
A Study on Expressiveness of a Class
of Array Token Petri Nets

T. Kamaraj, D. Lalitha and D. G. Thomas

Abstract Adjunct Array Token Petri Net structure (AATPNS) to generate
rectangular pictures has been defined in Lalitha et al (Indian J. Math. Math. Sci.
8(1):11–19, 2012) 7]. AATPNS with inhibitor arcs generated context free and
context sensitive Kolam Array languages and Tabled 0L/1L languages. In this
paper we study the expressiveness of this model by comparing with some other
interesting array generating grammar devices like Pure 2D context free grammars
with regular control, Regional tile rewriting Grammars, Prusa Grammars and also
comparing with local languages.

Keywords Array token Petri nets � Adjunction � Pure 2D grammars � Regional
tile grammars � Prusa grammars � Local languages

1 Introduction

Since seventies, the study of two dimensional languages generated by Grammars
or recognized by Automata have been found in the theory of formal languages with
the insight of computations in picture processing and pattern recognition [5, 12,
13]. In the quest of syntactic techniques for generation of digital picture patterns, a
number of 2D Grammars have been proposed. Siromoney Matrix grammars [17],

T. Kamaraj (&) � D. Lalitha
Department of Mathematics, Sathyabama University, Chennai 600119, India
e-mail: Kamaraj_mx@yahoo.co.in

D. Lalitha
e-mail: lalkrish_24@yahoo.co.in

D. G. Thomas
Department of Mathematics, Madras Christian College, Chennai 600059, India
e-mail: dgthomasmcc@yahoo.com

M. Pant et al. (eds.), Proceedings of the Third International Conference on Soft
Computing for Problem Solving, Advances in Intelligent Systems and Computing 259,
DOI: 10.1007/978-81-322-1768-8_41, � Springer India 2014

457

Kolam Array Grammars (KAG) [15, 16], Tabled 0L/1L grammars (T0LG/TILG)
[14] are some of the classical formalisms. Pure 2D context free grammars with
regular control (RP2DCFG) [18], Prusa grammars (PG) [11], Regional Tile
Rewriting grammars [10] are some of the recent and more expressive grammars.
Tiling systems [3, 5] is a recognizing device for a ground level class of array
languages REC, which involves the projection of the languages belonging to the
class of local languages (LOC). Mutual relationship between these new formalisms
and also with LOC is analysed in [2].

Recently another picture generating mechanism, Array token Petri Net structure
ATPNS [8], has been evolved from string generating Petri nets [1, 6]. Petri Net [9]
is one of the formal models used for analyzing systems that are concurrent, dis-
tributed and parallel. Tokens are the elements used to simulate the dynamism of
the Petri Net systems. The language generated by the Petri net is set of all feasible
transition sequence in that net. In ATPNS model, the authors have used arrays as
tokens in some of the places as initial configuration called marking and catenation
rules as labels of transitions. The language generated is the set of all arrays created
at final places of the net. This model along with a control feature called inhibitor
arcs generate the same family of languages as generated by KAG, T0LG and
P2DCFG with regular control. To increase the generative capacity of this model,
adjunction rules are introduced and Adjunct Array Token Petri net systems
(AATPNS) [7] is defined. This new model generates Table 1L languages and
strictly included ATPNS family of Languages.

Since AATPNS has been only compared with classical formalisms, we try to
study the comparison of this model with recent generating devices and also with
LOC for the expressiveness with respect to its generating capacity.

This paper is organized in the following manner. In Sect. 2, basic definitions of
various array grammars, Petri Nets and notions of Petri nets pertaining to arrays
have been recalled. In Sect. 3, we recall the definition of adjunct array token Petri
nets, in more generalized form and provide some illustrative examples. In Sect. 4,
we compare this model with various classes of picture languages generated by
recent grammars and also with class LOC, for the understanding of generative
capacity of this model.

2 Preliminaries

The following definitions and notations are mainly from [5, 8, 10, 18].

2.1 Array Grammars

Definition 1 Let J** denotes the set of all arrays (pictures) over the elements of a
finite set J and J++ denotes set of all non empty arrays over J. For l, m C 0, J(l, m)

458 T. Kamaraj et al.

represents the set of arrays of size (l, m). An array (picture) language is a subset of
J**. If p 2 J**, then p(i, j) denotes a pixel in the place of ith row and jth column of
p. pj jcol denotes the number of columns of p and pj jrow denotes the number of rows
of p. A B denotes a column catenation of the array A with array B which is
defined when A and B have same number of rows. A B denotes row catenation
of A with B provided the number of columns of A and B are same. If x 2 J** then
(x)n (resp. (x)m) denotes horizontal (resp. vertical) juxtaposition of m copies of x.

Pure 2D context free grammars (P2DCFG) which make use of only terminal
symbols have been recently studied [18]. Pure 2D context-free grammars, unlike
Siromoney matrix grammars [17], admit rewriting any row/column of pictures with
no priority of columns and rows. Row/column sub-arrays of pictures are rewritten
in parallel by equal length strings and by using only terminal symbols, as in a pure
string grammar.

Definition 2 A pure 2D context-free grammar (P2DCFG) is a 4-tuple
G ¼ ðR;Pc;Pr;M0Þ, where R is a set of symbols, Pc ¼ ftci=1� i�mg,
Pr ¼ ftrj=1� j� ng.

Each tci (1 B i B m), called a column table, is a set of context free rules of the
form a ? a, a 2 R, a 2 R* such that any two rules of the form a ? a, b ? b in
tci, have |a| = |b| where |a| denotes the length of a.

Each trj (1 B j B n), called a row table, is a set of context free rules of the form
c ? cT, c 2 R, c 2 R* such that any two rules of the form c ? cT, d ? dT in trj,
have |c| = |d|.

M0 (R** - {k} is a finite set of axiom arrays.
Derivations are defined as follows. For any two arrays M1, M2, M1) M2

denotes that M2 is obtained from M1 by either rewriting a column of M1 by rules of

a column table tci in Pc or a row of M1 by rules of a row table trj in Pr�)
�

is the
reflexive transitive closure of).

The picture language L(G) generated by G is the set of rectangular picture

arrays {M=M0)
�

M 2 R��, for some M0 2M0}.
The family of picture array languages generated by pure 2D context-free

grammars is denoted by P2DCFL.

Definition 3 A pure 2D context-free grammar with a regular control (RP2DCFG)
is Gc = (G, Lab(G), C), where G is a pure 2D context-free grammar, Lab(G) is a
set of labels of the tables of G and C (Lab(G)* is a regular string language. The

words of Lab(G)* are called control words of G. Derivations M1)
w

M2 in Gc are
done as in G, except that if w 2 Lab(G)* and w ¼ l1l2. . .lm,then the tables of rules
with labels l1; l2. . .lm are successively applied starting from M1 to yield M2. The
picture array language generated by Gc consists of all picture arrays obtained
from the axiom array of Gc with derivations controlled as described above.
(R)P2DCFL denotes the family of all picture array languages generated by pure
2D context-free grammars with a regular control.

The family P2DCFL is strictly included in family RP2DCFL [18].

A Study on Expressiveness of a Class of Array Token Petri Nets 459

Tiling Systems, a recognizing device for the class REC, uses Local languages
as projections. A local language is defined by a set of 2 9 2 arrays (tiles).

Definition 4 Let J be a finite alphabet, h be a finite set of tiles over J [{#} The

local language defined by L ¼ fp 2 Jþþj½½p^�� � Hg where ½½p^�� denotes the set of
all tiles contained in p surrounded by a special symbol # 62 J. The family of all
local languages is denoted by LOC.

Prusa Grammar device admits parallel application of rules so that non terminal
symbols can be substituted with rectangular subpictures simultaneously. This
model has more generative power than context free KAG [11].

Definition 5 Prusa Grammar (PG) is a tuple (J, N, R, S), where J is the finite set
of terminal symbols, disjoint from the set N of non terminal symbols; S 2 N is the
start symbol; and R (N 9 (N [J)++ is the set of rules.

Let G = (J, N, R, S) be a PG. We define a picture language L(G, A) over J for
every A 2 N. The definition is given by the following recursive descriptions:

1. if A ? w is in R, and w 2 R++, then w 2 L(G, A);
2. let A ? w be a production in R, w = (N [R)(m ,n), for some m, n C 1, and pi, j,

with 1 B i B m, 1 B j B n, be pictures such that:

(a) if w(i, j) 2 R, then pi, j = w(i, j);
(b) if w(i, j) 2 N, then pi,j 2 L(G, w(i, j));
(c) if Pk ¼ pk;1 pk;2 … pk;n, for any 1� i�m, 1� j� n, jpi;jjcol ¼
jpiþ1;jjcol and P ¼ P1�P2�. . .�Pm; then P 2 L(G, A).

The set L(G, A) contains exactly the pictures that can be obtained by applying a
finite sequence of rules (1) and (2). The language L(G) generated by grammar G is
denoted as L(G, S).

Tile Grammars (TG) [4] perform an isometric derivation process for which
homogeneous subpictures are replaced with isometric pictures of the local lan-
guage defined by the right part of the rules.

Definition 6 A tile grammar (TG) is a tuple (J, N, S, R), where J is the terminal
alphabet, N is a set of non terminal symbols, S 2 N is the starting symbol, R is a
set of rules. Let A 2 N. There are two kinds of rules:

1. fixed size: A ? t, where t 2 R;
2. variable size: A ? x, x is a set of tiles over N [{#}.

At each step of the derivation, an A-homogeneous sub picture is replaced with
an isometric picture of the local language defined by the right part a of a rule
A ? a, where a admits a strong homogeneous partition. The process terminates
when all non terminals have been eliminated from the current picture.

Regional Tile Grammars (RTG) [10] are the Tile Grammars with specified set
of tiling.

460 T. Kamaraj et al.

Definition 7 A homogeneous partition is regional (HR) iff distinct (not necessarily
adjacent) subdomains have distinct labels. A picture p is regional if it admits a HR
partition. A language is regional if all its pictures are so. A regional tile grammar
(RTG) is a tile grammar (see Definition 6), in which every variable size rule
A ? x is such that LOC(x) is a regional language.

2.2 Petri Nets

Definition 8 Petri Net is one of the mathematical modeling tools for the
description of distributed systems involving concurrency and synchronization. It is
a weighted directed bipartite graph consisting of two kinds of nodes called places
(represented by circles) and transitions (represented by bars). Places represents
conditions and transition represents events. The places from which a directed arc
runs to a transition are called input places of the transition and the places to
which directed arcs run from a transition are called output places. Places in Petri
nets may contain a discrete number of marks called tokens. Any distribution of
tokens over the places will represent a configuration of the net called a marking. In
the abstract sense, a transition of a Petri net may fire if it is enabled; when there
are sufficient tokens in all of its input places.

Definition 9 A Petri net structure is a four tuple C ¼ Q; T ; I;Oh i where Q ¼
fq1; q2; . . .; qng is a finite set of places, n C 0, T = {t1, t2, … , tm} is a finite set of
transitions m� 0, Q \ T ¼ /, I:T ? Q? is the input function from transitions to
bags of places and O:T ? Q? is the output function from transitions to bags of
places.

Definition 10 An inhibitor arc from a place ql to a transition tk has a small circle
in the place of an arrow in regular arcs. This means the transition tk is enabled
only if ql has no tokens in it. In other words a transition is enabled only if all its
regular arc input places have required number of tokens and all its inhibitor arc (if
exists) input places have zero tokens.

2.3 Array Token Petri Nets

In the array generating Petri Net structure, arrays over an alphabet J are used as
tokens in some input places.

Definition 11 Row (resp. column) catenation rules in the form of A�B (resp. A
B) can be associated with a transition t as a label, where A is a m 9 n array in

the input place and B is an array language whose number of columns (resp. rows)
depends on the number of columns (resp. rows) of A. Three types of transitions can
be enabled and fired

A Study on Expressiveness of a Class of Array Token Petri Nets 461

(1) When all the input places of transition t (without label) having the same array
as tokens

– Each input place should have at least the required number of tokens
(arrays)

– Firing t removes arrays from all its input places and moves the array to all
its output places

q2

q1
q3

q2

q1
q3

A

A

A

t

t

(2) When all the input places of transition t have the different arrays as tokens

– The label of t designates one of its input places which has sufficient number
of same arrays as tokens

– Firing t removes arrays from all its input places and moves the array from
the designated input place to all its output places.

q2

q1
q3

A1

A2

q2

q1
q3A1

t(q)
 1

t(q)
 1

(3) When all the input places of transition t (with row or column catenation rule
as label) have the same array as tokens

– Each input place should have at least the required number of tokens
(arrays)

– Firing t removes arrays from all its input places and creates the catenated
array as per the catenation rule, in all its output places

q2

q1
q3

q2

q1
q3A1

t(A B)

t(A B)

A

A

462 T. Kamaraj et al.

In all the three types, firing of a transition t is enabled only if all the input
places corresponding to inhibitor arcs (if exist) does not have any tokens in it.

Definition 12 An Array Token Petri net structure (ATPNS) is a five tuple N ¼
J;C;M0; q;Fh i where J is a given alphabet, C ¼ Q; T ; I; Oh i is a Petri net

structure with tokens as arrays over J, M0 : Q! J��, is the initial marking of the
net, q:T ? L, a mapping from the set of transitions to set of labels of transitions
and F 	 Q, is a finite set of final places.

Definition 13 If P is an ATPNS then the language generated by P is defined as
LðPÞ ¼ fX 2 J��=X is in the place q for some q in F}. Starting with arrays
(tokens) over a given alphabet as initial marking, all possible sequences of
transitions are fired. Set of all arrays created in final places of F is called the
language generated by Petri Net structure.

3 Adjunct Array Token Petri Net Structure

In this section, we recall the notions of adjunct array token Petri net structure [7] in
generalized form and give some examples.

Definition 14 Adjunction is a generalization of catenation. In the row catenation
A�B, the array B is joined to A after the last row. But row adjunction can join the
array B into array A after any row of A. Similarly column adjunction can join the
array B into array A after any column of A. Let A be an m 9 n array in J** called
host array; B , J** be an array language whose members, called adjunct arrays
have fixed number of rows. A row adjunct rule (RAR) joins an adjunct array B into
a host array A in two ways : By post rule denoted by (A, B, arj), array B is
juxtaposed into Array A after jth row and by pre rule denoted by (A, B, brj), array
B is juxtaposed into Array A before jth row. The number of columns of B is same as
the number of columns of A. In the similar notion column adjunct rule (CAR) can
also be defined in two ways : post rule (A, B, acj) and pre rule (A, B, bcj) joining B
into A, after jth column of A and before jth column of A respectively. It is obvious
that a row catenation rule A�B in ATPNS is a post RAR rule (A, B, arm) and
column catenation rule A B is a post CAR rule (A, B, acn). Transitions of a
Petri net structure can also be labeled with row or column adjunct rules.

Definition 15 An Adjunct Array Token Petri Net Structure (AATPNS) is a five
tuple N ¼ J;C;M0; q;Fh i where J is a given alphabet, C ¼ Q; T; I;Oh i is a Petri
net structure with tokens as arrays over J, M0:Q ? J**, is the initial marking of
the net, q:T ? L, a mapping from the set of transitions to set of labels where
catenation rules of the labels are either RAR or CAR and F , Q, is a finite set of
final places.

In AATPNS, the types of transitions which can be enabled and fired are similar
to that of Definition 11 except the type (3) where labels of transitions may be RAR
or CAR rules instead of row or column catenation rules.

A Study on Expressiveness of a Class of Array Token Petri Nets 463

When all the input places of a transition t (with RAR or CAR rule as label) have
the same array as tokens.

Each input place should have at least the required number of tokens (arrays)

– Firing t removes arrays from all its input places and creates the array through
adjunction as per the RAR or CAR rule, in all its output places In all the three
types, firing of a transition t is enabled only if all the input places corresponding
to inhibitor arcs (if exists) does not have any tokens in it.

Definition 16 If P is an AATPNS then the language generated by P is defined as
L(P) = {X 2 J**/X is in the place q for some q in F}. Starting with arrays (tokens)
over a given alphabet as initial marking, all possible sequences of transitions are
fired. Set of all arrays created in final places F is called the language generated by
AATPNS Petri Net structure.

Example 1 Consider the Adjunct Array token Petri net structure P2 ¼
J;C;M0; q;Fh i where J = {0, 1}, C = (Q, T, I, O), Q = {q1, q2}, T = {t1, t2},

I(t1) = {q1}, I(t2) = {q2}, O(t1) = {q2}, O(t2) = {q1}, M0 is the initial marking:
the array S is in q1 and there is no array in q2, q(t1) = (A, B1, acn) and
q(t2) = (A, B2, arm) and F = {q1}.

Where S ¼ 1 0
0 1

, and B1 = (0)m and B2 = (0)n-11. Initially t1 is the only

enabled transition. Firing of t1 adjoins a column of 0’s after the last column of
array S and puts the derived array in q2, making t2 enabled. Firing t2 adjoins a row
of 0’s ending with 1 after the last row of the array in q2 and puts the derived array
in q1. When the transitions t1, t2 fire the array that reaches the output place q1 is
shown as

1 0
0 1

)
t1 1 0 0

0 1 0
)
t2

1 0 0
0 1 0
0 0 1

. Firing the sequence (t1t2)2 generates the

output array as

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. The language generated by Petri net is set of square

pictures over {0, 1} with 1’s in the main diagonal and other elements are 0’s
(Fig. 1).

Example 2 Consider the Adjunct Array token Petri net structure P1 ¼
J;C;M0; q;Fh i where J = {a}, C = (Q, T, I, O), Q = {q1, q2}, T = {t1, t2},

I(t1) = {q1}, I(t2) = {q2}, O(t1) = {q2}, O(t2) = {q1}, M0 is the initial marking:
the array S is in q1 and there is no array in q2, q(t1) = (A, B1, acn) and
q(t2) = (A, B2, arm) and F = {q1}.

Where S = a, B1 = (a)m, B2 = (a)n. On firing the sequence (t1t2)n n C 0 set of
all square pictures over a is generated (Fig. 2).

Example 3 Consider the Adjunct Array token Petri net structure P3 ¼
J;C;M0; q;Fh i where J = {a}, the Petri net structure is C = (Q, T, I, O) with

464 T. Kamaraj et al.

Q = {p1, p2, p3, p4, p5, p6, p7}, T = {t1, t2, t3, t4, t5, t6}, I(t1) = {p1, p2},
I(t2) = {p3}, I(t3) = {p4}, I(t4) = {p1, p5}, I(t5) = {p5, p6}, I(t6) = {p1, p2},
O(t1) = {p3}, O(t2) = {p4}, O(t3) = {p2, p5}, O(t4) = {p6}, O(t5) = {p1},
O(t6) = {p7, p2}.

q:T ? L is defined as follows: q(t1) = p2, q(t2) = (A, B1, acn),
q(t3) = (A, B2, arm), q(t4) = k, q(t5) = k, q(t6) = k, q(t7) = k, F = {p7}. The

Petri net graph is given in Fig. 3. The arrays used are S ¼ a a
a a

, B1 = (aa)m,

B2 ¼
a
a

� �n

.

To start with only t1 is enabled. Firing of sequence of transitions t1t2t3 results in
a square of a’s of size 4 9 4 in p2 and p5. At this stage both t6 and t4 are enabled.
Firing the sequence t1t2t3t6 puts a square of size 4 9 4 in p7. Firing t4 pushes the
array to p6, emptying p5. In this position t5 is enabled. Firing t5 puts two copies of
same array in p1. Since at this stage there are two tokens in p1, the sequence t1t2t3
has to fire two times to empty p1. The firing of sequence t4t5(t1t2t3)2t6 puts a square
of a’s of size 8 9 8 in p7. The inhibitor input p1 make sure that a square of size
6 9 6 does not reach p7. This AATPNS generates the language of squares of a’s of
size 2n, n C 1.

Example 4 The AATPNS P4 ¼ J;C;M0; q;Fh i with J = {a, b}, F = {p} given
in Fig. 4, where

S 2 a b b a b b b b b a a b a a a a
b b b b0 b b b b0 a a a a0 a a a a

� �
;

B1 = (aa)m, B2 = (a)n, B3 = (bb)m, B4 = (b)n generates the language of pictures
composed by symmetrical L shaped strings of same character over the alphabet
J = {a, b}.

1t (A,B , ac)n1

2 2t (A,B , ar)m

q
1

q
2

S

Fig. 1 Adjunct array token
Petri net generating unit
matrix pictures

1t (A,B , ac)n1

2 2t (A,B , ar)m

q
1

q
2

S

Fig. 2 AATPNS to generate
square pictures of a’s

A Study on Expressiveness of a Class of Array Token Petri Nets 465

A typical picture in this language is

a b a a a a b a
b b a a a a b b
a a a a a a a a
a a a a a a a a

4 Comparative Results

In the following results LðXÞ denotes the family of all languages generated by X.

Theorem 1 LðRP2DCFGÞ 	 LðAATPNSÞ

Proof In [8] the authors have proved that LðRP2DCFGÞ � LðATPNSÞ. By the
result LðATPNSÞ 	 LðAATPNSÞ [7], we have LðRP2DCFGÞ � LðAATPNSÞ. For

p
1

p
3

p
4

p
2

p
7

p
6

t
6

t
5

t
4

p
5

2 1t (A,B , ac)n

3 2t (A,B , ar)m

t (p)
21

S

2

S

S

Fig. 3 AATPNS to generate square picture of a’s of size 2n

p
1

p
2

p
3

p
5

p
4

1t (A,B , ac)n/21

2 2t (A,B , ar)m
4 4t (A,B , ar)m

3t (A,B , ac)n/23

t
5

t
6

t
7

S

p

Fig. 4 AATPNS to generate symmetric L shaped strings

466 T. Kamaraj et al.

strict inclusion the language generated by AATPNS in Example 3 cannot be
generated by any RP2DCFG [2].

Theorem 2 LðAATPNSÞ and LðRTGÞ are incomparable but not disjoint.

Proof The language of squares over a, in Example 2, can be generated by an RTG
G ¼ J;N; S;Rh i, where N ¼ fS;A;B;A0;B0;Cg, J = {a} and R consists of vari-
able size rules:

S!

#

S S A

S S A

B B C

#

2
6666664

3
7777775

2
6666664

3
7777775
; A!

#

A

A0

#

2
6664

3
7775

2
6664

3
7775;

B!
#

B B0

#

2
64

3
75

2
64

3
75

Fixed size rules as S;A;A0;B;B0 ! a
Therefore LðAATPNSÞ and LðRTGÞ are non disjoint.

The language L+b of pictures consists of a horizontal and a vertical string of b’s
(not in the border) in the background of a’s can be generated by RTG [10]. A
typical member of L+b is given in Fig. 5. This language cannot be generated by any
AATPNS, as the number of transitions in the net cannot depend on the size of the
array. In an m 9 n array of a’s a column of b’s can be adjuncted in n - 1 ways
and a row of b’s can be adjuncted in m - 1 ways. To insert both a column of b’s
and a row of b’s the net requires (m - 1)(n - 1) transitions with corresponding
adjunction rules. Hence it is not feasible to generate these arrays using AATPNS.

The language in Example 4 cannot be generated by any RTG grammar G [2].

Theorem 3 LðAATPNSÞ and LðPGÞ are incomparable but not disjoint.

Proof The language of squares over a, in Example 2 can also be generated by a
Prusa Grammar [11]. Again the language L+b in the proof of Theorem 2 can also be
generated by a PG [11]. Since LðPGÞ 	 LðRTGÞ [10], the language in Example 4
cannot be generated by Prusa grammar also.

Fig. 5 A picture in the
language L þbf g

A Study on Expressiveness of a Class of Array Token Petri Nets 467

Theorem 4 LðAATPNSÞ and LOC are incomparable but not disjoint.

Proof The language of squares over a, in Example 2 is not a local language [5]. In
[2] the authors have proved that the language Ldiag of pictures containing arbitrary
number of diagonals of 1 (no single 1 are admitted at corners) that are separated by
at least one diagonal of 0’s is in LOC. But Ldiag cannot be generated by any

AATPNS. The only 2 9 2 array in the language is
0 0
0 0

� �
. But there are four

3 9 3 arrays with the property belonging to the language. To generate four 3 9 3
arrays from the start array we need 8 transitions with different array languages
involved in the labels of the transitions. Hence it is impossible to construct a net
with finite number of transitions. Finally the language of square pictures over
{0, 1} with 1’s in the main diagonal and other elements are 0’s in LOC [5] and it
can also be generated by an AATPNS given in Example 1.

5 Conclusion

In this work, we consider Adjunct array token Petri net structure, recently intro-
duced by Lalitha et al. [7]. We compare this model with recent context free array
grammars and the class LOC. The future works concern the study of hierarchy of
AATPNS with the other existing generating devices. The relationship of AATPNS
with context free and context sensitive controlled pure two dimensional grammars
is to be investigated.

References

1. Baker, H.G.: Petri Net Languages Computation Structures Group Memo 68, Project MAC,
MIT, Cambridge, Massachusetts (1972)

2. Bersani, M.M., Frigeri, A., Cherubini, A.: On some classes of 2D languages and theire
relations. In: IWCIA, pp. 222–234, (2011)

3. Cherubini, A., Crespi-Reghizzi, S., Pradella, M., Peitro, P.S.: Picture languages: Tiling
systems versus tile rewriting grammars. Theor. Comput. Sci. 356, 90–103 (2006)

4. Crespi-Reghizzi, S., Pradella, M.: Tile rewriting grammars and picture languages. Theor.
Comput. Sci. 340, 257–272 (2005)

5. Giammarresi, D., Restivo, A.: Two-dimensional langauges. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of formal languages. vol. 3, pp. 215–267. Springer Verlag, (1997)

6. Hack, M.: Petri net languages. Computation Structures Group Memo 124, Project MAC, MIT
(1975)

7. Lalitha, D., Rangarajan, K., Thomas, D.G.: Adjunct array images using petri nets. Indian J.
Math. Math. Sci. 8(1), 11–19 (2012)

8. Lalitha, D., Rangarajan, K., Thomas, D.G.: Rectangular arrays and petri nets. In: IWCIA,
pp. 166–180, (2012)

9. Peterson, J.L.: Petri Net Theory and Modeling of Systems. Prentice Hall Inc, Englewood
Cliffs (1981)

468 T. Kamaraj et al.

10. Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture grammars.
Inf. Comput. 209, 1246–1267 (2011)

11. Prusa, D.: Two-dimensional Languages. Ph.D. Thesis, (2004)
12. Rosenfeld, A., Siromoney, R.: Picture languages—a survey. Languages of Design 1(3),

229–245 (1993)
13. Siromoney, R.: Advances in array languages. In: Proceedings of the 3rd international

wrokshop on graph grammars and their application to computer science. LNCS, Springer,
vol. 291, pp. 549–563 (1987)

14. Siromoney, R., Siromoney, G.: Extended controlled table L-arrays. Inf. Control 35, 119–138
(1977)

15. Siromoney, G., Siromoney, R., Kamala, K.: Array grammars and kolam. Comput. Graph.
Image Process. 3(1), 63–82 (1974)

16. Siromoney, G., Siromoney, R., Kamala, K.: Picture languages with array rewriting rules. Inf.
Control 22, 447–470 (1973)

17. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and picture
languages. Comput. Graph. Image Process. 1, 284–307 (1972)

18. Subramanian, K.G., Rosihan Ali, M., Geethalakshmi, M., Nagar, A.K.: Pure 2D picture
grammars and languages. Discrete Appl. Math. 157(16), 3401–3411 (2009)

A Study on Expressiveness of a Class of Array Token Petri Nets 469

	41 A Study on Expressiveness of a Class of Array Token Petri Nets
	Abstract
	1…Introduction
	2…Preliminaries
	2.1 Array Grammars
	2.2 Petri Nets
	2.3 Array Token Petri Nets

	3…Adjunct Array Token Petri Net Structure
	4…Comparative Results
	5…Conclusion
	References

