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Abstract Kernel methods are ones that, by replacing the inner product with
positive definite function, implicitly perform a nonlinear mapping of input data
into a high-dimensional feature space. Various types of kernel-based clustering
methods have been studied so far by many researchers, where Gaussian kernel, in
particular, has been found to be useful. In this paper, we have investigated the role
of kernel function in clustering and incorporated different kernel functions. We
discussed numerical results in which different kernel functions are applied to
kernel-based hybrid c-means clustering. Various synthetic data sets and real-life
data set are used for analysis. Experiments results show that there exist other
robust kernel functions which hold like Gaussian kernel.

Keywords Clustering �Kernel function �Gaussian kernel �Hyper-tangent kernel �
Log kernel

1 Introduction

Fuzzy clustering has emerged as an important tool for discovering the structure of
data. Kernel methods have been applied to fuzzy clustering, and the kernelized
version is referred to as kernel-based fuzzy clustering. The kernel-based classifi-
cation in the feature space not only preserves the inherent structure of groups in the
input space, but also simplifies the associated structure of the data [1]. Since
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Girolami first developed the kernel k-means clustering algorithm for unsupervised
classification [2], several studies have demonstrated the superiority of kernel
clustering algorithms over other approaches to clustering [3–5]. The point raised
regarding the kernel-based clustering method of data partitioning is the choice of
the type of kernel function chosen in defining the nonlinear mapping. Clearly, the
choice of kernel is data specific; however, in the specific case of data partitioning,
a kernel which will have universal approximation qualities such as RBF is most
appropriate. In [6], we proposed kernel-based hybrid c-means clustering (KPFCM)
as an improvement over possibilistic fuzzy c-means clustering [8] using Gaussian
kernel function. In most papers, Gaussian kernel function is used as the kernel
function. Different kernels will induce different metric measures resulting in new
clustering algorithms. Very few papers have studied other kernel functions such as
hyper-tangent kernel function [7, 9]. In this paper, we have tried to investigate the
effect of different kernel functions on the clustering results. To our knowledge, this
is the first such comparison of kernel clustering algorithms using different kernel
functions for general purpose clustering. The paper is organized as follows. A
background of kernel-based approach is given in Sect. 2. Kernel-based hybrid
c-means clustering with different kernel functions incorporated is described in
Sect. 3. The experimental results and comparative analysis are given in Sect. 4
followed by the main conclusions presented in Sect. 5.

2 Kernel-Based Approach

A kernel function is a generalization of the distance metric that measures the
distance between two data points as the data points are mapped into a high-
dimensional space in which they are more clearly separable. By employing a
mapping function, UðxÞ; which defines a nonlinear transformation: x! UðxÞ, the
nonlinearly inseparable data structure existing in the original data space can
possibly be mapped into a linearly separable case in the higher-dimensional fea-
ture space. Given an unlabeled data set X ¼ x1; . . .; xNf g in the p-dimensional
space Rp; let U be a nonlinear mapping function from this input space to a high-
dimensional feature space H.

U: Rp ! H; x! UðxÞ

It is possible to compute Euclidean distances in feature space without knowing
explicitly U. This can be done using kernel trick in which the computation of
distances of vectors in feature space is just a function of the input vectors.

UðxkÞ � UðviÞk k2 ¼ ðUðxkÞ � UðviÞÞ � ðUðxkÞ � UðviÞÞ
¼ UðxkÞ � UðxkÞ � 2UðxkÞUðviÞ þ UðviÞ � UðviÞ
¼ Kðxk; xkÞ � 2Kðxk; viÞ þ Kðvi; viÞ

ð1Þ
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Some examples of robust kernel functions are given in Table 1.

3 Kernel-Based Hybrid c-Means Clustering

We proposed a kernel-based hybrid c-means clustering (KPFCM) in [6] which
used Gaussian kernel in the induced distance metric. The KPFCM model mini-
mizes the following objective function:

JKPFCMðU;V; TÞ ¼
XN

k¼1

Xc

i¼1

aum
ik þ btgik

� �
UðxkÞ � UðviÞk k2 þ

Xc

i¼1

ci

XN

k¼1

1� tikð Þg

ð2Þ

where UðxkÞ � UðviÞk k2 is the square of distance between UðxkÞ and UðviÞ. Also
0� uik � 1; tik\1; a [ 0; b [ 0; m [ 1 and g[ 1: The constant a defines the
relative importance of fuzzy membership, whereas b relates to the typicality value
in the objective function. If we confine ourselves to the Gaussian kernel function
which is used almost exclusively in the literature, then Kðx; xÞ ¼ 1: UðxkÞ�k
UðviÞk2 ¼ 2 1� Kðxk � viÞð Þ. Thus, Eq. 2 can be rewritten as

JKPFCMðU;V; TÞ ¼ 2
XN

k¼1

Xc

i¼1

aum
ik þ btgik

� �
1� Kðxk; viÞð Þ þ

Xc

i¼1

ci

XN

k¼1

ð1� tikÞg

ð3Þ

The update of uik; vi and tik is as follows:

uik ¼ 1= 1� Kðxk; viÞð Þð Þ1=m�1=
Xc

j¼1

1= 1� Kðxk; viÞð Þð Þ1=m�1 ð4Þ

vi ¼
XN

k¼1

aum
ik þ btgik

� �
K xk; við Þxk=

XN

k¼1

aum
ik þ btgik

� �
K xk; við Þ ð5Þ

tik ¼ 1= 1þ 2bð1� K xk; við Þ=ci½ �
1

g�1

� �
ð6Þ

Table 1 List of kernel functions

Name of kernel Kernel function Attribute

Gaussian exp � xi � xj

�� ��2
=2r2

� �
Kðx; xÞ ¼ 1

Hyper-tangent 1� tanh b xi � xj

�� ��2
=2r2

� �
Kðx; xÞ ¼ 1

Log log 1þ b xi � xj

�� ��2
� �

Kðx; xÞ ¼ 0
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We now incorporate different kernel functions to examine and compare with
Gaussian kernel. The names given to different clustering algorithms are KPFCM
(using Gaussian kernel), KPFCM-H (hyper-tangent kernel), and KPFCM-L (log
kernel). Using a hyper-tangent kernel function, the objective function for KPFCM-
H clustering is as follows:

JKPFCM�H ¼ 2
XN

k¼1

Xc

i¼1

aum
ik þ btgik

� �
tanh

xk � vik k2

r2

 !
þ
Xc

i¼1

ci

XN

k¼1

1� tikð Þg ð7Þ

The cluster center vi for hyper-tangent kernel function is as follows:

vi ¼
PN

k¼1 aum
ik þ btgik

� �
K xk; við Þ 1þ tanh

xk�vik k2

r2

� �
xk

� �

PN
k¼1 aum

ik þ btgik
� �

K xk; við Þ 1þ tanh
xk�vik k2

r2

� �� � ð8Þ

The expressions for uik and tik remain the same as in Eqs. 4 and 6, respectively.
Using a log kernel function, the objective function for KPFCM-L clustering is as
follows:

JKPFCM�L ¼ �2
XN

k¼1

Xc

i¼1

aum
ik þ btgik

� �
log 1þ b xk � vik k2
� �

þ
Xc

i¼1

ci

XN

k¼1

1� tikð Þ

ð9Þ

The cluster center vi for log kernel function is as follows:

vi ¼
PN

k¼1 aum
ik þ btgik

� �
1=1þ b xk � vik k2
� �

xk

PN
k¼1 aum

ik þ btgik
� �

1=1þ b xk � vik k2
� � ð10Þ

The update of uik and tik for log kernel function is as follows:

uik ¼ log 1þ b xk � vik k2
� �� ��1=ðm�1Þ

=
Xc

i¼1

log 1þ b xk � vik k2
� �� ��1=ðm�1Þ

ð11Þ

tik ¼ 1=ð1þ ð�bðlogð1þ b xk � vik k2Þ=ciÞ�1=ðg�1ÞÞÞ ð12Þ

4 Experimental Study

A series of experiments were run for a variety of data sets using the KPFCM
clustering. The objective of this comprehensive suite of experiments is to come up
with a thorough comparison of the performance of the KPFCM clustering using
different kernel functions in the objective function. Many two-dimensional
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synthetic data sets were used with a wide variety in the shape of clusters, number
of data points, and count of features of each datum. The real-life data sets used in
the experiments are well-known Iris data sets.

4.1 Identical Data with Noise

The first simulation experiment involves the data set X12 [8]. The ideal (true)

centroids for the X12 data set are Videal ¼
�3:34 0
3:34 0

� �
: Let V12

KPFCM;V
12
KPFCM�H;

V12
KPFCM�L be the final centroids identified by their respective algorithms. The

results of the final centroids identified by their respective algorithms are tabulated
in Table 2. To show the effectiveness of the proposed algorithm, we also compute

the error E� ¼ Videal � V12
�

�� ��2
, where * corresponds to KPFCM/KPFCM-H/

KPFCM-L, respectively. Figure 1 displays the clustering results of three clustering
algorithms with different kernel functions. The centroids produced by clustering
techniques using different kernel functions are almost identical.

4.2 Dunn Data Set

In general, all clustering techniques perform well for pattern sets that contain
patterns of similar volume and similar number of patterns. By changing the vol-
ume of clusters in a pattern set, we observe the effectiveness of different clustering

Table 2 Terminal centroids produced by KPFCM, KPFCM-H, and KPFCM-L on X12

Clustering KPFCM KPFCM-H KPFCM-L

Centroids [-3.33 0.002 3.33 0.002] [-3.4 0 3.4 0] [-3.33 0.001 3.33 0.001]
E� 0.005 0 0.004

Fig. 1 Clustering results for data X12

Performance Assessment of Kernel-Based Clustering 143



algorithms. Figure 2 displays the clustering results of three clustering algorithms.
We see that all clustering algorithms correctly partition the two clusters with
almost same accuracy.

4.3 Gaussian Random Data

In this example, a Gaussian random number generator was used to create a data set
consisting of two clusters. The noise points are then added to the lower cluster to
obtain a difference in volume compared to the upper cluster. Figure 3 shows the
clustering results of three clustering algorithms. There are only two misclassifi-
cations in case of KPFCM-H. The results produced by KPFCM and KPFCM-L are
completely identical.

4.4 Iris Data Set

This is a four-dimensional data set containing 50 samples each of three species of
Iris flowers. One class is linearly separable from the other two; the latter are not
linearly separable from each other. As indicated in Table 3, the typical result of

Fig. 2 Clustering results for Dunn data set

Fig. 3 Clustering results for Gaussian random data set
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comparing KPFCM partitions to the physically correct labels of Iris is 11 errors.
KPFCM-H also gives 11 errors. The number of misclassified data by KPFCM-L
algorithm is 08 with an accuracy of 94.6 %.

5 Conclusions

This paper has presented the detailed analysis of different kernel functions on
KPFCM clustering. In literature, most kernel-based clustering algorithms use
Gaussian kernel functions. We have studied two nonGaussian kernel functions,
namely hyper-tangent and log kernel functions. We incorporated these kernel
functions in KPFCM clustering and applied these clustering algorithms on a wide
variety of synthetic data as well as real-life data set. From the experiments, we
have seen that the two nonGaussian kernel functions have worked as well as
Gaussian kernel function. To summarize, we conclude that we have another class
of robust kernel functions that have worked well in typical clustering examples of
nonlinear classification boundaries.
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