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Abstract Artificial Bee Colony (ABC) is one of the latest and emerging swarm
intelligence algorithms. Though, there are some areas where ABC works better
than other optimization techniques but, the drawbacks like stucking at local optima
and preferring exploration at the cost of exploitation, are also associated with it.
This paper uses position update equation in ABC as in Gbest-guided ABC (GABC)
and attempts to improve ABC algorithm by balancing its exploration and
exploitation capabilities. The proposed algorithm is named as Expedited Artificial
Bee Colony (EABC). We altered the onlooker bee phase of ABC by forcing the
individual bee to take positive direction towards the random bee if this selected
random bee has better fitness than the current bee and if it is not the case then the
current bee will move in reverse direction. In this way, ABC colony members will
not follow only global best bee but also a random bee which has better fitness than
the current bee which is going to be modified. So the mentioned drawbacks of the
ABC may be resolved. To analyze the performance of the proposed modification,
14 unbiased benchmark optimization functions have been considered and exper-
imental results reflect its superiority over the Basic ABC and GABC.
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1 Introduction

Swarm Intelligence is an emerging category in nature inspired algorithms group in
current decade. Collaborative trail and error method is the main engine behind the
Swarm Intelligence which enables the algorithmic procedure to find the solution.
Researchers analyzed such collaboration between the social insects while
searching food for them and created the structures known as Swarm Intelligence
based algorithms like ant colony optimization (ACO) [6], particle swarm opti-
mization (PSO) [14], bacterial foraging optimization (BFO) [15]. The work pre-
sented in the articles [6, 14, 16, 17] under the mentioned category proved their
efficiency and potential to deal with non linear, non convex and discrete optimi-
zation problems etc. Karaboga [10] contributed the recent addition to this category
known as Artificial bee colony (ABC) optimization algorithm. The ABC algorithm
mimics the foraging behavior of honey bees while searching food for them. ABC
is a simple and population based optimization algorithm. Here the population
consists of possible solutions in terms of food sources for honey bees whose fitness
is regulated in terms of nectar amount which the food source contains. The swarm
updating in ABC is due to two processes namely the variation process and
selection process which are responsible for exploration and exploitation respec-
tively. However the ABC achieves a good solution at a significantly faster rate but,
like the other optimization algorithms, it is also weak in refining the already
explored search space, mainly due to less diversity in later search. On the other
part, it is also required to tune the ABC control parameters based on problem. Also
literature says that basic ABC itself has some drawbacks like stop proceeding
toward the global optimum even though the population has not converged to a
local optimum [11] and laking to balance between exploration and exploitation
[19]. Therefore these drawbacks require a enhanced and more efficient ABC to
deal with. Here we proposes a modification in ABC called as Expedited ABC
(EABC) to overcome the mentioned drawbacks. Researchers are also working to
enhance the capabilities of ABC. To enhance the exploitation, Gao et al. [8]
improved position update equation of ABC such that the bee searches only in
neighborhood of the previous iteration’s best solution. Banharnsakun et al. [2]
proposed the best-so-far selection in ABC algorithm and incorporated three major
changes: The best-so-far method, an adjustable search radius, and an objective-
value-based comparison in ABC. To solve constrained optimization problems,
Karaboga and Akay [12] used Deb’s rules consisting of three simple heuristic rules
and a probabilistic selection scheme in ABC algorithm. Karaboga [10] examined
and suggested that the limit should be taken as SN 9 D, where, SN is the popu-
lation size and D is the dimension of the problem and coefficient /ij in position
update equation should be adopted in the range of [-1, 1]. Further, Kang et al. [9]
introduced exploitation phase in ABC using Rosenbrock’s rotational direction
method and named modified ABC as Rosenbrock ABC (RABC).
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Rest of the paper is organized as follows: ABC is explained in Sect. 2. In Sect. 3,
proposed modified ABC (EABC) is explained. In Sect. 4, performance of the
proposed strategy is analyzed. Finally, in Sect. 5, paper is concluded.

2 Artificial Bee Colony (ABC) Algorithm

Artificial Bee Colony is made of three groups of bees: employed bees, onlooker
bees and scout bees. The number of employed and onlooker bees is equal. The
employed bees searches the food source in the environment and store the infor-
mation like the quality and the distance of the food source from the hive. Onlooker
bees wait in the hive for employed bees and after collecting information from
them, they start searching in neighborhood of food sources with better nectar. If
any food source is abandoned then scout bee finds new food source randomly in
search space. ABC is a population-based iterative search procedure. In ABC, first
initialization of the solutions is done as:

2.1 Initialization of the Swarm

If D is the number of variables in the optimization problem then each food source
xi(i = 1, 2, …, SN) is a D-dimensional vector among the SN food sources and is
generated using a uniform distribution as:

xij ¼ xminj þ rand½0; 1�ðxmaxj � xminjÞ ð1Þ

here xi represents the ith food source in the swarm, xminj and xmaxj are bounds of xi

in jth direction and rand[0, 1] is a uniformly distributed random number in the
range [0, 1]. After initialization phase ABC requires the cycle of the three phases
namely employed bee phase, onlooker bee phase and scout bee phase to be
executed.

2.2 Employed Bee Phase

In this phase, ith candidate’s position is updated using following equation:

vij ¼ xij þ /ijðxij � xkjÞ ð2Þ

here k 2 f1; 2; . . .; SNg and j 2 f1; 2; . . .;Dg are randomly chosen indices and
k 6¼ i � /ij is a random number between [-1, 1]. After generating new position,
the position with better fitness between the newly generated and old one is
selected.
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2.3 Onlooker Bees Phase

In this phase, employed bees share the information associated with its food source
like quality (nectar) and position of the food source with the onlooker bees in the
hive. Onlooker bees evaluate the available information about the food source and
based on its fitness it selects a solution with a probability probi. Here probi can be
calculated as function of fitness (there may be some other):

probiðGÞ ¼
0:9� fitnessi

maxfit
þ 0:1; ð3Þ

here fitnessi is the fitness value of the ith solution and maxfit is the maximum
fitness amongst all the solutions. Again by applying greedy selection, if the fitness
is higher than the previous one, the onlooker bee stores the new position in its
memory and forgets the old one.

2.4 Scout Bees Phase

If for a predetermined number of cycles, any bee’s position is not getting updated
then that food source is taken to be abandoned and this bee becomes scout bee. In
this phase, the abandoned food source is replaced by a randomly chosen food source
within the search space. In ABC, the number of cycles after which a particular food
source becomes abandoned is known as limit and is a crucial control parameter. In
this phase the abandoned food source xi is replaced by a randomly chosen food
source within the search space same as in initialization phase 1.1.

2.5 Main Steps of the ABC Algorithm

The pseudo-code of the ABC is shown in Algorithm 1 [11].

Algorithm 1 Artificial Bee Colony Algorithm:?

Initialize the parameters;
while Termination criteria is not satisfied do

Step 1: Employed bee phase for generating new food sources;
Step 2: Onlooker bees phase for updating the food sources depending on
their nectar amounts;
Step 3: Scout bee phase for discovering the new food sources in place of
abandoned food sources;
Step 4: Memorize the best food source found so far;

end while
Output the best solution found so far.
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In 2010, Zhu and Kwong [19] proposed Gbest-guided ABC (GABC) algorithm,
an improvement in ABC algorithm by introducing global best (gbest) solution of
the current population into the position update equation to improve the exploita-
tion. This proposed version GABC is inspired by PSO [14], which uses the global
best (gbest) solution to guide the search. The modified the position update equation
of ABC as follows:

vij ¼ xij þ /ijðxij � xkjÞ þ wijðyj � xijÞ ð4Þ

The only difference in the modified Eq. (4) is the third term on the right-hand
side, which is called gbest term. Here yj is the jth dimension of the global best
solution, wij is a uniform random number in [0, C], where C is a non negative
constant. According to Eq. (4), the gbest term tries to drive the search towards the
global best solution, therefore, responsible for the exploitation. Note that setting
the parameter C in (4) is a crucial task as to balance the exploration and exploi-
tation of the solution search. In this paper ABC uses Eq. (4) of GABC as its
position update equation and which is modified further to enhance its search
capability.

3 Expedited Artificial Bee Colony

Karaboga and Akay [11] shows inefficient balance between exploration and
exploitation of the search space in ABC while experimenting its different variants.
Recently Zhu and kwong [19] proposed a modified version of ABC namely Gbest-
guided Artificial Bee Colony algorithm (GABC) which incorporated information
of the bee having highest fitness in the swarm within the position update equation.
As a result of which, ABC may suffer from premature convergence as in early
iterations the whole population gets influence to best solution (which is not nec-
essarily a optimum) in the current swarm. At the same time, we can not lose this
best solution information also, which tries to guide the population towards the
better one. So in order to make balance between losing and adopting the best
solution information, we modify the difference term in position update equation of
ABC, which adopts the directional difference between the current bee and a ran-
dom bee in the swarm, through taking positive scaled value of this term in that
bee’s direction which is better between current and random bee. In this way, we
adopt information of both the swarm best and best between current and a random
bee and modified the position update equation inspired from PSO [14] which does
not give more weightage to global best, but a equal weightage to personal best
also. After analyzing these concerns, we propose following modification in
onlooker bee phase of ABC. The proposed modification can be mathematically
seen as follows:
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if (probcurrent(i) [ probrandom(k))

vij ¼ xij þ rand½0; 0:5�ðxij � xkjÞ þ wijðyj � xijÞ ð5Þ

else

vij ¼ xij þ rand½0; 0:5�ðxkj � xijÞ þ wijðyj � xijÞ ð6Þ

here probcurrent(i) and probrandom(k) are the probabilities calculated in Eq. (3) of the
current bee ith and random bee kth respectively. rand[0, 0.5] is a random number
between 0 and 0.5. Basically in ABC, we follow positive direction towards best
bee in current swarm and random direction towards randomly selected kth bee, but
in proposed EABC we follow positive direction towards gbest and also towards
random bee if it has better fitness than the current bee otherwise we follow neg-
ative direction towards random bee. Here, in both Eqs. (5) and (6) we take random
number between [0, 0.5] instead of [0, 1] so that this term may not takeover the
gbest influence over the search. Therefore instead of completely following gbest
bee in colony, we add some better random direction to current bee also to ensure
convergence not prematurely.

4 Experiments and Results

4.1 Test Problems Under Consideration

To validate the performance, we compared the proposed strategy with basic ABC
and GABC over 14 unbiased benchmark optimization functions which are given in
Table 1. For a successful run, the minimum error criteria is fixed as in last colon of
Table 1 i.e. an algorithm is considered successful if it finds the error less than
acceptable error in a specified maximum function evaluations.

4.2 Experimental Setting

To prove the efficiency of proposed EABC, it is compared with ABC and GABC.
To test EABC, ABC and GABC over considered problems, following experimental
setting is adopted:

Parameter setting for ABC:

• Colony size NP = 50 [5, 7],
• /ij = rand[-1, 1] and wij = rand[0, 1.5] [19],
• Number of food sources SN = NP/2,
• limit = D 9 SN [1, 13],
• The number of simulations/run = 100.
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4.3 Results Comparison

With experimental setting of Sect. 4.2, Table 2 reports the numerical results in
terms of standard deviation (SD), mean error (ME), average function evaluations
(AFE), and success rate (SR). To minimize the effect of the algorithmic stochastic
nature, the reported function evaluations is averaged over 100 runs. Results in
Table 2 reflects that most of the time EABC outperforms in terms of reliability,
efficiency and accuracy as compare to the ABC and GABC. For more intensive
analyses of the results, the performance indices and boxplots have been carried
out.

EABC, ABC and GABC are compared through SR, AFE and ME in Table 2.
Here signs +/- indicate that for that particular function, EABC is better/worst than
the considered algorithms, respectively. If EABC has more success rate SR than the
other algorithm then it is said to be better and if EABC has equal success rate to
other then comparison is done in order of preference of average function evalu-
ation (AFE), mean error (ME). Total Outcome of comparison is mentioned in
Table 3. The bottom line of Table 3 represents that of EABC is better than ABC in
all 14 functions and better than GABC in 11 functions out of 14 functions and
hence shows the superiority of EABC.

We also did boxplot analyses [18] to compare all the considered algorithms in
terms of consolidated performance as it can efficiently represent the empirical
distribution of data graphically. The boxplots for EABC, ABC and GABC are
shown in Fig. 1. It is clear from this figure that EABC is better than the considered
algorithms as interquartile range and median are comparatively low.

Table 3 shows the performance of EABC in the order of preference of SR, AFE
and ME. Now giving weighted importance to these parameters, performance
indices (PI) are calculated [4]. The values of PI for the EABC, ABC and GABC are
calculated by using following equations:

PI ¼ 1
Np

XNp

i¼1

ðk1a
i
1 þ k2a

i
2 þ k3a

i
3Þ

where

ai
1 ¼

SriTri

;
ai

2 ¼
Mf i

Af i ; if Sri [ 0:

0; if Sri ¼ 0:

(

; and ai
3 ¼

Moi

Aoi

i ¼1; 2; . . .;Np

• Sri = Successful simulations/runs of ith problem.
• Tri = Total simulations of ith problem.
• Mfi = Minimum of average number of function evaluations used to obtain the

required solution of ith problem.
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Table 2 Comparison of the results of test problems

Test Function Algorithm SD ME AFEs SR

f1 ABC 1.66E-06 8.64E-06 16520.09 100
GABC 3.05E-06 5.03E-06 9314.71 100
EABC 2.77E-06 5.86E-06 5623.48 100

f2 ABC 1.03E-01 1.67E-01 199254.48 1
GABC 1.71E-02 1.95E-02 151300.35 46
EABC 4.32E-03 8.79E-03 98278.88 85

f3 ABC 6.83E-06 6.05E-06 1925.52 100
GABC 6.54E-06 5.76E-06 1204.65 100
EABC 6.35E-06 6.18E-06 816.13 100

f4 ABC 7.33E-05 1.76E-04 180578.91 18
GABC 2.15E-05 8.68E-05 90834.53 97
EABC 1.49E-05 8.79E-05 63816.73 100

f5 ABC 1.25E+00 8.32E-01 179015.68 18
GABC 2.97E-02 8.76E-02 101517.9 95
EABC 2.93E-02 8.84E-02 107569.72 92

f6 ABC 2.62E-06 6.75E-06 9163.5 100
GABC 2.45E-06 6.95E-06 5626 100
EABC 2.09E-06 7.30E-06 5285 100

f7 ABC 1.12E+01 8.76E+01 200000 0
GABC 9.77E+00 8.63E+01 200000 0
EABC 9.95E+00 8.76E+01 200000 0

f8 ABC 3.40E+03 1.21E+04 200000 0
GABC 3.31E+03 1.05E+04 200000 0
EABC 3.00E+03 1.03E+04 200000 0

f9 ABC 3.10E-03 1.41E-03 80078.81 82
GABC 2.85E-06 5.25E-06 39423.63 100
EABC 1.61E-03 3.75E-04 50717.76 95

f10 ABC 1.75E-06 7.73E-06 16790.5 100
GABC 1.64E-06 8.04E-06 9349.5 100
EABC 1.32E-06 8.44E-06 8784 100

f11 ABC 2.18E-06 4.97E-07 106142.69 65
GABC 4.38E-15 4.80E-15 3965.99 100
EABC 4.39E-15 4.67E-15 3093.09 100

f12 ABC 6.19E-05 2.15E-05 195783.29 4
GABC 2.98E-14 4.39E-14 48432.57 100
EABC 2.80E-14 4.73E-14 25909.31 100

f13 ABC 2.94E-06 1.95E-03 24185.13 100
GABC 3.03E-06 1.95E-03 4770.87 100
EABC 2.81E-06 1.95E-03 4311.85 100

f14 ABC 5.47E-06 4.66E-06 4883.53 100
GABC 5.88E-06 5.09E-06 2450.53 100
EABC 5.46E-06 4.59E-06 2041.98 100
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• Afi = Average number of function evaluations used to obtain the required
solution of ith problem.

• Moi = Minimum of standard deviation got for the ith problem.
• Aoi = Standard deviation obtained by an algorithm for the ith problem.
• Np = Total number of optimization problems evaluated.
• k1, k2, k3 = weights assigned to the success rate, the average number of function

evaluations and the standard deviation respectively such that k1 ? k2 ? k3 = 1
and 0 B k1, k2, k3 B 1.

Table 3 Outcome of Table 2 TP EABC Vs GABC EABC Vs ABC

f1 + +
f2 + +
f3 + +
f4 + +
f5 – +
f6 + +
f7 – +
f8 + +
f9 – +
f10 + +
f11 + +
f12 + +
f13 + +
f14 + +
Total number of ? sign 11 14

TP Test problems
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To calculate the PIs, equal weights are assigned to two variables while weight
of the remaining variable vary from 0 to 1 as given in [3]. Following are the
resultant cases:

1. k1 ¼ W ; k2 ¼ k3 ¼ 1�W
2 ; 0�W � 1;

2. k2 ¼ W ; k1 ¼ k3 ¼ 1�W
2 ; 0�W � 1;

3. k3 ¼ W ; k1 ¼ k2 ¼ 1�W
2 ; 0�W � 1

The graphs corresponding to each of the cases (1), (2) and (3) for EABC, ABC
and GABC are shown in Fig. 2a–c respectively. In these figures, horizontal axis
represents the weights k1, k2 and k3 and while vertical axis represents the PI.

For case (1), PIs of the considered algorithms are superimposed in Fig. 2a by
giving equal weights to average number of function evaluations and the standard
deviation. It is observed that PI of EABC are higher than the considered algo-
rithms. Similarly for case (2), equal weights are assigned to the success rate and
standard deviation and for case (3), equal weights are assigned to the success rate
and average function evaluations. It is clear from Fig. 2b, c that in these cases also,
the EABC algorithm has better performance than the others.
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Fig. 2 Performance index for test problems; a for case (1), b for case (2) and c for case (3)
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5 Conclusion

In this paper, ABC algorithm is modified through alteration in position update
equation in onlooker bee phase to balance the exploration and exploitation capa-
bilities of ABC. Instead focusing only on the global best bee, we also emphasize
on a random bee with better fitness in the colony and the so obtained modified
ABC is named as Expedited ABC (EABC). To analyze the proposed algorithm, it
is compared to ABC and a recent variant GABC and with the help of experiments
over 14 unbiased benchmark optimization functions, it can be concluded that the
EABC outperforms to the considered algorithms in terms of reliability, efficiency
and accuracy.
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