
Interaction Coupling: A Modern Coupling
Extractor

S. Gomathi and P. Edith Linda

Abstract Software development plays a vital role in interaction between the
methods, classes, and attributes. Coupling is one of the most vibrant internal
qualities to measure the design performance. Many object-oriented metrics have
been proposed to evaluate different aspects of object-oriented program using
coupling. This paper presents a new modern approach, which depicts the concept
of interaction coupling, and a prototype is developed to measure the interaction
coupling. Three types of metrics response for class (RFC), message-passing
coupling (MPC), and method invocation coupling (MIC) that may invoke methods
are analyzed, measured, and summarized.

Keywords Interaction coupling �Class loader � Extractor �Reliability � Efficiency

1 Introduction

Object-oriented development has proved its value for systems that must be
maintained, reused, and modified. Coupling has been defined as one of the most
important qualitative attributes to measure the performance of software at design
or implementation phase [1]. Coupling can be categorized into three types:
component coupling, interaction coupling, and inheritance coupling. This research
is mainly focused on interaction couplings such as MPC, RFC, and MIC. Inter-
action coupling occurs when the methods of a class invoke methods of another
class. In this, the main thing that is to be understood is about message. A message

S. Gomathi (&)
Sri Krishna Arts and Science College, Coimbatore, India
e-mail: gomathisrinivasan88@gmail.com

P. E. Linda
Dr. G. R. Damodaran College of Science, Coimbatore, India
e-mail: p.lindavinod@gmail.com

G. S. S. Krishnan et al. (eds.), Computational Intelligence, Cyber Security
and Computational Models, Advances in Intelligent Systems and Computing 246,
DOI: 10.1007/978-81-322-1680-3_26, � Springer India 2014

237

is a request that an object makes of another object to perform an operation [2]. The
operation executed as a result of receiving a message is called a method.

The rest of the paper is organized as follows. Section 2 summarizes about the
metrics used in the previous papers. Section 3 highlights about the problem with
existing coupling parameters. Section 4 highlights the types of interaction
coupling, and Sect. 5 depicts the framework. Section 6 summarizes a new algo-
rithm design to measure those coupling parameters. Sections 7 and 8 offer the
results and the conclusion.

2 Literature Survey

Li and Henry [3] identified a number of metrics that can predict the maintainability
of a design. They define message-passing coupling (MPC), defined as the number of
send statements defined in a class. The number of send statements that are sent out
from a class may indicate how dependent the implementation of the local methods
is on the methods in other classes. MPC only counts invocations of methods of other
classes, not its own. Chidamber and Kemerer [2] proposed and validated a set of six
software metrics for object-oriented systems, including two measures for coupling
RFC and CBO. The response set (RS) of a class is a set of methods that can
potentially be executed in response to a message received by an object of that class.
A given method is counted only once. RFC includes methods called from outside
the class and also a measure of the communication between that class and other
classes. Vijaya Saradhi and Sastry [4] proposed a unique new approach for metric,
which delivers the system quality based on cohesion and coupling between classes.
The proposed metric shows the relationship between the classes based on the flow
in control and the number of occurrences of class, which is mainly based on the
existing systems’ input. Arisholm et al. [5] stated that the relationships between
coupling and external quality factors of object-oriented software have been studied
extensively for the past few years. The authors concluded about the empirical
relationships between class-level coupling, class fault- proneness and to measure
coupling is through structural properties and static code analysis.

3 Problem Specifications

The current research on modeling and measuring the relationships between object-
oriented programs through coupling analysis is insufficient. Coupling measures are
incomplete in their precision of definition and quantitative computation. Moreover,
some existing coupling measures do not reflect the differences in and the con-
nections between design-level relationships and implementation-level connections.
Hence, the way the coupling is used to solve problems is not satisfactory. Mea-
suring various types of coupling manually is not possible, and tools fail to measure
some important coupling parameters.

238 S. Gomathi and P. E. Linda

4 Proposed Metrics

Different types of coupling have evolved over time. But single type of coupling is
inadequate to reduce the complexity of the code. This paper compared various
couplings and finally selected the best coupling parameters to evaluate the com-
plexity, quality factor, and reliability of object-oriented program [6]. We propose
three metrics MPC, RFC, and MIC that help to detect the reusability and efficiency
in design of object-oriented programs at the early stage.

4.1 Message-Passing Coupling

MPC is the count of total number of functions and procedure calls made to external
units [3]. The MPC measures the dependency of local methods to methods
implemented by other classes.

Viewpoints: This allows for conclusions on reusability, maintenance, and
testing effort [7]. Message passing is calculated at the class level.

MPC ¼
Xn

j¼1

MCe ð1Þ

where MCe is method call to external class and j is the number of classes.

4.2 Method Invocation Coupling

It is defined as the relative number of classes that receive the message from the
particular class [8].

Viewpoints: The number of methods invoked implies the program reliability
and efficiency [9]. The methods invoked should be minimum so as to maintain the
system throughput.

MIC ¼
Xn

j¼1

MIi ð2Þ

where MIi is method invoked from other classes and j is the number of classes.

4.3 Response for Class

RFC is the number of functions and procedures that can be potentially be executed
in a class. Specifically, RFC is the number of operations directly invoked by
member operations in a class plus the number of operations themselves [2].

Interaction Coupling: A Modern Coupling Extractor 239

Viewpoints: If the larger number of methods can be invoked in response to a
message, the testing and debugging of class becomes more complicated [10].

RFC ¼
Xn

j¼1

MCe þMCI ð3Þ

where MCe is method call to external class, MCI is methods of its own class, and
j is the number of classes.

5 Framework of the Proposed System

The proposed framework is named as interaction coupling extractor (ICE), which
is depicted in Fig. 1.

The framework has been partitioned into three phases. Each phase will perform
some unique and important tasks.

5.1 Input Phase

This is the initial phase which is used to get input from the user. Programmer
should give the jar file as input. Java ARchive (JAR) file is a collection of text,
images, packages, and class files of java. A JAR file is essentially a zip file that
contains an optional META-INF directory. But jar file cannot be measured
directly. It must be extracted into individual class files. Jar files of variable size are
given as input to interaction coupling extractor.

Fig. 1 Interaction coupling extractor

240 S. Gomathi and P. E. Linda

5.2 Processing Phase

This is the second level of extraction. Once a jar file is accepted, the file will be
sent to interaction coupling extractor engine where the engine will separate the jar
file into individual class files. That class files will be loaded into class loader in
order to evaluate the interaction coupling parameters (RFC, MPC, and MIC).

5.3 Result Phase

The measured class will be displayed in the text file, which shows the number of
RFC, MIC, and MPC measures of individual class. Then, the results are analyzed.

6 Algorithm Design

This design algorithm shows how to design the interaction coupling parameters
MPC, RFC, and MIC and also shows how to measure those parameters.

Interaction Coupling: A Modern Coupling Extractor 241

7 Results

Two jar files, namely JavaSCV and JEdit, are given as input to interaction coupling
extractor (ICE), and the results are shown below.
File Name: JavaCSV.jar
Size: 14.0 Kb
Source: findjar.com/jar/net/sourceforge/javacsv/javacsv/2.0/jav-

acsv-2.0.jar.htm
Number of classes: 12

From Table 1, it is clearly shown that the RFC and MPC for class com.csv-
reader.CsvReader are higher. Hence, that class must be reprogrammed in order to
make the jar file efficient.
File Name: JEdit.jar
Size: 114 K
Source: http://www.java2s.com/Code/Jar/j/

Downloadjeditsyntaxjar.htm
Number of classes: 46

From Table 2, it is clearly shown that the RFC and MPC for class
installer.SwingInstall are higher. MIC of installer.OperatingSystem class is high.
Hence, both the classes must be reprogrammed in order to make the jar file
efficient.

Other jar files, namely JUnit.jar, HSQL.jar, with more than 200 class files, are
given as input, and the results are analyzed. The efficiencies of all the classes are
measured. Maintainability of the program is improved based on the measurements.
The classes that exceed the maximum ranges must be reprogrammed in order to
make the program efficient, to reduce complexity, and to make it more flexible.

Table 1 Results of JavaCSV.jar

Class name RFC MPC MIC

com.csvreader.CsvReader$HeadersHolder 2 1 1
com.csvreader.CsvReader$RawRecordBuffer 1 0 1
com.csvreader.CsvWriter 58 30 0
com.csvreader.CsvWriter$UserSettings 1 0 1
com.csvreader.CsvReader$UserSettings 1 0 1
com.csvreader.CsvReader 86 36 0
com.csvreader.CsvWriter$Letters 1 0 0
com.csvreader.CsvReader$DataBuffer 1 0 1
com.csvreader.CsvReader$ColumnBuffer 1 0 1
com.csvreader.CsvReader$Letters 1 0 0
com.csvreader.CsvReader$StaticSettings 1 0 0
com.csvreader.CsvReader$ComplexEscape 1 0 0

242 S. Gomathi and P. E. Linda

http://www.java2s.com/Code/Jar/j/Downloadjeditsyntaxjar.htm
http://www.java2s.com/Code/Jar/j/Downloadjeditsyntaxjar.htm

Table 2 Results of JEdit.jar

Class name RFC MPC MIC

installer.CBZip2InputStream 36 6 1
installer.CBZip2OutputStream$1 -1 -2 0
installer.CBZip2OutputStream$StackElem 2 1 1
installer.CBZip2OutputStream 43 10 0
installer.CRC 5 1 2
installer.ConsoleInstall 36 34 1
installer.ConsoleProgress 10 4 2
installer.Install 45 38 9
installer.InstallThread 33 30 3
installer.InvalidHeaderException 3 2 2
installer.NonInteractiveInstall 26 25 1
installer.OperatingSystem$HalfAnOS 5 3 1
installer.OperatingSystem$MacOS 6 3 1
installer.OperatingSystem$OSTask 13 4 8
installer.OperatingSystem$Unix$ManPageOSTask 16 13 1
installer.OperatingSystem$Unix$ScriptOSTask 20 17 1
installer.OperatingSystem$Unix 25 19 4
installer.OperatingSystem$VMS 6 4 1
installer.OperatingSystem$Windows$JEditLauncherOSTask 14 11 0
installer.OperatingSystem$Windows 7 4 1
installer.OperatingSystem 15 10 10
installer.ServerKiller 25 22 1
installer.SwingInstall$ActionHandler 5 3 1
installer.SwingInstall$ChooseDirectory$1 4 2 1
installer.SwingInstall$ChooseDirectory$ActionHandler 14 12 1
installer.SwingInstall$ChooseDirectory 30 27 2
installer.SwingInstall$DirVerifier$1 7 5 1
installer.SwingInstall$DirVerifier$2 8 6 1
installer.SwingInstall$DirVerifier 35 25 3
installer.SwingInstall$SelectComponents 37 33 1
installer.SwingInstall$SwingProgress$1 3 1 1
installer.SwingInstall$SwingProgress$2 4 2 1
installer.SwingInstall$SwingProgress$3 3 1 1
installer.SwingInstall$SwingProgress$4 5 3 1
installer.SwingInstall$SwingProgress$5 3 1 1
installer.SwingInstall$SwingProgress 19 12 1
installer.SwingInstall$TextPanel 16 15 1
installer.SwingInstall$WindowHandler 3 1 1
installer.SwingInstall$WizardLayout 17 11 1
installer.SwingInstall 70 66 4
installer.TarBuffer 34 18 2
installer.TarEntry 63 32 4
installer.TarHeader 22 13 1
installer.TarInputStream$EntryAdapter 7 3 0
installer.TarInputStream 41 25 1
installer.TarOutputStream 33 21 0

Interaction Coupling: A Modern Coupling Extractor 243

8 Conclusion and Future Scope

This paper introduced a framework for interaction coupling for object-oriented
systems. The interaction coupling is best suited to find the reusability and effi-
ciency of the object-oriented systems. The algorithm used to implement the
concept of RFC, MPC, and MIC is easy to understand. The detailed result sets
show how the coupling parameters are measured and evaluated. The future work is
to measure the component and inheritance coupling. The component coupling
show how the arguments passed from one method to another method are measured.
Inheritance coupling is used to measure the coupling between the inherited classes.
The proposed framework will measure both types of coupling, and the measured
parameters are displayed as chart.

References

1. Amjan Shaik et al., ‘‘Metrics for Object Oriented Design Software Systems: A Survey’’,
Journal of Emerging Trends in Engineering and Applied Sciences ISSN: 21417016 (2010).

2. Chidamber, Shyam and Kemerer, Chris, ‘‘A Metrics Suite for Object-Oriented Design’’,
IEEE Transactions on Software Engineering, June, (1994), pp. 476–492.

3. Li and Henry, ‘‘Object Oriented Metrics which predict maintainability’’, Journal of Systems
and Software, Volume 23 Issue 2, Nov (1993).

4. L.C. Briand, J.W. Daly and J.K. Wust, ‘‘A Unified Framework for coupling measurement in
Object Oriented Systems’’, IEEE Transaction on Software Engineering (1999), Vol. 25,
Issue.

5. E. Arisholm et al., ‘‘Dynamic coupling measurement for object-oriented software’’, IEEE
Transactions on Software Engineering, vol. 30, pp. 491–506, August 2004.

6. M.V. Vijaya Saradhi and B.R. Sastry ‘‘ESPQ: A New Object Oriented Design Metric for
Software Quality Measurement’’ International Journal of Engineering Science and
Technology (2010), Vol. 2, Issue. 3.

7. Harrison. R et al, ‘‘Coupling metrics for object-oriented design’’ proceedings for the Fifth
International Software Metrics Symposium, (1998), pages 150–157.

8. Ramanath Subramanyam et al., ‘‘Empirical analysis of CK metrics for Object-Oriented
design complexity: Implications for Software Defects’’, IEEE transactions on software
engineering (2003), vol. 29, No. 4.

9. K K Agarwal, Yogesh Singh, ArvinderKaur and Ruchika Malhotra, ‘‘Empirical Study of
Object-Oriented Metrics’’, (2006), vol. 5, No. 8.

10. Magnus Andersson, Patrik Vestergren, ‘‘Object-Oriented Design Quality Metrics’’ http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.5047.

244 S. Gomathi and P. E. Linda

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.5047
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.5047

	26 Interaction Coupling: A Modern Coupling Extractor
	Abstract
	1…Introduction
	2…Literature Survey
	3…Problem Specifications
	4…Proposed Metrics
	4.1 Message-Passing Coupling
	4.2 Method Invocation Coupling
	4.3 Response for Class

	5…Framework of the Proposed System
	5.1 Input Phase
	5.2 Processing Phase
	5.3 Result Phase

	6…Algorithm Design
	7…Results
	8…Conclusion and Future Scope
	References

