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Abstract An epidemic vulnerable—exposed—infectious—secured—vulnerable
(VEISV) model for the fuzzy propagation of worms in computer network is for-
mulated. In this paper, the comparison between classical basic reproduction number
and fuzzy basic reproduction number is analyzed. Epidemic control strategies of
worms in the computer network—low, medium, and high—are analyzed. Numer-
ical illustration is provided to simulate and solve the set of equations.
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1 Introduction

Recent myriad research contributions in Internet technology are considered to
secure the worm attacks and to analyze the dynamics of worms in network. To
study the dynamics of worms in network, a mathematical model is to be developed
to analyze the propagation of worms. Worms behave like infectious diseases and
are epidemic in nature. The propagation of worms throughout a network can be
studied by using epidemiological models for disease propagation [1–4]. Using
Kermack and McKendrick SIR classical epidemic model [5–7], dynamical models
for malicious object propagation were proposed, providing estimations for tem-
poral evolution of nodes depending on network parameters considering topological
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aspects of the network [1–4]. The similarity between the spread of a biological
virus and malicious worm propagation motivates the researchers to adopt an
epidemic model to the network environment [8]. Recent research in epidemic
models such as SIR [8–10], SIS [8], SEIR [1, 11–14], SIRS [15, 16], SEIQV [17],
and vulnerable—exposed—infectious—secured—vulnerable (VEISV) [18] is
proposed to study the worm propagation by developing different transaction states
based on the behavior of the virus or the worm.

In particular, epidemic systems in computer networks have strong nonlinearity
and should be treated in a different way. The nonlinearity is due to the force of
epidemic of an infectious agent. This intrinsically includes the fuzzy logic anal-
ysis. Fuzzy epidemic modeling for human infectious diseases has been studied in
many research contributions [19–22]. Recently, Mishra and Pandey [23] proposed
fuzzy epidemic model for the transmission of worms in computer network. This
motivated us to consider the fuzzy epidemic model for VEISV propagation for
network worm attack. Our model generalizes Mishra and Pandey [23] work.

2 Classical VEISV Epidemic Model

Toutonji et al. [18] proposed VEISV epidemic model for security countermeasures
that have been used to prevent and defend against worm attacks. Thus, they used
the state name vulnerable! exposed ! infectious! secured ! vulnerable. The
parameters and notations used in this model are given with explanation in Table 1.
The schematic representation of this model is shown in Fig. 1. The vulnerable state
includes all hosts which are vulnerable to worm attack. Exposed state includes all
hosts which are exposed to attack but not infectious due to the latent time
requirement. Infectious state includes all hosts which were attacked and actively
scanning and targeting new victims. Secured state includes all hosts which gained
one or more security countermeasures, providing the host with a temporary or
permanent immunity against the malicious worm. The following assumptions are
considered:

1. The total number of hosts N is fixed and defined by

N ¼ VðtÞ þ EðtÞ þ IðtÞ þ SðtÞ: ð1Þ

2. Initially, all hosts are vulnerable to attack. The total number of quarantined
hosts, without considering the quarantine time, will move to the secure state
after installing the required security patches or updates.

3. The number of replaced hosts is equal to the number of dysfunctional hosts, and
the model is closed network defined as
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C ¼ fðV ;E; I; SÞ 2 R4
þjV þ E þ I þ S ¼ Ng: ð2Þ

Since the number of hosts is large, we defined the incident of infection as

b VðtÞ
N IðtÞ. b represents the number of incidents occurring in a unit of time. The

transition of hosts from V state to E state in terms of Dt is

DVE ¼ b
VðtÞ

N
IðtÞDt: ð3Þ

Since aEðtÞ is the number of transitioning vulnerable hosts from time t to
ðt þ DtÞ by the following equation:

Vðt þ DtÞ � VðtÞ ¼ �fEðtÞVðtÞDt � w1VðtÞDt þ /SðtÞ: ð4Þ

We followed the mathematical approach [18] to derive the theoretical part. This
set of differential equations governs the VEISV model:

Table 1 Notation and
parameters for VEISV model

Notation Explanation

VðtÞ Number of vulnerable hosts at time t
EðtÞ Number of exposed hosts at time t
IðtÞ Number of infectious hosts at time t
SðtÞ Number of secured hosts at time t
b Contact rate
a State transition rate from E to I
w1 State transition rate from V to S
w2 State transition rate from E to S
c State transition rate from I to S
/ State transition rate from S to V
N Total number of hosts
h Dysfunctional rate
l1 Replacement rate

Fig. 1 VEISV model
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dV

dt
¼ �fEV � w1V þ /S;

dE

dt
¼ fEV � ðaþ w2ÞE;

dI

dt
¼ aE � ðcþ hÞI;

dS

dt
¼ l1N þ w1V þ w2E þ cI � /S:

ð5Þ

3 Fuzzy VEISV Epidemic Model

During a worm attack, dysfunction occurred in infectious state; thereby, the hosts
are taken over by a worm and are not capable of performing properly. The higher
the worm load, the higher will be the chance of worm transmission. Let b ¼ bðxÞ
measure the chance of a transmission to occur in a meeting between a vulnerable
node and an exposed node with a large number of worms x. To obtain the
membership function bðxÞ, we assume that the number of worms in a node is
relatively low, that the chance of transmission is negligible, and that there are a
minimum number of worms xmin needed to cause transmission. For certain number
of worms xM , the chance of transmission is maximum and equal to 1. Further, the
number of worms in a node is always limited to xmax. So the membership function
of b (refer Fig. 2a) is defined as follows:

bðxÞ ¼
0 if x\xmin

x�xmin

xM�xmin
if xmin\x\xM

1 if xM\x\xmax:

2
4 ð6Þ

To obtain the membership function of a, in latent period we assume that the
number of worms exposed in a node is relatively low, that the chance of trans-
mission is negligible, and that there are a minimum number of worms xmin needed

Fig. 2 a Membership function of b and b membership function of a

296 M. Senthil Kumar and C. Veeramani



to cause transmission. For certain number of worms xM , the chance of transmission
is maximum and equal to 1. So the membership function of a (refer Fig. 2b) is
defined as follows:

aðxÞ ¼
0 if x\xmin

x�xmin

xM�xmin
if xmin\x\xM

1 if xM\x\xmax:

2
4 ð7Þ

Now, the vulnerable node’s recovery rate w1 ¼ w1ðxÞ is also a function of
worm load. The higher the worm load, the longer it will take to recover from
infection; i.e., w1 should be decreasing function of x. The membership function of
w1 (refer Fig. 3a) is as follows:

w1ðxÞ ¼
w10 � 1

xmax

xþ 1 ð8Þ

where w10 is the lowest recovery rate from vulnerable state to secured state. Also,
the exposed node’s recovery rate w2 ¼ w2ðxÞ is also a function of worm load. The
higher the worm load, the longer it will take to recover from infection; i.e., w2
should be decreasing function of x. The membership function of w2 (refer Fig. 3b)
is as follows:

w2ðxÞ ¼
w20 � 1

xmax

xþ 1 ð9Þ

where w20 is the lowest recovery rate from exposed state to secured state. Fur-
thermore, the infected node’s recovery rate c ¼ cðxÞ is also a function of worm
load. The higher the worm load, the longer it will take to recover from infection;
i.e., c should be decreasing function of x. The membership function of c (refer
Fig. 4a) is as follows:

Fig. 3 a Membership function of w1 and b membership function of w2
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cðxÞ ¼ c0 � 1
xmax

xþ 1 ð10Þ

where c0 is the lowest recovery rate from infected state to secured state. Here, / is
the rate of vulnerable after recovery, that is, the secured nodes may be vulnerable
again. The higher we use the secondary devices and/or Internet services, the higher
it will be vulnerable after recovery. The membership function of / (refer Fig. 4b)
will be increasing function of x. It is defined as follows:

/ðxÞ ¼ 1� /0

xmax

x ð11Þ

where /0 [ 0 and ð\1Þ is the lowest vulnerability after recovery. The number of
worms differs in different nodes of the computer network. So we assume that x can
be seen as fuzzy number, and hence, the membership function is defined as
follows:

qðxÞ ¼ 1� jx�xj
d if x 2 x� d; xþ d½ �

0 otherwise

�
ð12Þ

where x is a central value and d gives the dispersion of each node of the fuzzy sets
assumed by x. For a fixed x,qðxÞ can have a linguistic meaning such as low,
medium, and high.

Fig. 4 a Membership function of c and b membership function of /
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4 Stability Analysis of Fuzzy VEISV Model

Since SðtÞ ¼ N � VðtÞ � EðtÞ � IðtÞ, we can use the reduction method by
considering only the first three Eqs. of (5) to analyze the model

dV

dt
¼/N � fEV � ðw1 þ /ÞV � /ðE þ IÞ;

dE

dt
¼ fEV � ðaþ w2ÞE;

dI

dt
¼ aE � ðcþ hÞI:

ð13Þ

Then, for the equilibrium points, we take dV
dt
¼ 0; dE

dt
¼ 0, and dI

dt
¼ 0. For

dE
dt
¼ 0, the equilibrium occurs at

E� ¼ 0 or E� [ 0 and v� ¼ aþ w2

ba
N: ð14Þ

For E� ¼ 0, the worm-free equilibrium occurs at

Pwf ¼ ðv�1; E�1; I�1Þ ¼
/

w1 þ /
N; 0; 0

� �
: ð15Þ

For E�[ 0, the worm-epidemic equilibrium is

Pwe ¼ ðv�2; E�2; I�2Þ

¼ aþ w2

ba
N;

/� ðaþw2Þ
ba ðw1 � /Þ

aþ w2 þ / 1þ a
cþh

� �N;
a

cþ h
E�2

0
@

1
A: ð16Þ

Now, taking into account worm load, we have

Pwe ¼
aðxÞ þ w2ðxÞ

bðxÞaðxÞ N;
/ðxÞ � aðxÞþw2ðxÞð Þ

bðxÞaðxÞ w1ðxÞ � /ðxÞð Þ

aðxÞ þ w2ðxÞ þ /ðxÞ 1þ aðxÞ
cðxÞþh

� �N;
aðxÞ

cðxÞ þ h
E�2

0
@

1
A:

ð17Þ

As f1ðxÞN
f2ðxÞ \ 1, where f1ðxÞ ¼ aðxÞ/ðxÞ � aðxÞþw2ðxÞ

bðxÞ ðw1ðxÞ � /ðxÞÞ and

f2ðxÞ ¼ ðcðxÞ þ hÞ aðxÞ þ w2ðxÞ þ /ðxÞ 1þ aðxÞ
cðxÞþh

� �� �
, so a value of bifurcation

for x is x�, the solution of the equation f1ðxÞN ¼ f2ðxÞ.
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5 Basic Reproduction Number

The basic reproduction number ðR0Þ is obtained through the analysis of the sta-
bility of the trivial equilibrium point. For the classical VEISV propagation model,

R0 ¼ ab/
ðw1þ/Þðaþw2Þ

. Based on the definition of R0, the worm-free equilibrium is

locally asymptotically stable when R0 � 1 and unstable when R0 � 1. As in this
case, we taken a ¼ aðxÞ, b ¼ bðxÞ, / ¼ /ðxÞ, w1 ¼ w1ðxÞ, and w2 ¼ w2ðxÞ, then

we write, R0ðxÞ ¼ aðxÞbðxÞ/ðxÞ
ðw1ðxÞþ/ðxÞÞðaðxÞþw2ðxÞÞ

.

We consider maxR0ðxÞ\1 to control the worm transmission. But we take an
average value of R0ðxÞ because it can be an extreme attitude. For this, we consider
the distribution of the worm load as given by a triangular fuzzy number qðxÞ.
Then, fuzzy basic reproduction number is defined as follows:

Rf
0 ¼

1
c0

FEV½c0R0ðxÞ� ð18Þ

where FEV is fuzzy expected value. Suppose that R0ðxÞ[ 1, but c0R0ðxÞ� 1, so

that the value of Rf
0 is well defined. This is defined as the average number of

secondary cases by just one infected node introduced into entirely susceptible
nodes.

To obtain FEV½c0R0ðxÞ�, we define a fuzzy measure l and use the possibility
measure:

lðAÞ ¼ supx2AqðxÞ; A � R:

This measure shows that the infectivity of a group is the one presented by the

node belonging to the group with the maximal infectivity. Rf
0 is estimated by

assuming that the number of worms classified as low, medium, and high. The
fuzzy set is given by the membership function qðxÞ for different cases:

(i) low, if xþ d\xmin,
(ii) medium, if x� d[ xmin and xþ d\xM and
(iii) high, if x� d[ xM .

Case (i): It is noted that Rf
0\1 if x is low.

Case (ii): Since R0ðxÞ ¼ aðxÞbðxÞ/ðxÞ
ðw1ðxÞþ/ðxÞÞðaðxÞþw2ðxÞÞ

is an increasing function of x,

HðkÞ ¼ ½x0; xmax� ¼ supx0 � x � xmax
qðxÞ. Here ðkÞ ¼ lfIðx; tÞ� kg,

FEV½Iðx; tÞ� is the fixed point of HðkÞ and x0 is the solution of the

equation c0
aðxÞbðxÞ/ðxÞ

ðw1ðxÞþ/ðxÞÞðaðxÞþw2ðxÞÞ
¼ k. Since the fixed point of HðkÞ is

same as FEV½c0Rf
0ðxÞ�.

Hence,
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HðkÞ ¼

0 if 0� k� c0
aðxÞbðxÞ/ðxÞ

ðw1ðxÞþ/ðxÞÞðaðxÞþw2ðxÞÞ

qðx0Þ if c0
aðxÞbðxÞ/ðxÞ

ðw1ðxÞþ/ðxÞÞðaðxÞþw2ðxÞÞ
� k

� c0
aðxþdÞbðxþdÞ/ðxþdÞ

ðw1ðxþdÞþ/ðxþdÞÞðaðxþdÞþw2ðxþdÞÞ

0 if c0
aðxþdÞbðxþdÞ/ðxþdÞ

ðw1ðxþdÞþ/ðxþdÞÞðaðxþdÞþw2ðxþdÞÞ\k� 1:

2
666664

ð19Þ

For d[ 0, H is a continuous and decreasing function, and in this case,
FEV½c0R0ðxÞ� is equal to fixed point of H. By direct manipulation, we
have

aðxÞbðxÞ/ðxÞ
ðw1ðxÞ þ /ðxÞÞðaðxÞ þ w2ðxÞÞ

\
FEV½c0R0ðxÞ�

c0

\
aðxþ dÞbðxþ dÞ/ðxþ dÞ

ðw1ðxþ dÞ þ /ðxþ dÞÞðaðxþ dÞ þ w2ðxþ dÞÞ

So, R0ðxÞ\ Rf
0 \ R0ðxþ dÞ.

Case (iii): From the previous case, we have

1
ðw1ðxÞ þ /ðxÞÞðaðxÞ þ w2ðxÞÞ

\ Rf
0 \

1
ðw1ðxþ dÞ þ /ðxþ dÞÞðaðxþ dÞ þ w2ðxþ dÞÞ

It guarantees that the worms invade since Rf
0 [ 1.

6 Comparison Between R0 and Rf
0

Here, we have analyzed the three cases discussed in the previous section related to
the three classifications for the number of infections: low, medium, and high worm
load. In any of the three cases, we have

aðxÞbðxÞ/ðxÞ
ðw1ðxÞ þ /ðxÞÞðaðxÞ þ w2ðxÞÞ

\
FEV½c0R0ðxÞ�

c0

\
aðxþ dÞbðxþ dÞ/ðxþ dÞ

ðw1ðxþ dÞ þ /ðxþ dÞÞðaðxþ dÞ þ w2ðxþ dÞÞ

i.e., R0ðxÞ\Rf
0\R0ðxþ dÞ. Since the function R0 ¼ aðxÞbðxÞ/ðxÞ

ðw1ðxÞþ/ðxÞÞðaðxÞþw2ðxÞÞ
is con-

tinuous, by intermediate mean value theorem we have ~x such that x\~x\xþ d. So,

Rf
0 ¼ R0ð~xÞ[ R0ððxÞÞ ð20Þ

It means that Rf
0 (fuzzy) and R0 (classical) coincide if the number of infection is ~x.
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7 Concluding Remarks

In summary, this paper describes an epidemic VEISV model for the fuzzy prop-

agation of worms in computer network. The comparison between R0 and Rf
0

notices the importance of fuzzy logic in worm propagation. In future, fuzzy-based
analysis of epidemic processes on large networks paves the way to more realistic
models.
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