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Foreword

It gives me much pleasure to welcome this comprehensive work on the optimality
aspects of Mixture Designs. Kiefer formulated various optimality criteria and laid
foundations for the study of optimal designs—both exact and approximate. Scheffé
initiated the study of mixture designs and introduced a model for these designs.
The current monograph brings these together in a cohesive way. It deals with
Scheffé’s model and some other models. Optimality aspects studied include:
(a) optimal designs for the estimation of parameters in mixture models and
(b) optimal designs for optimal mixtures under mixture models. This is followed
by applications of mixture experiments in various fields such as agriculture and
pharmaceuticals. The monograph concludes with a study of several variants and
extensions. It also gives directions for further research in this area of study which
has just opened up. The authors have taken a significant step in promoting research
in this area of study by putting together all known work in this area and
by indicating directions for further work. They deserve our gratitude for this
important contribution.

Waterloo, Canada, February 2014 Kirti R. Shah
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Preface

Two of us had necessary research experience in the broad area of optimal designs.
One of us had necessary exposition in the area of response surface-related optimal
designs. The remaining one had adequate experience in handling factorial designs.
Two of us ventured into this emerging area of optimal mixture designs several
years back. The other two joined hands and strengthened the research collabora-
tion to the extent that all of us together could see the emergence of a research-level
monograph within a reasonable time frame.

We have tried to present and explain, in our own way, the techniques needed for
handling the optimal designing problems related to the general area of mixture
models and specific areas of applications of such models.

We will consider our efforts rewarded if the readers find the presentations in
order and derive enough creative interest in pursuing the research topics further.

Professor Kirti R. Shah has showered unbounded research opportunity on two
of us for over 20 long years or so. He has obliged us by very kindly agreeing to
write the Foreword for this monograph.

We have a very special point to make. The whole exercise was academically
challenging to one of us who had no exposure to this area of research. But with
sheer interest, enthusiasm, and dedication, this special collaborator exceeded all
our expectations and rightfully deserved a position on the front page of the
publication.

Kolkata, February 2014 B. K. Sinha
N. K. Mandal

Manisha Pal
P. Das
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Chapter 1
Mixture Models and Mixture Designs:
Scope of the Monograph

Abstract We introduce standard mixture models and standard mixture designs as
are well known in the literature (vide Cornell 2002). Some of the less known models
are also introduced briefly. Next we explain the frameworks of exact and approximate
[or, continuous] mixture designs. We mention about known applications of mixture
experiments in agriculture, food processing, and pharmaceutical studies. We also
provide a chapter-wise brief summary of the contents covered in the monograph.

Keywords Scheffé’s homogeneous mixture models · Becker’s mixture model ·
Draper–St. John’s mixture model · Simplex lattice designs · Simplex centroid
designs · Axial designs · Exact designs · Approximate designs · Applications ·
Agriculture · Pharmacy · Food processing

1.1 Introduction

This monograph features state-of-the-art research findings on various aspects of
mixture experiments, mainly from the point of view of optimality. We have freely
consulted available books and journals on mixture experiments and optimal experi-
mental designs. There is no denying the fact that a considerable number of research
articles has been published in this specific area dealing with mixture model speci-
fications and related data analyses; however, emphasis on finding optimal mixture
experiments has been relatively less pronounced. With a thorough understanding of
the tools and techniques in the study of optimal designs [in discrete and continuous
design settings], we ventured into this relatively new area of research a few years
back and we were fascinated by the niceties of the elegant results—already known
in the literature and further researched out by our team. We are happy to work on
this monograph and bring it to the attention of optimal design theorists in a most
comprehensive manner—covering basic and advanced results in the area of optimal
mixture experiments.

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 1
DOI: 10.1007/978-81-322-1786-2_1, © Springer India 2014



2 1 Mixture Models and Mixture Designs: Scope of the Monograph

1.2 Mixture Models

Let x = (x1, x2, . . . , xq) denote the vector of proportions of q mixing components
and η(x) be the corresponding mean response. The factor space is a simplex, given
by

X = {x = (x1, . . . , xq) : xi ≥ 0, i = 1, 2, . . . , q; q
σ

i=1
xi = 1}. (1.2.1)

Scheffé (1958) introduced the following models in canonical forms of different
degrees to represent the mean response function η(x):

Linear: η(x) = σ
i
βi xi (1.2.2)

Quadratic: η(x) = σ
i
βi xi + σ

i< j
βi j xi x j (1.2.3)

Cubic: η(x) = σ
i
βi xi + σ

i< j
βi j xi x j + σ

i< j<k
βi jk xi x j xk (1.2.4)

Special Cubic: η(x) = σ
i
βi xi + σ

i< j
βi j xi x j + σ

i< j<k
βi jk xi x j xk

+ σ
i< j

βi j xi x j (xi − x j ). (1.2.5)

In the above, we have used generic notations for the model parameters in different
versions of mixture models. Using the identity σxi = 1, model (1.2.3) can be
converted to a canonical homogeneous quadratic model:

η(x) = σ
i
βi i x2i + σ

i< j
βi j xi x j . (1.2.6)

In the present study, we shall be concerned with the canonical models (1.2.2) and
(1.2.3) or (1.2.6) or some other equivalent versions of it. There are other types of
mixture models introduced in the literature. In order to differentiate them, we may
refer to the above models as ‘standard mixture models’. It is to be noted that the
use of the identity σxi = 1 may lead to remodeling very deceptively. For exam-
ple, the quadratic model (1.2.3) may be modified to the cubic model, thus inviting
more parameters [with intriguing parametric relations] and more design points for
estimation. Also proper interpretation of the parameters may be a bit confusing and
complicated. Note that unlike in the usual regression models, the constant term β0
has been dropped from all mixture models, as otherwise, the β-parameters become
non-estimable. Further to this, in the mixture model setup, β0 does not have any
obvious interpretation like the intercept!

As was mentioned above, there are some other ‘non-standard’ mixture models
introduced and studied in the literature. We will deal with symmetrized versions
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of two such models viz. Becker’s homogeneous model of degree one (1968) and
Draper–St. John’s model (1977).
Becker’s model is given by

η(x) = β1x1 + β2x2 + · · · + βq xq + β12
x1x2

x1 + x2
+ · · · + βq−1q

xq−1xq

xq−1 + xq

0 ≤ xi ≤ 1,∀ i; xi + x j > 0, ∀ i < j. (1.2.7)

As a matter of fact, Becker introduced a general representation of (1.2.7) as is given
below:

η(x) = σ
i
βi xi + σ

i< j
βi j

xi x j

xi + x j
+ · · · + σ

i< j<k
βi jk

xi x j xk

(xi + x j + xk)2
+ · · ·

0 ≤ xi ≤ 1,∀ i; xi + x j > 0, ∀ i < j. (1.2.8)

Besides the above, there are two other homogeneous models of degree one sug-
gested by Becker. For the sake of completeness, these are also displayed below:

η(x) = σ
i
βi xi + σ

i< j
βi jmin(xi , x j ) + σ

i< j<k
βi jkmin(xi , x j , xk) + · · ·

0 < xi < 1,∀ i. (1.2.9)

η(x) = σ
i
βi xi + σ

i< j
βi j (xi x j )

1/2 + · · · + σ
i< j<k

βi jk(xi x j xk)
1/3 + · · ·

0 < xi < 1,∀ i. (1.2.10)

Draper–St. John’s model is given by

η(x) = β1x1 + · · · + βq xq + α1

x1
+ · · · + αq

xq
, 0 < xi < 1, ∀ i. (1.2.11)

Two other entirely different models will be introduced in later chapters.

1.3 Mixture Designs

Mixture designs are essentially design layouts with the descriptions of the distinct
design points or vectors of the type x of mixing proportions inside the simplex,
along with specification of their corresponding masses. In a sense, a mixture design
is full of arbitrariness, in terms of the design points and their mass distribution.
Generally, we first consider a collection of design points and then attribute a mass
distribution to them. Loosely speaking, a collection of design points is also referred
to as a mixture design. [The underlying mass distribution is tacitly understood to be
defined at a subsequent stage, with a positive mass attributed to each design point in
the collection.] In this sense, following three are the most commonly used standard
mixture designs introduced by Scheffé (1958, 1963).
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1.3.1 Simplex Lattice Designs

This class of designs consists of all feasible combinations of the mixing proportions
wherein each proportion comprises of the values (0, 1/m, 2/m, . . . , m/m = 1) for
a given integer parameter m > 1. Though there are (m + 1)q possible combinations,
only those combinations (x1, x2, . . . , xq) are feasible which satisfy x1 + x2 + · · · +
xq = 1. In a lattice design with q components and a given integer parameter m, the
support set of design points is called a (q, m) simplex lattice. For a (q, m) simplex
lattice design, there are C(q + m − 1, m) design points where C(a, b) stands for the
usual binomial coefficient involving positive integers a ≥ b > 0. .

For example, for a (4, 3) simplex lattice, the design points are given by [(1, 0, 0, 0)
and its 3 variations, (1/3, 1/3, 1/3, 0) and its 3 variations, (2/3, 1/3, 0, 0) and its
11 variations]—with a total of 20 design points.

1.3.2 Simplex Centroid Designs

The centroid of a set of q nonzero coordinates in a q-dimensional coordinate system is
the unique point (1/q, 1/q, . . . , 1/q).On the other hand, centroid of a set of t nonzero
coordinates in a q-dimensional coordinate system is not unique. There are C(q, t)
centroid points of the form [(1/t, 1/t, . . . , 1/t, 0, 0, . . . , 0); (1/t, 1/t, . . . , 0, 1/t,
0, 0, . . . , 0); . . . . . . (0, 0, . . . , 0, 1/t, 1/t, . . . , 1/t)].

A simplex centroid design deals exclusively with the centroids of the coordinate
system, starting with exactly one nonzero component in the mixture (having q cen-
troid points) and extending up toq nonzero components (having unique centroid point
displayed above). Thus a simplex centroid design in the q-dimensional coordinate
system contains 2q − 1 points.
As an example, for q = 4, there is a total of 15 points in the simplex centroid design:

[(1/4, 1/4, 1/4, 1/4); (1/3, 1/3, 1/3, 0); (1/3, 1/3, 0, 1/3); (1/3, 0, 1/3,
1/3); (0, 1/3, 1/3, 1/3); (1/2, 1/2, 0, 0); (1/2, 0, 1/2, 0); (1/2, 0, 0, 1/2);
(0, 1/2, 1/2, 0); (0, 1/2, 0, 1/2); (0, 0, 1/2, 1/2); (1, 0, 0, 0); (0, 1, 0, 0);
(0, 0, 1, 0); (0, 0, 0, 1)].

1.3.3 Axial Designs

It is to be noted that both simplex lattice and simplex centroid designs contain bound-
ary points, i.e., points on the vertices, edges, and faces, except the centroid point
(1/q, 1/q, . . . , 1/q) which lies inside the simplex. On the other hand, designs with
interior points on the axis joining the points xi = 0, x j = 1/(q − 1), ∀ j ( �= i) and
xi = 1, x j = 0, ∀ j ( �= i) are called axial designs. Thus axial designs contain points
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of the form [{1+ (q − 1)φ}/q, (1− φ)/q, . . . , (1− φ)/q] and their permutations,
−1/(q − 1) < φ < 1. These designs are essentially ‘interior point’ designs.

For example, taking q = 4 and φ = 0.20, we can form an axial design with
the points [(0.4, 0.2, 0.2, 0.2); (0.2, 0.4, 0.2, 0.2); (0.2, 0.2, 0.4, 0.2); (0.2, 0.2,
0.2, 0.4)].

Note that for q = 4, we have a choice of φ such as −0.33 < φ < 1.00, and
an axial design in general terms will be formed out of a few choices for φ in the
stated range.

In this monograph, we have dealt with such well-known mixture models and
address the questions of optimal/efficient estimation of the model parameters and
their meaningful functions. It turns out that the above three types of standard mixture
designs occupycentral stageduring the investigationonoptimalmixture experiments.
These basic standard mixture designs will be discussed again in Chap. 3.

1.4 Exact Versus Approximate or Continuous Designs

Anexact designdealswith integer number of replications of the designpoints, thereby
resulting into a design with a totality of an exact integer number of observations. For
example, [(0.4, 0.3, 0.2, 0.1), (3); (0.2, 0.4, 0.1, 0.3), (4); (0.1, 0.1, 0.4, 0.4), (2);
(0.1, 0.2, 0.2, 0.5), (4) produces an exact design with 4 distinct design points, with
repeat numbers 3, 4, 2, 4, respectively, so that altogether 13 observations are pro-
duced upon its application. On the other hand, an example of a continuous design
is given by [(0.4, 0.3, 0.2, 0.1), (0.3); (0.2, 0.4, 0.1, 0.3), (0.4); (0.1, 0.1, 0.4, 0.4),
(0.2); (0.1, 0.2, 0.2, 0.5), (0.1).Here, again we have four distinct design points with
respective ‘mass’ distribution given by 0.3, 0.4, 0.2, 0.1. In applications, for a given
total number of observations, say N = 30 observations, the respective repeat num-
bers for the above design points are given by 9, 12, 6, 3. For N not a multiple of
10, we make nearest integer approximations as usual. The exact-design version of a
continuous design has the above interpretation.

In optimality theory for ‘regression models’, almost exclusively, continuous
design frameworks have been used. In this monograph as well, we will deal
exclusively with this framework.

1.5 Applications of Mixture Methodology

Mixture experiments are commonly encountered in industrial product formulations,
such as in food processing, chemical formulations, textile fibers, and pharmaceutical
drugs. Some examples follow.

1. A large number of these experiments are also carried out in agriculture, where a
fixed quantity of inputs such as fertilizer, irrigation water, insecticide, or pesticide

http://dx.doi.org/10.1007/978-81-322-1786-2_3
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is applied as a mixture of two or more components to a crop. This makes the yield
a function of the ingredient proportions.

2. In pharmaceutical drug preparation, polymers and diluents play important roles
in the preparation of an inert matrix tablet, and a study of optimum mixture
designs is necessary for the estimation of the parameters of the model defining
the relationship between the mean response and the proportions of polymers and
diluents used.

3. Intercropping is an important feature of dryland farming and has proved very use-
ful for survival of small and marginal farmers in tropical and subtropical regions.
In replacement series agricultural experiments, the component crop is introduced
by replacing a part of the main crop. For fixed area under each experimental unit,
the mean response is found to depend only on the proportions of the area allotted
to the crops.

4. Experiments are conducted in food/horticulture technology to identify the best
blending of fruit juice/pulp of lime, aonla, grape, pineapple, and mango that max-
imizes the responses (viz. hedonic scores on color, aroma, taste, and all taken to-
gether) among some specified mixing proportions. This presupposes establishing
a relationship between the mean responses and the blending proportions, which
helps to estimate the optimum blending.

1.6 Chapter-Wise Coverage of Topics

Not to obscure the flow of the chapters and the sustained interest of the readers,
in Chap. 2, we make a concerted attempt to review the vast literature on optimal
regression designs—admittedly much to the discontent of a serious reader—only
to ‘relate’ to what is required for an understanding of the nature of optimal mixture
experiments and the underlying optimality criteria—as discussed in this monograph!
This is justified once we recognize that mixture models are effectively special types
of regression models. Standard concepts of exact and approximate (or continuous)
designs arewell known; for the sake of completeness, these are introduced here.Next,
in Chap. 3, we have introduced some of the commonly encountered mixture models
and, thereafter, discussed about estimation of the underlying model parameters at
length. This is done with reference to linear and quadratic homogeneous mixture
models only. Some other models are deferred to latter chapters. Specific mixture
designs with appealing features are also introduced in this chapter with the aim of
setting the tone for the kind of optimal mixture experiments generally expected to
be encountered in such studies.

Chapter 4 onwards, we deal exclusively with optimality studies in the context of
mixture experiments and associated model parameters, or parametric functions with
meaningful interpretations. The results are vast and varied and spread out in many
directions. We progress in a manner that seemed most appealing to us in terms of the
thought process of the researchers. We mention in passing that only the two standard
optimality criteria [viz., A- and D-optimality] have been mostly dealt with in this

http://dx.doi.org/10.1007/978-81-322-1786-2_2
http://dx.doi.org/10.1007/978-81-322-1786-2_3
http://dx.doi.org/10.1007/978-81-322-1786-2_4
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monograph. In Chap. 4, we treat problems related to optimal estimation of natural
parameters in mixture models due to Scheffé with reference to the unconstrained fac-
tor space [a simplex]; and in Chap. 5, we deal separately with some naturally arising
constraints involving the factor space. Chapter 6 is meant for discussions on natural
parameters in other mixture models. In the next four chapters (Chaps. 7–10), we
discuss at length the problems associated with optimal estimation of some nonlinear
functions of the model parameters. These functions arise naturally while one tries
to maximize the ‘expected output’ as per the model specifications. Scheffé model,
Darroch–Waller and Log-contrast models are taken up in these chapters. Lastly,
we discuss some applications in Chap. 11 and a few miscellaneous diverse topics
in Chap. 12. The topics are: robust mixture designs, optimality in Scheffé’s and
Darroch–Waller models with random regression coefficients, optimality in mixture–
amount model, multi-response mixture models, and mixture designs in blocks.
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Chapter 2
Optimal Regression Designs

Abstract In this chapter, we review the theory of optimum regression designs.
Concept of continuous design and different optimality criteria are introduced. The
role of de la Garza phenomenon and Loewner order domination are discussed.
Equivalence theorems for different optimality criteria, which play an important role
in checking the optimality of a given otherwise prospective design, are presented.
These results are repeatedly used in later chapters in the search for optimal mix-
ture designs. We present standard optimality results for single variable polynomial
regression model and multivariate linear and quadratic regression model. Kronecker
product representation of the model(s) and related optimality results are also dis-
cussed.

Keywords Continuous design · Optimality criteria · de la Garza phenomenon ·
Loewner order domination · Polynomial regression models · Equivalence theorem ·
Optimum regression designs

2.1 Introduction

In this chapter, we will discuss optimality aspects of regression designs in an approx-
imate (or, continuous) design setting defined below.

Let y be the observed response at a point (x1, x2, . . . , xk) = x varying in some
k-dimensional experimental domain X following the general linear model

y(x) = η(x,β) + e(x), (2.1.1)

with usual assumptions on error component e(x), viz. mean zero and uncorrelated
homoscedastic variance σ 2; η(x,β) is the mean response function involving k or
more unknown parameters. Once for all, we mention that x will represent a combi-
nation of themixing components, the number of such components will be understood

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 9
DOI: 10.1007/978-81-322-1786-2_2, © Springer India 2014
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from the context.Moreover, the samewill be used to denote a row or a column vector,
as the context demands.

Generally, it is assumed that in the region of immediate interest, η(x, β) can be
approximated by a polynomial of certain degree and can be expressed as

η(x, β) = f ≥(x)β. (2.1.2)

The discrete or, exact designing problem is that of choosing N design points in
the experimental domain X so that individually each of the t parameters of the
mean response function can be estimated with satisfactory degree of accuracy. A
continuous or an approximate design β for model (2.1.2), as introduced by Kiefer
(1959), consists of finitely many distinct support points x1, x2, . . . , xn ≤ X , at
which observations of the response are to be taken, and of corresponding design
weights β(xi ) = pi , i = 1, 2, . . . , n which are positive real numbers summing up
to 1. In other words, an approximate design β is a probability distribution with finite
support on the factor space X and is represented by

β = {x1, x2, . . . , xn; p1, p2, . . . , pn}, (2.1.3)

which assigns, respectively, masses p1, p2, . . . , pn; pi > 0,
∑

pi = 1, to the n
distinct support points x1, x2, . . . , xn of the design β in the experimental region
[may be a subspace of the factor space X ]. Let D be the class of all competing
designs. For a given N, a design β cannot, in general, be properly realized, unless
its weights are integer multiples of 1/N i.e., unless ni = N pi , i = 1, 2, . . . , n are
integers with

∑
ni = N . An approximate design becomes an exact design of size N

in the special case when ni = N pi , i = 1, 2, . . . , n are integers.
The information matrix (often termed ‘per observation moment matrix’) for α,

using a design β, is given by

M(β) =
∑

pi f (xi ) f ≥(xi ). (2.1.4)

It may be noted that for unbiased estimation of the parameters in the mean response
function, it is necessary that the number of ‘support points’ i.e., xi s must be at
least ‘t,’ the number of model parameters. It is tacitly assumed that the choice of a
design leads to unbiased estimation of the parameters and as such the information
matrix M of order t × t is a positive definite matrix. Let M denote the class of all
positive definite moment matrices. As we will see in the rest of this monograph, the
information matrix (2.1.4) of a design plays an important role in the determination
of an optimum design. In fact, most of the optimality criteria are different functions
of the information matrix.



2.2 Optimality Criteria 11

2.2 Optimality Criteria

The utility of an optimum experimental design lies in the fact that it provides a
design β∀ that is best in some sense. Toward this let us bring in the concept of
Loewner ordering. A design β1 dominates another design β2 in the Loewner sense if
M(β1)−M(β2) is a nonnegative definite (nnd)matrix. Thus, Loewner partial ordering
among informationmatrices induces a partial ordering among the associated designs.
We shall denote β1 � β2 when β1 dominates β2 in the Loewner sense. A design β∀
that dominates over all other designs in D in the Loewner sense is called Loewner
optimal. In general, there exists no Loewner optimal design β∀ that dominates every
other design β in D [vide Pukelsheim (1993)]. A popular way out is to specify an
optimality criterion, defined as a real-valued function of M(β). An optimal design is
one whose moment matrix minimizes the criterion function φ(β) over a well-defined
set of competing moment matrices (or designs); vide Shah and Sinha (1989) and
Pukelsheim (1993) for details. Let 0 < λ1 ← λ2 ← · · · ← λt be the t positive
characteristic roots of the moment matrix M. It is essential that a reasonable criterion
φ conforms to the Loewner ordering

M(β1) ≥ M(β2) ⇒ φ(M(β1)) ≥ φ(M(β2)).

The first original contribution on optimum regression design is by Smith (1918) who
determined the G-optimum design for the estimation of parameters of a univariate
polynomial response function. After a gap of almost four decades, a number of
contributions in this area were made by, Elfving (1952), Chernoff (1953), Ehrenfield
(1955), Guest (1958), Hoel (1958). Extending their results, Kiefer (1958, 1959,
1961), Kiefer and Wolfowitz (1959) developed a systematic account of different
optimality criteria and related designs. These can be discussed in terms ofmaximizing
the function φ(M(β)) of M(β).

Themost prominent optimality criteria are thematrix means φp, for p ≤ (−∞, 2],
which enjoy many desirable properties. These were introduced by Kiefer (1974,
1975):

φp(M) =
(⎧

1

t

⎪∑

i

λ
p
i

⎨1/p

where λ1, λ2, . . . , λt denote the eigenvalues of the positive definite information
matrix M(β) of order t × t . Excluding trivial cases, it is evident that an opti-
mum design which satisfies all the criteria does not exist. The classical A-, D-
and E-optimality criteria are special cases of φp-optimality criteria. The criterion
φ−1(M) is the A-optimality criterion. Maximizing φ−1(M) is equivalent to mini-
mizing the trace of the corresponding dispersion matrix (in the exact or asymptotic
sense). The D-optimality criterion φ0(M) is equivalent to maximizing the determi-
nant det.(M). The extrememember of φp(M) for p → −∞ yields the smallest eigen
(E-optimality criterion) φ−∞(M) = λmin(M). Besides, there are other optimality
criteria for comparing designs viz. G-optimality criterion, Ds- and DA-optimality
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criteria, I -optimality criterion etc. [For different optimality criteria and their statisti-
cal significance, the readers are referred to Fedorov (1972), Silvey (1980), Shah and
Sinha (1989), Pukelsheim (1993)].

In general, the direct search for optimum design may be prohibitive. The degree
of difficulty depends on the nature of response function, criterion function and/or the
experimental region. However, there are tools that can be used to reduce, sometimes
substantially, the class of competing designs.

2.3 One Dimensional Polynomial Regression

In practice, polynomial models are widely used because they are flexible and usually
provide a reasonable approximation to the true relationship among the variables.
Polynomial models with low order, whenever possible, are generally recommended.
Higher order polynomial may provide a better fit to the data and hence an improved
approximation to the true relationship; but the numerous coefficients in such models
make them difficult to interpret. Sometimes, polynomial models are used after an
appropriate transformation has been applied on the independent variables to lessen
the degree of nonlinearity. Examples of such transformations are the logarithm and
square transformations. Box and Cox (1964), Carroll and Ruppert (1984) gave a
detailed discussion on the use andproperties of various transformations for improving
fit in linear regression models.

In a one-dimensional polynomial regression, the mean response function is
given by

η(x) = f ≥(x)β = α0 + α1x + α2x2 + · · · + αd xd , (2.3.1)

where f ≥(x) = (1, x, x2, . . . , xd) and β ≥ = (α0, α1, . . . , αd). Several authors
attempted to find optimum designs for the estimation of parameters of the above
model. As mentioned earlier, Smith (1918) first obtained G-optimum designs for the
estimation of parameters. de la Garza (1954) considered the estimation of parameters
of the above model from N observations in a given range. By changing the origin and
scale, the domain of experimental region, i.e., the factor space may be taken to be
X = [−1, 1]. Consider a design β given by (2.1.3) in the factor space [−1, 1] with
information matrix (2.1.4). de la Garza (1954) showed that corresponding to any
arbitrary continuous design β as in (2.1.3) supported by n [>d + 1] distinct points,
there exists a design with exactly d + 1 support points such as

β∀ = {x∀
1 , x∀

2 , . . . , x∀
d+1; p∀

1, p∀
2, . . . , p∀

d+1}, (2.3.2)

for which the information matrices are the same, i.e, M(β) = M(β∀). Moreover,
xmin ← x∀

min ← x∀
max ← xmax. This appealing feature of the two designs is referred

to as information equivalence. Afterward, the de la Garza phenomenon has been
extensively studied by Liski et al. (2002), Dette and Melas (2011), Yang (2010).
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In addition to this, Pukelsheim (1993) extensively studied the phenomenon of infor-
mation domination in this context.

Remark 2.3.1 The exact design analog of the feature of information equivalence is
generally hard to realize. Mandal et al. (2014) provide some initial results in this
direction.

In general, different optimal designs may require different number of design
points. It is clear that in order to estimate ‘t’ parameters in any model, at least
‘t’ distinct design points are needed, and for many models and optimality criteria,
the optimal number of distinct design points will be ‘t.’ For nonlinear models, the
informationmatrix has an interpretation in an approximate sense, as being the inverse
of the asymptotic variance-covariance matrix of the estimates of the model parame-
ters. An interesting result called Caratheodory’s Theorem provides us with an upper
bound on the number of design points needed for the existence of a positive definite
information matrix. For many design problems with ‘t’ parameters, this number is
‘t(t + 1)/2.’ Thus the optimal number of distinct design points is between ‘t’ and
‘t(t + 1)/2.’ Finally, it should be noted that the upper bound does not hold for the
Bayesian design criteria (Atkinson et al. 2007, Chap. 18).

Guest (1958) obtained general formulae for the distribution of the points of obser-
vations and for the variances of the fitted values in the minimax variance case, and
compared the variances with those for the uniform spacing case. He showed that the
values of x1, x2, . . . , xd+1, (with reference to the model (2.3.1)) that minimize the
maximum variance of a single estimated ordinate are given by means of the zeros
of the derivative of a Legendre polynomial. Hoel (1958) used the D-optimality cri-
terion for determining the best choice of fixed variable values within an interval for
estimating the coefficients of a polynomial regression curve of given degree for the
classical regression model. Using the same criterion, some results are obtained on
the increased efficiency arising from doubling the number of equally spaced obser-
vation points (i) when the total interval is fixed and (ii) when the total interval is
doubled. Measures of the increased efficiency are found for the classical regression
model and for models based on a particular stationary stochastic process and a pure
birth stochastic process. Moreover, he first noticed that D- and G-optimum designs
coincide in a one-dimensional polynomial regression model.

Kiefer and Wolfowitz (1960) extended and established this phenomenon of coin-
cidence to any linear model through what is now known as ‘Equivalence Theorem.’
Writing d(x, β) = f ≥(x)M−1(β, β) f (x), the celebrated equivalence theorem of
Kiefer and Wolfowitz (1960) can be stated as follows:

Theorem 2.3.1 The following assertions:

(i) the design β∀ minimizes | M−1(β, β) |,
(ii) the design β∀ minimizesmaxx d(x, β),

(iii) maxx d(x, β∀) = t

are equivalent. The information matrices of all designs satisfying (i)–(iii) coincide
among themselves. Any linear combination of designs satisfying (i)–(iii) also satisfies
(i)–(iii).
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In this context, Fedorov (1972) also serves as a useful reference. This theorem
plays an important role in establishing the D-optimality of a given design obtained
from intuition or otherwise. Moreover, it gives the nature of the support points of an
optimum design. For example, let us consider a quadratic regression given by

yi = α0 + α1xi + α2x2i + ei , i = 1, 2, . . . , n (2.3.3)

where αi s are fixed regression parameters and ei s are independent random error
with usual assumptions, viz. mean 0 and variance σ 2. We assume, as before, that the
factor space is X = [−1, 1].

The information matrix for an arbitrary design β = {x1, x2, . . . , xn; p1, p2, . . . ,
pn} can be readily written down, and it involves the moments of x-distribution, i.e.,
μ≥

r = ∑
pi xr

i ; r = 1, 2, 3, 4. It is well known that the information matrix M is
positive definite iff n > 2, since the xi s are assumed to be all distinct without any
loss of generality and essentially we are restricting to this class of designs. It is clearly
seen that d(x, β) = f ≥(x)M−1(β, β) f (x), with f (x) = (1, x, x2)≥ is quartic in x so
that the three support points of the D-optimum design are at the two extreme points
±1 and a point lying in between. Since the D-optimality criterion, for the present
problem, is invariant with respect to sign changes, the interior support point must be
at 0. Thus, the three support points of the D-optimum design in [−1, 1] are 0 and±1.
Theweights at the support points are all equal since here the number of support points
equals the number of parameters. It may be noted that for D-optimality, whenever
the number of support points is equal to the number of parameters, the weights at
the support points are necessarily equal.

Remark 2.3.2 The above result can be derived using altogether different arguments.
In view of de la Garza phenomenon, given the design β with n > 3, there exists a
three-point design β∀ = {(a, P), (b, Q), (c, R)}, where −1 ← a < b < c ← 1, and
0 < P, Q, R < 1, P + Q + R = 1, such that M(β) = M(β∀). Again, referring to
Liski et al. (2002), we may further ‘improve’ β∀ to β∀∀ = {(−1, P), (c, Q), (1, P)}
by proper choice of ‘c’ in the sense of Loewner Domination. It now follows that for
D-optimality, det.M(β∀∀) ← (4/27)(1 − c2)2 ← 4/27 with ‘=’ if and only if c = 0
and P = Q = R = 1/3.

Atwood (1969) observed that in several classes of problems an optimal design
for estimating all the parameters is supported only on certain points of symmetry.
Moreover he considered the optimality when nuisance parameters are present and
obtained a new sufficient condition for optimality. He corrected a version of the
condition which Karlin and Studden (1966) stated as equivalent to optimality, and
proved the natural invariance theorem involving this condition. He applied these
results to theproblemofmulti-linear regressionon the simplex (introducedbyScheffé
1958) when estimating all or only some of the parameters. This will be discussed in
detail in Chaps. 4–6.

Fedorov (1971, 1972) developed the equivalence theorem for Linear optimality
criterion in the lines of equivalence theorem of Kiefer and Wolfowitz (1960) for

http://dx.doi.org/10.1007/978-81-322-1786-2_4
http://dx.doi.org/10.1007/978-81-322-1786-2_6
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D-optimality. Assuming estimability of the model parameters, we denote the dis-
persion matrix by D(β). It is known that D(β) = M−1(β). A design β∀ is said to be
linear optimal if it minimizes L(D(β)) over all β in ϕ where L is a linear optimality
functional defined on the dispersion matrices satisfying

L(A + B) = L(A) + L(B)

for any two nnd matrices A and B and

L(cA) = cL(A)

for any scalar c > 0. Then, the equivalence theorem for linear optimality can be
stated as follows.

Theorem 2.3.2 The following assertions:

(i) the design β∀ minimizes L[D(β)],
(ii) the design β∀ minimizes maxx L[D(β) f (x) f ≥(x)D(β)],

(iii) maxx L[D(β∀) f (x) f ≥(x)D(β∀)] = L[D(β∀)]
are equivalent. Any linear combination of designs satisfying (i)–(iii) also satisfies
(i)–(iii).

Similar equivalence theorems are also available for E-optimality criterion
(cf. Pukelsheim 1993).

Afterword, Kiefer (1974) introduced the φ-optimality criterion, a real-valued con-
cave function defined on a set M of positive definite matrices. He then established
the following equivalence theorem [cf. Silvey (1980), Whittle (1973)].

LetM be the class of all moment matrices obtained by varying design β in ϕ and
φ is a real-valued function defined onM. Then the Frechét derivative of φ at M1 in
the direction of M2 is defined as

Fφ(M1, M2) = lim
α→0+

1

α
[φ{(1 − α)M1 + αM2} − φ(M1)].

Theorem 2.3.3 When φ is concave on M, β∀ is φ-optimal if and only if

Fφ(M(β∀), M(β)) ← 0 (2.3.4)

for all β ≤ D.

This theorem states simply that we are at the top of a concave mountain when
there is no direction in which we can look forward to another point on the mountain.
However, since it is difficult to check (2.3.4) for all β ≤ D,Kiefer (1974) established
the following theorem that ismore useful in verifying the optimality or non-optimality
of a design β∀.
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Theorem 2.3.4 When φ is concave on M and differentiable at M(β∀), β∀ is
φ-optimal if and only if

Fφ{M(β∀), f (x) f ≥(x)} ← 0 (2.3.5)

for all x ≤ X .

For the proof and other details, one can go through Kiefer (1974) and Silvey
(1980). This result has great practical relevance because in many situations, the
optimality problems may not be of the classical A-, D- or E-optimality type but
fall under a wide class of φ-optimality criteria. The equivalence theorem above then
helps us to establish the optimality of a design obtained intuitively or otherwise.

The equivalence theorem in some form or the other has been repeatedly used in
subsequent chapters of this monograph. For the equivalence theorem for Loewner
optimality or other specific optimality criteria, the readers are referred to Pukelsheim
(1993).

Remark 2.3.3 An altogether different optimality criterion was suggested in Sinha
(1970). Whereas all the traditional optimality criteria are exclusively functions of
the (positive) eigenvalues of the information matrix, this one was an exception.
In the late 1990s, there was a revival of research interest in this optimality criterion,
termed as ‘Distance Optimality criterion’ or, simply, ‘DS-optimality’ criterion.

In the context of a very general linear model set-up involving a (sub)set of para-
meters θ admitting best linear unbiased estimator (blue) θ̂ , it is desirable that the
‘stochastic distance’ between θ and θ̂ be the least. This is expressed by stating that
the ‘coverage probability’

Pr[≡θ̂ − θ≡ < ε]

should be as high as possible, for every ε > 0. As an optimal design criterion,
therefore, we seek to characterize a design β0 such that for every given ε, θ̂ based on
β0 provides largest coverage probability than any other competing β.

Sinha (1970) initiated study of DS-optimal designs for one-way and two-way
analysis of variance (ANOVA) setup. Much later, the study was further continued in
ANOVAand regression setup (Liski et al. 1998; Saharay andBhandari 2003; Mandal
et al. 2000). On the other hand, theoretical properties of this criterion function were
studied in depth in a series of papers (Liski et al. 1999; Zaigraev and Liski 2001,
2006; Zaigraev 2005)

We will not pursue this criterion in the present Monograph.
Since in amixture experiment,wewill be concernedwith a number of components,

let us first review some results in the context of multi-factor experiment.

2.4 Multi-factor First Degree Polynomial Fit Models

Let us first consider a k-factor first degree polynomial fit model with no constant
term, viz.,
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yi j = α1xi1 + α2xi2 + · · · + αk xik + ei j , (2.4.1)

with k regressor variables, n experimental conditions xi = (xi1, xi2, . . . , xik), i =
1, 2, . . . , n; j = 1, 2, . . . , Ni ,

∑
Ni = N . Most often we deal with a continuous

or approximate theory version of the above formulation in which pi s are regarded
as (positive) ‘mass’ attached to the points xi s, subject to the condition

∑
pi = 1.

In polynomial fit model with single factor, the experimental domain is generally
taken as X = [−1,+1]. For k-factor polynomial linear fit model (2.4.1), the exper-
imental domain is a subset of the k-dimensional Euclidean space Rk . Generally,
optimum designs are developed for the following two extensions of the one-
dimensional domainX = [−1,+1]: A Euclidean ball of radius

√
k and a symmetric

k-dimensional hypercube [−1,+1]k . In practice, theremay be other types of domains
viz., a constrained region of the type XR = [0 ← xi ← 1,

∑
xi = α ← 1]. The

mixture experiment, the optimality aspect of which will be considered in details in
subsequent chapters, has domain that corresponds to α = 1.

Belowwe develop the continuous design theory for the abovemodel. Consider the
experimental domain for the model (2.4.1), which is a k-dimensional ball of radius√

k, that is, X (k) = [x ≤ Rk, ≡x≡ ← √
k}, where ≡.≡ denotes the Euclidean norm.

Setμ jm =
∑

i
pi xi j xim for j, m = 1, 2, . . . , k.This has the simple interpretation as

the ‘product moment’ of jth and mth factors in the experiment. Then, the information
matrix for an n-point (n ≥ k) design

β = {x1, x2, . . . , xn; p1, p2, . . . , pn}

is of the form

M(β) =
∑

pi f (xi ) f ≥(xi ) =

⎛

⎜
⎜
⎝

μ11 μ12 . . . μ1k

μ22 . . . μ2k

. . . . . .

μkk

⎞

⎟
⎟
⎠ (2.4.2)

with f ≥(xi ) = (xi1, xi2, . . . , xik).

Using spectral decomposition of the matrix M(β), it can be easily shown that
M(β) can equivalently be represented by a design β∀ with k orthogonal support
points in X (k):

β∀ = {x∀
1, x∀

2, . . . , x∀
k ; p∀

1, p∀
2, . . . , p∀

k } (2.4.3)

i.e., M(β∀) = M(β). Such a design is termed as orthogonal design (Liski et al.
2002). This incidentally demonstrates validity of the de la Garza phenomenon (DLG
phenomenon) in the multivariate linear setup without the constant term. We can
further improve over this design in terms of the Loewner order domination of the
information matrix by stretching the mass at the boundary of X (k). In other words,
given an orthogonal design β∀ as in (2.4.3), there exists another k-point orthogonal
design
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β∀∀ = {x∀∀
1 , x∀∀

2 , . . . , x∀∀
k ; p∀

1, p∀
2, . . . , p∀

k } (2.4.4)

with x∀∀
i = √

kx∀
i /≡x∀

i ≡, such that M(β∀∀)− M(β∀) is nnd i.e., β∀∀ � β∀ ∼ β.One
can now determine optimum designs in the class of designs (2.4.4) using different
optimality criteria. Similar results hold for multi-factor linear model with constant
term.

A symmetric k-dimensional unit cube [−1,+1] k is a natural extension of
[−1,+1]. Note that [−1,+1]k is the convex hull of its extreme points, the 2k ver-
tices of [−1,+1]k . It is known that in order to find optimal support points, we need
to search the extreme points of the regression range only. If the support of a design
contains other than extreme points, then it can be Loewner dominated by a design
with extreme support points only. This result was basically presented by Elfving
(1952, 1959). A unified general theory is given by Pukelsheim (1993).

A generalization of the model (2.4.1) incorporating the constant term has been
studied in Liski et al. (2002). Also details for the latter factor space described above
have been given there. We do not pursue these details here.

In the context of mixture models, as has been indicated before, we do not include
a constant term in the mean model. So, the above study may have direct relevance to
optimality issues in mixture models.

2.5 Multi-factor Second Degree Polynomial Fit Models

Consider now a second-degree polynomial model in k variables:

ηx = α0 +
k∑

i=1

αi xi +
k∑

i=1

k∑

j>i

αi j xi x j . (2.5.1)

For the second-degree model, in finding optimum designs, it is more convenient to
work with the Kronecker product representation of the model (cf. Pukelsheim 1993).

For a k-factor second-degree model, k ≥ 2, let us take the regression function
to be

η(x,β) = g≥(x)β (2.5.2)

where
g≥(x) = (1, x≥, x≥ ⊗ x≥), (2.5.3)

β is a vector of parameters and the factor space is given by

X (k) = {x : ≡x≡ ← k}.
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To characterize the optimum design for the estimation of β, let us consider the
following designs:

β0 = {x | x≥x = 0}
βc = 1

2r
fraction of a 2k factorial experiment with levels ±1

βs = set of star points of the form (±√
k, (0, 0, . . . , 0), (0,±√

k, 0, . . . , 0), . . . ,

(0, 0, . . . ,±√
k)

∼
β√

k = ncβc + nsβs

n
, nc = 2k−r , ns = 2k, n = nc + ns .

A design β∀ = (1 − α)β0 + α
∼
β√

k is called a central composite design (CCD)
(cf. Box and Wilson 1951). Such a design β∀ is completely characterized by α. It is
understood that 0 ← α ← 1.

Before citing any result on optimum design in the second-order case, let us first
of all bring in the concept of Kiefer optimality. Symmetry and balance have always
been a prime attribute of good experimental designs and comprise the first step of the
Kiefer design ordering. The second step concerns the usual Loewnermatrix ordering.
In view of the symmetrization step, it suffices to search for improvement when the
Loewner ordering is restricted only to exchangeable moment matrices.

Now, we cite a very powerful result on Kiefer optimality in the second-order
model (2.5.1).

Theorem 2.5.1 The class of CCD is complete in the sense that, given any design,
there is always a CCD that is better in terms of

(i) Kiefer ordering
(ii) φ-optimality, provided it is invariant with respect to orthogonal transformation.

There are many results for specific optimality criteria for the second-order model
(see e.g., Pukelsheim 1993). We are not going to discuss the details.

It must be noted that in the context of mixture models, we drop the constant term
α0 from the mean model. Moreover, the factor space (constrained or not) is quite
different from unit ball/unit cube. Yet, the approach indicated above has been found
to be extremely useful in the characterization of optimal mixture designs. All these
will be discussed in details from Chap. 4 onward.
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Chapter 3
Parameter Estimation in Linear
and Quadratic Mixture Models

Abstract In this chapter, we present standard mixture models and standard mixture
designs as generally applied to such models. These mixture models and mixture
designs will occur throughout the monograph. Several generalizations of standard
mixture designs are also discussed here. Estimability issues involving the model
parameters are addressed at length. In the process, information matrices are worked
out and their roles are emphasized. The concept of Loewner domination is also
brought in.

Keywords Scheffé’s linear and quadratic mixture models · Becker’s homogeneous
model of degree one · Draper–St. John’s model · Parameter estimation · Simplex
lattice design · Simplex centroid design · Axial design · Generalized axial designs

3.1 Introduction

Mixture experiments were first discussed in Quenouille (1953). Later on, Scheffé
(1958, 1963) made a systematic study and laid a strong foundation. A comprehen-
sive study up to modern developments can be found in Cornell (2002). Mixture
experiments deal with typical multiple regression models, wherein the regressors
are the proportions of the mixing components. Thus, mixture experiment is useful
in the study of the quality of products like polymers, paint, concrete, alloys, glass,
etc., which depend on the relative proportions of the ingredients in the products.
Examples of mixture experiments are also found in the pharmaceutical industry and
the food industry; vide Chap.11.

There is a slight overlap of this chapter with Chap. 1. Sections3.1 and 3.2 are
mostly repetitions of what have been presented in Chap. 1. These are very basic
concepts and descriptions and are at the core of many chapters.We expect the readers
to accept this explanation in a good sense.

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 23
DOI: 10.1007/978-81-322-1786-2_3, © Springer India 2014
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Let x = (x1, x2, . . . , xq) denote the vector of proportions of q mixing components
and η(x) be the corresponding mean response. Obviously, the factor space is the
simplex, given by

X = {x|xi ≥ 0, i = 1, 2, . . . , q, σxi = 1} . (3.1.1)

Scheffé (1958) introduced the following models in canonical forms of different
degrees to represent the mean response function η(x):

Linear: η(x) = σ
i
βi xi ; (3.1.2)

Quadratic: η(x) = σ
i
βi xi + σ

i< j
βi j xi x j ; (3.1.3)

Full Cubic: η(x) = σ
i
βi xi + σ

i< j
βi j xi x j + σ

i< j<k
βi jk xi x j xk

+ σ
i< j

αi j xi x j (xi − x j ); (3.1.4)

Special Cubic: η(x) = σ
i
βi xi + σ

i
βi xi + σ

i< j
βi j xi x j + σ

i< j<k
βi jk xi x j xk . (3.1.5)

Using the identity σxi = 1, model (3.1.3) can be converted to the canonical homo-
geneous quadratic model:

η(x) = σ
i
βi i x2i + σ

i< j
βi j xi x j . (3.1.6)

In the present study, we shall only be concerned with the canonical models (3.1.2)
and (3.1.6). It is to be noted that the use of the identity σxi = 1 may lead to remod-
eling very deceptively. For example, the quadratic model (3.1.3) may be modified to
the special cubic model, thus inviting more parameters and more design points for
estimation. Also proper interpretation of the parameters may be a bit complicated.

Scheffé (1958, 1963) introduced simplex lattice designs and simplex centroid
designs for estimation of the parameters in the mean response function. Later on,
considering only the interior points of the simplex, axial designs were introduced
(cf. Cornell 2002). Optimality of mixture designs for the estimation of parameters
was considered by Kiefer (1961, 1975), Atwood (1969), Galil and Kiefer (1977),
Draper and Pukelsheim (1999), Pal et al. (2011), and Pal and Mandal (2012), among
others. Following Sinha et al. (2010) we shall mainly discuss the estimability issues
involving the parameters in the above mixture models. The optimality aspects will
be taken up in subsequent chapters.
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3.2 Some Standard Mixture Designs and Estimation
of Parameters in Homogeneous Linear Mixture Models

There are some “standard” mixture designs suggested in the literature. These ensure,
with reference to estimation of parameters in standard homogeneous models, as
discussed above, the following:

1. full column rank condition;
2. general structure for the information matrix for routine computation of the vari-

ance and covariance of the estimates of the model parameters.

The following three are the most commonly used standard designs.
A. Simplex Lattice Designs: This class of designs consists of all feasible combi-

nations of the mixing proportions wherein each proportion comprises of the values
(0, 1/m, 2/m, . . . , m/m = 1) for a given integer parameter m > 1. Though there
are (m + 1)q possible combinations, only those combinations (x1, x2, . . . , xq) are
feasible which satisfy x1 + x2 + · · ·+ xq = 1. In a lattice design with q components
and a given integer parameter m, the support set of design points is called a (q, m)

simplex lattice. For a (q, m) simplex lattice design, there are C(q +m −1, m) design
points.

B. Simplex Centroid Designs: The centroid of a set of q nonzero coordi-
nates in a q-dimensional coordinate system is the unique point (1/q, 1/q, . . . ,

1/q). On the other hand, centroid of a set of t nonzero coordinates in a q-
dimensional coordinate system is not unique. There are C(q, t) centroid points of
the form (1/t, 1/t, . . . , 1/t, 0, 0, . . . , 0); (1/t, 1/t, . . . , 0, 1/t, 0, 0, . . . , 0); . . . . . .

(0, 0, . . . , 0, 1/t, 1/t, . . . , 1/t).
A simplex centroid design deals exclusively with the centroids of the coordi-

nate systems, starting with exactly one nonzero component in the mixture [having
q centroid points] and extending up to q nonzero components [having unique cen-
troid point displayed above]. Thus, a simplex centroid design in the q-dimensional
coordinate system contains 2q − 1 points.

As an example, for q = 4, there are 15 points altogether in the simplex centroid
design : (1/4, 1/4, 1/4, 1/4); (1/3, 1/3, 1/3, 0); (1/3, 1/3, 0, 1/3); (1/3, 0, 1/3,1/3); (0,
1/3, 1/3, 1/3); (1/2, 1/2, 0, 0); (1/2, 0, 1/2, 0); (1/2, 0, 0,1/2); (0, 1/2, 1/2, 0); (0,1/2,
0, 1/2); (0, 0, 1/2, 1/2); (1, 0, 0, 0); (0, 1, 0, 0); (0, 0, 1, 0); (0, 0, 0, 1).

C. Axial Designs: It is to be noted that both simplex lattice and simplex centroid
designs contain boundary points, i.e., points on the vertices, edges, and faces, except
the centroid point (1/q, 1/q, . . . , 1/q), which lies inside the simplex. On the other
hand, designs with interior points on the axis joining the points xi = 0, x j = 1/
(q −1) ≤ j ( ∀= i) and xi = 1, x j = 0 ≤ j ( ∀= i) are called axial designs. Thus, the axial
design contains points of the form [{1+ (q − 1)φ}/q, (1− φ)/q, . . . , (1− φ)/q],
and its permutations, −1/(q − 1) < φ < 1.

Let xu = (x1u, x2u, . . . , xqu), with
q
σ

i=1
xiu = 1, u = 1, 2, . . . , N , be N design

points. For any of the above standard designs, it may be noted that every ordered pair
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of proportions used in the design occurs equal number of times in any two columns of
the design matrix. This implies that the information matrix is completely symmetric
in the sense that all diagonal elements are equal to λ and all off-diagonal elements
are equal to α, i.e.,

N
σ

u=1
x2iu = λ ≤ i,

N
σ

u=1
xiu xi ′u = α ≤ i ∀= i ′. (3.2.1)

Again the restrictions
q
σ

i=1
xiu = 1, u = 1, 2, . . . , N , imply that

λ + (q − 1)α = N/q. (3.2.2)

So it is enough to find the explicit expression for either λ or α. It also suggests
that we can deduce algebraic expressions for both λ and α and develop an identity
involving design parameters.

We now give below expressions for the elements of the information matrices for
the individual designs.

1. Simplex Lattice Designs: For (q, m) lattice design consisting ofC(q + m−1, m)

points, it can be readily seen that

λ = σ
r
(r/m)2C(m − r + q − 2, m − r)] (3.2.3)

α =
∑ ∑

r←t,r+t←m

(r/m)(t/m)[2− α(r,t)]C(m − r − t + q − 3, m − r − t) (3.2.4)

where αr,t = Kronecker’s delta.
It follows as a general rule that λ + (q − 1)α = N/q holds good in all cases. Also

the information matrix is positive definite, so that all the parameters are estimable.

2. Simplex Centroid Designs: In this design with q components, we have
N = 2q − 1.

Further, it is easy to verify that

λ = σ
r>0

(1/r)2C(q − 1, r − 1) (3.2.5)

α = σ
r>0

(1/r)2C(q − 2, r − 2). (3.2.6)

It follows that, λ + (q − 1)α = σ
r>0

C(q, r)/q = N/q.

Here, also the information matrix is positive definite, so that all parameters are
estimable.

3. Axial Designs:For given q [the number of mixing components], let “φ” be a given
quantity satisfying the condition: −1/(q − 1) < φ < 1. Consider the N = q design
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points indexed by φ:

[{1 + (q − 1)φ}/q, (1 − φ)/q, . . . , (1 − φ)/q} and its permutations]. (3.2.7)

It follows that for the mixture design exclusively based on the above set of q
points,

λ = [{1 + (q − 1)φ}2 + (q − 1)(1 − φ)2]/q2 = {1 + (q − 1)φ2}/q (3.2.8)

and

α = [2(1 − φ){1 + (q − 1)φ} + (q − 2)(1 − φ)2]/q2 = (1 − φ2)/q. (3.2.9)

It is easy to see that λ + (q − 1)α = 1 = N/q, whatever be the choice of
φ,−1/(q − 1) < φ < 1. Further, λ > α, since 0 < φ2 < 1, and hence, the
information matrix is positive definite so that all the parameters are estimable.

Remark 3.2.1 For homogeneous linear mixture models of the type (3.1.2), since
the number of parameters is the same as the number of mixing components (q),

the order of the information matrix is q and it has been straightforward to assert
that the information matrices are positive definite for the standard mixture designs.
This settles the question of estimability of the underlying linear model parameters.
However, for homogeneous quadratic mixtures, asserting the positive definiteness
of an information matrix is far from being a routine task, even for standard mixture
designs. Therefore, it is advisable that one bypasses the problem of direct verifi-
cation of positive definiteness of the information matrices and instead argues in a
way to establish estimability of the parameters for standard mixture designs with
a reasonable number of support points. This has been explicitly demonstrated in
Sect. 3.4.

3.3 Generalizations of Axial Design and Their Comparison

3.3.1 Generalized Axial Design of Type I (D1)

For a specifiedφ, t copies of the axial design (3.2.7) are taken.We call the generated
design asGeneralizedAxialDesignofType I.Obviously, N = qt and the information
matrix of this design is completely symmetric with diagonal elements as λ1 and off-
diagonal elements as α1, where

λ1 = t{1 + (q − 1)φ2}/q (3.3.1)

and
α1 = t (1 − φ2)/q. (3.3.2)
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3.3.2 Generalized Axial Design of Type II (D2)

The design is obtained by union of t axial designs of the type (3.2.7) with the para-
meters φ1,φ2, . . . ,φt ,−1/(q − 1) < φi < 1, i = 1, 2, . . . , t. It is implicitly
understood that not all the φs are equal. Obviously, N = qt and the information
matrix is completely symmetric with diagonal elements as λ2 and off-diagonal ele-
ments as α2, where

λ2 = σ
i
[1 + (q − 1)φ2

i ]/q (3.3.3)

α2 = σ
i
(1 − φ2

i )/q. (3.3.4)

We want to compare the two designs in terms of their information matrices both
of which are completely symmetric. The difference in the information matrices of
the two designs is also completely symmetric with diagonal elements as

λ1 − λ2 = (q − 1)[tφ2 − σiφ
2
i ]/q = a, say. (3.3.5)

Also the difference matrix has row [column] sums zero. Then, it follows that the
off-diagonal elements of the difference matrix are all equal to [−a/(q − 1)]. Hence,
the differencematrix is nonnegative definite iff a > 0. In order to make a comparison
between the two designs, we now assume that tφ = σiφi . Subject to this restriction,
it turns out that a < 0. Hence, we get the following theorem.

Theorem 3.3.1 Under the condition φ = 1
t σ

q
i=1φi , Generalized Axial Design of

Type II dominates Generalized Axial design of Type I in terms of their information
matrices.

3.3.3 Generalized Axial Design of Type III (D3)

Let f0, f1, . . . , f p be p + 1 proper positive integers with σ
p
i=0 fi = q. Then, the

design with N = q!/II fi ! points, given by

{

1 + p
σ

i=1
fiφi )/q, . . . ,(1 + p

σ
i=1

fiφi )/q, (1 − φ1)/q, . . . , (1 − φ1)/q, . . . ,

(1 − φp)/q, . . . , (1 − φp)/q

}

(3.3.6)

and their permutations, where (1+σ
p
i=1 fiφi )/q is repeated f0 times and (1−φi )/q

is repeated fi times, and i = 1, 2, . . . , p, is called a Generalized Axial Design of
Type III with parameters as stated above. This design is denoted as
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D3 =

⎧
⎪⎪⎨

⎪⎪⎛

⎜

⎝
⎝
⎞

1 + p
σ

i=1
fiφi

q

⎟

⎠
⎠


f0

,

(
1 − φi

q

) fi

, i = 1, 2, . . . , p

⎫
⎪⎪⎬

⎪⎪⎭
. (3.3.7)

Note that φi ’s must satisfy

0 < min{1 + σ
i

fiφi }/q;
(
1 − φi

q

)

, i = 1, 2, . . . , p}

< max{1 + σ
i

fiφi }/q;
(
1 − φi

q

)

, i = 1, 2, . . . , p} < 1. (3.3.8)

The permutations jointly give rise to N design points and also lead to complete
symmetry of the underlying information matrix.

Example 3.3.1 Consider q = 4, p = 2; f0 = 1, f1 = 1, f2 = 2. Explicitly written,
with this combination, there are N = 12 design points as displayed below:

[(1 + φ1 + 2φ2]/4, (1 − φ1)/4, (1 − φ2)/4, (1 − φ2)/4];
[(1 + φ1 + 2φ2]/4, (1 − φ2)/4, (1 − φ1)/4, (1 − φ2)/4];
[(1 + φ1 + 2φ2]/4, (1 − φ2)/4, (1 − φ2)/4, (1 − φ1)/4];
[(1 − φ1)/4, (1 + φ1 + 2φ2]/4, (1 − φ2)/4, (1 − φ2)/4];
[(1 − φ2)/4, (1 + φ1 + 2φ2]/4, (1 − φ1)/4], (1 − φ2)/4];
[(1 − φ2)/4, (1 + φ1 + 2φ2]/4], (1 − φ2)/4, (1 − φ1)/4];
[(1 − φ1)/4, (1 − φ2)/4, (1 + φ1 + 2φ2]/4, (1 − φ2)/4];
[(1 − φ2)/4, (1 − φ1)/4, (1 + φ1 + 2φ2]/4, (1 − φ2)/4];
[(1 − φ2)/4, (1 − φ2)/4, (1 + φ1 + 2φ2]/4, (1 − φ1)/4];
[(1 − φ1)/4, (1 − φ2)/4, (1 − φ2)/4, (1 + φ1 + 2φ2]/4];
[(1 − φ2)/4, (1 − φ1)/4, (1 − φ2)/4, (1 + φ1 + 2φ2]/4];
[(1 − φ2)/4, (1 − φ2)/4, (1 − φ1)/4, (1 + φ1 + 2φ2]/4].

In the following discussions, we assume

f0 = 1, x0 = [1 + p
σ

i=1
fiφi ]/q, xi = (1 − φi )/q for i = 1, 2, . . . , p. (3.3.9)

In termsof the x’s, it follows that the commondiagonal element λ3 andoff-diagonal
element α3 are given by
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λ3 = x20 N/q + σx2i fi [N/q] (3.3.10)

α3 = 2x0
p
σ

i=1
fi [N/q(q − 1)] + p

σ
i=1

x2i fi ( fi − 1)[N/q(q − 1)]
+ 2 σ

i< j
xi x j fi f j [N/q(q − 1)]. (3.3.11)

Note that the αs do not depend on the particular pair of components in the product
moments.

Again the identity:

(

1 + σ
i

fiφi

)

+ σ
i

fi (1 − φi ) = q (3.3.12)

implies, as expected, that
λ3 + (q − 1)α3 = N/q.

Using (3.3.10) and (3.3.11), it can be proved that

λ3 − α3 = [N/(q − 1)][σ(xi − x)2 fi ] ≥ 0, (3.3.13)

where

x = p
σ

i=0
fi xi/σ

i
fi = 1/q. (3.3.14)

Since φi s in (3.3.9) are unequal, we have λ3 > α3.

Therefore, the information matrix is positive definite, whatever be the choice of
the φi s, all distinct from one another, for a given p ≥ 2.

3.3.4 Comparison Between Generalized Axial Designs
of Type II (D2) and Type III (D3)

Let D2 be written as

D2 = t
U

i=1
D2i , (3.3.15)

where

D2i =
(
1 + (q − 1)φ′

i

q
,
1 − φ′

i

q
, . . . ,

1 − φ′
i

q
and their permutiations

)

(3.3.16)

D3 is given by (3.3.7). We assume f0 = 1. To compare D2 with D3, we make the
following reasonable assumptions:
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a. Number of observations in D2 and D3 is the same, i.e.,

N∗ = q!/ fi ! = qt, (3.3.17)

implying
t = N∗/q = (1/q)q!/ fi !. (3.3.18)

b. The average of φ j s of D2 is the same as the average of φi s of D3, i.e.,

φ = 1

t

t
σ
j=1

φ′
j = 1

q − 1

p
σ

i=1
fiφi . (3.3.19)

From (3.3.3), (3.3.10), (3.3.17), and (3.3.19), the common diagonal element of
the difference in the information matrices of D2 and D3 can be found to be

λ2 − λ3 = (q − 1)N∗

q3 [ϕ 2
φ − qϕ 2

φ′ ], (3.3.20)

where

ϕ 2
φ = 1

q − 1

p
σ

i=1
fi (φi − φ)2 (3.3.21)

ϕ 2
φ′ = 1

t

t
σ
j=1

(φ′
j − φ)2. (3.3.22)

So, by the same reasoning as given in proving Theorem 3.3.1, it follows that D2
dominates D3 iff λ2 − λ3 > 0, i.e., iff ϕ 2

φ > kϕ 2
φ′ . So we get the following theorem:

Theorem 3.3.2 Under the conditions (3.3.18) and (3.3.19), Generalized Axial
design of Type II dominates Generalized Axial design of Type III iff ϕ 2

φ > kϕ 2
φ′ ,

where ϕ 2
φ and ϕ 2

φ′ are given by (3.3.21) and (3.3.22), respectively.

3.4 Estimation of Parameters in Canonical Homogeneous
Quadratic Mixture Model

In the homogeneous quadratic mixture model (3.1.6), in its canonical form, there are
C(q + 1, 2) parameters. It would be interesting to address the [unbiased] estimation
issue for all the parameters on the basis of the designs introduced above.

Let, as before, xu = (x1u, x2u, . . . , xqu),
q
σ

i=1
xiu = 1 ≤ u = 1, 2, . . . , N be the

N experimental points. The uth row of the design matrix is
(

x21u, x22u, . . . , x2qu, x1u

x2u, x1u x3u, . . . , xq−1u xqu
)
, u = 1, 2, . . . , N .
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A typical element of the information matrix is
⎢
α1, α2, . . . , αq

⎥ = σ
u

xα1
1u xα2

2u . . .

x
αq
qu , where αi ≥ 0, σ

i
αi = 4.

Unlike in the case of homogeneous linear mixture models, it turns out that the
information matrix for a homogeneous quadratic mixture model is not completely
symmetric in the sense of the diagonal elements being equal to each other and also
the off-diagonal elements being equal to each other.

However, the information matrix is symmetric in a generalized sense. This is the
sense of invariance with respect to all possible permutations of the components. This
is due to the fact that in all the above designs, the proportions of any experimental
point are permutated among the components. Five distinct elements denoted by a, b,
etc., of the information matrix correspond to

(i) [4] = σ
u

x4(i,u) = a,

(ii) [2, 2] = σ
u

x2(i,u)x
2
( j,u) = b,

(iii) [3, 1] = σ
u

x3(i,u)x( j,u) = c,

(iv) [2, 1, 1] = σ
u

x2(i,u)x( j,u)x(r,u) = d,

(v) [1, 1, 1, 1] = σ
u

x(i,u)x( j,u)x(r,u)x(s,u) = e. (3.4.1)

In the above, it is to be understood that we are referring to all possible 1 ← i ∀= j ∀=
r ∀= s ← q.

The information matrix is as such a block matrix having the composition

I =
βi i s βi j s(

A B
C

)

, (3.4.2)

where

A = ((a, b, b, . . . , b)) is a circulant [square] matrix of order q,

B = ((. . . ccccccc . . . dddd)) is a matrix of order q × C(q, 2) with each row
containing (q − 1) cs, possibly forming a single run, and ds for all other entries,

C = ((. . . dddd . . . eeee . . . b . . . eeee . . . dddd)) is a square matrix of order
C(q, 2)where in each row b appears only once in the diagonal position, d appears
in 2(q − 2) positions, and e appears in all other positions.

Next, we study the designs introduced above for estimation of the parameters in
the model (3.1.6) and find the elements of the information matrices. As stated in
Remark 3.2.1, we proceed as follows.
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A. Estimability of parameters using (q, m) simplex lattice design (m ≥ 2)

As described in Sect. 3.2 a (q, m) lattice design contains the q extreme points
which are permutations of (1, 0, . . . , 0) and the set of C(q, 2) points which are
permutations of

( 1
m , m−1

m , 0, . . . , 0
)

among other points. These are sufficient for
unbiased estimation of βi i s and βi j s involved in the model (3.1.6).

Information Matrix
Here, the expressions for the quantities in (i) to (v) in (3.4.1) are as follows:

a = m
σ

r=1

( r

m

)4
C(m − r + q − 2, m − r)

b = σ
1 ← r < t ← m

r+t←m

( r

m

)2
(

t

m

)2

(2 − αr t )C(m − r − t + q − 3, m − r − t)

c = σ
1 ← r < t ← m

r+t←m

( r

m

)3
(

t

m

)

(2 − αr t )C(m − r − t + q − 3, m − r − t)

d =6 σ
1 ← r < t ← m

r+t←m

( r

m

)2
(

t

m

)( s

m

)
C(m − r − t − s + q − 4, m − r − t − s)

+ 3 σ
1 ← r < t ← m

r+t←m

( r

m

)3
(

t

m

)

(2 − αr t )C(m − 2r − t + q − 4, m − 2r − t)

+ m
σ

1 ← r < t ← m
r+t←m

( r

m

)4
C(m − 3r + q − 4, m − 3r)

e =24 σ
1 ← r < t ← m

r+t+s+p←m

( r

m

)( t

m

)( s

m

) ( p

m

)

× C(m − r − t − s − p + q − 4, m − r − t − s − p)

+ 12 σ
1 ← r < t ← m

2r+t+s←m

( r

m

)2
(

t

m

)( s

m

)

× C(m − 2r − t − s + q − 5, m − 2r − t − s)

+ 4
m
σ

1 ← r < t ← m
3r+t←m

( r

m

)3
(

t

m

)

C(m − 3r − t + q − 4, m − 3r − t)

+ σ
1 ← r < t ← m

4r←m

( r

m

)4
C(m − 4r + q − 5, m − 4). (3.4.3)
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B. Estimability using simplex centroid designs

Among the N (q) = 2q − 1 points of the centroid design, there are points which
are permutations of (1, 0, . . . , 0) and (1/2, 1/2, 0, . . . , 0). These C(q +1, 2) points
are sufficient to estimate the C(q + 1, 2) parameters of quadratic model (3.1.6)
unbiasedly.

Information Matrix
The expressions for the quantities (i) to (v) in (3.4.1) are given below:

a = q
σ

r=1
C(q − 1, r − 1)

(
1

r

)4

b = q
σ

r=2
C(q − 2, r − 2)

(
1

r

)4

= c

d = q
σ

r=3
C(q − 3, r − 3)

(
1

r

)4

e = q
σ

r=4
C(q − 4, r − 4)

(
1

r

)4

. (3.4.4)

C. Estimability using axial-type designs

The standard axial design (3.2.7) contains only q points, and as such, these points
cannot estimate C(q + 1, 2) parameters of the quadratic model (3.1.6). For the
case of homogeneous quadratic mixture model, we assert below that a set of N =
2q + C(q, 2) design points ensures estimability of all the [q + C(q, 2)] parameters.

For this, we define the following sets of design points:

Sφ1 = set of all permutations of [{1 + (q − 1)φ1}/q,

(1 − φ1)/q, . . . , (1 − φ1)/q], (3.4.5)

Sφ2 = set of all permutations of [{1 + (q − 1)φ2}/q,

(1 − φ2)/q, . . . , (1 − φ2)/q], (3.4.6)

taking 0 < φ1 ∀= φ2 < 1.
Note that Sφ1 ⇒ Sφ2 gives a Generalized Axial Design of Type II with t = 2.

Additionally, we define

Sφ = set of all permutations of [(1 + {(q − 2)φ/2})/q,

(1 + {(q − 2)φ/2})/q; {1 − φ}/q, . . . , {1 − φ}/q] (3.4.7)

which gives a Generalized Axial Design of Type III with f0 = 2, f1 = f2 =
. . . fq−2 = 1.

We consider the set S = Sφ1 ⇒ Sφ2 ⇒ Sφ of 2q + C(q, 2) design points which
may be termed as Generalized Axial Design of Type IV (D4).
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Let yi1, yi2, . . . , yiq be the observations corresponding to the design points in
Sφi , i = 1, 2. Then,

E[y11] = β11P2
1 + Q2

1[β − β11] + P1Q1[
∞
β1] + Q2

1[θ − ∞
β1] (3.4.8)

where

β = β11 + β22 + · · · + βqq

∞
β1 = β12 + β13 + · · · + β1q

θ = q
σ

i=1

q
σ

j = i + 1
βi j (3.4.9)

P1 = {1 + (q − 1)φ1}/q and Q1 = (1 − φ1)/q. (3.4.10)

Likewise, E(yi j ) can be computed for i = 1, 2; j = 1, 2, ..., q. Adding the q
expectations E(y1i ), i = 1, 2, . . . , q, the expectation of the total response y10 comes
out to be

E(y10) = [P2
1 + (q − 1)Q2

1]β + [2P1Q1 + (q − 2)Q2
1]θ. (3.4.11)

Similarly, from the points in (3.4.6), and using the obvious notations for the
resulting observations, it may be derived that

E(y20) = [P2
2 + (q − 1)Q2

2]β + [2P2Q2 + (q − 2)Q2
2]θ, (3.4.12)

where P2 = (1 + (q − 1)φ2)/q, Q2 = (1 − φ2)/q.

From (3.4.11) and (3.4.12), we can solve for β and θ. The determinant of the
2 × 2 coefficient matrix turns out to be

(P1Q2 − P2Q1)[P2(2 − q Q1) − Q2(2 − q P1)]. (3.4.13)

Our choice of the design parameters φ1 and φ2 should ensure that the above
is nonzero. Next, we make use of (3.4.9) and its analog from Sφ2 [in terms of P2

and Q2] to solve for β11 and
∞
β1. This is possible whenever the underlying 2 × 2

coefficient matrix is non-singular. This happens whenever

(P1Q2 − P2Q1)(P1 − Q1)(P2 − Q2) ∀= 0. (3.4.14)

Note that our choice of φ1 > 0 and φ2 > 0 ensures P1 > Q1 and P2 > Q2.

Therefore, in effect, (3.4.15) requires (P1Q2 − P2Q1) ∀= 0, i.e., the first factor
in (3.4.14) to be nonzero. Hence, (3.4.15) is a built-in condition in (3.4.14). This is

how all the βi i s and
∞
β i s are estimated.
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We have yet to ascertain estimability of the βi j s for i ∀= j. This time, we will use
the points of (3.4.7).
Set

P = {1 + (q − 2)φ/2}/q andQ = (1 − φ)/q (3.4.15)

so that 2P +(q −2)Q = 1. The model expectation of the observation corresponding
to the design point [P, P, Q, Q, . . . , Q] in (3.4.7) involves the only unknown para-
meter β12, apart from the parameters β, β11, β22, θ,

∞
β1, and

∞
β2, which are already

estimated. It turns out that the coefficient of β12 is given by (P − Q)2 + Q2 which
is positive.

Thus, we get the following theorem.

Theorem 3.4.3 The Generalized Axial Design of Type IV ensures estimability of the
parameters of canonical homogeneous quadratic model of (3.1.6).

Information Matrix
The expressions of the quantities (i) to (v) of (3.4.1), which are the elements of the
information matrix of the design, are given below:

a = (p41 + p42) + (q4
1 + q4

2 )(q − 1) + (q − 1)

(

P4 + Q4 (q − 2)

2

)

b = P4 + 2[p21q2
1 + p22q2

2 + P2Q2(q − 2)] + Q4C(q − 2, 2)

+ (q4
1 + q4

2 )(q − 2)

c = p31q1 + q3
1 p1 + q4

1 + p32q2 + q3
2 p2 + P4 + (P3Q + Q3P)(q − 2)

+ (q4
1 + q4

2 )(q − 2) + Q4C(q − 2, 2)

d = 2P3Q + (q − 2)P2Q2 + 2(q − 3)Q3P + Q4C(q − 3, 2)

+ [p21q2
1 + 2q3

1 p1 + (q − 3)q4
1 ]

e = 4(p1q3
1 + p2q3

2 ) + 6P2Q2 + 4(q − 4)P Q3 + C(q − 4, 2)Q4

3.5 Other Mixture Models

As was mentioned in Chap.1, in the literature, some other mixture models have been
introduced and studied. Below we take up symmetrized version of two such models,
viz., Becker’s homogeneousmodel of degree one [vide (1.2.7)] andDraper–St. John’s
model [vide (1.2.11)] and discuss the estimability issues at length.

http://dx.doi.org/10.1007/978-81-322-1786-2_1
http://dx.doi.org/10.1007/978-81-322-1786-2_1
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3.5.1 Estimation of Parameters in Becker’s Homogeneous Model
of Degree One in the Presence of Only Two-Component
Synergistic Effects

The model (1.2.7) is rewritten below:

E(y) = β1x1 + β2x2 + · · · + βq xq + β12
x1x2

x1 + x2
+ · · · + βq−1q

xq−1xq

xq−1 + xq

0 ← xi ← 1,≤i, xi + x j > 0 ≤ i ∀= j. (3.5.1)

Belowwe describe a design D based on 2q +C(q, 2) points which ensure estima-
bility of all the model parameters. It is obtained as union of three subdesigns, i.e.,

D = 3
U

i=1
Di , where

Subdesign 1 (D1)⎜

⎝
⎝
⎝
⎞

b1 a1 a1 . . . a1
a1 b1 a1 . . . a1
...

...
...

...
...

a1 a1 a1 . . . b1

⎟

⎠
⎠
⎠


Subdesign 2 (D2)⎜

⎝
⎝
⎝
⎞

b2 a2 a2 . . . a2
a2 b2 a2 . . . a2
...

...
...

...
...

a2 a2 a2 . . . b2

⎟

⎠
⎠
⎠


Subdesign (D3)⎜

⎝
⎝
⎞

b, b, a, a, . . . , a

and all

(
q
2

)

permutations

⎟

⎠
⎠
 (3.5.2)

It is to be noted that D is actually a Generalized Axial Design of Type IV (D4)

described in Sect. 3.4C.
Define

β = σβi , θ = σ
1←i< j←q

βi j ,
∞
β i = βi1 + · · · + βi,i−1 + βi,i+1 + · · · + βiq ; i = 1, 2, . . . , q.

Let y1i , y2i ′ and y3i ′′ denote i th, i ′th and i ′′th observations of D1, D2, and D3,
respectively, i, i ′ = 1, 2, . . . , q, i ′′ = 1, 2, . . . , C(q, 2).

E(y1i ) = b1βi + a1(β − βi ) + a1b1
a1 + b1

∞
β i + a2

1

2a1
(θ − ∞

β i ); i = 1, 2, . . . , q.

(3.5.3)
Summing over all i :

E(y10) = [b1 + (q − 1)a1]β +
[

2a1b1
a1 + b1

+ (q − 2)
a1
2

]

θ. (3.5.4)

Similarly, from D2, we have

E(y20) = [b2 + (q − 1)a2]β +
[

2a2b2
a2 + b2

+ (q − 2)
a2
2

]

θ. (3.5.5)

http://dx.doi.org/10.1007/978-81-322-1786-2_1
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From (3.5.4) and (3.5.5), we can solve for β and θ.

Consider the equations

E(y1i ) = (b1 − a1)βi + a1β + a1
2

θ +
(

a1b1
a1 + b1

− a1
2

) ∞
β i (3.5.6)

and

E(y2i ) = (b2 − a2)βi + a2β + a2
2

θ +
(

a2b2
a2 + b2

− a2
2

) ∞
β i . (3.5.7)

Substituting β̂ and θ̂ in (3.5.6) and (3.5.7), we can estimate βi and
∞
β i , i =

1, 2, . . . , q. Though the part totals
∞
β i s are estimated, βi j s are still to be estimated

individually. For this, we consider the points of D3. Let us consider the design point
(b, b, a, a, . . . , a) and the corresponding observation y31. It can be derived that

E(y31) = (b − a)(β1 + β2) + aβ + a

2
θ +

(
ab

a + b
− a

2

)

(
∞
β1 + ∞

β2)

+
(

a + b

2
− 2ab

a + b

)

β12. (3.5.8)

In (3.5.8), estimates of all parameters except β12 are known. So β12 can be esti-
mated. From the C(q, 2) observations of D3, C(q, 2) parameters, viz., β12, β13,

. . . , βq−1,q can be estimated in a similar fashion.
Thus, we get the following theorem.

Theorem 3.5.4 Axial Design of Type IV ensures estimability of the parameters of
the Becker’s model (3.5.1).

3.5.2 Another Competing Design

Below we provide yet another competing design based on q(q −1)+1 design points
which also ensures estimability of all the model parameters in (3.5.1). This design
is also easy to analyze, and this compares favorably with the earlier one.

3.5.3 Design Description and Estimability

The design D∗ consisting of N (q) = q(q − 1) + 1 design points is defined as

D∗ = D∗
1 ⇒ D∗

0 , (3.5.9)
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where

D∗
1 =

{

all permutations of

(

0,
2

q
,
1

q
, . . . ,

1

q

)}

, D∗
0 =

(
1

q
,
1

q
,
1

q
, . . . ,

1

q

)

.

(3.5.10)
Let T = total of all observations on the points of D∗

1 .

It can be easily shown that

E(T ) = (q − 1)β + (q − 2)(3q − 1)

6q
θ, (3.5.11)

where

β = q
σ

i=1
βi , θ = σ

1←< j←q
βi j . (3.5.12)

Again, let y be the observation at the experimental point of D∗
0 .

Then,

E(y) = 1

q
β + 1

2q
θ. (3.5.13)

From (3.5.11) and (3.5.13), β and θ can be estimated, as the determinant of the
coefficient matrix of β and θ is 2q−1

3q2 , which is positive for all values of q.

Now, we try to estimate

∞
β i = q

σ
j = 1

j ∀=i

βi j ; i = 1, 2, . . . , q. (3.5.14)

Let us consider the following set of 2(q − 1) design points from D∗
1 and the corre-

sponding observations

Design Points Observations
x1 x2 x3 . . . xq

0 2/q 1/q · · · 1/q y12
0 1/q 2/q · · · 1/q y13
...

...
...

...
...

...

0 1/q 1/q · · · 2/q y1q

2/q 0 1/q · · · 1/q y22
2/q 1/q 0 · · · 1/q y23
...

...
...

...
...

...

2/q 1/q 1/q · · · 0 y2q

(3.5.15)
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It can be proved in the usual manner that

E

{
q
σ

i=2
(y1i + y2i )

}

= 2(q − 1)

q
β + (3q − 5)

3q
θ − (q − 1)

3q

∞
β1. (3.5.16)

As the estimators of β and θ are already available, the estimator of
∞
β1 can be

obtained from (3.5.16).

Considering the sums of suitable pairs of observations, the estimators of other
∞
βs

can be obtained. We have still to find the estimators of βs. For this, we consider the
expectation of σ

q
i=2y1i , which is given by

E

(
q
σ

i=2
y1i

)

= β + 3q − 1

6q
θ − 3q − 1

6q

∞
β1 − β1. (3.5.17)

From Eq. (3.5.17), an estimator of β1 can be obtained by using the estimators

of β, θ , and
∞
β1. Considering such suitable partial sums of y’s, other β’s can be

estimated.
Belowwe provide a table indicating a comparison of the number of support points

of the two competing designs.

q Number of model Parameters No. of design points
Design D Design D∗

2 3 5 3
3 6 9 7
4 10 14 13
5 15 20 21
q > 5 C(q + 1, 2) 2q + C(q, 2) q(q − 1) + 1

Remark 3.5.2 For q ≥ 5, the number of design points in D is less than that in D∗.

3.5.4 Estimation of Parameters in Draper–St. John’s Model

The model (1.2.11) is reproduced below:

ηx = β1x1 + · · · + βq xq + α1

x1
+ · · · + αq

xq
, 0 < xi < 1 ≤ i. (3.5.18)

Define β = σβi , α = σαi .

Consider the design D∗∗ which is the union of the following two subdesigns D∗
1

and D∗
2 .

http://dx.doi.org/10.1007/978-81-322-1786-2
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D∗
1 =

Sub-design I⎜

⎝
⎝
⎝
⎞

b1 a1 a1 . . . a1
a1 b1 a1 . . . a1
...

...
...

...
...

a1 a1 a1 . . . b1

⎟

⎠
⎠
⎠


D∗
2 =

Sub-design II⎜

⎝
⎝
⎝
⎞

b2 a2 a2 . . . a2
a2 b2 a2 . . . a2
...

...
...

...
...

a2 a2 a2 . . . b2

⎟

⎠
⎠
⎠


D∗∗ is a generalized axial design of type II (D2). Below we discuss the question
of estimability of model parameters.

Let y1i and y2 j be the i th and j th observations of D∗
1 and D∗

2 , respectively; i, j =
1, 2, ..., q. Then, it follows that

E(y1i ) = a1β + α

a1
+ (b1 − a1)βi +

(
1

b1
− 1

a1

)

αi ; i = 1, 2, . . . , q.

Adding over i, we get

E(y10) = (b1 + (q − 1)a1)β + (a1 + (q − 1)b1)

a1b1
α. (3.5.19)

Similarly,

E(y20) = (b2 + (q − 1)a2)β + (a2 + (q − 1)b2)

a2b2
α. (3.5.20)

From (3.5.19) and (3.5.20), we can estimate α and β.

Again from

E(y1i ) =
(

α1β + α

a1

)

+ (b1 − a1)βi + a1 − b1
a1b1

αi

E(y2i ) =
(

α2β + α

a2

)

+ (b2 − a2)βi + a2 − b2
a2b2

αi

αi and βi , i = 1, 2 can be estimated. Thus, we get the following theorem:

Theorem 3.5.5 Generalized Axial Design of Type-II ensures estimation of the para-
meters of the Draper–St. John’s model (3.5.18).

3.6 Concluding Remarks

For the estimation of the parameters in canonical homogeneous quadratic model
(3.1.6), we have exploited the model expectations of suitably chosen experimental
points, as indicated in Remark 3.2.1. It has been noted that for each of the designs,
the information matrix has the desirable property that the elements are invariant with
respect to permutation of the components.
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Again we have seen that the generalized axial designs of different types play
a good role in the estimation of the parameters in the quadratic and other types
of models. The status of these designs may be examined in respect of optimality.
However, it may be noted that Loewner order comparison of even a small subset of
competing designs in the quadratic case may be quite difficult to handle.
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Chapter 4
Optimal Mixture Designs for Estimation
of Natural Parameters in Scheffé’s Models

Abstract In this chapter, we review the optimality results for the estimation of
parameters and subset of parameters of the Scheffé’s mixture models while the fac-
tor space is the entire simplex, i.e., while we are in the framework of an unconstrained
factor space. Though most of the results are related to quadratic model, optimality
results for linear- and higher-degree polynomials are also discussed. Kiefer’s equiv-
alence theorem plays an important role in characterizing optimum designs. It has
been observed that the support points of an optimum design under different optimal-
ity criteria belong to the subclass of union of barycenters.

Keywords Scheffé’s mixture models · Estimation of parameters and subset of para-
meters · Specific optimum designs ·Kiefer’s equivalence theorem · Support points ·
Barycenters

4.1 Introduction

In a mixture experiment, the mean response depends on the proportions of the com-
ponents in the mixture. If there be a totality of q (distinct) components in a mixture
with the mixing proportions (xi, . . . , xq), then x = (x1, . . . , xq)

≥ ≤ X , where

X =
{

(x1, . . . , xq) : xi ∀ 0, i = 1, 2, . . . , q;
q∑

i=1

xi = 1

}

. (4.1.1)

As mentioned in Chap.2, Scheffé (1958) first introduced models in canonical forms
of different degrees to represent the mean response function denoted by η(x;β).
The experimental region and the response functions in mixture experiments differ
from the ordinary response surface problem in view of the constraint (4.1.1). Scheffé
(1958, 1963) also introduced simplex lattice designs and simplex centroid designs
appropriate in such situations. In Chap. 3, these have been introduced in details.

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 43
DOI: 10.1007/978-81-322-1786-2_4, © Springer India 2014
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In this chapter, we will study optimality aspect of mixture designs in a continuous
design setting. For ready reference, this is again discussed below.

As mentioned in Chap.3, a continuous design is represented by

ξ = {x1, x2, . . . , xn; p1, p2, . . . , pn}, (4.1.2)

which assigns mass p1, p2, . . . , pn; pi ∀ 0,
⎧

pi = 1, to a collection of n support
points x1, x2, . . . , xn of the design ξ in X . In application, one could start with more
than the desired number of support points from optimality point of view. In the final
analysis, some of these points might be dropped. That is why, we have kept the
possibility of pi = 0 in (4.1.2).

In the following, we will be discussing optimality results with reference to dif-
ferent mixture models. It turns out that some standard mixture designs such as
simplex/simplex centroid/axial designs play significant roles in such investigations.
These designs have already been introduced and their salient features discussed in
Chap. 3.

4.2 Optimum Designs for First and Second Degree Models

4.2.1 D- and I-Optimum Designs

Kiefer (1961) first studied the optimality of designs in the most general setting of
(4.1.2) with reference to the problem of estimation of parameters of the Scheffé’s
model of degree one, two, and three (Vide Eqs. (3.1.2)–(3.1.5) of Chap. 3). The
saturated design ξwhich assignsmeasure 1/q to eachof theq vertices of the simplex is
D-optimum for Scheffé’s canonical linear model in q components. Since M(ξ) = Iq,

the design is φp-optimal as well for all p > 0 (Galil and Kiefer 1977). For the
second-degree canonical model in q components, Kiefer (1961) also established
D-optimality of (q, 2) simplex lattice design, which puts equal mass at the support
points of the design. He proved the optimality of the designs with the help of the
equivalence theorem due to Kiefer and Wolfowitz (1960). This theorem is of utmost
importance in the entire exercise on optimality by and large. We narrate below the
essential features of this theorem.

Consider the general linear model,

y(x) = f ≥(x)β + e(x), (4.2.1)

with usual assumptions on error component e(x), viz. mean zero and uncorrelated
homoscedastic variance σ2.

http://dx.doi.org/10.1007/978-81-322-1786-2_3
http://dx.doi.org/10.1007/978-81-322-1786-2_3
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The information matrix for β, using a design ξ of the type (4.1.2) [in conjunction
with (4.1.1)], is given by

M(β, ξ) =
n∑

i=1

pif (xi)f ≥(xi).

Note that in the above expression, summation is over all the suffixes admitting of
only positivemass.We assume estimability of themodel parameters under the design
ξ in X .

Writing d(x, ξ) = f ≥(x)M−1(β, ξ)f (x), the celebrated equivalence theorem
(Kiefer and Wolfowitz 1960) can be stated as follows

Theorem 4.2.1 A design ξ∗ is D-optimum for the estimation of β in (4.2.1) if and
only if it satisfies d(x, ξ∗) ← p, for all x in X where p is the number of parameters
in the model, with equality holding at all the support points of the design ξ∗.

We readily refer to Scheffé models given in Chap. 3. The second-degree Scheffé
model, in canonical form, [cf. Eq. (3.1.3) of Chap. 3] is given by

f (x;β) =
q∑

i=1

βixi +
q∑

i=1

q∑

j>i

βijxixj (4.2.2)

and, using the relation
⎧q

i=1 xi = 1, (4.2.2) can be further expressed as

f (x;β) =
q∑

i=1

β∗
iix

2
i +

q∑

i=1

q∑

j>i

β∗
ijxixj. (4.2.3)

Clearly, β∗
ij’s are linear functions of the parameters of (4.2.2). Keeping in mind the

support points of the (q, 2) simplex design ξ∗, Kiefer (1961) expressed the second-
degree model (4.2.3) in the following form:

f (x;β) =
q∑

i=1

θiixi

⎪

xi − 1

2

⎨

+
q∑

i=1

q∑

j>i

θijxixj (4.2.4)

= f ∗≥(x)θ, say, (4.2.5)

where θij come out to be one-to-one functions ofβ∗
ijs and f ∗ is defined accordingly.He

then established the D-optimality of (q, 2) simplex lattice design for the estimation
of the parameters of second-degree model.

http://dx.doi.org/10.1007/978-81-322-1786-2_3
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After a little algebra, it can be readily shown that

d(x, ξ∗) = f ∗≥(x)M−1(θ, ξ∗)f ∗(x)

= 4p

⎛

⎜
q∑

i=1

x2i

⎪

xi − 1

2

⎨2

+ 4
q∑

i=1

q∑

j>i

x2i x2j

⎝

⎞

= p

⎛

⎜1 −
∑

i �=j

xi xj

⎟
2
⎠
xi − xj

)2 + ⎠
1 − 4xi xj

)}
⎝

⎞

← p. (4.2.6)

Equality in (4.2.6) holds at the support points of ξ∗, the (q, 2) simplex lattice design,
which has the support points as indicated in Sect. 3.2 in Chap. 3. Hence, ξ∗ is
D-optimal. It is easy to check that designs different from (q, 2) simplex lattice designs
do not satisfy the equality condition above in (4.2.6) for all points in its support.
Further, it is also to be noted that ξ∗ being a (q, 2) simplex lattice design is a saturated
design.

As iswell known, theD-optimality criteron is invariantwith respect to linear trans-
formations of the parameters of interest. That is why the parameters in the model
(4.2.2)–(4.2.3) were recast in a different form in (4.2.4). There is more to it. The
suggested alternative representation leads to a diagonal matrix for the information
matrix when it is evaluated for the design ξ∗. This helps tremendously in the evalu-
ation of d(x, ξ) = f ≥(x)M−1(β, ξ)f (x) for ξ∗. Kiefer succeeded in coming up with
this crucial observation. The rest were routine task. The optimal design is, as we see,
saturated and invariant. Also it has the special feature of producing all off-diagonal
elements of the information matrix as zeros. This is a very powerful technique in
the evaluation of optimum designs. As we will see in subsequent chapters, this tech-
nique has been exploited a number of times in determining optimum designs for the
estimation of some nonlinear functions of the parameters.

Lambrakis (1968) considered a class of designs which assigns a weight (mass) p1
to each x ⇒ (1/2, 1/2(q − 1), . . . , 1/2(q − 1)) and a weight (mass) p2 to each x ⇒
(1/3, 1/3, 1/3 (q−2), . . . , 1/3(q−2)).Optimum values of p1/p2 were obtained by
using I-optimality criterion i.e., minimizing the expected variance of the predicted
response overX . Similarly, optimum values of p1/p2 were obtained when the points
x ⇒ (0, 1/(q−1), . . . , 1/(q−1)) andx ⇒ (1/2, 1/2, 0, . . . , 0)were used as support
points (Lambrakis 1969). In the above, we have conveniently used the notation x ⇒
(.....) to represent all distinct permutations of the elements of (....). Note that in
Chap. 3 as well, this notation could be used to save space. Laake (1975) showed that

a {q, 2} simplex centroid design is I-optimal if p1/p2 = [(q2 − 7q + 18)/32] 12 .

http://dx.doi.org/10.1007/978-81-322-1786-2_3
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4.2.2 φp-Optimum Designs

In this subsection, we propose to review some results on the optimality with respect
to matrix means for mixture models.

Kiefer (1975) tried to characterize the φp-optimal design (also called criterion
of matrix means) (see Kiefer 1974, 1975). He observed that the computation of a
φp-optimal design is algebraically intractable; there is no hope for simple formulae.
Hence, one must be satisfied with numerical results. However, the direct minimiza-
tion is too large a problem to handle. Instead, he used various theoretical tools of
optimal design theory to reduce the dimensionality of the problem. First using the
convexity of the criterion function, he established that an optimum design is invariant
under permutation of components. Using the equivalence theorem for φp-optimality
criterion, he observed that the support points of an optimal design must be supported
on a subset of J = ∞ Jj, where Jj is a barycentre of depth j.

Galil and Kiefer (1977) extensively discussed the optimality of designs for the
second-degree Scheffé model when the criterion function is one of the matrix means.
They established that the optimal design must be supported by the collection of the
centroids of the faces of the simplex and must be invariant under permutation of
the coordinates of the support points. No other points beyond those described above
will be involved. Galil and Kiefer (1977) used a Broyden minimization technique
(Broyden 1967) to obtain numerical values of pi at which theweighted {q, q} centroid
design isφp-optimum for p = 0, 0, 1, 0, 5, 1, 2, 4, 5, 7, 10 and q = 2, 3, . . . , 11.The
case of p = → (E-optimality) was extensively studied. Computational routines for
obtaining these designs are developed, and the geometry of structures is discussed.
Exceptwhen q = 3, theA-optimumdesign is supported by the vertices andmidpoints
of edges of the simplex, as is the case for D-optimum design. They also showed that
all of D-, A-, and E-optimum designs are reasonably robust in their efficiency under
variation of optimality criteria, but E-optimum design is the most robust although
it requires more support points. We will not pursue any serious presentation of the
so-called optimality results under most general forms of matrix means criteria .

Kiefer (1978) discussed the asymptotics q-ingredients second-degree Scheffé
models, as the number of ingredients tends to infinity. For the smallest eigen value
criterion, formulas for the limiting weights, αj of the elementary centroid designs
ηj, also called barycentre of depth j − 1, are characterized. Kiefer then concentrated
on the basic solutions in which four of the weights were positive. It emerged that α1
and α2 must always be positive, the remaining two weights then being αj and αh
with 2 < j < h. Formulas are given when j = 2, or j = 3.

Kiefer (1961) observed that the problem of determining D-optimum design for
the estimation of a subset of parameters is not easy. For three-component mixture,
he restricted his consideration to the coefficients of the mixed quadratic terms (vide
4.2.2). Then, he searched for the optimum design in the subclass of designs ξ(α)

which, for some α, assigns measure α/3 to each vertex of X and measure (1−α)/3
to the midpoint of each edge of X . Denoting by [a, b] a 3 × 3 matrix of the form
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[a, b] = (a − b)I3 + bJ3

the information matrix underlying ξ(α) can be expressed as

M(ξ(α)) = 1

3

(⎫
α
16 , 0

⎬ ⎫
0, α

8

⎬

⎫
0, α

8

⎬ ⎫
1 − α

2 ,
α
4

⎬

⎭

.

It can be readily verified that within the class of ξ(α) designs, the unique D-optimal
design corresponds to α = 0.6530. Since x21, x22, and x23 in the quadratic model,
because of the constraints

⎧
ixi = 1, are related to x1x2, x1x3 and x2x3 by a non-

singular transformation, a design which is D-optimum for the estimation of para-
meters associated to the quadratic terms is also D-optimum for the estimation of
parameters related to the cross product terms and vice versa.

That the above characterization indeed leads to D-optimal in the whole class
follows from a non-trivial application of the equivalence theorem, as appropriately
modified and applied in the context of estimation of a subset of parameters. The basic
results in this direction are due to Karlin and Studden (1966), followed by Atwood
(1969). We will defer description and discussions on these results to subsequent
chapters.

4.2.3 Kiefer-Optimal Designs

Draper and Pukelsheim (1999) discussed the problem of improvement of a given
design in terms of (i) increasing symmetry (nearness of diagonal elements and also
nearness of off-diagonal elements, each within the context of subgroups of elements)
as well as (ii) obtaining a larger information matrix under Loewner Ordering. The
two criteria together constitute the Kiefer Design Ordering (KDO). Symmetry has
always been a prime attribute of good experimental designs and comprise the first
step of the KDO. The second step is an improvement relative to the Loewner ordering
within the class of exchangeable information matrices.

Draper and Pukelsheim (1999) mainly worked with K-model based on Kronecker
algebra of vectors and matrices in contrast to S-model of Scheffé, introduced earlier
in this chapter. The expected response (i.e., the mean model) under second-degree
K-model takes the form η(x) = ⎧q

i=1

⎧q
j=1 θijxixj = (x

⊗
x)≥θ; see Draper and

Pukelsheim (1998, 1999). Itmaybementioned that their results on theKiefer ordering
of experimental designs for second-degree mixture models do not depend on the
actual parameterization of the response function. Further, it may also be noted that
the identifiability of the parameters are lost momentarily. Before citing results on
KDO of information matrices, let us define elementary centroid designs ηj, for j =
1, . . . , q. For a specified j < q, the design ηj rests on C(q, j) points of the form
x ⇒ (1/j, 1/j, . . . , 1/j, 0, 0 . . . , 0) and also it places equal weight 1/C(q, j) on
each of these points. A simplex centroid design is a mixture (i.e., weighted union)
of all elementary centroid designs ηj, for j = 1, 2, . . . , q. (vide Chap. 3 for details.)
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Once for all, it may be mentioned that below we are referring to K-models only.
For the first-degree model (in canonical form i.e., homogeneous model of

degree 1), Draper and Pukelsheim (1999) established the following:

Theorem 4.2.1 Let τ̄ be an invariant design in (4.1.1). Then

M(η1) ∀ M(τ̄ )

with equality holding iff τ̄ = η1.

It is easy to see that M(η1) = (1/q)Iq. Also we see that there is no essential
difference between K-model and S-model when we are dealing with a first-degree
model.

For the second-degree K-model, they restricted to two- and three-component
mixtures and established the following theorem:

Theorem 4.2.2 In the second-degree mixture model, the set of weighted centroid
designs constitutes a minimal complete class of designs for the Kiefer Ordering.

Afterward, Draper et al. (2000) extended this result to four and more components:

Theorem 4.2.3 In the second-degree mixture model for q ∀ 4 ingredients, the set
of weighted centroid designs C = {α1η1 + α2η2 + · · · + αqηq;αi ∀ 0,

⎧
αi = 1}

is convex and constitutes a complete class of designs for the Kiefer ordering. For
q = 4, the class is minimal complete.

Further, they selected a subclass of the set C in Theorem 4.2.3 above that is
essentially complete and established the following.

Theorem 4.2.4 In the second-degree mixture model for five or more ingredients,
the set C = ⋃q−2

j=2 conv {η1, ηj, ηj+1, ηq} constitutes an essentially complete class of
exchangeable designs for the Kiefer ordering.

In the above, conv refers to a convex combination of the constituent components.
For further details, the readers are referred to the original papers cited above.

Draper and Pukelsheim (1998) and Prescott et al. (2002) put forward several
advantages of the Kronecker model, e.g., the homogeneity of regression terms and
reduced ill-conditioning of information matrices. Interestingly, both models share
the same invariance properties. Because of the completeness Theorems 4.2.3–4.2.4
in Draper et al. (2000), the design problem reduces to the class of weighted centroid
designs. Based on these observations, Klein (2004) investigated optimal designs
in the second-degree Kronecker model for mixture experiments and presented the
following: (i) characterization of feasible weighted centroid designs for a maximum
parameter system, (ii) derivations ofD-,A-, andE-optimalweighted centroid designs,
and (iii) numerical computation of φp-optimal weighted centroid designs. Results
on quadratic subspace of invariant symmetric matrices containing the information
matrices involved in the design problem served as a main tool in his analysis.
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4.3 Polynomial Models of Degree Three and More

The cases, where the degree of the polynomial representing the response function
is more than 2, are computationally very difficult. For the third-degree model with
q = 2 factors, the response function ηx, because of the constraint x1 + x2 = 1,
reduces to a cubic polynomial in x1. This is a trivial observation. Actually, one starts
with model in canonical form

ηx = β1x1 + β2x2 + β12x1x2 + α12x1x2(x1 − x2)

which reduces to

ηx = γ0 + γ1x1 + γ2x21 + γ3x31,

because of x1 + x2 = 1, where γ = (γ0, γ1, γ2, γ3)
≥ is related to β = (β1, β2,

β12,α12)
≥ through γ = Tβ with

T =

⎛

⎢
⎢
⎜

0 1 0 0
1 −1 1 −1
0 0 −1 3
0 0 0 −2

⎝

⎥
⎥
⎞ ,

and T is non-singular.
By classical argument, the D-optimum design will have four support points—two

at the two extremes and two inside the domain. Again, since the problem is invariant
with respect to the two components (both in terms of the representation and the
D-optimality criterion), the points inside the domain must be of the form (b, 1 − b)
and (1 − b, b) for some b, 0 < b < 1. Then, b is determined so as to optimize the
D-optimality criterion, and it comes out as

b = b0 = 1

2

⎪

1 − 1≡
5

⎨

.

Thus, the optimum design has the support points (0, 1), (1, 0), (b0, 1 − b0) and
(1 − b0, b0),with equal masses. Note that equal mass consideration applies since the
design is saturated. Because of the invariance property of the D-optimality criterion
under non-singular transformation of the parameter vector, the above design is also
D-optimum for the estimation of the original parameters β’s.
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For the case of three factors, Kiefer (1961) studied different cubic polynomials
introduced by Scheffé (1958). In the model involving nine parameters and having
nine functions of the form xi, xixj, xixj(xi − xj), but without the function x1x2x3, he
considered the design ξb, which puts positive mass at

(i) each of the three extreme points (0, 0, 1), (0, 1, 0), (1, 0, 0), and
(ii) each of six points on the edges (b, 1 − b, 0), (1 − b, b, 0), (b, 0, 1 − b),

(1 − b, 0, b), (0, b, 1 − b), (0, 1 − b, b).

The mass distribution is confined to the above nine points only so that the design
is saturated. Hence, for D-optimality, the mass is taken to be 1/9 for each support
point. Then, it turns out that

det.M(ξb) √ v12(1 − 4v)3,

where v = b(1 − b).
The optimal value of v,which maximizes det.M(ξb), comes out to be v = 1

5 , and
hence, optimum b is

b = b0 = 1

2

⎪

1 − 1≡
5

⎨

.

This solution to b0 is strikingly the same as the earlier solution for the case of two
components. Other contributors in this area include:

Farrel et al. (1967) considered the cubic model in three-component case with 10
functions, viz, xi, xixj, xixj(xi − xj) and x1x2x3. Then, they showed that a design that
assigns equal mass to the ten points consisting of three vertices (1, 0, 0), (0, 1, 0),
and (0, 0, 1), the simplex centroid point (1/3, 1/3, 1/3) and the six permutations of
(b, 1 − b, 0) with b = 1

2 (1 − 1≡
5
) is D-optimal. They verified the optimality of the

design via equivalence theorem, using the orthogonal representation of the regression
functions relative to the support points of the optimal design.

Remark 4.3.1 Lim (1990) extended the results of Farrell et al. (1967) on
D-optimality for the third-degree model with 4 or more factors. Case q = 4 is
solved conclusively, and the cases q = 5, 6, . . . , 10 are solved numerically.

Kasatkin (1974) considered a design which assigns the same weight to each x ⇒
(1, 0, . . . , 0), x ⇒ (α, 1−α, 0, . . . , 0) and x ⇒ (1/3, 1/3, 1/3, 0, 0) for estimation
of coefficients in the full cubic model:
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ηx =
q∑

i=1

βixi +
q∑

i=1

q∑

j=i
i<j

βijxixj +
q∑

i=1

q∑

j=i
i<j

γijxixj(xi − xj)

+
q∑

i=1

q∑

j=i
i<j

q∑

k=i
j<k

βijkxixjxk

and obtained the optimumvalueα so that the determinant of the informationmatrix is
a maximum. He obtained similar results for the fourth- and fifth-degree polynomial.

In general, for the general Scheffé (q, n) polynomial model

ηx =
q∑

i=1

βixi +
∑

1←i<i2←q

βi1i2xi1xi2 +
∑

1←i1<i2<···<in←q

βi1i2...in xi1xi2 . . . xin (4.3.1)

it is difficult to derive for the estimation of the parameters. However, some theoretical
and numerical results are available in the literature.

Atwood (1969) showed that for 4 ← n ← q, the (q, n) simplex centroid design
is D-optimal for the estimation of parameters of the model (4.3.1) when n = q but
fails to be so for n < q.Guan and Chao (1987) and Laake (1975) obtained A-optimal
allocations for the weighted (q, n) simplex centroid designs for the model (4.3.1)
with n ← q while Guan (1988) obtained I-optimal allocation, Liu and Neudecker
(1995) studied V -optimality of weighted (q, q) simplex centroid designs for the
model parameters of (4.3.1) with n = q. Guan and Liu (1989, 1993) showed that D-
and A-optimal designs for model (4.3.1) with n = q − 1 are weighted (q, q) centroid
designs.

As for the case of double mixtures where two mixtures x and z are contained in a
model, Lambrakis (1968) obtained the I-optimal allocation of points in a {p, q; r, s}
double lattice, which is produced from the {p, r} and {q, s} lattices, for the estimation
of coefficients of themeanmodelηp,q;r,s,which is of rth degree in x and sth degree in z
where r = 2, s = 3.He claimed that this result was verified for 1 ← r ← 4, 1 ← s ← 4
and conjectured that it is also true for r, s > 4.

4.4 Mixture-Amount Model

In some situations, for instance in experiments on fertilizers, the response depends
not only on the proportions of several ingredients, but also on the total amount of
the mixture used. To accommodate the influence of the amount of mixture on the
response, several models have been proposed. Piepel and Cornell (1985) introduced
new mixture-amount models that explain the effect of amount on the blending prop-
erties of components by considering the regression coefficients of the usual mixture
models, proposed by Scheffé (1958, 1963), as functions of amount. One type of such
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models which is quadratic in the total amount A for a quadratic mixture model can
be expressed as

ηx =
2∑

k=0




q∑

i=1

γ
(k)
i xi +

q−1∑

i=1

q∑

j>i

γ
(k)
ij xixj



Ak . (4.4.1)

Remark 4.4.1 The above model can also be looked as a quadratic Scheffé model in
canonical form where the coefficients of different terms are functions of the mixture
amount.When such functions are quadratic inA, the Scheffémodel reduces to (4.4.1)
(see also Cornell 2002).

Such cross product type models are usually called mixture-amount models and
can be generalized by using lower- or higher-order terms and different powers of
A. This model is not generally appropriate when A = 0, because it predicts a zero
response. Modifications that could be made to the model to take account of the zero-
amount situationwere discussed in Piepel (1988).An alternativemodel,which allows
estimation of a zero response, can be fitted to the actual amounts of the ingredients
rather than the proportions. Suppose that the maximum total amount, Amax, is coded
to be a and that the actual amounts of the q mixture ingredients are denoted by
a1, a2, . . . , ak so that a1 + a2 + · · · + aq = A, with 0 ← A ← Amax. The proportions
xi are related to the amount ai through ai = xiA. A polynomial model in the ai,

called a component-amount model, may be used to represent the response. For a
second-degree fit, this alternative model is the full quadratic.

ηx = α0 +
q∑

i=1

αiai +
q−1∑

i=1

αiia
2
i +

q−1∑

i=1

q∑

j>i

αijaiaj.

An excellent discussion of mixture-amount and component-amount models is given
by Cornell (2002). Prescott and Draper (2004) considered component-amount
designs formed from projections of simplex lattice and simplex centroid designs
into lower-dimensional spaces. Afterward, they extended the above ideas by finding
the D-optimal designs contained in this class of projection designs.

Hilgers and Bauer (1995) obtained optimum designs for estimation of parameters
in tic-type polynomial mixture-amount modes. Heiligers and Hilgers (2003) estab-
lished a close relation between admissible mixture and admissible mixture-amount
designs in additive and homogeneous models. This particularly allows to obtain D-,
A- and V-optimal mixture-amount design from optimal mixture designs, and vice
versa. The authors also presented some examples for Becker’s and Scheffé’s mixture
models.

Zhang et al. (2005) attempted to find D- and A-optimum designs for parameter
estimation in quadratic Darroch-Waller model (1985), extended to include amount.
They showed that the origin and vertices of the simplex are the support points of
the optimal designs, and when the number of mixture components increases, other
support points shift gradually from barycentres of depth 1 to barycentres of higher
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depths. Pal and Mandal (2012) introduced the following mixture-amount model
which is quadratic, both in the amount and the proportions and obtained A- and
D- optimal design for the estimation of the model parameters:

ηx = κ∗
00 + κ∗

01A + κ∗
02A2 + A

q∑

i=1

α∗
0ixi +

q∑

i=1

α∗
iix

2
i +

q∑

j>i

α∗
ijxixj (4.4.2)

where A ≤ [AL,AU ],AL > 0, denotes the amount and x1, x2, . . . , xq denote the
proportions of the q components in the mixture. Clearly, xi ∀ 0, for i = 1, 2, . . . , q
and

⎧q
i=1 xi = 1. The assumption AL > 0 ensures that some amount of the mixture

should necessarily be used in the experiment.
Model (4.4.2) finds usefulness in situations, where synergism is present between

the amount and the mixing proportions. This is essentially true when any change in
the amount of the mixture affects the blending properties of the mixture components,
besides causing change in the response. The difference between this model and that
suggested by Piepel and Cornell (1985) is that while Piepel and Cornell (1985)
explained the effect of amount on the mixing proportions by taking the regression
coefficients to be functions of amount, in model (4.4.2) the interactions between
amount and mixing proportions explain this effect. Further, in comparison to the
model suggested by Piepel and Cornell (1985), model (4.4.2) has fewer parameters.

By suitable transformation on the amount, and using the restriction
⎧q

i=1 xi = 1,
(4.4.2) can be written as

ηx = κ01A + κ02A2 + A
q∑

i=1

α0ixi +
q∑

i=1

αiix
2
i +

q∑

i<j=1

αijxixj (4.4.3)

where κ0is and αijs are linear functions of κ∗
0is and α∗

ijs, and the factor space is given
by

XA = {(A, x1, x2, . . . , xq) : A ≤ [−1, 1], xi ∀ 0, 1 ← i ← q,
q∑

i=1

xi = 1}. (4.4.4)

Because of the constraint
⎧q

i=1 xi = 1, (4.4.3) can again be represented in the form

nx = β00A2 + A
∑

i

β0ixi +
∑

i

βiix
2
i +

∑

i<1

βijxixj (4.4.5)
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where

β00 = α02, β0i = α01 + α0i, 1 ← i ← q,

βii = αii, 0 ← i ← q, βij = αij, 1 ← i < j ← q.

Let, x∗ = (A, x1, x2, . . . , xq)
≥. Then, x∗ satisfies the constraint

c≥x∗ = 1, (4.4.6)

where c = (0, 1, 1, . . . , 1)≥.
The problem considered by Pal andMandal (2012) is to find a (continuous) design

in the factor space (4.4.4) so thatβijs inmodel (4.4.4) can be estimatedwithmaximum
accuracy.

Using a design ξ, one can estimate the parameters of the model (4.4.5). The
information (moment) matrix of the design is given by

M(ξ) =
∑

pif (x∗
i )f (x

∗
i )

≥, (4.4.7)

where
f (x∗

i ) = (A2
i ,Aixi1,Aixi2, . . . ,Aixiq, x2i1, x2i2, . . . , x2iq, xi1xi2, . . . , xi,q−1xiq)

≥.
Design optimality aims at minimizing some function of M−1(ξ), or maximizing

some function of M(ξ). For comparing different designs, Pal and Mandal (2012)
considered the A-optimality and D-optimality criteria, where the criterion functions
for minimization are given by

φA(ξ) = Trace(M−1(ξ))

φD(ξ) = Det.(M−1(ξ)). (4.4.8)

To obtain the optimal designs, note that both φA(ξ) and φD(ξ) are invariant with
respect to the proportions. Hence, the optimum design will also be invariant with
respect to xis. As such, in respect of xis, one may confine to (q, 2)-simplex centroid
designs with equal weights at the vertices and themidpoint of the edges, respectively.
Further, for xis given, since the model (4.4.5) is quadratic in A, the optimum design is
likely to admit three distinct values of A, two at the two extremes and one in between,
with positive weights. Hence, the authors initially confine their search for A-optimal
design within the subclass Dq of designs having the support points and weights as
given in Table 4.1.

Let, 0 ← pi, p≥
i, p≥≥

i ← 1, i = 1, 2,C(q, 1)p1 + C(q, 2)p2 = 1,C(q, 1)p≥
1 +

C(q, 2)p≥
2 = 1,C(q, 1)p≥≥

1 + C(q, 2)p≥≥
2 = 1, a0 ≤ (−1, 1),wj ∀ 0, j = −1, 0, 1 and

w−1 + w0 + w1 = 1,w−1,w0 and w1 denote the weights attached to A = −1, a0, 1
respectively, while the sixth column in Table 4.1 gives the weights for different
(x1, x2, . . . , xq) combinations when A is given.
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Table 4.1 The subclass of designs Dq

x1 x2 . . . xq−1 xq Weight A Weight

1 0 . . . 0 0 p1 −1 w−1

0 1 . . . 0 0 p1
0 0 . . . 1 0 p1
0 0 . . . 0 1 p1

1/2 1/2 . . . 0 0 p2
1/2 0 . . . 0 0 p2
0 0 . . . 0 1/2 p2
0 0 . . . 1/2 1/2 p2

1 0 . . . 0 0 p≥
1 a0 w0

0 1 . . . 0 0 p≥
1

0 0 . . . 1 0 p≥
1

0 0 . . . 0 1 p≥
1

1/2 1/2 . . . 0 0 p≥
2

1/2 0 . . . 0 0 p≥
2

0 0 . . . 0 1/2 p≥
2

0 0 . . . 1/2 1/2 p≥
2

1 0 . . . 0 0 p≥≥
1 1 w1

0 1 . . . 0 0 p≥≥
1

0 0 . . . 1 0 p≥≥
1

0 0 . . . 0 1 p≥≥
1

1/2 1/2 . . . 0 0 p≥≥
2

1/2 0 . . . 0 0 p≥≥
2

0 0 . . . 0 1/2 p≥≥
2

0 0 . . . 1/2 1/2 p≥≥
2

For any design ξ ≤ Dq, the moment matrix is given by

M(ξ) =
⎛

⎜
M11 M12 M13
M ≥

12 M22 M23
M ≥

13 M ≥
23 M33

⎝

⎞ ,

where

M11 =
[

w1 + w−1 + a40w0 a111≥
q

b11Iq + c111q1≥
q

]

,

M12 =
[

a121≥
q

b12Iq + c121q1≥
q

]

, M13 =
[

a131≥c(q, 2)
c13M0

]

,

M22 = b22Iq + c221q1
≥
q, M23 = c23M0, M33 = b33Ic(q, 2)
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a11 =
{

p1 + q − 1

2
p2

}

w1 −
{

p1 + q − 1

2
p≥≥
2

}

w−1 + a30

{

p≥
1 + q − 1

2
p≥
2

}

w0

b11 =
{

p1 + q − 2

2
p2

}

w1 +
{

p1 + q − 2

2
p≥≥
2

}

w−1 + a20

{

p≥
1 + q − 2

2
p≥
2

}

w0

c11 = p2
4

w1 + p≥≥
2

4
w−1 + a20

p≥
2

4
w0

a12 =
{

p1 + q − 1

4
p2

}

w1 +
{

p≥≥
1 + q − 1

4
p2

}

w−1 + a20

{

p≥
1 + q − 1

4
p≥
2

}

w0

b12 =
{

p1 + q − 2

8
p2

}

w1 −
{

p≥≥
1 + q − 2

2
p≥≥
2

}

w−1 + a0

{

p≥
1 + q − 2

8
p≥
2

}

w0

c12 = p2
8

w1 − p≥≥
2

8
w−1 + a0

p≥
2

8
w0

a13 = 2

{
p2
8

w1 − p≥≥
2

8
w−1 + a20

p≥
2

8
w0

}

c13 = p2
8

w1 − p≥≥
2

8
w−1 + a0

p≥
2

8
w0

b22 =
{

p1 + q − 2

16
p2

}

w1 −
{

p≥≥
1 + q − 2

16
p≥≥
2

}

w−1 +
{

p≥
1 + q − 2

16
p≥
2

}

w0

c22 = p2
16

w1 + p≥≥
2

16
w−1 + p≥

2

16
w0 = c23 = b33,

M0 is a q × C(q, 2)matrix in which the first q − 1 elements in the first row are 1 and
the remaining are 0, and the following q − 1 rows are permutations of the first row,
1s is a s × 1 vector with all components unity and Is denotes an identity matrix of
order s.

Since for quadratic regression in [−1, 1], the optium support points of D-, A-, and
E-optimality criteria are at −1, 0, and 1, to start with, the authors take a0 = 0, and
w−1 = w1, pi = p≥≥

i , i = 1, 2. Let, D0
q ∼ Dq define the corresponding subclass of

designs.
Then, for any design ξ ≤ D0

q, M(ξ) has the representation

A2 Ax1 Ax2 . . . Axq x21 x22 . . . x2q x1x2 x1x3 . . . xq−1xq
⎛

⎢
⎢
⎢
⎜

2w1 0≥
q 2w1(p1 + q−1

4 p2)1≥
q, 2w1

p2
4 1≥

C(q,2)

2w1{(p1 + p−2
4 p2)Iq + p2

4 1q1≥
q} 0 0

r1Iq + r21q1≥
q r2M0

r2IC(q,2)

⎝

⎥
⎥
⎥
⎞
,
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where

r1 = 2w1

⎪

p1 + q − 2

16
p2

⎨

+ (1 − 2w1)

⎪

p≥
1 + q − 2

16
p≥
2

⎨

,

r2 = 2w1
1

16
p2 + (1 − 2w1)

1

16
p≥
2.

And,

M−1(ξ) =
[

M∗
11 M∗

12
M∗

21 M∗
22

]

where

M∗
11 = 1

2w1

[
1

1−2w1k1
0≥

0 k2Iq + k31q1≥
q

]

,M∗
12 = − 1

(1 − 2w1k1)

[
t1≥

q s1≥
C(q,2)

0 0

]

M∗
22 =

[
1
r Iq − 1

r M0
− 1

r M0
1
r2

IC(q,2) + 1
r M ≥

0M0

]

+ 2w1

1 − 2w1k1

[
t21q1≥

q ts1q1≥
C(q,r)

st1C(q,2)1
≥
q s21C(q,2)1

≥
C(q,2)

]

k1 = q

r
p21 + C(q, 2)

r2

p22
16

, k2 = 1

p1 + q−2
4 p2

k3 = − p2

4(p1 + q−2
4 p2)(p1 + q−1

2 p2)

t = p1
r
, s = −2

r
p1 + p2

4r2
, r = 2w1p1 + (1 − 2w1)p

≥
1.

Then,

φA(ξ) = 1

2w1(1 − 2w1k1)
+ q

2w1
(k2 + k3) + q

r
+ C(q, 2)

⎪
1

r2
+ 2

r

⎨

+ 2w1

1 − 2w1k1
{qt2 + C(q, 2)s2}. (4.4.9)

The optimal values of p1, p≥
1, and w1 are obtained by minimizing φA(ξ). The authors

checked the optimality or otherwise of the designwithin the entire class usingKiefer’s
equivalence theorem (1974), which, for A-optimality criterion, reduces to the follow-
ing (see Pal and Mandal 2007):

Theorem 4.4.1 A necessary and sufficient condition for a mixture-amount design
ξ∗ to be A-optimal within the whole class of competing designs is that

f ≥(x∗)M−2(ξ∗)f (x∗) ← trM−1(ξ∗) (4.4.10)

holds for all x∗ ≤ XA. Equality in (4.4.10) holds at the support points of ξ∗.
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Table 4.2 A-optimal designs in q-component mixture-amount model for q = 2, 3, 4, 5

q p1 p≥
1 w1 w0

2 0.2939 0.1571 0.2599 0.4802
3 0.1502 0.0505 0.2750 0.4501
4 0.0963 0.0205 0.2873 0.4254
5 0.0690 0.0081 0.2977 0.4046

Table 4.3 D-optimal designs in q-component mixture-amount model for q = 2, 3, 4, 5

q p1 p≥
1 w1 w0

2 0.3925 0.3121 0.3717 0.2566
3 0.2146 0.1163 0.3936 0.2128
4 0.1362 0.0372 0.4079 0.1842
5 0.0941 0.0011 0.4184 0.1632

As the algebraic derivations are rather involved, the condition (4.4.10) is checked
by numerical computation. Table 4.2 gives A-optimal designs for 2 ← q ← 5 which
have been numerically examined by the authors to satisfy condition (4.4.10).

TheD-optimality criterion comes out bymaximizingφD(ξ), derived directly from
the moment matrix, rather than its inverse, where

φD(ξ) = (2w1)
q+1(1 − 2w1k1)

⎟
p1 + 2(q − 1)

p2
4

} ⎟
p1 + (q − 2)

p2
4

}q−1
rC(q,2)
2

× {r1 − (q − 2)r2}q. (4.4.11)

The values of p1, p≥
1, and w1 in the D-optimal design maximize (4.4.11). Optimality

of the designs in the entire class of competing designs is checked using the Kiefer’s
equivalence theorem, which, for D-optimality criterion in the present setup, is as
follows:

Theorem 4.4.2 A necessary and sufficient condition for a mixture-amount design
ξ∗ to be D-optimal within the whole class of competing designs is that

f ≥(x∗)M−1(ξ∗)f (x∗) ← (q + 1)(q + 2)

2
(4.4.12)

holds for all x∗ ≤ XA.

Equality in (4.4.12) holds at the support points of ξ∗.

Owing to the complexity in algebraic derivation, validity of (4.4.12) is checked
by numerical computation for 2 ← q ← 5 (Table 4.3).

For the full set of natural mixture model parameters as also for a subset of para-
meters, we have presented/discussed results on optimal mixture designs. This study
is based on the assumption that the factor space is the entire simplex without any
constraints.
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Chapter 5
Optimal Mixture Designs for Estimation
of Natural Parameters in Scheffé’s Model
Under Constrained Factor Space

Abstract Most of the studies on mixture experiments assume that the experimental
region is the whole simplex. However, experimentation at the vertices of the simplex
is generally not meaningful. Onemay, therefore, restrict the experiment to a subset of
the simplex. In this chapter, an ellipsoidwithin the simplex is used as the experimental
region, and Kiefer optimal designs are determined for both linear and quadratic
models due to Scheffé.

Keywords Scheffé’s linear and quadratic mixture models · Parameter estimation ·
Ellipsoidal factor space · Central composite design · Kiefer optimal designs

5.1 Introduction

The optimum designs in mixture experiment generally include the vertex points of
the simplex as support points of the design, which are not mixture combinations in
the true non-trivial sense. Practitioners whoworkwithmixture experiments find such
proposals rather illogical and absurd. They generally perform experiments excluding
the vertex points. There are some suggestions (cf. Cornell 2002) which recommend
taking the experimental region to be a subspace of the simplex that does not include
the vertex points. This may be achieved by putting a constraint on the bounds of
the components separately. In many situations, an ellipsoid within the simplex is
used as the experimental region (cf. Cornell 2002, p. 109). Estimation of parameters
and analysis can be found in the literature for experiments conducted within the
ellipsoidal experimental region. Mandal et al. (2014) derived Kiefer optimal designs
for parameter estimation in Scheffé (1958) models of degrees one and two when the
experimental region is an ellipsoid within the simplex with center at the centroid. As
is well known, most of the studies on mixture experiments assume the experimental
region to be the whole simplex. In situations, where experimentation at the vertices
of the simplex is not practicable, one may restrict the experiment to a subset of the
simplex. Some authors (cf. Cornell 2002) suggested experimental region of the type

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 63
DOI: 10.1007/978-81-322-1786-2_5, © Springer India 2014
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XC R = {x = (x1, x2, . . . , xq) :, xi ≥ 0, 1 ≤ i ≤ q,
q∑

i=1

xi = 1,

(x − x0)
∀H−2(x − x0) ≤ 1} (5.1.1)

where x0 = (1/q, 1/q, . . . , 1/q)∀, H = diag(h11, h22, . . . , hqq). By varying hii s,
one can control the experimental region to suit the specific situation. Mandal et al.
(2014) investigated the problem of finding optimum designs for the estimation of
parameters in mixture models of degrees one and two due to Scheffé (1958), when
the experimental region is given by (5.1.1).

The true mean model, in the general form, is given by

ηx = f (x)∀β. (5.1.2)

Let us write

z = H−1(x − x0). (5.1.3)

Then, because of the restrictions on x , given in (5.1.1), z must satisfy

z∀z ≤ 1. (5.1.4)

z∀H1q = 0, or
∑

i

hii zi = 0. (5.1.5)

Let us assume that H ∝ Iq , the identity matrix. Then, (5.1.5) simplifies to

z∀1q = 0. (5.1.6)

Combining (5.1.4) and (5.1.6), the experimental region, in terms of z, is therefore
given by

Xz = {z : z∀1q = 0, z∀z ≤ 1}. (5.1.7)

Let Q be an orthogonal matrix defined as

Q =
(

q−1/21∀
q

P(q−1)×q

)

(5.1.8)

Clearly, P satisfies

P1q = 0, P P ∀ = Iq−1, P ∀ P = Iq − q−1 Jq . (5.1.9)
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Let us write
(

u
v

)

= Qz

Then,

u = 0,v = P z, (5.1.10)

and, because of (5.1.4) and (5.1.10), v satisfies

v∀v ≤ 1. (5.1.11)

Thus, the model can be expressed in terms of a (q − 1)-dimensional vector v
satisfying (5.1.11). Now, the first degree model in the canonical form viz.

ηx = β∀x (5.1.12)

can be expressed in terms of v, using the transformations (5.1.3) and (5.1.8) as

ηz = τ0 + τ ∀v, (5.1.13)

where the relationship between the parameter vectorsβ and τ ← = (τ0, τ
∀)∀ in models

(5.1.12) and (5.1.13) is given by

τ ∗ = Rβ, (5.1.14)

where R is a p × p matrix given by

R =
(
1 0
0 P

)(
x∀
0

H

)

(5.1.15)

with p = (q + 1)q/2.
The second degree response function in canonical form viz.

ηx =
∑

i

βi xi +
∑

i< j

βi j xi x j , (5.1.16)

because of the constraint
⎧

i xi = 1, can be written as (cf. Pal and Mandal 2006)

ηx = x∀ Bx (5.1.17)

where B = (βi j (1 + δi j )/2), δi j being the Kronecker delta. As before, (5.1.17) can
be expressed first as a function of z viz.
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ηx = (x0 + H z)∀ B(x0 + H z).

= θ0 + z∀θ + z∀ Dz

= ηz (say), (5.1.18)

where θ0,θ and D are given by

θ0 = x∀
0Bx0,θ = 2H Bx0, D = H B H. (5.1.19)

And now, (5.1.19) can be expressed as a function of v as follows:

ηx = τ0 + v∀τ + v∀Ev (5.1.20)

= ηv, say,

where

τ0 = θ0, τ = Pθ, E = P D P ∀,v = P z. (5.1.21)

The problem is to find optimum designs for the estimation of the parameters of
the models (5.1.13) and (5.1.20) with v satisfying (5.1.11).

5.2 Optimum Designs

In this subsection, optimum designs are derived first for the estimation of parameters
in themodels (5.1.13) and (5.1.20), in terms ofv, and subsequently, for the estimation
of parameters in the original models viz. (5.1.2) and (5.1.17), in terms of the original
mixing components x in the simplex.

The problem of determining optimum designs in terms of the variable v in the
domain (5.1.11) is a standard one in the context of response surface design, and the
results are well known. As mentioned earlier in Chaps. 2 and 4, Invariance structure,
combinedwith the Loewner ordering, constitutes theKiefer ordering, which provides
an effective tool to attack optimal design problems of high dimension. The optimum
design hence in terms of x, can be obtained using (5.1.15) and (5.1.19)–(5.1.21).
Since the optimum design in terms of x does not include the vertex points of the
simplex, it is different from the standard optimum design obtained over the whole
simplex.

5.2.1 First-order designs

One way to construct Kiefer optimal first-order design on the experimental domain
(5.1.11) is to vary each of the k = q − 1 components on the two levels ±k−1/2 only.

http://dx.doi.org/10.1007/978-81-322-1786-2_2
http://dx.doi.org/10.1007/978-81-322-1786-2_4
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The design that assigns uniformweight to each of the 2k vertices of [−k−1/2, k−1/2]k

is called the complete factorial design 2k . The support size can be somewhat reduced
by taking a fraction of the complete 2k factorial, for which the associated model
matrix X has orthogonal columns.

The following result helps to establish optimality of a design in the constrained
region experiment:

Theorem 5.2.1 (cf. Pukelsheim 1993):A first-order design D(N × k)with k factors
is optimum in the sense of Kiefer ordering if D∀ D ∝ Ik .

As an example, consider the case of q = 2 components. Here, we have k = 1 vari-
able, say v, in [−1,+1]. In order to estimate the two parameters of the transformed
model:

ηv = τ0 + τv,

where v ∈ [−1,+1], we need at least two support points. A design will be optimum
in the sense of Kiefer-optimality criterion if it assigns equal mass at the two extremes
viz. at +1 and −1.

From this, one can easily find the optimum design in the original factor space via
z as follows.

For q = 2,wehave P = (2−1/2,−21/2).Then, the optimumdesign in the original
factor space for different choices of H-matrix is given below:

(i) H = 2−1/2 I2, x = x0 + H z = (1, 0) for v = 1 and (0, 1) for v = −1.

(ii) H = 3−1/2 I2, x =
⎪⇒

3+⇒
2

2
⇒
3

,
⇒
3−⇒

2
2
⇒
3

⎨
for v = 1 and

⎪⇒
3−⇒

2
2
⇒
3

,
⇒
3+⇒

2
2
⇒
3

⎨
for

v = −1.
(iii)

H = 2−1 I2, x =
⎛⇒

2 + 1

2
⇒
2

,

⇒
2 − 1

2
⇒
2

⎜

for v = 1

and =
⎛⇒

2 − 1

2
⇒
2

,

⇒
2 + 1

2
⇒
2

⎜

for v = −1. (5.2.1)

Theorem 5.2.1 establishes the Kiefer optimality of the designs obtained above for
all choices of H of the form H = hI3,where h ≤ 2−1/2. From (i) above, we observe
that the optimum design in the original factor space has support points at (1, 0)
and (0, 1) with equal masses, which is known otherwise also. The Kiefer optimality
of the same design has been established by Draper and Pukelsheim (1999) in their
ingenious way.

A Kiefer optimum design with minimum number of support points corresponds
to k + 1 vertices of the regular simplex with uniform mass 1/(k + 1). For k = 2,
the three design points correspond to the three vertices of an equilateral triangle.
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Similarly, for k = 3, the four design points correspond to the four vertices of an
equilateral tetrahedron (cf. Pukelsheim 1993).

For q = 3, we get k = q − 1 = 2 and the 3 support points of the Kiefer optimum
design are given by (−⇒

3/2, 1/2)∀, (⇒3/2, 1/2)∀, and (0,−1)∀. Let H = 6−1/2 I2.
Whenv = (−⇒

3/2, 1/2)∀, using the reverse transformations (5.1.10) and (5.1.3),
where

P =
(−1/

⇒
2 0 1/

⇒
2

1/
⇒
6 −2/

⇒
6 1/

⇒
6

)

(5.2.2)

we get x = (1/6, 1/6, 2/3)∀. Similarly, corresponding to v = (
⇒
3/2, 1/2)∀ and

v = (0,−1)∀, we get x = (2/3, 1/6, 1/6)∀ and x = (1/6, 2/3, 1/6)∀, respectively.
This can also be viewed graphically:

The relationship between the parameter vectors β and τ ← = (τ0, τ
∀)∀ in models

(5.1.12) and (5.1.14) is given by

τ ← = Rβ, (5.2.3)

where R is a p × p matrix given by

R =
(
1 0
0 P

)(
x∀
0

H

)

(5.2.4)

with p = (q + 1)q/2. Since the two matrices on right-hand side of (5.2.4) have rank
q, using Sylvester’s inequality, we have rank I = q. Hence, we can also represent
(5.2.3) as

β = R−1τ . (5.2.5)

For a given design ξ in (5.1.11), we can obtain estimate τ̂ of τ and hence β̂ of β
using (5.2.5). Moreover, the dispersion matrix of the two estimates are related by

Disp(β̂) = R−1 Disp(τ̂ )R∀−1.

Hence, the Loewner order domination of a design in terms of τ also applies to β.
We can summarize the above findings in the following theorem.

Theorem 5.2.2 The unique Kiefer optimal moment matrix is

M =
(
1 0
0 Ik

)

The following theorem is also useful in finding a Kiefer optimal design.

Theorem 5.2.3 The moment matrix remains invariant under rotation of the axes
and retains the property of Kiefer optimality.
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Proof Let D be a design which is Loewner optimal.

For the first degree model, we have

W = (1, D).

Writing W ← = (1/N 1/2)W, we get M← = W ←∀W ← = Ik+1.

Let D← be a design obtained from D by a rotation of the axes. Then,

D← = DU,

where U (k × k) is an orthogonal matrix.
Let, WU = (1, D←) = WU←, where

U← =
(
1 0
0 U

)

is a (q × q) orthogonal matrix.
Hence,

WU = (1, D←) = WU←.

Then, it is easy to see that the moment matrices corresponding to W and WU are
identical.

Using Theorem 5.2.3, we have that any three points on the circumference of the
circle in Fig. 5.1, which form an equilateral triangle, are Kiefer optimal.

Fig. 5.1 Support points of the optimal first order design
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5.2.2 Second-order designs

For the second degree model (5.1.17), one can find optimum designs in terms of the
q − 1 dimensional transformed vector v. However, it is more convenient working
with the Kronecker product representation of the model (cf. Pukelsheim 1993).

A Kronecker product representation:
Model (5.1.17) can be written as

ηx = x∀Bx = (x ∞ x)∀β←,

where (x ∞ x) is the symbolic direct product of the two vectors given by (x ∞ x)∀ =
(x21 , x1x2, x1x3, . . . , x1xq , x2x1, . . . , x2xq , . . . , x2q ) and β← = −→

B = (β←
11,β

←
12, . . . ,

β←
1q ,β

←
21, . . . ,β

←
2q , . . . ,β

←
q1, . . . ,β

←
qq)

∀, where β←
i i = βi i ,β

←
i j = β←

j i = βi j/2, for
i < j.

Using the same transformations as before, we can express the response function
ηx in terms of v via z, viz.:

ηv = τ0 + v∀τ 1 + (v ∞ v)∀τ 2

= (1,v∀, (v ∞ v)∀)(τ0, τ ∀
1, τ

∀
2)

∀

= h∀(v)τ (5.2.6)

where

h∀(v) = (1,v∀, (v ∞ v)∀), τ = (τ0, τ
∀
1, τ

∀
2)

∀,
τ0 = θ0, τ 1 = P(θ1 + θ2), τ 2 = (P × P)θ3, (5.2.7)

and

θ0 = (x0 ∞ x0)
∀β←

θ1 = (h/q)

⎝

⎞
⎞
⎟

1∀ 0∀ 0∀ . . . 0∀
0∀ 1∀ 0∀ 0∀
. . . . . . . . . . . . . . .

0∀ 0∀ 0∀ 1∀

⎠





β← = (h/q)(1∀ ∞ Iq)β
∀,β←

j = (β←
j1,β

←
j2, . . . ,β

←
jq)

∀

θ2 = (h/q)(1∀ ∞ Iq)P23β
←,θ3 = h2β← (5.2.8)

where P23 = (e1, e3, e2, e4, . . . , eq), ei being a unit vector with the i-th element 1
and all other elements 0.

Combining above, the relation between β← and τ can be expressed as

τ = T β← (5.2.9)
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where

T = T2T1,

T1 =
⎝

⎟
(1/q)2(1 ∞ 1)∀
(h/q)(I ∞ 1∀)(I + P23

h2 I

⎠

 , T2 =

⎝

⎞
⎞
⎟

1 0 0
0 P 0

0 0 P ∞ P

⎠



 (5.2.10)

Because of the linear relationship between τ andβ←, a design with Loewner order
dominance in terms of τ also carries over to β←. The optimality considerations in
terms of v is a standard one in the context of response surface designs, and Mandal
et al. (2013) exploited the standard results already available and then determined the
optimum designs in the x-space through reverse transformation.

Consider a central composite design (CCD) ξ← in the domain {v : v∀v ≤ 1},
which is a mixture of three blocks of designs viz. cubes ξc, stars ξs and center points
ξ0 with suitable weights, where

ξc = regular 2k−r fraction of the full factorial design (with levels ±1/
⇒

k),which
is of resolution V (this ensures the estimation of all the parameters of the model.
However, for k < 5, we have to take 2k full factorial design),

ξs = set of star points of the form (±1, 0, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . ,
(0, 0, . . . ,±1),
ξ0 = {v | v∀v = 0}.
Let ξ← be given by

ξ← = (1 − α)ξ0 + α
≡
ξ , 0 < α < 1,

where

≡
ξ = ncξc + nsξs

n
, nc = k2, ns = 2k−r , n = 2k−r nc + 2kns .

Such a design ξ← is completely characterized by α.
For the model (5.2.6), the following result holds:

Theorem 5.2.4 For the estimation of τ , the class of central composite designs
(CCD) is complete in the sense that, given any design ξ, there is always a CCD
which is better in terms of

(i) Kiefer ordering
(ii) φ-optimality,

provided it is invariant with respect to orthogonal transformation.
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(cf. Pukelsheim 1993).
Hence, the optimality of a CCD for the model (5.2.6) follows. Then, the optimum

support points in terms of the original mixture components can be directly obtained
from the transformations (5.1.3) and (5.1.10).

As we can express the parameters of the original model (5.1.17) as

β = (β11,β12, . . . ,β1q ,β22,β23, . . . ,βqq)
∀ = Lβ←,

for some matrix L of order
q(q + 1)

2
× q2, it clearly follows that a design which has

Loewner Order Dominance for β← will also have Loewner Order Dominance for β.
We, thus, have the following theorem.

Theorem 5.2.5 The Kiefer optimal design for the estimation of parameters in a
quadratic mixture model (5.1.17) having restricted experimental region (5.1.1) is
obtained from a CCD, which is Kiefer optimal for the model (5.1.2), by using the
transformations (5.1.3) and (5.1.10).

It may be noted that the optimal value of α is determined from the optimality
criterion used.

Example 5.2.1 Let us consider a three-component mixture. Here, we have k = 2. In
order to estimate the parameters of the transformed model, we consider a CCD with
the following support points:

(i) 4 star points: (±1, 0), (0,±1)
(ii) 22 factorial design points: 1⇒

2
(−1,−1), 1⇒

2
(−1, 1), 1⇒

2
(1,−1), 1⇒

2
(1, 1)

(iii) central point: (0, 0).

Let H = 6−1/2 I3.
Using the reverse transformation with

P =
(−1/

⇒
2 0 1/

⇒
2

1/
⇒
6 −2/

⇒
6 1/

⇒
6

)

, (5.2.11)

we get the nine support points in terms of x as:

1.
⎪
1
3 + 1

2
⇒
3
, 1
3 ,

1
3 − 1

2
⇒
3

⎨
;

2.
⎪
1
3 − 1

2
⇒
3
, 1
3 ,

1
3 + 1

2
⇒
3

⎨
;

3.
( 1
6 ,

2
3 ,

1
6

⎫ ;
4.

( 1
2 , 0,

1
2

⎫ ;
5.

⎪
1
3 + 1

2
⇒
6
, 1
3 + 1

3
⇒
2
, 1
3 − 1

2
⇒
6

− 1
3
⇒
2

⎨
;

6.
⎪
1
3 − 1

2
⇒
6

− 1
6
⇒
2
, 1
3 + 1

3
⇒
2
, 1
3 + 1

2
⇒
6

− 1
6
⇒
2

⎨
;

7.
⎪
1
3 + 1

2
⇒
6

+ 1
6
⇒
2
, 1
3 − 1

3
⇒
2
, 1
3 − 1

2
⇒
6

+ 1
6
⇒
2

⎨
;
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Fig. 5.2 Support points of optimal second-order design

8.
⎪
1
3 − 1

2
⇒
6

+ 1
6
⇒
2
, 1
3 − 1

3
⇒
2
, 1
3 + 1

2
⇒
6

+ 1
6
⇒
2

⎨
;

9.
( 1
3 ,

1
3 ,

1
3

⎫
.

Graphically, the support points are displayed in Fig. 5.2.

Remark 5.2.1 It can be easily shown that a design that is Kiefer optimal for any
given P will remain so when P is replaced by P← = PT, where T is a q × q
permutation matrix, that is, a Kiefer optimal design will remain Kiefer optimal for
any permutation of the mixing components.
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Chapter 6
Optimal Mixture Designs for Estimation
of Natural Parameters in Other Mixture
Models

Abstract In this chapter, we focus on finding optimum mixture designs for the
estimation of natural parameters of models other than that of Scheffé viz., Becker’s
models, Darroch–Waller [D–W] model and Log-contrast model. It is also equally
fascinating to note that so much has been done in these other mixture models as well.
We mainly review the results that are already available and some new findings are
presented.

Keywords Becker’s models · Darroch–Waller model · Log-contrast model ·
Models with inverse terms · Estimation of parameters · Specific optimum designs

6.1 Introduction

In Chap. 4, we have discussed the optimality aspects of mixture designs for the
estimation of natural parameters of Scheffé’s models of different degrees. In Chap. 1,
we have introduced different models in representing the mean response function. In
this chapter, we will concentrate on finding optimum designs for the estimation of
parameters of some models other than that of Scheffé.

6.2 Becker’s Models

As was mentioned in Chap. 1, Becker (1968) proposed three distinct additive and
homogeneous mixture models of degree one, involving synergism, as follows [see
also Cornell and Gorman (1978)]:
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DOI: 10.1007/978-81-322-1786-2_6, © Springer India 2014

http://dx.doi.org/10.1007/978-81-322-1786-2_4
http://dx.doi.org/10.1007/978-81-322-1786-2_1
http://dx.doi.org/10.1007/978-81-322-1786-2_1


76 6 Other Mixture Models for Estimation of Natural Parameters

η(x) = E(Y | x) =
∑

i

βi xi +
∑

i< j

βi j
xi x j

xi + x j
+ · · ·

+
∑

i1<i2<···<ir

βi1,i2,...,ir
xi1xi2 . . . xir

(xi1 + xi2 + · · · + xir )
r−1 (6.2.1)

η(x) = E(Y | x) =
∑

i

βi xi +
∑

i< j

βi j min(xi , x j ) + · · ·

+
∑

i1<i2<...<ir

βi1,i2,...,ir min(xi1 , xi2 , . . . , xir ) (6.2.2)

η(x) = E(Y | x) =
∑

i

βi xi +
∑

i< j

βi j (xi x j )
1/2 + · · ·

+
∑

i1<i2<···<ir

βi1,i2,...,ir (xi1xi2 . . . xir )
1/r . (6.2.3)

Liu and Neudecker (1997) introduced a weighted simplex-centroid design (WSCD)
[afterward called weighted centroid design (WCD) by Draper and Pukelsheim
(1999)] for a class of mixture models to which Becker’s homogeneous response
functions of degree one belong and attempted to find A-, D-, and I -optimal alloca-
tions of observations within this class of designs. They observed that for the model
(6.2.2) with r = 2, the D-optimum design in WCD is not optimum in the entire
class, when q > 2.

Pal et al. (2011a, b) restricted their investigations to r = 2 in finding D- and
A-optimum designs for the models (6.2.1)–(6.2.3) in the entire class of competing
designs with q = 3 components. For model (6.2.1) with q = 2, it is easy to observe
that (2, 2) simplex design with equal mass at the support points is D-optimum. The
same is true for models (6.2.2) and (6.2.3) as well. For A-optimality criterion, a
design, which attaches weights α, α, and 1 − 2α at the support points (1, 0), (0, 1),
and (1/2, 1/2) respectively, is optimum in the entire class, where α = ≥

2/(
≥
2 + 1)

for the models (6.2.2)–(6.2.3). Note that for q = 2, the model (6.2.1) reduces to a
linear homogeneous model of Scheffé.

As mentioned above, Becker’s models (6.2.1)–(6.2.3) consider all synergistic
effects between components. However, in practice, it is quite possible to have a
situation where only some of these effects exist. Pal et al. (2011a, b) considered
three-component mixture models of the type (6.2.1)–(6.2.3) with synergism between
some or all components and attempted to find optimum designs for the estimation of
the model parameters, using D- and A-optimality criteria.

Consider model (6.2.1) with exactly one synergistic effect, say involving the first
two components, Observe that apart from the synergistic effect β12, other terms are
linear in the three components x1, x2 and x3. For such a model, it follows that the
support points of the optimum design, for the estimation of parameters with respect
to all the well-known optimality criteria, are the three vertices of the simplex. Since
synergism is present between x1 and x2, and the models are invariant with respect
to these two components, (1/2, 1/2, 0) is also likely to be a support point of the
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optimum design. In view of this, Pal et al. (2011a, b) confined to the subclass of
designs D1 with support points as follows:

x1 x2 x3 Mass

1 0 0 α1/2
0 1 0 α1/2
1/2 1/2 0 α2
0 0 1 α3

where αi > 0, i = 1, 2, 3, α1 + α2 + α3 = 1.
Since we are now in the framework of a saturated design, D-optimum design

ξ0 within D1 assigns weight 1/4 to each of its support points. Using equivalence
theorem of Kiefer (1974), the authors established the D-optimality of ξ0 in the entire
class of designs. This result also applies to the other two Becker’s models displayed
above. However, verification by way of application of Kiefer’s Equivalence Theorem
is highly non-trivial.

For the A-optimality criterion as well, the authors heuristically confined to D1.
The optimum values of α1, α2, and α3 came out as 0.4721, 0.4223, and 0.1056,
respectively, for model (6.2.1); 2

≥
2/(3 + 2

≥
2), 2/(3 + 2

≥
2), and 1/(3 + 2

≥
2),

respectively, for other twomodels (6.2.2)–(6.2.3). Then, the authors verified the opti-
mality of these designs in the entire class using the equivalence theorem numerically.

Pal et al. (2011a, b) also considered a model where synergism is present between
x1 and x2, as well as between x1 and x3.As before, because of invariance property of
both the criteria with respect to the last two components, they restricted their search
to the following subclass D2 of designs

x2 x3 Mass x1 Mass

1 0 1/2
0 1 1/2 0 α1
0 0 1 1 α2
1 − a 0 1/2
0 1 − a 1/2 a α3

where α1 + α2 + α3 = 1;α1, α2, and α3 being the masses attached to x1 = 0, 1,
and a respectively, and a ≤ (0, 1). The third column gives the masses for different
(x2, x3) combinations when x1 is given. It is noted that the mass at each of the
five support points is to be taken as 1/5 since the design is saturated and we are
looking for D-optimal design. Computations also provide optimum value of ‘a’ to
be 1/2. Thus, the D-optimum design ξ0 in D2 puts mass 1/5 at each of the extreme
points (1, 0, 0), (0, 1, 0) and (0, 0, 1), and at each of the two mid-points of edges
(1/2, 1/2, 0) and (1/2, 0, 1/2). The authors then examined the optimality or otherwise
of ξ0 in the entire class using equivalence theorem. Though the design ξ0 satisfies
the equivalence theorem for models (6.2.2)–(6.2.3) at all points in χ , but it fails to
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satisfy for model (6.2.1) for some points in the neighborhood of (1/3, 1/3, 1/3). This
is a strikingly surprising result and it throws the optimality of the above design in
question when we restrict to the entire domain χ . However, the absolute difference
between the L.H.S. and R.H.S. of the equivalence theorem for these points is less
than 0.2, which means that the absolute difference is less than 4%. Hence, the design
ξ0 may be regarded as nearly optimum in the entire class of competing designs. Of
course, starting with ξ0, one may use some standard algorithm (cf. Silvey 1980) to
find an even better design. We do not discuss this aspect any further.

For A-optimality criterion, for a design ξ ≤ D2, Pal et al. (2011a, b) derived the
optimal values of α1, α2 and α3 and these are given by α1 = 0.2824,
α2 = 0.1996, α3 = 0.5180 which are incidentally the same for all the three models.
Let us denote such a design by ξ1. To verify the optimality or otherwise of ξ1 in the
entire class, they took recourse to the Equivalence Theorem. Numerical computa-
tions show that for ξ∀ = ξ1, equality in the condition of the equivalence theorem
holds at all the support points for all the three models. The other condition of the
equivalence theorem is satisfied at all other points for models (6.2.2)–(6.2.3) but is
violated at many points in the domain χ , including the overall centroid point (1/3,

1/3, 1/3), and some points of the form

(
1 − b

2
,
1 − b

2
, b

)

for model (6.2.1). Hence,

the design ξ1 is A-optimum for models (6.2.2)–(6.2.3) but not for model (6.2.1). In
view of the above observation, to find A-optimum design for model (6.2.1), Pal et al.
(2011a) modified the classD2 toD∀

2 involving six support points:

x2 x3 Mass x1 Mass

1 0 1/2
0 1 1/2 0 α1
0 0 1 1 α2
1 − a 0 1/2
0 1 − a 1/2 a α3
1−b
2

1−b
2 1 b α4

Numerical computation shows that, within the class of designs D∀
2, the criterion

function is minimized for the design ξ0 having

a = 0.5155, b = 0.395

α1 = 0.28365, α2 = 0.16769, α3 = 0.42879, α4 = 0.11987.

It has been shownby the authors computationally that the condition of the equivalence
theorem is satisfied and ξ0 may indeed be considered asA-optimum in the entire class.

Pal et al. (2011a, b) also considered the case of three synergistic effects with
the response function. Since for both D- and A-optimality criteria, the problem is
invariant with respect to all the components, they proposed the following subclass of
(q, 2) simplex designsD3 with weights α/3 at the three vertices and (1−α)/3 at the
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three midpoints of the edges, where 0 < α < 1. As mentioned earlier, the number
of support points of a design ξ inD3 being equal to the number of parameters to be
estimated, for the D-optimality criterion, the masses at the support points must be
all equal to 1/6. The authors observed that the above design is not D-optimum in the
entire class for any of the three models which was also observed earlier by Liu and
Neudecker (1997). The authors then modified the subclass of designsD3 toD∀

3, by
including (1/3, 1/3, 1/3) as a support point and obtained D-optimum design in this
class. Such a design attaches weight α1 at each of the axial points, α2 at each of the
midpoints of the edges and, finally, α3 at the overall centroid point. The optimum
values of αi ’s came out as

α1 = α10 = 0.16192, α2 = α20 = 0.14557, α3 = α30 = 0.07753, (6.2.4)

for all the three models. Moreover, by numerical investigation, they had enough
reasons to claim that the design is D-optimum in the entire class.

For the A-optimality criterion, they obtained best design again in the subclassD3.
However, as in D-optimality criterion, here again this design is not optimum in the
entire class. Since the point (1/3, 1/3, 1/3) violated the condition of the equivalence
theorem, they found best design inD∀

3. The A-optimal design ξ0,withinD∀
3, has the

same weight (6.2.4) as for D-optimality for model (6.2.1) and

α1 = α10 = 0.1423, α2 = α20 = 0.1598, α3 = α30 = 0.0313

for models (6.2.2)–(6.2.3). Finally, they verified the above design to be A-optimum
in the entire class.

Becker’s minimum polynomial of order r on the (unit) q-simplex including the
minimum functions over all subsets of at most r ≤ q variables is considered by
Hilgers (2000):

ηx =
q∑

i=1

βi xi +
q∑

r=2

∑

1≤il<i2<...<ir ≤q

βi1,i2,...,ir min(xi1 , xi2 , . . . , xir )

The model was applied in different kinds of scientific areas. D-optimal approximate
designs for this model are shown to be supported on the barycenters. The minimum
support design concentrated on the barycenters corresponding to the regression func-
tions is optimal for r = q, whereas it fails to be optimal for r < q.

Heiligers and Hilgers (2003) established a close relation between admissible mix-
ture and admissible mixture amount designs in additive and homogeneous models.
This particularly allows us to obtain D-, A-, and V-optimal mixture amount from
optimal mixture designs and vice versa. The authors presented some examples for
Becker’s and Scheffé’s mixture models.

Itmaybementioned that the problemsof determining optimumdesigns for general
r and q and for other optimality criteria are still open.
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6.3 Darroch–Waller Model

The following additive quadratic model for the mean response function ηx was
studied by Darroch and Waller (1985) for the case of q = 3:

ηDW2(x) =
q∑

i=1

αi xi +
q∑

i=1

αi i xi (1 − xi ). (6.3.1)

The model has been found to fit observed data well in many cases. For example,
the model (6.3.1) fitted to the 6-component gasoline blending data for ‘Motor’ in
Snee (1981) gave R2 = 0.990 and R2 (adjusted) = 0.986, and when fitted to the
4-comonent flare data in Snee (1973), gave R2 = 0.876 and R2 (adjusted) = 0.751.
For q = 3, the model (6.3.1) and Scheffé’s quadratic model are equivalent, but for
q = 2 the parameters of the model (6.3.1) are not uniquely determined. For q ← 4,
(6.3.1) is a special case of Scheffé’s quadraticmodel with the coefficients of Scheffé’s
model being governed by a system of linear constraints. Themodel (6.3.1) is additive
in x1, x2, . . . , xq , and has fewer parameters than the Scheffé’s model when q ← 4.

Chan et al. (1995, 1998b) proved that the D-optimal saturated axial design has
support points x ↔ (1, 0, . . . , 0) and x ↔ (1 − (q − 1)1, 1, . . . , 1), where δ1 =
1/(q − 1) when 3 ≤ q ≤ 6, and δ1 = [(5q − 1) − (9q − 1)(q − 1)1/2]/(4q2) when
q ← 7.

For A-optimality criterion, by mimicking the arguments of Atwood (1969), Chan
et al. (1998a) showed that only barycentres are possible support points for model
(6.3.1). They obtained numerically the weights at the support points for different
values ofq and verified theA-optimality in the entire class using equivalence theorem.
For completeness, we reproduce Table 6.1.

6.4 Log-Contrast Model

Different types of mixture models, such as polynomial and log-contrast models,
have been developed to describe responses under mixture experiments. A linear log-
contrast model introduced by Aitchison and Bacon-Shone (1984) is of the form

η(x) = β0 +
q∑

i=1

βi log xi ,

q∑

i=1

βi = 0. (6.4.1)

The model (6.4.1), because of
⎧q

i=1βi = 0, can also be written in terms of zi s as

η(x) = β0 +
q−1∑

i=1

βi zi , zi = log(xi/xq). (6.4.2)
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Table 6.1 A-optimal simplex-centroid designs for ηDW2(x)

q C(q, 1)r1 C(q, 2)r2 C(q, 3)r3 C(q, 4)r4

3 0.3923 0.6077 0 –
4 0.4142 0.5858 0 0

5 0.3496 0 0.6504 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

21 0.4010 0 0.5990 0

22 0.3946 0 0.4687 0.1367
23 0.3881 0 0.3328 0.2791
24 0.3818 0 0.1974 0.4208
25 0.3769 0 0.0676 0.5565

26 0.3732 0 0 0.6268
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

⇒ ∞ 0.3846 0 0 0.6154

The choice of the divisor xq in zi in Eq. (6.4.2) is arbitrary; indeed any one of
x1, . . . , xq−1 can be used as the divisor to produce different equivalent forms of η(x).

Writing β = (β0, β1, . . . , βq−1)
→ and z = (1, z1, . . . , zq−1)

→, the form of Eq. (6.4.2)
of η(x) can be expressed as η(x) = β →z. The form of Eq. (6.4.1) is more convenient
for interpretation purposes, while Eq. (6.4.2) is more convenient for estimation of
coefficients. The model η(x) is suitable for describing a response that has drastic
changes near the boundary of the simplex. This property of η(x) and the usefulness
of η(x) in studying the additivity effect and inactiveness of mixture components on
the response are studied in detail in Aitchison and Bacon-Shone (1984).

Themodelη(x) inEq. (6.4.2) is defined only in the interior ofX , because log xi ⇒
−∞ as xi ⇒ 0+. For a given fixed constant δε(0, 1), define a = − log δ(>0), and
define the subset X (δ) in the interior of X by

X (δ) = {(x1, . . . , xq) ε X : δ < xi/x j < 1/δ (i, j = 1, . . . , q)}

in which the model η(x) is well defined. Diagrams of X (δ) for q = 3, 4 are shown
in Chan (1988).

Chan (1988) showed that, if q ← 3 is an odd integer, a D-optimal design for
estimation of a full set of orthonormal beta-contrasts assigns weight a/C(q, (q −
1)/2) to each x ↔ (δ, . . . , δ, 1, 1, . . . , 1)((q − 1)/2 delta and (q + 1)/2 ones) and
weight b/C(q, (q + 1)/2)) to each x ↔ (δ, . . . , δ, 1, 1, . . . , 1)((q + 1)/2 delta
and (q − 1)/2 ones) respectively, where a, b ≤ (0, 1) are any numbers such that
a + b = 1. This design is also A-optimal when q > 3 is an odd integer (Chan and
Guan 2001).
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If q ← 2 is an even integer, (cf. Chan andGuan 2001) theD-optimal design assigns
weight 1/C(q, q/2) to each x ↔ (δ, . . . , δ, 1, 1, . . . , 1)((q/2 deltas and q/2 ones).
This design in also A-optimal when q is an even integer.

As indicated by the authors, the advantage of a log-contrast model lies in the
fact that as zi = log(xi/xq) can be varied independently, the polynomial forms in
zi s can be full in the sense of including all terms of appropriate degree, as against
Scheffé’s (1958) polynomial models in xi s which require the omission of certain
terms to ensure identifiability. Moreover, this model can be used when the response
changes drastically as x approaches the boundary of the domain χ .

Huang and Huang (2009a) presented an essentially complete class of designs
under the Kiefer ordering for the linear log-contrast model. Based on the complete-
ness result, φp-optimal designs for all p,−∞ ≤ p ≤ 1 including D- and A-optimal
are obtained.

The quadratic log-contrastmodel proposed byAitchison andBacon-Shone (1984)
is given by

ηx = β0 +
q−1∑

i=1

βi log(xi/xq) +
q−1∑

i=1

q−1∑

j=1

βi j log(xi/xq) log(x j/xq). (6.4.3)

Chan (1992) discussed the D-optimal design for parameter estimation in (6.4.3)
with experimental domain restricted to

X ∀(δ) = {(x1, x2, . . . , xq)→ ≤ rel.int.X : δ ≤ xi/xq ≤ 1/δ, i = 1, 2, . . . , q − 1},
δ ≤ (0, 1),

where relative interior of X is denoted by rel. int. X . Note that the relative interior
is defined in relation to a specified value of parameter 0 < δ < 1.

Huang and Huang (2009b) attempted to find Ds-optimal designs for discrimi-
nating between linear and quadratic log-contrast models by further restricting the
experimental region to χ(δ) in the relative interior of X by fixing δ ≤ (0, 1) and
defining

X (δ) = {(x1, x2, . . . , xq)→ ≤ rel.int.X : δ ≤ xi/x j ≤ 1/δ,

for all i, j = 1, 2, . . . , q}. (6.4.4)

Setting ti = − log
⎪

xi
xq

⎨
/ log δ, model (6.4.3) can be written as
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η(x) ≡ η(t) = λ0 +
q−1∑

i=1

λi ti +
q−1∑

i=1

q−1∑

j=i

λi j ti t j

= f →(t)λ, (6.4.5)

where

f (t) = (1, t1, t2, . . . , tq−1, t21 , t22 , . . . , t2q−1, t1t2, t1t3, . . . , tq−2tq−1)
→,

λ = (λ0, λ1, . . . , λq−1, λ11, λ22, . . . , λq−1,q−1, λ12, λ13, . . . , λq−2,q−1)
→,

λ0 = β0, λi = βi (− log δ), λi j = βi j (log δ)2,

and the experimental domain is given by

F = {t = (t1, t2, . . . , tq−1)
→ ≤ [−1, 1]q−1: ti − t j ≤ [−1, 1]

for all i, j = 1, 2, . . . , q − 1}.

Let ηi be the uniform measure on the vertices of F with i coordinates equal to 1 or
−1, denoted by

ηi =

⎛
⎜⎝

⎜⎞

t ↔ (1, . . . , 1, 0, . . . , 0)→, t ↔ (−1, . . . ,−1, 0, . . . , 0)→

1

2C(k − 1, i)

1

2C(k − 1, i)

⎟
⎜⎠

⎜

where t ↔ r means t = Pn r for some Pn ≤ Perm(k − 1), with Perm(k − 1) being
the symmetric group consisting of all the (k − 1) × (k − 1) permutation matrices.

Using the technique of Lim and Studden (1988) for the invariant designs with
respect to the group consisting of permutations and sign changes of the coordinates
and theEquivalenceTheorem todetermine the Ds -optimal designs for the polynomial
regression in q variables of degree n on the q-cube [−1, 1]q , Huang and Huang
(2009b) obtained optimum designs for the estimation of coefficients associated with
second-order terms in (6.4.5). They showed that for a symmetric subspace of the
finite dimensional simplex, there is a Ds-optimal design with the nice structure that
puts a weight 1/2k−1 on the centroid of this subspace and the remaining weight is
uniformly distributed on the vertices of the experimental domain.

Theorem 6.4.1 For the second-degree model (6.4.5) on the experimental domain F
with q ← 3, a Ds-optimal for the quadratic parameters λi j , 1 ≤ i ≤ j ≤ k − 1, is

η∀ = 1
2k−1 η0 +

k−1∑

1

C(k−1,i)
2k−1 ηi .
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Finally, Huang and Huang (2009b) discussed the Ds-efficiency of the D-optimal
design for quadratic model and the design given by Aitchison and Bacon-Shone
(1984).

6.5 Models with Inverse Terms

The following models with inverse terms (Draper and John 1977a) are used when
the response changes drastically as x approaches the boundary of the factor space χ :

η1(x) = ηq,1(x) +
q∑

i=1

β−i

xi

η2(x) = ηq,2(x) +
q∑

i=1

β−i

xi

where ηq,1(x), ηq,2(x) are the Scheffé linear and quadratic polynomials. Cubic and
quartic polynomials can also be extended to include inverse terms. These models are
not defined on the boundary of χ and the following design space may instead be
used:

χ∀∀(δ) = {x = (x1, x2, . . . , xq) ≤ χ , xi ← δ, i = 1, 2, . . . , q}

when q = 2, for the model η1(x) in χ∀∀(δ), the D-optimum design assigns measure
1/4 to each of the points x ↔ (δ, 1−δ) and x ↔ (δ1, 1−δ1)where δ1 = (1− 1

2 (1−
√
1 + 6δ − 6δ2 − 2

≥
4δ + 5δ2 − 18δ3 + 9δ4)). For model η2(x) in χ∀∀(δ), the

D-optimum design assigns measure 1/5 to each of the points x ↔ (δ, 1 − δ), x ↔
(δ1, 1 − δ1) and x = (1/2, 1/2), where δ1 = [1 − 1 + 2(δ − δ2)/3 − 2(12δ
−11δ2 − 2δ3 + δ4/3)1/2

1/2 ]/2 (cf. Chan 2000). The analytic solution for general
q is not yet known for q ← 3. However, Draper and John (1977b) obtained numeri-
cal solutions for q = 3, 4 with δ = 0.05.
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Chapter 7
Optimal Designs for Estimation of Optimum
Mixture in Scheffé’s Quadratic Model

Abstract This chapter examines the optimum designs for estimating the opti-
mum mixing proportions in Scheffé’s quadratic mixture model with respect to the
A-optimality criterion. By optimummixing proportion, we refer to the one that max-
imizes the mean response. Since the dispersion matrix of the estimate depends on
the unknown model parameters, a pseudo-Bayesian approach is used in defining the
optimality criterion. The optimum designs under this criterion have been obtained
for two- and three-componentmixtures. Further, usingKiefer’s equivalence theorem,
it has been shown that under invariant assumption on prior moments, the optimum
design for a q-component mixture is a (q, 2) simplex lattice design for q = 3, 4.

Keywords Scheffé’s quadratic mixture model · Estimation of optimum mixing
proportions · Trace criterion · Pseudo-Bayesian approach · Invariance · (q , 2)-
simplex lattice design · Kiefer’s equivalence theorem

7.1 Introduction

Asmentioned inChap.3, the response in a q-componentmixture experiment depends
on the proportions x1, . . . , xq of the mixing ingredients, and the experimental region
is given by

X = {(x1, x2, . . . , xq) | xi ≥ 0, i = 1, 2, . . . , q;
∑

i

xi = 1}. (7.1.1)

Scheffé (1958) introduced models of different degrees in canonical forms to
represent the mean response function in a mixture experiment. The models have
been reviewed in details in Chap.3. The problem of finding optimum designs for
estimation of the model parameters has been discussed in Chap.4. However, the
most important problem, no doubt, is to estimate the optimum proportions of mixing
components that maximize the mean response.

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 87
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Box andWilson (1951) first systematically considered the problemof determining
the optimum factor combination in a quantitative multi-factor experiment. Later, a
number of contributions along this line have been reported in the literature, see
for example, Mandal (1978), Silvey (1980), Chatterjee and Mandal (1981), Mandal
(1986),Mandal andHeiligers (1992), Fedorov andMüller (1997),Müller andPazman
(1998), Cheng et al. (2001), Melas et al. (2003) In the following sections we discuss
optimality results relating to estimationof optimummixture combinationwith respect
to the A-optimality criterion.

7.2 Estimation of Optimum Mixing Proportions

Scheffé’s quadratic mixture model gives the mean response as

η(x) = σ0 +
q∑

i=1

σi xi +
q∑

i< j=1

σi j xi x j . (7.2.1)

Because of the constraint
∑q

i=1xi = 1, (7.2.1) can be equivalently represented
as a standard mixture model:

η(x) =
q∑

i=1

σi i x2i +
q∑

i< j=1

σi j xi x j = x ≤ Bx, (7.2.2)

where x≤ = (x1, x2, . . . , xq) and B = ((1+βi j )σi j/2), βi j being the kronecker delta
with βi j = 1 for i = j and βi j = 0 for i ∀= j. We can further write (7.2.2) in the
general linear model form, viz.

η(x) = f (x)≤β,

where

f (x) = (x21 , x22 , . . . , x2q , x1x2, . . . , x1xq , x2x3, . . . , x2xq , . . . , xq−1xq)≤,
β = (σ11, . . . , σqq , σ12, . . . , σ1q , σ23, . . . , σ2q , . . . , σq−1,q)≤.

Suppose the response function (7.2.2) is concave with a finite maximum in the
interior of the experimental region (7.1.1). Then, the optimum mixing combination
maximizing the mean response is obtained as

γ = β−1B−11q , (7.2.3)

where 1q is an unit vector and β = (1q
≤ B−11q). It is clear that γ is a nonlinear

function of the model parameters.
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Given a continuous design α of the type (4.1.2), the unknown parameters σi j s can
be estimated by σ̂i j s and an estimate of γ can be obtained as

γ̂ = β̂−1 B̂−11q . (7.2.4)

In large samples, adopting the β-method, the dispersion matrix for γ̂ is given by

E[(γ̂ − γ )(γ̂ − γ )≤] = A(γ )M−1(α)A≤(γ ), (7.2.5)

where

A(γ ) =
(

φγ

φσ11
,

φγ

φσ22
, . . . ,

φγ

φσqq
,

φγ

φσ12
,

φγ

φσ13
, . . . ,

φγ

φσq−1,q

⎧

,

and the information (moment) matrix of α for estimating β is

M(α) =
∑

i

pi f (xi ) f (xi )
≤.

It can be shown that
A(γ ) = B−1λ(γ ), (7.2.6)

where λ(γ ) is given by

λ(γ ) =

⎪

⎨
⎨
⎨
⎨
⎨
⎛

2(ϕ 2
1 − ϕ1) 2ϕ 2

2 . . . . . . . . . . . . 2ϕ1ϕ2 − ϕ2 . . . . . . . . . . . . 2ϕq−1ϕq

2ϕ 2
1 2(ϕ 2

2 − ϕ2) . . . . . . . . . 2ϕ1ϕ2 − ϕ2 . . . . . . . . . . . . 2ϕq−1ϕq

. . . . . . . . . . . . . . . . . . . . . . . . . . .

2ϕ 2
1 2ϕ 2

2 . . . . . . . . . . . . 2ϕ1ϕ2 . . . . . . . . . . . . 2ϕq−1ϕq − ϕq

2ϕ 2
1 2ϕ 2

i . . . . . . . . . . . . 2ϕ1ϕ2 . . . . . . . . . . . . 2ϕq−1ϕq − ϕq

⎜

⎝
⎝
⎝
⎝
⎝
⎞

Expressing σi j ’s in terms of bi j ’s, where B−1 = (bi j ), it can be easily checked
that in order that Eq. (7.2.3) holds, the elements of B−1 and γ must satisfy

bi j = βϕ 2
i + (q − 1)d if i = j

= βϕiϕ j − d if i ∀= j. (7.2.7)

where d is a constant given by d = [βqq−2 | B |]−1/(q−1).

The generic constant ’d’ will frequently appear in this chapter.
Then, A(γ ) simplifies to

http://dx.doi.org/10.1007/978-81-322-1786-2_4
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d

⎪

⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎛

−2(q − 1)ϕ1 2ϕ2 . . . 2ϕq ϕ1 − (q − 1)ϕ2 . . . ϕq−1 + ϕq

2ϕ1 −2(q − 1)ϕ2 . . . 2ϕq ϕ2 − (q − 1)ϕ1 . . . ϕq−1 + ϕq

2ϕ1 2ϕ2 . . . 2ϕq ϕ1 + ϕ2 . . . ϕq−1 + ϕq

. . . . . . . . . . . . . . . . . . . . .

2ϕ1 2ϕ2 . . . −2(q − 1)ϕq ϕ1 + ϕ2 . . . ϕq−1 + ϕq

. . . . . . . . . . . . . . . . . . . . .

2ϕ1 2ϕ2 . . . 2ϕq ϕ1 + ϕ2 . . . ϕq−1 − (q − 1)ϕq

2ϕ1 2ϕ2 . . . 2ϕq ϕ1 + ϕ2 . . . ϕq − (q − 1)ϕq−1

⎜

⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎞

(7.2.8)

Anymeasure of accuracy in estimating ϕ will be a function of E[(γ̂ −γ )(γ̂ −γ )≤],
which is found to be dependent on the unknownmodel parameters. Since the mixture
model, in its canonical form, is linear in the parameters, the informationmatrix M(α)

is independent ofβ.Thus, E[(γ̂−γ )(γ̂−γ )≤]depends onγ only through the elements
of A(γ ). Of course, this is built upon the consideration that in the search for optimal
design, one can ‘disregard’ the commonmultiplying factor ‘d’ in A(γ ).The problem
of dependence of a measure on the unknown parameters can be tackled in several
ways as follows:

(a) finding a locally optimum design by putting some specific values to the unknown
parameters:

(b) finding optimum designs for different segments of the domain of unknown para-
meters;

(c) approaching sequentially; or
(d) adopting a Bayesian approach with some prior assumption on the distribution of

the unknown parameters.

Another problem is the choice of the optimality criterion to determine the optimum
design. In view of ϕ ≤1q = 1, the matrix E[(γ̂ − γ )(γ̂ − γ )≤] is singular, and hence,
D-optimality criterion is ruled out. So we consider A-optimality criterion in this
chapter.

Pal andMandal (2006) adopted a pseudo-Bayesian approach to overcome the first
problem. Since, without the factor d, the elements of the matrix A(γ ) are linear in
the γ -components, E[(γ̂ − γ )(γ̂ − γ )≤] involves elements that are quadratic in ϕi s.
Hence, they assumed a priori on the first two moments of the γ -components, viz.

E(ϕ 2
i ) = v, i = 1, 2, . . . , q; E(ϕiϕ j ) = w, i ∀= j = 1, 2, . . . , q; v > 0, w > 0.

(7.2.9)
Here, v < 1/q since 1 = E(	ϕi )

2 = qv + (q − 1)w and w > 0. Moreover,
this is useful in expressing v(w) in terms of w(v). It may further be noted that
1/q2 < v < 1/q.

The justification for taking the expectations of ϕ 2
i s to be equal across all i and also

for taking the product moments to be all equal is that if nothing is known about the
relative influence of the different components, there is no basis for assuming them
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to be unequal. Box and Hunter (1957), while introducing rotatability as a desirable
property of a design, used a similar argument. If, however, some prior knowledge
about the relative importance of different components are available, one can utilize
it to have a prior different from (7.2.9). But, in that case, there is chance of losing the
property of invariance among components, which might create difficulty in finding
a closed form solution to the problem.

7.3 Optimum Mixture Designs Under Trace-Optimality
Criterion

It is to be noted that since γ ≤1q = 1, E[(γ̂ −γ )(γ̂ −γ )≤] is singular. So, as a measure
of comparison of different designs, Pal and Mandal (2006) used the criterion

θ(α) = TraceE{E[(γ̂ − γ )(γ̂ − γ )≤]},

where E stands for expectation with respect to the prior. From (7.2.5), θ(α) can be
written as

θ(α) = Trace{M−1(α)E(A(γ )≤ A(γ )}, (7.3.1)

which is a linear optimality criterion (Fedorov 1972). A design will be said to be
optimum if it minimizes θ(α).

The optimum designs have been explicitly obtained for q = 2, 3 and these are
discussed below.

7.3.1 Case of Two Mixing Components

For the 2-component model, the moment matrix of a design α is given by

M(α) =
⎪

⎛
μ40 μ22 μ31

μ04 μ13
μ22

⎜

⎞ ,

where μi j s denote the product moments of order (i, j), and its inverse is expressed
in the form

M−1(α) =
⎪

⎛
μ40 μ22 μ31

μ04 μ13

μ≤22

⎜

⎞ . (7.3.2)

Whereas μ22 may result in a positive/negative/zero value, it necessarily follows that
μ≤22 is always positive. Consequently, the two are never equal.
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The trace-optimality criterion function θ(α), given by (7.3.1), now simplifies to

θ(α) = 2v(μ40 + μ04) − 2(v − w)(μ13 + μ31) + (v − w)μ≤22 − 4wμ22, (7.3.3)

which is seen to be invariant with respect to themixing components. Hence, using the
result and terminology in Draper and Pukelsheim (1999), one can restrict to the class
of Weighted Centroid Designs (WCDs) in finding the optimum design. It may be
noted that WCDs are symmetric, invariant designs. Mixture designs in this subclass
are denoted by η. In the expression (7.3.3), the parameters ‘v’ and ‘w’ are those in
the prior distribution and are assumed to be known.

For the 2-component mixture, a WCD ‘η’ assigns mass α/2 to each of the vertex
points (1, 0)≤ and (0, 1)≤, and mass (1 − α) to the centroid (1/2, 1/2)≤, 0 < α < 1.
The information matrix based on the design η is given by

M(η) = (1/16)

⎪

⎛
1 + 7α 1 − α 1 − α

1 + 7α 1 − α

1 − α

⎜

⎞ . (7.3.4)

Corresponding to the design η, (7.3.3) reduces to

θ(η) = 2[s/α + t/(1 − α)],

where s and t are both positive and are given by

s = 2(4v − 1) + 1/2, t = 2(4v − 1).

Here,w is replaced by the corresponding expression in terms of v, given immediately
after (7.2.9).

It is easy to see that the optimum choice of α is

αopt = s1/2/(s1/2 + t1/2) (7.3.5)

and the minimum value of θ(η) is given by

θ(η) = 2(s1/2 + t1/2)2.

7.3.2 Case of Three Mixing Components

In this case the moment matrix of an arbitrary mixture design α has the form
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M(α) =

⎪

⎨
⎨
⎨
⎨
⎨
⎨
⎛

μ400 μ220 μ202 μ310 μ301 μ211
μ040 μ022 μ130 μ121 μ031

μ004 μ112 μ103 μ013,

μ220 μ211 μ121
μ202 μ112

μ022

⎜

⎝
⎝
⎝
⎝
⎝
⎝
⎞

where, as before, μi jk denotes the product moment of order (i, j, k).

Writing M−1(α) as

M−1(α) =

⎪

⎨
⎨
⎨
⎨
⎨
⎨
⎛

μ400 μ220 μ202 μ310 μ301 μ211

μ040 μ022 μ130 μ121 μ031

μ004 μ112 μ103 μ013

μ≤220 μ≤211 μ≤121
μ≤202 μ≤112

μ≤022

⎜

⎝
⎝
⎝
⎝
⎝
⎝
⎞

(7.3.6)

where μ≤i jk and μi jk need not be equal, the trace-optimality criterion function θ(α)

reduces to

θ(α) = 24v
⎟
μ400 + μ040 + μ004

⎠
− 24w

⎟
μ220 + μ202 + μ022

⎠

+ 4(6w − 3v)
⎟
μ310 + μ301 + μ013 + μ031 + μ130 + μ103

⎠

− 12w
⎟
μ211 + μ121 + μ112

⎠
+ (12v − 6w)

⎟
μ≤220 + μ≤202 + μ≤022⎠

− 6v
⎟
μ≤211 + μ≤121 + μ≤112⎠ . (7.3.7)

As in the case of two-componentmixtures, (7.3.7) also enjoys the invariance property
with respect to the components of the mixture. Thus, one can restrict to the class of
WCDs, denoted by η, which have as their support points the three vertex points
(η1), the three midpoints of the edges (η2) and the overall centroid point (η3) of the
simplex (7.1.1).

Let the masses assigned to η1, η2, and η3 be given by α1, α2, and α3, respectively
with αi ≥ 0 and 	αi = 1. It is to be understood that all feasible solutions must
ensure positive definiteness of the information matrix. In effect, the WCD η assigns
mass

(i) α1/3 to each of the three vertex points (1, 0, 0)≤, (0, 1, 0)≤ and (0, 0, 1)≤.
(ii) α2/3 to each midpoint of the edges (1/2, 1/2, 0)≤, (1/2, 0, 1/2)≤ and

(0, 1/2, 1/2)≤ and
(iii) α3 to the overall centroid point (1/3, 1/3, 1/3)≤.

Expressing α3 in terms of α1 and α2, the moment matrix M(η) of the design η

comes out to be
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Table 7.1 Optimum values
of α1 and α2 and minimum
θ(η) for some values of v

v α1 α2 Min. θ(η)

0.12 0.2565 0.7434 208.276
0.14 0.3066 0.6934 329.440
0.16 0.3285 0.6715 447.073
0.18 0.3410 0.6590 563.613
0.20 0.3492 0.6508 679.646
0.22 0.3551 0.6449 795.404
0.24 0.3589 0.6411 910.995
0.26 0.3620 0.6380 1026.479
0.28 0.3648 0.6352 1141.888
0.30 0.3670 0.6330 1257.244
0.32 0.3686 0.6314 1430.206
0.33 0.3693 0.6307 1430.206

M(η) =

⎪

⎨
⎨
⎨
⎨
⎨
⎨
⎛

a b b b b c
a b b c b

a c b b
b c c

b c
b

⎜

⎝
⎝
⎝
⎝
⎝
⎝
⎞

,

where a = (1/81)(1 + 26α1 + 19α2/8), b = (1/81)(1 − α1 + 11α2/16),
c = (1/81)(1 − α1 − α2).

After some algebraic simplification, one gets

θ(η) = 6[(16α1 + α2){36v(2α1 + α2) − 3α2}
+ 4 f (1 − 9v)(4α1 + α2)

2]/α1α2(8α1 + α2), (7.3.8)

where

f = −[32α1 + α2 − 2α1(8α1 − α2) − (4α1 + α2)2]/[16α1 + α2 − (4α1 + α2)
2].

Note that, as before,w has been replaced by the corresponding expression in v while
dealing with q = 3.

The problem, therefore, reduces to finding feasible α1, α2 (and hence α3) so as
to minimize (7.3.8) subject to the restrictions α1, α2 ≥ 0, α1 + α2 ≤ 1. However,
it is rather difficult to find a closed form solution of the problem. Table 7.1 gives
the optimum solutions and corresponding values of the criterion function for some
selected values of v.

Remark 7.3.1 One can alternatively find an optimum design by minimizing

∫

Trace{E((γ̂ − γ )(γ̂ − γ )≤)≤}dγ ,
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where the domain of integration, regarded as a function of γ , may be the whole or
a subspace of the simplex, depending on the available knowledge on γ . Note that
γ is otherwise akin to the mixing proportions in the experiment; vide (7.1.1). In
case we deal with the whole of the simplex, it is not hard to show that the above
criterion function is also invariant with respect to the components of the mixture and
the optimum design is therefore a WCD.

Another way of finding an optimum design is by minimizing

max[Trace{E((γ̂ − γ )(γ̂ − γ )≤)≤}],

where the maximum is taken with respect to γ in the simplex (7.1.1) or a subspace
of it. This has been considered in Chap.9. Such studies, in the context of general
response surface design for the estimation of the extreme points, can be found in
Mandal and Heiligers (1992), Müller (1995) and Müller and Pazman (1998).

Remark 7.3.2 With reference to the trace-minimization criterion, Table 7.1 reveals
that for a three-component mixture experiment, the optimum design for estimation
of the optimum mixture puts positive mass at the vertices and the midpoints of the
edges, but zero mass at the overall centroid point. While discussing the estimation of
parameters in the polynomial model of second degree, Kiefer (1961) also obtained
D-optimal designs with support points at the vertices and the midpoint of the edges.
Laake (1975) obtained the same support points in the second degree model using
integrated variance criterion. From the table, it is further evident that the minimum
trace increases with the value of v, which is in agreement with the fact that the more
the variation in the information on γ , the higher is the value of the criterion function.
The same is also true for the case of two-component mixture. This is analytically
verifiable.

Remark 7.3.3 Keeping in view the fact that the trace-optimal design assigns zero
mass at the overall centroid (1/3, 1/3, 1/3), one could start with a subclass of designs
having positive masses at the two other types of points viz., x ←→ (1, 0, 0) and
x ←→ (1/2, 1/2, 0) i.e., one could confine to the points in a (q, 2)-simplex design
and derive optimality results thereby. This is indeed possible and it turns out that
the results can be generalized to the case of more than 3 components. These are
discussed in the next section. The idea is to derive explicit forms of optimal designs
within the subclass of (q, 2)-simplex designs and then to gainfully utilize Kiefer’s
equivalence theorem to assert the validity of the optimal nature of the design in the
general class. It may be noted that (q, 2)-simplex design provides saturated design
for estimation of themodel parameters. A suitable reparametrization of themodel (as
is indicated in the next section) together with saturated nature of the (q, 2)-simplex
mixture design enable us to go for an analytical derivation of the optimal design with
respect to trace-optimality criterion.

http://dx.doi.org/10.1007/978-81-322-1786-2_9
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7.4 Optimum Mixture Designs via Equivalence Theory

Kiefer (1974) established the general equivalence theorem that gives a necessary
and sufficient condition for a design to be optimum in the entire class of competitive
designs. The theorem is also helpful in getting an idea of the support points of the
optimum design.

Consider the linear model given by (4.2.1). Let θ⇒ denote the optimality criterion
andM be the class of all moment matrices M. Let Fθ⇒{M1, M2} denote the Fréchet
derivative of the criterion function θ⇒ at M1 in the direction of M2.

Theorem 7.4.1 (Equivalence Theorem) For a design α, if θ⇒ be concave on M and
differentiable at M(α), then α is θ⇒-optimal iff

Fθ⇒{M(α), f (x) f (x)≤} ≤ 0 (7.4.1)

for all x in the factor space.
Equality in (7.4.1) holds at the support points of α.

(Cf. Silvey 1980.)
In the problem considered in Sect. 7.2.1, where the criterion function θ, is given

by (7.3.1), writing θ⇒ = −θ, and proceeding as in Silvey (1980), Theorem 7.4.1
reduces to the following:

Theorem 7.4.2 A necessary and sufficient condition for a mixture design α to be
trace-optimumis that

f (x)≤M−1(α){E(A(γ )≤ A(γ ))}M−1(α) f (x) ≤ T race[M−1(α)E(A(γ )≤ A(γ ))]
(7.4.2)

holds for all x ∞ X .

Equality in (7.4.2) holds at the support points of α.

It is noted that the optimum designs for q = 2, 3, obtained in Sect. 7.2.1, belong to
the class of (q, 2)-simplex lattice designs. However, for q = 3, the optimum designs
for various combinations of prior moments were obtained numerically. In the present
section, it shall be shown algebraically that for q = 3 and 4, the optimum design
under the trace criterion (7.3.2) is a (q, 2)-simplex lattice design.

7.4.1 An Alternative Representation of Model (7.2.2)

For easy algebraic manipulation, the model (7.2.2) can be rewritten as

η(x) =
q∑

i=1

εi i xi

(

xi − 1

2

⎧

+
q∑

i< j=1

εi j xi x j , (7.4.3)

http://dx.doi.org/10.1007/978-81-322-1786-2_4
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where, writing θ = (ε11, ε22, . . . , εqq , ε12, . . . , εq−1, q)≤ one has θ = Pβ, with

P =
[
2Iq 0
R IC(q,2)

]

,

and R is a C(q, 2) × q matrix given by

R =

⎫

⎬
⎬
⎬
⎬
⎬
⎬
⎬
⎬
⎬
⎬
⎬
⎬
⎭

1 1 0 . . . 0 0
1 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

1 0 0 . . . 0 1
0 1 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 1 0 . . . 0 1
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 1















⎢

.

Hence, for a given design α, the estimate of θ is obtained as θ̂ = Pβ̂, and

Disp(θ̂) = P Disp(β̂)P ≤. (7.4.4)

Now, for a (q, 2)-simplex design α with mass p1 = α
q at each of the q vertices and

mass p2 = 1−α
C(q,2) at each of the C(q, 2) midpoints of edges, where 0 ≤ α ≤ 1, the

information matrix for θ is obtained as

(α, θ) = Diag

⎪

⎨
⎨
⎛

q
⎥ ︸︸ ︷
p1
4

, . . . ,
p1
4

,

C(q,2)
⎥ ︸︸ ︷
p2
16

, . . . ,
p2
16

⎜

⎝
⎝
⎞

≤

.

Hence, if M(α,β) denotes the information matrix of α for estimating β, from
(7.4.4), it follows that

M−1(α, θ) = P−1−1(α,β)P ≤−1

=
[ 1

4
−1
1 − 1

4
−1
1 R≤

− 1
4 R−1

1 − 1
16 R−1

1 R≤ + −1
2

]

(7.4.5)

where 1 = Diag( p1
4 , . . . ,

p1
4 ),2 = Diag( p2

16 , . . . ,
p2
16 ).

The above representation of M−1 facilitates finding the optimum masses of the
support points of a (q, 2)-simplex design.
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7.4.2 Case of Three Components

When q = 3, using (7.4.5), one obtains that for a (3, 2)-simplex design α with
information matrix M(α), the criterion function is given by

θ(α) = 54d2
[
11v − 10w

α
+ 16(2v − w)

1 − α

]

,

which is minimized at

α = α⇒ =
→

(11v − 10w)→
(11v − 10w) + 4

→
(2v − w)

,

and min θ(α) = 54d2[→11v − 10w + 4
→
2v − w]2 = θ⇒, say.

Remark 7.4.1 Essentially, if we set α3 = 0 and rewrite the expression (7.3.8) in
terms of α(= α1 in earlier notation), then optimization is possible and the above
choice is the solution towards that.

Let α⇒ denote the design with α = α⇒. Then one can easily check that

M(α⇒)−1E(A(γ )≤ A(γ ))M(α⇒)−1 =
[

(a − b)I3 + b131≤
3 C

(g − h)I3 + h131≤
3

]

,

where

C =
⎫

⎭
c c e
c e c
e c c



⎢ ,

a = d2 54(11v − 10w)

α⇒2 = θ⇒, b = d2 27(5v − 6w)

α⇒2

c = 27d2
[
27v − 26w

α⇒2 − 16(5v − 6w)

α⇒(1 − α⇒)

]

, e = 54d2
[

−2(5v − 4w)

α⇒2 − 16(v − 2w)

α⇒(1 − α⇒)

]

g = 54d2
[
27v − 26w

α⇒2 − 32(5v − 6w)

α⇒(1 − α⇒)
+ 256(2v − w)

(1 − α⇒)2

]

,

h = 27d2
[
2(20v − 19w)

α⇒2 + 32(3v − 2w)

α⇒(1 − α⇒)
− 256v

(1 − α⇒)2

]

,

d being a constant independent of the design.
The condition (7.4.2) to be satisfied for optimality, therefore, simplifies to

a
∑

i

x4i + (2b + g)
∑

i< j

x2i x2j + 2c
∑

i ∀= j

x3i x j + 2(e + h)
∑

i ∀= j ∀=k

x2i x j xk ≤ θ⇒, (7.4.6)
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where θ⇒ = θ(α⇒)
For the condition (7.4.6) to hold with equality sign at the support points of α⇒,

one must have
a = θ⇒ and 2b + 4c + g = 14θ⇒,

which are true for α⇒.
For any other point in the simplex, it is easy to see that the difference between the

l.h.s. and r.h.s. of (7.4.6) is < 0 provided 2θ⇒ − c > 0, which is true since c < 0.
Thus, for q = 3, the Equivalence Theorem leads to the following theorem:

Theorem 7.4.3 In a three-component quadratic mixture model, a(3, 2)-simplex lat-

tice design with α =
→
11v−10w→

11v−10w+4
→
2v−w

is optimal in the whole class of competing

designs, for given v and w, where α denotes the total mass at the extreme points.

7.4.3 Case of Four Component Mixture

In the four-component mixture experiment, the criterion function θ, for a (4, 2)-
simplex lattice design α with information matrix M(α), is obtained as

θ(α) = 2304d2
(

v − w

α
+ 2(3v − w)

1 − α

⎧

,

which is minimized at

α = α⇒ =
→

(v − w)→
(v − w) + →

2(3v − w)
,

and min θ(α) = 2304d2[→v − w + →
2(3v − w)]2 = θ⇒, say.

Let α⇒ denote the design with α = α⇒. Then one can easily check that

M(α⇒)−1E(A(γ )≤ A(γ ))M(α⇒)−1 =
⎫

⎭
(a − b)I3 + b131≤

3 C D
E F

(e − f )I3 + f 131≤
3



⎢,

where

C =

⎫

⎬
⎬
⎭

c c c
c k k
k c k
k k c





⎢, D =

⎫

⎬
⎬
⎭

k k k
c c k
k c k
k c c





⎢, E =

⎫

⎭
e f f
f e f
f f e



⎢, F =
⎫

⎭
f f g
f g f
g f f



⎢,
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a = d2 2304(v − w)

α⇒2 = θ⇒, b = d2 256(v − w)

α⇒2

c = −d2 256(v − w)

α⇒

[
10

α⇒ + 36

1 − α⇒

]

, k = d2 512(v − w)

α⇒

[

− 1

α⇒ + 6

1 − α⇒

]

e = 1024d2(v − w)

[
5

α⇒2 + 36

α⇒(1 − α⇒)
+ 72

(1 − α⇒)2

]

,

f = 3072d2(v − w)

[
1

α⇒2 + 2

α⇒(1 − α⇒)
− 12

(1 − α⇒)2

]

.

The condition (7.4.2) to be satisfied for optimality of α⇒ simplifies to

a
∑

i

x4i +(2b+e)
∑

i< j

x2i x2j +2c
∑

i ∀= j

x3j x j +2(k+ f )
∑

i ∀= j ∀=k

x2i x j xk +6gx1x2x3x4 ≤ θ⇒.

(7.4.7)
for all x ∞ X .

For equality to hold in (7.4.7) at the support points of α⇒, one must have a = θ⇒
and 2b + 4c + e = θ⇒, which are true. At all other points in X one can easily check
that strict inequality holds provided 2θ⇒ − c > 0 and 4θ⇒ − g > 0, which also hold
for α⇒.

Thus, for q = 4, the Equivalence Theorem leads to the following:

Theorem 7.4.4 In a four-component quadratic mixture model, a (4, 2)-simplex lat-

tice design with α =
→

v−w→
v−w+→

2(3v−w)
is optimal in the whole class of competing

designs for given prior moments v and w, where α denotes total mass at the extreme
points.

7.5 Optimum Mixture Designs with Unequal Apriori Moments

In Sects. 7.2.1 and 7.3.1, it is assumed that invariance exists among the second order
prior moments of the γ -components. In this section, a more general assumption on
the prior moments has been made, viz.

E(ϕ 2
i ) = vi , i = 1, 2, . . . q E(ϕiϕ j ) = wi j , j = 1, 2, . . . , q; i < j. (7.5.1)

Since
∑q

i=1ϕi = 1, vi , wi j ’s must satisfy

∑

i

vi + 2
∑

i< j

wi j = 1.

The criterion function for the choice of design for estimating γ is, as before, θ(α),

given by (7.3.1).
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7.5.1 Case of Two Components

In the case of two components, since the design can be represented by points on
a straight line of unit length in the two-dimensional space, the class of competing
designs D can be substantially reduced using the following theorem:

Theorem 7.5.1 Given any arbitrary design α ∞ Dwith information matrix M(α,β),

there exists a design η ∞ D⇒ ≡ D, where D⇒ is the class of three-point designs with
whole mass concentrated at the two extremes and a point in between, such that

M(η,β) ≥ M(α,β).

Proof Here the model is

E(Y | x) = ζx = σ11x21 + σ22x22 + σ12x1x2.

Since x1 + x2 = 1, we can rewrite the model as

ζx = σ⇒
0 + σ⇒

1 x1 + σ⇒
2 x21 ,

where β⇒ = (σ⇒
0 , σ⇒

1 , σ⇒
2 )≤ and β = (σ11, σ22, σ12)

≤ are related by

β⇒ = Pβ, (7.5.2)

with

P =
⎪

⎛
0 1 0
0 −2 1
1 1 −1

⎜

⎞ .

Then,
Disp(β̂

⇒
) = P Disp(β̂)P ≤. (7.5.3)

LetD1 be the set of single factor designs, based on x1. Clearly, there is a one-to-one
correspondence betweenD1 andD. Further, one can write the moment matrix of any
design α1 ∞ D1 as M(α1,β

⇒).
Now, letD⇒

1 be the set of single factor three-point designs, based on x1. It is known
(vide Liski et al. 2002) that for any arbitrary design α1 ∞ D1,with informationmatrix
M(α1,β

⇒), one can find a design η1 ∞ D⇒
1 with mass at 0, 1, and a ∞ (0, 1) such that

M(η1,β
⇒) ≥ M(α1,β

⇒)

in the Loewner Order Dominance sense.
Hence, from (7.5.2) and (7.5.3), it is clear that for any arbitrary two-component

design α ∞ D, there exists a three-point designη ∞ D⇒ such that M(η,β) ≥ M(α,β).
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This establishes the theorem.
From the theorem, it is clear that, in order to find the optimal design in the two

factor case, one may restrict to the class of designs D⇒.
Let η denote a three-point designwithmasses α1, α2 and 1−α1−α2, respectively,

at the support points (1, 0), (0, 1) and (a, 1−a), a ∞ (0, 1). The information matrix
for the design is then given by

M(η) =
⎪

⎛
a1 b c1

a2 c2
b

⎜

⎞ , (7.5.4)

where

a1 = α1 + a4(1 − α1 − α2) a2 = α2 + (1 − a)4(1 − α1 − α2)

c1 = (1 − α1 − α2)a
3(1 − a) c2 = (1 − α1 − α2)a(1 − a)3

b = (1 − α1 − α2)a
2(1 − a)2.

In order to easily find the expression of the trace criterion, one can use an alter-
native representation of the response function following Pal and Mandal (2007):

ζx = ε11x1(x1 − a) + ε22x2(x2 − (1 − a)) + ε12x1x2, (7.5.5)

where θ = (ε11, ε22, ε12) and β are related by

β = Lθ,

with

L =
⎪

⎛
1 − a 0 0
0 a 0

−a −(1 − a) 1

⎜

⎞ .

Then,

M(α, θ) =
⎪

⎛
α1(1 − a)4 0 0

α2a4 0
(1 − α)a2(1 − a)2

⎜

⎞ ,

where
α = α1 + α2.

Hence,
M−1(α,β) = L M−1(α, θ)L ≤ (7.5.6)
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Therefore,

θ(α) = Trace[L M−1(α, θ)L ≤E(A≤(ϕ )A(ϕ ))]
= Trace[M−1(α, θ)L ≤E(A≤(ϕ )A(ϕ ))L]
= Trace[M−1(α, θ)G], say,

where

G = ((gi j )) = L ≤E(A≤(ϕ )A(ϕ ))L

g11 = 8(1 − a)2v1 + 2a2(v1 + v2 − 2w12) − 8a(1 − a)(w12 − v1)

g22 = 8a2v2 + 2(1 − a)2(v1 + v2 − 2w12 − 8a(1 − a)(w12 − v2)

g33 = 2(v1 + v2 − 2w12)

g12 = −2[2a2(w12 − v2) + 2(1 − a)2(w12 − v1) − a(1 − a)(v1 + v2 − 6w12)]
g13 = 2[2(1 − a)(w12 − v1) − a(v1 + v2 − 2w12)]
g23 = 2[2a(w12 − v2) − (1 − a)(v1 + v2 − 2w12)].

Thus, for given a,

θ(α) = g11

α1(1 − a)4
+ g22

α2a4 + g33

(1 − α)a2(1 − a)2
≥
(
∑

i

√
g⇒

i i

)2

, (7.5.7)

where
g⇒
11 = g11

(1 − a)4
, g⇒

22 = g22

a4 , g⇒
33 = g33

a2(1 − a)2
,

and equality in (7.5.7) holds for

αi = α⇒
i (a) =

√
g⇒

i i∑
i

√
g⇒

i i

, i = 1, 2. (7.5.8)

Suppose a⇒ is the value of a minimizing (
∑

i

√
g⇒

i i )
2, 0 < a⇒ < 1.

Then, the optimal design assignsmasses α⇒
1(a

⇒), α⇒
2(a

⇒) and 1−α⇒
1(a

⇒)−α⇒
2(a

⇒),
respectively, at the support points (1, 0), (0, 1) and (a⇒, 1 − a⇒).

7.5.2 Case of Three Component Mixture

Here, it is assumed that
v1 = v2, w13 = w23. (7.5.9)
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In Sect. 7.3.1, where there was invariance with respect to the prior moments, each
component took three distinct values in the optimum design, two at the extremes and
one in between. In the present case, the assumption (7.5.9) amounts to saying that
we are treating the first two mixing components as ‘exchangeable.’ This, in its turn,
presupposes that the ‘optimum’ mixing proportions also enjoy the same property.
Thus, it leads to the heuristic argument that itmay be enough to search for an optimum
design in the hyperplane manifested by the property of exchangeability of the first
two components. It turns out that in such a plane, the quadratic response surface
function involving all the three-mixing components may be reduced to a quadratic in
the third component only. Appealing to Liski et al. (2002), one can, therefore, adopt
an initial design with x3 taking the three values 0, 1, and some a ∞ (0, 1).

Again, for any design α, using the expression (7.3.6) for M−1(α), the criterion
function θ(α) comes out to be

θ(α) = 24v1(μ
400 + μ040) + 24v3μ

004 − 24w12μ
220 − 24w13(μ

202 + μ022)

+ 12(2w12 − v1)(μ
310 + μ130) + 12(2w13 − v1)(μ

301 + μ031)

+ 12(2w13 − v3)(μ
013 + μ103) − 6(w12 + w13)(μ

211 + μ121) − 12w13μ
112

+ 6(2v1 − w12)μ
≤220 + 6(v1 + v3 − w13)(μ

≤202 + μ≤022)
− 3(v1 + w12 − w13)(μ

≤211 + μ≤121) − 6(v3 + 2w13 − 2w12)μ
≤112,

which is invariant with respect to the first two components. Further, since θ(α)

is convex with respect to the information matrix M, the optimum design will be
invariant with respect to the first two components (Ref. Mandal et al. 2008a).

Hence, it seems reasonable to propose the following subclass of designs with
support points as indicated below:

x1 x2 x3 Mass

1 0 0 αW1
0 1 0 αW1
1/2 1/2 0 (1 − 2α)W1
0 0 1 W2
1 − a 0 a W3/2
0 1 − a a W3/2

where 0 < α < 1/2, a ∞ (0, 1), Wi > 0, i = 1, 2, 3, W1 + W2 + W3 = 1. Let
such a design be denoted by α(a, α, W). Then, after a little algebra, the information
matrix for the design comes out to be

M(α) = DD≤,

where D and  are, respectively, given by
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D = d2

⎪

⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎛

→
α 0 b 0 (1−a)2→

2
0

0
→

α b 0 0 (1−a)2→
2

0 0 b 0 0 0

0 0 0 1 a2→
2

a2→
2

0 0 0 0 a(1−a)→
2

0

0 0 0 0 0 a(1−a)→
2

⎜

⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎞

,  = Diag(W1 I3, W2, W3 I2),

with b given by
√

1−2α
24

.

Hence,

θ(α(a, α, W)) = Trace −1[D−1E(A≤(γ )A(γ ))D≤−1]
= g⇒

11

W1
+ g⇒

22

W2
+ g⇒

33

W3
,

where

D−1E(A≤(γ )A(γ ))D≤−1 = ((gi j )),

g⇒
11 = g11 + g22 + g33, g

⇒
22 = g44, g

⇒
33 = g55 + g66,

g11 = g22 = 1
α
[24v1 + 6(4v1 − 5w12)

+ 6(v1 − w12 − 3w13)
1−a

a + 6(v1 + v3 − w13)(
1−a

a )2] = g⇒
2α , say,

g33 = 96 (2v1−w12)
1−2α = h⇒

1−2α , say,
g44 = 24v3 + 24(v3 − 2w13)

α
1−α

+ 6(2v1 + v3 − 4w13 + 2w12)(
1−a

a )2

g55 = g66 = 12 (v1+v3−w13)

a2(1−a)2
,

g⇒ = 2 × [24v1 + 6(4v1 − 5w12) + 6(v1 − w12 − 3w13)
1−a

a+ 6(v1 + v3 − w13)(
1−a

a )2], h⇒ = 96(2v1 − w12).

For given a, W , θ(α(a, α, W)) is minimized at α = α0 =
→
g⇒

2
→
g⇒ + →

2h⇒ .

Then, at α = α0,

θ(α(a, α0, W)) = θ(α(a, W)) = g⇒
11,0

W1
+ g⇒

22,0

W2
+ g⇒

33,0

W3
≥
(
∑

i

√
g⇒

i i,0

)2

,

(7.5.10)
where g⇒

i i,0 = g⇒
i i |α=α0 , i = 1, 2, 3.

Equality holds in (7.5.10) when Wi = Wi (a) =
√
g⇒

i i,0

∑
i

√
g⇒

i i,0

,i = 1, 2, 3.

Hence, given a,
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Table 7.2 Optimal designs for some combinations of (v1 = v2, v3, w12, w13 = w23)

Parameters Optimal
v1 = v2 v3 w12 w13 = w23 a α W1 Trace

W2

W3

0.2 0.2 0.0666 0.0666 0.5 0.2587 0.4497 679.645
0.1163
0.4473

0.2 0.1 0.15 0.05 0.4863 0.2514 0.4473 485.4117
0.1077
0.4450

0.2 0.1 0.12 0.065 0.4893 0.2509 0.4731 483.8437
0.0949
0.4320

0.2 0.1 0.10 0.075 0.4931 0.2505 0.4905 480.5998
0.0854
0.4241

0.15 0.2 0.12 0.065 0.4987 0.2501 0.4897 476.7452
0.0863
0.4240

0.1 0.2 0.065 0.1175 0.5094 0.2210 0.3818 285.6798
0.1229
0.4953

θ(α(a, α, W)) ≥ θ(α(a, W(a))) =
(
∑

i

√
g⇒

i i,0

)2

. (7.5.11)

The optimal value of a is obtained so as tominimize the right-hand side of (7.5.11).
However, algebraic deduction of optimal a is intractable. Table 7.2 gives the optimal
values a, α and W , for some combinations of (v1 = v2, v3, w12, w13 = w23). It
may be noted that the corresponding design is optimal only within the subclass

D0 = {α(a, α, W); 0 ≤ α ≤ 1, Wi ≤ 0, i = 1, 2, 3, W1+W2+W3 = 1}. (7.5.12)

However, with the help of Theorem 7.4.2, one can easily establish the optimality of
the design α0 √ α(a⇒, W(a⇒)) within the entire class of competing designs.

Let θ(α0) = θ0 and M−1(α0)E(A≤(γ )A(γ ))M−1(α0) = (bi j ). Further, define

d(α0, x) = f (x)≤M−1(α0)E(A≤(γ )A(γ ))M−1(α0) f (x)

− Trace[M−1(α0)E(A≤(γ )A(γ ))].

Since thematrix M−1(α0) is symmetric and α0 is necessarily invariant with respect
to the first two components, we have
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b13 = b23, b14 = b24, b15 = b26, b16 = b25, b35 = b36, b45 = b46, b55 = b66.

Now, by virtue of Theorem 7.4.2, for the design α0 to be optimal in the whole
class, one must have d(α0, x) = 0 at the support points of α0. For the condition to
hold at the extreme points, it is essential that

b11 = b22 = b33 = θ0. (7.5.13)

Under (7.5.13),

d(α0, x) = x21 x22 (2b12 + b33 − 6b11) + (x31 x2 + x1x32)(2b13 − 4b11)

+ x23 (x21 + x22 )(2b14 + b55 − 6b11) + x3(x31 + x32)(2b15 − 4b11)

+ x33(x1 + x2)(2b45 − 4b11) + 2x1x2x3(x1 + x2)(b16 + b35 − 6b11)

+ 2x1x2x23 (b34 + b56 − 6b11). (7.5.14)

So, to have d(α0, x) = 0 at the support points (1/2, 1/2, 0), (1 − a⇒, 0, a⇒) and
(0, 1 − a⇒, a⇒), bi j s must satisfy

2b12 + b33 − 6b11 = −2(2b13 − 4b11) (7.5.15)

and

a⇒(1−a⇒)[(2b−4b11)a
⇒2+ (2b15−4b11)(1−a⇒)2+ (2b14+b55−6b11)a

⇒(1−a⇒)] = 0.
(7.5.16)

Writing A1 = 2b45 − 4b11, A2 = 2b14 + b55 − 6b11, and using (7.5.15) and
(7.5.16) in (7.5.14), d(α0, x) reduces to

d(α0, x) = x1x2(x1 − x2)
2(2b13 − b11) + x1x3(1 − x2)

2

[

(A1 + A2 − A3)

(
x1

1 − x2

⎧2

− (2A2 − A3

(
x1

1 − x2

⎧

+ A2

]

+ x2x3(1 − x1)
2

[

(A1 + A2 − A3)

(
x2

1 − x1

⎧2

− (2A2 − A3)

(
x2

1 − x1

⎧

+ A2

]

+ 2x1x2x3[x3(b34 + b56b16 − b35) + (b16 + b35 − 6b11)]. (7.5.17)

It is easy to check that (7.5.17) equals 0 at each support point of α0.

Now, consider the quadratic form h(y) = (A1 + A2 − A3)y2 − (2A2 − A3)y +
A2, 0 ≤ y ≤ 1.From (7.5.17), one getsh(1−a⇒) = 0.Further, for A1+A2−A3 < 0,
and A2

3 = 4A1A2, f (y) is a strictly concave function of y with maximum value 0 at
y = 1 − a⇒.
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Thus, for any x ∞ X , d(α0, x) ≤ 0 under the conditions

(i) 2b13 − 4b11 < 0
(ii) A1 + A2 − A3 < 0 and A2

3 = 4A1A2
(iii) b34 + b56 − b16 − b35 < 0, b16 + b35 − 6b11 < 0.

The above discussion leads to a set of sufficient conditions for the design α(a, α, W)

to be optimum within the entire class of competing designs:

Theorem 7.5.2 A set of sufficient conditions for a mixture design α(a, α, W) with
information matrix M(α(a)) and M−1(α(a))E(A≤(γ )A(γ ))M−1(α(a)) = ((bi j )),

and value of criterion function θ, to be optimal within the entire class of competitive
designs is:

(i) b11 = b22 = b33 = θ

(i i) 2b13 − 4b11 < 0
(i i i) A1 + A2 − A3 < 0 and A2

3 = 4A1A2

(iv) a = 2A1−A3
2(A1+A2−A3)

(v) b34 + b56 − b16 − b35 < 0, b16 + b35 − 6b11 < 0.






(7.5.18)

where A1 = 3b45 − 4b11, A2 = 2b15 − 4b11, A3 = 2b14 + b55 − 6b11.

Extensive numerical computation shows that the optimum mixture design within
the subclass D0, given by (7.5.12), satisfies the conditions (7.5.18). Thus, it appears
that the optimum design in D0 is also optimum within the entire class of competing
designs.
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Chapter 8
More on Estimation of Optimum Mixture
in Scheffé’s Quadratic Model

Abstract Chapter 7 discusses the optimum designs for estimating the optimum
mixture in Scheffé’s quadratic mixture model, using the trace optimality criterion.
In this chapter, we address the problem of finding optimum mixture designs under
deficiency and minimax criteria. In most cases, Kiefer’s equivalence theorem plays
a key role in identifying the designs.

Keywords Scheffé’s quadratic mixture model · Two- and three-component mix-
tures · Optimum mixing proportions · Deficiency criterion · Minimax criterion ·
Kiefer’s equivalence theorem · Optimum designs

8.1 Introduction

As in Chap. 7, we consider the response ηx to be represented by Scheffé’s quadratic
mixture model in the form (7.2.2), which gives the optimummixture as x = γ , given
by (7.2.3). For comparing different designs to estimate γ , Chatterjee and Mandal
(1981) suggested the deficiency criterion, which identifies the optimum design as the
one that minimizes the deficiency of the response at γ̂ from its optimum value. On
the other hand, the minimax approach provides a tool to deal with the involvement
of unknown parameters in any measure of accuracy in estimating γ . This problem
was overcome by using a pseudo-Bayesian approach in Chap. 7. In this chapter, we
will discuss the above-mentioned optimality criteria for obtaining optimum designs
to estimate γ .

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 111
DOI: 10.1007/978-81-322-1786-2_8, © Springer India 2014
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8.2 Optimum Mixture Designs Under Deficiency Criterion

Under model (7.2.2), and the assumptions made therein, the response is maximized
at x = γ , given by (7.2.3). If γ̂ be an estimate of γ , then ηγ̂ estimates the maximum
response. Hence, the deficiency at γ̂ is measured by

σ
(
γ , γ̂

) = ηγ − ηγ̂ = β−1 − γ̂
≥Bγ̂ ,

where β = 1≥
q B−11q .

For comparing different designs, Chatterjee and Mandal (1981) suggested the
criterion of minimizing

Eσ
(
γ , γ̂

) = ηγ − E
[
ηγ̂

⎧ = β−1 − E
[
γ̂

≥Bγ̂
⎧
, (8.2.1)

which is equivalent to maximizing E[γ̂ ≥Bγ̂ ].
However, (8.2.1) depends on γ and the elements of B. This drawback can be

easily resolved by adopting the pseudo-Bayesian approach discussed in Sect. 7.2.
Assuming prior knowledge about the moments of γ and B, the problem becomes

that of maximizing
EE

[
γ̂

≥Bγ̂
⎧ = E [trBE(γ̂ γ̂

≥
)
⎧
, (8.2.2)

where E denotes the expectation with respect to suitably defined priors on γ and
B and tr denotes trace. It is easily seen that maximizing (8.2.2) is equivalent to
minimizing E[trB≤E(γ̂ γ̂

≥], where B≤ = −B is a positive definite matrix and E
denotes expectation with respect to the priors on γ and B≤, equivalently stated.

Now,
B≤E

(
γ̂ γ̂

≥) = B≤γ γ ≥ + B≤V (α, γ ),

where
V (α, γ ) = A(γ )M−1(α)A≥(γ ).

Since B≤γ γ ≥ is independent of the design, the problem reduces to that of mini-
mizing

φ(α) = trE
⎪

B≤ A(γ )M−1(α)A≥(γ )
⎨

= trEγ EB≤|γ
⎪

B≤ A(γ )M−1(α)A≥(γ )
⎨

= tr
⎪

M−1(α)G
⎨
, (8.2.3)

where G = Eγ EB≤|γ [A≥(γ )B≤ A(γ )].

http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
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Optimum design is determined under the following assumptions:

(a) The prior of γ is given by (7.2.9).
(b) B≤ has a prior distribution independent of γ , and

EB≤|γ [B≤] = Diag(a1, a2, . . . , aq) + b1q1q
≥. (8.2.4)

Since A≥(γ )1q = 0, G simplifies to G = Eγ [A≥(γ )Diag(a1, a2, . . . , aq)A(γ )].

8.2.1 Case of Two Mixing Components

Using the representation (7.3.2) for the inverse of the moment matrix of an arbitrary
design α, the criterion function is obtained as

φ(α) = (a1 + a2)
⎪
4v
⎛
μ40 + μ04

⎜
− 8wμ22 − 4(v − w)

⎛
μ31 + μ13

⎜

+ 2(v − w)μ22
⎨
,

which is clearly invariant with respect to the components of the mixture. Hence, by
virtue ofDraper and Pukelsheim (1999), search for optimumdesignmay be restricted
to the class of WCDs. Then, one can show that the optimum design is the same as
that obtained for the two-component case in Sect. 7.3. It is worth noting that the
optimum design is independent of the choices of a1 and a2. However, this is not true
in general.

8.2.2 Case of Three Components

Here, again, writing the inverse of the moment matrix of any design α as (7.3.6), and
G = ((gi j )), the criterion function reduces to

φ(α) = g11μ
400 + g22μ

040 + g33μ
004 + g44μ

≥220 + g55μ
≥202 + g66μ

≥022 + g66μ
≥022

+ 2
⎛
g12μ

220 + g13μ
202 + g24μ

130 + g36μ
013 + g23μ

022
⎜

+ 2
⎛
g14μ

310 + g15μ
301 + g35μ

103 + g26μ
031

⎜

+ 2
⎛
g16μ

211 + g25μ
121 + g34μ

112
⎜

+ 2
⎛
g45μ

≥211 + g46μ
≥121 + g56μ

≥122⎜ ,

(8.2.5)

http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
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where

g11 = 4v(4a1 + a2 + a3),

g22 = 4v(a1 + 4a2 + a3),

g33 = 4v(a1 + a2 + 4a3),

g44 = v(5a1 + 5a2 + 2a3) − 2w(2a1 + 2a2 − a3),

g55 = v(5a1 + 2a2 + 5a3) − 2w(2a1 − a2 + 2a3),

g66 = v(2a1 + 5a2 + 5a3) − 2w(−a1 + 2a2 + 2a3),

g12 = 4w(−2a1 − 2a2 + a3),

g13 = 4w(−2a1 + a2 − 2a3),

g23 = 4w(a1 − 2a2 − 2a3),

g14 = −2v(2a1 + 2a2 − a3) + 2w(4a1 + a2 + a3),

g15 = −2v(2a1 − a2 + 2a3) + 2w(4a1 + a2 + a3),

g24 = −2v(2a1 + 2a2 − a3) + 2w(a1 + 4a2 + a3),

g25 = −2w(a1 + 4a2 + a3),

g26 = −2v(−a1 + 2a2 + 2a3) + 2w(a1 + 4a2 + a3),

g34 = −2w(a1 + a2 + 4a3),

g35 = −2v(2a1 − a2 + 2a3) + 2w(a1 + a2 + 4a3),

g36 = −2v(−a1 + 2a2 + 2a3) + 2w(a1 + a2 + 4a3),

g16 = −2w(4a1 + a2 + a3),

g25 = −2w(a1 + 4a2 + a3),

g34 = 2w(a1 + a2 + 4a3),

g45 = v(a1 − 2a2 − 2a3),

g46 = v(−2a1 + a2 − 2a3),

g56 = v(−2a1 − 2a2 + a3). (8.2.6)

It is evident from (8.2.6) that φ(α) is not invariant with respect to the components
of the mixture when ai ’s are unequal. As such, it is very difficult to find an optimum
design for the problemwhen ai ’s are all different. Mandal and Pal (2008) determined
the optimum designs in two situations: (i) all ai ’s are equal and (ii) any two of the
ai ’s are equal.

In case (i), it can be shown that φ(α) = aφ≤(α), where a is the common value of
ai ’s and φ≤(α) is the trace criterion for a three-component mixture model. Then, by
virtue of Theorem 7.4.3, the optimum design is a (3, 2)-simplex lattice design with

the mass λ =
∀
11v − 10w∀

11v − 10w + 4
∀

v − w
collectively assigned to the three extreme

points, each with a share of λ/3 and mass (1 − λ)/3 to each of the three midpoints
of the edges.
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In case (ii), suppose it is assumed that a1 = a2, and a3 is different. Under the
assumption, the criterion function (8.2.5) is invariant with respect to the first two
components of the mixture. Hence, if α1 be a particular design with information
matrix M1 and one makes the exchange x1 ↔ x2 in the design to obtain a new design
α2 with informationmatrix M2, then φ(α1) = φ(α2). Further, since φ is convex and is
invariant with respect to the above exchange, for the design α = 1

2 α1 + 1
2 α2 whose

information matrix is M = 1
2 (M1 + M2), one obtains

φ(α) = tr
⎪

M̄−1G
⎨

← tr

⎝
1

2
M−1

1 G + 1

2
M−1

2 G

⎞

,

where equality holds if and only if M1 = M2.

Thus, we have the following result:

Result 8.2.1: For a three-component mixture, when a1 = a2, the optimum design is
necessarily invariant with respect to the first two components.

In the case of q = 2, it has been observed that the optimum design has support
points at {(1, 0), (0, 1), ( 12 , 1

2 )}, irrespective of the values of a1 and a2. Similarly, in
the case of q = 3with all ai ’s equal, it has been seen that, irrespective of the common
value of ai ’s, the support points of the optimum design are at the vertices (0, 1, 0), (0,
1, 0), and (0, 0, 1) and at the midpoints of the edges ( 12 ,

1
2 , 0), (

1
2 , 0,

1
2 ), and (0, 1

2 ,
1
2 )

of the (3, 2)-simplex. In view of these observations, it appears that even when ai ’s
are not all equal, the support points of the optimum design should be confined to
the same points. Again, when a1 = a2, in view of Result 8.2.1, the masses attached
to the different support points will be symmetric with respect to the components x1
and x2. It, therefore, seems logical to restrict the search for optimum design in the
following subclass of designs:

D = {α(λ1, λ3, λ12, λ13); λi ≥ 0, i = 1, 3, λ12 ≥ 0, λ13 ≥ 0;
2(λ1 + λ13) + λ3 + λ12 = 1},

where α(λ1, λ3, λ12, λ13) puts masses (λ1, λ1, λ3, λ12, λ13, λ13) at the support

points {(0, 1, 0), (0, 1, 0), (0, 0, 1), (1
2
,
1

2
, 0), (

1

2
, 0,

1

2
), (0,

1

2
,
1

2
)}.

To find the optimal values of themasses, one can use the alternative representation
(7.4.3) of the model, which simplifies algebraic computation substantially. For any
α ⇒ D, the criterion function comes out to be

φ(α) = 4(g≤
11 + g≤

22)

λ1
+ 4g≤

33

λ3
+ 16g≤

44

λ12
+ 16(g≤

55 + g≤
66)

λ13

≥ 4

⎟
6⎠

i=1

√
hii

)2

, (8.2.7)

http://dx.doi.org/10.1007/978-81-322-1786-2_7
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where g≤
i i is equal to gi i , given by (8.2.6), at a1 = a2, for i = 1(1)6 and

hii = g≤
i i , i = 1, 2, 3

= 4g≤
i i , i = 4, 5, 6.

Since a1 = a2, clearly g≤
11 = g≤

22, g
≤
55 = g≤

66.

Hence, equality in (8.2.7) holds for

λi =
∀

hii
⎠6

i=1

∀
hii

, i = 1, 3; λ12 =
∀

h44
⎠6

i=1

∀
hii

; λ13 =
∀

h55
⎠6

i=1

∀
hii

(8.2.8)

which give the optimal values of the masses.
Verification of the optimality of the above design in the entire class of designs

can be done using Theorem 7.4.2. However, algebraic verification is intractable.
Numerical computation with several points in X showed that equality in (8.3.1)
holds at all the support points of the optimum design in D, while for other points,
strict inequality holds. Table 8.1 shows verification at three such points.

Remark 8.2.1 The optimum designs obtained for q = 2, 3 are (q, 2)-simplex lattice
designs. It is likely that in the general case of q-component mixture, the optimum
design will also be a (q, 2)-simplex design, even for arbitrary ai ’s.

8.3 Optimum Mixture Designs Under Minimax Criterion

In this section, the problem of finding an optimum design for estimating the optimum
mixture γ in model (7.2.2) has been considered using the minimax criterion. As
has been mentioned in the beginning of Sect. 7.3, for any arbitrary design α with
information matrix M(α), the large sample dispersion matrix of the estimate γ̂ of γ ,

given by (7.2.5), is singular. Hence, a suitable measure of accuracy of the design α

can be taken to be
ϕ(α, γ ) = Trace

⎪
A(γ )M(α)−1A(γ )≥

⎨
(8.3.1)

However, this measure depends on γ . The minimax method overcomes this draw-
back by taking the supremum of ϕ(α, γ ) over γ ⇒ 	, where 	 = {γ | θi ≥ 0, i =
1(1)q,

⎠q

i = 1
θi = 1}. The optimal design is then obtained by minimizing

sup
γ⇒	

φ(α, γ ) = sup
γ⇒	

Trace
⎪

A(γ )M−1(α)A≥(γ )
⎨

(8.3.2)

http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
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Such minimax approach in the context of estimation of stationary point in a
response surface problemhas been considered earlier byMandal andHeiligers (1992)
and Cheng et al. (2001), among others.

In order to find the optimum design minimizing (8.3.2), one needs to study the
properties ofφ(γ , M(α)). It is noted that the experimental regionX and the parameter
space 	 are invariant with respect to permutation of components, i.e.,

R(X ) = X and R(	) = 	,

for all R ⇒ ∞, where ∞ is the class of all permutation matrices R of order q × q.

Again, it is observed that as x → Rx, f (x) → SR f (x), where SR , is a p × p
orthogonal permutation matrix which depends on R and p = C(q + 1, 2). Under
such a transformation, one has

M(α R) = SR M(α)S≥
R .

Based on the above, we have the following properties of φ(γ , M(α)).

Property 8.3.1 For fixed γ , φ(γ , M(α)) is convex non-increasing in M(α) with
respect to Loewner partial ordering (LPO).

Property 8.3.2 Let α R be the design obtained from α by virtue of the transformation
x → Rx. Then, for any R ε ∞, we have

φ(γ , M(α R)) = φ(Rγ , M(α)).

Property 8.3.3 Let φ	(M(α)) = sup
γ⇒	

φ(γ , M(α)). Then, φ	(M(α)) is invariant

with respect to R ⇒ ∞.

Theorem 8.3.1 follows from Properties 8.3.1 and 8.3.3:

Theorem 8.3.1 If there exists a 	-minimax design, then there exists a 	-minimax
design which is admissible and SR-invariant.

It is evident from the above theorem that in order to find the optimum design
by minimax criterion, one can restrict to the class of invariant designs. By virtue
of Draper and Pukelsheim (1999), one can further reduce the class by confining to
WCDs.

In the case of two-component mixture, one can check that the optimum design
assigns mass 0.2640 to each of the extreme points (1, 0) and (0, 1) and mass 0.4720
to the point ( 12 ,

1
2 ).

In the case of mixture with three components, let η be a WCD with masses
λ1, λ2, and λ3 at the extreme points, midpoints of edges and the overall centroid
point, respectively, and M(η) be its information matrix. Then, after some algebraic
manipulation, it can be shown that
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ϕ(γ , M(η)) = γ ≥
⎟

3⎠

i=1

Di M−1(η)D≥
i

)

γ ,

where

D1 = d



⎫
⎫
⎫
⎫
⎬

−4 0 0 1 1 0

0 2 0 −2 0 1

0 0 2 0 −2 1

⎭







D2 = d



⎫
⎫
⎫
⎫
⎬

2 0 0 −2 1 0

0 −4 0 1 0 1

0 0 2 0 1 −2

⎭







D3 = d



⎫
⎫
⎫
⎫
⎬

2 0 0 1 −2 0

0 2 0 1 0 −2

0 0 −4 0 1 1

⎭







and d is a scalar independent of the design [cf. Eqs. (7.2.7) and (7.2.8) and the
discussion that follows].

As M−1(η) is positive definite,φ(γ , M(η))will be a convex function of γ .Hence,
φ(γ , M(η)) is maximized at some boundary point of 	. Pal and Mandal (2008)
proved the following theorem:
Theorem 8.3.2 φ(γ , M(η)) is maximized at the extreme points, viz. at (1, 0, 0)≥,
(0, 1, 0)≥, and (0, 0, 1)≥.

By virtue of Theorem 8.3.2, it can be easily shown that max
γ⇒	

φ(γ , M(η)) =
max

i
d ≥
3i M−1(η)d3i , where d ≥

3i denotes the third row vector of Di , i = 1, 2, 3.

Now, M(η) is of the form

M(η) =



⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎬

a b b b b b

a b b c b

a c b b

b c c

b c

b

⎭



















http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
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where a = 1
18 (1+26λ1 + 19

8 λ2), b = 1
18 (1−λ1 + 11

16λ2), and c = 1
81 (1−λ1 −λ2).

Hence, M−1(η) is given by

M−1(η) =



⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎫
⎬

e f f g g h

e f g h g

e h g g

k m m

k m

k

⎭



















where e, f, g, h, k, andm are as follows:

e = a

(a + 2b)(a + c − 2b)
− 2b + c

a + 2b
g, f = 2b

(a + 2b)(a + c − 2b)
− 2b + c

a + 2b
g,

h = 1

a + c − 2b
+ g, k = a − c

b − c
g,

m = 1

b − c

⎢
b − a

a + c − 2b
+ (c − a)g

⎥

, g = ab + ac − 2b2

(a + c2b)(2b2 − ab − 2ac + c2)
.

One therefore obtains

max
γ⇒	

φ(γ , M(η)) = 3d2

λ1λ2(8λ1 + λ2)

⎢

(16λ1 + λ2)(8λ1 + 3λ2)

+ 18432
27λ1λ2 + (32λ1 + λ2)(1 − λ1 − λ2)

9λ1λ2 + (16λ1 + λ2)(1 − λ1 − λ2)
(4λ1 + λ2)

2
⎥

,

which is minimized at λ1 = 0.3734, λ2 = 0.6041, andλ3 = 0.0225.

Remark 8.3.2 It has been observed in Chap. 7 and Sect. 8.2 of this chapter that the
optimal designs under both trace criterion and deficiency criterion assign zero mass
to the overall centroid point. But inminimaxmethod, a positivemass, however small,
is assigned to the overall centroid point.

http://dx.doi.org/10.1007/978-81-322-1786-2_7
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Chapter 9
Optimal Designs for Estimation of Optimum
Mixture in Scheffé’s Quadratic Model Under
Constrained Factor Space

Abstract While in Chap.7, we have discussed determination of optimum designs
for the estimation of optimum mixture when the mixing proportions vary in the
whole simplex, in the present chapter we address the problem when (i) one of the
proportions is bounded above, (ii) there is a cost constraint. Here, again, the trace
criterion is used to find the optimum design.

Keywords Quadratic mixture models · Optimum mixing proportions · Trace opti-
mality criterion · Pseudo-Bayesian approach · Kiefer’s equivalence theorem · Opti-
mum designs

9.1 Introduction

In many practical situations, the experimenter is faced with the problem of determin-
ing the optimum mixing proportions, when certain restrictions are placed on one or
more of the components. For example, a particular ingredient may be essential to be
present in the mixture in at least or at most a certain proportion. When a lower bound
is specified for at least one component, the problem can be solved by introducing
pseudocomponents (cf. Cornell 2002). However, when an upper bound or both lower
and upper bounds are indicated for one or more components, the problem becomes
too difficult to tackle. In that case, some algorithms have been proposed to find the
optimum designs for estimation of the parameters, or linear functions of the parame-
ters, of the assumedmodel. However, estimation of nonlinear functions of parameters
poses much difficulty. In this chapter, we discuss optimum designs for estimation of
the optimum mixing proportions in the cases of two and three-component mixtures
under constrained experimental region. Toward this, first we will deal with one-sided
constraint on only one component of themixture. Next, we will discuss about a linear
cost constraint.

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 123
DOI: 10.1007/978-81-322-1786-2_9, © Springer India 2014

http://dx.doi.org/10.1007/978-81-322-1786-2_7
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9.2 Optimum Mixture Designs Under Constraint
on One Component

Consider the mixture model (7.2.2), where the response function η(x) is assumed to
be quadratic concave in the components x1, x2, . . . , xq in the experimental region
X , given by (7.1.1).

Let,X ≥ ≤ X denote the contrained experimental region. The explicit form ofX ≥
will depend on the type of constraint imposed. As mentioned above, we will involve
only one component in the constraint. It is assumed that the point x = γ, given by
(7.2.3), at which the response function is maximized, is an interior point of X ≥.

To obtain an optimum design for estimating β, the pseudo-Bayesian approach of
Pal and Mandal (2006) can be used, with the more general assumption (7.5.1) on the
prior. As in Pal and Mandal (2006), the criterion for optimal choice of design is to
minimize

ξ(φ) = Trace E{E[(γ̂ − γ)(γ̂ − γ)∀]}

where E stands for expectation with respect to the prior of γ.
Suppose the constrained region is defined as

X ≥ = {x} | xi ≥ 0, i = 1, 2, . . . , q; xk ← ck , for some 1 ← k ← q,
q
η

i=1
xi = 1}. (9.2.1)

Mandal et al. (2008b) discussed the optimum designs for q = 2, 3.

9.2.1 Case of Two Component Mixture Model

Suppose the constraint is imposed on the first component, that is, x1 ← c.
Since x1+x2 = 1, invoking the result ofLiski et al. (2002), and arguing as in Sect.

7.5 for finding the optimum design, one can restrict to the class Dc of three-point
designs with support points (0, 1), (c, 1 − c), and (d1, 1 − d1), d1 ∈ (0, c).

For easy algebraic manipulation, one can use an alternative representation of
model (7.2.2) in the two-component case:

ηx = σ11x1(x1 − d1) + σ22(x2 − (1 − c))(x2 − (1 − d1)) + σ12(x1 − c)(x2 − 1)

(9.2.2)

where θ = (σ11, σ22, σ12) and β = (θ11,θ22,θ12) are related by

β = Lθ

http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
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with

L =



1 − d1 (1 − c)(1 − d1) −(1 − c)

0 cd1 0
−d1 −d1(1 − c) − c(1 − d1) c



⎧ .

Then, for a design φ ∈ Dc, which assigns masses α1 to (0, 1),α2 to (c, 1 − c)
and 1 − α1 − α2 to (d1, 1 − d1), the information matrix for the vector parameter θ
is given by

M(φ,θ) =



⎪
⎪
⎪
⎪


α2c2(c − d1)2 0 0

α1c2d2
1 0

(1 − α)d2
1 (c − d1)2



⎨
⎨
⎨
⎨
⎧

, (9.2.3)

where α = α1 + α2.

Hence, M−1(φ,β) = L M−1(φ,θ)L ∀.
Assuming unequal second-order prior moments of the components of γ as given

in (7.5.1), we obtain the criterion function as

ξ(φ) = tr M−1(φ,θ)G,

where G = L ∀E(A∀(γ)A(γ))L = ((gi j )), say, and A(γ) is given by (7.2.8).
The diagonal elements of G are given by

g11 = 8(1 − d1)
2v1 + 2d2

1 (v1 + v2 − 2w12) − 8d1(1 − d1)(w12 − v1)

g22 = 8(1 − c)2(1 − d1)
2v1 + 8c2d2

1v2 + 2(d1(1 − c) + c(1 = d1))
2(v1 + v2 − 2w12

− 16c(1 − c)d1(1 − d1)w12 − 8(1 − c)(1 − d1)(d1(1 − c) + c(1 − d1))(w12 − vi )

− 8cd1(d1(1 − c) + c(1 − d1))(w12 − v1)

g33 = 8(1 − c)2v1 + 2c2(v1 + v2 − 2w12) − 8c(1 − c)(w12 − v1).

Thus, for given d1,

ξ(φ) = g11

α2c2(c − d1)2
+ g22

α1c2d2
1

+ g33

(1 − α)d2
1 (c − d1)2

≥
⎛

η
i

⎜
g≥

i i

⎝2

, (9.2.4)

where

g≥
11 = g22

c2d2
1

, g≥
22 = g11

c2(c − d1)2
, g≥

33 = g33

d2
1 (c − d1)2

.

http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
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Equality in (9.2.4) holds for

αi = α≥
i (d1) =

⎞
g≥

i i

η
j

⎜
g≥

j j

, i = 1, 2, (9.2.5)

The optimum value of d1, say d≥
1 , is then obtained by minimizing

⎛

η
i

⎜
g≥

i i

⎝2

.

Thus, the optimal design assigns mass α≥
1(d

≥
1 ),α≥

2(d
≥
1 ) and 1−α≥

1(d
≥
1 )−α≥

2(d
≥
1 ),

respectively, to the support points (0, 1), (c, 1 − c) and (d≥
1 , 1 − d≥

1 ).

Remark 9.2.1 From the computations shown inTable 9.1, the following observations
are made:

(a) For fixed v1, v2, and w12, (i) min. ξ(φ) ⇒ c; (ii) d1 ∞ c; (iii) 1− α1 − α2 (mass
at (d1, 1 − d1)) ⇒ c.

(b) For fixed v2(v1) and c, min ξ(φ) ∞ v1(v2).

9.2.2 Case of Three Component Mixture Model

Here, it is assumed that the prior moments satisfy

v1 = v2, w13 = w23. (9.2.6)

Further, suppose the third component is constrained, viz. 0 ← x3 ← c, where
0 < c ← 1. To obtain the optimum design in such a situation, one can proceed as
follows.

9.2.3 A Heuristic Search for Optimum Design

It is noted that under the assumption (9.2.6), the problem is invariant with respect to
the first two components, and hence, the optimum design must also have the same
invariance property with respect to the first two components. Now, arguing as in
Sect. 7.5, the response function (7.2.2) can be represented as a quadratic in x3, so
that for the optimum design x3 will take the three distinct values 0, c and some
a τ (0, c). In view of the invariant case considered in Pal and Mandal (2006) or
the non-invariant case of Mandal et al. (2008a), one can restrict to the following
subclass of designs with support points as given in Table 9.2, where 0 < a ← 1, a ∈
(0, c), Wi ≥ 0, i = 1, 2, 3, W1 + W2 + W3 = 1. Here, W1, W2, and W3 denote the
masses attached to x3 = 0, c and a, respectively, while the third column gives the
masses for different (x1, x2) combinations when x3 is given.

http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
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Table 9.1 Optimum designs and the minimum ξ(φ) for some combinations of v1, v2, w12 and c

v1 v2 w12 c d1 α2 α1 Min. ξ(φ)

0.26 0.26 0.24 1 0.5 0.3646 0.3646 17.4530
0.8 0.3501 0.4127 0.1950 41.9121
0.6 0.2934 0.3894 0.1256 210.158
0.4 0.1998 0.3248 0.1765 2010.959

0.26 0.30 0.22 1 0.5092 0.3029 0.3337 29.0988
0.8 0.3824 0.3514 0.2338 65.6210
0.6 0.2942 0.3520 0.1710 269.3375
0.4 0.1996 0.3148 0.1886 2189.214

0.30 0.28 0.21 1 0.4967 0.3144 0.3010 34.6172
0.8 0.3856 0.3470 0.2151 84.9551
0.6 0.2963 0.3403 0.1765 3555.406
0.4 0.1998 0.3071 0.1956 2750.812

0.30 0.30 0.20 1 0.5 0.3000 0.3000 40.0000
0.8 0.3895 0.3326 0.2250 95.9710
0.6 0.2966 0.3311 0.1866 389.2969
0.4 0.1997 0.3038 0.1998 2837.252

0.30 0.40 0.15 1 0.5048 0.2345 0.3008 66.0020
0.8 0.3976 0.2694 0.2636 148.5268
0.6 0.2982 0.2835 0.2334 510.6013
0.4 0.1997 0.2900 0.2148 3262.091

0.30 0.48 0.11 1 0.5052 0.2435 0.3008 86.3329
0.8 0.3997 0.2694 0.2636 189.1602
0.6 0.2990 0.2835 0.2334 609.3615
0.4 0.1998 0.2812 0.2240 3595.568

0.40 0.30 0.15 1 0.4950 0.2997 0.2598 66.0020
0.8 0.3949 0.3146 0.2165 170.6315
0.6 0.2986 0.3092 0.2016 660.2805
0.5 0.2494 0.3006 0.2049 1570.399

0.40 0.40 0.10 1 0.5000 0.2717 0.2717 92.1051
0.8 0.3978 0.2887 0.2378 223.0933
0.6 0.2990 0.2918 0.2196 786.0946
0.5 0.2496 0.2882 0.2183 1786.614

0.48 0.30 0.11 1 0.4948 0.3008 0.2435 86.3329
0.8 0.3965 0.3086 0.2136 230.0149
0.6 0.2991 0.3012 0.2068 881.3037
0.5 0.2496 0.2936 0.2106 2062.470

0.48 0.48 0.02 1 0.5000 0.2650 0.2650 133.2798
0.8 0.3989 0.2773 0.2413 323.6493
0.6 0.2994 0.2803 0.2284 1104.629
0.5 0.2498 0.2782 0.2270 2446.772
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Table 9.2 Support points of designs in the proposed subclass

x1 x2 Mass x3 Mass

1 0 α

0 1 α 0 W1

1/2 1/2 1 − 2α
(1 − c)/2 (1 − c)/2 1 c W2

1 − a 0 1/2
0 1 − a 1/2 a W3

Let a design in the above subclass be denoted by φ(a,α, W). Then, after a little
algebra, the information matrix for the design comes out to be

M(φ) = DσD∀

where

D =



⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪


→
α 0 b (1−c)2

4
(1−a)2→

2
0

0
→

α b (1−c)2

4 0 (1−a)2→
2

0 0 b (1−c)2

4 0 0

0 0 0 c2 a2→
2

a2→
2

0 0 0 c(1−c)
2

a(1−a)→
2

0

0 0 0 c(1−c)
2 0 a(1−a)→

2



⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎨
⎧

,

σ = Diag(W1 I3, W2, W3 I2), b = →
1 − 2α/4.

Therefore, the criterion function reduces to

ξ(φ(a,α, W)) = trσ−1[D−1E(A∀(β)A(β))D∀−1] = g≥
11

W1
+ g≥

22

W2
+ g≥

33

W3
,

where

D−1E(A∀(β)A(β))D∀−1 = ((gi j )), say, A(γ) is given by (7.2.8)

and

g≥
11 = g11 + g22 + g33, g

≥
22 = g44, g

≥
33 = g55 + g66,

g11 = g22, g55 = g66.

It may be noted that g44 and g55 are independent of α.
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Then, for given (α, W),ξ(φ(a,α, W)) isminimized atα = α0 =
→

g≥
2
→

g≥ + →
2h≥ ,

where g≥ = 2ag11 and h≥ = (1 − 2a)g33.
At α = α0,

ξ(φ(a,α0, W)) ≡ ξ(φ(a, W) = g≥
11,0

W1
+ g≥

22,0

W2
+ g≥

33,0

W3

≥
⎛

η
i

⎜
g≥

i i,0

⎝2

(9.2.7)

where g≥
i i,0 = g≥

i i |α=α0 , i = 1, 2, 3.

Equality holds in (9.2.7) at W1 ≡ Wi (a) =
→

g≥
i i,0

η
i

⎜
g≥

i i,0

, i = 1, 2, 3.

Writing W (a) = (W1(a), W2(a), W3(a))∀, it therefore follows that, for given a,

ξ(φ(a,α, W)) ≥ ξ(φ(a, W(a))) = (η
i

⎜
g≥

i i,0)
2 for all α, W . (9.2.8)

Optimal value of a is then obtained by minimizing

⎛

η
i

⎜
g≥

i i,0

⎝2

. However, alge-

braic deduction of optimal a is intractable. The optimal value a≥ of a, and hence
those of α and W , for some combinations of (v1 = v2, v3, w12, w13 = w23) have
been computed byMandal et al. (2008b), which are presented in Table 9.3. It may be
noted that the designs obtained are optimal within the subclassD0 defined in (9.2.9)
below:

{φ(a,α, W); 0 < a ← 1, 0 < α < 1, Wi ≥ 0, i = 1, 2, 3, W1 + W2 + W3 = 1}.
(9.2.9)

To verify the optimality of φ(a≥, W(a≥)) in the entire class of competing designs,
one can use Theorem 7.4.2, obtained fromKiefer’s equivalence theorem. Since alge-
braic verification is rather difficult, Mandal et al. (2008b) checked the optimality
condition (7.4.2) by taking innumerable combinations of c, vi , wi j ; i, j = 1, 2, 3.
It has been seen that for c = 1, the condition is satisfied for all x in X ≥. However,
when c takes some value less than 1, the condition is satisfied at all points except
for a very small area in X ≥. A closer look at the Table 9.4 shows that the optimality
condition is violated at some of the support points of φ(a≥, W(a≥)) which indicates
that more mass should be attached at those support points.

Table 9.4 shows that for given (v1 = v2, v3, w12, w13 = w23), as c decreases,
c≥ deviates more from it. This indicates increase in the region of violation of the
condition of optimality with decrease in c.

However, one can find the optimumdesign sequentially by startingwith the design
φ(a≥, W(a≥)) and using one of the standard algorithms, for finding optimum designs
like V algorithm of Fedorov (1972).

http://dx.doi.org/10.1007/978-81-322-1786-2_7


130 9 Optimal Designs for Estimation of Optimum

Table 9.3 Optimal values of a,α and W for some combinations of (v1 = v2, v3, w12, w13 = w23)

and c

Parameters Optimal Trace
c v1 = v2 v3 w12 w13 = w23 a α W1

W2

W3

0.4455

0.99 0.2 0.1 0.15 0.05 0.4833 0.2520 0.1095 491.4126
0.4450
0.4714

0.2 0.1 0.12 0.065 0.4866 0.2512 0.0967 488.6677
0.4319
0.4890

0.2 0.1 0.10 0.075 0.4905 0.2506 0.0872 484.5852
0.4238
0.3793

0.15 0.2 0.12 0.065 0.4960 0.2508 0.1424 483.7883
0.4783
0.3802

0.1 0.2 0.065 0.1175 0.5082 0.2210 0.1263 287.8529
0.4935
0.4282

0.9 0.2 0.1 0.15 0.05 0.4526 0.2586 0.1267 559.3978
0.4451
0.4549

0.2 0.1 0.12 0.065 0.4579 0.2558 0.1146 543.4693
0.4305
0.4890

0.2 0.1 0.10 0.075 0.4636 0.2541 0.1054 530.1226
0.4210
0.3622

0.15 0.2 0.12 0.065 0.4668 0.2594 0.1671 567.9032
0.4707
0.3649

0.1 0.2 0.065 0.1175 0.4920 0.2213 0.1617 316.4064
0.4734
0.4176

0.2 0.1 0.15 0.05 0.4334 0.2640 0.1373 612.0382
0.4451
0.4443

0.2 0.1 0.12 0.065 0.4394 0.2595 0.1260 586.1483
0.4297
0.4634

(continued)
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Table 9.3 (continued)

Parameters Optimal Trace

c v1 = v2 v3 w12 w13 = w23 a α W1

W2

W3

0.4455

0.85 0.2 0.1 0.10 0.075 0.4459 0.2568 0.1172 565.8259
0.4194
0.3521

0.15 0.2 0.12 0.065 0.4469 0.2666 0.1812 637.7346
0.4467
0.3541

0.1 0.2 0.065 0.1175 0.4714 0.2220 0.1854 343.3944
0.4605

Table 9.4 The upper bound c≥ of x3 so that optimality condition (7.4.2) is satisfied at all
points on the plane x1 = 0 or x2 = 0 for the design φ(a≥, W(a≥)) for some combinations of
(v1 = v2, v3, w12, w23, c)

v1 = v2 w12 w13 = w23 v3 c≥
c = 0.9 c = 0.8 c = 0.7 c = 0.5

0.2 0.15 0.05 0.1 0.8947 0.7844 0.6743 0.4602
0.15 0.2 0.12 0.065 0.8913 0.7759 0.6642 0.4565
0.1 0.2 0.065 0.1175 0.8742 0.7263 0.6104 0.4399

9.2.4 A Competitive Design

Mandal et al. (2008b) proposed another design φ1(a1, W),which seems to be a strong
contender for the target design:

x1 x2 Mass x3 Mass

1 0 α
0 1 α 0 W1
1/2 1/2 1 - 2α
1 - c 0 1/2 c W2
0 1 − c 1/2
1 − a1 0 1/2
0 1 − a1 1/2 a1 W3

where 0 < α ← 1, a1 ∈ (0, c), Wi > 0, i = 1, 2, 3, W1 + W2 + W3 = 1 and
Wi s and α are defined as before. For the design φ1(a1,α, W), suppose one uses
the same masses α, W1, W2, and W3 as in the optimum design for the unconstrained

http://dx.doi.org/10.1007/978-81-322-1786-2_7
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Table 9.5 The design φ1(a≥
1 ,α, W ) with the optimum design φ(a≥, W (a≥)) in the subclass D0

given by (9.2.9)

Parameters Values of c φ1(a≥
1 ,α, W) Trace of

v1 = v2 v3 w12 w13 = w23 α W1 a≥
1 Trace φ(a≥, W≥(a≥))

W2

W3

0.15 0.2 0.12 0.065 0.2501 0.4897 0.99 0.4954 483.7396 483.7883
0.9 0.4577 564.5837 567.9032

0.0863 0.85 0.4319 631.9667 637.7346
0.7 0.3465 1054.5752 1066.964

0.4240 0.5 0.2379 3639.1909 3836.257
0.2 0.1 0.15 0.05 0.2514 0.4473 0.99 0.4827 491.3899 491.4126

0.9 0.4448 558.0290 559.3978
0.1077 0.85 0.4211 610.2784 612.0382

0.7 0.3424 904.2737 955.737
0.4450 0.5 0.2346 2464.5404 2429.956

experimental region involving three-componentmixture, considered inSect. 7.5,with
the mass W2 divided equally among the two points (1 − c, 0, c) and (0, 1 − c, c).
The optimum a1, denoted by a≥

1 , is determined by minimizing the criterion function.
The relative performance of the two designs is given in Table 9.5.

Remark 9.2.2 It is observed that, in terms of the criterion function, the two designs
are very close to one other. So, starting with any one of these designs, one may use
a standard numerical algorithm to reach the optimum design.

9.3 Optimum Designs Under Cost Constraint

In industrial experiments, cost plays an important role in deciding upon the experi-
mental design to be chosen. Fedorov and Hackl (1997) have discussed the problem
of determining an optimum design when the cost of performing the experiment is
given as a function of the design point, subject to a bound on the total cost. Pal and
Mandal (2009) obtained designs for estimation of optimum factor combination in the
context of response surface when the costs per unit of the factors are given, subject
to a bound on the total cost for a factor combination. They also obtained optimum
proportions under similar constraint for the quadratic mixture model.

Consider the quadratic mixture model (7.2.2). Let ci , i = 1, 2, . . . , q, denote the
cost per unit for component i , and c0 be the total assigned cost per unit of themixture.
Then, the cost constraint on a mixture combination is given by

c1x1 + c2x2 + · · · + ck xk = c0 (9.3.1)

http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
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It should be noted that for an assigned total cost, the general form of the constraint
is c1x1+c2x2+· · ·+ck xk ← c0.However, fromexperimental point of view, utilization
of the total assigned cost is likely to give more information. In other words, we must
attain ‘equality’ as in (9.3.1).

Under the assumption of concavity of the response function with respect to x
and that its point of maxima occurs at an interior point of the experimental region,
the unconstrained maximum of the mean response η(x) occurs at x = γ, where
γ is given by (7.2.4). If γ satisfies the constraint (9.3.1), it becomes the optimum
mixing proportion for the constrained maximization problem. Else, one may proceed
as follows.

Since the mixing proportions x1, x2, . . . , xq must satisfy two constraints, viz.
(9.3.1) and

x1 + x2 + · · · + xq = 1, (9.3.2)

one can express the mean response function in terms of (q − 2) independent com-
ponents, with their proportions lying in the interval [0, 1].

9.3.1 Case of Two Components

Here, the proportions x1 and x2 are determined uniquely by the two linear constraints
(9.3.1) and (9.3.2). Hence, the question of choice of x1 and x2 for maximizing the
mean response function does not arise.

9.3.2 Case of Three Components

Using (9.3.1) and (9.3.2), one can write

x2 ≡ x2(x1) = c0 − c3
c2 − c3

− c1 − c3
c2 = c3

x1, x3 ≡ x3(x1) = c0 − c2
c3 − c2

−c1 − c2
c3 − c2

x1. (9.3.3)

In order that x2, x3 ∈ [0, 1], it is essential that x1 lies in some interval [a, b],
where 0 ← a < b ← 1 are functions of c0, ci , i = 1, 2, 3.

Hence, the response function (7.2.2) becomes

η(x) = γ0 + γ1x1 + γ2x21 , (9.3.4)

where

http://dx.doi.org/10.1007/978-81-322-1786-2_7
http://dx.doi.org/10.1007/978-81-322-1786-2_7
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γ0 = κ∀
0Bκ0, γ1 = 2κ∀

0Bκ1, γ2 = κ∀
1Bκ1,

κ0 =
⎛

0,
c0 − c3
c2 − c3

,
c0 − c2
c3 − c2

⎝

, κ1 =
⎛

1,
c1 − c3
c2 − c3

,−c1 − c2
c3 − c2

⎝

.

Clearly, η(x) is a quadratic concave function of x1 since B is negative definite.

Hence, it is maximized at x1 = β1 = − γ1

2γ2
. As B is unknown, one can estimate B

from a given design and hence obtain an estimate β̂1, say, of β1.
A rational criterion for finding the optimal design would be to minimize var(β̂1).
The standard delta method gives

var (β̂1) = 1

4γ2
2

(0, 1,−2β1)M−1(φ,κ)(0, 1,−2β1)
∀,

where M(φ,κ) is the informationmatrix of a design φ for estimatingκ = (γ0,γ1,γ1)
∀

and is given by

M(φ,κ) =



⎪
⎪
⎪
⎪


1 μ1 μ2

μ2 μ3

μ4



⎨
⎨
⎨
⎨
⎧

,

μi = Eφ(xi
1), i = 1(1)4.

Since β1 is a nonlinear function of the unknown parameters, var(β̂1) will depend
on them. To resolve this problem, one can adopt the pseudo-Bayesian approach of
Pal and Mandal (2006). It may be noted that one can disregard 1/4γ2

2 in var(β̂) in
the search for the optimum design.

Let the first two prior moments of β1 be given by E(β1) = u, E(β2
1) = v, where

u2 < v < u, and u ∈ [0, 1]. So, the trace optimality criterion will be

ξ(φ) = Trace M−1(φ,κ)E[(0, 1,−2β1)
∀(0, 1,−2β1)], (9.3.5)

where E denotes the expectation with respect to the prior distribution of β1. From
Liski et al. (2002), it follows that the optimal design maximizing the moment matrix
in the sense of Loewner order dominance puts mass at three distinct values of x1, viz.
a, b and s ∈ (a, b). Thus, to find the design minimizing (9.3.5), one can concentrate
on the class of three-point designs given by

β(φ) = {(a, s, b) : (α1, 1 − α1 − α2,α2)},

whereα1, 1−α1−α2 andα2 are themasses attached to x1 = a, s and b, respectively.
Now, for easy algebraic manipulation, model (9.2.2) can be expressed as

η(x1) = σ11(x1 − a)(x1 − s)+ σ22(x1 − s)(x1 − b)+ σ33(x1 − a)(x1 − b), (9.3.6)
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where θ = (σ11, σ22, σ33) and κ = (γ0,γ1,γ2) are related by

κ = Lθ,

with

L =



⎪
⎪
⎪
⎪


as bs ab

−(a + s) −(b + s) −(a + b)

1 1 1



⎨
⎨
⎨
⎨
⎧

.

Then, for any design φ, the information matrices M(φ,κ) and M(φ,θ) for κ and
θ, respectively, satisfy

M−1(φ,κ) = L M−1(φ,θ)L ∀,

where

M−1(φ,θ) = Diag

⎛
1

α2(b − a)2(b − s)2
,

1

α1(a − b)2(a − s)2
,

1

(1 − α1 − α2)(s − a)2(s − b)2

⎝

.

Thus, one gets,

ξ(φ) = Trace M−1(φ,θ)G

= 1

4γ2
2

⎛
g11

α2(b − a)2(b − s)2
+ g22

α1(a − b)2(a − s)2

+ g33

(1 − α1 − α2)(s − a)2(s − b)2

⎝

, (9.3.7)

where G = ((gi j )), with diagonal elements

g11 = 4v + 4u(a + s) + (a + s)2

g22 = 4v + 4u(b + s) + (b + s)2

g33 = 4v + 4u(a + b) + (a + b)2.

Lower bound to (9.3.7) is given by (η
⎞

g≥
i i )

2, where

g≥
11 = g11

(b − a)2(b − s)2
, g≥

22
g22

(a − b)2(a − s)2
, g≥

33
g33

(s − a)2(s − b)2
,
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Table 9.6 Optimal values of s,α1,α2 and the minimum value ξ≥ of the criterion function for some
combinations of (u, v)

u v s α1 α2 1 − α1 − α2 ξ≥

0.4 0.20 0.1667 0.2569 0.1976 0.5455 9084.66
0.4 0.30 0.1667 0.2339 0.1907 0.5754 13318.21
0.6 0.40 0.1667 0.2139 0.1730 0.6131 21747.41
0.6 0.50 0.1667 0.2018 0.1679 0.6303 27649.91
0.8 0.65 0.1667 0.1843 0.1554 0.6603 42433.85
0.8 0.70 0.1667 0.1822 0.1518 0.6660 46240.68

and the bound is attained for α1 = α≥
1(s) =

⎞
g≥
22

η
i

⎜
g≥

i i

,α2 = α≥
2(s) =

⎞
g≥
11

η
i

⎜
g≥

i i

.

If s≥ be the value of s minimizing (η

⎜
g≥

i i )
2, then the optimal design assigns masses

α≥
1(s

≥),α≥
2(s

≥) and 1 − α≥
1(s

≥) − α≥
2(s

≥), respectively, at x1 = a, b, and s≥.
Thus, the optimum mixture design that maximizes the expected response, sub-

ject to the cost constraint (9.3.1), has support points at (a, x2(a), x3(a)), (b, x2(b),

x3(b)) and (s≥, x2(s≥), x3(s≥))withmassesα≥
1(s

≥),α≥
2(s

≥) and 1−α≥
1(s

≥)−α≥
2(s

≥),
respectively, where expressions of x2(·) and x3(·) are given by (9.3.3). Table 9.6
gives the optimum designs for some combinations of the prior moments (u, v) in a
three-component mixture experiment, when the costs per unit of the components are
c1 = 1, c2 = 3, c3 = 7, and the total cost per unit of the mixture is restricted at
c0 = 5. From (9.3.3), we get a = 0, b = 1/3.

Remark 9.3.1 The table shows that ξ≥ increases with increase in the value of v. This
is in agreement with the fact that more accurate the information on β1 is, smaller is
the covariance matrix in the sense of trace criterion.
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Chapter 10
Optimal Designs for Estimation of Optimum
Mixture Under Darroch–Waller
and Log-Contrast Models

Abstract This chapter addresses the problem of finding optimum designs for the
estimation of optimum mixture combination when the mean response is defined by
(i) the additive quadratic mixture model due to Darroch and Waller (1985) and (ii)
the quadratic log-contrast model due to Aichison and Bacon-Shoane (1984). Both
the models have some advantage over Scheffé quadratic mixture model, in specific
situations.

Keywords Quadratic mixture models · Darroch–Waller model · Mixture-amount
model ·Log-contrastmodel ·Optimummixing proportions ·A-optimality criterion ·
D-optimality criterion · Pseudo-Bayesian approach ·Kiefer’s equivalence theorem ·
Optimum designs

10.1 Introduction

Several types of mixture models have been developed to describe the relationship
between the mean response ηx and the mixing proportions x = (x1, x2, . . . , xq)

where x lies in the (q − 1)-dimensional simplex X which is now denoted by Sq−1:

Sq−1 =
{

(x1, x2, . . . , xq) : xi ≥ 0, i = 1, 2, . . . , q,

q∑

i=1

xi = 1

}

, q ≥ 2.

(10.1.1)

The commonly used model is the full quadratic mixture model of Scheffé (1958):

η(x) =
q∑

i=1

βi xi +
q∑

i< j=1

βi j xi x j (10.1.2)

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 137
DOI: 10.1007/978-81-322-1786-2_10, © Springer India 2014
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An additive quadratic model for η(x) was studied by Darroch and Waller (1985) for
the case of q = 3, which, in the case of q-component mixture, has the form

η(x) =
q∑

i=1

αi xi +
q∑

i=1

αi i xi (1 − xi ). (10.1.3)

For q = 3, the models (10.1.2) and (10.1.3) are equivalent, but for q = 2, the
parameters of the latter model are not uniquely determined. For q ≥ 4, (10.1.3) is a
special case of (10.1.2), with the coefficients of (10.1.2) being governed by a system
of linear constraints. The model (10.1.3) is additive in x1, x2, . . . , xq and has fewer
parameters than (10.1.2) when q ≥ 4. It is also often found to fit data well (see Chan
2000).

Aitchison and Bacon-Shone (1984) proposed the quadratic log-contrast model
given by

η(x) = β0 +
q−1∑

i=1

βi log(xi/xq) +
q−1∑

i=1

q−1∑

i< j

βi j log(xi/xq) log(x j/xq), (10.1.4)

The advantage of a log-contrast model lies in the fact that as zi = log(xi/xq) can be
varied independently, the polynomial forms in zi s can be full in the sense of including
all terms of appropriate degree, as against Scheffé (1958) polynomial models in xi s,
which require the omission of certain terms to ensure identifiability.

Optimum designs for parameter estimation in models (10.1.3) and (10.1.4) have
been reviewed inChap.6. In this chapter, we focus on optimumdesigns for estimation
of the optimum mixture combination in Darroch–Waller and log-contrast models.

10.2 Optimality Under Darroch–Waller Model

Rewriting the model as η(x) = x≤Bx with the help of the constraint
⎧q

i=1 xi = 1,
and, assuming that B is negative definite and the optimum point γ = δ−1B−11q ,

maximizing the response, occurs in the interior of (10.1.1), where δ = 1≤B−11,

Pal et al. (2012) attempted to find an A-optimal design for estimating γ. For any
continuous design ξ, the dispersion matrix of the estimate γ̂ is given by D(γ̂) ∀=
A(γ)M−1(ξ)A≤(γ), where M is the information matrix of ξ, and A(γ) is the matrix
of partial derivatives of γ with respect to the parameters of (10.1.3). Clearly, D(γ̂) is
dependent on themodel parameters, and they adopted the pseudo-Bayesian approach
of Pal and Mandal (2006) to do away with the nuisance parameters. Arguing as in
Pal and Mandal (2006), it is assumed that E(γ2

i ) = v, i = 1, 2, . . . , q; E(γiγ j ) =
w, i �= j = 1, 2, . . . , q; v > 0, w > 0, where v + (q − 1)w = 1

q , 1
q2 < v <

1
q , v > w > 0. The criterion function for the optimal choice of design is, therefore,

http://dx.doi.org/10.1007/978-81-322-1786-2_6
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φ(ξ) = E[D(γ̂)] = T r M−1(ξ)E(A≤(γ)A(γ)). Mimicking the argument of Atwood
(1969), Pal et al. (2012) proved the following theorem:

Theorem 10.2.1 The barycenters of the experimental region (10.1.1) are the possi-
ble support points of the A-optimal design.

Thus, one needs to restrict to the class of weighted centroid designs (WCDs) to
find the optimal design. Recall that WCDs comprise of all the barycenters of the
simplex.

For a q-component model, let ξ be aWCDwith weightwr at each of the barycen-
ters of depth (r −1), 1 ← r ← q. Let ξ(q)

1,i be aWCDwhich assigns weightwr = 0 for

all r, except r = 1, i, 2 ← i ← q, and by ξ
(q)
1,i,k ,we denote aWCDwithweightwr = 0

for all r, except r = 1, i, k, 2 ← i < k ← q. Starting with the subclass of WCDs
ξ
(q)
1,i , it is easy to check that the optimum design within the subclass has weights

w1 = w10 =
√

d1i√
C(q, 1)

√
C(q, 1)d1i + √

C(q, i)d2i

wi = wi0 =
√

d2i√
C(q,i)

√
C(q,1)d1i +√

C(q,i)d2i

⎪
⎨⎨⎛

⎨⎨⎜

(10.2.1)

where

d1i = q2(q − 1) + 4i

i − 1
q2(q − 1)

⎝
1

q
− 1

2

⎞

+ 4

⎝
i

i − 1

⎞2

aq

d2i =
⎟

4i4a

(i − 1)2
q − 4i3

(i − 1)(q − 1)
q{a − b + bq}

⎠
/

C(q − 2, i − 1)

a = q(q − 1)[v + (1/4 − 1/q)], b = q[w + (1/4 − 1/q)].

Pal et al. (2012) established the following results with the help of the equivalence
theorem:

Theorem 10.2.2 For q = 3, the design ξ
(3)
1,2, with w1 = w10 and w2 = w20, given

by (10.2.1), is A-optimal, whatever be v ⇒ ( 1
9 ,

1
3

)
.

Theorem 10.2.3 For q = 4, the design ξ(4)
1,2, with w1 = w

(2)
10 and w2 = w

(2)
20 , given

by (10.2.1), is A-optimal when v < v0, where v0, rounded off to seven places of
decimal, is 0.1975663.

For v ≥ v0, Pal et al. (2012) showed through numerical computation that the
optimum design belongs to the subclass of WCDs designs ξ

(4)
1,2,3. Also, for q = 5,

the A-optimal design has been numerically demonstrated by the authors as belonging
to the subclass of WCDs designs ξ

(5)
1,2,3.

TheA-optimal designs obtained by Pal et al. (2012) forq = 3, 4, 5 for somevalues
of v are presented in Table 10.1. Note that here we are referring to γ estimation in an
optimal manner and v refers to a prior parameter viz, v = E(γ2

i ) for i = 1, 2, . . . , q.
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Table 10.1 A-optimal designs for some values of v when q = 3, 4, 5

q v C(q, 1)w1 C(q, 2)w2 C(q, 3)w3 C(q, 4)w4 C(q, 5)w5

3 0.12 0.2563 0.7437 0 – –
0.16 0.3285 0.6715 0 – –
0.20 0.3490 0.6510 0 – –
0.24 0.3589 0.6411 0 – –
0.28 0.3648 0.6352 0 – –
0.32 0.3686 0.6314 0 – –

4 0.08 0.2168 0.7832 0 0 –
0.10 0.2697 0.7303 0 0 –
0.15 0.3210 0.6790 0 0 –
0.19 0.3389 0.6611 0 0 –
0.20 0.3419 0.6566 0.0015 0 –
0.22 0.3454 0.6425 0.0120 0 –
0.24 0.3484 0.6308 0.0208 0 –

5 0.06 0.1999 0.6403 0.1598 0 0
0.08 0.2333 0.5113 0.2554 0 0
0.10 0.2502 0.4184 0.3314 0 0
0.12 0.2602 0.3461 0.3937 0 0
0.14 0.2666 0.2876 0.4458 0 0
0.16 0.2710 0.2392 0.4898 0 0
0.18 0.2741 0.1977 0.5282 0 0

Remark 10.2.1 It may be mentioned that for parameter estimation in the Darroch–
Wallermodel, the optimumdesign for q = 3, 4 has support points only at barycenters
of depths 0 and 1, while for q = 5, the support points are at the barycenters of depths
0 and 2 (cf. Chan et al. 1998a).

A modification of Darroch–Waller model to include the amount of mixture has
been suggested by Zhang et al. (2005). Let A denote the maximum possible amount
of the mixture. If ai (≥0), i = 1, 2, . . . , q, denote the actual amounts of the q
components in the mixture, then

⎧q
i=1ai ← A. The proportion of the i th component

in the mixture is xi = ai/A, (i = 1, 2, . . . , q), and the component space is given
by

η = {x = (x1, x2, . . . , xq) : xi ≥ 0, i = 1, 2, . . . , q, x1 + x2 + · · · + xq ← 1}.
(10.2.2)

The response function η(x) is defined as

η(x) = α0 +
q∑

i=1

αi xi +
q∑

i=1

αi i xi (1 − xi ). (10.2.3)

It has been pointed out by Zhang et al. (2005) that (10.2.3) remains the same
even when the maximum amount A is replaced by another maximum amount A∞.
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The model is a quadratic model, additive in the mixing proportions x1, x2, . . . , xq ,

and, for q ≥ 4, it has fewer parameters than the mixture–amount model obtained
from Scheffé (1958) full quadratic model, modified by inclusion of a constant term
β0, viz.

η(x) = β0 +
q∑

i=1

βi xi +
q∑

i< j=1

βi j xi x j .

Mandal et al. (2012) investigated A-optimal designs for estimating the optimum
mixture combination. Let xq+1 = 1 − ⎧q

i=1 xi . Then, xq+1 represents the pro-
portion of the total amount that is not used in the mixture and satisfies xq+1 ≥
0,
⎧q+1

i=1 xi = 1. Defining x∞ = (x1, x2, . . . , xq+1)
≤ and using the constraint

⎧q+1
i=1 xi = 1, the model (10.2.3), can be, as before, written as η(x∞ = x∞≤ Bx∞),

where B is a symmetric matrix, involving the model parameters, and is assumed
to be negative definite. The optimum point, maximizing the response, is given by
γ∞ = (γ1, γ2, . . . , γq , γq+1)

≤ = δ∞−1B−11q+1, where δ∞ = 1q+1B−11q+1, under
the assumption that the optimum point occurs in the interior of the experimental
region Sq = {(x1, x2, . . . , xq , xq+1)

≤ : xi ≥ 0, i = 1, 2, . . . , q + 1,
⎧q+1

i=1 xi = 1}.
Writing Sq

δ = {x = (x1, x2, . . . , xq) : xi ≥ 0, i = 1, 2, . . . , q,
⎧q

i=1 xi =
δ}, δ ⇒ [0, 1], the component space (10.2.2) is given by η = ⎫

δ⇒[0,1]S
q
δ .

Using the argument of Zhang et al. (2005), Mandal et al. (2012) showed that
only the barycenters of Sq

δ , δ ⇒ [0, 1], play a crucial role in the construction of the
optimum designs. For 6 ← q ← 10, the following theorem has been established:

Theorem 10.2.4 For 6 ← q ← 10, the A-optimal design assigns positive weights
only at the barycenters of depths 0, 1, and 2 in Sq

1 , whatever be the prior moments.

To prove the theorem, Mandal et al. (2012) made use of Kiefer’s equivalence
theorem. For 3 ← q ← 5, they verified, using equivalence theorem, that the optimal
design does not necessarily belong to the subclass of designs with support points
only at the barycenters of Sq

1 . Since algebraic derivation is rather involved, they then
proceeded numerically to find the optimum designs for some combinations of the
prior moments. The following table showing A-optimal designs is reproduced from
Pal et al. (2012), where w0 is the weight assigned to the origin 0 = (0, 0, . . . , 0)≤,
w j+1 the weight assigned to each of the barycenters of depth j in Sq

1 , and wδ the
weight assigned to each barycenter of depth 0 in Sq

δ , for some δ ⇒ (0, 1), and e1, v1
are the common first- and second-order prior moments of γi , i = 1, 2, . . . , q (Table
10.2).

10.3 Optimality Under Log-Contrast Model

Chan (1992) discussed the D-optimal design for parameter estimation in (10.1.4)
with experimental domain restricted to (10.3.1) given below. Huang and Huang
(2009) also studied Ds-optimal designs for discriminating between linear and
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Table 10.2 A-optimal designs for some combinations of the prior moments of γ

q e1 v1 δ w0 C(q, 1)w1 C(q, 2)w2 C(q, 3)w3 C(q, 1)wδ

3 0.10 0.05 0.3742 – 0.200378 0.509256 – 0.290366
0.25 0.16 0.3741 – 0.289217 0.548943 – 0.161842
0.30 0.22 0.3696 – 0.326449 0.539221 – 0.134332

4 0.10 0.05 0.3458 – 0.235803 0.680893 – 0.083307
0.15 0.10 0.3446 – 0.272932 0.651472 – 0.075595
0.20 0.10 0.3458 – 0.267992 0.647196 – 0.084813

5 0.10 0.05 0.3461 – 0.186775 0.244744 0.51214 0.056341
0.15 0.06 0.3590 – 0.200957 0.378069 0.35637 0.064604
0.18 0.10 0.3568 – 0.237630 0.324340 0.37891 0.059122

6 0.06 0.01 – 0.018950 0.100794 – 0.880255 –
0.10 0.05 – 0.017466 0.173260 – 0.809274 –
0.14 0.06 – 0.018844 0.179778 – 0.801378 –

7 0.06 0.01 – 0.015482 0.121510 – 0.863009 –
0.10 0.02 – 0.016845 0.119170 – 0.863986 –
0.12 0.05 – 0.015451 0.176783 – 0.807766 –

8 0.06 0.01 – 0.013165 0.125501 – 0.861335 –
0.08 0.02 – 0.013330 0.138480 – 0.848190 –
0.10 0.05 – 0.012364 0.186361 – 0.801275 –

9 0.06 0.01 – 0.011343 0.128415 – 0.860242 –
0.08 0.02 – 0.011480 0.141626 – 0.846894 –
0.10 0.05 – 0.010626 0.190205 – 0.799169 –

10 0.03 0.01 – 0.009038 0.149193 – 0.841769 –
0.06 0.02 – 0.009401 0.155192 – 0.835406 –
0.09 0.05 – 0.009006 0.194969 – 0.796025 –

quadratic log-contrast models by restricting to the experimental region Xδ =
{(x1, x2, . . . , xq)≤ ⇒ rel. int. Sq−1 : δ ← xi/x j ← 1/δ, for all i = 1, 2, . . . , q}, δ ⇒
(0, 1). Following in their footsteps, Pal andMandal (Pal andMandal, 2012c), in order
to estimate the optimum mixture combination, restricted the experimental region to

Sq−1
δ = {(x1, x2, . . . , xq)≤ ⇒ rel. int. Sq−1 :

δ ← xi/xq ← 1/δ, i = 1, 2, . . . , q − 1}, δ ⇒ (0, 1), (10.3.1)

where rel. int. Sq−1 denotes the relative interior of Sq−1.

Setting ti = − log
( xi

xq

)
/log δ, model (10.1.4) can be written as

η(x) → η(t) = λ0 +
q−1∑

i=1

λi ti +
q−1∑

i=1

q−1∑

j=1

λi j ti t j = f ≤(t)λ∞, say (10.3.2)
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where

f (t) = (1, t1, t2, . . . , tq−1, t21 , t22 , . . . , t2q−1, t1t2, t1t3, . . . , tq−2tq−1)
≤,

λ∞ = (λ0,λ1, . . . , λq−1,λ11,λ22, . . . , λq−1,q−1λ12,λ13, . . . , λq−2,q−1)
≤,

λ0 = β0,λi = βi (− log δ),λi j = βi j (log δ)2,

and the experimental domain in terms of t becomes

F = {t = (t1, t2, . . . , tq−1)
≤ ⇒ [−1, 1]q−1 :

ti − t j ⇒ [−1, 1] for all i, j = 1, 2, . . . , q − 1}. (10.3.3)

The observations yi s on the response are assumed to be independent, with constant
variance σ2. Though the choice of the divisor xq in ti is arbitrary, for the sake of
convenience, one can take xq , the last component, as the divisor.

To find the optimum design for estimating the optimum x in the domain (10.3.1)
that maximizes ηx , one can, therefore, first find the optimum design for estimating
optimum t in the domain (10.3.3), which maximizes η(t). To do so, it is convenient
to write the model (10.3.2) as

η(t) = λ0 + λ≤ t + t ≤σt, (10.3.4)

where λ = (λ1,λ2, . . . , λq−1)
≤, t = (t1, t2, . . . , tq−1)

≤,σ is a (q − 1) × (q − 1)
matrix of the formσ = 1

2 ((1+δi j )λi j ),λ j i = λi j , for j > i, and δi j is theKronecker
delta taking the value 1 if i = j, and 0 if i �= j. It is assumed that σ is negative
definite and the optimum t is an interior point of the experimental domain F . The
optimum point in (10.3.3) is then obtained as γ = − 1

2σ
−1λ, which is a nonlinear

function of the parameters of (10.3.2). From the inverse transformation t → x, it is
easy to find x = x0, which maximizes (10.1.4), and this is also a nonlinear function
of the model parameters.

For a (continuous) design ξ, the large sample dispersion of the estimate γ̂ of γ
will be, as before, given by D(γ̂) ∀= A(γ)M−1(ξ)A≤(γ),where M is the information
(moment) matrix of ξ, and A(γ) is the matrix of partial derivatives of γ with respect
to the parameters of the model (10.3.4). One can easily write A(γ) = −σ−1A∞(γ),

where A∞(γ) is given by

A∞(γ) =

⎬

⎭
⎭
⎭
⎭


0 1
2 0 . . . 0 γ 0 . . . 0 γ2

2
γ3
2 . . . 0

0 0 1
2 . . . 0 0 γ2 . . . 0 γ1

2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0 0 . . . 0 0 0 . . .
γq−1
2

0 0 0 . . . 1
2 0 0 . . . γq−1 0 0 . . .

γq−2
2



⎢
⎢
⎢
⎢
⎥

.

The D-optimality criterion selects the optimum design by minimizing the de-
terminant of D(γ̂) = [A∞(γ)M−1(ξ)A∞≤(γ)]. However, the determinant depends
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on the unknown model parameters through γ, and, to remove the nuisance para-
meters, Pal and Mandal (2012c) used the pseudo-Bayesian approach of Pal and
Mandal (2006). The second-order prior moments of x0 are assumed to be known,
and since no prior information is available on x0, one may take E(x2i0) to be same
for all i = 1, 2, . . . , q and E(xi0x j0) to be equal for all 1 ← i < j ← q. Since⎧q

i=1 xi0 = 1, this assumption is equivalent to stating that

E(γi ) = 0, E(γ2
i ) = v, E(γiγ j ) = w,≡ 1 ← i < j ← q − 1, (10.3.5)

where v ⇒ (0, 1), w ⇒ (−1, 1), and v > w.

Then, invocation of the D-optimality criterion amounts to minimizing

φ∞
D(ξ) = Det.E[A∞(γ)M−1(ξ)A∞≤(γ)]. (10.3.6)

or, equivalently, to maximizing φ∞∞
D (ξ) = − logφ∞

D(ξ).
The function φ∞∞

D (ξ) possesses two important properties, viz. invariance and con-
cavity (cf. Mandal 1982). Thus, to find the optimum design for estimating γ, and
hence x0, one can restrict to the subclass of invariant designs and, in particular, to
the subclass DR of invariant designs given by

DR = {η∞ | η∞ = α0η0 + α1η1 + · · · + αq−1ηq−1, 0 ← αi ← 1,

for i = 1, 2, . . . , q − 1,
q−1∑

i=1

αi = 1},

where for each i = 2, 3, . . . , q − 1, the design ηi is defined as:

ηi =


⎨

⎨
t √∼

i
︷ ︸︸ ︷
(1, 1, . . . , 1,

q−i−1
︷ ︸︸ ︷
0, 0, . . . , 0)≤ t √∼

i
︷ ︸︸ ︷
(−1,−1, . . . , −1,

q−i−1
︷ ︸︸ ︷
0, 0, . . . , 0)≤

1
2C(q−1,i)

1
2C(q−1,i)

⎪
⎨⎛

⎨⎜

Here, t ←→ r means t = P r, where P is some (q − 1) × (q − 1) permutation
matrix. Huang and Huang (2009) also restricted to this subclass for the problem of
estimation of quadratic coefficients, ηi assigns equal masses to the vertices of the
experimental domain F , with i components equal to +1 or −1. For example, in a
three-component experiment, η1 assigns mass 1/4 to each of the points (1, 0), (0,
1), (−1, 0), and (0, −1), while η2 assigns mass 1/2 to each of the points (1, 1) and
(−1,−1). Clearly, the designs ηi , 1 ← i ← q −1, areR-invariant, i.e., invariant with
respect to permutation of coordinates and sign changes.

After some algebraicmanipulation, one getsφ∞
D(η∞) = (m−n)q−2{m+(q−2)n},

where m and n are functions of v,w,αi , 0 ← i ← q − 1. It may be mentioned that
αi is the weight assigned to the design ηi . The D-optimal design within DR is then
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obtained byminimizingφ∞
D(η∞)with respect toαi , 0 ← i ← q−1,where 0 ← αi ← 1

and
⎧

αi = 1. The optimality or otherwise of the design within the entire class is
verified usingKiefer (1974) equivalence theorem,which in the present setup, reduces
to the following :

Theorem 10.3.1 (Equivalence Theorem) A necessary and sufficient condition for a
design ξ to be D-optimal is that

tr [E{A∞(γ)M−1(ξ) f (t) f ≤(t)M−1(ξ)A∞≤(γ)}(E{A∞(γ)M−1(ξ)A∞≤(γ)})−1] ← q − 1
(10.3.7)

holds for all t in the factor space F . Equality in (10.3.7) holds at the support points
of ξ.

To express the optimal design in the experimental region Sq−1
δ , for each x ⇒ Sq−1,

we use the notation x ∀ (k1, k2, . . . , kq) to mean

x = (k1, k2, . . . , kq)≤

⊗(K − 1, k2, . . . , kq)⊗ ,

where δ ← ki
k j

← 1/δ, 1 ← i, j ← q, δ ⇒ (0, 1) and ⊗⊗ denotes the usual L1

norm. Further, we write x
q−1√∼(k1, k2, . . . , kq) to denote the collection of all x ∀

(kP(1), kP(2), . . . , kP(q−1), kq), for all permutation P of {1, 2, . . . , q − 1}. For
example, if q = 3, then x ∀ ((1, δ, 1) means x = (1/(δ + 2), δ/(δ + 2), 1/(δ +
2))≤; x

2√∼ (1, δ, 1) means x ⇒ {x ⇒ S2 : x ∀ (1, δ, 1) or x ∀ (δ, 1, 1)}. Then,
the design ηi on the experimental region F corresponds to the design ξi on the
experimental domain Sq−1

δ given by (10.3.1), where

ξi =


⎨

⎨
x

q−1√∼
i

︷ ︸︸ ︷
(1, 1, . . . , 1,

q−i−1
︷ ︸︸ ︷
δ, δ, . . . , δ, δ)≤ x

q−1√∼
q−i−1

︷ ︸︸ ︷
(δ, δ, . . . , δ, 1, 1, . . . , 1, 1)≤

1
2C(q−1,i)

1
2C(q−1,i)

⎪
⎨⎛

⎨⎜

For the case of q = 2, it can be shown that the D-optimal design assigns mass α0/2

at each of the support points

⎝
δ

1 + δ
,

1

1 + δ

⎞

and

⎝
1

1 + δ
,

δ

1 + δ

⎞

, andmass 1−α0

at the centroid (1/2, 1/2), where α0 =
√

v + 1/4√
v + √

v + 1/4
.

Owing to the presence of apriori moments (v,w), verification of optimality of
a design by equivalence theorem becomes algebraically rather involved for q ≥ 3.
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Table 10.3 Optimal masses assigned to ηi s for some combinations of (v,w)

q v w α0 α1 α2 α3 α4

3 0.1 0.05 0.2265 0.5157 0.2578 – –
0.2 0.10 0.2572 0.4952 0.2476 – –
0.3 0.15 0.2712 0.4859 0.2429 – –
0.4 0.15 0.2805 0.4874 0.2321 – –
0.6 0.23 0.2483 0.5063 0.2454 – –

4 0.1 0.07 0.1327 0.3747 0.3624 0.1302 –
0.2 0.10 0.1630 0.3870 0.3210 0.1290 –
0.4 0.15 0.1782 0.3934 0.3058 0.1226 –
0.6 0.40 0.1787 0.3775 0.3061 0.1377 –
0.8 0.25 0.1857 0.3966 0.2995 0.1182 –

5 0.1 0.05 0.0897 0.2942 0.3255 0.2170 0.0736
0.3 0.10 0.1102 0.3153 0.3063 0.1966 0.0716
0.4 0.20 0.1116 0.3111 0.2997 0.1998 0.0778
0.6 0.40 0.1124 0.3037 0.2937 0.2061 0.0841
0.8 0.25 0.1173 0.3201 0.3004 0.1914 0.0708

However, for q = 3, 4, 5, Pal and Mandal (2012c) numerically verified, using innu-
merable points in the experimental domain, that the condition (10.3.7) is satisfied.
Table 10.3 gives the D-optimal designs for q = 3, 4, 5, for some combinations of
(v,w), as obtained by Pal and Mandal (2012c).
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Chapter 11
Applications of Mixture Experiments

Abstract The purpose of this chapter is to describe some application areas
of mixture experiments. We present some studies taken up in the context of agri-
cultural/horticultural/pharmaceutical experiments in the form of mixture designs in
order to extract meaningful information for specific items of enquiry.

Keywords Applications of mixture experiments · Intercropping experiment ·
Ready-to-serve fruit beverage experiment · Pharmaceutical experiment

11.1 Introduction

Experimental designs have vast applications in different fields such as agriculture,
engineering, pharmacy, biomedical, and environmental studies, to namea few. In such
areas, often experiments are conducted with a fixed quantity of inputs (same dose of
fertilizer, same quantity of irrigation water or same dose of diluent, etc.) applied as
mixture of two or more components. Here, the ‘treatments’ are either combinations
of two or more ingredients whose total is a fixed quantity or are quantities of inputs
applied at different experimental stages such that the sum total of the quantities is
fixed.These experiments are generally carried out using a randomized complete block
design (RCBD) or a completely randomized design (CRD), and aim at identifying
the best among the ‘treatments’ tried in the experiment. However, if the experimenter
is also interested in obtaining a functional relationship between the proportions of
inputs applied and the mean response, so that one can interpolate the responses
at points that have not been tried in the experiment, and/or obtain the optimum
proportion of the inputs, RCBD/CRD analysis alone is not sufficient. In this case,
one has to draw an analogy of these experiments with mixture experiments. Many
such experiments are being conducted in the National Agricultural Research System
in India and elsewhere.

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 149
DOI: 10.1007/978-81-322-1786-2_11, © Springer India 2014
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Again, in studies related to ready-to-serve (RTS) beverages, suitable mixtures of
the ingredients in appropriate proportions are to be ascertained, keeping an objective
in mind. This naturally calls for a study in the setup of a mixture experiment. In
pharmaceutical experiments, it is a natural problem to combine different excipients in
an ‘optimal’manner to ‘maximize’ the ‘output’ in some sense. In all of the above three
areas, we will narrate examples of actual studies carried out as mixture experiments.

11.2 Application in Replacement Series Intercropping
Experiment

Intercropping is an important feature of dryland farming and it has proved very useful
for survival of small and marginal farmers in tropical and subtropical regions.

Depending upon the row arrangements, the intercropping experiments are classi-
fied into two types viz. (i) additive series, where the component crop is introduced
without reducing the plant population of the main crop, and (ii) replacement series,
where the component crop is introduced by replacing a part of the main crop. In
the latter case, the ‘treatments’ are the different row ratios. A critical look at the
treatment structure reveals that in such experiments, the total land resources, i.e.,
area under each experimental unit is constant and the response varies only due to
different proportions of the crops. Thus, the variation in response is due to the varying
proportions of the area allotted to the crops. The ‘sole crop’ treatments are the ‘pure’
blends, and the different proportions (treatments) are treated as ‘mixtures.’

Let there be N design points (experimental plots) and v distinct intercropping
treatment combinations (ITCs). In this situation, we assume N = vr so that each
ITC may be replicated r times. Let the proportionate area allocated to i th ITC in
uth experimental unit be xiu, 1 ≥ i ≥ v; 1 ≥ u ≥ N . The response is assumed
to have functional relationship with the proportions allocated to the ITCs in the uth
experimental unit, and the relationship may be explained by second-order canonical
polynomial of Scheffé (1958). For two-component ITCs, this is given by

yu = β1x1u + β2x2u + β12x1u x2u + eu,

where β1,β2 and β12 are the usual regression coefficients. Also,

x1u + x2u = 1, 0 ≥ x1u, x2u ≥ 1; u = 1, 2, . . . , N .

The parameters can be estimated using the ordinary least squaresmethod, and thereby
the estimates of the optimum mixing proportions of area allocated to different ITCs
for maximizing the gross returns and the optimum response can be obtained.

Empirical Illustration: An intercropping experiment was conducted by
Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Dryland Research Station, Akola, India
on Redgram and Safflower with the objective of finding the optimum proportions of
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area to be allocated to redgram and safflower so as to maximize the gross returns.
There are five ITCs defined as

ITC1: Sole Redgram
ITC2: Redgram + Safflower in the row ratio of 2:1
ITC3: Redgram + Safflower in the row ratio of 1:2
ITC4: Redgram + Safflower in the row ratio of 1:1
ITC5: Sole Safflower

Accordingly, the proportions of area allocated to crops redgram and safflower are
1:0, 2:1, 1:2, 1:1, 0:1.

For details, we refer to Dhekale (2001) and Dhekale et al. (2003).
Thefindings of the above study, as an applicationofmixture experiment, suggested

the following ‘optimum’ proportion(s) of redgram for different price ratios [price
ratio, x1(opt)]:

(1:0.75, 24.49); (1:0.80, 20.20); (1:1.00, 11.15); (1:1.05, 9.86);
(1:1.10, 8.78); (1:1.30, 5.76); (1:1.50, 3.91); (1:1.75, 2.41).

11.3 Preparation and Standardization of RTS Fruit Beverages

An experiment was conducted at Division of Fruits and Horticultural Technology,
Indian Agricultural Research Institute, New Delhi, India to study the feasibility of
blending fruit juice/pulp of lime, aonla, grape, pineapple, and mango in different
proportions (5–95%) for preparation and standardization of ready-to-serve (RTS)
beverages for improving the aroma, taste, and nutrients of the beverages. Four differ-
ent combinations of fruit juices viz. lime–aonla, mango–pineapple, grape–pineapple,
and mango–grape mixed in the ratios 0:100, 5:95, 10:90, 15:85, 20:80, 25:75, 50:50,
75:25, 80:20, 85:15, 90:10, 95:5, 100:0 were considered, and a panel of nine mem-
bers, adopting nine-point hedonic scale organoleptically, evaluated the prepared bev-
erages. The experiment was replicated three times, and the data were analyzed as a
one-way classified data separately for all the four mixtures. For details, we refer to
Deka et al. (2001). We highlight below some of the findings.

Since the age of the panelmembers (respondents) variedwidely, which could have
an effect on their perception of the beverages,the data were then divided into three
groups according to the ages of the respondents, viz., 22–34, 35–44, and 45–55 years,
and were then analyzed as a two-way classified data. Significant differences were
observed among the age groups.

As the optimum blending proportion that maximizes the responses (viz. hedonic
scores on color, aroma, taste, and overall) may be other than the proportions tried in
the experiment, it was necessary to establish a relationship between each response
and the mixing proportions. Scheffé’s quadratic mixture model was used for the
purpose. The data were then analyzed using mixtures methodology to estimate the
parameters of the models.
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For details, we refer to Deka et al. (2001). The following observations emerged
from their data analysis:

(i) In lime–aonlamixture, sensory score decreaseswith decrease in limeproportion.
(ii) In mango–pineapple mixture, sensory score increases with decrease in mango

proportion.
(iii) In grape–pineapple mixture, sensory score decreases with decrease in pineapple

proportion.
(iv) Inmango–grapemixture, there is not much change in sensory score with change

in the mixture combination.

11.4 Application in Pharmaceutical Experiments

Pharmaceutical formulations are basically mixtures of a number of excipients. The
main aim in such formulations is to study the effects of different proportions of
the excipients on the characteristics of the formulation. These characteristics include
both the final properties of the dosage form and the case of processing, which depend
on the relative proportions of the constituents.

In almost all pharmaceutical formulations, there are constraints on the propor-
tions of the constituents used. There can be two types of constraints, viz. absolute
constraints and relational constraints. In an absolute constraint, the proportion of an
excipient is governed by a lower and an upper bound, while in a relational constraint,
lower and/or upper bounds are specifiedona linear combinationof themixture combi-
nation. Relational constraints generally arise when the mixture contains constituents
of the same type. For example, in an inert matrix tablet, besides other ingredients,
there may be three types of polymers and two types of diluents. The polymers and
diluents may then be classified into two groups under the broad heading ‘polymer’
and ‘diluent,’ and these are called the ‘major’ components or ‘M’ components. The
components within a group are referred to as ‘minor’ components or ‘m’ compo-
nents. The number of members of a M component is normally not very large, say
two or three. (Cf. Lewis et al. 1998). Bounds on the proportions of the M components
give relational constraints on the minor components.

Initially, Scheffé’s first-order model was used to define the mean response in a
pharmaceutical experiment with two major components and relational constraints.
However, owing to the different permeabilities of the polymers, their relative pro-
portions were expected to affect the dissolution properties of the tablet. Hence,
a second-order term indicating the interaction between the polymers was added.
Further extensions assumed interaction between polymers and diluents.

In the special case, where the proportions of the major components are fixed,
a product model was found to be more appropriate, and it was meant to define
mean response as a second-order Scheffé model in polymers, but each coefficient
of the model depended on the composition of the diluents according to a first-order
Scheffé model. Thus, for two major components—polymer (A and B) and diluent
(D1, D2, D3)—the response is given by
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ηx = β1x1 + β2x2 + β12x1x2
= (θ13x3 + θ14x4 + θ15x5)x1 + (θ23x3 + θ24x4 + θ55x5)x2

+ (θ123x3 + θ124x4 + θ125x5)x1x2. (11.4.1)

where (x1, x2) denotes the proportions of polymers A and B and (x3, x4, x5) denotes
the proportions of diluents D1, D2, and D3 in the mixture. Not much research has
been done for the above type of response function. The natural questions that arise
here are (i) what should be the parameters of the model? and (ii) what is the optimum
polymer composition? Lewis et al. (1998) indicated that the D-optimal design for
parameter estimation is a nine-point design obtained by multiplying the second-
order Scheffé design for the polymers (3 points) and the first-order Scheffé design
for diluents (3 points). However, investigation for obtaining the optimal design for
estimating the optimum proportions of the polymers has rarely been made.

Pal and Mandal (2013) considered model (11.4.1) with two major components,
M1 and M2, having m and n minor components, respectively, and occurring in fixed
proportions in the mixture. The response function is quadratic in the minor compo-
nents of M1, and each regression coefficient is linear in the minor components of M2.

Let (x1, x2, . . . , xm) and (xm+1, xm+2, . . . , xm+n) denote the proportions of the
minor components in M1 and M2, respectively, where 0 ≥ xi ≥ 1,

∑m+n
i=1 xi = 1.

Suppose the proportions of the major components are fixed as
∑m

i=1xi = δ,∑m+n
i=m+1xi = 1 − δ, 0 < δ < 1.
The mean response η(x) is given by

η(x) =
m∑

i=1

βi xi +
m∑

i< j=1

βi j xi x j ,

where

βi =
m+n∑

k=m+1

θik xk , i = 1, 2, . . . , m, βi j =
m+n∑

k=m+1

θi jk xk , i < j = 1, 2, . . . , m,

and the experimental region is given by

η = {(x1, x2, . . . , xm+n) | 0 ≥ xi ≥ 1, i = 1, 2, . . . , m + n,

m∑

i=1

xi = δ,

m+n∑

i=1

xi = 1}.
(11.4.2)

One can express the experimental region as η = η1 ≤ η2, where

η1 =
{

(x1, x2, . . . , xm) | 0 ≥ xi ≥ 1, i = 1, 2, . . . , m,

m∑

i=1

xi = δ

⎧

(11.4.3)
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η2 =
{

(xm+1, xm+2, . . . , xm+n) | 0 ≥ xi ≥ 1, i = m + 1, . . . , m + n,

m+n∑

i=m+1

xi = 1 − δ

⎧

(11.4.4)

Henceforth, we shall write x(1) = (x1, x2, . . . , xm) and x(2) = (xm+1, xm+2, . . . ,

xm+n).

11.4.1 Optimum Design for Parameter Estimation

Consider the classD of all competing continuous designs, for which all the parame-
ters of (11.4.2) are estimable. We want to find a continuous design ξ in D that can
estimate the parameters with maximum accuracy.
Pal and Mandal (2013) proved the following theorem :

Theorem 11.4.1 The D-optimal (as also trace-optimal) design contains support
points which are union of barycentres of η1 and η2.

D-optimality criterion
In view of Theorem 11.4.1, let us first consider a subclass D12 of designs ξ with
support points given by

(i) (δ, 0, . . . , 0; 1 − δ, 0, . . . , 0) and all possible permutations within the first m
coordinates and within the last n coordinates, respectively, each with weight
α1 = α/mn—having equal split of total weight α assigned to these support
points;

(ii) (δ/2, δ/2, 0, . . . , 0; 1−δ, 0, . . . , 0) and all possible permutationswithin the first
m coordinates and within the last n coordinates, respectively, each with weight
α2 = (1 − α)/nC(m, 2).

Thus, whereas 0 < α < 1 and it splits intomn equal parts, (1−α) splits itself equally
among nC(m, 2) terms.We shall refer to the support points in (i) as pure-type support
points and those in (ii) as mixed-type support points.

For any design ξ ∀ D12, the information matrix is given by

M(ξ) = XσX ′,

where

X =
⎪

δ(1 − δ)Im
δ(1−δ)

2 P

0 δ2(1−δ)
4 IC(m,2)

⎨

← In,
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Pm×C(m,2) =

⎛

⎜
⎜
⎜
⎜
⎝

m−1
⎞ ⎟⎠ ︷
1 1 . . . 1

m−2
⎞ ⎟⎠ ︷
0 0 . . . 0

m−3
⎞ ⎟⎠ ︷
0 0 . . . 0 . . .

1
⎞⎟⎠︷
0

1 0 . . . 0 1 1 . . . 1 0 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0 . . . 1 0 0 . . . 1 . . . 1







⎫

σ =
⎬

α1 Im 0
0 α2 IC(m,2)

⎭

← In .

Therefore,

M−1(ξ) = n

δ2(1 − δ)2
M−1

1 (ξ) ← In,

where

M−1
1 (ξ) =

⎪ 1
α∗
1

Im − 2
δα∗

1
P

− 2
δα∗

1
P ′ 4

δ2α1
P ′ P + − 16

δ2α∗
2

IC(m,2)

⎨

, (11.4.5)

with
α∗
1 = nα1, α∗

2 = nα2.

Since the design ξ is saturated, the D-optimal design, say ξD , inD12 has α = mn/p.

Using equivalence theorem, Pal and Mandal (2013) established the following :

Theorem 11.4.2 The D-optimal design for estimation of parameters in model
(11.4.2) is a saturated design with pure- and mixed-type support points.

Now we turn to the A-optimality criterion and present relevant optimality results.

For trace optimality, the criterion function is φ(ξ) = T race(M−1(ξ)). Within the
subclass D12, the trace-optimal design has

α = α0 =
⇒

a⇒
a + ⇒

b
, (11.4.6)

where
a = m(m + 8C(m, 2))/δ2; b = 16C(m, 2)2/δ2.

Pal and Mandal (2013) proved the following:

Theorem 11.4.3 For m ∞= 3, the trace-optimal design for estimation of parameters
in model (11.4.2) has support points of the pure type, each with weight α0

mn , and the

mixed type, each with weight 1−α0
nC(m,2) , where α0 is given by (11.4.6).

Theorem 11.4.4 When m = 3, the trace-optimal design, for estimation of parame-
ters in the mixture model (11.4.2) has pure-type support points, each with weight
α∗
1, mixed-type support points, each with weight α∗

2, and support points of the type
(δ/3, δ/3, δ/3; 1−δ, 0, . . . , 0), and all possible permutations within the last n coor-
dinates, each with weight α∗

3, where α∗
1 = 0.1417,α∗

2 = 0.1873,α∗
3 = 0.0130.
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11.4.2 Optimum Design for Estimation of the Optimum
Composition of M1

Using the constraint
∑m

i=1xi = δ, we can re-write the mean response function in
(11.4.2) as

η(x) =
m∑

i=1

λi i x2i +
m∑

i< j=1

λi j xi x j = x′
(1) Bx(1), (11.4.7)

where

λi i = βi

δ
, λi j = βi

δ
+ β j

δ
+ βi j , B = ((bi j )),

bi j = 1

2
(1 + δi j )λi j , i, j = 1, 2, . . . , m,

δi j = 1, if i = j

= 0, if i ∞= j.

Clearly, λi j s are linear functions of xm+1, xm+2, . . . , xm+n . Let,

λi j =
m+n∑

k=m+1

μi jk xk . (11.4.8)

From (11.4.7), the optimum proportions in M1 for given x(2) is γ = δ(1′ B−11)−1

B−11 = ρB−11, where ρ = δ(1′ B−11)−1.
For a design ξ, the large sample conditional dispersion matrix of γ̂, given x(2), is

D(γ̂ | x(2)) = A(γ)M−1(ξ)A′(γ),

where

A(γ) =
(

∂γ

∂μ111
, . . . ,

∂γ

∂μ11n
, . . . ,

∂γ

∂μmm1
, . . . ,

∂γ

∂μmmn
, . . . ,

∂γ

∂μ121
, . . . ,

∂γ

∂μm−1,m,n

)

= A∗(γ)C(x(2)), say,

with

A∗(γ) =
(

∂γ

∂λ11
, . . . ,

∂γ

∂λ11
, . . . ,

∂γ

∂λmm
, . . . ,

∂γ

∂λmm
,

∂γ

∂λ12
, . . . ,

∂γ

∂λ12
, . . . ,

∂γ

∂λm−1,m

)

= d(1′
n ← a1, . . . , 1

′
n ← am+C(m,2))

being an m × p matrix and ai s being the columns of the matrix
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A1(γ) = d

⎢

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥


−2(m − 1)γ1 2γ2 . . . 2γmγ1 − (m − 1)γ2 . . . γm−1 + γm
2γ1 − 2(m − 1)γ2 . . . 2γmγ2 − (m − 1)γ1 . . . γm−1 + γm

2γ12γ2 . . . 2γmγ1 + γ2 . . . γm−1 + γm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2γ12γ2 . . . 2γmγ1 + γ2 . . . γm−1 + γm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2γ12γ2 . . . 2γmγ1 + γ2 . . . γm−1 − (m − 1)γm
2γ12γ2 . . . −2(m − 1)γmγ1 + γ2 . . . γm − (m − 1)γm−1















.

(11.4.9)

and d being a constant independent of the design (cf. Pal and Mandal (2006), and
C(x2) = Diag(xm+1, . . . , xm+n, . . . , xm+1, . . . , xm+n) is a p × p matrix.

However, D(γ̂ | x(2)) is a function of the unknown parameters of the model so
that one may use the pseudo-Bayesian approach of Pal andMandal (2006). Since the
elements of A∗(γ)′ A∗(γ) are quadratic functions of γi s, i = 1, 2, . . . , m, we assume
the prior moments of γiγ j , i, j = 1, 2, . . . , m as follows :

E(γ2
i | x(2)) = v(x(2)) for all i = 1, 2, . . . , m, and E(γiγ j | x(2)) = w(x(2)),

for every i < j = 1, 2, . . . , m.

(Cf. Chap. 7.)
Since

∑m
i=1γi = δ, v(x(2)) and w(x(2)) satisfy m[v(x(2)) + (m − 1)w(x(2))] = δ2.

Also, since v(x(2)) → w(x(2)), we have
δ2

m2 ≥ v(x(2)) < δ2

m , whatever be x(2).
The trace criterion function is then given by

φ(ξ, x(2)) = Trace [M−1(ξ)C(x(2))
′E{A∗(γ)′ A∗(γ)}C(x(2))].

= Trace [M−1(ξ)(E{A1(γ)′ A1(γ)} ← (x(2)x
′
(2)))].

To remove the effect of x(2) from the criterion function, one may integrate φ(ξ, x(2))

with respect to x(2), and obtain the modified criterion as

β(ξ) =
∫ ∫

· · ·
∫

φ(ξ, x(2))
n
α
j=1

dxm+ j .

0 < xm+ j < 1 − δ
1 ≥ j ≥ n

n∑

j=1

xm+ j = 1 − δ

Pal and Mandal (2013) considered the simplest situation where the components of
M2 do not affect the prior moments of γ, that is

v(x(2)) = v,w(x(2)) = w.

Then, ignoring the constant term,the criterion function becomes

β1(ξ) = Trace[M−1(ξ)(E{A1(γ)′ A1(γ)} ← (In + 11′))], (11.4.10)

http://dx.doi.org/10.1007/978-81-322-1786-2_7
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Clearly, there is invariance in the criterion function with respect to the components of
major components M1 and M2.Hence,wemay restrict to the class of designs invariant
with respect to the m components of M1 and with respect to the n components of
M2.

Pal and Mandal (2013) established the following results :

Theorem 11.4.5 The possible support points of the trace-optimal design for
estimating γ are the union of barycentres of the component η1 and η2.

Theorem 11.4.6 For 2 ≥ m ≥ 4 and given second-order prior moments of the
optimum proportions γ in M1, the trace-optimal design for estimating γ has the
support points of pure type, each with weight α0

mn , and of mixed type, each with

weight 1−α0
nC(m,2) , where α0 =

⇒
a⇒

a+⇒
b
, with

a = 2mn[v + (m − 1)w][m + C(m, 2)(m − 2)]
b = 32nC(m, 2)2[(m − 1)v − w].

Optimum replications at the support points of the optimum design in 100 runs of
the experiment for estimation of γ, for some combinations of the prior moments
(v,w), when 2 ≥ m ≥ 4. Let r1 denote the total number of replications of the
pure-type support points and r2 the total number of replications of the mixed-type
support points. Within each type, the support points should be replicated as evenly
as possible (Table 11.1).

Table 11.1 Optimum replications of the pure–and mixed-type support points of the trace-optimal
designs for some combinations of (δ, v) in 100 runs of the experiment, when 2 ≥ m ≥ 4

m δ v r1 r2

2 0.4 0.05 50 50
0.06 37 63

0.6 0.10 60 40
0.16 36 64

0.8 0.20 50 50
0.30 35 65

3 0.4 0.03 27 73
0.05 21 79

0.6 0.06 29 71
0.10 22 78

0.8 0.10 30 70
0.15 24 76

4 0.4 0.016 25 75
0.03 18 82

0.6 0.04 24 76
0.07 18 82

0.8 0.06 26 74
0.14 17 83
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Chapter 12
Miscellaneous Topics: Robust Mixtures,
Random Regression Coefficients,
Multi-response Experiments,
Mixture–Amount Models, Blocking
in Mixture Designs

Abstract In this chapter, we dwell on some mixture design settings and present the
underlying optimal designs. The purpose is to acquaint the readers with a variety
of interesting and nonstandard areas of mixture designs. The chapter is divided into
two parts. In Part A, we cover robust mixture designs and optimality in Scheffé and
D–W models with random regression coefficients. In Part B, we discuss mixture–
amountmodel due to Pal andMandal (CommStatist TheoMeth 41:665–673, 2012a),
multi-response mixture models and mixture designs in blocks. We present the results
already available and also some recent findings.

Keywords Robust mixture designs · Scheffé’s quadratic mixture model ·Darroch–
Waller model · Random regression coefficients · Multi-response experiment ·
Mixture–amount models · Mixture designs in blocks · Optimal mixture designs

12.1 Robust Mixture Designs

12.1.1 Preliminaries

Optimum designs are concerned mainly with linear and/or non-linear function(s) of
the parameters of the assumed model. Box and Draper (1959) first considered the
problem of selecting a design when the assumed response function is inadequate
in representing the true situation. They proposed the integrated mean square error
(IMSE) criterion

IM = (N/η 2)

∫

x

w(x)E{ŷ(x) − σ(x)}2dx (12.1.1)

in selecting a design, where ŷ(x) is the estimated response function, σ(x) is the true
response function, N is the number of observations taken, η 2 is the error variance
and w(x) is the mass attached to the point x in the region of interest X satisfying

B. K. Sinha et al., Optimal Mixture Experiments, Lecture Notes in Statistics 1028, 161
DOI: 10.1007/978-81-322-1786-2_12, © Springer India 2014



162 12 Miscellaneous Topics

∫

X
w(x)dx = 1.

It is clear that IM given by (12.1.1) can be divided into two parts, viz.

IM = V + B (12.1.2)

where

V = (N/η 2)

∫

X
w(x)E{ŷ(x) − E(ŷ(x)}2dx,

B = (N/η 2)

∫

X
w(x)E{E(ŷ(x)) − σ(x)}2dx. (12.1.3)

In practice, it is difficult to find a designminimizing IMeven in the simple setup. In
the context of response surface design, Box and Draper (1959) observed that a design
which minimizes IM is very close to a design which minimizes B, they called ‘all-
bias’ design (also known as BD design) and may be quite different from one which
minimizes V, the ‘all-variance’ design. They mainly restricted their investigations to
lower-order polynomials, and the true response function and the assumed response
function differ by degree one. While the support points of the V-optimum design,
for the linear case, are mainly the extreme points of the factor space, those for the B-
optimumdesign and the designwith respect to the IMSE-criterion formanyparameter
combinations are the points inside the domain. Similar is the case when the response
function is quadratic and the true response function is cubic.

Draper and Lawrence (1965a,b) considered the problem of finding designs in a
mixture experiment with three and four factors. In situations, when the true response
function is different from the assumed model, they compared designs minimizing B
with other designs especially for the first-degreemodel with quadratic bias. However,
for the quadratic model with cubic bias, they compared minimum bias design with
the special family of designs obtained by scaling the BD design with no comparison
with theD-optimal design. Galil andKiefer (1977) have also considered this problem
and showed that in some situations, depending on the values of the parameters in
the bias term, the BD designs are inferior to the D-optimal design with respect to
IMSEintegrated mean square error (IMSE) criterion.

Since the IMSE criterion depends on unknown parameters, it is difficult to find
designsminimizing (12.1.2). Chakrabarti andMandal (1995) determined all-variance
and all-bias designs and then compare them in the light of the IMSE criterion for
some chosen values of unknown parameters.

For simplicity, we assume uniformweights throughout so that we can ignorew(x)

in the expression of IM and hence in B and V.



12.1 Robust Mixture Designs 163

Box and Draper (1959) observed that the points inside the domain are informative
with respect to the IMSE criterion. To find optimum designs minimizing V, B or V +
B, Chakrabarti and Mandal (1995) considered a subclass of augmented axial designs
which have the following three sets of points :

xi,u = 1/q + β1, x j,u = 1/q − β1/(q − 1);
u = 1, 2, . . . , q; i = u; j ( ≥= i) = 1, 2, . . . , q; 0 ≤ β1 ≤ (q − 1)/q,

xi,u = 1/q − β2, x j,u = 1/q + β2/(q − 1);
u = q + 1, . . . , 2q; i = u − q; j ( ≥= i) = 1, 2, . . . , q; 0 ≤ β2 ≤ 1/q

xi,u = 1/2; x j,u = 1/2; xk,u = 0;
u = 2q + 1, . . . , q(q + 3)/2, k ≥= (i < j) = 1, 2, . . . , q. (12.1.4)

For q = 3, the design becomes an axial design (for axial and other designs see
Cornell 2002). The weights attached with each point of the above three sets of design
points are α/q, φ/q, and (1 − α − φ)/C(q, 2), respectively. The authors denoted
such a subclass of designs by

λq = {λ(β1, β2; α, φ; q); 0 ≤ β1 ≤ (q − 1)/q, 0 ≤ β2 ≤ 1/q; 0 ≤ α, φ; α + φ ≤ 1}.
(12.1.5)

Let us write the assumed response function as E(y/x) = f ∀
1(x)ϕ1 while the true

response function is given by σx = f ∀
1(x)ϕ1 + f ∀

2(x)ϕ2. Moreover, let us introduce
the following notations of the moment matrices for a design ξ :

Mi j (ξ) =
∫

R

f i (x) f ∀
j (x)dξ(x); i, j = 1, 2

and
M = ((Mi j , i, j = 1, 2)).

Let the degree of the assumed polynomial response function be d1 and that of the
true response function be d1 + d2. When d1 = d2 = 1, f 1(x), f 2(x), β1, β2 have
the form

f ∀
1(x) = (x1, x2, . . . , xk)

∀, f ∀
2(x) = (x1x2, x1x3 . . . , xk−1xk)

∀,
β1 = (φ1, φ2, . . . , φk)

∀, β2 = (φ12, φ13, . . . , φk−1,k)
∀.

Similarly, f 1(x), f 2(x), β1, β2 can be expressed in the sameway for other values
of d1, d2. Now, V is given by

V =
∫

R

f ∀
1(x)M−1

11 f 2(x)dx
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= Trace M−1
11 μ11. (12.1.6)

where μ11 = ∫
R f 1(x) f ∀

1(x)d(x).

In general, let us denote μi j by

μi j =
∫

R

f i (x) f ∀
j (x)d(x); i, j = 1, 2. (12.1.7)

Again, since E(ŷ(x)) = f ∀
1(x)[β1 + Aβ2], A = M−1

11 M12, B takes the form

B =
∫

β ∀
2[A∀ f 1(x) − f 2(x)][A∀ f 1(x) − f 2(x)]∀β2dx. (12.1.8)

As in Box and Draper (1959), Chakrabarti and Mandal (1995) also considered
the case d2 = d1 + 1. Moreover, they restricted to the cases d1 = 1, 2.

12.1.2 V-Optimum Design

A V-optimum design minimizes V = TraceM−1
11 μ11. When d1 = 1,

μ11 = 1

q(q + 1)
(Iq + Jq,q),

where Iq stands for the identity matrix of order q and Jq,q stands for the q × q matrix
with all elements unity. Utilizing of the convexity and invariance of the criterion
function V with respect to the components, Chakrabarti andMandal (1995) obtained
the following result:

Theorem 12.1.1 For d1 = 1, the all-variance design puts equal mass at the vertices
of a (q, 1) simplex design.

However, later, as mentioned in previous chapters, Draper and Pukelsheim (1999)
and Draper et al. (2000) showed that given any invariant mixture design ξ with
momentmatrix M(ξ), there exists aweighted centroid design (WCD) σwithmoment
matrix M(σ),which is as good as M(ξ) in the sense of partial Loewner order (PLO),
i.e., M(σ) − M(ξ) ≥ 0. Hence, one can confine to the class of WCDs in finding a
V -optimum design.

Remark 12.1.1 The results ofDraper andPukelsheim (1999) andDraper et al. (2000)
are important in the sense that for any optimality criterion based on information
matrix, if the criterion function is invariant, one may confine to the class of WCDs.
Because of the above observations, to find an all-variance design, we may restrict
ourselves to the class of WCDs.
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Table 12.1 Computed values
of the parameters

q α φ β1 β2

3 0.5 0.5 0.4137 0.2360
4 0.5 0.5 0.4111 0.2366
5 0.3 0.5 0.4017 0.1432
6 0.3 0.5 0.3296 0.1488

It is to be noted that Chakrabarti and Mandal (1995) arrived at the same support
points directly without using the result of Draper and Pukelsheim (1999) .

For d1 = 2, it is difficult to find a V-optimum design. As observed in Chap. 4,
a(q, 2) simplex design is D-optimum. Using equivalence theorem, Chakrabarti and
Mandal (1995) showed that the D-optimum design in the whole class is not V-
optimum. Instead, they found numerically the V-optimum design in the subclass
λq , given by (12.1.5), and compared the performance of their design with that of
the D-optimum design for q = 3, 4, 5. The authors observed that the V-optimum
design inλq is better than theD-optimumdesign in respect of all-variance optimality
criterion.

However, since the V-optimality criterion given by (12.1.6) is invariant with re-
spect to the components, using Draper et al. (2000) , one can concentrate on the
subclass of WCDs. Then, one needs to compute the masses attached to the different
elementary centroid designs σ j s to find the V-optimum design.

12.1.3 Minimum Bias Design

To find aminimum bias design, we have to minimize B given by (12.1.8). It is known
that the minimum of (12.1.8) is attained at

M11 = μ11, M12 = μ12, (12.1.9)

and the minimum bias is then given by

Bmin = β ∀
2(μ22 − μ∀

12μ
−1
11 μ12)β2. (12.1.10)

Chakrabarti and Mandal (1995) computed the values of the parameters of the
design in the subclass λq satisfying (12.1.9) when (d1, d2) = (1, 1), (2, 1) for q =
3, 4, 5, 6. These are reproduced below in Tables 12.1 and 12.2.

It is already mentioned that it is difficult to find designs minimizing the IMSE
criterion (12.1.1). It involves unknown parameters of the model. Moreover, it does
not have the well-known properties generally possessed by the classical optimality
criteria. Box and Draper (1959) compared the performance of the all-variance and
all-bias designs in respect of the IMSE criterion. It is quite obvious that the optimum
IMSE design would depend heavily on whether β2/η

2 is large or small. However,

http://dx.doi.org/10.1007/978-81-322-1786-2_4
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Table 12.2 Computed values
of the parameters

q α φ β1 β2

3 0.34916 0.55899 0.45512 0.12791
4 0.38741 0.52381 0.42899 0.14258
5 0.43838 0.47652 0.39806 0.16054
6 0.59816 0.35314 0.32324 0.16432

since β2 is unknown, one can adopt a pseudo-Bayesian approach by assuming some
prior on β2 (Kiefer 1973). Then, the objective function can be shown to be a function
of E(β2β

∀
2). One can now study the problem of finding designs for different forms

and values of E(β2β
∀
2).

In this context, it may be mentioned that a related problem of finding optimum
designs for the discrimination of two models in a regression problem was first con-
sidered by Atkinson and Fedorov (1975a). Later, a number of authors worked in
this area and extended it to several models, (see e.g. Atkinson and Fedorov (1975b),
Dette (1994), Dette and Titoff (2009), Dette et al. (2012), Fedorov and Khabarov
(1986) , Tsai et al. (2004), Tommasi and López-Fidalgo (2010), Wiens (2009) etc.).
It seems, the problem of finding optimum designs for the discrimination of different
models in a mixture experiment is still open.

12.2 Optimum Mixture Designs for Random Coefficients
Mixture Models

12.2.1 Preliminaries

Inmost of the investigations on regression experiment, it is assumed that the response
function can be approximated by a polynomial of certain degree in the levels of the
factors with fixed regression coefficients. Liski et al. (1997, 2002) were the first to
consider a single-factor experiment, where the response function is approximated by
a first-degree and a second-degree random coefficients regression (RCR) model. In
this section, we consider the problem of determining optimum designs in a mixture
experiment with RCRmodel defining the response function. Pal et al. (2010) and Pal
and Mandal (2012b) obtained optimum designs for Scheffé’s linear and quadratic
mixture models with two and three components and for q-component D–W model,
respectively, using A- and D- optimality criteria.

Consider the following linear and quadratic models in q mixture components

y = φ←
0 + q

θ
i=1

φ←
i xi + ε (12.2.1)

and
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y = φ←
0 + q

θ
i=1

φ←
i xi + q

θ
i=1

q
θ
j=i

φ←
i j xi x j + ε, (12.2.2)

where ε is the random error with mean 0 and variance η 2.

For fixed φ←
i s and φ←

i j s, optimum designs for the estimation of regression coeffi-
cients have already been discussed in Chap. 4. Let us now assume that φ←

0 is random,
and φ←

i = φi + bi , i = 1(1)q, where φi s are fixed and bi s are independent random,
with E(bi ) = 0 and Var(bi ) = η 2

i . Similarly, φ←
i j + bi j , i ≤ j = 1(1)q, with φi j s

fixed and bi j s independent random, having E(bi j ) = 0 and Var(bi j ) = η 2
i j . Also,

we assume bi s and bi j s to be independent, and independent of ε.

Then, (12.2.1) and (12.2.2) can be written as

y = φ←
0 + q

θ
i=1

φi xi + ε← (12.2.3)

and

y = φ←
0 + q

θ
i=1

φi xi + q
θ

i=1

q
θ
j=i

φi j xi x j + ε←, (12.2.4)

where

ε← = q
θ

i=1
bi xi + ε, in (12.2.3)

= q
θ

i=1
bi xi + q

θ
i=1

q
θ
j=i

bi j xi x j + ε, in (12.2.4)

Because of the constraintθxi = 1,wecan equivalentlywrite (12.2.3) and (12.2.4)
in the canonical form:

y = q
θ

i=1
φ←←

i xi + ε← (12.2.5)

y = q
θ

i=1

q
θ
j=i

φ←←
i j xi x j + ε← (12.2.6)

where

φ←←
i j = φ←

0 + φi , i = 1(1)q

φ←←
i j = φ←

0 + φi + φi j , j = 1(1)q.

Then, given an n−point design Dn, the observational equations for the modified
model can be written as

E( y) = Xγ, (12.2.7)

where X is the coefficient matrix and γ is the vector of fixed regression coefficients.
Further,

http://dx.doi.org/10.1007/978-81-322-1786-2_4
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θ = Disp(Y ) = XεX ∀ + η 2 In, (12.2.8)

with ε = Diag(η 2
1 , η 2

2 , . . . , η 2
q ), for linear regression

= Diag(η11, η22, . . . , ηqq , η12, η13, . . . , ηq−1,q), for quadratic regression.
The generalized least squares estimator (GLSE) γ̂ of γ has the dispersion matrix

Disp(γ̂) = (X ∀θ−1X)−1 (12.2.9)

Making use of the fact that under the form (12.2.8) of θ, ordinary least squares
estimator (OLSE) and the GLSE are identical (cf. Rao 1965), one can write

Disp(γ̂) = η 2[ε← + (X ∀ X)−1] (12.2.10)

where ε← = (η 2)−1ε.

Pal et al. (2010) worked with the setup of a continuous design ξ for which

X ∀ X = n
θ

u=1
wu xu x ∀

u, (12.2.11)

where x1, x2, . . . , xn are the n support points of the design and w1, w2, . . . , wn

(wi ≤ 0, θwi = 1) are the respective masses.

12.2.2 Characterization

From (12.2.10), when the variance components are all equal, the problem becomes
invariant with respect to the different components, so that one can restrict to the class
of symmetric designs. In particular, for the cases of two and three components, by
virtue of explicit demonstration of the dominance of weighted centriod designs, as
in Draper and Pukelsheim (1999), the optimum design will belong to the class of
WCDs.

As mentioned earlier, the class of WCDs for q components is given by

C =
{

α1σ1 + α2σ2 + · · · + αq : 0 ≤ αi ≤ 1, i = 1(1)q,
q
θ

i=1
αi = 1

⎧

,

where σi is a class of design points, each having i non-zero elements of equal value
and weight αi/C(q, i), i = 1(1)q.

When η 2
i s or ηi j s are not all equal, the problem is no longer invariant with respect

to the different components. However, this does not pose any threat when the choice
of optimum design is made on the basis of A-optimality criterion. This can be seen
by noting that
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Trace (X ∀θ−1X)−1 = η 2
⎪
Trace (ε←) + Trace (X ∀ X)−1

⎨
(12.2.12)

[(cf. Eqs. (12.2.9)–(12.2.10)]. The above breakup shows that the A-optimum design
is independent of ε←. This is a general observation known to the optimal design
theorists dealing with such models.

For other criteria, determination of the optimum design in the general setup be-
comes rather difficult. When using the D-optimality criterion, we restrict our inves-
tigations to the cases of two- and three-component mixtures.

For the D-optimality criterion, we have to minimize

φ(ξ) =| Disp (γ̂) |= η 2q | ε← + (X ∀ X)−1 | . (12.2.13)

Now, X ∀ X stands for the information matrix of the corresponding fixed effects
modesl. So, for given θ∗, we can reduce the class of competing designs using
Loewner order dominance on X ∀ X.

(i) Linear regression: For the linear case with two components, because of the
constraint x1 + x2 = 1, the response function can be reduced to a simple linear
regression with one variable. Since the parameter vectors in the two representa-
tions are related through a non-singular matrix, in terms of Loewner domination,
one can work with any one of the two representations. Then, using the result of
Liski et al. (2002), one can restrict to the class of two-point designs with support
points at (1, 0) and (0, 1) for the estimation of γ.

Consider an arbitrary design ξ0(α) which puts mass α at (1, 0) and mass (1− α)

at (0, 1). Then, it is easy to calculate that

| Disp(φ̂) | = η 4

⎛
1

α
+ η 2

1

η 2

⎜⎛
1

1 − α
+ η 2

2

η 2

⎜

,

which is minimized at

α = α0 =
⎝

η 2 + η 2
2

⎝
η 2 + η 2

1 +
⎝

η 2 + η 2
2

. (12.2.14)

Theorem 12.2.1 In a first-degree two-component mixture model with random re-
gression coefficients, having variance components η 2

11 and η 2
22, the D-optimal design

for the estimation of fixed effects parameters is a two-point design having support
points at (1,0) and (0,1), with masses α0 and 1−α0, respectively, where α0 is given
by (12.2.14).

Remark 12.2.1 Whether the regression coefficients are fixed or random, in the first-
degree two-component model, the two vertices/extreme points are the only support
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points. Moreover, for the random regression coefficients, the mass at the vertices
decreases with increasing variability of the corresponding regression coefficients.

For the case of three components, the problem becomes rather difficult when
the variance components η 2

i s are all unequal. For simplicity sake, Pal et al. (2010)
assumed that

η 2
1 = η 2

2 ( ≥= η 2
3 ). (12.2.15)

In view of the optimality criterion, assumption (12.2.15) amounts to stating that
the first two mixing components are ‘exchangeable,’ since under the transformation
X → X ζ = X P, where P is a permutation matrix given by P = (e2, e1, e3),
and ei is the i-th unit vector, the criterion function remains invariant. This leads
to the heuristic argument that it may be enough to search for an optimum design
in the hyperplane manifested by the property of exchangeability of the first two
components. It turns out that in such a plane, the linear response function involving
all the three mixing components may be reduced to a linear function in the third
component only. Appealing to Liski et al. (2002), one can restrict to the class of
designs with x3 taking the two values 0 and 1. This is because, from (12.2.9) and
(12.2.10), dominance of (X ∀θ−1X)−1 is equivalent to dominance of (X ∀ X)−1, for
fixed ε←.

When x3 = 0, the response function becomes a linear function in a single variable
x1, say, because of the constraint x1 + x2 + x3 = 1. Then, by Liski et al. (2002), the
support points must be at x1 = 0 or 1. For x3 = 1, clearly x1 = x2 = 0. Thus, the
class of competing designs reduces to

x1 x2 x3 Mass

1 0 0 αw1
0 1 0 αw1
1/2 1/2 0 (1 − 2α)w1
0 0 1 w2
1 − α 0 α w3/2
0 1 − α α w3/2

Since the problem is invariant with respect to x1 and x2, under the assumption
(12.2.15), the masses at (1, 0, 0) and (0, 1, 0) should be equal. This is reflected in the
above table.

Then,

| Disp(γ̂) |= (η 2)3

⎛
2

α
+ η 2

1

η 2

⎜⎛
1

1 − α
+ η 2

3

η 2

⎜

. (12.2.16)



12.2 Optimum Mixture Designs for Random Coefficients Mixture Models 171

Equation (12.2.16) is minimized at α = α0, where

α0 = 1

(η ←
1 − 4η ←

3 )

⎞⎟
(3 + 4η ←

3 )3 + 4(η ←
1 − 4η ←

3 )(1 + η ←
3 )
⎠1/2 − (3 + 4η ←

3 )

]

,

(12.2.17)

η ←
1 = η 2

1

η 2 , η ←
3 = η 2

3

η 2 .

Thus, we have the following theorem:

Theorem 12.2.2 In a first-degree three-component mixture model with random re-
gression coefficients having variance components η 2

1 = η 2
2 , η 2

3 , the D-optimal de-
sign for the estimation of fixed effects parameters is a three-point design having
support points at (1, 0, 0), (0, 1, 0) and (0, 0, 1), with mass α/2, α/2, and 1 − α0,

respectively, where α0 is given by (12.2.17).

As in the two-component case, here also, the mass at the vertices decreases with
increasing variability of the corresponding regression coefficients.

(ii) Quadratic regression model

Case of two components: For the case of two components, (12.2.5) can be equiv-
alently written as

y = β0 + β1x1 + β2x21 + ε←, 0 ≤ x1 ≤ 1, (12.2.18)

so that for a given continuous design ξ, the information matrix for the parameter
vector in (12.2.6) will be a one-to-one function of that in (12.2.18).

It is known that for a single-variable quadratic response function (cf. Liski et al.
2002), given any arbitrary design ξ, there exists a three-point design ξ0 with support
points at 0, 1 and a ⇒ (0, 1), such that (X ∀

β Xβ) |ξ0 −(X ∀
β Xβ) |ξ is non-negative

definite, where Xβ represents the coefficient matrix in the model (12.2.18). Because
of the one-to-one correspondence of the information matrices of the parameters in
(12.2.6) and (12.2.18), Pal et al. (2010) restricted to the class of three-point designs
with support points at (1, 0), (0, 1), and (a, 1 − a) for some a ⇒ (0, 1).

Consider an arbitrary three-point design ξ0(α),which puts mass α1 at (1, 0), mass
α2 at (0, 1) and mass (1−α) at (a, 1−a),where α = α1 +α2,α = (α1, α2)

∀. Then,
the authors showed that for such a design

| Disp (γ̂) | ≥ A(α, a) + 1

α

(√
B(α, a) +√

C(α, a)
⎫2

, (12.2.19)

where

A(α, a) = a←(α, a)η ←
11η

←
22,

B(α, a) =
⎬

a←(α, a) +
⎭

a

1 − a

)2

η ←
11

]

η ←
22 + b←(α, a)

α
,
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Table 12.3 Optimal designs and the minimum value of the criterion function for different combi-
nations of variance components

η11 η12 η22 a α1 α2 1 − α Min|Disp (φ̂)|
2 0 3 0.5041 0.2986 0.2679 0.4335 1433.949
2 1 3 0.5044 0.3011 0.2699 0.4290 1469.794
2 0 5 0.5106 0.3108 0.2392 0.4500 1869.136
2 1 5 0.5104 0.3136 0.2409 0.4455 1916.820

C(α, a) =
⎬

a←(α, a) +
⎭
1 − a

a

)2

η ←
22

]

η ←
11 + b←(α, a)

α
,

a←(α, a) = η ←
12 + 1

(1 − α)a2(1 − a)2
,

b←(α, a) = a←(α, a) +
⎭

a

1 − a

)2

η ←
11 +

⎭
1 − a

a

)2

η ←
22,

η ←
i i = ηi i/η

2, i = 1, 2.

For given α and a, equality in (12.2.19) holds for

α1 =
∞

B(α, a)∞
B(α, a) + ∞

C(α, a)
α, α2 =

∞
C(α, a)∞

B(α, a) + ∞
C(α, a)

α. (12.2.20)

The optimal values of a, α1, and α2 are obtained so as to minimize (Table 12.3)

A(α, a) + 1

α

(√
B(α, a) +√

C(α, a)
⎫2

.

Case of three components: For the case of three components, analogous to the linear
regression case, we assume that

η11 = η22( ≥= η33), η13 = η23( ≥= η12) (12.2.21)

Assumption (12.2.21) implies that the first twomixing components are ‘exchange-
able,’ since under the transformation X → X P = X P, where P is a permutation
matrix given by P = (e2, e1, e3, e4, e5, e6), and ei is the i-th unit vector, the cri-
terion function remains invariant. Then, arguing as in the case of three-component
mixture with linear regression, we adopt an initial design with x3 taking the three
values 0, 1, and some a ⇒ (0, 1), by virtue of Liski et al. (2002). Since ln φ(ξ) is
convex with respect to the X ∀ X the optimum design will be invariant with respect to
the first two components. Hence, we propose the following class C of designs with
support points as below:
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x1 x2 x3 Mass

1 0 0 αW1
0 1 0 αW1
1/2 1/2 0 (1 − 2α)W1
0 0 1 W2
1 − a 0 a W3/2
0 1 − a a W3/2

Since the problem is invariant with respect to x1 and x2, the masses at (1, 0, 0)
and (0, 1, 0) should be equal, and so also the masses at (1−a, 0, a) and (0, 1−a, a).

Determinant of Disp (γ̂) comes out to be a complicated function of a, α, W1, W2,
and W3, so that one cannot obtain their optimal values in closed forms. However,
for given sets of values of the variance components, one can easily find the optimum
design using statistical package.

12.2.2.1 An Alternative Approach

We can write model (12.2.6) as

y = ϕ11x1(x1 − 1 + a) + ϕ22x2(x2 − 1 + a) + ϕ33x3(x3 − a)

+ ϕ12x1x2 + ϕ13x1x3 + ϕ23x2x3 + ε←, (12.2.22)

where γ and β = (ϕ11, ϕ22, ϕ12)
∀ are related by

γ = Lβ , (12.2.23)

with

L =

⎢

⎥
⎥
⎥
⎥
⎥
⎥


a 0 0 0 0 0
0 a 0 0 0 0
0 0 1 − a 0 0 0

−(1 − a) −(1 − a) 0 1 0 0
−(1 − a) 0 −a 0 1 0

0 −(1 − a) −a 0 0 1











. (12.2.24)

Thus, there is a one-to-one relation between γ and β , and hence between their
estimates.

Within the class C of designs, it can be shown that

| Disp(γ̂) | = η 2a4(1 − a)2C1(W1, a, α)C2(W2, W3, a), (12.2.25)



174 12 Miscellaneous Topics

Table 12.4 Optimum designs for different combinations of variance components (relative to the
error variance)

η11 = η22 η12 η33 η13 = η23 a α w1 w2 w3

0.4 2.0 0.75 0.5 0.4999 0.3338 0.4991 0.1642 0.3367
0.4 2.0 1.5 1.0 0.5029 0.3338 0.5020 0.1608 0.3372
1.0 0.5 4.0 1.0 0.5061 0.3292 0.5055 0.1512 0.3433
1.0 0.5 2.0 1.0 0.4995 0.3294 0.4934 0.1614 0.3452
1.0 0.5 0.75 0.5 0.4941 0.3295 0.4965 0.1649 0.3386
2.0 1.0 1.0 0.5 0.4871 0.3262 0.4914 0.1654 0.3432
2.0 2.0 1.0 0.5 0.4870 0.3274 0.4906 0.1656 0.3438
4.0 2.0 1.5 1.0 0.4761 0.3209 0.4838 0.1658 0.3504
10.0 1.0 1.0 1.0 0.4482 0.3062 0.4646 0.1737 0.3617
10.0 1.0 15.0 5.0 0.4764 0.3012 0.4942 0.1298 0.3760

where

C1(W1, a, α) =
⎭

η11 + 1

W1a2α

)⎞

η11η12 + A1

α
+ A2

1 − 2α

]

, (12.2.26)

C2(W2, W3, a) =
⎭

1

W2(1 − a)2
+ η33

)⎭
2

W3a2(1 − a)2
+ η13

)2

, (12.2.27)

A1 and A2 being functions of W1 and a, given by

A1 = 1

a2W1

⎪
η12 + 16η11(a − 1/2)2 + 16/W1

⎨
, A2 = 16

W1

⎞

η11 + 2

a2W1

]

.

(12.2.28)

Given a and W1, the optimal values of α and W3 satisfy (Table 12.4)

1 − 2α

α
=
(
η11α + 2

W1a2

⎫ [−2η11η12α2 + (η11η12 − 2A1 + A2)α + A1
]

(
η11α + 1

W1a2

⎫
[(η11η12 − 2A1 + A2)α + 2A1]

(12.2.29)

W3

1 − W1
=

8η33 + 6
(1−W1)(1−a)2

− 16
(
4η33 − a2η13

) (
η33 + 1

(1−W1)(1−a)2

⎫

2
(
4η33 − a2η13

) .

(12.2.30)
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12.2.3 Darroch–Waller Model

Pal and Mandal (2012b) extended the concept of random regression coefficients to
D–W model. An additive quadratic mixture model was introduced by Darroch and
Waller (1985) for the case of q = 3:

y = q
θ

i=1
φ←

i xi + q
θ

i=1
φ←

i i xi (1 − xi ) + ε, (12.2.31)

where ε is the random error distributed with mean 0 and variance η 2. The details
about the model and optimality considerations are considered in Chap. 6. Pal and
Mandal (2012b) considered the problem of determining D-optimal design for the
estimation of expected regression coefficients in the additive mixture model due to
Darroch and Waller, assuming random regression coefficients.

In (12.2.31), as in Scheffé model, it is assumed that φ←
i = φi + bi , φ

←
i i = φi i +

bii , i = 1(1)q,where φi s and φi i s are fixed and bi s and bii s are independent random,
with E(bi ) = 0, E(bii ) = 0 and Var(bi ) = η 2

i , Var(bii ) = η 2
i i . Also, we assume

that bi s and bi j s are independent of ε.

Then, we can write (12.2.31) as

y = q
θ

i=1
φi xi + q

θ
i=1

φi i xi (1 − xi ) + ε←, (12.2.32)

where

ε← = q
θ

i=1
bi xi + q

θ
i=1

bii xi (1 − xi ) + ε.

Given an n-point design Dn, the observational equations for the modified model
can be, therefore, written as

E( y) = Xγ, (12.2.33)

where y is the response vector, X the coefficient matrix, and γ the vector of fixed
regression coefficients.

Hence,
θ = Disp ( y) = XεX ∀ + η 2

ε In, (12.2.34)

with
ε = Diag

(
η 2
1 , η 2

2 , . . . , η 2
q , η 2

11, η
2
22, . . . , η

2
qq

⎫
.

It is assume that X ∀ X is non-singular. Since under the form (12.2.34) ofθ,OLSE
and the GLSE of γ are identical (cf. Rao 1967),

Disp (γ̂) = η 2
ε [ε← + (X ∀ X)−1] (12.2.35)

where ε← = (η 2
ε )−1ε.

http://dx.doi.org/10.1007/978-81-322-1786-2_6
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12.2.3.1 D-optimal designs

The moment matrix for a continuous design ξ with mass wu at the support point
xu, u = 1, 2, . . . , n is given by

X ∀ X = n
θ

u=1
wu f (xu) f ∀(xu) (12.2.36)

where f ∀(xu) = (xu1, xu2, . . . , xuq , xu1(1− xu1), xu2(1− xu2), . . . , xuq(1− xuq)),

u = 1, 2, . . . , n.

In order to find the D-optimal design for estimation of γ, it is assumed that
η 2

i = λ1 and η 2
i i = λ2, for all i. The assumption implies that the problem is invariant

with respect to the components xi s so that the optimum design must be an invariant
design.

For the second-degree Scheffé model, Draper et al. (2000) established that given
any arbitrary symmetric design ξ, there exists a WCD which dominates ξ in the
Loewner order sense. Since model (1.2) can be written as a special case of Scheffé’s
quadratic model (1.1) with ϕi = φi and ϕi j = φ j j , for all i, j = 1, 2, . . . , q, i < j,
Loewner order of the information matrices for the Scheffé model also holds for those
of the model (12.2.32). Hence, using the result of Draper et al. (2000), in order to
find the D-optimal design, we may restrict to the class of WCDs.

Remark 12.2.2 From the above argument, it follows that the search for optimal
design may be restricted to the class of WCDs for all optimality criteria, which are
functions of the information matrix, convex with respect to it, and are invariant with
respect to its components.

Remark 12.2.3 From (2.5), it is clear that the A-optimal design will be same as that
for the corresponding fixed effects model.

For a q-component mixture model, writing α j to be the mass at each barycenter of
depth ( j −1), it can be easily checked that the moment matrix of a WCD is obtained
in the form

X ∀ X =
⎞

a1 Iq + a2 Jq b1 Iq + b2 Jq

b1 Iq + b2 Jq c1 Iq + c2 Jq

]

,

where ai s, bi s and ci s are linear functions of the weights α j s.
We, therefore, obtain X ∀ X−1 in the form

(X ∀ X)−1 =
⎞

e1 Iq + e2 Jq d1 Iq + d2 Jq

d1 Iq + d2 Jq g1 Iq + g2 Jq

]

,

where ei s, fi s and di s are non-linear functions of α j s.
Pal and Mandal (2012b) numerically computed α j s for several combinations of

(λ1, λ2) and for q = 3, 4, . . . , 10. The following observations have been made from
the study:
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1. For all 3 ≤ q ≤ 10, barycenters of depth at most 2 form the support points of the
D-optimal design. Among these, the barycenters of depth 0 are necessarily the
support points of the optimal design.

2. For q = 3, 4, the optimal design assigns positive weights to barycenters of depths
0 and 1 only. Thus, for q = 3, the D-optimal design is saturated.

3. For 5 ≤ q ≤ 7, the optimal design can assign positive weights to barycenters
of depths 0, 1, and 2 only. However, for given λ1 as λ2 increases, the weight at
barycentres of depth 2 decreases and tends toward zero while for given λ2, as λ1
increases, the weight at barycentres of depth 1 tends toward zero.

4. For 8 ≤ q ≤ 10, the optimal design assigns positive weights to barycenters of
depths 0 and 2 only.

Table 12.5 gives the D-optimal designs for q = 3, 4, . . . , 10 for some combina-
tions of (λ1, λ2).

From Table 12.5, we note that for 4 ≤ q ≤ 10, the D-optimal designs are not
saturated. It would, therefore, be interesting to compare the performance of optimum
saturated designs as against the optimum designs in the entire class of competing
designs. Pal andMandal (2012b) considered a simple subclass of saturateddesigns Ds

based on barycentres of depths 0 and (q −2), for a q-component mixture experiment.
In Table 12.6, the efficiency factor of the D-optimum design in Ds with respect

to the optimum design given in Table 12.5, for 4 ≤ q ≤ 6.

Remark 12.2.4 The above table shows that the optimum design in the entire class
of competing designs is highly efficient in comparison with the optimum design in
the saturated class Ds .

One can also consider another subclass of saturated designs by making use of a
subset of barycenters of depth 1, and check the relative performance of theD-optimal
design in it as against the D-optimal design in the whole class of competing designs.

Let us consider q = 4. In this case, a reasonable choice of a subset of 4 barycentres
of depth 1 can be made by deleting two points which have either no or only one
component in common. Let Ds1 and Ds2 denote, respectively, the two subclasses
of designs thus obtained. In the former situation, the information matrix is singular.
In the second case, the efficiency of the best design in Ds2 relative to the optimum
design in the entire class is found to be sufficiently small. The efficiency for some
combinations of (λ1, λ2) is shown in Table 12.7.

Remark 12.2.5 Comparing the efficiency factors obtained in Table 12.6 and in
Table 12.7 for q = 4, it is evident that the D-optimal design in Ds2 performs better
than that in Ds .
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Table 12.5 D-optimal designs for some combinations of (λ1, λ2)

q λ1 λ2 C(q, 1)α1 C(q, 2)α2 C(q, 3)α3

3 0 0 0.5000 0.5000 0
1 1 0.4848 0.5152 0
1 5 0.4994 0.5006 0
1 10 05149 0.4851 0
5 1 0.4449 0.5551 0
5 5 0.4535 0.5465 0
5 10 0.4633 0.5367 0

4 0 0 0.5000 0.5000 0
1 1 0.4890 0.5110 0
1 5 0.5254 0.4746 0
1 10 0.5590 0.4410 0
5 1 0.4605 0.5395 0
5 5 0.4749 0.5251 0
5 10 0.4911 0.5089 0

5 0 0 0.4946 0.4077 0.0977
1 1 0.4882 0.4265 0.0853
1 5 0.4994 0.4368 0.0638
1 10 0.5117 0.4440 0.0443
5 1 0.4524 0.3343 0.2133
5 5 0.4613 0.3524 0.1863
5 10 0.4712 0.3688 0.1600
5 200 0.6302 0.3698 0

50 10 0.3647 0 0.6353
6 0 0 0.4959 0.2753 0.2288

1 1 0.4869 0.2350 0.2781
1 5 0.4967 0.2554 0.2479
1 10 05076 0.2731 0.2193
5 1 0.4538 0.0837 0.4625
5 5 0.4616 0.1094 0.4290
5 10 0.4705 0.1343 0.3952

50 10 0.3764 0 0.6236
7 0 0 0.4977 0.0877 0.4146

1 1 0.4903 0.0397 0.4700
1 5 0.4987 0.0640 0.4373
1 10 0.5082 0.0868 0.4050
5 1 0.4593 0 0.5407
5 5 0.4666 0 0.5334
5 10 0.4748 0 0.5252

8 0 0 0.5000 0 0.5000
1 1 0.4923 0 0.5077
1 5 0.5004 0 0.4996
1 10 0.5096 0 0.4904
5 1 0.4634 0 0.5366
5 5 0.4703 0 0.5297
5 10 0.4778 0 0.5222

(continued)
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Table 12.5 (continued)

q λ1 λ2 C(q, 1)α1 C(q, 2)α2 C(q, 3)α3

9 0 0 0.5000 0 0.5000
1 1 0.4932 0 0.5068
1 5 0.5005 0 0.4995
1 10 0.5089 0 0.4911
5 1 0.4667 0 0.5333
5 5 0.4728 0 0.5272
5 10 0.4801 0 0.5199

10 0 0 0.5000 0 0.5000
1 1 0.4938 0 0.5062
1 5 0.5005 0 0.4995
1 10 0.5083 0 0.4917
5 1 0.4694 0 0.5406
5 5 0.4751 0 0.5249
5 10 0.4819 0 0.5181

Table 12.6 D-optimum
design in Ds for some
combinations of (λ1, λ2) and
its efficiency for 4 ≤ q ≤ 6

q λ1 λ2 C(q, 1)α1 C(q, q − 1)αq−1 Efficiency

4 0 0 0.5000 0.5000 7.40× 10−2

1 1 0.4854 0.5146 3.95 × 10−1

1 5 0.4983 0.5017 3.87 × 10−1

1 10 0.5111 0.4889 3.90 × 10−1

5 1 0.4392 0.5608 4.80 × 10−2

5 5 0.4474 0.5526 4.68 × 10−1

5 10 0.4564 0.5436 4.60 × 10−2

5 0 0 0.5000 0.5000 3.63 × 10−3

1 1 0.4798 0.5202 4.54 × 10−3

1 5 0.4834 0.5166 5.33 × 10−3

1 10 0.4877 0.5123 6.41 × 10−3

5 1 0.4229 0.5771 7.65 × 10−3

5 5 0.4262 0.5738 8.69 × 10−3

5 10 0.4303 0.5697 1.01 × 10−2

5 200 0.5304 0.4696 1.12 × 10−1

50 10 0.2843 0.7157 3.91 × 10−2

6 0 0 0.5000 0.5000 7.99 × 10−5

1 1 0.4822 0.5178 1.03 × 10−4

1 5 0.4843 0.5157 1.26 × 10−4

1 10 0.4870 0.5130 1.58 × 10−4

5 1 0.4295 0.5705 1.80 × 10−4

5 5 0.4316 0.5684 2.20 × 10−4

5 10 0.4341 0.5659 2.75 × 10−4

50 10 0.2785 0.7215 1.40 × 10−3
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Table 12.7 D-optimal design
in Ds2 and its efficiency for
some combinations of
(λ1, λ2) when q = 4

λ1 λ2 C(q, 1)α1 C(q, 1)α2 Efficiency

0 0 0.5928 0.4072 1.54× 10−1

1 1 0.5742 0.4258 1.75 × 10−1

1 5 0.5784 0.4216 1.91 × 10−1

1 10 0.5834 0.4166 2.13 × 10−1

5 1 0.5255 0.4745 2.26 × 10−1

5 5 0.5287 0.4713 2.39 × 10−1

5 10 0.5325 0.4675 2.55 × 10−1

12.3 Optimum Designs for Optimum Mixture in Some Variants
of Scheffé’s Quadratic Mixture Model

12.3.1 Preliminaries

The existing literature on mixture experiments mostly assumes a single response,
which is dependent only on the composition of the mixture. However, there are many
practical situations where the experimenter is interested in more than one character-
istic feature of the output. For example, in pharmaceutical or biomedical research,
though the efficacy of a drug or remedy is of primary concern, one cannot ignore the
serious side-effects. In consumer products, like food and beverages, besides taste,
different other aspects like color, texture, and the undesirable effects of by-products
have to be taken into account. Though multi-response models have been studied in
the context of response surface, (cf. Roy et al. 1971) very few such studies have been
made in mixture experiments. Also, in both single and multiple response models, the
response may depend not only on the mixing proportions, but also on the amount of
the mixture used. An example is the effect of a fertilizer on the yield of a crop, which
depends on the composition of the fertilizer as well as on the amount of fertilizer
applied. To date, there are very few studies on mixture–amount models.

Optimum designs for estimation of the parameters of mixture and mixture–
amount models with single response have been reviewed in Chap. 4. The present
chapter focuses on the optimum designs for estimation of optimum mixture com-
position/amount in the single-response mixture–amount model proposed by Pal and
Mandal (2012a) and also in the multi-response mixture and mixture–amount models
due toMandal and Pal (2013) and Pal andMandal (2013), respectively. Thesemodels
are basically variants of Scheffé’s quadratic mixture model.

12.3.2 Optimality in Mixture–Amount Model of Pal and Mandal

Pal and Mandal (2012a) defined the response function σx,A as

http://dx.doi.org/10.1007/978-81-322-1786-2_4
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σx,A = α←
00 + α←

01A + α←
02A2 + A

q
θ

i=1
α←

i xi + q
θ

i=1
α←

i i x2i + q
θ

i< j=1
α←

i j xi x j , (12.3.1)

where A ⇒ [AL , AU ], AL > 0, denotes the amount and x1, x2, . . . , xq are the
proportions of the q components in the mixture. The assumption AL > 0 ensures
that some amount of the mixture is to be used in the experiment.

Imposing suitable transformation on the amount, and using the restriction θ
q
i=1

xi = 1, one can easily rewrite (12.3.1) as

σx,A← = φ00A←2 + A←
θ
i
φ0i xi + θ

i
φi i x2i + θ

i< j
φi j xi x j = x←∀ B←x←, (12.3.2)

where x← = (x1, x2, . . . , xq , A←)∀ and B← is a symmetric matrix based on γ i j s, and
the experimental region is given by

� =
{

(x1, x2, . . . , xq , A←) : xi ≥ 0, 1 ≤ i ≤ q,
q
θ

i=1
xi = 1, A← ⇒ [−1, 1]

⎧

.

(12.3.3)

Mandal and Pal (2012) worked with the model (12.3.2). They assumed that B← is
negative definite, so that the response function is concave in x←, and that the optimum
point at which the response is maximized is an interior point of �. The optimum
point, subject to the constraint c∀x← = 1, where c = (1, 1, . . . , 1, 0)∀, is obtained as
γ ← = (γ ←

1 , γ ←
2 , ..., γ ←

q , A←)∀ = μ−1B←−1c,whereμ = c∀B←−1c.Clearly, γ ← is a non-
linear function of the parameters of (12.3.2). As such, for any continuous design ξ

with information matrix M(ξ), the large sample dispersion of the estimate γ̂
←
, given

by T (γ ←)M−1(ξ)T (γ ←)∀ involvesφi j s as nuisance parameters through T (γ ←),which
is the matrix of partial derivatives of γ ← with respect to the model parameters φi j s.
This was also observed in the problems discussed in Chap. 7. Further, the dispersion
matrix is singular as rank [T (γ ←)] < q + 1. For ready reference, the matrix [T (γ ←)]
is shown below, except for a constant multiplier d← which is independent of the
design and hence, may be ignored.
















0 −(q − 1)A←/2 . . . A←/2 −(q − 1)γ ←
1 . . . γ ←

q
1
2 γ ←

1 − q−1
2 γ ←

2 . . . 1
2 (γ ←

q−1 + γ ←
q )

0 A←/2 . . . A←/2 γ ←
1 . . . γ ←

q
1
2 γ ←

2 − q−1
2 γ ←

1 . . . 1
2 (γ ←

q−1 + γ ←
q )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 A←/2 . . . A←/2 γ ←
1 . . . γ ←

q
1
2 (γ ←

1 + γ ←
2 ) . . . 1

2 (γ ←
q−1 − q−1

2 γ ←
q )

0 A←/2 . . . A←/2 γ ←
1 . . . γ ←

q
1
2 γ ←

2 − q−1
2 γ ←

1 . . . 1
2 (γ ←

q−1 + γ ←
q )

0 A←/2 . . . A←/2 γ ←
1 . . . γ ←

q
1
2 γ ←

2 − q−1
2 γ ←

1 . . . 1
2 (γ ←

q−1 + γ ←
q )

−q A← −qγ ←
1 /2 . . . −qγ ←

q /2 0 . . . 0 0 . . . 0
















Hence, the trace criterion is appropriate for comparing competing designs, and,
making use of the pseudo-Bayesian approach of Pal and Mandal (2006) to deal with
the nuisance parameters, the criterion function is given by

http://dx.doi.org/10.1007/978-81-322-1786-2_7
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φ(ξ) = E[Disp(γ̂ ←
)] = tr [M−1(ξ)E(T ∀(γ ←)T (γ ←))],

where E denotes the expectation with respect to the prior distribution of γ ←. It may
be noted that E(T ∀(γ ←)T (γ ←)) involves only the second-order moments (pure and
mixed) of γ ←

i s and A←. Assuming that there is no knowledge about the relative
importance of themixing components, and their interaction with the amount,Mandal
and Pal (2012) assumed that

E(γ ←2
i ) = v, i = 1, . . . , q; E(γ ←

i γ ←
j ) = w, i ≥= j = 1, . . . , q;w ≤ v > 0,

E(A←2) = a, E(A←γ ←
i ) = b, i = 1, . . . , q.

Clearly, 1/q2 < v < 1/q, qv + q(q − 1)w = 1.
To obtain the trace-optimal design, we note that because of invariance in the

prior moments of γ ←
i , i = 1, . . . , q, φ(ξ) is invariant with respect to the mixing

proportions. Hence, the optimum design will also be invariant with respect to xi s.
Further, for xi s given, since the model (12.3.2) is quadratic in A←, the optimum
design is likely to admit three distinct values of A←, two at the two extremes and
one in between, with positive masses. Hence, one can initially confine the search
for optimal design within the subclass Dq of designs having the support points and
masses as given in Table 12.8, where w−1, w0, and w1 denote the masses attached
to A← = −1, a0, 1, respectively, a0 ⇒ (−1, 1), while the sixth column gives the
masses for different (x1, x2, . . . , xq) combinations when A← is given. Then, 0 ≤
pi , p∀

i , p∀∀
i ≤ 1, i = 1, 2; C(q, 1)p1 + C(q, 2)p2 = 1, C(q, 1)p∀

1 + C(q, 2)p∀
2 =

1, C(q, 1)p∀∀
1 + C(q, 2)p∀∀

2 = 1, w j > 0, j = −1, 0, 1, w−1 + w0 + w1 = 1.
Since for quadratic regression in [−1, 1], the optimum support points of D-, A-,

and E-optimality criteria are at−1, 0, and 1, with equal masses at the extreme points,
to start with, Mandal and Pal (2012) took a0 = 0, andw−1 = w1, pi = p∀∀

i , i = 1, 2.
Let D0

q(→ Dq) define the corresponding subclass of designs.
Then, the criterion function comes out to be

φ(ξ) = q2 a

2w1(1 − 2w1k1)
+ q

a1(k2 + k3) + b1(k2 + qk3)

2w1

+ q
2w1

1 − 2w1k1

⎞

t

{

t (a + qb3) + (q − 1)s(d3 + q − 2

2
d4)

⎧

+q − 1

8
s2
{

ds + 2(q − 2)d6 + (q − 2)(q − 3)

2
d7

⎧]

+ a3 + b3 − (q − 1)d3
r

+ q(q − 1)d5
8r2

+ q(q − 1)

8r
[2 {d5 + (q − 2)d6}] ,
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Table 12.8 Support points of
designs in the subclass Dq

x1 x2 . . . xq−1 xq Mass A← Mass

1 0 . . . 0 0 p1 −1 w−1

0 1 . . . 0 0 p1
. . . . . . . . . . . . . . . . . .

0 0 . . . 0 1 p1

1/2 1/2 . . . 0 0 p2
1/2 0 . . . 0 0 p2
. . . . . . . . . . . . . . . . . .

0 0 . . . 1/2 1/2 p2 a0 w0

1 0 . . . 0 0 p∀
1

0 1 . . . 0 0 p∀
1

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 1 p∀
1

1/2 1/2 . . . 0 0 p∀
2

1/2 0 . . . 0 0 p∀
2

. . . . . . . . . . . . . . . . . .

0 0 . . . 1/2 1/2 p∀
2 1 w1

1 0 . . . 0 0 p∀∀
1

0 1 . . . 0 0 p∀∀
1

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 1 p∀∀
1

1/2 1/2 . . . 0 0 p∀∀
2

1/2 0 . . . 0 0 p∀∀
2

. . . . . . . . . . . . . . . . . .

0 0 . . . 1/2 1/2 p∀∀
2

where a1, a3, b1, b3, d3, d4, d5, d6, d7, k1, k2, k3, t, s, r, r2 are non-linear functions
of the prior moments and the masses p1, p∀

1, and w1. The optimal values of the
masses are obtained by minimizing φ(ξ). In order to check for optimality or other-
wise of the design thus obtained within the entire class, Kiefer’s equivalence theorem
is used, which, for trace-optimality criterion, reduces to Theorem 7.4.2. As the alge-
braic derivations are rather involved, Mandal and Pal (2012) verified the optimality
condition by numerical computation, using enumerable points in the experimental
region. We give below the optimum designs for q-component model, 2 ≤ q ≤ 4,
which have been numerically examined by Mandal and Pal (2012) to satisfy the
optimality condition for some combinations of the apriori moments (a, v, w). The
designs for q ≥ 5 can be similarly obtained and their optimality or otherwise checked
numerically using Theorem 7.4.2.

Remark 12.3.1 The above table shows that for q = 2, 3, 4, the optimum design
assigns masses at the two extremes and the midpoint of the domain of amount A←,
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Table 12.9 Trace-optimal designs in q-component mixture–amount model for some combinations
of the apriori moments (v,w, a) when 2 ≤ q ≤ 4

q a v p1 p1 w1 w0 Min. Trace

2 0.2 0.30 0.31985 0.30013 0.32389 0.35222 16.5421
0.2 0.40 0.28899 0.27169 0.33789 0.32422 30.7934
0.6 0.30 0.33841 0.31042 0.29970 0.40060 25.3021
0.6 0.40 0.30222 0.27612 0.30860 0.38280 40.8687

3 0.2 0.20 0.12499 0.10767 0.36118 0.27763 193.945
0.2 0.30 0.12820 0.11601 0.37395 0.25209 343.270
0.6 0.20 0.13472 0.10401 0.33976 0.32048 225.357
0.6 0.30 0.13416 0.11395 0.34788 0.30424 374.872

4 0.2 0.10 0.06659 0.04836 0.37601 0.24798 553.197
0.2 0.20 0.07417 0.06460 0.39078 0.21844 1378.92
0.6 0.10 0.07463 0.04131 0.36215 0.27570 636.485
0.6 0.20 0.07801 0.05991 0.37113 0.25774 1461.16

which is taken to be finite, and at the support points of the (q, 2) simplex design.
Similar result is expected to be obtained for higher values of q (Table 12.9).

12.3.3 Optimality in Multi-response Mixture Model

Consider a mixture experiment with q-components in proportions x1, x2, . . . , xq ,

where xi ≥ 0, i = 1(1)q, θi xi = 1. Suppose the response is a p-dimensional vector
y∀ = (y(1), y(2), . . . , y(p)), where y(g) denotes the gth characteristic of the output,
g = 1, 2, . . . , p. Let, for each g, the mean response E(y(g) | x) = σ

(g)
x be defined

by Scheffé’s quadratic mixture model:

σ
(g)
x = φ

(g)
0 + θ

i
φ

(g)
i xi + θ

i< j
φ

(g)
i j xi x j , g = 1, 2, . . . , p. (12.3.4)

Thus, as in the single-response case, using the constraint θi xi = 1, one can write
for each g = 1, 2, . . . , p,

σ
(g)
x = θ

i
φ

(g)
i i x2i + θ

i< j
φ

(g)
i j xi x j = f ∀(x)γ(g) = x∀γ(g)x, (12.3.5)

where f (x) = (x21 , x22 , . . . , x2q , x1x2, x1x3, . . . , xq−1xq)∀, γ(g) = (φ
(g)
11 , φ

(g)
22 , . . . ,

φ
(g)
qq , φ

(g)
12 , . . . , φ

(g)
q−1q)∀, and B(g) = ((b(g)

i j )) is a symmetric matrix with b(g)
i i = φ

(g)
i i ,

for all i and b(g)
i j = 1

2φ
(g)
i j , for all i < j. Mandal and Pal (2013) worked with the

model σ(g)
x = x∀ B(g)x, g = 1, 2, . . . , p.They assumed σ

(g)
x for each g = 1, 2, . . . , p
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to be concave with a finite maximum in the interior of the experimental region

X = {(x1, x2, . . . , xq) : xi ≥ 0, 0 ≤ q,
q
θ

i=1
xi = 1}. Thus, the optimum mixture

composition for the g-th response is γ (g) = β(g)−11q ,where β(g) = 1∀
q B(g)−11q , g =

1, 2, . . . , p. They studied the problem of estimating the non-linear functions γ (g)s
of the unknown model parameters as accurately as possible by a proper choice of
a continuous design in X . One can write (12.3.5) as E( y) = γ ≡ f (x), where
γ = (γ(1)∀,γ(2)∀, . . . ,γ(p)∀)∀. Then, if Σ = ((ηgh)) denotes the dispersion matrix of
y, for any arbitrary continuous design ξ in X , the information matrix for estimating
γ is given by I (ξ,γ) = Σ−1 ≡ M(ξ), where M(ξ) = ∫

X f (x) f ∀(x)dξ(x).

Let γ = (γ (1)∀, γ (2)∀, . . . , γ (p)∀)∀. Then, under suitable regularity assumptions
on error distribution, the standard ∂-method gives an adequate approximation of the
dispersion matrix of γ̂ = (γ̂

(1)∀
, γ̂

(2)∀
, . . . , γ (p)∀)∀ as

Disp(γ̂ ) = Diag(A(g)(γ ), g = 1, 2, . . . , p)(Σ ≡ M−1(ξ))Diag(A(g)(γ ),

g = 1, 2, . . . , p)∀,

where, for g = 1, 2, . . . , p, A(g)(γ ) is the matrix of partial derivatives of γ (g) with
respect to the components of γ(g) and it comes out to be a constant ‘d(g)’ times
a matrix whose elements are linear in the components of γ (g) (cf. Pal and Mandal
2006). The constant multiplier ‘d(g)’ is independent of the design ξ. In Chap. 7, these
results have already been discussed.

Mandal and Pal (2013) assumed M(ξ) to be negative definite. However, since
A(g)(γ )∀1q = 0,Disp(γ̂ ) is singular. Hence, for comparing different designs, they
appropriately considered the trace of Disp(γ̂ ).But, Disp(γ̂ ) depends on the unknown
model parameters through A(g)(γ ), g = 1, 2, . . . , p.From the structure of A(g)(γ ), it
is evident that a linear optimality criterion will be quadratic in the γ (g)-components.
Therefore, to remove the nuisance parameters, assuming a prior on the first two
moments of the γ (g)-components is adequate. This is precisely what was done in
Pal and Mandal (2006) in the single-response model. Arguing as in Pal and Mandal
(2006), it is assumed that

E
(
γ (g)γ (g)∀⎫ =

(
v(g) − w(g)

⎫
Iq + w(g)1q1∀

q ,

where v(g), w(g) > 0, w(g) < v(g), v(g) + (q − 1)w(g) = 1
q , and v(g) > 1

q2 .

Then, the criterion function is defined as φ(ξ) = E[Trace(Disp(γ̂ ))],which, after
some algebraic manipulation, reduces to

φ(ξ) = Trace

⎞

M−1(ξ)θ
g
η ←
ggE

⎟
A(g)(γ )∀ A(g)(γ )

⎠]

,

where, η ←
gg is the product of ηgg and the expected value of d(g).

http://dx.doi.org/10.1007/978-81-322-1786-2_7
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Under the assumed prior moments, φ(ξ) is easily seen to be invariant with respect
to the components of the mixture. Moreover, Trace(Disp(γ̂ )) is a convex function of
M(ξ).Hence, one can restrict the search for trace-optimal design within the subclass
of invariant designs. Now, Draper and Pukelsheim (1999) and Draper et al. (2000)
proved that given a symmetric design ξ, there exists a WCD σ which dominates ξ

in the sense of PLO. By virtue of the result and the fact that an invariant design is
necessarily symmetric, the search can be further confined to the class of WCDs. Pal
and Mandal (2007) showed that for q ≤ 4, the trace-optimal design in the single-
response case is a (q, 2)-simplex lattice design. In viewof that,Mandal andPal (2013)
first restricted their search within the subclassD1 of (q, 2)-simplex Lattice designs,
for q ≤ 4, and then examined its optimality or otherwise within the entire class of
competing designs. Using the equivalence theorem in the single-response case as
stated in Pal and Mandal (2007), one can easily obtain the equivalence theorem in
the multi-response case, which can be used for verification of optimality of a design:

Theorem 12.3.1 (Equivalence Theorem) A necessary and sufficient condition for a
design ξ← to be trace-optimal in a p-variate regression model is that

f (x)∀M−1(ξ←)
⎞

p
θ
g=1

η ←
ggE(A(g)∀ A(g))

]

M−1(ξ←) f (x) ≤ φ(ξ←) (12.3.6)

for all x ⇒ X .

Equality in (12.3.6) holds at all the support points of ξ←.

The support points of a (q, 2)-simplex lattice design are the vertex points: (1, 0, 0,
. . . , 0) and its permutations, and themidpoints of the edges: (1/2, 1/2, 0, . . . , 0) and
its permutations. Since the optimal design is invariant, we attach mass α/q to each
of the vertex points and mass (1−α)/C(q, 2) to each of the midpoints of the edges,
0 < α < 1.

Writing the model (12.3.5) as

ζ (g)
x = θ

i
ϕ

(g)
i i xi (xi − 1/2) + θ

i< j
ϕ

(g)
i j xi x j , g = 1, 2, . . . , p,

where

β (g) = Pγ(g), P =
⎞
2Iq 0
R IC(q,2)

]

,

and R is a C(q, 2) × q circulant matrix, it is easy to show that

φ(ξ) = q3(q − 1)

⎞
t1
α

+ t2
1 − α

]

≥ q3(q − 1)
(∞

t1 + ∞
t2
)2

,

where
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t1 = p
θ
g=1

η ←
gg

⎟
(q + 8)v(g) + (q − 1)(q − 8)w(g)

⎠
,

t2 = 8(q − 1)
p
θ
g=1

η ←
gg

⎟
(q − 1)v(g) − w(g)

⎠
.

Hence, φ(ξ) attains the lower bound at α = α0 =
∞

t1∞
t1+∞

t2
.

To establish the optimality of the above designs in the entire class, it may be noted
that the left-hand side of (12.3.6) is a convex function of x.Hence, themaximummust
occur at a boundary point of the simplex X . It is, therefore, sufficient to verify the
condition (12.3.6) only at the boundary points. However, as algebraic verification
is rather involved, Mandal and Pal (2013) checked the condition numerically for
q = 3, 4, . . . , 8 at enumerable points on the boundary and found it to be satisfied. The
following table gives the optimumdesigns for some combinations of (η ←

gg, v
(g), w(g))

(cf. Mandal and Pal 2013) (Table 12.10).

12.3.4 Optimality in Multi-response Mixture–Amount Model

Pal and Mandal (2013) augmented the multi-response mixture model of Sect. 12.2
by the inclusion of amount of mixture. Let A denote the amount of mixture used.
Then, for each g = 1, 2, . . . , p, the mean response is assumed to be quadratic in
x← = (A, x1, x2, . . . , xq):

E(y(g) | x←) = ζ
(g)
x← = α01A + α02A2 + A

q
θ

i=1
αi xi + q

θ
i=1

αi i x2i + q
θ

i< j=1
αi j xi x j ,

(12.3.7)
where the experimental domain is given by

� =
{

(A, x1, x2, . . . , xq) | A ⇒ [AL , AU ], AL > 0, xi ≥ 0, i = 1(1)q, θ
i

xi = 1

⎧

.

(12.3.8)

The assumption AL > 0 ensures that some amount of the mixture is used in the
experiment. A similar model has been suggested by Pal and Mandal (2012a) in the
single-response case. The problem remains that of finding the optimum design for
estimating the optimum mixing proportions and the optimum mixture amount for
each of the responses.

Proceeding as in Sect. 12.3.2, the model (12.3.7) can be written as

ζ
(g)
x← = φ

(g)
00 A2 + Aθ

i
φ

(g)
0i xi + θ

i
φ

(g)
i i x2i + θ

i< j
φ

(g)
i j xi x j = f ∀(x)γ(g) = x←∀B(g)x←,
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Table 12.10 Optimum designs for q = 3, 4, . . . , 8; p = 2, 3, 4 and some combinations of
(η ←

gg, v
(g), w(g))s

q p (η ←
11, . . . , η

←
pp) (v(1), . . . , v(p)) α φ(ξ)

3 2 (1, 3) (0.2, 0.3) 0.3642 4452.166
2 (1, 10) (0.15, 0.3) 0.3656 12964.57
3 (1, 3, 7) (0.12, 0.20, 0.28) 0.3596 10251.99
3 (3, 10, 15) (0.2, 0.25, 0.3) 0.3637 30588.17
4 (3, 10, 15, 8) (0.2, 0.25, 0.3, 0.17) 0.3505 34643.97
4 (3, 5, 10, 14) (0.12, 0.25, 0.29, 0.33) 0.3653 37521.09

4 2 (1, 3) (0.1, 0.23) 0.2835 20643.334
2 (1, 10) (0.07, 0.18) 0.2823 61395.741
3 (1, 3, 7) (0.08, 0.12, 0.20) 0.2714 44210.803
3 (3, 10, 15) (0.18, 0.23, 0.11) 0.2656 110973.88
4 (3, 10, 15, 8) (0.2, 0.21, 0.10, 0.07) 0.2650 109763.18
4 (3, 5, 10, 14) (0.12, 0.2, 0.15, 0.23) 0.2822 157399.69

5 2 (1, 3) (0.1, 0.18) 0.2415 87805.970
2 (1, 10) (0.07, 0.18) 0.2389 204318.79
3 (1, 3, 7) (0.08, 0.12, 0.19) 0.2378 192034.41
3 (3, 10, 15) (0.18, 0.09, 0.11) 0.2277 314729.42
4 (3, 10, 15, 8) (0.1, 0.16, 0.14, 0.06) 0.2315 467097.13
4 (3, 5, 10, 14) (0.18, 0.13, 0.11, 0.07) 0.2245 333748.61

7 2 (1, 3) (0.1, 0.12) 0.2391 50339.700
2 (1, 10) (0.04, 0.14) 0.2407 159253.90
3 (1, 3, 7) (0.08, 0.12, 0.13) 0.2400 148547.10
3 (3, 10, 15) (0.14, 0.09, 0.11) 0.2380 322630.00
4 (3, 10, 15, 8) (0.1, 0.16, 0.14, 0.06) 0.2401 493408.70
4 (3, 5, 10, 14) (0.1, 0.13, 0.11, 0.07) 0.2362 325363.60

8 2 (1, 3) (0.1, 0.12) 0.2409 50931.790
2 (1, 10) (0.03, 0.11) 0.2406 135937.20
3 (1, 3, 7) (0.08, 0.12, 0.01) 0.2393 119435.00
3 (3, 10, 15) (0.11, 0.09, 0.07) 0.2368 245709.60
4 (3, 10, 15, 8) (0.1, 0.12, 0.03, 0.06) 0.2337 256769.40
4 (3, 5, 10, 14) (0.1, 0.05, 0.11, 0.07) 0.2369 283674.80

where f (x←) = (A2, Ax1, Ax2, . . . , Axq , x21 , x22 , . . . , x2q , x1x2, x1x3, . . . , xq−1xq)∀,
γ(g) = (φ

(g)
00 , φ

(g)
01 , . . . , φ

(g)
0q , φ

(g)
11 φ

(g)
22 , . . . , φ

(g)
qq , φ

(g)
12 , . . . , φ

(g)
q−1,q)∀, B(g) is a sym-

metricmatrixwith (i+1, i+1)-th elementφ(g)
i i , i = 0, 1, . . . , q, and the (i+1, j+1)-

th element φ
(g)
i j , i < j, and the experimental region is given by (12.3.3). Under the

assumption of concavity of ζ (g)
x← and that themaximizing point ζ (g)

x← is an interior point
of (12.3.3), the optimum point for each g = 1, 2, . . . , p is γ (g)← = β(g)−1B(g)−11,

where β(g) = c∀ B(g)−1c and c = (0, 1, 1, . . . , 1)∀. For any continuous design ξ,

the dispersion matrix Disp(γ̂ (g)←
) of the estimate γ̂

(g)← is singular and is dependent
on the model parameters so that, as in the earlier subsections, the pseudo-Bayesian
approach of Pal and Mandal (2006) can be used todefine a parameter-free criterion
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function as φ(ξ) = E[Trace{Disp(γ̂ (g)←
)}], where E denotes the expectation with

respect to the prior distribution of γ (g)←, for which, arguing as in Pal and Mandal
(2006), the second-order moments (pure and mixed) are defined as

E(γ
(g)←2
1 ) = v(g), i = 1(1)p; E(γ

(g)←
i γ

(g)←
j ) = w(g), i ≥= j = 1, 2, . . . , q; v(g) ≥ w(g) > 0;

E(A(g)←2) = a(g),E(A(g)←γ (g)←
i ) = b(g), i = 1, 2, . . . , q, g = 1, 2, . . . , p.

Clearly, since c∀x← = 1 and B(g) is negative definite, the prior moments satisfy
w(g) ≤ v(g), 1/q2 < v(g) < 1/q, qv(g) + q(q − 1)w(g) = 1, g = 1, 2, . . . , p.

Mimicking the argument as in Sect. 12.3.2, one can initially confine the search
for trace-optimal design within the subclass Dq of designs having support points
and masses as given in Table 12.8, with a0 = 0, and w−1 = w1, pi = p∀∀

i , i = 1, 2.
For 2 ≤ q ≤ 4, Pal and Mandal (2013) and Mandal examined the optimality or
otherwise of the trace-optimal designs in Dq within the whole class of compet-
ing designs using Theorem 12.3.1 (equivalence theorem), and showed them to be
optimal. As the algebraic derivations were rather involved, the condition (12.3.6)
was checked by numerical computation, using several points in the experimental
region and for various combinations of (η ←

gg, g = 1, 2, . . . , p) and the apriori mo-

ments ((a(g), v(g), w(g)), g = 1, 2, . . . , p). The designs for q ≥ 5 can be similarly
obtained and their optimality or otherwise checked numerically through Theorem
12.3.1. The following table is an excerpt from Pal and Mandal (2013) (Table 12.11).

12.4 Mixture Designs in Blocks

12.4.1 Preliminaries

Blocking is a desirable property of any response surface design as it controls the
heterogeneity of the experimental units. It is also an important tool for obtaining
increased precision of estimates of the parameters/parametric functions of interest.
Suppose a mixture experiment on fertilizers is to be carried out at different locations.
Groups of mixture blends may be used in different locations which may be called
blocks. Some examples of mixture experiments where blocking is necessary are
discussed in Cornell (2002). Mixture design with blocks was first considered by
Nigam (1970) where the basic design was a symmetric simplex design as defined by
Murty and Das (1968), and the mixture model was Scheffé’s second-degree model.
Blocked mixture designs may be categorized into three groups, viz. (i) orthogonal
block designs based on symmetric simplex mixture designs, (ii) orthogonal block
designs using mates of latin squares, and (iii) D-optimal minimum support designs
in blocks (Goos and Donev 2007). In each case, Scheffé’s quadratic mixture model
is considered.
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Let N mixture blends be allocated to t blocks, where the w-th block contains nw

blends, w = 1, 2, . . . , t; n1 + n2 + · · · + nt = N . It is to be noted that the blends in
a block may not be all distinct.

Scheffé’s quadratic mixture model under blocking may be written as

yu = q
θ

i=1
φi xiu + q

θ
1≤i< j≤q

φi j xiu x ju + t
θ

w=1
γw(zwu − z̄w) + eu, (12.4.1)

where xius are the proportion of the i th mixture component for the uth blend; xiu ≥
0, θ

i
xiu = 1√ u; γw is the effect of the wth block, zwu is an indicator variable

assuming the value 1 or 0 according as the uth blend is in the wth block or not;
z̄ = 1

N θuzuw and eu is the error associated with yu, the observation from the uth
blend, u = 1, 2, . . . , N .

In matrix notation, the model (12.4.1) can be written as

y = Xγ + (Z − Z̄)γ + e, (12.4.2)

where X and (Z − Z̄) are the coefficient matrices of φs and γ s, respectively, with
Z̄ = ( n1

N 1N , n2
N 1N , . . . , nt

N 1N
)
, 1N = (1, 1, . . . , 1)∀.

It is desirable to estimate the φ-parameters independently of the block effects.
A design where this feature is realized is called a mixture design with orthogonal
blocks. In this connection, itmaybementioned that a linear functionofγ s is estimable
provided it is a contrast in γ s. We restrict to the classDB of mixture designs where
all φs and all block contrasts are estimable.

For the model (12.4.2), it can shown that a necessary and sufficient condition for
orthogonal blocking is

X ∀(Z − Z̄) = 0 (12.4.3)

which is equivalent to

θ
u⇒Bw

xiu = ki nw, θ
u⇒Bw

xiu x ju = ki j nw (12.4.4)

where Bw denotes the wth block, ki and ki j denote some constants, w = 1, 2, . . . , t
and 1 ≤ i < j ≤ q.

Nigam (1970, 1976) considered blocking of the symmetric simplex designs
(Murty and Das 1968) for mixture experiments, imposing some conditions on the
mixtures. Later, Singh et al. (1982) revised the conditions ofNigam to have the blocks
orthogonal by taking constants ki and ki j in (12.4.4) independent of the factors. John
(1984) considered mixture designs with orthogonal blocks modifying the conditions
in (12.4.4) for equal block size. Draper et al. (1993), Lewis et al. (1994), and oth-
ers considered mixture designs with orthogonal blocks ensuring John’s conditions.
Also, Prescott (2000) constructed such designs ensuring the condition (12.4.4) for
both equal and unequal block sizes using projection designs. Actually, it is seen that
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the conditions of both Singh et al. (1982) and John (1984) are sufficient and can be
obtained as particular cases of the condition (12.4.4).

Deviating from orthogonal block designs, Goos andDonev (2007) studied another
kind of blockedmixture designswhich areD-optimal in the class ofminimumsupport
designs.

12.4.2 Orthogonal Mixture Designs Based on Symmetric
Simplex Block Designs

Asmentioned earlier,Nigam (1970) proposed block designs formixture experiments,
considering the symmetric simplex design (Murty and Das 1968) for which the
moments of different orders are invariant with respect to the components.

To get the estimates of the regression parameters φi s and φi j s from the normal
equations, adjusting for the block effects, Nigam (1970, 1976) imposed the following
blocking conditions

nw

θ
u=1

xiu = k1w,
nw

θ
u=1

xiu x ju = k2w, i ≥= j = 1, 2, . . . , q (12.4.5)

However, a design satisfying (12.4.5) may not necessarily be orthogonal.
For orthogonal estimation of the mixture parameters, Singh et al. (1982) revised

the condition (12.4.5) as

k1w = k1nw, k2w = k2nw, w = 1, 2, . . . , t. (12.4.6)

It is noted that the condition (12.4.6) is a particular case of (12.4.4) when ki = k1
and ki j = k2, 1 ≤ i < j ≤ q.

The following design (Cornell 2002) is a symmetric simplex design with orthog-
onal blocks satisfying the conditions (12.4.6) with n1 = n2 = 6, k1 = 2, k2 = 1

4
when q = 3.

Example 12.4.1

Block 1
1 0 0
0 1 0
0 0 1
1

2

1

2
0

1

2
0

1

2

0
1

2

1

2

Block II
1 0 0
0 1 0
0 0 1
4

6

1

6

1

6
1

6

4

6

1

6
1

6

1

6

4

6
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12.4.3 Mixture Designs with Orthogonal Blocks Based
on Mates of Latin Squares

John (1984) made use of the following conditions

θ
u⇒ζw

xiu = ki , θ
u⇒ζw

xiu x ju = ki j , 1 ≤ i ≥= j ≤ q (12.4.7)

for orthogonal blocking.
It follows from (12.4.4) that (12.4.7) results as particular cases of (12.4.4) when

the block sizes are equal.
John (1984), Draper et al. (1993), Lewis et al. (1994), and others constructed

mixture designswith orthogonal blocks usingmates of Latin squares. Prescott (2000)
used projection designs formixture experiments to construct designswith orthogonal
blocks ensuring (12.4.4).

TwoLatin squares of side q are said to bemates of each other if the sumof products
of the elements of i th and j th columns from each square is the same, 1 ≤ i < j ≤ q.

For a discussion on mates of 4× 4 Latin squares, one can see Draper et al. (1993)
and also Cornell (2002). Consider the following two 4 × 4 Latin squares

L1 =

⎢

⎥
⎥


a b c d
b c d a
c d a b
d a b c





 , L2 =

⎢

⎥
⎥


a d c b
b a d c
c b a d
d c b a







It is easy to see that the sum of cross-products of the elements of columns 1 and 2
from each of L1 and L2 is the same. Similarly, it can be verified that this is true for
any pair of columns of L1 and L2. So, it follows that L1 and L2 are mates of each
other.

By assuming the rows of a square as blends, it is easily seen that the mates of
Latin squares can effectively be used to construct mixture designs with orthogonal
blocks satisfying John’s conditions. Also, as the blends in the blocks are the rows of
Latin squares (side q), it follows that

θ
1≤i< j≤q

xiu x ju = ρ
q
θ

i=1
xiu, 1 ≤ u ≤ N (12.4.8)

where ρ is a constant. So, the coefficient matrix X for the mixture parameters is not
of full column rank. As a remedy, at least one mixture point may be included in each
block so that singularity is removed and, at the same time, the conditions in (12.4.7)
are satisfied. Usually, the centroid point having equal proportion for each component
is used.

Mixture designs with two orthogonal blocks were constructed in Draper et al.
(1993) using mates of 4 × 4 Latin squares. The proportions indicated by the 4
symbols a, b, c and d are arbitrary satisfying a, b, c, d ≥ 0 and a + b + c + d = 1.
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Draper et al. (1993) computed their values by maximizing the determinant of (X ∀ X).

Lewis et al. (1994) developed some general methods of constructing mates of Latin
squares and proposed methods of constructing designs for three or more factors in
two or more blocks.

Draper et al. (1993) constructed the following design with two orthogonal blocks
each of size 9 using two pairs of mates of 4 × 4 Latin squares.

Example 12.4.2

Block I⎢

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥


a b c d
b a d c
c d b a
d c a b
1
4

1
4

1
4

1
4

a b c d
b c d a
c d a b
d a b c

















Block II⎢

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥


a b d c
b a c d
c d a b
d c b a
1
4

1
4

1
4

1
4

a d c b
b a d c
c b a d
d c b a

















The values for the proportions were computed as a = 0.24, b = 0, c = 0, d =
0.76.

12.4.4 D-Optimal Minimum Support Mixture Designs

Minimum support mixture design is a design which uses only that many mixture
combinations as there are parameters in the model. In Scheffé’s quadratic model,
there are m = q(q + 1)/2 parameters. So, a minimum support design uses only m
distinct support points where qi observations are taken from the i th support point,
i = 1, 2, . . . m;θm

i=1 qi = N .Goos and Donev (2007) considered D-optimal design
in the class of minimum support designs. They also compared these designs with
comparable orthogonal designs and with the designs which were D-optimal for the
whole class, not merely optimal in the class of minimum support designs.

12.4.5 Model and Estimators

Though Goos and Donev (2007) assumed a general setup, we describe the procedure
with respect to the present mixture model setup.

Let us consider the model (12.4.2) with a little modification by dropping Z̄ , as

y = Xγ + Zγ + e. (12.4.9)
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It follows that the design matrix (X, Z) is not of full column rank as the sum
of the columns corresponding to the linear regression parameters is equal to that of
the columns in Z. To make the coefficient matrix non-singular, Goos and Donev
(2007) modified the model by dropping the last column of Z and the corresponding
parameter γt .

Define
F = (X, Z0), β ∀ = (γ ∀, γ ∀

0) (12.4.10)

where
Z0 = (Z1, Z2, . . . , Zt−1), γ ∀

0 = (γ1, γ2, . . . , γt−1), (12.4.11)

Zi being the i th column of Z0, i = 1, 2, . . . , t − 1.
So, the modified model can be written as

y = Fβ + e (12.4.12)

and the least squares estimator of β is given by

β̂ = (F∀ F)−1F∀ y (12.4.13)

with
Disp(β̂) = η 2(F∀ F)−1 (12.4.14)

12.4.6 Construction of Optimum Designs

Goos and Donev (2007) proposed a two-stage method for the construction of D-
optimal minimum support design for the estimation of the mixture parameters in the
presence of the block effects. They made use of the following theorem due to Donev
(1989):

Theorem 12.4.1
| F∀ F | =| X ∀X | . | A | (12.4.15)

where

| A | = | (ai j ) |(t−1)×(t−1), aii = n∀
i − θ

i⇒Di

q−1
i , ai j = − θ

i⇒Di j

q−1
i (12.4.16)

n∀
i = number of points in the i th block that appear more than once in the entire

design,
Di = set of the design points in the ith block which occurs in other blocks also and
Di j = Di ∼ D j ; i ≥= j = 1, 2, . . . , t.

| · | denotes the determinant of the matrix (·).
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Note that the elements of the matrix A depend only on the assignment of the
design points to the blocks. The expression of A is valid only if no design point is
replicated within a block; its replication, if any, should occur in other blocks.

From (12.4.15), it follows that | F∀ F | should be maximized for getting the D-
optimal minimum support design. For this, we have to proceed through the following
two stages.

(i) Choose m = q(q + 1)/2 distinct support points and replicate them as evenly
as possible to get N runs so that | X ∀X | is maximized. For this, each of the m
support points should occur

[ n
m

]
or
[ n

m

]+ 1 times in the design. It is immaterial
which one is replicated most.

(ii) Looking at | A | in (12.4.16), it follows that the chosen support points should
be distributed as evenly as possible over the blocks avoiding more than one
occurrence of any point in any block. The assignment of the non-replicated
design points to the blocks does not affect | A | . So, the design may not be
unique in respect of D-optimality criterion.

Example 12.4.3 We present an example of D-optimal minimum support design for
quadratic mixture model with 4 factors as illustrated by Goos and Donev (2007).

For estimating the 10 parameters in the Scheffé’s quadratic model with 4-factors,
the ten support points of the (4, 2) simplex design are chosen. For a design with 18
runs in 2 blocks each containing 9 runs, 8 of the 10 support points should be used
twice and the remaining two just once. This will maximize | X ∀X |. The 8 replicated
support points should occur in both the blocks and the remaining two should occur
in different blocks. It does not matter which eight support points are duplicated. One
such D-optimal design is the following:

Block 1
0 1 0 0

0 0 1 0

0 0 0 1
1

2

1

2
0 0

1

2
0 0

1

2

0 0
1

2

1

2

0 0
1

2

1

2

0
1

2

1

2
0

1

2
0

1

2
0

Block II
1 0 0 0

0 0 1 0

0 0 0 1
1

2

1

2
0 0

1

2
0 0

1

2

0 0
1

2

1

2

0
1

2

1

2
0

0
1

2
0

1

2
1

2
0

1

2
0
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Goos and Donev (2007) also discussed the cases when the model involved (i) one
blocking variable with random effects, (ii) two blocking variables with fixed effects
each, and (iii) two blocking variables with random effects each.

12.4.7 Comparison with Other Designs

Goos and Donev (2007). compared the following two mixture designs D1 and D2
each with three factors having 8 runs divided into two equal blocks

D1
Block 1
1 0 0
0 0 1
1

2

1

2
0

0
1

2

1

2

Block 2
0 1 0
1

2

1

2
0

0
1

2

1

2
1

2
0

1

2

D2
Block 1
1

2

1

2
0

1

2
0

1

2

0
1

2

1

2
1

3

1

3

1

3

Block 2
1

6

2

3

1

6
2

3

1

6

1

6
1

6

1

6

2

3
1

3

1

3

1

3

where D1 is a D-optimal minimum support design and D2 is a mixture design with
orthogonal blocks (Prescott 2000). The relative D-efficiency of D1 with respect to
D2 computed through {| F∀

1F1 | / | F∀
2F2 |}1/6 exceeds 3, where F1 and F2 are

the model matrices for D1 and D2, respectively, as described in (12.4.12).
Consider the following design D3 in two blocks. This is D-optimal in the entire

class obtained through grid search.

Block 1
(0.6 0.4 0)

(0.5 0 0.5)

(0 1 0)

(0 0.4 0.6)

Block 2
0.4 0.6 0

0 0.6 0.4

1 0 0

0 0 1

It is observed that the relative D-efficiency of D1 with respect to D3 is less than
3.11%.

Remark 12.4.1 The design D2 proposed by Prescott (2000) can be seen to belong
to the following class of designs with two blocks:
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B1

α 1−α
2

1−α
2

1−α
2 α 1−α

2
1−α
2

1−α
2 α

1
3

1
3

1
3

B2

φ
1−φ
2

1−φ
2

1−φ
2 φ

1−φ
2

1−φ
2

1−φ
2 φ

1
3

1
3

1
3

where

φ = 2

3
− α, α ⇒ [0, 1

3
).

It is readily seen that D2 is obtained when α = 0.

Remark 12.4.2 Prescott (2000) also considered a mixture design with 3 factors in
3 orthogonal blocks B1, B2, and B3 of sizes 6, 6, and 8, respectively, through
projections. It can be seen that Prescott’s design belongs to the following class of
designs with three blocks:

B1

α
1 − α

2

1 − α

2
1 − α

2
α

1 − α

2
1 − α

2

1 − α

2
α

1

3

1

3

1

3
1

3

1

3

1

3
1

3

1

3

1

3

B2

φ
1 − φ

2

1 − φ

2
1 − φ

2
φ

1 − φ

2
1 − φ

2

1 − φ

2
φ

1

3

1

3

1

3
1

3

1

3

1

3
1

3

1

3

1

3

B3

β
1 − β

2

1 − β

2
1 − β

2
β

1 − β

2
1 − β

2

1 − β

2
β

γ
1 − γ

2

1 − γ

2
1 − γ

2
γ

1 − γ

2
1 − γ

2

1 − γ

2
γ

1

3

1

3

1

3
1

3

1

3

1

3

where

φ = 2

3
− α, β = 1

3
+ x, γ = 1

3
− x, α ⇒ [0, 1

3
), x =

⎭

α − 1

3

) ∞
2∞
3

The design considered in Prescott (2000) is obtained when α = 0.
Several such mixture designs in orthogonal blocks, as generalizations of those in

Prescott (2000), are currently under investigation. Das and Sinha (2014).
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