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Abstract In this paper reconstruction algorithm of convex binary image in
discrete tomography made efficient by implementing branch and bound method.
We focus on diagonal and anti-diagonal (dad) projections and comparison done
with the conventional horizontal and vertical (hv) projections. It was shown that
proposed strategy is computationally strong and gives fast reconstruction.
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1 Introduction

Reconstruction of binary matrices from few projections is the field of study in
discrete tomography. We can provide information about any unknown binary
images from the projections in few directions and some prior information about the
object such as convexity and connectivity may give close approximate recon-
struction result of unknown objects [1–3]. Reconstruction of binary matrix were
based on horizontal and vertical projections and using branch and bound method it
was first implemented by Miklós and Csongor in [4] and discussed that constructing
of tree exponential grow if the size of matrix increase but work well for matrix of
order less than 10. In present approach considering different view of binary images,
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restricting to only two orthogonal projections anti-diagonally and diagonally
(Detail description given for anti-diagonal and diagonal characteristics can be find
in [5]) shown in Fig. 1. Let PðD;AÞ is the given projection set such that,

A ¼ 1 1 2 1 4 4 7 4 4 1 2 1 1f g
D ¼ 1 1 2 1 4 4 7 4 4 1 2 1 1f g

where A represents the anti-diagonal vector sum, and D represents the diagonal
vector sum. If solution exists, then we can reconstruct the binary matrix from the
given two projection vectors shown in Fig. 1. The condition for existence of the
solution given in [5] for an m� n binary matrix, where ak and dk are number of 1’s
in anti-diagonal and diagonal projection are as follows,

•
Pmþn�1

k¼1 ak ¼
Pmþn�1

k¼1 dk and

•
Pmþn�1

k¼ð2l�1Þ ak ¼
Pmþn�1

k¼ð2l�1Þ dk and
Pmþn�1

k¼2l ak ¼
Pmþn�1

k¼2k dk :

for l ¼ 1; . . .mþ n� 1:

If suppose there exist exactly single 1 in every row (column), then the possibility
to place single one in any row (column) can be perform by n! number of ways and
for simplicity if the matrix is square then there will be n!� n! ways to place a one in
binary matrix. In our approach, if the matrix is viewed diagonally and anti-diag-
onally then placing of 1’s accordingly in anti-diagonal (diagonals) sums, since
diagonal and anti-diagonal are not intersect each other as in case of horizontal and
vertically, thus we can separate those intersecting diagonals with anti-diagonal and
observed that odd and even indexing of anti-diagonals (diagonal), then only odd
index diagonals (anti-diagonal) will have a single one while the even diagonals
(anti-diagonal) will have no 1’s. Thus, the total possibility to place single 1’s in
every row (Column) will be n! which is nothing but the main anti-diagonal
(diagonal) and can be considered as best case for anti-diagonal (diagonal). Hence,
the total number possibility having exactly single one’s in every anti-diagonal
(diagonal) will have n!ððn� 1Þ!Þ:
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Fig. 1 Binary matrix and
projection set in anti-diagonal
and diagonal directions
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1.1 Dad-Convex Matrix

A binary matrix with respect to anti-diagonal and diagonal projection will called as
ad-convex if there are no 0’s between the sequence of 1’s in all the anti-diagonal
sums as shown in Fig. 2b, similarly d-convex if there are no 0’s between the
sequence 1’s in every diagonals as shown in Fig. 2c. A binary matrix will be dad-
convex if it is a-convex as well as d-convex as shown in Fig. 2a otherwise non-
convex shown in Fig. 2d.

1.2 Branch and Bound Method

The Branch and Bound is a convex optimization method for global optimization,
and is not always fast (indeed, are often slow). The method is based on the
observation that the enumeration of integer solutions has a tree structure. The main
idea in branch and bound is to restricting unbound growth of tree by calculating

(a) (b)

(c)  (d)

Fig. 2 a Dad-convex image, b a-convex image, c d-convex image, and d non-convex image
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bound at every branching point and at intermediate node point the current version
of the branch and bound tree will be available and consists of nodes labeled with
their bounding values.

The node selection policy governs how to choose the next node for expansion.
There are three popular and basic policies for node selection:

• Best-first or global-best node selection: in this process best bounding value of
node is selected for maximizing while for minimizing select the lowest
bounding value of nodes.

• Depth-first: selection from the current set of nodes i.e. first anti-diagonal sums
and go to one step deeper into the branch and bound tree after each iteration by
checking the corresponding diagonal sums. Hence, it reaches the last nodes
quickly. If it cannot proceed to any deeper into the tree, back track one level and
choose another child node from that level.

• Breadth-first: expanding nodes in the same order in which they were created.

2 Method of Building Tree

Building tree is done by two separate odd index Fig. 3a binary matrix and even
index Fig. 3b binary matrix. For simplicity, square odd order matrix considered.

The development of tree is started with anti-diagonal line sum and the corre-
sponding intersecting diagonal line sums, complying with the dad-convexity. If
any of the corresponding diagonal sum and dad-convexity properties are not
conflicting, then that sub tree will be expanded further, up to leaves of the tree or
till diagonal sums and dad-convexity matches else the sub tree will be cut out
narrowing the tree. All possible solutions will be obtained upon reaching to the
leaves of the tree. The leaves node of the tree will represent the number of
solutions.

(a) (b)Fig. 3 Building of two tree
for anti-diagonal and
diagonal projection a odd–
odd indexing, and b even–
even indexing
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3 Reconstruction Strategy

The basic idea for constructing the tree will be started with the very first contents
of the anti-diagonal sums of a binary matrix. If at any point tree construction is not
possible that some of the diagonal sums or the dad-convexity condition may not
satisfy, hence these sub trees will be cut out, narrowing the solution. Whenever we
reached to the leaf node we get a solution.

Consider a 7� 7 binary matrix with anti-diagonal sums, red and black color
indicating the intersecting diagonal with the corresponding anti-diagonal. Let the
anti-diagonal sums is given by

A ¼ 1 1 2 1 4 4 7 4 4 1 2 1 1½ �

and diagonal sums

D ¼ 1 1 2 1 4 4 7 4 4 1 2 1 1½ �

Separate all anti-diagonal and diagonal sums into even and odd indexing as
follows

Aodd ¼ 1 2 4 7 4 2 1½ �; Aeven ¼ ½ 1 1 4 4 1 1 �;

Similarly,

Dodd ¼ ½ 1 2 4 7 4 2 1 �; Deven ¼ ½ 1 1 4 4 1 1 �;

Now check for consistency or existence of the solutions
X

A ¼ 33 ¼
X

D also
X

Aodd ¼ 21 ¼
X

Dodd and
X

Aeven ¼ 12

¼
X

Deven

Starting with the first anti-diagonal sums Aoddð1Þ ¼ 1 and placed in top most
block of odd–odd index of Fig. 3a, next for Aoddð2Þ ¼ 2 and the available positions
are 3 so we can place two 1’s in three places by ðPn � k þ 1Þ way for the convex
sums, while for the non convex there will be CPn

k possibility to place 1’s where
ðPn ¼ f1; 2; . . .n� 1; n; n� 1; . . .2; 1gÞ is a set containing the number of pixel in
diagonally or anti-diagonally. The tree will be expanded for 110 and 011. The
corresponding diagonal sums matches up to Aoddð4Þ ¼ 7, when Aoddð5Þ ¼ 4, the
diagonal sums became 1345311 which is out of bound to the diagonal sums
1247421, hence tree will not expanded from this node and this node will be
pruned. In the last Aoddð7Þ ¼ 1, we get four possible matches with the corre-
sponding sums, hence the four different solution as shown in Fig. 4. In the similar
manner we will build the tree for the even anti-diagonal and intersecting diagonal
sums showing in Fig. 5a and 5b.

In all Figs. 4, 5a and 5b, red box indicating not matching with the diagonal sum,
while green box matches with the diagonal sum and represent the possible solu-
tion. Thus, we get six possible solution of the given projection set.
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4 Computational Results

4.1 Unique Solution

If the anti-diagonal and diagonal vector sums are consistent then it is possible to
reconstruct unique binary image [6] and from the experiments it was verified that,
branch and bound method give fast solution. If we consider the following anti-
diagonal and diagonal vector sum

A ¼ ½ 1 2 1 2 1 2 3 2 5 1 0 1

1 1 0 5 2 3 2 1 2 1 2 1 �

1

011 110

1111001111 1111001111

1111111 1111111 1111111 1111111

1111001111 1111001111 1111001111 1111001111

110 011

021 120

1

01321 11320 02311 12310

1124321 1224311 1134221 1234211

1135431 1235421 1235421 1335421 1145331 1245321 1245321 1345311

110 011

1236521 12365211246421 1246421

110 011 110 011

1246421 12464211256321 1256321

1 1 1

12474211247421 12474211247421

Fig. 4 First solution odd–odd indexed of anti-diagonal and diagonal sums
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D ¼ ½ 1 2 1 2 1 2 3 2 5 1 0 1

1 1 0 5 2 3 2 1 2 1 2 1 �

We get the following unique solution shown in Fig. 6.

4.2 Other Solutions

There are possibilities to get many solutions of same given projections. It is due to
presence of switching elements presents and we follow the dad-convexity condi-
tion then we get many valid solution of the same anti-diagonal and diagonal vector

10

1000 0100 0010 0001

1100 0200 0110 0101

111100 011110 001111

113100 013110 003111

011110 001111

224200 124210 114211

111100 011110 001111

114211 014221 004222

1000 0100 0010 0001 1000 0100 0010 0001

124211 115211 114311 114221 124211 115211 114311 114221

01 10

115311114411

111100

Fig. 5a Second solution for even index of anti-diagonal and diagonal
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sums as shown in Fig. 7a–d, if we are not following the convexity condition then
we get more solution from Sect. 3, shown in Fig. 7e–i.

4.3 Comparison with Horizontal and Vertical Projections

Experiment done on various synthetic binary images and compared our compu-
tational result with the hv-convex images [4]. It was observed that execution time
and number of nodes increases exponentially in the tree in case of hv-convex
images, while in case of dad-convex, execution time is drastically decreases,
although the height of tree is more as compare to hv-convex images.

01

1000 0100 0010 0001

1010 0110 0020 0011

111100 011110 001111

111300 011310 001311

111100 011110 001111

222400 122410 112411

111100 011110 001111

112411 012421 002422

1000 0100 0010 0001 1000 0100 0010 0001

122411 113411 112511 112421 122411 113411 112511 112421

01 10

113511 114411

Fig. 5b Third solution for even indexing of diagonals and anti-diagonals
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Consider an example, the row and column sum of a binary image as
R ¼ ½ 2 4 4 4 2 �, C ¼ ½ 2 4 4 4 2 �, than we get four different solu-
tion with an average of 38 nodes of all in Fig. 8.

Since the above binary images are hv-convex as well as dad-convex, if we
reconstruct using our approach, unique reconstruction is possible for all images as
shown in Fig. 8, an in the tree 8 nodes for Fig. 8a, 7 nodes for Fig. 8b, 6 nodes for
Fig. 8c and 7 nodes for Fig. 8d respectively are appeared.

For comparison purpose the proposed strategy and method given in [4]. We
have created a database of more than 200 images of various sizes of 5� 5 to
30� 30, having different ratio of 1’s against 0’s in every images and varies from
30, 60 and 80 %. Programs were developed in MATLAB 2009, and executed on
AMD (Phenom) II Quad Core with 4 GB RAM.

Fig. 6 Unique reconstruction from the given anti-diagonal and diagonal sums

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 7 Other possible solution of a due to switching, b–d with dad-convex and from e–i without
dad-convexity
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Tables 1, 2, 3, 4, and 5, represents comparison, on the basis of the execution
time of hv-convex and dad-convex, number of node exist in the tree and the
number of possible solution exists for the binary image consistent data.

Table 1 Comparison of 7� 7 binary images

1’s (%) Avg. time (s) Avg. solution Avg. nodes

hv dad hv dad hv dad

30 1.0205 0.4644 1.5 2 84.5 13.84
60 1.0917 0.5023 1.3 1.3 109 11.33
80 0.5416 0.5108 1.3 1.7 61 10

Table 2 Comparison of 11� 11 binary images

1’s (%) Avg. time (s) Solution Nodes

hv dad hv dad hv dad

30 24.1593 1.6065 1.6 3 755.4 32
60 22.36 1.3198 1.4 1.2 1,377 58
80 2.3462 0.7129 1.2 1.8 284 30

Table 3 Comparison of 15� 15 binary images

1’s (%) Avg. time (s) Solution Nodes

hv dad hv dad hv dad

30 146.32 12.788 2 10 3,360 148.5
60 665.473 8.0052 1 1 18,561 176
80 124.6752 6.0142 4 1 15,632 128

Table 4 Comparison of 21� 21 binary images

1’s (%) Avg. time (s) Solution Nodes

hv dad hv dad hv dad

30 245.32 42.365 4 1 42,532 253
60 186.423 14.436 1 1 36,452 187
80 145.471 5.146 1 1 25,732 145

(a) (b) (c) (d)

Fig. 8 Four solutions for the given R ¼ 2 4 4 4 2½ � and C ¼ 2 4 4 4 2½ � sums
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5 Conclusions

Result obtained and displayed in Tables 1, 2, 3, and 4, are clearly indicating that
the proposed method is better in execution time, number of nodes presented in tree
as compare to horizontal and vertical approach given in [4].

We have implemented our approach for the reconstruction of binary images
through branch and bound method using only two orthogonal projections in dif-
ferent directions. Although the branch and bound method is comparatively slow
converges rate comparing to other optimization methods. For large size of the
binary images it is not feasible for hv-convex method of solutions, while it works
well for dad-convex up to 50� 50 order of matrices.

This reconstruction method can be applied for in crystalline tomography, data
hiding and security by using the coding and decoding of the transmission data for
which further research is in progress.
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