
Improved RNS Montgomery Modular
Multiplication with Residue Recovery

Tao Wu, Shuguo Li and Litian Liu

Abstract Finite field arithmetic in residue number system (RNS) necessitates
modular reductions, which can be carried out with RNS Montgomery algorithm.
By transforming long-precision modular multiplications into modular multiplica-
tions with small moduli, the computational complexity has decreased much. In this
work, two implementation methods of RNS Montgomery algorithm, residue
recovery as well as parallel base conversion, are reviewed and compared. Then,
we propose a new residue recovery method that directly employs binary system
rather than mixed radix system to perform RNS modular multiplications. This
improvement is appropriate for a series of long-precision modular multiplications
with variant operands, in which it is more efficient than parallel base conversion
method.

Keywords Montgomery algorithm � Residue number system � Binary system

T. Wu (&)
Department of Microelectronics and Nanoelectronics, Tsinghua University,
Beijing 100084, People’s Republic of China
e-mail: twu03ster@gmail.com

S. Li � L. Liu
Institute of Microelectronics, Tsinghua University,
Beijing 100084, People’s Republic of China
e-mail: lisg@tsinghua.edu.cn

L. Liu
e-mail: liulitian@tsinghua.edu.cn

S. Patnaik and X. Li (eds.), Proceedings of International Conference on Soft
Computing Techniques and Engineering Application, Advances in Intelligent Systems
and Computing 250, DOI: 10.1007/978-81-322-1695-7_27, � Springer India 2014

233

1 Introduction

Modular multiplication is essential for popular Public Key cryptography that is
defined in a finite field: RSA, Diffie-Hellman, and elliptic curve cryptography. In
fact, a cryptosystem with enough security level often necessitates frequent large-
operand modular multiplications.

As is known, additions, subtractions, and multiplications are parallel and carry-
free in residue number system (RNS) [1–4]. Therefore, RNS arithmetic accelerates
long-precision operations. However, modular reduction in RNS is harder than that
in binary system.

An effective way to tackle RNS modular multiplication is to extend Mont-
gomery algorithm from binary system to RNS [5–12]. Regular Montgomery
algorithm breaks modular reductions in binary system into sequential additions
and right shifts [13, 14], while the RNS Montgomery modular multiplication
utilizes parallelism of RNS. As far as cryptography is concerned, the parallelism
also provides natural immunity to side attacks, when the integral information is
distributed into several channels. Besides, Phillips et al. [15] have proposed an
algorithm directly based on the chinese remainder theorem, in which the constants
are also represented in RNS.

In this paper, we will discuss the less-efficient RNS Montgomery algorithm
with residue recovery [7, 10, 16], after an overview of the parallel base conversion
method. It has been found that the usual residue recovery method can be built on
binary system and RNS, without transformation into mixed radix system.

The remaining part of this paper is organized as follows: Sect. 2 reviews the RNS
Montgomery algorithm with parallel base conversion; Sect. 3 discusses the RNS
Montgomery algorithm with residue recovery; in Sect. 4, we propose our residue
recovery method with binary system; and the last section concludes this paper.

2 RNS Montgomery Algorithm with Parallel Base
Conversion

There are several approaches to implement RNS Montgomery modular multipli-
cations, all of which obtain the quotients in parallel and then perform modular
reduction of M�1 mod P in an auxiliary RNS [5–9, 11, 17–19]. Among these
methods, the parallel base conversion algorithm is the most efficient in computation.

2.1 Montgomery Algorithm

Usually, Montgomery algorithm is implemented in an interleaved form, and the
multiplier is counted bit by bit while the multiplicand enters as a whole [14].

234 T. Wu et al.

Algorithm 1 Montgomery algorithm [13]

Input: Integers A, B, and P satisfy 0�A\2n, 0�B\P, 2n�1\P\2n, and GCDðP; 2Þ ¼ 1.
Let R ¼ 2n and R�1 be the modular inverse of R modulo P. Then, RR�1 � Pq ¼ 1, or
q ¼ ð�P�1Þ mod R.

Output: S � A � B � R�1 (mod P), where 0 B S \ 2P.
1: T ¼ A � B;

2: Q ¼ Tq mod R;
3: S ¼ ðT þ PQÞ=R;
4: return S.

2.2 RNS Montgomery Algorithm with Parallel Base
Conversion

At Line 1, P�1 ¼ RNS ðp1Þ�1
m1
; ðp2Þ�1

m2
; . . .; ðpnÞ�1

mn

� �
:

At Line 3, M�1 ¼ jM�1jmnþ1
; jM�1jmnþ2

; . . .; jM�1jm2n

� �
. There are two base

conversions in such an RNS Montgomery modular multiplication: (1) Conversion
of Q ¼ ðq1; q2; . . .; qnÞ from X to Q0 ¼ ðqnþ1; qnþ2; . . .; q2nÞ in C; (2) Conversion of
R0 ¼ ðrnþ1; rnþ2; . . .; r2nÞ from C to R ¼ ðr1; r2; . . .; rnÞ in X.

Algorithm 2 RNS Montgomery algorithm with parallel base conversion [5, 7]

Input: The moduli for residue number system X are fm1;m2; . . .;mng, with M ¼
Qn

i¼1 mi.
Meanwhile, an auxiliary residue number system C are defined by the other moduli
fmnþ1;mnþ2; . . .;m2ng, with N ¼

Q2n
i¼nþ1 mi. Integers A, B, and P are represented in X

S
C as

A ¼ ða1; a2; . . .; a2nÞ, B ¼ ðb1; b2; . . .; b2nÞ, P ¼ ðp1; p2; . . .; p2nÞ. Additionally, A � B\M � P,
2P\M\N:

Output: R � A � B �M�1ðmod PÞ with R \ 2P.

1: Q ¼ ðA� BÞ � ð�p�1Þ : X;

2: Q0 Q : C X;

3: R0 ¼ ðA� Bþ P� Q0Þ �M�1 : C;

4: R R0 : X C:
5: return R

S
R0 : X

S
C:

Set Mj ¼ M=mj, ri ¼ qi M�1
i

�� ��
mi

���
���
mi

, and Gi;j ¼ Mj

�� ��
mnþi

, then

qnþ1

qnþ2

..

.

q2n

0
BBB@

1
CCCA ¼

G11 G12 . . . G1n

G21 G22
.

..

. ..
. . .

.
Gn�1;n

Gn1 Gn2 . . . Gn;n

0
BBBB@

1
CCCCA

r1

r2

..

.

rn

0
BBB@

1
CCCA� a �

jMjmnþ1

jMjmnþ2

..

.

jMjm2n

0
BBB@

1
CCCA; ð1Þ

Improved RNS Montgomery Modular Multiplication 235

where qj is obtained as modulo mj, and the integer factor a comes from the
improved chinese remainder theorem [20]. Suppose that the moduli mi have
k binary bits, i.e., 2k�1\mi\2k, for i ¼ 1; 2; . . .; n. With Mi ¼ M=mi, the chinese
remainder theorem can be written as

x ¼
Xn

i¼1

Mi xiM
�1
i

�� ��
mi

�����

�����
M

¼
Xn

i¼1

Mi xiM
�1
i

�� ��
mi
� aM

¼
Xn

i¼1

Miri � aM;

ð2Þ

where ri ¼ xiM�1
i

�� ��
mi

, and the indefinite factor a can be fixed by an approximation
method [5, 8] or by an extra modulus [7, 20].

3 RNS Montgomery Algorithm with Residue Recovery

Although a direct map of Montgomery algorithm to RNS suffers from a problem in
losing residues, it is a good guide or bridge for subsequent algorithms.

Algorithm 3 Direct map of Montgomery algorithm in residue number system [16]

Input: The integers A, B, and P are represented with residue number system X: fm1;m2; . . .;mng,
with M ¼

Qn
i¼1 mi and Mi ¼ M=mi. A ¼ ða1; a2; . . .; anÞ, B ¼ ðb1; b2; . . .; bnÞ, and

P ¼ ðp1; p2; . . .; pnÞ. Meanwhile, A is also expressed in the mixed radix system as
A ¼ a1 þ a2 � m1 þ � � � þ an �

Qn�1
i¼1 mi. In addition, 0�A\ mn�1

2 � M
mn

, 0 B B \ 2P,

0\P\ M
max1� i� nfmig.

Output: R ¼ A � B �M�1 ¼ RNS r1; r2; . . .; rnð Þ.
1: R :¼ ð0; 0; . . .; 0Þ;
2: for i = 0 to n� 1 do

3: q0i :¼ ðri þ a0i � biÞðmi � piÞ�1
i mod mi;

4: R :¼ Rþ a0i � Bþ q0i � P;
5: R :¼ R� mi;
6: end for
7: return R.

3.1 Direct Map of Montgomery Algorithm into RNS

At Line 3, we make sure that

ðRþ a0i � Bþ q0i � PÞmod mi ¼ 0: ð3Þ

Given that R mod mi ¼ ri, B mod mi ¼ bi, and P mod mi ¼ pi, we have

236 T. Wu et al.

Rþ a0i � Bþ q0i � P � ri þ a0i � bi þ q0i � pi

¼ ðri þ a0ibiÞ þ pi � ðri þ a0ibiÞðmi � piÞ�1
mod mi

� ðri þ a0ibiÞ 1� ðmi � piÞðmi � piÞ�1
� �

¼ 0ðmod miÞ:

Therefore, at Line 4 of the ith iteration, R is a multiple of mi. At the end of all
iterations, as is shown in [7, 16], we have

R ¼ 1
m1 � m2 � � �mn

B �
Xn

i¼1

a0i
Yi�1

j¼1

mi þ P �
Xn

i¼1

q0i
Yi�1

j¼1

mi

 !
: ð4Þ

Notice that M ¼ m1 � m2 � � �mn and A ¼
Pn

i¼1 a0i
Qi�1

j¼1 mi, the above equation

yields R � A � B �M�1ðmod PÞ. At the last step of each loop, R will keep below
3P, which can be examined by induction [16]. Given that Rn�1\3P and
A\ mn�1

2 � M
mn

, it should yield [16] Rn\2P.

However, there is a problem hidden at line L5: The residue ri gets lost when

ri � mi appears [7]. In RNS, ri=mj is equivalent to ri � ðmjÞ�1
mi

mod mi. However,

ðmiÞ�1
mi

does not exist because of mi � ðmiÞ�1
mi
� 0ðmod miÞ (The product of an

integer and its inverse modular mi should be equal 1 modulo mi). Therefore, one
more residue becomes meaningless after each cycle of the loop.

3.2 RNS Montgomery Algorithm with Residue Recovery

With the improved chinese remainder theorem [20], the lost residue can be
recovered by the help of the redundant residue rnþ1. At Line 4,

Algorithm 4 RNS Montgomery algorithm with residue recovery [16]

Input: The group of moduli: fm1;m2; . . .;mng
S
fmnþ1g defines the residue number system X,

with M ¼
Qn

i¼1 mi and Mi ¼ M=mi. A is represented in mixed radix system:

A ¼ a01 þ
Pn

i¼2 a0i
Qi�1

j¼1 mj. Meanwhile, B ¼ ðb1; b2; . . .; bn; bnþ1Þ and

P ¼ ðp1; p2; . . .; pn; pnþ1Þ. Also, A\ mn�1
2 � M

mn
, B \ 2P.

Output: R � A � B �M�1ðmod PÞ.
1: R :¼ ð0; 0; . . .; 0Þ;
2: for i = 1 to n do

3: q0i :¼ ðri þ a0i � biÞ ðmi � piÞ�1�� ��
mi

mod mi;

4: R0 :¼ Rþ a0i � Bþ q0i � P;
5: R :¼ R0 � mi;
6: ri :¼ restoreRNSðr1; . . .; ri�1; riþ1; . . .; rnþ1Þ;
7: end for
8: return R.

Improved RNS Montgomery Modular Multiplication 237

Rþ a0i � Bþ q0i � P ¼ ðr1; . . .; rnþ1Þ þ a0i � ðb1; . . .; bnþ1Þ þ q0i � ðp1; . . .; pnþ1Þ

¼ r1 þ a0i � b1 þ q0i � p1

�� ��
m1
; . . .; rnþ1 þ a0i � bnþ1 þ q0i � pnþ1

�� ��
mnþ1

� �
:

At Line 5, R� mi is conducted for j 6¼ i; j 2 f1; 2; . . .; nþ 1g by multiplying
the modular inverse, i.e., rj :¼ rj � jm�1

i jmj
mod mj for j = i.

At Line 6, the function ‘restore RNS’ just restores the lost residue ri at Line 5.

Set ri;j ¼ rj � Mt;i

mj

� ��1
����

����
mj

�����

�����
mj

, then ri is obtained by the improved chinese

remainder theorem as follows:

ri ¼
Xn

j¼1;j6¼i

ri;j �
Mi

mj

����
����
mi

�����

�����
mi

� ci � jMijmi

�� ��
mi

������

������
mi

; ð5Þ

where

ci ¼ jM�1
i jmnþ1

�
Xn

j¼1;j 6¼i

ri;j �
Mi

mj

����
����
mnþ1

�����

�����
mnþ1

�rnþ1

0
@

1
A

������

������
mnþ1

: ð6Þ

Taking the computation of a basic modular multiplication with mi as the unit,
i.e., ai � bi mod mi, then there are ð6nþ 5Þ modular multiplications at each iteration
of the above algorithm. Then, a total Montgomery modular multiplication with
residue recovery costs 6n2 þ 5n basic modular multiplications.

4 Proposed Algorithm with Residue Recovery

The idea of RNS Montgomery algorithm is to keep the final result below some
constants such as 2P with parallel or sequential modular reductions. The afore-
mentioned residue recovery method performs sequential k-bit modular multipli-
cations, in which one operand should be represented in mixed radix system.
However, it is not convenient for conversions among binary system, RNS, and
mixed radix system. Therefore, we propose a new residue recovery algorithm that
avoids the use of mixed radix system.

238 T. Wu et al.

4.1 Initial Algorithm

Algorithm 5 Proposed RNS Montgomery algorithm with residue recovery I

Input: The residue number system X has a group of moduli: fm1;m2; . . .;mng
S
fmnþ1g, where

m1 ¼ 2t , 2k�1\mi\mj\2k for 2� i\j� nþ 1, and the integer t� k � 1. All the moduli are
relatively prime, with M ¼

Qn
i¼1 mi and Mi ¼ M=mi. Also, A ¼

Pn
i¼1 Ai � 2ði�1Þt , where

0�Ai� 2t � 1 and A\2nt�1. B and P are represented in residue number system:
B ¼ ðb1; b2; . . .; bn; bnþ1Þ, and P ¼ ðp1; p2; . . .; pn; pnþ1Þ, with T ¼ 2nt , A \ T, P \ T, and
B \ 2P.

Output: R � A � B � T�1ðmod PÞ, where 0 B R \ 2P.
1: R :¼ ð0; 0; . . .; 0Þ;
2: for i = 1 to n do

3: q0i :¼ ðr1 þ Ai � biÞ ðm1 � p1Þ�1�� ��
m1

mod m1;

4: R0 :¼ Rþ Ai � Bþ q0i � P;
5: R :¼ R0 � m1;
6: r1 :¼ restoreRNSðr2; r3; . . .; rnþ1Þ;
7: end for
8: return R.

With i = 1,

R ¼ ðA1 � Bþ q01 � PÞ=m1

\ð2t � 1ÞBþ ð2t � 1ÞP=2t

\3P:

Assuming R \ 3P at the end of the ith iteration, then the (i ? 1)-th iteration
yields

R\ 3Pþ ð2t � 1Þ2Pþ ð2t � 1ÞPð Þ=2t ¼ 3P:

Then, the induction shows that R \ 3P at last. However, we expect to get the
final result within a smaller range [0, 2P). As

R\ð3Pþ An � Bþ q0n � PÞ=2t

� 3Pþ An � 2Pþ ð2t � 1ÞPð Þ=2t;

we can set

3Pþ An � 2Pþ ð2t � 1ÞPð Þ=2t\2P:

The above equation yields An\2t�1 � 1. Notice that A� An � 2ðn�1Þt\1 � 2ðn�1Þt,
then as long as A\ðAn þ 1Þ � 2ðn�1Þt\2nt�1, there will be R \ 2P.

At Line 6, we have

Improved RNS Montgomery Modular Multiplication 239

r1 ¼
Xn

j¼2

r1;j �
M1

mj

����
����
m1

�����

�����
m1

� c1 � jM1jm1

�� ��
m1

������

������
m1

; ð7Þ

where r1;j ¼ rj � M1
mj

� ��1
����

����
mj

�����

�����
mj

, and

c1 ¼ jM�1
1 jmnþ1

�
Xn

j¼2

r1;j �
M1

mj

����
����
mnþ1

�����

�����
mnþ1

�rnþ1

0
@

1
A

������

������
mnþ1

: ð8Þ

4.2 Improved Algorithm

While Algorithm 5 is more efficient than Algorithm 4, it still requires more
sequential steps to compute one RNS Montgomery modular multiplication than
parallel base conversion method with Algorithm 2. However, we found out that a
little revision will double the efficiency of our proposal, which is shown in
Algorithm 6.

At first glance, Algorithm 6 differs from Algorithm 5 in the choice of t and
mnþ1. By setting t = 2k rather than t = k, the number of loops is reduced by a half,
while the computational complexity only increases a little. The range of m1 then
gets much larger than 2k and other RNS moduli, but it does not impact the validity
of the algorithm.

By setting mnþ1 ¼ 2s � 1, then the modular reduction in x � y mod mnþ1 can be

simplified. Take Eq. 6 as example, set x ¼ ri;j\2k, y ¼ Mi
mj

���
���
mnþ1

\2s. Since k� s,

one can set l ¼ k=sd e, and there will be x ¼ xl�s�1::0, with xi ¼ 0 for i	 k. As
2j�s mod ð2s � 1Þ ¼ 1, then

x mod mnþ1 ¼
Xl

j¼1

xj�s�1...j�s�s � 2s mod ð2s � 1Þ ¼
Xl

j¼1

xj�s�1...j�s�s:

Furthermore, the additions modulo 2s � 1 can be simplified by setting the
highest carry out as the lowest carry in. Assuming that x0 ¼ x mod mnþ1, then
x � y mod mnþ1 ¼ x0 � y mod ð2s � 1Þ can be computed by one s 9 s-bit multipli-
cation and one s-bit addition.

The sequential steps and computational complexity of Algorithm 6 can be
measured as follows:

240 T. Wu et al.

Algorithm 6 Proposed RNS Montgomery algorithm with residue recovery II

Input: RNS X : fm1;m2; . . .;mng
S
fmnþ1g, where t = 2k, m1 ¼ 2t , 2k�1\mi\mj\2k for

2� i\j� n, mnþ1 ¼ 2s � 1, s
 k. GCDðmi;mjÞ ¼ 1 for i 6¼ j. M ¼
Qn

i¼1 mi, Mi ¼ M=mi.
n0 ¼ n=2d e, A ¼

Pn0
i¼1 Ai � 2ði�1Þt , where 0�Ai� 2t � 1 and A\2n0 t�1. B and P are

represented in residue number system: B ¼ ðb1; b2; . . .; bn; bnþ1Þ, and
P ¼ ðp1; p2; . . .; pn; pnþ1Þ, with T ¼ 22n0 t, A \ T, P \ T, and B \ 2P.

Output: R � A � B � T�1ðmod PÞ, where 0�R\2P.
1: R :¼ ð0; 0; . . .; 0Þ;
2: for i = 1 to n0 do
3: R0 :¼ Rþ Ai � B;

4: q0i :¼ q01 � ðm1 � p1Þ�1�� ��
m1

mod m1;

5: R00 :¼ R0 þ q0i � P;
6: R :¼ R00 � m1;
7: r1 :¼ restoreRNSðr2; r3; . . .; rnþ1Þ;
8: end for
9: return R.

1. Assuming that the complexity of a k-bit modular multiplication is 1, and the
complexity of a k 9 k multiplication is 1/3. As is well known, modular
multiplication by Montgomery algorithm and Barrett modular reduction
requires three multiplications. In addition, the computational complexity of a
k 9 2k multiplication is 2/3, and the complexity of an s-bit modular multipli-
cation is e; e
 1.

2. Neglecting the complexity of modular additions and modular subtractions,
since it is small compared with modular multiplications.

3. The computation of Ai � B requires one sequential modular multiplication, and
the total complexity is (n ? e) k-bit modular multiplications.

4. The determination of q0i requires 2/3 sequential modular multiplication, and the

total complexity is just 2/3. At Line 4, the value ðm1 � p1Þ�1 can be
precomputed.

5. The computation of q0i � P requires 5/3 sequential modular multiplications, and
the total complexity is ð5n=3þ 2eÞ k-bit modular multiplications. The
increased computational complexity of 2/3 and e corresponds to the modular
reduction in q0i to k-bit and s-bit moduli mi, i ¼ 2; 3; . . .; nþ 1.

6. The computation of R00i � m1 can be performed by modular multiplications of
m�1

1 ¼ 2�t modulo mi. It requires one sequential modular multiplication, and
the total complexity is ðnþ eÞ k-bit modular multiplications.

7. As are shown in Eqs. (5) and (6), the recovery of residue r1 after division of m1

requires ð2=3þ eÞ sequential modular multiplication, and the total complexity
is ð2n=3þ 2eÞ k-bit modular multiplications. With i = 1 in Eq. 5, modular
reduction over m1 can be performed by truncation instead of multiplications,
which leads to the complexity of 2/3 rather than 1.

Improved RNS Montgomery Modular Multiplication 241

In total, Algorithm 6 merely needs

K ¼ ð1þ 2=3þ 5=3þ 1þ ð2=3þ eÞÞ � n0

¼ ð15=3þ eÞ � n0

� ð2:5þ eÞn
ð9Þ

sequential modular multiplications, and the total computational complexity is
about

N ¼ ðnþ eÞ þ 2=3þ ð5n=3þ 2eÞ þ ðnþ eÞ þ ð2n=3þ 2eÞð Þ � n0

¼ 13n=3þ ð2=3þ 6eÞð Þn0

� ð13n=6þ 1=3þ 3eÞn
ð10Þ

k-bit modular multiplications.

4.3 Comparison with Parallel Conversion Method

By contrast, the parallel base conversion method in Algorithm 2 will need about
2n ? 8 sequential k-bit modular multiplications [7, 15], and the total computa-
tional complexity is about ð2n2 þ 10nþ 4Þ k-bit modular multiplications. While
this result seems better than our proposals, it should be noticed that all the inputs of
Algorithm 2 should be in residue number system. If only one input lies in RNS, the
other should be transformed from binary number system to RNS [8], then the
parallel base conversion method will require 3n ? 8 sequential k-bit modular
multiplications and ð3n2 þ 9nþ 4Þ k-bit modular multiplications. Therefore, if one
input of RNS modular multiplication keeps in binary number system, our proposed
Algorithm 6 will be better than parallel base conversion method. The above
comparison is shown in Table 1, where ‘Seq. Num. Mod-mult’ denotes sequential
number of k-bit modular multiplications and ‘Tot. Num. Mod-mult’ denotes the
total number of k-bit modular multiplications.

If there are a series of modular multiplications by variant long-precision inte-
gers, i.e., s1; s2; . . .; sh, with h be some regular index. The modulus is denoted as
P. All si and P are long-precision binary numbers, e.g., between ð2L�1; 2L�, with

L� 1. Then, we intend to compute R ¼
Qh

i¼1 si mod P.

We just need s1 and P in RNS X : fm1;m2; . . .;mng, where s1 ¼ Uð0Þrns ¼
ðu1; u2; . . .; unÞ, P ¼ ðp1; p2; . . .; pnÞ. By the new residue recovery method
‘MR’(Algorithm 6), one gets

Uð1Þrns ¼ s1 � s2 � T�1 mod P � MRðUð0Þrns ; s2Þðmod PÞ; ð11Þ

242 T. Wu et al.

Uð2Þrns ¼
Y3

i¼1

si � T�2 mod P � MRðUð1Þrns ; s3ÞðmodPÞ;

. . .; . . .;

ð12Þ

Uðh�1Þ
rns ¼

Yh

i¼1

si � T�ðh�1Þ mod P � MRðUðh�2Þ
rns ; shÞðmod PÞ: ð13Þ

At the last step, there is

Uðh�1Þ
rns ¼

Yh

i¼1

si � T�ðh�1Þ

 !
mod P:

Suppose that c ¼ Th mod P has been precomputed, then

R ¼
Yh

i¼1

si ¼ MRðUðh�1Þ
rns ; cÞ:

If it is necessary, R can also be converted from RNS to binary system by the
chinese remainder theorem:

R ¼
Xn

i¼1

Mi riM
�1
i

�� ��
mi
�aM; ð14Þ

where ri is the ith component of R, and a is obtained with the aforementioned
approximation method [8].

Nevertheless, the proposed method is not less efficient than parallel conversion
method [7] for modular exponentiation, in which the computational complexity
can be greatly decreased in the latter since only one RNS-to-binary conversion
with the base number is enough.

5 Conclusion

Long-precision modular multiplications can be performed in RNS with RNS
Montgomery algorithm, for which there are mainly two implementation methods:
parallel base conversion as well as residue recovery. The first method performs
modular reductions with respect to the dynamic range in parallel, and base

Table 1 Comparison of proposed residue recovery method to parallel base conversion method,
with one input in RNS and the other in binary number system

Method Residue recovery (this work) Parallel conversion [7]

Seq. num. mod-mult ð2:5þ eÞn 3nþ 8
Tot. num. mod-mult ð13n=6þ 1=3þ 3eÞn 3n2 þ 9nþ 4

Improved RNS Montgomery Modular Multiplication 243

conversions between two RNSs are required. The second method, however, performs
modular reduction in a number of sequential steps and requires more sequential steps.

Then, we propose a new residue recovery method that is based on binary system
rather than mixed radix system, which is supposed to suit modular multiplications
of many various large integers. In this case, it is more efficient than parallel base
conversion method since little binary-to-RNS conversion is required.

Acknowledgments The authors would like to thank the editor and the reviewers for their
comments. This work was partly supported by the National High Technology Research and
Development Program of China (No.2012AA012402), the National Natural Science foundation
of China (No.61073173), and the Independent Research and Development Program of Tsinghua
University (No. 2011Z05116).

References

1. Soderstrand, M., Jenkins, W., Jullien, G., Taylor, F. (eds.): Residue Number System Arithmetic:
Modern Applications in Signal Processing, pp. 1–185, IEEE Press, New York (1986)

2. Mohan, P.A.: Residue Number Systems: Algorithms and Architectures. Kluwer Academic
Publishers, Boston (2002)

3. Wu, A.: Overview of Residue Number Systems. National Taiwan University, Taipei (2002)
4. Taylor, F.: Residue arithmetic: a tutorial with examples. Computer 17(5), 50–62 (1984)
5. Posch, K., Posch, R.: Modulo reduction in residue number system. IEEE Trans. Parallel

Distrib. Syst. 6, 449–454 (1995)
6. Ciet, M., Neve, M., Peeters, E., Quisquater, J.: Parallel FPGA implementation of RSA with

residue number systems-can side-channel threats be avoided? In: 46th IEEE International
Midwest Symposium on Circuits and Systems, vol. 2. pp. 806–810 (2003)

7. Bajard, J., Didier, L., Kornerup, P.: An RNS Montgomery modular multiplication algorithm.
IEEE Trans. Comput. 47, 766–776 (1998)

8. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for fast parallel
Montgomery multiplication. In Preneel, B. (ed.) Advances in Cryptology-EuroCrypt’00.
Volume 1807 of Lecture Notes in Computer Science, pp. 523–538, Springer-Verlag, Berlin
(2000)

9. Nozaki, H., Motoyama, M., Shimbo, A., Kawamura, S.: Implementation of RSA algorithm
based on RNS Montgomery modular multiplication. In: Third International Workshop on
Cryptographic Hardware and embedded systems. Volume 2162 of Lecture Notes in
Computer Science, pp. 364–376. Springer, Berlin (2001)

10. Bajard, J., Didier, L., Kornerup, P.: Modular multiplication and base extensions in residue
number systems. In: 15th IEEE Symposium on Computer Arithmetic, pp. 59–65 (2001)

11. Bajard, J., Imbert, L.: A full RNS implementation of RSA. IEEE Trans. Comput. 53, 769–774
(2004)

12. Bajard, J., Imbert, L., Liardet, P., Yannick, T.: Leak resistant arithmetic. In: Cryptographic
Hardware and Embedded Systems (CHES 2004). Volume 3156 of Lecture Notes in
Computer Science, pp. 62–75 Springer, Berlin (2004)

13. Montgomery, P.: Modular multiplication without trial division. Math. Comput. 44, 519–521
(1985)

14. Orup, H.: Simplifying quotient determination in high-radix modular multiplication. In: 12th
IEEE Symposium on Computer Arithmetic, pp. 193–199 (1995)

244 T. Wu et al.

15. Phillips, B., Kong, Y., Lim, Z.: Highly parallel modular multiplication in the residue number
system using sum of residues reduction. Appl. Algebra Eng. Commun. Comput. 21, 249–255
(2010)

16. Bajard, J., Didier, L., Kornerup, P.: An RNS Montgomery modular multiplication algorithm.
In: 13th IEEE Sympsoium on Computer Arithmetic, pp. 234–239 (1997)

17. Yang, T., Dai, Z., Yang, X., Zhao, Q.: An improved RNS Montgomery modular multiplier.
In: 2010 International Conference on Computer Application and System Modeling (ICCASM
2010), Vol. 10, pp. 144–147

18. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications over Fp. In:
Cryptographic Hardware and Embedded Systems, CHES 2010. Vol. 6225 Lecture Notes in
Computer Science, pp. 48–64 (2010)

19. Wu, T., Liu, L.: Elliptic curve point multiplication by generalized Mersenne numbers.
J. Electro. Sci. Technol 10(3), 199–208 (2012)

20. Shenoy, A., Kumaresan, R.: Fast base extension using a redundant modulus in RNS. IEEE
Trans. Comput. 38, 292–297 (1989)

Improved RNS Montgomery Modular Multiplication 245

	27 Improved RNS Montgomery Modular Multiplication with Residue Recovery
	Abstract
	1…Introduction
	2…RNS Montgomery Algorithm with Parallel Base Conversion
	2.1 Montgomery Algorithm
	2.2 RNS Montgomery Algorithm with Parallel Base Conversion

	3…RNS Montgomery Algorithm with Residue Recovery
	3.1 Direct Map of Montgomery Algorithm into RNS
	3.2 RNS Montgomery Algorithm with Residue Recovery

	4…Proposed Algorithm with Residue Recovery
	4.1 Initial Algorithm
	4.2 Improved Algorithm
	4.3 Comparison with Parallel Conversion Method

	5…Conclusion
	Acknowledgments
	References

