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Abstract Much work has been done on classification for the past fifteen years to
develop adapted techniques and robust algorithms. The problem of data correction
in the presence of simultaneous sources of drift, other than sensor drift, should also
be investigated, since it is often the case in practical situations. ELM is a com-
petitive machine learning technique, which has been applied in different domains
for classification. In this paper, ELM with different activation functions has been
implemented for gas sensor array drift dataset. The experimental results show that
the ELM with bipolar function classifies the drift dataset with an average accuracy
of 96 % than the other function. The proposed method is compared with SVM.
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1 Introduction

The past decade has seen a significant increase in the application of multi-sensor
arrays to gas classification and quantification. The idea to combine an array of
sensors with a pattern recognition algorithm to improve the selectivity of the single
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gas sensor has been widely accepted and being used by researchers in this field. In
fact, an array of different gas sensors is used to generate a unique signature for
each gas [1]. A single sensor in the array should not be highly specific in its
response but should respond to a broad range of compounds, so that different
patterns are expected to be related to different odors [2]. Different methods have
been suggested recently to compensate for sensor drift in experiments for gas
identification [3]. Chemical sensor arrays combined with read-out electronics and
a properly trained pattern recognition stage are considered to be the candidate
instrument to detect and recognize odors as gas mixtures and volatiles [4].

After learning the features of the class, the SVM recognizes unknown samples
as a member of a specific class. SVMs have been shown to perform especially well
in multiple areas of biological analyses, especially functional class prediction from
microarray sensors produced data [5].

It is not surprising to see that it may take several minutes, several hours, and
several days to train neural networks in most of the applications. Unlike traditional
popular implementations, for single-hidden-layer feedforward neural networks
(SLFNs) with additive neurons, which is a new learning algorithm called extreme
learning machine (ELM) [6].

This paper has been organized into five sections. Section 2 presents the short
note about the dataset used. Sect. 3 describes the approach of (ELM). In Sect. 4,
experimental results of various activation function and discussion are presented. In
Sect. 5, conclusions and further research scope are presented.

2 Dataset

The drift dataset contains 13,910 measurements from 16 chemical sensors utilized
in simulations for drift compensation in a discrimination task of six gases at
various levels of concentrations. The resulting dataset comprises of six distinct
pure gaseous substances, namely ammonia, acetaldehyde, acetone, ethylene, eth-
anol, and toluene, each dosed at a wide variety of concentration values ranging
from 5 to 1,000 ppmv [7]. This dataset is available in http://archive.ics.uci.edu/ml/
datasets/Gas+Sensor+Array+Drift+Dataset

3 Extreme Learning Machine

Recently, a new learning algorithm for SLFN named the ELM has been proposed
by Huang et al. [6, 8]. The SLFN with randomly chosen input weights and hidden
bias can approximate any continuous function to any desirable accuracy. ELM is a
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single-hidden-layer neural network with good generalization capabilities and
extreme learning capacity. The generalization performance of ELM for classifi-
cation problem depends on three parameters. Number of hidden nodes, the input
weights, and the bias values are needed to be optimally chosen [8]. For hidden
layer, many activation functions such as sigmoidal, sine, Gaussian, and hard
limiting function can be used, and the output neurons have a linear function as an
activation function [9–11].

The ELM has several interesting and significant features different from tradi-
tional popular learning algorithms.

For the dataset which contain N distinguish objects ðxi; tiÞ where xi ¼
½xi1; xi2; xi3; . . .; xin�T 2 Rn and ti ¼ ½ti1; ti2; ti3; . . .; tim�T 2 Rm, the relationship
between the actual output of SLFN, with an infinite differentiable activation
function gðxÞ, and the target outputs ti is given by

XN
�

i¼1

bigðwixi þ biÞ ¼ tj; j ¼ 1; . . .;N: ð1Þ

Here, ~N is the number of hidden nodes, wi ¼ ½wi1; wi2; wi3; . . .;win�T and

bi ¼ ½bi1; bi2; bi3; . . .; bim�T are the weight vector connecting inputs to the ith
hidden neuron and the ith hidden neuron to output neurons, respectively, and bi is
the bias of the ith hidden neuron. Equation (1) can be rewritten compactly as
Hb ¼ T

where H ¼

gðw1:x1 þ b1Þ ::: gðw~N:x1 þ b~NÞ
:

:

:

:::

:::

:::

:

:

:
gðwi:xN þ b1Þ ::: gðw~N:xN þ b~NÞ

2

666664

3

777775

N�~N

is called the hidden

layer output matrix of the neural network [6], and bi ¼ ½bi; . . .; b~N �
T
~N�m,

T ¼ ½ti; . . .; tN �TN �m:

Traditionally, training of SLFN has typically applied the back-propagation
learning algorithm to adjust the set of weights ðwi; biÞ and biases ðbiÞ. It is
common and problem dependent.

ELM is introduced to resolve the issues in back-propagation neural network.
Initially, parameters for the hidden node may be randomly specified. The output
weights can then be analytically determined. Also, it is shown that the upper bound
of the required number of hidden nodes is the number of distinct training objects

(i.e., eN � N). Thus, given (pre-specified) N, associated with parameters ðwi; biÞ,
the hidden nodes can be randomly generated. Determining the output weights b is
as simple as finding the least-square solutions to the given linear system.
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4 Experimental Results

In this experiment, the features in the training datasets are scaled appropriately to
lie between -1 and +1. The kernel bandwidth parameter, the SVM parameter, and
ELM parameter were chosen using 10-fold cross-validation by performing a grid
search in the range [2-10, 2-9,…, 24, 25] and [2-5, 2-4,…, 29, 210], respectively.
The performance of an SVM trained on batch 1 and tested on batches 2–10
respectively. Note that this curve is estimated with the same SVM model used in
Fig. 1 but tested on data from batches instead of months. Similar behaviors were
found when we trained several SVMs on batches 2–5 and tested them on
successive batches. These results are again shown in Fig. 2. The complete set of
results, i.e., the accuracy of classifiers trained on batches 1–9 and tested
on successive batches, is given in Table 1. The individual plots correspond to the
performance of classifier trained with batch 1 and tested on batches at subsequent
time points after applying the component correction method for every one of the
six reference gases (Figs. 3, 4 and 5).

In this section, the gas sensor array drift data are classified by the activation
function unipolar, bipolar, and radial basis kernel, and they are classified into six
classes. Before classifying, features are normalized between -1 and +1.

Fig. 1 Classification
accuracy of the SVM
classifiers with RBF kernel
function

Fig. 2 Classification
accuracy of the ELM
classifiers with unipolar
function
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Fig. 5 Classification accuracy (in %) on batches 2–10 by SVM and ELM with activation
function (unipolar, bipolar, RBF)

Fig. 4 Classification accuracy of the ELM classifiers with RBF kernel function

Fig. 3 Classification accuracy of the ELM classifiers with bipolar function
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5 Conclusion

Gas sensor array drift dataset has been analyzed using SVM and the proposed
ELM methods. Six chemical components are used to acquire the drift dataset with
different time series. In this paper, ELM has been used for classification and
compared with SVM. The proposed ELM method achieves the average accuracy
of 92.23 % when compared with SVM. This classification of chemical components
may be used to train the system to defect the cancer from human exhaled breathe
in future.
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