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Abstract A finite-buffer queueing model is considered with batch Poisson input
and controllable service rate. A batch that upon arrival does not fit in the unoc-
cupied places of the buffer is partially rejected. A decision to change the service
mode can be made at service completion epochs only, and vacation (switch-over)
times are involved in preparing the new mode. During a switch-over time, service
is disabled. For the control of this model, three optimization criteria are consid-
ered: the average number of jobs in the buffer, the fraction of lost jobs, and the
fraction of batches not fully accepted. Using Markov decision theory, the optimal
switching policy can be determined for any of these criteria by the value-iteration
algorithm. In the calculation of the expected one-step costs and the transition
probabilities, an essential role is played by the discrete fast Fourier transform.

Keywords Finite-buffer model � Value iteration � Fast Fourier transform

1 Introduction

In this paper, we consider a control problem in the finite MX/G/1/N ? 1 queueing
model. Optimal control of queueing models has always been an important feature in
the queueing literature and may go back as far as Erlang’s study to determine the
minimal number of servers c in the M/G/c/c queue such that the loss probability
remains below some predefined level. In fact, optimal control of real-world systems
is the driving force to analyze most queueing models. A common theme is the
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determination of parameters (such as number of servers, system capacity, and
service rate) that optimize a certain performance measure of the system. This paper
falls in the same area. We address an operational problem in a system with finite
buffer, batch arrivals, and single server, where the service of jobs can be done in one
of two modes, regular or high (fast). Switching between modes is possible after
service completion and takes a random duration. In other words, the controllable
parameter is the choice of service mode after each service completion. We focus on
three performance measures: the long-run average number of jobs in the buffer, the
long-run fraction of lost jobs, and the long-run fraction of batches with losses.

An application of this queueing model appears in a telecommunication system
with a controllable transmission rate: Connections are given less bandwidth
(transmission rate) when the transmission line is near full capacity. The question is
at which capacity the rate should be slowed down. Because the performance criteria
in our queueing model are different than those in the communication problem, we
seem to answer the opposite question: how many jobs should be waiting in the
buffer before working harder. Although this question is quite natural, we found that
there is not much attention in the literature for finite-buffer queueing models with
controllable service. Though, infinite-buffer systems with controllable service have
been studied extensively, see, e.g., Dshalalow [1] for a recent overview. Nishimura
and Jiang developed in [2] an algorithm for the steady-state probabilities of an
infinite-buffer, single-arrival M/G/1 queue with two service modes and switch-over
times for any so-called two-level hysteretic switching rule, i.e., changes in the
service mode take place only if the number of jobs in the system rises above a fixed
high level or falls below a fixed low level. In [3], Nobel and Tijms extended this
model to compound Poisson input, and they used Markov decision theory to cal-
culate the optimal one-level hysteretic rule (i.e., once a change from the slower to
the faster service mode is made, this mode is continued until the system is empty)
that minimizes the long-run average number of jobs in the system. By exploiting
well-known results for the standard MX/G/1 queue, a tailor-made policy-iteration
algorithm was developed by an embedding technique to cope with the problem of
the infinite state space. Also, in Nobel [4], these results for the MX/G/1 queue
formed the basis for a regenerative analysis, so that for every two-level hysteretic
switching rule, the average number of jobs in the system could be calculated. In
both [4] and [3], the discrete fast Fourier transform (FFT) played an essential role in
the calculation of the probability distributions of the number of individual arrivals
during a service time and a switching time via their generating functions. Because
the application of the FFT requires that these generating functions are given
explicitly, some minor restriction with respect to the generality of the service-time
and switching-time distributions was required in these papers.

As said, in this paper we discuss the finite-buffer equivalent. The essential
differences in the infinite-buffer model are twofold. First, the state space is now
finite, suggesting a simplification compared to the infinite model, but, second, the
queueing results analogous to those of the standard MX/G/1 model, which were so
crucial in the analysis of both [3] and [4], are not available for the standard MX/G/
1/N ? 1 model. As a consequence, we cannot simply adapt the policy-iteration
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algorithm of [3] or the regenerative approach of [4] to the finite-buffer model.
Besides that, now also other performance measures become relevant for practical
applications, e.g., the loss probability of a job.

The traditional approach for analyzing a controlled queueing model is to for-
mulate a stochastic dynamic program (Markov decision model) and then prove that
the optimal policy has certain structural properties, see Koole [5] and Stidham and
Weber [6] for recent surveys. For an overview of this approach, we refer to the
monographs of Kitaev and Rykov [7] or Sennot [8], and the review paper by
Cavazos-Cadena and Sennot [9]. We remark that most results obtained by this
approach are valid only in queueing models with exponential services. The con-
tribution of this paper is that we are able to determine the optimal switching
strategy (not necessarily hysteretic!) for the performance criteria mentioned above
and for a wide range of service and switching distributions. Our approach com-
bines the three usual features: modeling, analyzing, and calculating.

Modeling: We reformulate the control problem as a semi-Markov decision model.
The value-iteration algorithm will be applied for determining optimal policies.

Analyzing: We use general results from Nobel [10] to find expressions of the one-
step costs in the semi-Markov decision model. These expressions are formulated in
terms of coefficients of different generating functions.

Calculating: We apply the discrete fast Fourier transform for inverting these
generating functions.

The paper is organized as follows. In Sect. 2, the queueing model is described,
and in Sect. 3, the semi-Markov decision model is formulated with the associated
value-iteration algorithm. In Sects. 4 and 5, we explain how to calculate the one-
step costs, which are required in the decision model. In Sect. 6, some numerical
results are given.

2 Description of the Queueing Model

We consider a finite-buffer MX/G/1/N ? 1 queueing model with two service modes.
Batches of jobs arrive at a single-server station according to a Poisson process. The
batch sizes are identically distributed, independent random variables. The single
server can handle one job at a time and serves the jobs in the order of their arrival
(within a batch in random order). The service times are independent random
variables, but they are typically not identical. Before servicing a job, the server
chooses between a regular speed service mode (R) and a high-speed service mode
(H). Only at service completion epochs, the server can switch from one mode to
another. Every time the server decides to change mode, a vacation (or switch-over)
time is required to prepare for the new mode. These switch-over times are inde-
pendent random variables and again one of two types: switching from regular to
high, or vice versa. In accordance with practical applications, the model assumption
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is made that the system has always to switch from the high-speed mode to the
regular speed mode when the system becomes empty and the last service was done
in high-speed mode. The service is disabled during a switch-over time, and the next
job to be served stays in the buffer until the switch-over time expires and the service
can start. The buffer is a waiting room for N places. Batches that upon arrival do not
find sufficient places in the buffer are partially rejected.

This completes the description of the model. The purpose of a controller of the
system is to specify the decisions when to switch to the other service mode, in such
a way that an optimization criterion is met. The three optimization criteria which
we propose are as follows:

• Minimize the long-run average number of jobs in the buffer,
• Minimize the long-run fraction of jobs that are lost, and
• Minimize the long-run fraction of batches that are not fully accepted.

Clearly, we consider in all three cases the so-called expected (long-run) average
cost optimality criterion. Because we deal with finite state and action spaces—
which we will specify in the sequel—an optimal policy is stationary deterministic
[11]. An optimal (stationary deterministic) policy can be found by the value-
iteration algorithm of Markov decision theory [11, 12]. Before we give this
algorithm in the context of our control problem, we specify the notation.

Notation
k rate of Poisson arrivals of batches;
bk Prjbatch contains k jobs} (k = 1, 2,…);

bð1Þ mean batch size;

A generic random variable representing the interarrival time of batches;
SR generic random variable representing the service time of a job under the

regular speed service mode;
SH similarly under the high-speed mode;
VR generic random variable representing the switch-over time for changing

from regular speed to high-speed service mode;
VH similarly vice versa;

aðLÞj
Pr{j jobs arrive during a service time SL} (L = R, H);

/ðLÞj
Pr{j jobs arrive during switch-over time VL} (L = R, H).

3 The Semi-Markov Decision Model

The control problem of finding the best policy is formulated in a semi-Markov
decision model. The elements are decision epochs, state space, action space,
transition probabilities, and one-step costs.
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• The decision epochs occur at the end of the service times and at the end of the
switching times. The latter epochs are actually no decision epochs. They are
introduced merely to simplify the transition probabilities and the one-step
expected costs (see below).

• State space:

S ¼ f i;K; Lð Þ j i ¼ 0; . . .;N; K ¼ S; V ; L ¼ R;Hg

where state (i, S, L) describes the situation that a service in L-mode has been
completed leaving behind i jobs in the buffer and state (i, V, L) denotes that a
switching time VL has expired with i jobs in the buffer.

• Action spaces A(i, K, L) of feasible actions in state (i, K, L):

A 0; S; Lð Þ ¼ Rf g; A i; S; Lð Þ ¼ fR;Hg ði [ 1; L ¼ R;HÞ;
A i; V ; Rð Þ ¼ fHg; Aði;V ;HÞ ¼ Rf g i [ 0ð Þ:

• One-step transition probabilities pst(a), denoting the probability that the system
jumps to state t at the next decision epoch when given that the state is s at the
current decision epoch and that action a is chosen. For instance, suppose that a
service in regular mode has been completed leaving behind i� 1 jobs in the
buffer and that the action is to switch to high-speed mode. Then, the probability
of a full buffer at the next decision epoch is

pði;S;RÞðN;V ;HÞðHÞ ¼ Prfat least N � i jobs arrive during switch-over timeVRg

¼
X

k [ N�i

/ðRÞk :

In this way, all transition probabilities are expressed by the densities (bk), a
ðLÞ
k and

/ðLÞk . We summarize here the transition probabilities under action a = R only.

pð0;S;RÞðj;S;RÞðRÞ ¼
Pjþ1

k¼1 bka
ðRÞ
jþ1�k ðj�N � 1Þ;

pð0;S;RÞðN;S;RÞðRÞ ¼
P

k [ N bk þ
PN

k¼1 bk

P
l [ N�k aðrÞl

;

pði;S;RÞðj;S;RÞðRÞ ¼ aðRÞjþ1�i ði� 1; i� 1� j�N � 1Þ;
pði;S;HÞðN;S;RÞðRÞ ¼ 1�

PN�i
k¼0 aðRÞk ði� 1Þ;

pði;S;HÞðj;V ;HÞðRÞ ¼ /ðHÞj�i ði� 0; i� j�N � 1Þ;
pði;S;HÞðN;V ;HÞðRÞ ¼

P
k�N�i /

ðHÞ
k ði� 0Þ;

pð0;V ;HÞðj;S;RÞðRÞ ¼
Pjþ1

k¼1 bka
ðRÞ
jþ1�k ðj�N � 1Þ;

pð0;V ;HÞðN;S;RÞðRÞ ¼
P

k [ N bk þ
PN

k¼1 bk

P
l [ N�k aðRÞl ;

pði;V ;HÞðj;S;RÞðRÞ ¼ aðRÞjþ1�i ði� 1; i� 1� j�N � 1Þ;
pði;V ;HÞðN;S;RÞðRÞ ¼

P
k [ N�1 aðRÞk ði� 1Þ :
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All other one-step transition probabilities under action R are zero. The set of
transition probabilities under action H is constructed similarly. Note that when
service is enabled, the system can hold up to N ? 1 jobs, while only up to
N jobs (the buffer size) can be present when service is disabled.

• Expected times between decision epochs: ss að Þ denotes the expected time until
the next decision epoch given that in state s action a is chosen. Again we give
them here for a = R only:

sð0;S;RÞðRÞ ¼ E½Aþ SR� ¼ 1
kþ E½SR�;

sði;S;RÞðRÞ ¼ E½SR� ði� 1Þ;
sði;S;HÞðRÞ ¼ E½VH � ði� 0Þ;
sð0;V ;HÞðRÞ ¼ E½Aþ SR� ¼ 1

kþ E½SR�;
sði;V ;HÞðRÞ ¼ E½SR� ði� 1Þ:

• Expected one-step costs: cs að Þ are the total expected costs incurred until the next
decision epoch if in state s action a is taken. Because we consider three different
optimization criteria, we deal with three different one-step cost specifications.
They will be discussed in the following section.

• Expected average cost criterion: Let D be a stationary deterministic policy. The
process that describes the consecutive states of the control system (under D) is a
Markov chain. The transition probabilities of this chain are pst D sð Þð Þ given
above (D(s) is the action in state s). Clearly, the chain has only one closed
(sub)set of states. Hence, the expected average cost of policy D is

gðDÞ :¼
P

s2S csðDðsÞÞpðsjDÞP
s2S ssðDðsÞÞpðsjDÞ

;

where pðsjDÞ is the stationary distribution in state s under policy D, cf. [12,
Sect. 3.5]. The goal is to find an optimal policy D*, i.e., a stationary policy for
which

g� :¼ gðD�Þ� gðDÞ

for all stationary policies D.

3.1 The Value-Iteration Algorithm

Once all the elements of the Markov decision model are known, we can use the
value-iteration algorithm to calculate the optimal stationary deterministic policy D*.
We give the formulation of the algorithm in general terms (see also [12, Sect. 3.5]).

First choose a positive number s with s� mins;a ssðaÞ and a tolerance number �,
e.g., � = 10-6.
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INIT For all s 2 S, choose non-negative numbers W0ðsÞ with

W0ðsÞ� min
a
fcsðaÞ=ssðaÞg:

Let n:= 1.
LOOP For all s 2 S, calculate

WnðsÞ ¼ min
a2AðsÞ

csðaÞ
ssðaÞ

þ s
ssðaÞ

X

t2S

pstðaÞWn�1ðtÞ þ 1� s
ssðaÞ

� �
Wn�1ðsÞ

" #
;

and let DnðsÞ 2 AðsÞ be the action that minimizes the right-hand side.
EVAL Compute the bounds,

mn ¼ min
s2S

Wn sð Þ � Wn�1 � sð Þf g; Mn ¼ max
s2S

Wn sð Þ � Wn�1 sð Þf g:

TEST Mn � mn� �mn then STOP with the resulting policy Dn, else n : = n +1
and go to LOOP.

This algorithm returns after, say, n iterations a stationary deterministic policy
Dn. Let gn:= (mn ? Mn)/2. Then, gn ! g� if n!1 and gn � g�j j � 2 g�. In other
words, gn is an approximation of the minimum expected average costs.

4 The Expected One-Step Costs

In this section, we specify the expected one-step costs cs að Þ for the three opti-
mization criteria.

Consider an arbitrary feasible state-action pair (s, a) of the Markov decision
model. Immediately after the action, there is a unique buffer content q. For instance,
suppose s; að Þ ¼ ð i; S; Rð Þ; HÞ and i� 1. Then, q = i because the server is dis-
abled due to switching. On the other hand, if s; að Þ ¼ ðði; S;HÞ;HÞ and i� 1, then
q = i - 1 because the server takes a job out of the buffer. Also, the time it takes
until the next decision epoch depends on the state-action pair (s,a). We denote an
arbitrary interdecision time by X. To illustrate, consider the same examples:
(s, a) = ((i, S, R), H) yields X = VR (switching and preparing for the other service
mode); (s, a) = ((i, S, H), H) yields X = SH (service duration). We summarize the
buffer content q and interdecision time X for all feasible state-action pairs (s, a) in
Table 1. Notice that we introduced already in Sect. 3 the different expectations of
X as ss að Þ. The calculation of the expected one-step costs, though, requires the
complete distributions of interdecision time X.

The one-step costs are costs incurred during the interdecision time X after the
buffer started with q jobs. Therefore, we may denote the expected one-step costs by

csðaÞ ¼ wðX; qÞ;

where X and q are given in Table 1. Because the buffer content does not change
during an interarrival time A, we can express WðAþ SL; 0Þ in terms of w(SL, q):
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wðAþ SR; 0Þ ¼
XN

k¼1

bkwðSR; k � 1Þ þ
X

k [ N

bkwðSR;NÞ;

wðAþ SH ; 0Þ ¼
XN

k¼1

bkwðSH ; k � 1Þ þ
X

k [ N

bkwðSH ;NÞ:

In the following section, we shall determine the functions w(X, q) in detail. We
call these functions the expected interdecision cost functions.

5 The Expected Interdecision Cost Functions

As said, it remains to calculate the functions wðX; qÞ in the three optimization
criteria for X ¼ SR; SH ;VR;VH , and q ¼ 0; 1; . . .;N. This problem is simplified by
applying some general results from Chap. 6 in [10]. There, similar functions in the
context of a lost-sales production/inventory model are studied. For that purpose,
we have to introduce the following two sets of generating functions.

5.1 Generating Functions Associated with the Model

bðzÞ :¼
X1

k¼1

bkzk

BðzÞ :¼ kð1� bðzÞÞ;

ALðzÞ :¼
X1

j¼0

aðLÞj z j the generating function of ðaðLÞj ÞjðL ¼ H;RÞ;

ULðzÞ :¼
X1

j¼0

/ðLÞj z j similarly for ð/ðLÞj Þj:

Table 1 Buffer content and interdecision time, given the state-action pair

s a X q

(0, S,R) R A ? SR 0
(i, S, R) R SR i - 1 ði� 1Þ
(i, S, R) H VR i ði� 1Þ
(i, S, H) R VH i - 1 ði� 1Þ
(i, S, H) H SH i ði� 0Þ
(0, V, R) H A ? SH 0
(i, V, R) H SH i - 1 ði� 1Þ
(0, V, H) R A ? SR 0
(i, V, H) R SR i - 1 ði� 1Þ
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5.2 Generating Functions Associated with X

Let X be any of the two service times SR, SH or any of the two switch-over times
VR, VH. It has cumulative distribution function GðxÞ :¼ Pr(X� xÞ and Laplace–

Stieltjes transform bGðsÞ :¼
R1

0 expð�sxÞGðdxÞ:

WðzÞ ¼
X1

k¼0

wkzk :¼ bGðBðzÞÞ;

Cðj; zÞ ¼
X1

k¼0

ckðjÞzk :¼ jbG0ðBðzÞÞ � 1
2

zB0ðzÞbG00ðBðzÞÞ; j ¼ 1; 2; . . .;

DðzÞ ¼
X1

k¼0

dkzk :¼ z

ð1� zÞBðzÞ 1�WðzÞ þ BðzÞbG0ðBðzÞÞ
n o

;

HðzÞ ¼
X1

k¼0

hkzk :¼ �zB0ðzÞ
ð1� zÞB2ðzÞ 1�WðzÞ þ BðzÞbG0ðBðzÞÞ � 1

2
B2ðzÞbG00ðBðzÞÞ

� �
;

NðzÞ ¼
X1

k¼0

nkzk :¼ 1
1� z

E½X� þWðzÞ � 1
BðzÞ

� �
:

Notice that if X = SR, then WðzÞ ¼ ARðzÞ: the generating function of the
number of arrivals during service time SR. Similarly, if X = VR, then WðzÞ ¼
URðzÞ : the generating function of the number of arrivals during switch-over time
VR. (Also, the high-speed equivalents are valid.)

To calculate the expected interdecision cost functions w(X, q), we consider the
three optimization criteria separately.

• Average number of jobs in the buffer.

Let Q(t) be the number of jobs in the buffer at time t, given that at time 0, a
decision is taken. Hence,

wðX; qÞ ¼ E

Z

ð0;XÞ
QðtÞdtjQð0þÞ ¼ q

" #
; q ¼ 0; 1; . . .;N

Notice that the buffer content Q(t) on the time interval (0, X) varies due to the
arriving of batches only. The following theorem gives the exact expression.

Theorem 1 Let the random variable X be either a service time or a switching
time. Then, w(X, N) = NE [X], and for q = 0, 1,…,N - 1:

wðX; qÞ ¼ NE½X� þ
XN�q�1

k¼0

ckðN � qÞ � ðN � qÞdN�q þ hN�q�1;

where ckðN � qÞ; dN�q; hN�q�1 are the coefficients in the terms of the generating
functions associated with X.
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Proof The proof follows directly from Theorem 6.4.2 of [10]. We only need to
equate the number of empty places in the buffer with the inventory on hand in the
lost-sales production/inventory model discussed in [10, Chap. 6]. h

• Loss probability of jobs.

This is the problem how to find the switching policy that minimizes the loss
probability, i.e., the long-run fraction of jobs that is rejected. The rejection rate is
the long-run average number of jobs that is rejected per unit time. Hence, the loss
probability is simply the rejection rate divided by the average number of individual

arrivals per unit time, which is kbð1Þ. Therefore, it suffices to find the switching
policy that minimizes the rejection rate. For that problem, the expected interde-
cision cost function is

wðx; qÞ : ¼ the expected number of rejected jobs during ran -

dom time X, given that at the start of this interval

q jobs are in the buffer.

This is easy:

wðX; qÞ ¼
X

k [ N�q

ðk � N þ qÞwk; q ¼ 0; 1; . . .;N;

where the probabilities wk are defined earlier in this section. As a side remark, the

infinite sum can be easily rewritten as a finite sum, because
P

k [ 0 kwk ¼ kbð1ÞE½X�.

• Fraction of not fully accepted batches.

The optimal switching policy that minimizes this fraction will be calculated by
solving the equivalent problem of finding the switching policy that minimizes the
long-run average number of batches that is not fully accepted per unit time. So,

wðx; qÞ : ¼ the expected number of batches not fully accepted

during random time X, given that at the start of

this interval q jobs are in the buffer.

w(X, q) = the expected number of batches not fully accepted during random
time X, given that at the start of this interval, q jobs are in the buffer. From
Theorem 6.6.1 in [10], we borrow the following result.

Theorem 2 Let the random variable X be either a service time or a switching
time. Then,

wðX; qÞ ¼
X

k [ N�q

wk þ knN�q; q ¼ 0; 1; . . .;N;

where the numbers wk and nk are the coefficients in the terms of the generating
functions associated with X.
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6 Numerical Results

We have chosen the following MX/G/1/N ? 1 model with two service modes. The
parameters of arrivals, batches, and service and switching times are

k ¼ 0:15; bð1Þ ¼ 4; E½SR� ¼ 1:7; E½SH � ¼ 1:5 E½VR� ¼ 1; E½VH � ¼ 1

We consider both a constant and a geometrically distributed batch size. The
buffer size is varied from N = 10 to 150. The regular service time SR is taken to be
Erlang-2, while the high-speed service time SH is given a squared coefficient of
variation C2

SH
¼ 4 with a Coxian-2 distribution. The switch-over times are both

taken exponentially distributed.
These distributions give us analytic expressions of the generating function b(z)

of the batch size and of the Laplace–Stieltjes transform bG sð Þ of any of the service
and switching times. Hence, all generating functions mentioned in Sect. 5 can be
given explicitly. Then, the numerical values of the coefficients of these functions

(i.e., aðLÞk ; /ðLÞk ;wk; kkðjÞ; dk; hk; nk) can be calculated efficiently by the discrete fast
Fourier transform. And so, all ingredients of the semi-Markov decision model are
ready for use.

The results are presented in Table 2 (constant batch sizes) and Table 3 (geo-
metric batch sizes). We have considered the criteria ‘‘average number of jobs
present’’ and ‘‘fraction of lost jobs.’’ The stopping e in the value-iteration algo-
rithm was set to 10-6. Then, the number of iterations varied from 216 (buffer size
N = 10) to 11,234 (buffer size N = 150) for the loss probability criterion with the
constant batch sizes and from 112 (buffer size N = 10) to 10,243 (buffer size
N = 150) for the average buffer content criterion with the constant batch sizes.
The number of iterations in case of geometric batch sizes is slightly less (e.g.,
N = 150 requires 9,106 and 8,473 iterations). In all cases, we found that the
optimal switching rules are of the hysteretic type (m, M), where m \ M. That is,
when the service mode is regular and the buffer content becomes M or more, the

Table 2 Constant batches. Optimal loss probabilities p�loss and optimal buffer contents Q*

N p�loss (m, M) Q Q* (m, M) ploss

10 0.188936 (2, 11) 4.3246 3.9832 (0, 7) 0.200883
20 0.100803 (3, 17) 8.1254 7.7478 (0, 9) 0.105156
30 0.0634553 (4, 19) 11.5640 11.1519 (1, 11) 0.0651914
40 0.0430466 (4, 20) 14.5821 14.2138 (1, 12) 0.0438801
50 0.0303526 (4, 20) 17.2363 16.9395 (1, 13) 0.0307808
60 0.0219347 (4, 20) 19.5914 19.3384 (2, 14) 0.0221218
75 0.0138796 (4, 20) 22.5853 22.3717 (2, 14) 0.0139907
100 0.0067750 (4, 20) 26.3133 26.1332 (2, 15) 0.00681112
125 0.00340616 (4, 20) 28.7955 28.6334 (2, 15) 0.00342380
150 0.00173715 (4, 20) 30.3896 30.2368 (2, 16) 0.00174311
1 33.6333 (2, 16)
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server switches to high speed. On the other hand, when the service mode is high
and the buffer content becomes m or less, the server switches to regular mode.
(M = N ? 1 means that always the regular mode is applied.) We conjecture that
there are examples in which the optimal policy is not of the hysteretic type. We
have not yet found such an example.

We see from the figures in the tables that the optimal switching rules for the two
optimization criteria are quite different. To see the deteriorating effect of mini-
mizing the loss probability on the average buffer contents and vice versa, we give,
apart from the optimal values, also the results of the non-optimized criterion. As
expected, the difference between these values fades away for large buffer sizes,
when the loss probability becomes small.

Furthermore, we compare the results with those for the infinite buffer. With the
method of [4], we determined the policy that minimizes the number of jobs in the
system for the infinite model with the same parameter values. This differs by at
most one job with the average number in the buffer. We see that the optimal
policies are the same for the infinite model and the finite model with large buffer
size, but the average number of jobs in the system (in the infinite model) is quite
different, especially for the geometric case.

Finally, we remark that while the criterion values for geometric batches and
constant batches are completely different, the optimal switching rules are very
similar. This insensitivity of the optimal policy for the batch size distribution has
already been observed in [3].

7 Conclusions

In this paper, we considered a natural optimization problem in the context of a
queueing system with finite buffer and two service modes: ‘‘at which levels of
buffer content should the server switch service mode?’’ We formulated the

Table 3 Geometric batches. Optimal loss probabilities p�loss and optimal buffer contents Q*

N p�loss (m, M) Q Q* (m, M) ploss

10 0.253907 (1, 11) 3.7093 3.5385 (0, 8) 0.261979
20 0.153002 (3, 17) 7.6869 7.5004 (0, 10) 0.155402
30 0.101877 (3, 19) 11.4571 11.2581 (1, 11) 0.103287
40 0.0728404 (3, 20) 14.9550 14.7725 (1, 13) 0.0734649
50 0.0542501 (3, 20) 18.1796 18.0388 (1, 14) 0.0545850
60 0.0414826 (3, 20) 21.1666 21.0536 (1, 14) 0.0417198
75 0.0286625 (3, 20) 25.1999 25.1109 (2, 15) 0.0287550
100 0.0163363 (3, 20) 30.7864 30.7195 (2, 16) 0.0163693
125 0.0096780 (3, 20) 35.1103 35.0551 (2, 16) 0.00969651
150 0.0058582 (3, 20) 38.3814 38.3334 (2, 17) 0.00586518
1 47.6220 (2, 17)
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optimization problem as a semi-Markov decision model with fictitious decision
epochs and solved it by the value-iteration algorithm. In all cases we evaluated
numerically, we found that the optimal policy is of the hysteretic type. We doubt
whether always the optimal policy is hysteretic, but we cannot provide counter-
examples. Furthermore, we saw that one has to be careful in approximating the
performance of the finite-buffer system by the corresponding infinite-buffer
system, even for large buffers (with small loss rate). The average number of jobs in
the system can be far off, as we noticed in the case of geometric batch sizes.
Further study and analysis may give more insights of this—to us—surprising
phenomenon.
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