥
∥

]

∗ M ≤xn−yn≤
φn

+ 2αn

[ 〈

y − Tn(xn), A1(y) + μγn
φn

A2(T̃n(y))
〉

+
(

≤A1(Tn(xn))≤ + μγn
φn

∥
∥A2(T̃n(xn))

∥
∥

⎜ ∥
∥φn A1(y) + γnμA2(T̃n(y))

∥
∥

]

,

that is,

0 ∗ M
2αn

· ≤xn−yn≤
φn

+
〈

y − Tn(xn), A1(y) + μγn
φn

A2(T̃n(y))
〉

+
(

≤A1(Tn(xn))≤ + μγn
φn

∥
∥A2(T̃n(xn))

∥
∥

⎜ ∥
∥φn A1(y) + γnμA2(T̃n(y))

∥
∥ .

(69)
Since Ti is nonexpansive for each 1 ∗ i ∗ N , it is known that L = 1 and {αn} ⇔
[a, b] for some a, b ∇ ⎨

0, 1
2

⎩

. In terms of the conditions that γn → 0, φn → 0 and
(≤xn − yn≤ + γn)/φn → 0, we deduce from (69) and xn → x̂ (=: Pω(x0)) that

∞y − x̂, A1(y)∩ ∈ 0, for all y ∇ ω.

The condition (C1) ensures

∞y − x̂, A1(x̂)∩ ∈ 0, for all y ∇ ω,

that is, x̂ ∇ VIP(ω, A1). Furthermore, from the conditions (C2) and (C4), we con-
clude that Problem 7 has a unique solution. Hence, VIP(VIP(ω, A1), A2) is a sin-
gleton set. Thus, we may assume that VIP(VIP(ω, A1), A2) = {x⇒}. This implies
that x⇒ ∇ VIP(ω, A1).

Now we show that x̂ = x⇒. Indeed, since x̂, x⇒ ∇ VIP(ω, A1), we have

∞A1(x̂), y − x̂∩ ∈ 0, for all y ∇ ω, (70)

and
∞A1(x⇒), y − x⇒∩ ∈ 0, for all y ∇ ω. (71)

Setting y = x⇒ in inequality (70) and y = x̂ in inequality (71), and then adding the
resultant inequalities, we get

∞A1(x̂) − A1(x⇒), x̂ − x⇒∩ ∗ 0.

Since A1 is γ-inverse-strongly monotone, we have

γ
∥
∥A1(x̂) − A1(x⇒)

∥
∥
2 ∗ 〈

A1(x̂) − A1(x⇒), x̂ − x⇒〉 ∗ 0.

Consequently, A1(x̂) = A1(x⇒). Since A1 is injective, we have x̂ = x⇒. ��
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Remark 2 Algorithm 11 in [86] for a Lipschitz continuous pseudo-contraction is
extended to develop our hybrid iterative algorithm for computing a common fixed
point of N Lipschitz continuous pseudo-contractions, that is, Algorithm 11. Beyond
question, our Theorem 14 is more general and more flexible than [86, Theorem 3.1]
to a great extent. Meantime, the proof of Theorem 14 is very different from that of
[86, Theorem 3.1] because our technique of argument depends on Lemma 5.
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Split Feasibility and Fixed Point Problems

Qamrul Hasan Ansari and Aisha Rehan

Abstract In this survey article, we present an introduction of split feasibility
problems, multisets split feasibility problems and fixed point problems. The split
feasibility problems and multisets split feasibility problems are described. Several
solution methods, namely, CQ methods, relaxed CQ method, modified CQ method,
modified relaxed CQ method, improved relaxed CQ method are presented for these
two problems. Mann-type iterative methods are given for finding the common solu-
tion of a split feasibility problem and a fixed point problem. Some methods and
results are illustrated by examples.

Keywords Split feasibility problems · Multisets split feasibility problems · Fixed
point problems · Variational inequalities · Projection gradient method · Mann’s
iterative method · CQ methods · Relaxed CQ algorithm · Extragradient method ·
Relaxed extragradient method

1 Introduction

Let C and Q be nonempty closed convex sets in RN and RM , respectively, and A be
a given M × N real matrix. The split feasibility problem (in short, SFP) is to find x→
such that

x→ ∈ C and Ax→ ∈ Q. (1)
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It was introduced by Censor and Elfving [14] for modeling inverse problems, which
arise from phase retrievals and in medical image reconstruction [5]. Recently, it is
found that SFP can also be used to model the intensity modulated radiation therapy
[13, 15, 16, 20]. It has also several applications in various fields of science and
technology.

If C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively, and A ∈ B(H1,H2), where B(H1,H2) denotes the space of all
bounded linear operators fromH1 toH2, then the SFP is to find a point x→ such that

x→ ∈ C and Ax→ ∈ Q. (2)

A special case of the SFP (2) is the following convexly constrained linear inverse
problem (in short, CCLIP) [29] of finding x→ such that

x→ ∈ C and Ax→ = b. (3)

It has extensively been investigated in the literature by using the projected Landweber
iterative method [42]. However, SFP has received much less attention so far, due to
the complexity resulted from the set Q.

The original algorithm introduced in [14] involves the computation of the inverse
A−1 (assuming the existence of the inverse of A) and thus does not become popular.
A more popular algorithm that solves SFP seems to be the C Q algorithm of Byrne
[5, 6], which is found to be a gradient-projection method in convex minimization (it
is also a special case of the proximal forward-backward splitting method [19, 21]).

Throughout the chapter, we denote by δ the solution set of the SFP, that is,

δ = {x ∈ C : Ax ∈ Q} = C ≥ A−1Q.

We also assume that the SFP is consistence, that is, the solution set δ is nonempty,
closed and convex.

For each j = 1, 2, . . . , J , let K j , be a nonempty closed convex subset of a M-
dimensional Euclidean spaceRM with ≥J

j=1K j ∇= ≤. The convex feasibility problem

(in short, CFP) is to find an element of ≥J
j=1K j . Solving the SFP is equivalent to

find a member of the intersection of two sets Q and A(C) = {Ac : c ∈ C} or of
the intersection of two sets A−1(Q) and C , so the split feasibility problem can be
viewed as a particular case of the CFP.

During the last decade, SFP has been extended and generalized in many direc-
tions. Several iterative methods have been proposed and analyzed; See, for example,
references given in the bibliography.

1.1 Multiple-Sets Split Feasibility Problem

The multiple-sets split feasibility problem (in short, MSSFP) is to find a point closest
to a family of closed convex sets in one space such that its image under a linear
transformation will be closest to another family of closed convex sets in the image
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space. It can be a model for many inverse problems where constraints are imposed
on the solutions in the domain of a linear operator as well as in the operator’s range.
It generalizes the convex feasibility problems and split feasibility problems. For-
mally, given nonempty closed convex sets Ci ∞ R

N , i = 1, 2, . . . , t , and the non-
empty closed convex sets Q j ∞ R

M , j = 1, 2, . . . , r , in the N and M dimensional
Euclidean spaces, respectively, the multiple-sets split feasibility problem (in short,
MSSFP) is to

find x→ ∈ C :=
t

⋂

i=1

Ci such that Ax→ ∈ Q :=
r

⋂

j=1

Q j, (4)

where A is given M × N real matrix. This can serve as a model for many inverse
problems where constraints are imposed on the solutions in the domain of a linear
operators aswell as in the operator’s range. Themultiple-sets split feasibility problem
extends the well-known convex feasibility problem, which is obtained from (4) when
there are no matrix A and the set Q j present at all.

Themultiple split feasibility problems [15] arise in thefield of intensity-modulated
radiation therapy (in short, IMRT) when one attempts to describe physical dose
constraints and equivalent uniform does (EUD) within a single model. The intensity-
modulated radiation therapy is described in Sect. 1.1.1. For further details, see Censor
et al. [13].

1.1.1 Intensity-Modulated Radiation Therapy

Intensity-modulated radiation therapy (in short, IMRT) [13] is an advanced mode
of high-precision radiotherapy, that used computer-controlled linear accelerators to
deliver precise radiation doses to specific areas within the tumor. IMRT allows for
the radiation doses to confirm more precisely to the three-dimensional (3D) shape
of the tumor by modulating-or controlling the intensity of the radiation beam in
multiple small volumes. IMRT also allows higher radiation doses to be focused to
regions within the tumor while minimizing the dose to surrounding normal critical
structures. Treatment is carefully planned by using 3-D computed tomograpy (CT)
or magnetic resonance (MRI) images of the patient in conjuction with computarized
dose calculations to determine the dose intensity pattern that will best conform to
the tumor shape. Typically, combinations of multiple intensity-modulated field com-
ing from different beam directions produce a custom tailored radiation dose that
maximizes tumor dose while also minimizing the dose to adjacent normal tissues.
Because the ratio of normal tissue dose to tumor dose is reduced to a minimum with
the IMRT approach higher and more effective radiation doses can safely delivered to
tumor with fewer side effects compared with conventional radiotherapy techniques.
IMRT also has the potential to reduce treatment toxicity, even when doses are not
increased. Radiation therapy, including IMRT stops cancer cells from dividing and
growing, thus slowing or stopping tumour growth. In many cases, radiation therapy
is capable of killing all of the cancer cells, thus shrinking or eliminating tumors.
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1.1.2 The Multiple-Sets Split Feasibility Problem in Intensity-Modulated
Radiation Therapy

Let us first define the notations:
R

J : The radiation intensity space, the J -dimensional Euclidean space.
R

I : The dose space, the I -dimensional Euclidean space.
x = (x j )

J
j=1 ∈ R

J : vector of beamlet intensity.

h = (hi )
I
i=1 ∈ R

I : vector of doses absorbed in all voxels.
di j : doses absorbed in the voxel i due to radiation of unit intensity from the j th

beamlet.
St : Set of all voxels indices in the structure t .
Nt : Number of voxel in the structure St .

We divide the entire volume of patient into I voxels, enumerated by i =
1, 2, . . . , I . Assume that T + Q anatomical structures have been outlined including
planning target volumes (PTVs) and organ at risk (OAR). Let us count all PTVs and
OARs sequentially by St , t = 1, 2, . . . , T, T + 1, . . . , T + Q, where the first T
structure represents the planning target volume and the next Q structure represents
the organ at risk.

Let us assume that the radiation is delivered independently from each of the J
beamlet,which are arranged in certain geometry and indexed by j = 1, 2, . . . , J . The
intensities x j of the beamlets are arranged in a J -dimensional vector x = (x j )

J
j=1 ∈

R
J in the J dimensional Euclidean space RJ - the radiation intensity space.
The quantities di j ∩ 0, which represent the dose absorbed in voxel i due to radi-

ation of unit intensity from the j th beamlet are calculable by any forward program.
Let hi denote the total dose absorbed in the voxel i and let h = (hi )

I
i=1 be the vector

of doses absorbed in all voxels.We call the spaceRI -the dose space. we can calculate
hi as

hi =
J

∑

j=1

di j x j. (5)

The dose influence matrix D = (di j ) is the I × J matrix whose elements are the
d ∗

i j s mentioned above. Thus, (5) can be written as the vector equation

h = Dx . (6)

The constraint are formulated in two different Euclidean vector space. The delivery
constraints are formulated in the Euclidean vector space of radiation intensity vector
(that is, vector whose component are radiation intensities). The equivalent uniform
dose (in short, EUD) constraints are formulated in the Euclidean vector space of dose
vectors (that is, vectors whose components are dose in each voxel).

Now, let us assume that M constraints in the dose space and N constraints in the
intensity space. Let Hm be the set of dose vectors that fulfil the mth dose constraints
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and, let Xn be the set of beamlet intensity vectors that fulfil thenth intensity constraint.
Each of the constraint sets Hm and Xn can be one of the specific H and X sets,
respectively, described below.

In the dose space, a typical constraint is that given critical structure St , the dose
should not exceed an upper bound ut. The corresponding set Hmax,t is

Hmax,t = {h ∈ R
I | hi ≤ ut , for all i ∈ St }. (7)

Similarly, in the target volumes (in short, TVs), the dose should not fall below a
lower bound lt. The set Hmin,t of dose vectors that fulfil this constraint is

Hmin,t = {h ∈ R
I | lt ≤ hi for all i ∈ St }. (8)

To handle the equivalent uniform dose EUD constraint for each structure St , we
define a real-valued function Et = R

I ⊆ R, called the EUD function, is defined by

Et (h) =



1

Nt

∑

i∈St

(hi )
εt

⎜



1/εt

. (9)

where Nt is the number of voxels in the structure St.
The parameter εt is a tissue-specific number which is negative for target volumes

TVs and positive for organ at risk OAR. For εt = 1,

Et (h) = 1

Nt

∑

i∈St

(hi ), (10)

that is, it is the mean dose of the organ for which it is calculated.
On the other hand, letting εt ⊆ ⇔ makes the equivalent uniform dose EUD

function approach the maximal value, max{hi | i ∈ St }.
For each planning target volumePTVs structure St , t = 1, 2, . . . , T , the parameter

εt is chosen negative and the equivalent uniform dose EUD constraint is described
by the set

HEUD,t = {h ∈ R
I | Emin ≤ Et (h)}, (11)

where Emin is given, for each planning target volumes PTVs structure, by the treat-
ment planner. For each organ at risk OAR, Sμ, μ = T + 1, T + 2, . . . , T + Q, the
parameter is chosen εt ∩ 1 and the equivalent uniform dose EUD constraint can be
described by the set

HEUD,t = {h ∈ R
I | Et (h) ≤ Emax}, (12)

where Emax is given, for each organ at risk OAR, by the treatment planner. Due to the
non-negativity of dose, h ∩ 0 the equivalent uniform dose EUD function is convex
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for all εt ∩ 1 and concave for all εt < 1. Therefore, the constraint sets HEUD,t are
always convex sets in the dose vector space, since they are level sets of the convex
functions Et (h) for organ at risk OAR (with εt ∩ 1), or of the convex functions
−Et (h) for the targets (with εt < 0).

In the radiation intensity space, themost prominent constraint is the non-negativity
of the intensities, described by the set.

X+ = {x ∈ R
J | x j ∩ 0 ⇒ j = 1, 2, . . . , J }. (13)

Thus, our unified model for physical dose and equivalent uniform dose EUD
constraints takes the form of multiple-sets split feasibility problem, where some
constraints (the non-negativity of radiation intensities) are defined in the radiation
intensity space RJ and other constraints (upper and lower bounds on dose and the
equivalent uniform dose EUD constraints) are defined in the dose space RI , and the
two spaces are related by a (known) linear transformation D (the dose matrix).

The unified problem can be formulated as follows:

find x→ ∈ X+
⋂

(
N

⋂

i=1

Xn

⎟

such that h→ = Dx→ and h→ ∈
(

M
⋂

m=1

Hm

⎟

. (14)

2 Preliminaries

This section provides the basic definitions and results, which will be used in the
sequel.

Throughout the chapter, we adopt the following terminology and notations.
LetH be a real Hilbert space whose norm and inner product are denoted by ⊂ · ⊂

and ◦., .∪, respectively. Let C be a nonempty subset of H . The set of fixed points
of a mapping T : C ⊆ C is denoted by Fix(T ). Let {xn} be a sequence in H and
x ∈ H . We use xn ⊆ x and xn σ x to denote the strong and weak convergence of
the sequence {xn} to x , respectively. We also use αw(xn) to denote the weak α-limit
sets of the sequence {xn}, namely,

αw(xn) := {x ∈ H : xni σ x for some subsequence {xni} of {xn}}.

The following result provides the weak convergence of a bounded sequence.

Proposition 1 [65, Proposition 2.6] Let C be a nonempty closed convex subset of
a real Hilbert space H and {xn} be a bounded sequence such that the following
conditions hold:

(i) Every weak limit point of {xn} lies in C;
(ii) lim

n⊆⇔ ⊂xn − x⊂ exists for every x ∈ C.

Then, the sequence {xn} converges weakly to a point in C.
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Lemma 1 [59] Let {xn} and {yn} be bounded sequences in a real Hilbert space H
and {εn} be a sequence in [0, 1] with 0 < lim inf

n⊆⇔ εn ≤ lim sup
n⊆⇔

εn < 1. Suppose that

xn+1 = (1−εn)yn + εn xn for all n ∩ 0, and lim sup
n⊆⇔

(⊂yn+1− yn⊂−⊂xn+1−xn⊂) ≤
0. Then, lim

n⊆⇔ ⊂yn − xn⊂ = 0.

Lemma 2 [33]LetH be a real Hilbert space. Then, for all x, y ∈ H andβ ∈ [0, 1],

⊂βx + (1 − β)y⊂2 = β⊂x⊂2 + (1 − β)⊂y⊂2 − β(1 − β)⊂x − y⊂2.

Definition 1 A mapping T : H ⊆ H is said to be

(a) Lipschitz continuous if there exists a constant L > 0 such that

⊂T x − T y⊂ ≤ L⊂x − y⊂, for all x, y ∈ H ; (15)

(b) contraction if there exists a constant ε ∈ (0, 1) such that

⊂T x − T y⊂ ≤ ε⊂x − y⊂, for all x, y ∈ H ; (16)

If ε = 1, then T is said to be nonexpansive;
(c) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

◦x − y, T x − T y∪ ∩ ⊂T x − T y⊂2, for all x, y ∈ H . (17)

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T = 1

2
(I + S),

where S : H ⊆ H is nonexpansive;
(d) averaged mapping if it can be written as the average of the identity mapping I

and a nonexpansive mapping, that is,

T = (1 − ε)I + εS, (18)

where ε ∈ (0, 1) and S : H ⊆ H is nonexpansive. More precisely, when
Eq. (18) holds, we say that T is ε-averaged.

The Cauchy-Schwartz inequality implies that every firmly nonexpansive mapping
is nonexpansive but converse need not be true.

Proposition 2 Let S, T, V : H ⊆ H be given mappings.

(a) If T = (1−ε)S+εV for some ε ∈ (0, 1), S is averaged and V is nonexpansive,
then T is averaged.
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(b) T is firmly nonexpansive if and only if the complement I − T is firmly nonex-
pansive.

(c) If T = (1 − ε)S + εV for some ε ∈ (0, 1), S is firmly nonexpansive and V is
nonexpansive, then T is averaged.

(d) The composite of finitely many averaged mappings is averaged. That is, if each
of the mappings {Ti }N

i=1 is averaged, then so is the composite T1o . . . oTN . In
particular, if T1 is ε1-averaged and T2 is ε2-averaged, where ε1, ε2 ∈ (0, 1),
then the composite T1 ∃ T2 is ε-averaged, where ε = ε1 + ε2 − ε1ε2.

(e) If the mappings {Ti }N
i=1 are averaged and have a common fixed point, then

N
⋂

i=1

Fix(Ti ) = Fix(T1 ∃ · · · ∃ TN ).

The notion Fix(T ) denotes the set of all fixed points of the mapping T , that is,
Fi x(T ) = {x ∈ H : T x = x}.

Definition 2 Let T be a nonlinear operator whose domain D(T ) ∞ H , and range
is R(T ) ∞ H . The operator T is said to be

(a) monotone if
◦x − y, T x − T y∪ ∩ 0, for all x, y ∈ D(T ). (19)

(b) strongly monotone (or γ-strongly monotone) if there exists a constant γ > 0
such that

◦x − y, T x − T y∪ ∩ γ⊂x − y⊂2, for all x, y ∈ D(T ). (20)

(c) inverse strongly monotone (or φ-inverse strongly monotone) (φ-ism) if there
exists a constant φ > 0 such that

◦x − y, T x − T y∪ ∩ φ⊂T x − T y⊂2, for all x, y ∈ D(T ). (21)

It can be easily seen that if T is nonexpansive, then I − T is monotone.
It is well-known that if the function f : H ⊆ R is Lipschitz continuous, then

its gradient ⇐ f is 1
L -ism.

Lemma 3 Let f : H ⊆ R be a Lipschitz continuous function with Lipschtiz
constant L > 0. Then, the gradient operator ⇐ f : H ⊆ H is 1

L -ism, that is,

◦⇐ f (x) − ⇐ f (y), x − y∪ ∩ 1

L
⊂⇐ f (x) − ⇐ f (y)⊂2, for allx, y ∈ H . (22)

Proposition 3 Let T : H ⊆ H be a mapping.

(a) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(b) If T is φ-ism, then for γ > 0, γ T is φ
γ

-ism.
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(c) T is averaged if and only if the complement I − T is φ-ism for some φ > 1
2 .

Indeed, for ε ∈ (0, 1), T is ε-averaged if and only if I − T is 1
2ε -ism.

2.1 Metric Projection

Let C be a nonempty subset of a normed space X and x ∈ X . An element y0 ∈ C is
said to be a best approximation of x if

⊂x − y0⊂ = d(x, C),

where d(x, C) = inf
y∈C

⊂x − y⊂. The number d(x, C) is called the distance from x to

C. The (possibly empty) set of all best approximations from x to C is denoted by

PC (x) = {y ∈ C : ⊂x − y⊂ = d(x, C)}.

This defines a mapping PC from X into 2C and it is called the metric projection
onto C . The metric projection mapping is also known as the nearest point projection,
proximity mapping or best approximation operator.

Theorem 1 Let C be a nonempty closed convex subset of a Hilbert space H . Then,
for each x ∈ H , there exists a unique y ∈ C such that

⊂x − y⊂ = inf
z∈C

⊂x − z⊂.

The above theorem says that PC (.) is a single-valued projection mapping from
H onto C .

Some important properties of projections are gathered in the followingproposition.

Proposition 4 Let C be a nonempty closed convex subset of a real Hilbert space
H . Then,

(a) PC is idempotent, that is, PC (PC (x)) = PC (x), for all x ∈ H ;
(b) PC is firmly nonexpansive, that is, ◦x−y, PC (x)−PC (y)∪ ∩ ⊂PC (x)−PC (y)⊂2,

for all x, y ∈ H ;
(c) PC is nonexpansive, that is, ⊂PC (x) − PC (y)⊂ ≤ ⊂x − y⊂, for all x, y ∈ H ;
(d) PC is monotone, that is, ◦PC (x) − PC (y), x − y∪ ∩ 0, for all x, y ∈ H .

2.2 Projection Gradient Method

Let C be a nonempty closed convex subset of a Hilbert space H and f : C ⊆ R

be a function. Consider the constrained minimization problem:



290 Q. H. Ansari and A. Rehan

min
x∈C

f (x). (23)

Assume that the minimization problem (23) is consistent.
If f : C ⊆ R is Fréchet differentiable convex function, then it is well known

(see, for example, [2, 39]) that the minimization problem (23) is equivalent to the
following variational inequality problem:

Find x→ ∈ C such that ◦⇐ f (x→), y − x→∪ ∩ 0, for all y ∈ C, (24)

where ⇐ f : H ⊆ H is the gradient of f . The following is the general form of the
variational inequality problem:

VIP(F, C) Find x→ ∈ C such that ◦F(x→), y − x→∪ ∩ 0, for all y ∈ C,

where F : C ⊆ H be a nonlinear mapping. For further details and applications
of variational inequalities, we refer to [2, 30, 39] and the references therein. The
following result provides the equivalence between a variational inequality problem
and a fixed point problem.

Proposition 5 Let C be a nonempty closed convex subset of a real Hilbert space
H and F : C ⊆ H be an operator. Then, x→ ∈ C is a solution of the VIP(F, C) if
and only if for any γ > 0, x→ is a fixed point of the mapping PC (I − γ F) : C ⊆ C,
that is,

x→ = PC (x→ − γ F(x→)), (25)

where PC (x→ − γ F(x→)) denotes the projection of (x→ − γ F(x→)) onto C, and I is
the identity mapping.

In view of the above proposition and discussion, we have the following proposi-
tion.

Proposition 6 Let C be a nonempty closed convex subset of a real Hilbert space H
and F : C ⊆ H be a convex and Fréchet differential function. Then, the following
statement are equivalent:

(a) x→ ∈ C is a solution of the minimization problem (23);
(b) x→ ∈ C solves V I P(F, C) (24);
(c) x→ ∈ C is a solution of the fixed point Eq. (25).

From the above equivalence, we have the following projection gradient method.
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Theorem 2 (ProjectionGradientMethod)Let C be a nonempty closed convex subset
of a real Hilbert space H and F : C ⊆ H be a Lipschitz continuous and strongly
monotone mapping with constants L > 0 and γ > 0, respectively. Let γ > 0 be a
constant such that γ <

2γ
L2 . Then,

(i) PC (I − γ F) : C ⊆ C is a contraction mapping and there exists a solution
x→ ∈ C of the VIP(F, C).

(ii) The sequence {xn} generated by the following iterative, process:

xn+1 = PC (I − γ F)xn, for all n ∈ N,

converges strongly to a solution x→ of the V I P(F, C).

In view of Proposition 6 and Theorem 2, we have the followingmethod for finding
an approximate solution of a convex and differentiable minimization problem.

Theorem 3 Let C be a nonempty closed convex subset of a real Hilbert space H
and f : C ⊆ R be a convex and Fréchet differentiable function such that the gradient
⇐ f is Lipschitz continuous and strongly monotone mapping with constants L > 0
and γ > 0, respectively. Let {γn} be a sequence of strictly positive real numbers such
that

0 < lim inf
n⊆⇔ γn ≤ lim sup

n⊆⇔
γn <

2γ

L2 . (26)

Then, the sequence {xn} generated by the following projection gradient method

xn+1 = PC (I − γn⇐ f )xn, for all n ∈ N, (27)

converges strongly to a unique solution of the minimization problem (23).

The sequence {xn} generated by the Eq. (27) converges weakly to the unique
solution of the minimization problem (23) even when ⇐ f is not necessary strongly
monotone.

We present an example to illustrate projection gradient method.

Example 1 Let C = [0, 1] be a closed convex set in R, f (x) = x2 and γn = 1/5
for all n. Then, all the conditions of the Theorem 3 are satisfied and the sequence
generated by the Eq. (27) converges to 0 with initial guess x1 = 0.01. We have the
following table of iterates:

From Table 1, it is clear that the solution x = 0 is obtained after 11th iteration.
We performed the iterative scheme in Matlab R2010 (Fig. 1).



292 Q. H. Ansari and A. Rehan

Table 1 Convergence of {xn} in Example 1

Number of xn Number of xn Number of xn

iterations (n) iterations (n) iterations (n)

1 0.0100 6 0.0008 11 0.0001
2 0.0060 7 0.0005 12 0.0000
3 0.0036 8 0.0003 13 0.0000
4 0.0022 9 0.0002 14 0.0000
5 0.0013 10 0.0001 15 0.0000

Fig. 1 Convergence of {xn}
in Example 1
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2.3 Mann’s Iterative Method

LetC be a nonempty closed convex subset of a real Hilbert spaceH and T : C ⊆ C
be a mapping. The well-known Mann’s iterative algorithm is the following.

Algorithm 1 (Mann’s Iterative Algorithm) For arbitrary x0 ∈ H , generate a
sequence {xn} by the recursion:

xn+1 = (1 − εn)xn + εnT xn, n ∩ 0, (28)

where {εn} is (usually) assumed to be a sequence in [0, 1].
Theorem 4 Let C be a nonempty closed convex subset of a real Hilbert space H
and T : C ⊆ C be a nonexpansive mapping with a fixed point. Assume that {εn} is
a sequence in [0, 1] such that

⇔
∑

n=1

εn(1 − εn) = ⇔. (29)
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Table 2 Convergence of {xn} in Example 2

Iterations (n) xn Iterations (n) xn Iterations (n) xn

1 0.0100 9 0.1367 17 0.1714
2 0.4800 10 0.1919 18 0.1717
3 −0.1386 11 0.1604 19 0.1715
4 0.4784 12 0.1777 20 0.1716
5 −0.0346 13 0.1683 21 0.1716
6 0.3280 14 0.1733 22 0.1716
7 0.0770 15 0.1707 23 0.1716
8 0.2324 16 0.1720 24 0.1716

Then, the sequence {xn} generated by Mann’s Algorithm 1 converges weakly to a
fixed point of T .

Xu [65] studied the weak convergence of the sequence generated by the Mann’s
Algorithm 1 to a fixed point of an ε-averaged mapping.

Theorem 5 [65, Theorem 3.5] Let H be a real Hilbert space and T : H ⊆ H be
an ε-averaged mapping with a fixed point. Assume that {εn} is a sequence in [0,1/ε]
such that ⇔

∑

n=1

εn

(
1

ε
− εn

⎧

= ⇔. (30)

Then, the sequence {xn} generated by Mann’s Algorithm 1 converges weakly to a
fixed point of T .

We illustrates Mann’s Algorithm 1 with the help of the following examples:

Example 2 Let T : [0, 1] ⊆ [0, 1] be a mapping defined by

T x = x2

4
− x

2
+ 1

4
, for all x ∈ [0, 1].

Then, T is nonexpansive. Let {εn} = { 1
n+1 }. Then, all the conditions of Theorem 4

are satisfied and the sequence {xn} generated by Mann’s Algorithm 1 converges to
a fixed point of T , that is, to x = 0.1716. We take the initial guest x1 = .01 and
perform the Mann’s Algorithm 1 by using Matlab R2010. We obtain the iterates in
Table 2.

From Table 2, it is clear that the sequence generated by the Mann’s Algorithm 1
converges to x = 0.1716 which is obtained after 19th iteration (Fig. 2).

Example 3 Let T : [0, 1] ⊆ [0, 1] be defined by

T x = 9

10
x + 1

10
Sx, for all x ∈ [0, 1].
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Fig. 2 Convergence of {xn} in Example 2

Table 3 Convergence of {xn} in Example 3

Number of xn Number of xn Number of x(n)

iterations iterations iterations

1 0.0100 5 0.1693 9 0.1715
2 0.2215 6 0.1725 10 0.1716
3 0.1550 7 0.1712 11 0.1716
4 0.17770 8 0.1717 12 0.1716

where Sx = x2
4 − x

2 + 1
4 is a nonexpansive map and {εn} = 10 − { 1n }. Then, T is a

1
10 -averaged mapping and all the conditions of Theorem 5 are satisfied. Hence, the
sequence {xn} generated byMann’s Algorithm 1 converges to a fixed point of T , that
is, to 0.1716 with initial guess x1 = 0.01.

From Table 3, it is clear that the fixed point x = 0.1716 is obtained after 9th
iteration. We performed the iterative scheme in Matlab R2010 (Fig. 3).

3 CQ-Methods for Split Feasibility Problems

In the pioneer paper [14], Censor and Elfving introduced the concept of a split feasi-
bility problem (SFP) and usedmultidistancemethod to obtain the iterative algorithms
for solving this problem. Their algorithms as well as others obtained later involves
matrix inverses at each step. Byrne [5, 6] proposed a new iterative method called
CQ-method that involves only the orthogonal projections onto C and Q and does not
need to compute the matrix inverses, where C and Q are nonempty closed convex
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Fig. 3 Convergence of {xn} in Example 3

subsets of RN and RM , respectively. It is one of the main advantages of this method
compare to other methods. The CQ algorithm is as follows:

xn+1 = PC

⎪

xn − γ A⊕(I − PQ)Axn

⎨

, n = 0, 1, . . . ,

where γ ∈ (0, 2/L), A is a M × N matrix, A⊕ denotes the transpose of the matrix A,
L is the largest eigenvalue of the matrix A⊕ A, and PC and PQ denote the orthogonal
projections onto C and Q, respectively. Byrne also studied the convergence of the
CQ algorithm for arbitrary nonzero matrix A. Inspired by the work of Byrne [5, 6],
Yang [68] proposed amodification of the CQ algorithm, called relaxed CQ algorithm
in which he replaced PC and PQ by PCn and PQn , respectively, where Cn and Qn are
half-spaces. One common advantage of the CQ algorithm and relaxed CQ algorithm
is that the computation of the matrix inverses is not necessary. However, a fixed
step-size related to the largest eigenvalue of the matrix A⊕ A is used. Computing the
largest eigenvalue may be hard and conservative estimate of the step-size usually
results in slow convergence. So, Qu and Xiu [53] modified the CQ algorithm and
relaxed CQ algorithm by adopting Armijo-like searches. The modified algorithm
need not compute the matrix inverses and the largest eigenvalue of the matrix A⊕ A,
and make a sufficient decrease of the objective function at each iteration. Zhao
et al. [75] proposed a modified CQ algorithm by computing step-size adaptively and
perform an additional projection step onto some simple closed convex set X ∞ R

N

in each iteration. Since all the algorithms have been introduced in finite-dimensional
setting, Xu [65] proposed the relaxed CQ algorithm in infinite-dimensional setting,
and also proved the weak convergence of the proposed algorithm. In 2011, Li [45]
developed some improved relaxed CQmethods with the optimal step-length to solve
the split feasibility problem based on the modified relaxed CQ algorithm [53].
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In this section,wepresent different kinds ofCQalgorithms, namely,CQalgorithm,
relaxedCQalgorithm,modifiedCQalgorithm,modified relaxedCQalgorithm,mod-
ified projection type CQ algorithm, modified projection type relaxed CQ algorithm
and improved relaxed CQ algorithm. We present the convergence results for these
algorithms. We also present an example to illustrate CQ algorithm and its conver-
gence result.

3.1 CQ Algorithm

Let C and Q be nonempty closed convex sets in R
N and R

M , respectively, and A
be an M × N real matrix with its transpose matrix A⊕. Let γ > 0 and assume that
x→ ∈ δ. Then, Ax→ ∈ Q which implies the equation (I − PQ)Ax→ = 0 which in
turns implies the equation γ A⊕(I − PQ)Ax→ = 0, hence the fixed point equation
(I − γ A⊕(I − PQ)A)x→ = x→. Requiring that x→ ∈ C , Xu [65] considered the fixed
point equation:

PC (I − γ A⊕(I − PQ)A)x→ = x→. (31)

and also observed that solutions of the fixed point Eq. (31) are exactly solutions of
SFP.

Proposition 7 [65, Proposition 3.2] Given x→ ∈ R
N . Then, x→ solves the SFP if and

only if x→ solves the fixed point Eq. (31).

Byrne [5, 6] introduced the following CQ algorithm:

Algorithm 2 Let x0 ∈ R
N be an initial guess. Generate a sequence {xn} by

xn+1 = PC

⎪

xn − γ A⊕(I − PQ)Axn

⎨

, n = 0, 1, 2, . . . , (32)

where γ ∈ (0, 2/L) and L is the largest eigenvalue of the matrix A⊕ A.

It can be easily seen that the CQ algorithm does not require the computation of
the inverse of any matrix. We need only to compute the projection onto the closed
convex sets C and Q, respectively.

Byrne [5] studied the convergence of the above method and established the fol-
lowing convergence result.

Theorem 6 [5, Theorem 2.1] Assume that the SFP is consistent. Then, the sequence
{xn} generated by the CQ Algorithm 2 converges to a solution of the SFP.

Remark 1 The particular cases of the CQ algorithm are the Landweber and projected
Landweber methods [42]. These algorithms are discussed in detail in the book by
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Table 4 Convergence of {xn}
in Example 4

Number of x(n) Number of x(n)

iterations (n) iterations (n)

1 0.0100 10 0.4970
2 0.7940 11 0.5018
3 0.3236 12 0.4989
4 0.6058 13 0.5006
5 0.4365 14 0.4996
6 0.5381 15 0.5002
7 0.4771 16 0.4999
8 0.5137 17 0.5000
9 0.5049 18 0.5000

Fig. 4 Convergence of {xn}
in Example 4
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Bertero andBoccacci [8], primarily in the context of image restorationwithin infinite-
dimensional spaces of functions (see also Landweber [41]). With C = R

N and
Q = {b}, the CQ algorithm becomes the Landweber iterative method for solving the
linear equations Ax = b.

The following example illustrates the CQ Algorithm 2 and its convergence result.

Example 4 Let C = Q = [−1, 1] and A(x) = 2x . Then, A is a bounded linear
operator with norm 2. Let γ = 2/5. Then, all the conditions of Theorem 6 are
satisfied.

We perform the computation of the CQ Algorithm 2 by taking the initial guess
x1 = 0.01 and by using Matlab R2010. We obtain the iterates in Table 4.

From Table 4, it is clear that the sequence generated by the CQ Algorithm 2
converges to 0.5 after 16th iteration (Fig. 4).

Xu [65] extended Algorithm 2 in the setting of real Hilbert spaces to find the
minimum-norm solution of the SFP with the help of regularization parameter. He
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considered xmin to be the minimum-norm solution of the SFP if xmin ∈ δ has the
property

⊂xmin⊂ = min{⊂x→⊂ : x→ ∈ δ}.

3.2 Relaxed CQ Algorithm

Let C and Q be nonempty closed convex sets in R
N and R

M respectively, and A
be an M × N real matrix with its transpose matrix A⊕. Let PCn and PQn denote
the orthogonal projections onto the half-spaces Cn and Qn , respectively. In some
cases it is impossible or need too much time to compute the orthogonal projections
[7, 32, 34]. Therefore, if this is the case, the efficiency of the projection type methods
will be seriously affected, as would the CQ algorithm. Inexact technology plays an
important role in designing efficient, easily implemented algorithms for the opti-
mization problem, variational inequality problem and so on. The relaxed projection
method may be viewed as one of the inexact methods. Fukushima [32] proposed a
relaxed projection algorithm for solving variational inequalities and the theoretical
analysis. The numerical experiment shows the efficiency of his method.

Inspired by the work of Fukushima [32], Yang [68] proposed the relaxed CQ
algorithm. In order to describe relaxed CQ algorithm, he made some assumptions on
C and Q, which are as follow:

• The solution set of the split feasibility problem is nonempty.

C = {x ∈ R
N : c(x) ≤ 0} and Q = {y ∈ R

M : q(y) ≤ 0}. (33)

where c and q are the convex functionals on R
N and R

M , respectively.
The subgradients λc(x) and λq(y) of c and q at x and y, respectively, are defined as
follows:

λc(x) = {z ∈ R
N : c(u) ∩ c(x) + ◦u − x, z∪, ⇒u ∈ R

N } ∇= ≤, for all x ∈ C,

and

λq(y) = {w ∈ R
M : q(v) ∩ q(y) + ◦v − y, w∪, ⇒v ∈ R

M } ∇= ≤, for all y ∈ Q.

Note that the differentiability of c(x) or q(y) is not assumed. Therefore, both C and
Q are general enough. For example, suppose any system of inequalities ci (x) ≤ 0,
i ∈ J , where ci (x) are convex and J is an arbitrary index set, may be regarded as
equivalent to the single inequality c(x) ≤ 0 with c(x) = sup{ci (x) : i ∈ J }. One
may easily get an element of λc(x) by the expression of λc(x) provided all ci (x) are
differentiable.

With these assumptions, Yang [68] proposed the following relaxed CQ algorithm.
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Algorithm 3 Let x0 be arbitrary. For n = 0, 1, 2, . . . , calculate

xn+1 = PCn

⎪

xn − γ A⊕(I − PQn )Axn

⎨

, (34)

where {Cn} and {Qn} are the sequences of closed convex sets defined as follows:

Cn = {x ∈ R
N : c(xn) + ◦ψn, x − xn∪ ≤ 0}, (35)

where ψn ∈ λc(xn), and

Qn = {y ∈ R
M : q(A(xn)) + ◦ωn, y − A(xn)∪ ≤ 0}, (36)

where ωn ∈ λq(A(xn)).

It can be easily seen that C ∀ Cn and Q ∀ Qn for all n. Due to special form of
Cn and Qn , the orthogonal projections onto Cn and Qn may be directly calculated
[32]. Thus, the proposed algorithm can be easily implemented.

Yang [68] proved the following convergence result for Algorithm 3.

Theorem 7 [68, Theorem 1] Let {xn} be the sequence generated by the Algorithm
3. Then, {xn} converges to a solution of the SFP.

Xu [65] further studied the relaxed CQ algorithm in the setting of Hilbert spaces.
He proposed the generalized form of the Algorithm 3 in the setting of Hilbert spaces
and studied theweak convergence of the sequence generated by the proposedmethod.

3.3 Modified CQ Algorithm and Modified Relaxed
CQ Algorithm

In CQ method and relaxed CQ method, we use a fixed step-size related to the largest
eigenvalue of the matrix A⊕ A, which sometimes affects convergence of the algo-
rithms. Therefore, several modifications of these methods are proposed during the
recent years. This section deals with such modified CQ method and relaxed CQ
method.

By adopting Armijo-like searches, which are popular in iterative algorithms for
solving nonlinear programming problems, variational inequality problems and so on
[30, 67], Qu and Xiu [53] presented modification of CQ algorithm and relaxed CQ
algorithm. In these modifications, it is not needed to compute the matrix inverses
and the largest eigenvalue of the matrix A⊕ A, and make a sufficient decrease of the
objective functions at each iteration.

LetC , Q and A be the same as in Sect. 3.1. Qu andXiu [53] proposed the following
modified CQ algorithm:

Algorithm 4 Given constants γ > 0, σ ∈ (0, 1), γ ∈ (0, 1). Let x0 be arbitrary.
For n = 0, 1, 2, . . ., calculate
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xn+1 = PC

⎪

xn − εn A⊕(I − PQ)Axn

⎨

,

where εn = γγ mn and mn is the smallest nonnegative integer m such that

f (PC (xn − γγ m A⊕(I − PQ)Axn)) ≤

f (xn) − σ
⎩

A⊕(I − PQ)Axn, xn − PC

⎪

xn − γγ m A⊕(I − PQ)Axn

⎨⎛

,

where f (x) := 1
2⊂Ax − PQ Ax⊂2.

Algorithm 4 is in fact a special case of the standard gradient projection method
with the Armijo-like search rule for solving convexly constrained optimization.

Qu and Xiu [53] established the following convergence of the modified CQAlgo-
rithm 4.

Theorem 8 [53, Theorem 3.1] Let {xn} be a sequence generated by the Algorithm
4. Then the following conclusions hold:

(a) {xn} is bounded if and only if the solution set S of minimization problem:

min
x∈C

f (x) := 1

2
⊂Ax − PQ Ax⊂2,

is nonempty. In this case, {xn} must converge to an element of S.
(b) {xn} is bounded and lim

n⊆⇔ f (xn) = 0 if and only if the SFP is solvable. In such

a case, {xn} must converge to a solution of the SFP.

Remark 2 Algorithm 4 is more applicable and it is easy to compute as compared
to CQ Algorithm 2 proposed by Byrne [5], as it need not determine or estimate the
largest eigenvalue of the matrix A⊕ A. The step-size εn is judiciously chosen so that
the function value f (xn+1) has a sufficient decrease. It can also be identified the
existence of solution to the concerned problem by the iterative sequence.

Qu and Xiu [53] studied relaxed CQ algorithm proposed in Sect. 3.2 and proposed
amodified relaxed CQ algorithm. LetC , Q, A,Cn and Qn be the same as in Sect. 3.2.

For every n, let Fn : RN ⊆ R
N be function defined as

Fn(x) = A⊕(I − PQn )Ax, for all x ∈ R
N .

Modified relaxed CQ algorithm is the following:

Algorithm 5 Let x0 be arbitrary and γ > 0, l ∈ (0, 1), μ ∈ (0, 1) be given. For
n = 0, 1, 2, . . ., let

xn = PCn (xn − εn Fn(xn)) ,

where εn = γ lmn and mn is the smallest nonnegative integer m such that

⊂Fn(xn) − Fn(xn)⊂ ≤ μ
⊂xn − xn⊂

εn
. (37)
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Set
xn+1 = PCn (xn − εn Fn(xn)),

where Cn , Qn are the sequences of closed convex sets defined as in (35) and (36).

Qu and Xiu [53] established the following convergence theorem.

Theorem 9 [53, Theorem 4.1] Let {xn} be a sequence generated by Algorithm 5. If
the solution set of SFP is nonempty, then {xn} converges to a solution of SFP.

Inspired by Tseng’s modified forward-backward splitting method for finding a
zero of the sum of twomaximal monotonemappings [60], Zhao et al. [75] proposed a
modification ofCQalgorithm,which computes the step-size adaptively, and performs
an additional projection step onto some simple closed convex set X ∞ R

N in each
iteration. Let C , Q and A be the same as in Sect. 3.1.

Algorithm 6 [75] Let x0 be arbitrary, σ0 > 0, γ ∈ (0, 1), κ ∈ (0, 1), ρ ∈ (0, 1).
For n = 0, 1, 2, . . . compute

x̄n = PC (xn − γn F(xn)), (38)

where F = A⊕(I − PQ)A, γn is chosen to be the largest γ ∈ {σn, σnγ, σnγ2, . . .}
satisfying

γ ⊂F(x̄n) − F(xn)⊂ ≤ κ⊂x̄n − xn⊂. (39)

Let
xn+1 = PX (x̄n − γn(F(x̄n) − F(xn))) . (40)

If
γn⊂F(xn+1) − F(xn)⊂ ≤ ρ⊂xn+1 − xn⊂, (41)

then set σn = σ0; otherwise, set σn = γn .

This algorithm involves projection onto a nonempty closed convex set X rather
than onto the set C , which can be advantageous when X has a simpler structure
than C . The set X can be chosen variously. It can be chosen to be a simple bounded
subset of RN that contains at least one solution of split feasibility problem, it can
also be directly chosen as X = R

N . In fact, it can be more generally chosen to be
a dynamically changing set Xn , provided

⎝⇔
n=0 Xn contains a solution of the split

feasibility problem. This does not affect the convergent result. The last step is used
to reduce the inner iterations for searching the step-size γn .

For such algorithm, we usually take

1

2
⊂xn − PC (xn)⊂2 + 1

2
⊂Axn − PQ(Axn)⊂2 < 0
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or
1

2
⊂(I − PQ)Axn⊂2 < ε

as the termination criterion, where ε > 0 is chosen to be sufficiently small.
Zhao et al. [75] established the following convergence result for the Algorithm 6.

Theorem 10 [75, Theorem 2.1] Let {xn} be a sequence generated by Algorithm 6, X
be a nonempty closed convex set in R

N with a simple structure. If X ≥δ is nonempty,
then {xn} converges to a solution of SFP.

Remark 3 This modified C Q algorithm differs from the extragradient-type method
[38, 40, 53], whose second equation is

xn+1 = PC (xn − γn F(xn)).

It also differs from the modified projection-type method [54, 57], whose second
equation is

xn+1 = xn − γn(xn − xn + εn(F(xn) − F(xn)).

In Algorithm 6, the orthogonal projections PC and PQ had been calculated many
times even in one iteration step, so they should be assumed to be easily calculated.
However, sometimes it is difficult or even impossible to compute them. In order to
overcome such situation turn to relaxed or inexact methods [31, 32, 34, 53, 68],
which are more efficient and easily implemented. Zhao et al. [75] introduced relaxed
modified CQ algorithm for split feasibility problem. Let C , Q, A, Cn and Qn be the
same as in the Sect. 3.2:

Algorithm 7 [75, Algorithm 3.1] Let x0 be arbitrary, σ0 > 0, γ ∈ (0, 1), κ ∈ (0, 1),
ρ ∈ (0, 1) for n = 0, 1, 2, . . ., compute

x̄n = PCn (xn − γn Fn(xn)) , (42)

where Fn(x) = A⊕(I − PQn )Axn and γn is chosen to be the largest γ ∈
{σk, σkγ, σkγ

2 . . . } satisfying

γ ⊂Fn(x̄n) − Fn(xn)⊂ ≤ κ⊂x̄n − xn⊂. (43)

Let
xn+1 = PX (x̄n − γn(Fn(x̄n) − Fn(xn))) . (44)

If
γn⊂Fn(xn+1) − Fn(xn)⊂ ≤ ρ⊂xn+1 − xn⊂, (45)

then set σn = σ0; otherwise, set σn = γn , where {Cn} and {Qn} are the sequences of
closed convex sets defined as in (35) and (36), respectively.
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Sinceprojections onto half-spaces canbedirectly calculated, the relaxed algorithm
ismore practical and easily implemented thanAlgorithm 6 [31, 32, 34, 53, 68]. Here,
we may take

1

2
⊂xn − PCn (xn)⊂2 + 1

2
⊂Axn − PQn (Axn)⊂2 < Ω,

or

1

2
⊂(I − PQn )Axn⊂2 < Ω

as the termination criterion.
We have the following convergence result for the Algorithm 7.

Theorem 11 [75, Theorem 3.1] Let {xn} be a sequence generated by Algorithm 7, X
be a nonempty closed convex set in R

N with a simple structure. if X ≥δ is nonempty,
then {xn} converges to a solution of SFP.

Remark 4 In Algorithm 7, the set X can be chosen to be any closed subset of RN

with a simple structure, provided it contains a solution of split feasibility problem.
Dynamically changing it does not affect the convergence. For example, set Xn = Cn ,
then we get the following double-projection method:

x̄n = PCn (xn − γn Fn(xn)) ,

xn+1 = PCn (x̄n − γn(Fn(x̄n) − Fn(xn))) ,

for n = 0, 1, 2, . . .. This method differs from the modified relaxed CQ algorithm
in [53]. Their method is in fact an extragradient method, with the second equation
written as

xn+1 = PCn (xn − γn Fn(x̄n)) .

3.4 Improved Relaxed CQ Methods

Li [45] proposed the following two improved relaxed CQ methods and shown how
to determine the optimal step length. The detailed procedure of the new methods is
presented as follows:

Let C , Q, A, Cn and Qn be the same as in the Sect. 3.2 and Fn be the same as
defined in Sect. 3.3:

Algorithm 8 Initialization: choose μ ∈ (0, 1), Ω > 0, x0 ∈ R
N and n = 0.
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Step 1. Prediction: Choose an εn > 0 such that

x̄n = PCn (xn − εn Fn(xn)) (46)

and
εn⊂Fn(xn) − Fn(x̄n)⊂ ≤ μ⊂xn − x̄n⊂ (47)

Step 2. Stopping Criterion : compute

en(xn, εn) = xn − x̄n .

If ⊂en(xn, εn)⊂ ≤ Ω, terminate the iteration with the approximate solution xn . Oth-
erwise, go to step 3.
Step 3. Correction: The new iterate xn+1 is updated by

xn+1 = x→
n = PCn (xn − γnεn Fn(x̄n)), (48)

where

γn = δnγ→
n , γ→

n = ◦xn − x̄n, dn(xn, x̄n, εn)∪
⊂dn(xn, x̄n, εn)⊂2 , δn ∈ [δL , δV ] ∞ (0, 2), (49)

and

dn(xn, x̄n, εn) = xn − x̄n − εn(Fn(xn) − Fn(x̄n)). (50)

Set n := n + 1 and go to step 1.

Algorithm 9 : Initialization: Choose μ ∈ (0, 1), Ω > 0, x0 ∈ R
N and n = 0.

Step 1. Prediction: Choose an εn > 0 such that

x̄n = PCn (xn − εn Fn(xn)) (51)

and

εn⊂Fn(xn) − Fn(x̄n)⊂ ≤ μ⊂xn − x̄n⊂. (52)

Step 2. Stopping Criteria : Compute

en(xn, εn) = xn − xn .

If ⊂en(xn, εn)⊂ ≤ Ω, terminate the iteration with the approximate solution xn . Oth-
erwise go to step 3.
Step 3. Correction: The corrector x→

n is given by the following equation
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x→
n = PCn (xn − γnεn Fn(x̄n)), (53)

where

γn = γnγ→
n , γ→

n = ◦xn − x̄n, dn(xn, x̄n, εn)∪
⊂dn(xn, x̄n, εn)⊂2 , δn ∈ [δL , δU ] ∞ (0, 2), (54)

and
dn(xn, x̄n, εn) = xn − x̄n − εn(Fn(xn) − Fn(x̄n)). (55)

Step 4. Extension: The new iterate xn+1 is updated by

xn+1 = PCn (xn − ρn(xn − x→
n )), (56)

where

ρn = γnρ→
n
, ρ→

n = ⊂xn − x→
n⊂2 + γnεn◦x→

n − x̄n, Fn(x̄n)∪
⊂xn − x→

n⊂2 , γn ∈ [γL , γU ] ∞ (0, 2).

(57)

Set n := n + 1 and go to step 1.

Remark 5 In the prediction step, if the selected εn satisfies 0 < εn ≤ μ/L (L is the
largest eigenvalue of the matrix A⊕ A), from [45, Lemma 2.3], we have

εn⊂Fn(xn) − Fn(x̄n)⊂ ≤ εn L⊂xn − x̄n⊂ ≤ μ⊂xn − x̄n⊂, (58)

and thus condition (47) or (52) is satisfied. Without loss of generality, we can assume
that inf{εn} = εmin > 0. Since we do not know the value of L > 0 but it exist, in
practice, a self-adaptive scheme is adopted to find such a suitable εn > 0. For given
xn and a trial εn > 0, along with the value of Fn(xn), we set the trial xn as follows:

x̄n = PCn (xn − εn Fn(xn)).

Then calculate

rn := εn⊂Fn(xn) − Fn(x̄n)⊂
⊂xn − x̄n⊂ ,

if rn ≤ μ, the trial x̄n is accepted as predictor; otherwise, reduce εn by εn :=
.9με→

n min(1, 1/rn) to get a new smaller trial εn and repeat this procedure. In the
case that the predictor has been accepted, a good initial trialεn+1 for the next iteration
is prepared by the following strategy:

εn+1 =
{

0.9
rn

εn if rn ≤ φ,

εn otherwise,
(59)

(usually φ ∈ [0.4, 0.5]).
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Condition (47) or (52) ensure that εn⊂Fn(xn)− Fn(x̄n)⊂ is smaller than ⊂xn − x̄n⊂,
however, too small εn⊂Fn(xn) − Fn(x̄n)⊂ leads to slow convergence. The proposed
adjusting strategy (59) is intended to avoid such a case as indicated in [35, 36].
Actually it is very important to balance the quantity of εn⊂Fn(xn) − Fn(x̄n)⊂ and
⊂xn − x̄n⊂ in practical computation. Note that there are at least two times to utilize
the value of function in the prediction step: one is Fn(xn), and the other is Fn(x̄n) for
testing whether the condition (47) or (52) holds. When εn is selected well enough,
x̄n will be accepted after only one trial and in this case, the prediction step exactly
utilizing the value of concerned function twice in one iteration.

It follow from [45, Relation (3.16)] and [45, Relation (3.27)] that for Algorithm
8, there exists a constant τ1 > 0 such that

⊂xn+1 − x→⊂2 ≤ ⊂xn − x→⊂2 − τ1 · ⊂xn − x̄n⊂2. (60)

From [45, Relation (3.38)], for Algorithm 9, there exist a constant τ2 > 0 such that

⊂xn+1 − x→⊂2 ≤ ⊂xn − x→⊂2 − τ2 · {⊂xn − x̄n⊂2 + ⊂xn − x→
n⊂2}. (61)

Finally, we have the following convergence result of the proposed methods.

Theorem 12 [45] Let {xn} be a sequence generated by the proposed methods (Algo-
rithms 8 and 9), {εn} be a positive sequence and inf {εn} = εmin > 0. If the solution
set of the SFP is nonempty, then {xn} converges to a solution of the SFP.

4 Extragradient Methods for Common Solution of Split
Feasibility and Fixed Point Problems

Korplevich [40] introduced the so-called extragradient method for finding a solution
of a saddle point problem. She/He proved that the sequences generated by this algo-
rithm converge to a saddle point. Motivated by the idea of an extragradient method,

Ceng et al. [10] introduced and analyzed an extragradient method with regular-
ization for finding a common element of the solution set δ of the split feasibility
problem (SFP) and the set Fix(S) of the fixed points of a nonexpansive mapping S in
the setting of Hilbert spaces. Combining the regularization method and extragradient
method due to Nadezhkina and Takahashi [50], they proposed an iterative algorithm
for finding an element of Fix(S) ≥δ. They proved that the sequences generated by
the proposed method converges weakly to an element z ∈ Fix(S) ≥δ.

On the other hand, Ceng et al. [11] introduced relaxed extragradient method for
finding a common element of the solution set δ of the SFP and the set Fix(S) of fixed
points of a nonexpansive mapping S in the setting of Hilbert spaces. They combined
Mann’s iterative method and extragradient method to propose relaxed extragradient
method. The weak convergence of the sequences generated by the proposed method
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is also studied. The relaxed extragradient method with regularization is studied by
Deepho and Kumam [26]. They considered the set S of fixed points of a asymptoti-
cally quasi-nonexpansive and Lipschtiz continuous mapping in the setting of Hilbert
spaces. They obtained the weak convergence result for their method.

Recently, Ceng et al. [12] proposed three different kinds of iterative methods for
computing the common element of the solution set δ of the split feasibility problem
(SFP) and the set Fix(S) of the fixedpoints of a nonexpansivemapping in the setting of
Hilbert spaces. By combiningMann’s iterativemethod and the extragradient method,
they first proposed Mann-type extragradient-like algorithm for finding an element
of the set Fix(S) ≥δ. Moreover, they derived the weak convergence of the proposed
algorithm under appropriate conditions. Second, they combined Mann’s iterative
method and the viscosity approximation method to introduce Mann-type viscosity
algorithm for finding an element of the Fix(S) ≥δ. The strong convergence of the
sequences generated by the proposed algorithm to an element of the set Fix(S) ≥δ

under mild conditions is also proved. Finally, by combiningMann’s iterative method
and the relaxed C Q methods, they introduced Mann-type relaxed C Q algorithm for
finding an element of the set Fix(S) ≥δ. They also established a weak convergence
result for the sequences generated by the proposedMann type relaxed C Q algorithm
under appropriate assumptions.

Very recently, Li et al. [44] and Zhu et al. [76] developed iterative methods for
finding the common solutions of a SFP and a fixed point problem.

In this section,we discuss extragradientmethodwith regularization, relaxed extra-
gradient method and relaxed extragradient method with regularization.We also men-
tion the convergence results for these methods. Two examples are presented to illus-
trate these methods. We present Mann-type extragradient-like algorithm, Mann-type
viscosity algorithm, andMann-type relaxedC Q algorithm for computing an element
of the set Fix(S) ≥δ. The weak convergence results for these methods are presented.
Some methods are illustrated by some examples.

4.1 An Extragradient Method

Throughout this section, we assume that δ≥ Fix(S) ∇= ≤.
We present the following extragradient method with regularization for finding a

common element of the solution set δ of the split feasibility problem and the set
Fix(S) of the fixed points of a nonexpansive mapping S. We also mention the weak
convergence of this method.

Theorem 13 [10, Theorem 3.1] Let C be a nonempty closed convex subset of a
real Hilbert space H1 and S : C ⊆ C be a nonexpansive mapping such that
Fix(S) ≥δ ∇= ≤. Let {xn} and {yn} be the sequences in C generated by the following
extragradient algorithm:
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⎞

⎠

⎠⎫

x0 = x ∈ C chosen arbitrarily,

yn = PC (I − βn⇐ fεn )xn,

xn+1 = γn xn + (1 − γn)S PC (xn − βn⇐ fεn (yn)), for all n ∩ 0,

(62)

where ⇐ fεn = εn I + A→(I − PQ)A,
⎬⇔

n=0 an < ⇔, {βn} ∀ [a, b] for some

a, b ∈
⎪

0, 1
⊂A⊂2

⎨

and {γn} ∀ [c, d] for some c, d ∈ (0, 1). Then, both the sequences

{xn} and {yn} converge weakly to an element x̄ ∈ Fix(S) ≥δ.

Furthermore, by utilizing [50, Theorem 3.1], we can immediately obtain the fol-
lowing weak convergence result.

Theorem 14 [10, Theorem 3.2] Let H1, C and S be the same as in Theorem 13.
Let {xn} and {yn} be the sequences in C generated by the following Nadezhkina and
Takahashi extragradient algorithm:

⎞

⎠

⎠⎫

x0 = x ∈ C chosen arbitrarily,

yn = PC (I − βn⇐ f )xn,

xn+1 = γn xn + (1 − γn)S PC (xn − βn⇐ f (yn)), for all n ∩ 0,

(63)

where ⇐ f = A→(I − PQ)A, {βn} ∀ [a, b] for some a, b ∈
⎪

0, 1
⊂A⊂2

⎨

and {γn} ∀
[c, d] for some c, d ∈ (0, 1). Then, both the sequences {xn} and {yn} converge weakly
to an element x̄ ∈ Fix(S) ≥δ.

By utilizing Theorem 13, we obtain the following results.

Corollary 1 [10, Corollary 3.2] Let C = H1 be a Hilbert space and S : H1 ⊆ H1
be a nonexpansive mapping such that Fix(S)≥(⇐ f )−10 ∇= ≤. Let {xn} be a sequence
generated by

{

x0 = x ∈ C chosen arbitrarily,

xn+1 = γn xn + (1 − γn)S(xn − βn⇐n fεn (I − βn⇐ fεn )xn), for all n ∩ 0,
(64)

where �⇔
n=0an < ⇔, {βn} ∀ [a, b] for some a, b ∈

⎪

0, 1
⊂A⊂2

⎨

and {γn} ∀ [c, d]
for some c, d ∈ (0, 1). Then, the sequence {xn} converges weakly to x̄ ∈ Fix(S) ≥
(⇐ f )−1.

For the definition of maximal monotone operator and resolvent operator, see
Chap.6.

Corollary 2 [10, Corollary 3.3]Let C = H1 be a Hilbert space and B : H1 ⊆ 2H1

be a maximal monotone mapping such that B−10 ≥ (⇐ f )−10 ∇= ≤. Let j B
r be the

resolvent of B for each r > 0. Let {xn} be a sequence generated by

{

x0 = x ∈ C chosen arbitrarily,

xn+1 = γn xn + (1 − γn) j B
r (xn − βn⇐ fεn (I − βn⇐ fεn )xn), ⇒ n ∩ 0,

(65)

http://dx.doi.org/10.1007/978-81-322-1883-8_6
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Fig. 5 Convergence of {yn}
in Example 5
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where �⇔
n=0an < ⇔, {βn} ∀ [a, b] for some a, b ∈

⎪

0, 1
⊂A⊂2

⎨

and {γn} ∀ [c, d] for

some c, d ∈ (0, 1). Then, the sequence {xn} converges weakly to x̄ ∈ B−10≥(⇐ f )−1.

Example 5 Let C = Q = [0, 1] and S : C ⊆ C be defined as

Sx = x(x + 1)

4
, for all x ∈ C.

Then, S is a nonexpansive mapping and 0 ∈ Fix(S). Let Ax = x be a bounded linear
operator. Let εn = 1

n2
, γn = 1

2n and βn = 1
2(n+1) . All the conditions of Theorem

13 are satisfied. The sequences {xn} and {yn} generated by the scheme (62) starting
with x1 = 0.1. Then, we observe that these sequences converge to an element 0 ∈
Fix(S) ≥δ (Figs. 5 and 6).

We did the computation in Matlab R2010 and got the solution 0 after 8th iterates
(Figs. 5 and 6, Table5).

4.2 Relaxed Extragredient Methods

In this section, we present a relaxed extragradiendmethod and study theweak conver-
gence of the sequences generated by this method.We also present a relaxed extragra-
diend method with regularization for finding a common element of the solution set δ
of the SFP and the set Fix(S) of fixed points of a asymptotically quasi-nonexpansive
and Lipschtiz continuous mapping in the setting of Hilbert spaces. The weak con-
vergence of the sequences generated by this method is also presented.

Theorem 15 [11, Theorem 3.2] Let C be a nonempty closed and convex subset
of a Hilbert space H1 and S : C ⊆ C be a nonexpansive mapping such that
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Fig. 6 Convergence of {xn} in Example 5

Table 5 Convergence of {xn} and {yn} in Example 5

Number of yn xn Number of y(n) x(n)

iterations (n) iterations (n)

1 0.0750 0.1000 6 0.0011 0.0011
2 0.0584 0.0610 7 0.0004 0.0004
3 0.0265 0.0269 8 0.0001 0.0001
4 0.0101 0.0101 9 0.0000 0.0000
5 0.0035 0.0035 10 0.0000 0.0000

Fix(S) ≥ δ ∇= ≤. Assume that 0 < β < 2
⊂A⊂2 , and let {xn} and {yn} be the sequences

in C generated by the following Mann-type extragradient-like algorithm:

⎞

⎠

⎠⎫

x0 = x ∈ C chosen arbitrarily,

yn = (1 − γn)xn + γn PC (xn − β⇐ fεn (xn)),

xn+1 = γn xn + (1 − γn)S PC (yn − β⇐ fεn (yn)), for all n ∩ 0,

(66)

where ⇐ fεn = ⇐ f + εn I = A→(I − PQ)A + εn I and the sequences of parameters
{εn}, {γn}, {γn} satisfy the following conditions:

(i)
⎬⇔

n=0 εn < ⇔;
(ii) {γn} ∀ [0, 1] and 0 < lim inf

n⊆⇔ γn ≤ lim sup
n⊆⇔

γn < 1;

(iii) {γn} ∀ [0, 1] and 0 < lim inf
n⊆⇔ γn ≤ lim sup

n⊆⇔
γn < 1.

Then, both the sequences {xn} and {yn} converge weakly to an element z ∈
Fix(S) ≥δ.
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The following relaxed extragradiend method with regularization for finding a
common element of the solution set δ of the SFP and the set Fix(S) of fixed points
of a asymptotically quasi-nonexpansive and Lipschtiz continuous mapping in the
setting of Hilbert spaces is proposed and studied by Deepho and Kumam [26]. They
also studied the weak convergence of the sequences generated by this method.

Theorem 16 [26, Theorem 3.2] Let C be a nonempty closed and convex subset of
a Hilbert space H1 and S : C ⊆ C be a uniformly L-Lipschitz continuous and
asymptotically quasi-nonexpansive mapping such that Fix(S) ≥ δ ∇= ≤. Assume that
{kn} ∈ [0,⇔) for all n ∈ N such that

⎬⇔
n=1(kn − 1) < ⇔. Let {xn} and {yn} be the

sequences in C generated by the following algorithm:

⎞

⎠

⎠⎫

x0 = x ∈ C chosen arbitrarily,

yn = PC (I − βn⇐ fεn (xn)),

xn+1 = γn xn + (1 − γn)Sn(yn), f or all n ∩ 0,

(67)

where ⇐ fεn = ⇐ f + εn I = A→(I − PQ)A + εn I , Sn = S ∃ S ∃ · · · ∃ S
⎭ ︷︷ ︸

n times

. The

sequences of parameters {εn}, {γn}, {βn} satisfy the following conditions:

(i)
⎬⇔

n=1 εn < ⇔;

(ii) {βn} ∀ [a, b] for some a, b ∈
⎪

0, 1
⊂A⊂2

⎨

and
⎬⇔

i=1 |βn+1 − βn| < ⇔;

(iii) {γn} ∀ [c, d] for some c, d ∈ (0, 1).

Then, both the sequences {xn} and {yn} converge weakly to an element z ∈ Fix(S)
≥δ.

5 Mann-Type Iterative Methods for Common Solution of Split
Feasibility and Fixed Point Problems

In this section, we present three different kinds of Mann-type iterative methods for
finding a common element of the solution set δ of the split feasibility problem and
the set Fix(S) of fixed points of a nonexpansive mapping S in the setting of infinite
dimensional Hilbert spaces.

By combining Mann’s iterative method and the extragradient method, we first
propose Mann-type extragradient-like algorithm for finding an element of the set
Fix(S) ≥ δ; moreover, we drive the weak convergence of the proposed algorithm
under appropriate conditions. Second, we combine Mann’s iterative method and
the viscosity approximation method to introduce Mann-type viscosity algorithm for
finding an element of the Fix(S)≥δ; moreover, we derive the strong convergence of
the sequences generated by the proposed algorithm to an element of the set Fix(S)≥
δ under mild conditions. Finally, by combining Mann’s iterative method and the
relaxed C Q methods, we introduce Mann type relaxed C Q algorithm for finding



312 Q. H. Ansari and A. Rehan

Fig. 7 Convergence of {yn}
in Example 6
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an element of the set Fix(S) ≥ δ. We also establish a weak convergence result for
the sequences generated by the proposed Mann-type relaxed C Q algorithm under
appropriate assumptions.

5.1 Mann-Type Extragradient-Like Algorithm

LetC and Q be nonempty closed convex subset ofHilbert spacesH1 andH2, respec-
tively, and A ∈ B(H1,H2). By combiningMann’s iterativemethod and the extragra-
dient method, Ceng et al. [12] proposed the following Mann-type extragradient-like
algorithm for finding an element of the set Fix(S) ≥δ (Figs. 7 and 8):

The sequences {xn} and {yn} generated by the following iterative scheme:

⎞

⎠

⎠⎫

x0 = x ∈ H1 chosen arbitrarily,

yn = (1 − γn)xn + γn PC (1 − βn A→(I − PQ)A)xn,

xn+1 = εn xn + (1 − εn)S PC (I − βn A→(I − PQ)A)yn, for all n ∩ 0,

(68)

where the sequences of parameters {εn}, {γn} and {βn} satisfy some appropriate
conditions.

The following result provides the weak convergence of the above scheme.

Theorem 17 [12, Theorem 3.2] Let S : C ⊆ C be a nonexpansive mapping
such that Fix(S) ≥δ ∇= ≤. Let {xn} and {yn} be the sequences by the Mann-type
extragradient-like algorithm (68), where the sequences of parameters {εn}, {γn} and
{βn} satisfies the following conditions:

(i) {εn} ∀ [0, 1] and 0 < lim inf
n⊆⇔ εn ≤ lim sup

n⊆⇔
< 1;
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(ii) {γn} ∀ [0, 1] and lim inf
n⊆⇔ γn > 0;

(iii) {βn} ∀
⎪

0, 2
⊂A⊂2

⎨

and 0 < lim inf
n⊆⇔ βn ≤ lim sup

n⊆⇔
βn <

2

⊂A⊂2 .

Then, both the sequences {xn} and {yn} converges weakly to an element z ∈ Fix(S)
⎝

δ, where
z = ⊂ · ⊂ − lim

n⊆⇔ PFix(S)≥δxn .

We illustrate the above scheme and theorem by presenting the following example.

Example 6 Let C = Q = [−1, 1] be closed convex set in R. Let S : C ⊆ C be a
mapping defined by

Sx = (x + 1)2

4
, for all x ∈ C.

Then, clearly S is a nonexpansive map and 1 ∈ Fix(S) ≥δ. Let Ax = x be a bounded
linear operator. If we choose εn = 1

20 − 1
n and γn = 1 − 1

2n , then all the conditions
of Theorem 17 are satisfied. We choose the initial point x1 = 2 and perform the
iterative scheme in Matlab R2010. We obtain the solution after 6th iteration (Figs. 7
and 8, Table6).

5.2 Mann-Type Viscosity Algorithm

Ceng et al. [12] modified the Mann-type extragradient-like algorithm, proposed in
the last section, to obtain the strong convergence of the sequences. This modification
is of viscosity approximation nature [9, 22, 48].

Theorem 18 [12, Theorem 4.1] Let f : C ⊆ C be a ρ-contraction with ρ ∈ [0, 1)
and S : C ⊆ C be a nonexpansive mapping such that Fix(S) ≥ δ ∇= ≤. Let {xn} and
{yn} be the sequences generated by the following Mann-type viscosity algorithm:

⎞

⎠⎠⎠

⎠⎠⎠⎫

x0 = x1 ∈ H1 chosen arbitrarily,

yn = PC (I − βn A→(I − PQ)A)xn,

zn = PC (I − βn A→(I − PQ)A)yn,

xn+1 = κn f (yn) + μn xn + φnzn + δn Szn, ⇒ n ∩ 0,

(69)

where the sequences of parameters {κn}, {μn}, {φn}, {δn} ∀ [0, 1] and {βn} ∀
⎪

0, 2
⊂A⊂2

⎨

satisfy the following conditions:

(i) κn + μn + φn + δn = 1;
(ii) lim

n⊆⇔ κn = 0 and �⇔
n=0κn = ⇔;

(iii) lim inf
n⊆⇔ δn > 0;
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Fig. 8 Convergence of {xn} in Example 6

Table 6 Convergence of {xn} and {yn} in Example 6

Number of yn xn Number of y(n) x(n)

iterations (n) iterations (n)

1 1.500 2.000 7 1.000 1.000
2 0.7625 0.0500 8 1.000 1.000
3 1.0713 1.4275 9 1.000 1.000
4 0.9849 0.8789 10 1.000 1.000
5 1.0024 1.0242 11 1.000 1.000
6 0.9997 0.9964 12 1.000 1.000

(iv) lim
n⊆⇔

(
φn+1

1 − μn+1
− φn

1 − μn

⎧

= 0;

(v) 0 < lim inf
n⊆⇔ βn ≤ lim sup

n⊆⇔
βn <

2

⊂A⊂2 and lim
n⊆⇔(βn − βn+1) = 0.

Then, both the sequences {xn} and {yn} converge strongly to x→ ∈ Fix(S) ≥ δ which
is also a unique solution of the variational inequality (VI):

◦(I − f )x→, x − x→∪ ∩ 0, for all x ∈ Fix(S) ≥ δ.

In other words, x→ is a unique fixed point of the contraction PFix(S)≥δ f, x→ =
(PFix(S)≥δ f )x→.



Split Feasibility and Fixed Point Problems 315

5.3 Mann-Type Relaxed CQ Algorithm

As pointed out earlier, the CQ algorithm (Algorithm 2) involves two projections PC

and PQ and hencemight hard to be implemented in the casewhere one of them fails to
have closed-form expression. Thus, in [65] it was shown that ifC and Q are level sets
of convex functions, then the projections onto half-spaces are just needed tomake the
C Q algorithm implementable in this case. Inspired by relaxed C Q algorithm, Ceng
et al. [12] proposed the following Mann-type relaxed C Q algorithm via projections
onto half-spaces.

Define the closed convex sets C and Q as the level sets:

C = {x ∈ H1 : c(x) ≤ 0} and Q = {x ∈ H2 : q(x) ≤ 0}, (70)

where c : H1 ⊆ R and q : H2 ⊆ R are convex functions. We assume that c and q
are subdifferentiable on C and Q, respectively, namely, the subdifferentials

λc(x) = {z ∈ H1 : c(u) ∩ c(x) + ◦u − x, z∪, ⇒u ∈ H1} ∇= ≤

for all x ∈ C , and

λq(x) = {w ∈ H2 : q(v) ∩ q(y) + ◦v − y, w∪, ⇒v ∈ H1} ∇= ≤

for all y ∈ Q. We also assume that c and q are bounded on the bounded sets.
Note that this condition is automatically satisfied when the Hilbert spaces are finite
dimensional. This assumption guarantees that if {xn} is a bounded sequence in H1
(respectively, H2) and {x→

n } is another sequence in H1 (respectively, H2) such that
x→

n ∈ λc(xn) (respectively, x→
n ∈ λq(xn)) for each n ∩ 0, then {x→

n } is bounded.
Let S : H1 ⊆ H1 be a nonexpansive mapping. Assume that the sequences of

parameters {εn}, {γn} and {βn} satisfy the following conditions:

(i) {εn} ∀ [0, 1] and 0 < lim inf
n⊆⇔ εn ≤ lim sup

n⊆⇔
εn < 1;

(ii) {γn} ∀ [0, 1] and lim inf
n⊆⇔ γn > 0;

(iii) {βn} ∀
⎪

0, 2
⊂A⊂2

⎨

and 0 < lim inf
n⊆⇔ ≤ lim sup

n⊆⇔
βn <

2

⊂A⊂2 .

Let {xn} and {yn} be the sequence defined by the following Mann-type relaxed C Q
algorithm:

⎞

⎠

⎠⎫

x0 = x ∈ H1 chosen arbitrarily,

yn = (1 − γn)xn + γn PCn (I − βn A→(I − PQn )A)xn,

xn+1 = εn xn + (1 − εn)S PCn (I − βn A→(I − PQn )A)yn, for all n ∩ 0,
(71)
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where {Cn} and {Qn} are the sequences of closed convex sets defined as follows:

Cn = {x ∈ H1 : c(xn) + ◦ψn, x − xn∪ ≤ 0}, (72)

where ψn ∈ λc(xn), and

Qn = {y ∈ H2 : q(Axn) + ◦ωn, y − Axn∪ ≤ 0}, (73)

where ωn ∈ λq(Axn).
It can be easily seen that C ∀ Cn and Q ∀ Qn for all n ∩ 0. Also, note that

Cn and Qn are half-spaces; thus, the projections PCn and PQn have closed-form
expressions.

Ceng et al. [12] established the following weak convergence theorem for the
sequences generated by the scheme (71).

Theorem 19 [12, Theorem 5.1] Suppose that Fix(S) ≥δ ∇= ≤. Then, the sequences
{xn} and {yn} generated by the algorithm (71) converge weakly to an element z ∈
Fix(S) ≥ δ, where

z = ⊂ · ⊂ − lim
n⊆⇔ PFix(S)

⎝
δxn .

6 Solution Methods for Multiple-Sets Split Feasibility
Problems

For each i = 1, 2, . . . , t and each j = 1, 2, . . . , r , let Ci ∞ H1 and Q j ∞ H2
be nonempty closed convex set in Hilbert spaces H1 and H2, respectively. Let
A ∈ B(H1,H2). The convex feasibility problem (CFP) is to find a vector x→ such that

x→ ∈
t

⋂

i=1

Ci . (74)

During the last decade, it received a lot of attention due to its applications in approx-
imation theory, image recovery and signal processing, optimal control, biomedical
engineering, communications, and geophysics, see, for example, [7, 17, 58] and the
references therein.

Consider the multiple-sets split feasibility problem (MSSFP) of finding a vector
x→ satisfying

x→ ∈ C :=
t

⋂

i=1

Ci such that Ax→ ∈ Q :=
r

⋂

j=1

Q j . (75)

As we have seen in the first section that this problem can be a unified model of
several practical inverse problems, namely, image reconstruction, signal processing,
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an inverse problem of intensity-modulated radiation therapy, etc. Of course, when
i = j = 1, MSSFP reduces to SFP.

The MSSFP (75) can be viewed as a special case of the CFP (74). In fact, (75)
can be rewritten as

x→ ∈
t+r
⋂

i=1

Ci , where Ct+ j := {x ∈ H1 : A−1x ∈ Q j }, 1 ≤ j ≤ r. (76)

However, the methodologies for studying the MSSFP (75) are different from
those for the CFP (74) in order to avoid usage of the inverse A−1. In other words, the
methods for solving CFP (74) may not be applied to solve the MSSFP (75) without
involving the inverse A−1. The CQ Algorithm 2 is such an example where only the
operator A (not the inverse A−1) is relevant.

In view of Proposition 7, one can see that MSSFP (75) is equivalent to a common
fixed point problem of finitely many nonexpansive mappings. Indeed, decompose
MSSFP (75) into N subproblems (1 ≤ i ≤ t):

x→
i ∈ Ci such that Ax→

i ∈ Q :=
r

⋂

j=1

Q j . (77)

For each i = 1, 2, . . . , t , define a mapping Ti by

Ti (x) = PCi (I − γi⇐ f ) x = PCi



I − γi

r
∑

j=1

γ j A→(I − PQ j )A

⎜

 xi , (78)

where f is defined by

f (x) = 1

2

r
∑

j=1

γ j⊂Ax − PQ j Ax⊂2, (79)

with γ j > 0 for all j = 1, 2, . . . , t . Note that the gradient ⇐ f of f is

⇐ f (x) =
r

∑

j=1

γ j A→ (

I − PQ j

)

Ax, (80)

which is L-Lipschitz continuous with constant L = ⎬r
j=1 γ j⊂A⊂2. If γi ∈ (0, 2/L),

then Ti is nonexpansive. Hence, fixed point algorithm for nonexpansive mappings
can be applied to MSSFP (75)

Now we present the optimization method to solve MSSFP (75).
If x→ solves the MSSFP (75), then

(i) the distance from x→ to each Ci is zero, and
(ii) the distance from Ax→ to each Q j is also zero.
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This motivate us to consider the proximity function

p(x) := 1

2

t
∑

i=1

εi⊂x − PCi (x)⊂2 + 1

2

r
∑

j=1

γ j⊂Ax − PQ j (Ax)⊂2, (81)

where εi > 0 for all i , γ j > 0 for all j . Then the proximity function is convex and
differentiable with gradient

⇐ p(x) =
t

∑

i=1

εi
(

I − PCi

)

(x) +
r

∑

j=1

γ j A→ (

I − PQ j

)

Ax, (82)

where → is the adjoint of A.

Proposition 8 [69] x→ is a solution of MSSFP (75) if and only if p(x→) = 0.

Since the gradient ⇐ p(x) is L ∗-Lipschtiz continuous with constant

L ∗ =
t

∑

i=1

εi +
r

∑

j=1

γ j⊂A⊂2, (83)

one can use the project gradient method to solve the

min
x∈Υ

p(x), (84)

where Υ is a closed convex subset ofH1 whose intersection with the solution set of
MSSFP (75) is nonempty, and get a solution of the so-called constrained multiple-sets
split feasibility problem [15]:

Find x→ ∈ Υ such that x→ solves (84). (85)

In view of the above discussion, Censor et al. [15] proposed the following project
gradient algorithm to find the solution of MSSFP (75) in the setting of finite-
dimensional Hilbert spaces.

Algorithm 10 (Projection Gradient Algorithm) For any arbitrary x0 ∈ H1,
generates a sequence {xn} by

xn+1 = PΥ (xn − γ⇐ p(xn))

= PΥ

⎪

xn − γ
⎪
⎬t

i=1 εi (I − PCi )(xn) + �r
j=1γ j A→(I − PQ j )Axn

⎨⎨

, n ∩ 0,

(86)

where γ∈ (0, 2/L ∗).
Censor et al. [15] established the convergence of the Algorithm 10. The fol-

lowing theorem is a version of their theorem in infinite dimensional Hilbert spaces
established by Xu [64].
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Theorem 20 Let MSSFP (75) be consistent and a minimizer of the function p over
Υ be inconsistent. Assume that 0 < γ < 2/L ∗, where L ∗ is given by (83). The
sequence {xn} generated by Algorithm 10 converges weakly to a point z which is a
solution of MSSFP (75).

In this direction, several methods and results were obtained during the last decade.
In [69], Yao et al. reviewed and presented some recent results on iterative approaches
to MSSFP (75).

Zhao et al. [75] proposed the following modified projection algorithm for MSSFP
(75) in finite dimensional Euclidean spaces.

Given closed convex sets Ci ∞ R
N , i = 1, 2, . . . , t , and closed convex sets Q j ∞

R
M , j = 1, 2, . . . , r , in the N and M dimensional Euclidean spaces, respectively, and

A an M × N real matrix. Let Υ be a closed convex subset of RN whose intersection
with the solution set of MSSFP (75) is nonempty,

Algorithm 11 For any arbitrary x0 ∈ R
N ,σ0 > 0,γ ∈ (0, 1), κ ∈ (0, 1),ρ ∈ (0, 1).

For n = 0, 1, 2, . . ., compute

x̄n = PΥ(xn − γn⇐ p(xn)), (87)

where γn is chosen to be the largest γ ∈ {σn, σnγ, σnγ2, . . . } satisfying

γ ⊂⇐ p(x̄n) − ⇐ p(xn)⊂ ≤ κ⊂x̄n − xn⊂. (88)

Let
xn+1 = PX (x̄n − γn(⇐ p(x̄n) − ⇐ p(xn))). (89)

If
γn⊂⇐ p(xn+1) − ⇐ p(xn)⊂ ≤ ρ⊂xn+1 − xn⊂, (90)

then set σn = σ0; otherwise, set σn = γn , where p(x) is proximity function as
defined by (81).

We can take p(xn) < Ω or ⊂⇐ p(xn)⊂ < Ω as the stopping criteria in this algorithm.
We have the following result on the convergence of the sequence generated by

Algorithm 11.

Theorem 21 [75, Theorem 4.1] Let X be a nonempty closed convex set in R
N with

a simple structure and {xn} be a sequence generated by Algorithm 11. If the set
X contains at least one solution of the constrained multiple-sets split feasibility
problem, then {xn} converges to a solution of the constrained multiple-sets split
feasibility problem.

A relaxed scheme of Algorithm 11 is also presented in [75].
Censor et al. [16] proposed a perturbed projection algorithm for multiple-sets

split feasibility problem by applying the orthogonal projections onto a sequence of
supersets of the original sets of the problem. Their work is based on the results of
Santo and Scheimberg [55].
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Isotone Projection Cones and Nonlinear
Complementarity Problems

M. Abbas and S. Z. Németh

Abstract A brief introduction of complementarity problems is given. We discuss
the notion of *-isotone projection cones and analyze how large is the class of these
cones. We show that each generating *-isotone projection cone is superdual. We
prove that a simplicial cone in Rm is *-isotone projection cone if and only if it is
coisotone (i.e., it is the dual of an isotone projection cone.We consider the solvability
of complementarity problems defined by *-isotone projection cones. The problem
of finding nonzero solution of these problems is also presented.

Keywords Nonlinear complementarity problems · Cones · Isotone
projection cones · *-isotone projection cones · Partial ordering ·
Fixed point problems · Variational inequalities · Projection mapping

1 Introduction

Let A be an n × n real matrix, b → R
n, and f be the function defined by

f (x) = 1

2
∈x, Ax≥ + ∈b, x≥.

In 1961, Dorn [12] considered the following optimization problem:
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min
x→F

f (x), (1)

where
F = {x → R

n | x ∇ 0, Ax + b ∇ 0}

is the feasibility region. It was shown that, if A is a positive definite (not necessarily
symmetric) matrix, then problem (1) must have an optimal solution and

min
x→F

f (x) = 0.

Dorn’s paper was the first step in initiating the study of complementarity problems.
In 1963, Dantzig and Cottle [10] showed that, if A is a square (not necessarily

symmetric) matrix whose all principal minors are positive, then problem (1) has an
optimal solution x≤ satisfying the following equation

∈x≤, Ax≤ + b≥ = 0. (2)

In 1964, Cottle [8] studied problem (1) under the assumption that A is a positive
semidefinite matrix and observed that, in this case (1) may not have an optimal
solution.

However, if A is positive semidefinite and F ∞= ∩ then an optimal solution
for (1) exists and again, min

x→F
f (x) = 0. This result was generalized by Cottle

[8, 9]. He considered the following nonlinear problem associated to a continuously
differentiable mapping h : Rn ∗ R

n : The problem is as follows:

min
x→F

f (x) = ∈x, h(x)≥
where F = {x → R

n | x ∇ 0, h (x) ∇ 0}. (3)

He showed that, if x0 is an optimal solution of the above problem and the Jacobian
matrix Jh(x0)has positive principalminors, then x0 satisfies the following conditions:

x0 ∇ 0, h (x0) ∇ 0 and ∈x0, h (x0)≥ = 0.

If we take h(x) = Ax + b, then we obtain (1). This was the first nice result about
the nonlinear complementarity problem.

In 1965, Lemke [27] contributed to the development of complementarity theory
as a method for solving matrix games.

The complementarity problems are closely related to variational inequalities and
to fixed point problems.

Concerning the complementarity problem, we distinguish two entirely distinct
classes of problems:

1. The topological complementarity problem (T. C. P.)
2. The order complementarity problem (O. C. P.).
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In the class of topological complementarity problem, we have the following cat-
egories:

1.1 Generalized Complementarity Problem

If E(δ ) is a locally convex space, then E≤ denotes the topological dual of E .
We say that ∈E, F≥ is a dual system if, E and F are vector spaces and ∈., .≥ is

bilinear functional on E × F such that

(i) ∈x, y≥ = 0, for each x → E ⇒ y = 0,
(ii) ∈x, y≥ = 0, for each y → F ⇒ x = 0.

If E(δ ) is a locally convex space, we denote by ∈E, E≤≥ the dual system defined by
the bilinear functional, ∈x, u≥ = u (x) for every x → E and u → E≤.

If ∈E, F≥ is a dual system and K ⊆ E is a convex cone, then the dual cone of K
is K ≤ = {u → F | ∈x, u≥ ∇ 0, ⇔ x → K }. The polar cone of K is K ⇒ = {u → F |
∈x, u≥ ⊂ 0, ⇔ x → K }.

Let ∈E, F≥ be a dual system of locally convex spaces. For a given closed convex
cone K ⊆ E and a mapping f : K ∗ F, the generalized complementarity problem
(G.C.P.) associated to K and f is the following problem:

Find x0 → K such that
f (x0) → K ≤ and ∈x0, f (x0)≥ = 0.

Note that if f (x) = L (x) + b, where L : E ∗ F is a linear mapping and
b an element of F then we have the linear complementarity problem (L.C.P.). If
f : K ∗ F is a nonlinear mapping, then we have the nonlinear complementarity
problem (N.C.P).

If E = F = R
n , K = R

n+, ∈x, y≥ =
n∑

i=1
xi yi , where x = (xi ), y = (yi ) → R

n,

A → Mn×m(R) and b → R
n, then we obtain the classical linear complementarity

problem (L.C.P.):

Find x0 ∇ 0 such that

Ax0 + b ∇ 0 and ∈x0, Ax0 + b≥ = 0.

(In this case, K = K ≤ = R
n+).

If ∈E, F≥ is a dual system of locally convex spaces, K ⊆ E a closed convex cone
and f : K ∗ F a multivalued mapping (that is f : K ∗ 2F ), then the generalized
multivalued complementarity problem (G.M.C.P.) associated to f and K is:

Find x0 → K and y0 → F such that

y0 → f (x0) ◦ K ≤ and ∈x0, y0≥ = 0.
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Note that, if we take f : K ∗ F a single valued mapping, then the (G.M.C.P.)
becomes (G.C.P.) associated to K and f.

1.2 ε-Complementarity Problem

The origin of the definition of ε-complementarity problem isMcLinden’s paper [29].
Let ∈E, F≥ be a dual system of locally convex spaces and let K ⊆ E be a closed

convex cone.
Given mapping f : K ∗ F , an ε-complementarity problem (ε-C.P.) associated

to f and K is:

for a give ε > 0, find x0 → K

such that f (x0) → K ≤ and ∈x0, f (x0)≥ ⊂ ε. (4)

1.3 Order Complementarity Problem

Consider a vector lattice (E,⊂), K = {x → E | 0 ⊂ x} and denote the Lattice
operations sup (resp. inf) by ∪ (resp. ∃).

Given a mapping f : K ∗ E, the order complementarity problem (O.C.P) is:

Find x0 → K

such that x0 ∃ f (x0) = 0. (5)

Since x0 ∃ f (x0) = 0, then it is clear that f (x0) → K . The order complementarity
problem has interesting applications in Economics.

If (H, ∈·, ·≥, K ) is a Hilbert lattice and x, y → K , then x ∃ y = 0 if and only
if ∈x, y≥ = 0. Thus for Hilbert lattices, the problems (O.C.P.) and (G.C.P.) are
equivalent.

There are many forms of complementarity problems based on the definition of
the mapping and the structure of underlying space.

One of themost important problems in nonlinear analysis is the nonlinear comple-
mentarity problem, which can be stated as follows: Let K be a cone in a real Hilbert
space (H, ∈·, ·≥), K ≤ the dual cone of K , and f : K ∗ H a mapping; then the
problem is to find an x≤ → K such that f (x≤) → K ≤ and ∈x≤, f (x≤)≥ = 0. The non-
linear complementarity problem defined by K and f will be denoted by NCP( f, K ).
The nonlinear complementarity problems can be viewed as particular fixed point
problems, variational inequality problems, nonlinear optimization problems, convex
optimization problems, nonlinear programing problems, etc. The complementarity
problems are used tomodel several problems of economics, physics and engineering;
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they can be constraints for an optimization problem; and they occur in the Karush-
Kuhn-Tucker conditions for a nonlinear programming problem as well.

Motivated by solving complementarity problems, Isac and Németh have charac-
terized a cone in the Euclidean space which admits an isotone projection onto it [15],
where isotonicity is considered with respect to the order induced by the cone. They
called such a cone isotone projection cone. The same authors [16] and Bernau [5]
considered the similar problem for the Hilbert space. Bearing in mind the fixed point
characterization of nonlinear complementarity problems, the isotonicity of the pro-
jection provides new existence results and iterativemethods [17, 18, 20, 35] for these
problems. Both the solvability and the approximation of solutions of nonlinear com-
plementarity problems can be handled by using the metric projection onto the cone
defining the problem, which emphasize the importance of studying the properties of
projection mappings onto cones.

The aim of this chapter is to discuss the notion of *-isotone projection cones
and its relationship to solvability of nonlinear complementarity problems. Our main
references for this chapter are [1, 11, 13, 16, 32, 35, 36].

The structure of this chapter is as follows. In Sect. 2, we will fix the terminology
and notations, and present some background results used in the chapter. In Sect. 3,
we will discuss the notion of *-isotone projection cones and analyze how large is the
class of these cones. We will show that each generating *-isotone projection cone is
superdual. We will prove that a simplicial cone in Rm is *-isotone projection cone if
and only if it is coisotone (i.e., it is the dual of an isotone projection cone). By using
a more recent duality result from the preprint [37] of the second author it can be
shown that infact the class of *-isotone and coisotone cones in Hilbert spaces is the
same. However, the special terminology used in that paper is out of the scope of this
chapter. In case of Euclidean spaces this result has been shown in [38]; but the proof
uses the result for simplical cones presented here and it is also rather technical to
be included in our chapter. We remark that the proofs in [37] are independent of the
results of this chapter, but they are still subject to the scrutiny of reviewers. In Sect. 4,
we will consider the solvability of complementarity problems defined by *-isotone
projection cones.

2 Preliminaries

Let (H, ∈·, ·≥) be a real Hilbert space. All Hilbert spaces in this chapter are assumed
to be real Hilbert spaces. Let x, y → H, the line segment joining x and y is denoted
by [x, y] and defined by

[x, y] = {σx + (1 − σ)y : 0 ⊂ σ ⊂ 1}.

A subset K ⊆ H is called is called convex if for every x, y → K , [x, y] is a subset
of K . A nonempty subset K ⊆ H is called a cone if σx → K , for all x → K
and σ ∇ 0. From this definition it can be seen that the zero element in (H, ∈·, ·≥)
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belongs to K . A cone K is called pointed if K ◦ (−K ) = {0}. For example, the
set Rn+ = {(x1, x2, x3, . . . , xn)⇐ → R

n : xi ∇ 0 for all i = 1, 2, . . . , n} is a pointed
cone. Note that a cone K in (H, ∈·, ·≥) is convex if and only if for every x, y → K ,
x + y → K . Indeed, if K is a convex, then for every x, y → K , 1

2 x + 1
2 y → K ,

that is 1
2 (x + y) → K . Since K is a cone, x + y → K . Conversely suppose that for

every x, y → K , x + y → K . If σ → [0, 1], then σx → K and (1 − σ)y → K . Hence
σx + (1 − σ)y → K . Hence, a subset K ⊆ H is:

(i) a cone if σx → K , for all x → K and σ > 0 (non-negative homogenous)
(ii) convex cone if it is cone and x + y → K , for all x, y → K .
(iii) pointed cone if it is cone and K ◦ (−K ) = {0}.
For the simplicity of the terminology we shall call a pointed closed convex cone
simply cone.

Note that convex cone need not to be a subspace. For example,

K = {x → C2[a, b] : x(t) ∇ 0 for all t → [a, b]}

is a convex cone which is not a subspace of C2[a, b]. K − K is the called the
linear subspace generated by K and it is the smallest linear subspace of H containing
K . A cone K ⊆ H is called generating if the linear subspace generated by K is H ,
that is, K − K = H . If K ⊆ H is a cone, then

K ≤ = {y → H : ∈x, y≥ ∇ 0 for all x → K }

is called the dual of K . The dual cone of a subspace of Rm is its orthogonal comple-
ment. Note that x → K ≤ if and only if −x is the normal of a hyperplane that supports
K at the origin. A cone K ⊆ H is called superdual if K ≤ ⊆ K . If K is a cone, then

K ⇒ = {x → H : ∈x, y≥ ⊂ 0, for all y → K }

is called the polar of K . Note that the polar of a cone consists of the origin and those
nonzero vectors in H that make a nonacute angle with every nonzero vector in K .

It is easy to see that K ⇒ = −K ≤. We say that the set A is generating the cone K if

K =
{

σ1x1 + · · · + σαxα : α → N, σ1, . . . , σα ∇ 0 and x1, . . . , xα → A
}

.

Note that if K is a generating cone, then K ≤ and K ⇒ are cones. This is the case
for example if K is a simplicial cone in R

m , that is, a cone generated by m linearly
independent vectors.

The generating cones K and L are called mutually polar if K = L⇒ (or equiva-
lently K ⇒ = L).

A relation β on H is called reflexive if xβx for all x → H . A relation β on
H is called transitive if xβy and yβz imply xβz. A relation β on H is called
antisymmetric if xβy and yβx imply x = y. A relation β on H is called an order



Isotone Projection Cones and Nonlinear Complementarity Problems 329

if it is reflexive, transitive and antisymmetric. A relation β on H is called translation
invariant if xβy implies (x + z)β(y + z) for any z → H . A relation β on H is called
scale invariant if xβy implies (σx)β(σy) for any σ > 0. A relation β on H is called
continuous if for any two convergent sequences {xn}n→N and {yn}n→N with xnβyn

for all n → N we have x≤βy≤, where x≤ and y≤ are the limits of {xn}n→N and {yn}n→N,
respectively.

The relation β on H is a continuous, translation and scale invariant order if and
only if it is induced by a cone K ⊆ H , that is, β =⊂K , where x ⊂K y if and only if
y − x → K . The cone K can be written as K = {x → H : 0 ⊂K x} and it is called the
positive cone of the order ⊂K . The triplet (H, ∈·, ·≥, K ) is called an ordered vector
space. A cone K ⊆ H is called regular if every decreasing sequence of elements in
K is convergent. In R

m any cone is regular. The ordered vector space (H, ∈·, ·≥, K )

is called a vector lattice if for every x, y → H there exist x ∃ y := inf{x, y} and
x ∪ y := sup{x, y}. In this case we say that the cone K is latticial and for each x → H
we denote x+ = 0 ∪ x , x− = 0 ∪ (−x) and |x | = x ∪ (−x). Then, x = x+ − x−
and |x | = x+ + x−. If H = R

m , then the latticial cones are exactly the simplicial
cones.

Let C be a closed convex set and PC : H ∗ H be the projection mapping onto
C defined by PC (x) → C and ⊕x − PC (x)⊕ = min{⊕x − y⊕ : y → C}. If x → H and
y0→ C, then y0 = PC (x) if and only if ∈y0 − x, y − y0≥ ∇ 0 for all y → C . That is,
a hyperplane passing through y0 with normal x − y0 supports C at y0. By using the
definition of the metric projection and item (i) of the definition of a cone, it is easy
to show that if K is a cone, then PK (σx) = σPK (x), for any x → H and any σ ∇ 0.

The following theorem is proved in [32].

Theorem 1 (Moreau) Let H be a Hilbert space and K , L ⊆ H two mutually polar
generating cones in H. Then, the following statements are equivalent:

(i) z = x + y, x → K , y → L and ∈x, y≥ = 0,
(ii) x = PK (z) and y = PL(z).

3 *-isotone Projection Cones in Hilbert Spaces

Definition 1 Let (H, ∈·, ·≥) be aHilbert space and K , L ⊆ H be cones. Themapping
β : H ∗ H is called (L , K )-isotone if x ⊂L y implies β(x) ⊂K β(y). If L = K ,
then an (L , K )-isotone mapping is called K -isotone, and if PK is K -isotone, then
K is called an isotone projection cone.

If K is a generating isotone projection cone, then it is latticial [16]. K is called
coisotone cone if K ⇒ is a generating isotone projection cone [34]. If H = R

m , the
coisotone cones are exactly the simplicial cones generated bym linearly independent
vectors which form pairwise nonacute angles [15, 19].

Definition 2 Let (H, ∈., .≥)be aHilbert space and K ⊆ H be a cone. If PK : H ∗ H
is (K ≤, K )-isotone, then the cone K is called *-isotone projection cone.
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The following proposition shows that the class of generating *-isotone projection
cones is contained in the class of generating superdual cones.

Proposition 1 Let (H, ∈., .≥) be a Hilbert space and K ⊆ H be a generating cone.
If the cone K is *-isotone projection cone, then it is superdual.

Proof Let x be an arbitrary element of K ≤. Since K is generating, there exist u, v → K
such that x = v − u. Then, u ⊂K ≤ v. Since K is *-isotone projection cone, it follows
that u = PK (u) ⊂K PK (v) = v and consequently x → K . Thus, K ≤ ⊆ K , that is, K
is superdual. �

Theorem 2 Let (H, ∈., .≥) be a Hilbert space and K ⊆ H be a cone. The cone K
is *-isotone projection cone, if and only if PK (u + v) ⊂K u for any u → K and any
v → K ⇒.

Proof Suppose that K is an *-isotone projection cone. Let u → K and v → K ⇒ be
arbitrary. Then, u + v ⊂K ≤ u implies that

PK (u + v) ⊂K PK (u) = u.

Conversely, suppose that

PK (u + v) ⊂K u, for any u → K and any v → K ⇒. (6)

Let x, y → H with x ⊂K ≤ y. Then, byMoreau’s theorem x ⊂K ≤ y ⊂K ≤ PK (y). Thus,

x ⊂K ≤ PK (y). (7)

Let u = PK (y) and v = x − PK (y). Then, obviously u → K and, by Eq. (7), v → K ⇒.
Hence, we can use Eq. (6) to obtain

PK (x) = PK (u + v) ⊂K u = PK (y).

Therefore, K is *-isotone projection cone. �

Corollary 1 Let (H, ∈., .≥) be a Hilbert space and K ⊆ H be a cone. The cone K is
*-isotone projection cone, if and only if PK (x) ⊂K u for any u → K and any x → H
with x ⊂K ≤ u.

Proof Use Theorem 2 with v = x − u → K ⇒. �

4 *-isotone Projection Cones in Euclidean Spaces

Let Rm be endowed with a Cartesian reference system. All matrices considered in
this chapter will have real entries. We identify all vectors in R

m by column vectors.
We denote the components of a vector in Rm by assigning lower indices to the letter
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which denotes the vector. In R
m the simplicial cones are of the form L = ARm+,

where A is a nonsingular m ×m matrix. The generators of the cone L are the column
vectors of A. Let ∈., .≥ be the canonical scalar product of Rm .

Lemma 1 Let K ⊆ R
m be a cone and A a nonsingular matrix. Then,

(AK )≤ = (A⇐)−1K ≤, (8)

and
(AK )⇒ = (A⇐)−1K ⇒. (9)

In particular,
(ARm+)≤ = (A⇐)−1

R
m+, (10)

and
(ARm+)⇒ = −(A⇐)−1

R
m+. (11)

Proof Equation (9) follows easily from Eq. (8). Thus, it is enough to prove Eq. (8)
only. x → (AK )≤ if and only if ∈x, Au≥ ∇ 0 for any u → K , which is equivalent to
∈A⇐x, u≥ ∇ 0 for any u → K , or to A⇐x → K ≤. Hence, x → (AK )≤ if and only if
x → (A⇐)−1K ≤. Therefore, (AK )≤ = (A⇐)−1K ≤. �

For a vector x → R
m denote x+ = sup(x, 0) and x− = sup(−x, 0), where the

supremums are taken with respect to the order induced by Rm+. We write x ∇ 0 if all
components of x are non-negative.

The next proposition is a straightforward application of the Moreau’s theorem.
However, for the readers’ convenience, we present all details of this proof.

Proposition 2 Let A be a nonsingular matrix and K = ARm+ the corresponding
simplicial cone. Then, for any y → R

m there exists a unique x → R
m such that one

of the following two equivalent statements hold:

(a) y = Ax+ − (A⇐)−1x−, x → R
m,

(b) Ax+ = PK (y) and −(A⇐)−1x− = PK ⇒(y).

Proof Let us first prove that the statements (a) and (b) are equivalent.
Suppose that (a) holds. Then, by using Eq. (11), it follows that Ax+ → K ,

−(A⇐)−1x− → K ⇒ and

∈Ax+,−(A⇐)−1x−≥ = −∈Ax+, (A−1)⇐x−≥ = −∈x+, x−≥ = 0.

Thus, (b) follows fromMoreau’s theorem. The converse follows easily from the same
theorem.

Next, we show that there exists a unique x such that item (a) holds. FromMoreau’s
theorem, there exist a unique p → K and a unique q → K ⇒ such that y = p + q and
∈p, q≥ = 0. Since K = ARm+ and A is nonsingular, there exists a unique u → R

m+
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such that p = Au. By using Eq. (11), K ⇒ = −(A⇐)−1
R

m+, and hence there exists a
unique v → R

m+ such that q = −(A⇐)−1v. Thus,

0 = ∈p, q≥ = ∈Au,−(A⇐)−1v≥ = −∈Au, (A−1)⇐v≥ = −∈u, v≥.

Therefore, ∈u, v≥ = 0. Let x = u − v. Then, u → R
m+, v → R

m+ and ∈u, v≥ = 0 implies
u = x+ and v = x−. In conclusion,

y = p + q = Au − (A⇐)−1v = Ax+ − (A⇐)−1x−. �

Recall that a square matrix is called positive stable if all its eigenvalues have
positive real part. A real square matrix is called a Z-matrix if all of its off-diagonal
entries are nonpositive. An M-matrix is a Z -matrix whose eigenvalues are positive.
Therefore, a symmetric matrix is an M-matrix if and only if it is a positive definite
Z -matrix. There are a large number of papers and books dealing with the properties
and applications of the above classes of matrices. The reader can find more details
about the special classes of M- and Z -matrices in [13, 14, 39]. A Stieltjes matrix is
a symmetric positive definite Z -matrix [44]. It is easy to see that a symmetric matrix
is an M-matrix if and only if it is a Stieltjes matrix. It is known that a Z matrix A
is an M-matrix if and only if Av ∇ 0 implies v ∇ 0 [13, 14]. All square matrices
A satisfying the property “Av ∇ 0 implies v ∇ 0” are called inverse positive or
monotone [13]. Hence, all M-matrices (and in particular the Stieltjes matrices) are
inverse positive. However, the converse of this statement is not true. It is known that
a square matrix A is inverse positive if and only if A−1 ∇ 0 [13].

Proposition 3 An m × m positive definite matrix B is a Stieltjes matrix if and only
if

u ∇ 0 and x− + B(u − x+) ⇒ u − x+ ∇ 0. (12)

Proof First, we show that any Stieltjes matrix B satisfies (12).We prove this by using
induction on the dimension of the matrix. If B1 is a one dimensional Stieltjes matrix,
then B1 = (a), where a > 0. Let u, x → R. Thus, we have to show that u ∇ 0 and
x− +a(u − x+) = x− + B1(u − x+) ∇ 0 implies u − x+ ∇ 0. If x ⊂ 0 this is trivial
because u − x+ = u ∇ 0. If x ∇ 0, then 0 ⊂ x− + a(u − x+) = a(u − x+) and
hence u − x+ ∇ 0. Suppose, that the statement is true for m and prove it for m + 1.

We have to show that



⎜


u1
...

um+1



⎟
 ∇ 0 and



⎜


x−
1
...

x−
m+1



⎟
 + Bm+1



⎜


u1 − x+
1

...

um+1 − x+
m+1



⎟
 ∇ 0 (13)
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implies



⎜


u1 − x+
1

...

um+1 − x+
m+1



⎟
 ∇ 0, where Bm+1 is anm+1-dimensional Stieltjesmatrix.

If all components of



⎜


x1
...

xm+1



⎟
 are non-negative, then inequality (13) becomes

Bm+1



⎜


u1 − x+
1

...

um+1 − x+
m+1



⎟
 ∇ 0. (14)

Since Bm+1 is a Stieltjes matrix, it is also an M matrix and hence inverse positive.

Thus,



⎜


u1 − x+
1

...

um+1 − x+
m+1



⎟
 ∇ 0. Hence, we can suppose that at least one component of



⎜


x1
...

xm+1



⎟
 is negative. Thus, there exists k → {1, . . . , m +1} such that xk < 0. Denote

by γ the permutation matrix obtained by swapping the k-th line and the (m + 1)-th
line of the (m + 1) × (m + 1) identity matrix. Then inequality (13) becomes

γ

⎧

x−
x−

k

⎪

+ Bm+1γ

⎧

u − x+
uk − x+

k

⎪

∇ 0, (15)

where x− and u − x+ are given by the equations γ

⎧

x−
x−

k

⎪

=


⎜


x−
1
...

x−
m+1



⎟
 and

γ

⎧

u − x+
u − x+

k

⎪

=


⎜


u − x+
1

...

u − x+
m+1



⎟
. Denote by Im+1 the (m + 1) × (m + 1) identity

matrix. Now, we multiply (15) by γ and use γ2 = Im+1 to obtain

⎧

x−
x−

k

⎪

+ γBm+1γ

⎧

u − x+
uk − x+

k

⎪

∇ 0. (16)

Sinceγ⇐ = γ and Bm+1 is positive definite, it follows thatγBm+1γ is also positive
definite. Moreover, since Bm+1 is a Z -matrix, it follows easily that γBm+1γ is also
a Z matrix. Thus, γBm+1γ is a Stieltjes matrix and hence it can be written in the
form
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γBm+1γ =
⎧

Bm −b
−b⇐ c

⎪

,

where Bm is an m-dimensional Stieltjes matrix, b is an m × 1 non-negative column
vector and c is a positive number. Hence, inequality (16) becomes

⎧

x−
x−

k

⎪

+
⎧

Bm −b
−b⇐ c

⎪ ⎧

u − x+
uk − x+

k

⎪

∇ 0. (17)

Thus, from inequality (17) and x+
k = 0, it follows that x− + Bm(u − x+)− buk ∇ 0

which implies
x− + Bm(u − x+) ∇ buk ∇ 0. (18)

Since Bm is an m-dimensional Stieltjes matrix and our statement is true for m,
it follows that Bm satisfies (12). Thus, inequality (18) implies that u − x+ ∇ 0.
Therefore,



⎜


u − x+
1

...

u − x+
m+1



⎟
 = γ

⎧

u − x+
uk − x+

k

⎪

= γ

⎧

u − x+
uk

⎪

∇ 0.

Next, we show that if an m ×m positive definite matrix B = (bi j )1⊂i, j⊂m satisfies
(12), then it is a Stieltjes matrix. Suppose to the contrary, that B is an m ×m positive
definite matrix which satisfies (12), but it is not a Stieltjes matrix. Then, there exists
i, j → {1, . . . , m} such that i ∞= j and bi j > 0. Choose the vectors x, u → R

m such
that uk = 0 for all k ∞= j , xi > 0 and u j ,−xk are positive and large enough to have

bi j u j − bii xi ∇ 0, (19)

and
− xk + bkj u j − bki xi ∇ 0; k ∞= i, (20)

Then, u ∇ 0 and
x− + B(u − x+) ∇ 0 (21)

because (19) is the i-th line of (21) and (20) is the k-th line of (21) for any k ∞= i .
On the other hand ui − x+

i = −xi < 0. Thus, (12) cannot hold. This contradiction
shows that B must be a Stieltjes matrix. �

Theorem 3 Let A be an m × m nonsingular matrix and K = ARm+ a simplicial
cone. Then, K is a *-isotone projection cone if and only if A⇐ A is a Stieltjes matrix.

Proof First, note that A⇐ A is positive definite. Hence, the condition “A⇐ A is a
Stieltjes matrix” makes sense.

By Corollary 1, K is a *-isotone projection cone if and only if “y → R
m and Au →

K with u → R
m+ such that y ⊂K ≤ Au” implies “PK (y) ⊂K Au”. By Proposition 2, the
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relation PK (y) ⊂K Au is equivalent to Au − Ax+ → ARm+, or to u − x+ ∇ 0, where
x is the element uniquely determined by the equation in the item (a) of Proposition
2. On the other hand, by Eq. (10), the relation y ⊂K ≤ Au is equivalent to

A(u − x+)+(A⇐)−1x− = Au − Ax+ +(A⇐)−1x− = Au − y → K ≤ = (A⇐)−1
R

m+,

or to, x− + A⇐ A(u − x+) ∇ 0. Thus, K is a *-isotone projection cone if and only
if x− + A⇐ A(u − x+) ∇ 0 implies u − x+ ∇ 0. Therefore, by Proposition 3, K is a
*-isotone projection cone if and only if A⇐ A is a Stieltjes matrix. �

In Rm the coisotone cones are simplicial cones with the generators forming pair-
wise nonacute angles. This means that the coisotone cones in R

m are the simplicial
cones of the form ARm+, where A is a nonsingular m × m matrix such that A⇐ A is a
Stieltjes matrix.

Hence, we have the following theorem which shows that inRm the class of coiso-
tone cones is equal to the class of simplicial *-isotone projection cones.

Theorem 4 Let A be an m × m nonsingular matrix and K = ARm+ a simplicial
cone. Then, K is a *-isotone projection cone if and only if it is coisotone.

Proof K is coisotone if and only if A⇐ A is a Stieltjes matrix. Therefore, the result
follows from Theorem 3. �

5 Connection Among Fixed Point Problems, Complementarity
Problems and Variational Inequalities

In this section, first we study several equivalent forms of fixed point problems:

Definition 3 Let K ⊆ H a closed convex set, and f : H ∗ H a mapping, then
the variational inequality problem defined by f and K is the problem of finding an
x≤ → K such that ∈y − x≤, f (x≤)≥ ∇ 0 for all y in K . We shall denote this problem
by VI( f, K ).

It is known that Fix( f, K ) ∀ VI(I − f, K ) = VI(T, K ), where T = I − f .
Indeed, if x≤ is the solution of Fix( f, K ), then this implies that T (x≤) = 0.Thus x≤ is
the solution of VI(T, K ). If x≤ is the solution of VI(T, K ), then ∈y −x≤, T (x≤)≥ ∇ 0
for all y in K . That is, ∈y − x≤, x≤ − f (x≤)≥ ∇ 0 for all y in K . Taking y = f (x≤),
we have ∈ f (x≤) − x≤, x≤ − f (x≤)≥ ∇ 0. Thus

− ⎨
⎨x≤ − f (x≤)

⎨
⎨
2 ∇ 0

which implies that f (x≤) = 0. Hence x≤ is the solution of Fix( f, K ).

Also, we have: VI( f, K ) ∀ Fix(PK ◦ (I − f ), K ). Indeed, x≤ is the solution of
Fix(PK ◦ (I − f ), K ) ∀ PK (x≤ − f x≤) = x≤. We know that PK (x≤ − f x≤) =
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x≤ ⇐⇒ ∈x≤ − f x≤ − x≤, y − x≤)≥ ⊂ 0 for all y in K ∀ ∈− f x≤, y − x≤)≥ ⊂ 0 ∀
∈ f x≤, y − x≤)≥ ∇ 0 for all y in K .

Next we show that variational inequality problem defined on a closed convex cone
is equivalent to nonlinear complementarity problem.

VI( f, K ) ∀ NCP( f, K ), if K is closed convex cone:
If x≤ is the solution of NCP( f, K ) then x≤ → K , f (x≤) → K ≤ and ∈ f x≤, x≤≥ = 0.

Consider

∈y − x≤, f (x≤)≥ = ∈y, f (x≤)≥ − ∈x≤, f (x≤)≥ = ∈y, f (x≤)≥ ∇ 0,

for all y in K as f (x≤) → K ≤. Suppose that x≤ is the solution of V I ( f, K ) which
implies that x≤ → K and ∈y − x≤, f (x≤)≥ ∇ 0 for all y in K . Take, y = 0 then
∈−x≤, f (x≤)≥ ∇ 0 gives that ∈x≤, f (x≤)≥ ⊂ 0. Take, y = 2x≤ then ∈x≤, f (x≤)≥ ∇ 0.
Hence, ∈x≤, f (x≤)≥ = 0. Also,

0 ⊂ ∈y − x≤, f (x≤)≥ = ∈y, f (x≤)≥ − ∈x≤, f (x≤)≥ = ∈y, f (x≤)≥,

for all y in K which implies that f (x≤) → K ≤.

Definition 4 Let K ⊆ H a closed convex set, and f : H ∗ R a mapping, then
the nonlinear optimization problem defined by f and K is the problem of finding an
x≤ → K such that f (x≤) ⊂ f (y) for all y in K (that is, minimize f (x) subject to
x → K ). We shall denote this problem by NOPT( f, K ).

If f is differentiable then the implication NOPT( f, K ) ⇒ VI(∇ f, K ) is well
known and it can be shown as follows: Let f : H ∗ R a differentiable mapping. If
x≤ is the solution of NOPT( f, K ) and y is an arbitrary point of K , then

x≤ + t (y − x≤) → K implies that f (x≤) ⊂ f (x≤ + t (y − x≤))

which further implies that

∈∇ f (x≤), y − x≤≥ = lim
t↘0

f (x≤ + t (y − x≤)) − f (x≤)
t

∇ 0

for all y in K . Hence, x≤ is the solution of VI(∇ f, K ).

Now assume that f is convex and differentiable. It is straightforward to check
that CNOPT( f, K ) ∀ VI(∇ f, K ). Indeed, if f : H ∗ R a differentiable convex
mapping, then NOPT( f, K ) ⇒ VI(∇ f, K ). If x≤ is the solution of VI(∇ f, K ) and
f is a convex mapping, then x≤ + t (y − x≤) → K implies that

f (y) − f (x≤) ∇ ∈∇ f (x≤), y − x≤≥ ∇ 0,

for all y in K . Hence x≤ is the solution of NOPT( f, K ).

It is known that x≤ is a solution of the nonlinear complementarity problem defined
by K and f if and only if x≤ is a fixed point of the mapping
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K ˇ x ˆ∗ PK (x − f (x)), (22)

where PK is the projection mapping onto K . Indeed, for all x in H if we put z =
x − f (x) and y = − f (x), then z = x + y. Suppose that x is a solution of nonlinear
complementarity problem defined by K and f , that is x → K such that− f (x) → K ⇒
and ∈x,− f (x)≥ = ∈x, y≥ = 0. Now this along with z = x + y via Moreau’s theorem
gives x = PK (z). Therefore, x is a fixed point of the mapping PK (x − f (x)).

Conversely suppose that x is a fixed point of the mapping PK (x − f (x)), that is,
x = PK (x − f (x)). Thus x → K . Now by Moreau’s theorem we have

x − f (x) = PK (x − f (x)) + PK ⇒(x − f (x)) = x + PK ⇒(x − f (x),

which further implies that − f (x) → K ⇒, that is, f (x) → K ≤. Moreau’s theorem
also implies that ∈x, PK ⇒(x − f (x)≥ = ∈x,− f (x)≥= 0 = ∈x, f (x)≥. Hence, x is a
solution of nonlinear complementarity problem defined by K and f.

Consider the following Picard iteration

xn+1 = PK (xn − f (xn)) (23)

for finding the fixed points of the mapping (22).
Note that if f is continuous and this iteration is convergent, then its limit is a

fixed point of the mapping (22) and therefore a solution of the corresponding fixed
point problem which in turn solves the nonlinear complementarity problem defined
by K and f . Moreover, if f is continuous, the sequence {xn}n→N is decreasing and
the cone K regular, then the limit x≤ of {xn}n→N is a fixed point of the mapping (22),
and therefore a solution of the corresponding complementarity problem. By using the
ordering induced by the cone, it is interesting to study sufficient conditions for f such
that {xn}n→N to be decreasing. For this we introduce the notion of *-pseudomonotone
decreasing mapping as follows:

The *-pseudomonotone decreasing mapping is a mapping which satisfies the
following implication:

y − x → K and f (y) → K ≤ implies f (x) → K ≤.

This class of mappings extends the set of mappings which satisfy the following
isotonicity property:

y − x → K ⇒ f (x) − f (y) → K ≤.

For further details on equivalence among complementarity problems, fixed point
problems and variational inequalities, see [2, 3] and the references therein.

In the next section, we show that if f is continuous and *-pseudomonotone
decreasing, then {xn}n→N is decreasing. By introducing other types of isotonicity
properties for f , we will also analyze the problem of finding nonzero solutions for
the complementarity problem.
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6 Nonlinear Complementarity Problems on *-isotone
Projection Cones

Recursions for complementarity problems, variational inequalities and optimization
problems, similar to (23), were considered in several other works, for example [4, 6,
21, 25, 26, 28, 33, 40–43]. However, neither of these works used the order induced
by the cone for analyzing the convergence. Instead, they used the Banach fixed point
theorem based approach, assumingKachurovskii-Minty-Browder typemonotonicity
(see [7, 22, 30, 31]) and global Lipschitz properties for f .

First we state two lemmas from [35] on which our main results are based.

Lemma 2 Let H be a Hilbert space, K ⊆ H a cone and f : K ∗ H a continuous
mapping. Consider the recursion (23). If the sequence {xn}n→N is convergent and x≤ is
its limit, then x≤ is a solution of the nonlinear complementarity problem NCP( f, K ).

Lemma 3 Let H be a Hilbert space, K ⊆ H a regular cone and f : K ∗
H a continuous mapping. Consider the recursion (23). If the sequence {xn}n→N
is monotone decreasing, then it is convergent and its limit x≤ is a solution of the
nonlinear complementarity problem NCP( f, K ).

Definition 5 Let H be a Hilbert space, K ⊆ H a cone. The mapping f : K ∗ H is
called a *-increasing if f is (K , K ≤)-isotone. The mapping f is called *-decreasing
if − f is *-increasing.

The following notion is inspired by the notion of pseudomonotonicity defined by
Karamardian and Schaible in [23].

Definition 6 Let H be a Hilbert space, K ⊆ H a cone. The mapping f : K ∗ H
is called a *-pseudomonotone decreasing if for every x, y → K

y − x → K and f (y) → K ≤ implies f (x) → K ≤.

Remark 1 (a) If f is *-decreasing, then it is *-pseudomonotone decreasing.
(b) If f (K ) ⊆ K ≤, then f is *-pseudomonotone decreasing.

Theorem 5 Let H be a Hilbert space, K ⊆ H a regular *-isotone projection cone
and f : K ∗ H a continuous mapping such that f −1(K ≤) ∞= ∩. Consider the
recursion (23) starting from an x0 → f −1(K ≤). If f is *-pseudomonotone decreasing,
then the sequence {xn}n→N is convergent and its limit x≤ is a solution of the nonlinear
complementarity problem NCP( f, K ).

Proof Given that *-isotone projection cone is regular, by Lemma 3, it is enough to
prove that the sequence {xn}n→N is monotone decreasing. Moreover, it is enough to
prove that f (xn) → K ≤ for all n → N. Indeed, since K is a *-isotone projection cone,
f (xn) → K ≤ and xn → K imply that

xn+1 = PK (xn − f (xn)) ⊂K PK (xn) = xn . (24)
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Hence, the sequence {xn}n→N is monotone decreasing. We will prove the proposition

(φn) f (xn) → K ≤, for all n → N

by induction. (φ0) is obviously true. We suppose that (φn) is true and prove that
(φn+1) is also true. Since f (xn) → K ≤, by relation (24) we have that xn+1 ⊂K xn .
Since f is *-pseudomonotone decreasing we have f (xn+1) → K ≤; that is, (φn+1) is
true. �

Example 1 The monotone non-negative cone in Rm is defined in Example 2.13.9.4
of [11, pp. 198]. Themonotone non-negative cone is an important cone in the isotonic
regression and its applications (see [24] and the references therein). The monotone
non-negative is also used in reconstruction problems (see [11], Sect. 5.13 andRemark
5.13.2.4). Suppose that K is the dual of themonotone non-negative cone inR3. Then,
by Eqs. (435) and (429) of [11], we have

K =
{

x → R
3 : x1 + x2 + x3 ∇ 0, x1 + x2 ∇ 0, x1 ∇ 0

}

, (25)

and
K ≤ =

{

x → R
3 : x1 ∇ x2 ∇ x3 ∇ 0

}

.

It is a straightforward exercise to check that K ≤ = UR
3+, whereU =





1 1 1
0 1 1
0 0 1



. Then,

(U⇐)−1 =




1 0 0
−1 1 0
0 −1 1



 and therefore, by using Eq. (10), we get K = (K ≤)≤ =




1 0 0
−1 1 0
0 −1 1



R
3+. The generators of K are the columnvectors of





1 0 0
−1 1 0
0 −1 1



, which

form pairwise nonacute angles. Thus, K is a coisotone cone, which by Theorem 4
is a *-isotone projection cone. Consider the mapping f = ( f1, f2, f3)⇐ : K ∗ H
defined by

f (x) =
⎩

3000 − x31 − 2x1 − 2x2 − x3, 2000 − x31 − x1 − x2, 1000 − x31

⎛⇐
.

(26)
We will show that f is *-pseudomonotone decreasing. For this we have to show that
for every x, y → K

y − x → K and f (y) → K ≤ implies f (x) → K ≤,

or equivalently

⎝



⎞

y1 + y2 + y3 ∇ x1 + x2 + x3,
y1 + y2 ∇ x1 + x2,
y1 ∇ x1

(27)
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and
f1(y) ∇ f2(y) ∇ f3(y) ∇ 0 (28)

implies
f1(x) ∇ f2(x) ∇ f3(x) ∇ 0. (29)

Obviously, inequalities (27)3 and (28)3 imply inequality (29)3. It is easy to see that

f2(y) − f3(y) = 1000 − y1 − y2

and
f2(x) − f3(x) = 1000 − x2 − x3.

Therefore, inequalities (27)2 and (28)2 imply inequality (29)2. It is straightforward
to see that

f1(y) − f2(y) = 1000 − y1 − y2 − y3

and

f1(x) − f2(x) = 1000 − x1 − x2 − x3.

Therefore, inequalities (27)1 and (28)1 imply inequality (29)1. In conclusion, inequal-
ities (27) and (28) imply inequalities (29). Thus, f is *-pseudomonotone decreasing.
Consider a point

x0 =
⎩

x01 , x02 , x03

⎛⇐ → f −1(K ≤)

=
{

(x1, x2, x3)
⇐ → R

3 | x1 + x2 + x3 → [0, 1000], x1 + x2 → [0, 1000], x1 → [0, 10]
}

.

Of course, there are infinitely many such points. For example, it is easy to see that
the box [0, 10] × [0, 490] × [0, 500] is contained in f −1(K ≤), so one could choose
x0 from this box. Thus, if we consider the recursion (23) with f defined by (26) and
starting from x0, then, by Theorem 5, the sequence {xn}n→N defined by this recursion
is convergent to a solution of the complementarity problem defined by f and the cone
K (given by (25)).

The next theorem gives a sufficient condition for the recursion (23) to be conver-
gent to a nonzero solution.
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Theorem 6 Let H be a Hilbert space, K ⊆ H a regular *-isotone projection cone
and f : K ∗ H a *-pseudomonotone decreasing, continuous mapping such that
f −1(K ≤) ∞= ∩. Let J : K ∗ H be the inclusion mapping defined by J (x) = x
and PK : H ∗ K the projection mapping onto K . If there are x̂ → f −1(K ≤) and
u → x̂ + K such that

(PK ◦ (J − f ))((x̂ + K ) ◦ (u − K ) ◦ f −1(K ≤)) ⊆ x̂ + K ,

then x̂ is a solution of the nonlinear complementarity problem NCP( f, K ) and for
any x0 → (x̂ + K ) ◦ (u − K ) ◦ f −1(K ≤) the recursion (23) starting from x0 is
convergent and its limit x≤ is a solution of the nonlinear complementarity problem
NCP( f, K ) such that x̂ ⊂K x≤ ⊂K u. In particular, if x̂ ∞= 0, then the recursion (23)
is convergent to a nonzero solution.

Proof Since x̂ → (x̂ + K ) ◦ (u − K ) ◦ f −1(K ≤) and

(PK ◦ (J − f ))((x̂ + K ) ◦ (u − K ) ◦ f −1(K ≤)) ⊆ x̂ + K ,

we have x̂ ⊂K (PK ◦ (J − f ))(x̂) = PK (x̂ − f (x̂)) ⊂K x̂ . Hence,

x̂ = PK (x̂ − f (x̂)),

that is, x̂ is a solution of the nonlinear complementarity problem NC P( f, K ). In the
proof of Theorem 5 we have seen by induction that

xn → K ◦ f −1(K ≤), for all n → N. (30)

We prove by induction the proposition

(	n) x̂ ⊂K xn ⊂K u, for all n → N. (31)

Obviously, (	0) is true. Suppose that (	n) is true. Hence, by using relation (30), we
have xn → (x̂ + K ) ◦ (u − K ) ◦ f −1(K ≤). Thus,

xn+1 = (PK ◦ (J − f ))(xn)

→ (PK ◦ (J − f ))((x̂ + K ) ◦ (u − K ) ◦ f −1(K ≤)) ⊆ x̂ + K .
(32)

On the other hand, by using relation (30) and the (K ≤, K )-isotonicity of PK , we have

xn+1 = PK (xn − f (xn)) ⊂K PK (xn) = xn ⊂K u. (33)

Relations (32) and (33) imply that (	n+1) is also true. Taking the limit in relation
(31), as n tends to infinity, we get x̂ ⊂K x≤ ⊂K u. �
Definition 7 Let H be a Hilbert space, K ⊆ H a cone, f : K ∗ H a mapping and
L > 0. The mapping f is called *-order weekly L-Lipschitz if
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f (x) − f (y) ⊂K ≤ L(x − y), for all x, y → K with y ⊂K x .

If L = 1, then f is called *-order weekly nonexpansive.

It is easy to see that the mapping f is *-order weekly L-Lipschitz if and only if
the mapping K ˇ x ˆ∗ Lx − f (x) is *-increasing.

Definition 8 Let H be a Hilbert space, K ⊆ H a cone, f : K ∗ H a mapping
and L > 0. Then, the mapping f is called projection order weekly L-Lipschitz if the
mapping K ˇ x ˆ∗ PK (Lx− f (x)) is K -isotonewhere PK is the projectionmapping
onto K . If L = 1 the mapping f is called projection order weekly nonexpansive.

If K ⊆ H is a *-isotone projection cone, then it is easy to see that every *-order
weekly L-Lipschitz mapping is projection order weekly L-Lipschitz. In particular,
every *-order weekly nonexpansive mapping is projection order weekly nonexpan-
sive. Therefore, the next theorem is also true if we replace the projection orderweekly
L-Lipschitz condition for f with the *-order weekly L-Lipschitz condition.

Theorem 7 Let H be a Hilbert space, K ⊆ H a regular *-isotone projection cone,
L > 0 and f : K ∗ H a *-pseudomonotone decreasing, projection order weekly
L-Lipschitz, continuous mapping such that

f −1(K ≤) ∞= ∩.

Let x̂ be a solution of the nonlinear complementarity problem NCP( f, K ). Then, for
any x0 → (x̂ + K ) ◦ f −1(K ≤) the recursion

xn+1 = PK

⎧

xn − f (xn)

L

⎪

(34)

starting from x0 is convergent and its limit x≤ is a solution of the nonlinear comple-
mentarity problem NCP( f, K ) such that x̂ ⊂K x≤. In particular, if x̂ ∞= 0, then the
recursion (34) is convergent to a nonzero solution.

Proof We will use the following well-known property of the projection mapping
Pλ onto a cone λ: Pλ(σx) = σPλ(x) for all x → H and σ > 0. We remark that
the nonlinear complementarity problem NC P( f, K ) is equivalent to the nonlinear
complementarity problem NC P( f/L , K ). Denote g = f/L . Then, the recursion
(34) can be written in the form

xn+1 = PK (xn − g(xn)).

Wewill use Theorem 6 for themapping g. Let J : K ∗ H be the inclusionmapping
defined by J (x) = x and u → x̂ + K arbitrary. Since any solution of the nonlinear
complementarity problemNCP(g, K ) is a solution of the nonlinear complementarity
problem NCP( f, K ) too, it is enough to check the relation
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(PK ◦ (J − g))((x̂ + K ) ◦ (u − K ) ◦ g−1(K ≤)) ⊆ x̂ + K . (35)

We have

PK (x − g(x)) = PK

⎧
1

L
(Lx − f (x))

⎪

= 1

L
PK (Lx − f (x)), for all x → K .

(36)
Since the mapping f is projection order weakly L-Lipschitz, from relation (36) and
the scale invariance of the ordering induced by K , it follows that the mapping g is
projection order weekly nonexpansive. For each x → (x̂ + K ) ◦ (u − K ) ◦ g−1(K ≤)
we have x̂ ⊂K x . Thus, since K ˇ x ˆ∗ PK (x − g(x)) is K -isotone and x̂ is a
solution of the nonlinear complementarity problem NC P(g, K ), it follows that

x̂ = PK (x̂ − g(x̂)) ⊂K PK (x − g(x)).

The previous relation can be rewritten as (PK ◦ (J − g))(x) → x̂ + K . Therefore,
relation (35) holds. �

Example 2 We will use the notations from Example 1. Let L > 0 be a constant
and f : K ∗ R

3 a *-decreasing mapping. We will analyze under which con-
ditions is the mapping x ˆ∗ f (x) − Lx also *-decreasing. Let E = (U⇐)−1.
Then, K = ER

3+, K ≤ = UR
3+, E = [e1, e2, e3] and U = [u1, u2, u3].

The column vectors e1, e2, e3 are the generators of K and the column vectors
u1, u2, u3 are the generators of K ≤. Any element x → K can be uniquely written as

x = xe
1e1 + xe

2e2 + xe
3e3.

We also have the unique decomposition

f (x) = f u
1 (x)u1 + f u

2 (x)u2 + f u
3 (x)u3.

Denote the components of x with respect to the canonical basis of R3 by x1, x2, x3
and the components of f (x)with respect to the canonical basis ofR3 by f1(x), f2(x),
f3(x). We will next use the terminology of a decreasing, increasing function in the
classical sense. It is easy to see that f is *-decreasing if and only if f u

1 , f u
2 , f u

3 are
decreasing with respect to each variable xe

1 ,x
e
2, xe

3. In other words f is *-decreasing
if and only if

f (x) = g1(x)u1 + g2(x)u2 + g3(x)u3, (37)

where g1, g2, g3 are decreasing with respect to each variable xe
1, xe

2, xe
3. We have





x1
x2
x3



 = E





xe
1

xe
2

xe
3



 ,
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from where we get





xe
1

xe
2

xe
3



 = U⇐




x1
x2
x3



 =




1 0 0
1 1 0
1 1 1









x1
x2
x3



 ,

or equivalently
⎝



⎞

xe
1 = x1,

xe
2 = x1 + x2,

xe
3 = x1 + x2 + x3.

(38)

Let f : K ∗ R
3 be a *-decreasing mapping. Then, by equations (37), there exists

g1, g2, g3 decreasing with respect to each variable xe
1, xe

2, xe
3 such that





f1
f2
f3



 = U





g1
g2
g3



 =




1 1 1
0 1 1
0 0 1









g1
g2
g3



 ,

or equivalently
⎝



⎞

f1 = g1 + g2 + g3,
f2 = g2 + g3,
f3 = g3.

(39)

Let h : K ∗ R
3 be defined by h(x) = f (x) − Lx , where L > 0 and h1, h2, h3 the

components of h(x)with respect to the canonical basis and hu
1 , h

u
2, h

u
3 the components

of h(x) with respect to the basis (u1, u2, u3). We have to analyze when are hu
1, hu

2,
hu
3 decreasing with respect to each variable xe

1, xe
2, xe

3. From Eq. (39) we get

⎝



⎞

h1 = g1 + g2 + g3 − Lx1,
h2 = g2 + g3 − Lx2,
h3 = g3 − Lx3.

(40)

We have 



h1
h2
h3



 = U





hu
1

hu
2

hu
3



 ,

from which we get





hu
1

hu
2

hu
3



 = E⇐




h1
h2
h3



 =




1 −1 0
0 1 −1
0 0 1









h1
h2
h3



 ,



Isotone Projection Cones and Nonlinear Complementarity Problems 345

or equivalently
⎝



⎞

hu
1 = h1 − h2 ,

hu
2 = h2 − h3,

hu
3 = h3.

(41)

Combining Eqs. (40) and (41) we get

⎝



⎞

hu
1 = g1 − L(x1 − x2),

hu
2 = g2 − L(x2 − x3),

hu
3 = g3 − Lx3,

(42)

or, by using Eq. (38)
⎝



⎞

hu
1 = g1 − L(2xe

1 − xe
2),

hu
2 = g2 − L(2xe

2 − xe
1 − xe

3),

hu
3 = g3 − L(xe

3 − xe
2).

(43)

Since g3 is decreasing with respect to each variable xe
1, xe

2 and xe
3, Eq. (43)3 implies

that hu
3 is decreasing with respect to xe

1, xe
3. Equation (43)1 implies that hu

1 is decreas-
ing with respect to xe

1, xe
3. Equation (43)2 implies that hu

2 is decreasing with respect to
xe
2. It follows that x ˆ∗ f (x)−Lx is *-decreasing if and only if hu

1, h
u
3 are decreasing

with respect to xe
2 and hu

2 is decreasing with respect to xe
1, xe

3. Thus, x ˆ∗ f (x)− Lx
is *-decreasing if and only if g1 = k1−Lxe

2, g2 = k2−Lxe
1−Lxe

3 and g3 = k3−Lxe
2,

where k1 : K ∗ R, k2 : K ∗ R and k3 : K ∗ R are decreasing functions with
respect to each variable xe

1, xe
2, xe

3.
Thus, if we consider a mapping f : K ∗ R

3 defined by Eq. (37) with
g1 = k1 − Lxe

2, g2 = k2 − Lxe
1 − Lxe

3 and g3 = k3 − Lxe
2, where k1 : K ∗ R,

k2 : K ∗ R, k3 : K ∗ R are decreasing functions with respect to each vari-
able xe

1, xe
2, xe

3, then f is *-order weekly L-Lipschitz and therefore projection order
weekly L-Lipschitz. Moreover, f is *-decreasing and therefore *-pseudomonotone
decreasing. Thus, we can use Theorem 7 to conclude that the nonlinear complemen-
tarity problem NCP( f, K ) has a solution x̂ and the recursion (23) starting from any
x0 → (x̂+K )◦ f −1(K ≤) converges to a solution x≤ ofNCP( f, K ) such that x̂ ⊂K x≤.
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Isotone projection cone, 329
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J
James theorem, 66

K
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Kakutani’s theorem, 8
Kannan mapping, 178
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L
Linear complementarity problem, 325
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78
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M
Mann’s iterative algorithm, 292
Mann’s iterative method, 292
Mann-type extragradient-like algorithm, 310,
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Mann-type iterative method, 311
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Mann-type viscosity algorithm, 313
Maximal monotone operator, 207
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Index 351

Modified CQ algorithm, 299
Modified relaxed CQ algorithm, 299
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Mutually polar cones, 328

N
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Nearly uniformly convex, 117
Nonexpansive mapping, 17, 174, 287
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iterative, 177
quasi, 189

Nonsymmetric Hausdorff distance, 119
Normal structure, 16

O
Opial condition, 202
Optimal value function, 138
Optimization problem, 336
Order complementarity problem, 326
Order relation, 328
Ordered vector space, 329

P
Polyhedral, 38
Positive stable matrix, 332
Pre-duality map, 41, 92
Projection, 170
Projection gradient algorithm, 318
Projection gradient method, 206, 237, 290, 291
Projection order weekly L-Lipschitz mapping,

342
Projection order weekly nonexpansive

mapping, 342
Proper function, 138
Prox pair, 144
Proximal normal structure, 18
Proximal pair, 18
Proximinal set, 34, 97, 168
Proximity map, 170

Q
QP-space, 47
Quasi-polyhedral point, 47

R
Radius of a set, 16
Radon-Riesz property, 82
Relatively nonexpansive map, 18, 24
Relaxed CQ algorithm, 298
Relaxed extragradient method, 309
Resolvent operator, 207
Restricted (Chebyshev) center, 142
Restricted center, 146
Retract set, 201
Retraction mapping, 201

S
Scale invariant relation, 329
Schauder fixed point theorem, 172
Sequentially Kadec set, 141
Set-valued map, 4
Slice, 62, 65
Smooth space, 68
Split feasibility problem, 281

constrained multiple-sets, 318
multiple-sets, 282, 284, 316

Stable problem, 139
Strictly convex norm, 3
Strictly convex space, 3, 68, 168
Strongly best simultaneous approximant, 146
Strongly convex space, 82
Strongly monotone mapping, 201, 288
Strongly proximinal set, 34, 102
Strongly subdifferentiable function, 47
Strongly subdifferentiable norm, 87
Subdifferential, 70, 160
Sublevel set, 142
Sunny mapping, 202
Sunny nonexpansive retract, 202
Support functional, 65
Supporting hyperplane, 65

T
T-regular set, 17
Tikhonov ill-posed problem, 149
Tikhonov regularization, 136
Tikhonov well-posed problem, 138
Translation invariant relation, 329

U
Uniformly convex space, 3, 71, 168
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Uniformly quasi-convex function, 148
Unit sphere, 3
Upper semi-continuous set-valued map, 4, 35,

78

V
Variational inequality, 171
Variational inequality problem, 200, 205, 237,

290, 335
Vector lattice, 329
Vietoris convergence, 72
Vietoris topology, 72

Viscosity selection criterion, 154, 158
Viscosity solution, 150, 155

W
W-cent-compact set, 142
Weak topology, 4
Well posedness, 111
Well-posed in the sense of Furi and Vignoli,

116
Well-posed minimization problem, 113
Wijsman topology, 138
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