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Abstract We consider the new game of Cops and Attacking Robbers, which is
identical to the usual Cops and Robbers game except that if the robber moves to a
vertex containing a single cop, then that cop is removed from the game. We study
the minimum number of cops needed to capture a robber on a graph G, written
cc(G). We give bounds on cc(G) in terms of the cop number of G in the classes of
bipartite graphs and diameter two, K1,m-free graphs.
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1 Introduction

Cops and Robbers is a vertex-pursuit game played on graphs, which has been the
focus of much recent attention. Throughout, we only consider finite, connected,
and simple undirected graphs. There are two players consisting of a set of cops and
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a single robber. The game is played over a sequence of discrete time steps or
rounds, with the cops going first in the first round and then playing on alternate
time steps. The cops and robber occupy vertices, and more than one cop may
occupy a vertex. When a player is ready to move in a round, they may move to a
neighbouring vertex or pass by remaining on their own vertex. Observe that any
subset of cops may move in a given round. The cops win if after some finite
number of rounds, one of them can occupy the same vertex as the robber. This is
called a capture. The robber wins if he can avoid capture indefinitely. A winning
strategy for the cops is a set of rules that if followed result in a win for the cops,
and a winning strategy for the robber is defined analogously.

If we place a cop at each vertex, then the cops are guaranteed to win. Therefore,
the minimum number of cops required to win in a graph G is a well-defined
positive integer, named the cop number of the graph G. We write c(G) for the
cop number of a graph G. For example, the Petersen graph has cop number 3.
Nowakowski and Winkler [14], and independently Quilliot [19], considered the
game with one cop only; the introduction of the cop number came in [1]. Many
papers have now been written on cop number since these three early works; see the
book [8] for additional references and background on the cop number. See also
the surveys [2, 4, 5].

Many variants of Cops and Robbers have been studied. For example, we may
allow a cop to capture the robber from a distance k, where k is a non-negative
integer [7], play on edges [12], allow one or both players to move with different
speeds or teleport, or allow the robber to be invisible. See Chap. 8 of [8] for a non-
comprehensive survey of variants of Cops and Robber.

We consider a new variant of the game of Cops and Robbers, where the robber
is able to essentially strike back against the cops. We say that the robber attacks a
cop if he chooses to move to a vertex on which a cop is present and eliminates her
from the game. In the game of Cops and Attacking Robbers, the robber may attack
a cop, but cannot start the game by moving to a vertex occupied by a cop; all other
rules of the game are the same as in the classic Cops and Robbers. We note that if
two cops are on a vertex u and the robber moves to u, then only one cop on u is
eliminated; the remaining cop then captures the robber, and the game ends. We
write cc(G) for the minimum number of cops needed to capture the robber. Note
that cc(G) is the analogue of the cop number in the game of Cops and Attacking
Robbers; our choice of notation will be made more transparent once we state
Theorem 1. We refer to cc(G) as the cc-number of G. Since placing a cop on each
vertex of G results in a win for the cops, the parameter cc(G) is well defined.

To illustrate that cc(G) can take different values from the cop number, consider
that for the cycle Cn with n vertices, we have the following equalities (which are
easily verified):

ccðCnÞ ¼
1 if n ¼ 3;
2 if 4� n� 6;
3 else:

8
<

:
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We outline some basic results and bounds for the cc-number in Sect. 2. We
consider bounds on cc(G) in terms of c(G) in Sect. 3. In Sect. 4, we give the bound
of cc(G) B c(G) ? 2 in the case that G is bipartite; see Theorem 9. In the final
section, we supply in Theorem 10 an upper bound for cc(G) for K1,m-free, diameter
two graphs.

For background on graph theory, see [20]. For a vertex u, we let N(u) denote the
neighbour set of u, and let N½u� ¼ NðuÞ [ fug denote the closed neighbour set of u.
The set of vertices of distance 2 to u is denoted by N2(u). We denote by (G) the
minimum degree in G. In a graph G, a set S of vertices is a dominating set if every
vertex not in S has a neighbour in S. The domination number of G, written c(G), is
the minimum cardinality of a dominating set. The girth of a graph is the length of
the shortest cycle contained in that graph and is ? if the graph contains no cycles.

2 Basic Results

In this section, we collect together some basic results for the cc-number. As the
proofs are either elementary or minor variations of the analogous proofs for the
cop number, they are omitted. The first result on the game of Cops and Attacking
Robbers is the following theorem; note that the second inequality naturally inspires
the notation cc(G). We use the notation �cðGÞ for the edge cop number, which is a
variant where the cops and robber move on edges; see [12].

Theorem 1 If G is a graph, then

cðGÞ� ccðGÞ�minf2cðGÞ; 2�cðGÞ; cðGÞg:

The following theorem is foundational in the theory of the cop number.

Theorem 2 [1] If G has girth at least 5, then

cðGÞ� dðGÞ:

The following theorem extends this result to the cc-number.

Theorem 3 If G has girth at least 5, then

ccðGÞ� dðGÞ þ 1:

Isometric paths play an important role in several key theorems in the game of
Cops and Robbers, such as the cop number of planar graphs (see Chap. 4 of [8]).
We call a path P in a graph G isometric if the shortest distance between any two
vertices is equal in the graph induced by P and in G. For a fixed integer k C 1,
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an induced subgraph H of G is k-guardable if, after finitely many moves, k cops
can move only in the vertices of H in such a way that if the robber moves into H at
round t, then he will be captured at round t ? 1 by a cop in H. For example, a
clique in a graph is 1-guardable.

Aigner and Fromme [1] proved the following result.

Theorem 4 [1] An isometric path is 1-guardable.

We have an analogue of Theorem 4 for the cc-number.

Theorem 5 An isometric path is 2-guardable in the game of Cops and Attacking
Robbers, but need not be 1-guardable.

See Fig. 1 for an example where the robber can freely move onto an isometric
path without being captured by a sole cop.

A graph G is called planar if it can be embedded in a plane without two of its
edges crossing. It was shown first in [1] that planar graphs require at most three
cops to catch the robber; see [8] for an alternative proof of this fact. Given the
results above, we may conjecture that the cc-number of a planar graph is at most 4
or even 5, but either bound remains unproven.

Outerplanar graphs are those that can be embedded in the plane without
crossings in such a way that all of the vertices belong to the unbounded face of the
embedding. Clarke proved the following theorem in her doctoral thesis.

Theorem 6 [11] If G is outerplanar, then c(G) B 2.

The counterpart to Theorem 6 is the following.

Theorem 7 If G is outerplanar, then cc(G) B 3.

Meyniel’s conjecture—first communicated by Frankl [13]—is one of the most
important open problems surrounding the game of Cops and Robbers. The con-
jecture states that cðnÞ ¼ Oð

ffiffiffi
n
p
Þ, where c(n) is the maximum of c(G) over all

n-vertex, connected graphs. Cops and Robbers has been studied extensively for
random graphs (see for example, [3, 9, 15, 16]), partly owing to a search for
counterexamples to Meyniel’s conjecture. However, it was recently shown that
Meyniel’s conjecture holds asymptotically almost surely (that is, with probability
tending to 1 as the number of vertices tends to infinity) for both binomial random
graphs G(n, p) [17] as well as random d-regular graphs [18].

C

R

Fig. 1 One cop cannot guard the isometric path (depicted in bold). We assume that the robber
has just arrived at their vertex, and it is the cop’s turn to move
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In [9], it was shown that for dense random graphs, where p ¼ n�oð1Þ and p\1� �
for some �[ 0, asymptotically almost surely we have that

cðGðn; pÞÞ ¼ ð1þ oð1ÞÞcðGðn; pÞÞ ¼ ð1þ oð1ÞÞ log1=ð1�pÞ n: ð1Þ

Note that (1) implies that c(G(n, p)) = (1 ? o(1))cc(G(n, p)) for the stated
range of p; in particular, applying (1) to the p = 1/2 case (which corresponds to
the uniform probability space of all labelled graphs on n vertices), we have that for
every �[ 0, almost all graphs satisfy cc Gð Þ=c Gð Þ 2 ½1; 1þ ��. Unfortunately, the
asymptotic value of the cop number is not known for sparser graphs. However, it
may be provable that cðGðn; pÞÞ ¼ ð1 þ oð1ÞÞccðGðn; pÞÞ for sparse graphs,
without finding an asymptotic value.

We finish the section by noting that graphs with cc(G) = 1 are precisely those
with a universal vertex. However, characterizing those graphs G with cc(G) = 2 is
an open problem. Graphs with cc(G) = 2 include cop-win graphs without uni-
versal vertices and graphs which are not cop win but have domination number 2.
Before the reader conjectures this gives a characterization, note that the graph in
Fig. 2 with cc-number equalling 2 is in neither class.

3 How Large Can the cc-Number Be?

One of the main unanswered questions on the game of Cops and Attacking
Robbers is how large the cc-number can be relative to the cop number. Many of
the results from the last section might lead one to (mistakenly) conjecture that

ccðGÞ� cðGÞ þ 1

for all graphs, and this was the thinking of the authors and others for some time.
We provide a counterexample below.

By Theorem 1, we know that cc(G) is bounded above by 2c(G). For example,
this is a tight bound for a path of length at least 3. However, we do not know an
improved bound which applies to general graphs, nor do we possess graphs G with
c(G) [ 2 whose cc-number equals 2c(G). In this section, we outline one approach

Fig. 2 A graph G with c(G) = cc(G) = 2 and c(G) = 3
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which may ultimately yield such examples. Improved bounds for several graph
classes are outlined in the next two sections.

Our construction utilizes line graphs of hypergraphs. For a positive integer k, a
k-uniform hypergraph has every hyperedge of cardinality k. A hypergraph is linear
if any two hyperedges intersect in at most one vertex. The line graph of a
hypergraph H, written as L(H), has one vertex for each hyperedge of H, with two
vertices adjacent if the corresponding hyperedges intersect.

Lemma 8 Let H be a linear k-uniform hypergraph with minimum degree at least 3
and girth at least 5. If L(H) has domination number at least 2k, then
cc(L(H)) [ 2k.

Proof Suppose there are at most 2k - 1 cops. Since the domination number of
L(H) is at least 2k, the robber can choose an initial position that lets him survive
the cops’ first move. To show that 2k - 1 cops cannot catch the robber in the game
of Cops and Attacking Robbers on L(H), suppose otherwise, and consider the state
of the game on the robber’s final turn (that is, just before he is to be captured). Let
v be the robber’s current vertex, Ev the corresponding edge of H, and
w1;w2; . . .;wk the elements of Ev. The neighbours of v in L(H) are precisely those
vertices corresponding to the edges of H that intersect Ev; denote by Swi the set of
vertices (other than v) corresponding to edges containing wi. Each Swi is a clique;
moreover, since H has minimum degree at least 3, each contains at least two
vertices. By hypotheses for H, it follows that the Swi are disjoint and that no vertex
outside Swi dominates more than one vertex inside. Finally, since H has girth at
least 5, no vertex in G dominates vertices in two different Swi (that is, the
neighbourhoods N[Swi ] only have v in common).

Consider the cops’ current positions. The cops must dominate all of N[v], since
otherwise the robber would be able to survive for one more round (by moving to an
undominated vertex). Since the N[Swi ] only have v in common, for some j, we have
at most one cop in N [Swj ]. If in fact there are no cops in N[Swj ], then no vertices of
Swj are dominated, a contradiction. Thus, Swj contains exactly one cop. Since each
vertex outside Swj dominates at most one vertex inside and Swj contains at least two
vertices, the cop must actually stand within Swj . However, since she is the only cop
within N[Swj ], the robber may attack the cop without leaving himself open to
capture on the next turn. Thus, the robber always has a means to avoid capture on
the cops’ next turn. Hence, at least 2k cops are needed to capture the robber, as
claimed. h

We aim to find, for all k, graphs G such that c(G) = k and cc(G) = 2k. This,
however, remains open for all k C 3.

As an application of the lemma, take H to be the Petersen graph. It is easily
verified that c(L(H)) = 2; see also [12]. Lemma 8 with k = 2 shows that
cc(L(H)) C 4; hence, Theorem 1 then implies that cc(L(H)) = 4. See Fig. 3 for a
drawing of the line graph of the Petersen graph.
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4 Bipartite Graphs

For bipartite graphs, we derive the following upper bound.

Theorem 9 For every connected bipartite graph G, we have that cc(G)
B c(G) ? 2.

Proof Fix a connected bipartite graph G. Let k = c(G); we give a strategy for
k ? 2 cops to win the game of Cops and Attacking Robbers on G. Label the cops
C1;C2; . . .;Ck;C�1 ;C

�
2. Intuitively, cops C1, C2, …, Ck attempt to follow a winning

strategy for the ordinary Cops and Robber game on G; since they must avoid being
killed by the robber, they may not be able to follow this strategy exactly, but can
follow it ‘‘closely enough’’. Cops C�1 and C�2 play a different role: They occupy a
common vertex throughout the game, and in each round, they simply move closer
to the robber. This has the effect of eventually forcing the robber to move on every
turn. (Since the cops move together, the robber cannot safely attack either one.)
Further, when the robber passes, the cops C1;C2; . . .;Ck pass. Therefore, we may
suppose throughout that the robber moves to a new vertex on each turn.

It remains to formally specify the movements of C1;C2; . . .;Ck. To each cop Ci,
we associate a shadow Si. Throughout the game, the shadows follow a winning

strategy for the ordinary game on G. Let CðtÞi ; S
ðtÞ
i ; and RðtÞ denote the positions of

Ci, Si, and the robber, respectively, at the end of round t. We maintain the fol-
lowing invariants for 1 B i B k and all t:

1. SðtÞi 2 N CðtÞi

h i
(that is, each cop remains on or adjacent to her shadow).

2. if Cðtþ1Þ
i 6¼ Sðtþ1Þ

i , then Sðtþ1Þ
i and RðtÞ belong to different partite sets of G.

3. Cðtþ1Þ
i is not adjacent to R(t) (that is, the robber never has the opportunity to

attack any cop).

On round t ? 1, each cop Ci moves as follows:

(a) If CðtÞi 6¼ SðtÞi , then Ci moves to SðtÞi .

(b) If CðtÞi ¼ SðtÞi , and Sðtþ1Þ
i is not adjacent to R(t), then Ci moves to Sðtþ1Þ

i .
(c) Otherwise, Ci remains at her current vertex.

Fig. 3 The line graph of the Petersen graph
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By invariant (1), this is clearly a legal strategy.
We claim that all three invariants are maintained. Invariant (1) is straightforward

to verify. For invariant (2), first suppose that CðtÞi ¼ SðtÞi , but Cðtþ1Þ
i 6¼ Sðtþ1Þ

i . By the

cops’ strategy, this can happen only when Sðtþ1Þ
i is adjacent to R(t), in which case,

the shadow and robber belong to different partite sets, as desired. Now, suppose that

CðtÞi 6¼ SðtÞi and Cðtþ1Þ
i 6¼ Sðtþ1Þ

i . By the cops’ strategy, we have Cðtþ1Þ
i ¼ SðtÞi . It

follows that Cðtþ1Þ
i 6¼ CðtÞi , Sðtþ1Þ

i 6¼ SðtÞi , and Rðt�1Þ 6¼ RðtÞ. Thus, if SðtÞi and Rðt�1Þ

belong to different partite sets, then so must Sðtþ1Þ
i and RðtÞ; that is, the invariant is

maintained. For invariant (3), if Sðtþ1Þ
i is adjacent to RðtÞ, then we may suppose that

Sðtþ1Þ
i 6¼ SðtÞi , since otherwise the shadow would have captured the robber in round

t ? 1. By the cops’ strategy, we now have that Cðtþ1Þ
i 6¼ Sðtþ1Þ

i . But now, the cop
and her shadow are in different partite sets by invariant (1), and the shadow and
robber are in different partite sets by invariant (2), so the cop and robber are in the
same partite set, contradicting adjacency of the cop and the robber.

Since the shadows follow a winning strategy, eventually some shadow Si captures

the robber; that is, for some t, we have that either SðtÞi ¼ RðtÞ or Sðtþ1Þ
i ¼ RðtÞ. In the

former case, invariant (3) implies that CðtÞi 6¼ SðtÞi and invariant (1) implies that Ci

captures the robber in round t ? 1. Now, consider the case when Sðtþ1Þ
i ¼ RðtÞ. By

invariant (2), since Sðtþ1Þ
i is not adjacent to RðtÞ, we in fact have that Cðtþ1Þ

i ¼
Sðtþ1Þ

i ¼ RðtÞ so the cops have won. h

5 K1;m-Free, Diameter 2 Graphs

We provide one more result giving an upper bound on the cc-number for a set of
graph classes.

Theorem 10 Let G be a K1;m-free, diameter 2 graph, where m C 3. Then,

ccðGÞ� cðGÞ þ 2m� 2:

When m = 3, Theorem 10 applies to claw-free graphs; see [10] for a character-
ization of these graphs. The cop number of diameter 2 graphs was studied in [6].

Proof of Theorem 10 A cop C is backup to a cop C0 if C is in N[C0], note that a cop
with a backup cannot be attacked without the robber being captured in the next
round.

Now, let c(G) = r, and consider c(G) cops labelled C1;C2; . . .;Cr. We refer to

these r-many cops as squad 1. Label an additional 2m - 2 cops as dCi;1 and dCi;2 ,
where 1 B i B m - 1; these cops form squad 2. The intuition behind the proof is
that the cops in squad 2 act as backup for those in squad 1, who play their usual

10 A. Bonato et al.



strategy on G. Further, the cops cCi;j are positioned in such a way that the cops Ck

need only restrict their movements to the second neighbourhood of some fixed
vertex.

More explicitly, fix a vertex x of G. Move squad 2 so that they are contained in

N[x]. Next, position each of the cops dCi;1 on x. Hence, R must remain in N2(x) or
he will lose in the next round (in particular, no squad 2 cop is ever attacked).
Throughout the game, we will always maintain the property that there are m - 1
cops on x.

We note that the squad 2 cops in N(x) can move there essentially as if that
subgraph were a clique, and in addition, preserve the property that m - 1 cops

remain on x. To see this, if dCi;2 were on y 2 NðxÞ and the cops would like to move

to z 2 NðxÞ, then move dCi;2 to x, and move some squad 2 cop from x to z. In
particular, a cop from squad 2 can arrange things so that she is adjacent to a cop in
squad 1 after at most one move. We refer to this movement of the squad two cops
as a hop, as the cops appear to jump from one vertex of N(x) to another (although
what is really happening is that the cops are cycling through x). Note that hops
maintain m - 1 cops on x.

We now describe a strategy S for the cops, and then show that it is winning.
The cops in squad 1 play exactly as in the usual game of Cops and Robbers; note
that the squad 1 cops may leave N2(x) depending on their strategy, but R will never
leave N2(x). The squad 2 cops play as follows. Squad 2 cops do not move unless
the following occurs: a squad 1 cop Ck moves to a neighbour of R, and Ck has no

backup from a squad 1 cop. In that case, some squad 2 cop cCi;j hops to a vertex of
N(x) which is adjacent to Ck. There are a sufficient number of squad 2 cops to
ensure this property, since if m (or more) squad 1 cops move to neighbours of R,
then some of these cops must be adjacent to each other as G is K1,m-free (in
particular, the cops in N(R) play the role of backups to each other).

Hence, the squad 1 cops may apply their winning strategy in the usual game and
ensure that whenever they move to a neighbour of R, some squad 2 cop serves as
backup. In particular, R will never attack a squad 1 cop for the duration of the game.
Thus, S is a winning strategy in the game of Cops and Attacking Robbers. h
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