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Abstract Prusa Grammar is a recently introduced rectangular picture languages
generating model which exploits the parallel application of two-dimensional
context-free rules. We introduce the hexagonal version of Prusa grammar and
generate images. We compare this model with other hexagonal array generating
devices for the description of its generative power.
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1 Introduction

Hexagonal arrays generated by grammars are found in the literature with the
insight into computations in pattern recognition, picture processing, and scene
analysis [4, 6]. Some of classical formalisms to generate hexagonal arrays are
hexagonal kolam array grammars (HKAG) [6] and hexagonal array rewriting
grammars (HAG) [7]. In HKAG model, hexagonal arrays on triangular grid were
viewed as two-dimensional representation of three-dimensional blocks, and also
several scene analytic transformations were discussed. Hexagonal array rewriting
grammars (HAG) are the generalization for HKAG. Hexagonal Wang system
(HWS) and hexagonal tiling system (HTS) were an equivalent pair of formal
devices for recognizable class of hexagonal arrays (HREC) [1]. Hexagonal tile
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rewriting grammars (HTRG) [8] and regional hexagonal tile rewriting grammars
(RHTRG) [2] are the recent tiling-based hexagonal array rewriting models, which
have more generative capacity. In the generalization process of rectangular
grammar models, Prusa [5] has recently defined a grammar device which extended
the rectangular context-free kolam array grammar model, attaining some genera-
tive capacity. This model generates the rectangular pictures by parallel application
of rules and thereby maintains a grid-like structure in each stage of derivation of
picture. But hexagonal grammar models with parallel derivation rules are very rare
in literature and that too have limited growth patterns. With this quest of gener-
alization of hexagonal models, we propose a hexagonal version of Prusa grammar
to generate context-free hexagonal picture languages and study some comparisons
with the other existing models for their generative capacity.

The paper is organized in the following manner. In Sect. 2, we recall some basic
notions of hexagonal pictures and languages. In Sect. 3, we introduce hexagonal
Prusa grammar (HPG) and examples for illustration. In Sect. 4, we present com-
parison results of HPG with other hexagonal models with respect to the generating
capacity.

2 Preliminaries

Let T be a finite alphabet of symbols. A hexagonal picture p over T is a hexagonal
array of symbols of T.

With respect to a triad x
y

z of triangular axes x, y, z, the coordinates of

each element of hexagonal picture can be fixed [1]. The origin of reference is the
upper left vertex, having co-ordinates (1, 1, 1).

The set of all hexagonal arrays over of the alphabet T is denoted by T**H and set
of all non-empty hexagonal arrays over T is denoted by T++H. T+ denotes set of all
non-empty strings in the three directions parallel to the triangular axes. A non-
empty hexagonal picture language L over T is a subset of T++H.

For p [ T++H, let p̂ be the hexagonal array obtained by surrounding p with a
special boundary symbol # 62 T.

Given a picture p [ T++H, if ‘, m, n denote the number of elements in the borders
of p, parallel to x-, y-, z-directions, respectively, then the triple (‘, m, n) is called
the size of the picture p denoted by |p| = (‘, m, n). Let pijk denotes the symbol in
p with coordinates (i, j, k) where 1 B i B ‘, 1 B j B m, 1 B k B n. Let T(‘, m, n)H

be the set of hexagonal pictures of size (‘, m, n). A typical hexagonal array of size
(‘, m, n) can be denoted by [pijk]

(‘,m,n)H. A hexagonal picture of size (2, 2, 2) is
called a hexagonal tile. We denote the set of all hexagonal tiles contained in a
picture p̂ by [[p̂]].

The notions of non-convex hexagonal arrays called arrowheads, and arrowhead
catenations in six directions are adapted as in [1, 6].
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3 Hexagonal Prusa Grammar

In this section, we give a formal definition of hexagonal Prusa grammar and some
simple examples of languages generated by these grammars.

Definition 1 A Hexagonal Prusa Grammar (HPG) is a tuple N; T ;P; Sh i where
N is a finite set of non-terminals, T is a finite set of terminals, P ( N 9 [(N [
T)++H [ (N [ T)+] and S [ N is the start symbol.

Definition 2 Let G ¼ N; T ;P; Sh i be a HPG. We define a hexagonal picture
language L(G, C) over T for every C [ N, by the following recursive rules.

1. Terminal rule: If C ? X is in P, and X [ (T++H [ T+), then X [ L(G, C).
2. Mixed rule: Let C ? X be a production in P with

X 2 [ ðN [ TÞð‘
0;m0; n0ÞH ; 1� ‘0 � ‘; 1�m0 �m and 1� n0 � n

and Qijk (1 B i B ‘, 1 B j B m, 1 B k B n) be the pictures such that

(a) if Xijk [ T, then Qijk = Xijk.
(b) if Xijk [ N, then Qijk [ L[G, X].

Then, if Q ¼ ½Qijk�ð‘
0;m0;n0ÞH is defined through string catenation (or) arrowhead

catenation, then Q [ L[G, C].
The set L[G, C] contains all and only pictures that can be obtained by applying

a finite sequence of rules (1) and (2). The hexagonal language L[G] generated by
the grammar G is defined to be the language L[G, S]. L HPGð Þ is the class of all
languages generated by these grammars. Languages in L HPGð Þ are called HPG
languages.

Example 1 The language

L1 ¼
a a

a a a

a a

;

a a a

a a a a

a a a

;

a a a a

a a a a a

a a a a

; . . .

8
><

>:

9
>=

>;

is generated by HPG G1 ¼ N; T ;P; Sh i where N = {H, S}, T = {a} and

P ¼ S! SH; S!
a a

a a a
a a

; H !
a

a
a

8
<

:

9
=

;
. By applying ter-

minal rules, H !
a

a
a

; S!
a a

a a a
a a

we get
a

a
a

2 L½G;H� and

a a
a a a

a a
2 L½G; S�.
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Now, by applying mixed rule S ? SH, we have
a a a

a a a a
a a a

2 L½G; S�.

The repeated application of mixed rule S ? SH generates all the members of
L1.

Example 2 The language

L2 ¼
1 1

1 2 1

1 1

;

1 1 1

1 2 2 1

1 1 1

;

1 1 1 1

1 2 2 2 1

1 1 1 1

; . . .

8
><

>:

9
>=

>;

can be generated by HPG, G2 ¼ N; T ;P; Sh iwhere N = {S, A, B, H}, and T = {1, 2}.

P ¼ S! AH =

1 1

1 2 1

1 1

; A! AB =

1 1

1 2 2

1 1

; B!
1

2

1

; H !
1

1

1

8
><

>:

9
>=

>;

From the terminal rules, we have
1 1

1 2 1
1 1

[ L[G,S],
1

2
1

[ L[G, B].

Parallel application of mixed rules A ? AB, S ? AH repeatedly produces the
language L2.

We now introduce non-terminal normal form for hexagonal Prusa grammars.

Definition 3 A hexagonal Prusa grammar G ¼ N; T ;P; Sh i is in non-terminal
normal form (NNF) iff every rule in P has the form either C ? t or C ? X, where
C [ N, X [ (N++H [ N+) and t [ T.

4 Comparison Results

In this section, we present comparison results of HPG with other hexagonal models
with respect to its generative power. We use L X½ � to denote the family of
languages generated or recognized by the device X.

Theorem 1

L CFHAG½ � � L HPG½ �:

Proof Consider a context-free hexagonal array grammars (CFHAG) [7] G in
Chomsky normal form. It may contain six types of rules:

C ? A B, C ? A B, C ? A B and its duals.

C ? A B, C ? A B and C ? A B.

Now, the rule C ? A B is equivalent to a HPG rule of the form C ? BA.
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The rule C ? A B is equivalent to a HPG rule of the form C ! AB:

The rule C ? A B is equivalent to a HPG rule of the form C ! AB:

Similarly, we can have equivalent rules in HPG for the corresponding dual rules
in CFHAG. The terminal rules C ? t are identical in both the grammars. This
shows that L CFHAG½ � � L HPG½ �:

The inclusion is strict as the language L2 in Example 2 cannot be generated by
any CFHAG, which was proved in [2].

Theorem 2 L HPG½ � and L HTS½ � are incomparable but not disjoint.

Proof It is already proved in [2] that the language L1 in Example 1 is a hexagonal
tiling system [1] recognizable language. So L1 2 L HPGð Þ \ L HTSð Þ:

Now, consider the language L4, which consists of palindromic left arrowheads
over T = {a, b}.

L4 can be generated by the HPG, G ¼ N; T ;P; Sh i with N = {S}, T = {a, b},

P ¼ S!
a

S
a
; S!

b
S

b
; S!

a
a

a
=

a
b

a
=

b
a

b
=

b
b

b

8
<

:

9
=

;

But there is no local strategy available to remember the characters that
appearing in the corresponding positions above and below the arrowhead vertex.
So L4 cannot be generated by any HTS.

In [3], the authors have given a hexagonal tiling system to generate a language
Lparallel which consists of all hexagonal pictures over R = {a, b} with elements
in the corresponding positions of the borders parallel to x-direction are identical.
Since the productions of a HPG do not have control in producing such patterns,
Lparallel cannot be generated by any HPG.

Theorem 3

L HPGð Þ � L RHTRG½ �:

Proof Consider a HPG grammar G in NNF. First, without loss of generality, we
assume that the non-terminals in the right part of any rule of G are all different.

Let us define a RHTRG [2] G0 equivalent to G. The terminal rules are easy to
handle. For a non-terminal rule of G, C ! AB, the equivalent rule in G0 is

C !

# # #
# B B #

# B B B #
# A A B #

# A A A #
# A A #

# # #

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5
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Similarly, for the rules C ! AB and C ! BA in G, equivalent rules can be
formed in G0. Therefore, L HPGð Þ � L RHTRGð Þ

For strict inclusion, consider the language L5 over the alphabet T = {a, b, c, x},
consists of pictures of size (2, 2, n), n C 4, with misaligned palindromic borders in
the Z-direction, with no (2, 2, 2) hexagonal subpicture contains the symbol c in
both the z-directional borders. An RHTRG can be easily defined to generate L5

with one of the variable size rules as

S!

# # # # # # #

# A1 A1 A1 A1 C1 C1 #

# X X X X X X X #

# C2 C2 A2 A2 A2 A2 #

# # # # # # #

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

This language cannot be generated by any HPG G0, as a production of G0 in the

form of S!
A C

X X X
C A

where A generates the z-direction palindromic

string, and C, X generate z-direction strings of c’s and x’s, respectively, cannot
restrict the occurrence of c0s so that we may have a hexagonal subpicture of the

form
d c

x x x
c d

where d [ {a, b}, but which is not a picture in L5.

5 Conclusions

HPG is the simple type of hexagonal array rewriting models with parallel appli-
cation of rewriting rules in each derivation, which gives a considerable generative
capacity than CFHAG. But lack of control in the production rules make this model
less general than that of RHTRG. Since hexagonal tiling patterns and kolam
patterns are the applications of CFHAG, HPG can also produce these patterns.
Other pattern recognition tasks by this model remain to be explored and which
may further depends on the development of good parsing algorithms.

References

1. K.S. Dersanambika, K. Krithivasan, C. Martin-Vide and K.G. Subramanian, Local and
recognizable hexagonal picture languages, International Journal of Pattern Recognition and
Artificial Intelligence, 19 (2005), 853–871.

2. T. Kamaraj and D.G. Thomas, Regional hexagonal tile rewriting grammars, In : R.P. Barneva
et al (eds.), IWCIA 2012, LNCS, Vol. 7655, 181–195, Springer, Heidelberg, 2012.

310 T. Kamaraj and D. G. Thomas



3. T. Kamaraj, D.G. Thomas and T. Kalyani, Hexagonal picture recognizability by HWA, In
Proc. of ICMCM 2011, Narosa Publishing, 378–388, 2012.

4. L. Middleton and J. Sivaswamy, Hexagonal image processing: A practical approach, Advances
in Computer Vision and Pattern Recognition Series, Springer, 2005.

5. D. Prusa, Two-dimensional Languages, Ph.D. Thesis, 2004.
6. G. Siromoney and R. Siromomey, Hexagonal arrays and rectangular blocks, Computer

Graphics and Image Processing, 5 (1976), 353–381.
7. K.G. Subramanian, Hexagonal array grammars, Computer Graphics and Image Processing, 10

(1979), 388–394.
8. D.G. Thomas, F. Sweety and T. Kalyani, Results on Hexagonal Tile Rewriting Grammars, G.

Bebis et al. (Eds.), International Symposium on Visual Computing, Part II, LNCS, 5359,
Springer-Verlag, Berlin, Heidelberg (2008), 945–952.

Hexagonal Prusa Grammar Model for Context-Free Hexagonal Picture Languages 311


	33 Hexagonal Prusa Grammar Model for Context-Free Hexagonal Picture Languages
	Abstract
	1…Introduction
	2…Preliminaries
	3…Hexagonal Prusa Grammar
	4…Comparison Results
	5…Conclusions
	References


