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Abstract This paper proposes an auto-associative Neural Network pattern that
has been utilized for sky-screen signal recognition. The AANN mode has been
prepared in VC++ platform. Compared to the level signal recognition, the rec-
ognition rate can be increased by 3 % using auto-associative neural network with
30 mm caliber projectiles at a frequency of 7,500 rounds/min for 10 s duration in
the sky-screen-repeating projectile test, the accuracy and reliability of the system
was fully verified.
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1 Introduction

The sky screen is a kind of system that was widely used to measure the velocity of
flying projectile in ranger. The flying projectile that goes through the screen
outputs a trigger digital pulse signal where its front edge indicates the instant of
projectile nose trigging and back edge indicates the instant of projectile base
trigging, the duration of pulse indicates the time of flying through the screen [1, 2].
Some kinds of methods suppressed non-projectile signals that were given in Refs.
[3–5]. However, those methods can only work at the case that shock wave and
flying insects exist independently. Based on the above analysis, Hopfield neural
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network pattern recognition methods have been proposed in this paper. A pattern
decision by the memory of their closest signal samples of typical learning estab-
lished memory. Many advantages are available to deal with some very complex
environmental information, blurred background knowledge, unclear rules of
inference problems, and allow a greater sample defects and aberrations.

In this paper, several typical projectile signals were identified from sky-screen
acquisition at the shooting range scene. Recognition rate and the error rate are
calculated as follows [6]:

Recognition rate = (number of identified signal/Theoretical valid signal
number) 9 100 %

Error rate = (number of misidentified signals/Theoretical valid signal
number) 9 100 %

2 Hopfield Associative Neural Network

2.1 Discrete Hopfield Network Theory

Hopfield network is divided into two types: discrete and continuous Hopfield
network [7]. In this paper, the application of discrete Hopfield neural network
(DHNN) is a discrete-time system. The basic structure of discrete Hopfield net-
work is given in Fig. 1, the network consists of n units, N1;N2; . . .;Nn�1;Nn

denotes n units, this neural network is basically fed forward a layered neural
network that has same number of nodes in the input layer and the output layer, the
transfer characteristic function is f1; f2; . . .; fn and the threshold is h1; h2; . . .; hn.
For discrete Hopfield network, generally, all nodes select the same transfer
function, which is the sign function, that is [8]:

f1ðxÞ ¼ f2ðxÞ ¼ � � � ¼ fnðxÞ ¼ sgnðxÞ ð1Þ

all transfer function is equal to 0 as:

h1 ¼ h2 ¼ � � � ¼ hn ¼ 0 ð2Þ

meanwhile, x ¼ ðx1; x2; . . .; xnÞ; x 2 f�1;þ1gn, x is actually the computing inputs
layer; y ¼ ðy1; y2; . . .; ynÞ; y 2 f�1;þ1gn, y is actually the computing output
layer; VðtÞ ¼ ðV1ðtÞ;V2ðtÞ; . . .;VnðtÞÞ;VðtÞ 2 f�1;þ1gn is the status of network
at time t, wherein t 2 f0; 1; 2; . . .g is variable of discrete time; where wij is con-
nection weights from Ni to Nj, since Hopfield network is symmetrical that:
wij ¼ wji; i; j 2 1; 2; . . .; nf g.

All n nodes-associated connection strength in the network expressed by matrix
W, and W is n 9 n matrix.

The figure shows the structure of discrete Hopfield network in layer feedback
network that can handle bipolar discrete data (input x [ {-1, +1}). When the
network is trained, the whole operation is a process of repeated feedback. If the
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network is stable, then, with the number of times the feedback operation, the
network status changes are reduced until the reach of steady state or no longer
changes. In this case, the output of the network stable output can be obtained. The
formula is expressed as follows:

vjð0Þ ¼ xj

vjðt þ 1Þ ¼ fj
Pn

i¼1
wijviðtÞ � hj

� �
8
<

:
ð3Þ

fj was determined by formula (1). After a certain time t from the state network with
no change, that is, V (t ? 1) = V (t), then the output is:

y ¼ V tð Þ ð4Þ

Asynchronous (serial) pattern. Status update based on formula (3) of a neuron
Nj at a time t, the state of j - 1 remaining neurons keeping unchanged,

Fig. 1 Neural network
program flowchart

Using Auto-Associative Neural Networks for Signal Recognition Technology 73



Vjðt þ 1Þ ¼ sgn
Xn

i¼1

wijvjðtÞ
 !

: ð5Þ

To other neurons:

Viðt þ 1Þ ¼ ViðtÞ i 2 1; 2; . . .nf g; i 6¼ j: ð6Þ

Order update is defined by the change in accordance with formula (5) if the
order selected according to a deterministic, random update is called the selected-
based neurons according to the preset probability.

Synchronous (parallel) pattern. The state update of some neurons according
to formula (3) at any time t, in which an important special case is at certain time,
while the state of all the neurons changing in accordance with formula (3), as
Vjðt þ 1Þ ¼ sgn

Pn
i¼1 wijviðtÞ

� �
; j ¼ 1; 2; . . .nf g can be written:

V t þ 1ð Þ ¼ sgn V tð Þ �Wð Þ: ð7Þ

If the network has a limited period of time at any initial state x(0) from t = 0,
the network is called stable after the nerve network status with no change from the
moment,

Vðt þ DtÞ ¼ VðtÞ; Dt [ 0 ð8Þ

3 Application of Hopfield Network for Typical Projectile
Signal

3.1 Extraction of Pattern Feature

The main purpose of feature extraction is characterized as centralized pattern
information with differences of significant classification. Another purpose is to
minimize the data sets, to improve the recognition efficiency, and to reduce the
amount of calculation. Feature extraction and selection is very important.

According to the characteristics of the collected signal sky target, we use one-
dimensional moment feature extraction method. One-dimensional moment feature
is dominated and generated by one-dimensional pattern sequence. We define finite

pattern sequence fxðiÞj ; i ¼ 1; 2; . . .; c; j ¼ 1; 2; . . .NðiÞg r-order moments and
central moments, respectively [9]

Ci
r ¼ E½xðiÞr� � 1

NðiÞ

XNðiÞ

j¼1

xðiÞrj i ¼ 1; 2; . . .; c ð9Þ
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Di
r ¼ E xðiÞ � �xðiÞ

� �rh i
� 1

NðiÞ

XNðiÞ

j¼1

xðiÞj � �xðiÞj

� �r
i ¼ 1; 2; . . .; c ð10Þ

where �xðiÞ is the mean vector pattern sequence. Therefore, the usual moment
feature may be:

1. Mean-variance:

mðiÞ ¼ E ðxðiÞÞ
h i

� 1

NðiÞ

XNðiÞ

j¼1

xðiÞj i ¼ 1; 2; . . .; c ð11Þ

2. Variance:

rðiÞ ¼ E ðxðiÞ � �xðiÞÞ2
h i

� 1

NðiÞ

XNðiÞ

j¼1

ðxðiÞj � �xðiÞj Þ
2 i ¼ 1; 2; . . .; c ð12Þ

3. Partial odd:

skðiÞ ¼ E½ðxðiÞ � �xðiÞÞ3�
rðiÞ3

� 1

NðiÞ

XNðiÞ

j¼1

xðiÞj � �xðiÞj

rðiÞ

 !3

i ¼ 1; 2; . . .; c ð13Þ

4. Kurtosis:

kuðiÞ ¼ E½ðxðiÞ � �xðiÞÞ4�
rðiÞ4

� 3 � 1

NðiÞ

XNðiÞ

j¼1

xðiÞj � �xðiÞj

rðiÞ

 !7

�3 i ¼ 1; 2; . . .; c: ð14Þ

In general, the pattern reflects the pattern cluster centers by the mean charac-
teristics; patterns around the degree of deviation by the mean vector variance; and
sample distribution shape information was given by partial odd and kurtosis.
Partial odd is portrayed as the asymmetric degree on the sample mean vector
pattern. sk [ 0 indicates pattern-right, sk \ 0 indicates pattern-left; while kurtosis
reflects the peak flatness of pattern sample.

In normal subject, ku [ 0 indicates peak distribution than the Gaussian dis-
tribution pattern, ku \ 0 indicates peak distribution pattern below the Gaussian
distribution.

3.2 Associative Memory Algorithm for Discrete Hopfield
Neural Networks

The following is a use of a Hebb rule, according to the discrete Hopfield asyn-
chronous update algorithm steps:
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1. Initialize the weights, set w = [0].
2. Input p sample pattern of x1; x2; . . .; xp to network, determine the network

weights.
3. Initialize unknown input pattern xl; xjð0Þ ¼ xl

j; 1� j� n, where xj is the
number of j in the input pattern of the xj 2 �1;þ1f g:

4. Iteration until convergence xjðt þ 1Þ ¼ sgn½
Pn

i¼1
WijxiðtÞ� 1� j� n, where

xjðtÞis the output state at time t and neuron j.
5. When xjðt þ 1Þ ¼ xjðtÞ is steady-state output, 1� j� n, the steady-state

output indicates its network best match with unknown input pattern.

3.3 Simulation and Application for Typical Signal of Sky
Screens

Pattern neurons determine and feature extraction. Hopfield network memory
capacity is limited according to the training by Hebb rule, when the pattern vector
is orthogonal vectors, the network pattern is equal to the number of stable storage
of the number of neurons in the network are all n. Based on sky screens test firing
the collected data, select the penetrator signal, using 16 neurons nodes. Ten
training samples and the test samples were selected.

Sky-screen data analyzed in this paper was collected through experiment of rifle
in field, the sampling frequency (1 MHz), SNR C 6 dB. All signals data saved in
computer with text pattern. Using Matlab to obtain one-dimensional feature, vector
extracted moments was shown in Table 1.

Pattern features corresponding binary vector. Using cluster encoding

x1 ¼ 1;�1;�1;�1; 1;�1;�1;�1; 1;�1;�1;�1; 1;�1;�1;�1;ð ÞT

x2 ¼ �1; 1;�1;�1; �1; 1;�1;�1; �1; 1;�1;�1; �1; 1;�1;�1ð ÞT

x3 ¼ �1;�1; 1;�1; �1;�1; 1;�1; �1;�1; 1;�1; �1;�1; 1;�1ð ÞT

As the network composed of a layer of saturated linear neurons, neurons with
an output connected to the input through the weight matrix, the neuron output is
specified as the initial output vector, requiring a discrete value, and value is a
binary function, where to take 1 and -1, design of a steady-state value:

Five bursts signal can be memorized by x1:

A single-slit sky target projectile signal can be memorized x2:

Penetrators signal characteristics can be memorized x3:

Update the network as many times, when the network has reached steady state
at some point, the output of a vector with a value will be equal to the initial output
and stabilize at a certain point on the output of the initial setting, the final output
vector is the classification of the initial vector.
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The result of Matlab simulation. Multiple bursts of signal recognition of sky
screens

Bullet: 30 mm diameter; Frequency: 7,500 rounds/min; Time: 10 s

1. Matlab simulation interface (Fig. 2):
2. Analysis

From Table 2, compared to the level signal recognition, the recognition rate can
be increased by 3 % from auto-associative neural network with 30 mm caliber
projectiles at a frequency of 7,500 rounds/min for 10 s duration in the sky-screen-
repeating projectile test, the accuracy and reliability of the system was fully
verified. In order to test the performance of the method, to promote, and to expand
the sample set with 50 training and test samples, the objective-recognition effec-
tiveness is proved achieving the approach by 93 % at signal noise ratio greater
than 6 dB. Under the circumstances of high signal to noise ratio, especially for
plus, a typical noise such as shock, fly insects, and other confounding factors in the
case of low SNR, the neural network identification method is far superior level of
recognition.

Fig. 2 Multiple bursts signal recognition of sky screens

Table 1 Typical signal characteristics

Characteristic Pattern

Five bursts of
projectile
signal of sky screens

Penetrators signal Projectile signal
bursts

Signal pulse width ls 100 460 220
The mean amplitude m/v 1.2899 to 6.6534 1.3446 to 5.5002 1.3520 to 4.3571
Amplitude variance d/v 0.7780 to 10.1460 1.941 to 7.6231 3.0229 to 10.0180
Amplitude of the odd side sk/

v
-0.7363 to 0.0256 -2.9045 to -

2.3589
-0.0051 to 0.1587

Amplitude of the odd side
ku/v

-2.9796 to -0.0729 -0.2013 to -

0.0932
-2.9913 to -2.8058
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4 Results

In this paper, the rule of the test accuracy and reliability of the sky-screen system
was analyzed based on the principle and a variety of the interference noise such as
warhead shock, shock projectile bottom, mosquito birds, vibration noise signal,
and etc. Then, using approach of auto-associative neural network to identify and
eliminate typical factors interference, through live fire test and simulation, the
accuracy and reliability of the system was fully verified and also proved prototype
testing system to achieve the technical specifications.
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