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Abstract This paper presents a new sensor-based technique for autonomous
mobile robot navigation in uncertain environments. In recent day, computational
intelligent techniques, such as artificial neural network (ANN), fuzzy inference
system (FIS), and adaptive neuro-fuzzy inference system (ANFIS), are mainly
considered as applicable techniques from modeling point of view. ANFIS has
taken the integrate performance of neural network and fuzzy inference system. In
this architecture, different obstacle range data, such as front obstacle distance
(FOD), left obstacle distance (LOD), right obstacle distance (ROD), and heading
angle (HA) from each ultrasonic range finders, are given as input to the adaptive
fuzzy controller and output from the controller is steering angle for the mobile
robot. Simulation experiments using MATLAB demonstrate that the proposed
ANFIS navigational controller can be effectively applied to navigate the mobile
robot safely in unknown environments and reach to target objects.

Keywords Adaptive neuro-fuzzy inference system � Mobile robot � Navigation �
Obstacle avoidance

1 Introduction

Nowadays, mobile robots are widely used in various fields of engineering such as
aerospace research, nuclear research, military operations, production industry.
Navigation of mobile robot is one of the elementary problems in robotic research
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field. In general, navigation is classified as global and local depending upon the
surrounding environment. In global navigation, the surrounding environment is
completely known to the mobile robot, whereas in local navigation the environ-
ment is completely unknown to the mobile robot. So, in local navigation, various
sensors are used to detect the obstacles present in the environment.

In the literature survey, several researchers have been working on many
intelligent techniques for mobile robot navigation. Among these techniques,
ANFIS is a hybrid model, which combines the adaptability capability of neural
network and knowledge representation of fuzzy system [1]. There are many fuzzy
logic approaches using various implementation or in combination with other
techniques [2–5]. A summary of new recently developed techniques in local
navigation is given in [6]. Mobile robot navigation based on artificial neural
network approaches was presented by many researchers [7–9]. Navigation of
multiple mobile robots using neuro-fuzzy technique was addressed by Pradhan
et al. [10]. In this design architecture, output from the neural network was given as
input to the fuzzy controller to navigate the mobile robot successfully in the clutter
environment. Experimental verifications also have been done with the simulation
results to prove the authenticity of the developed technique. Navigation of mobile
robots using adaptive neural-fuzzy system was discussed by Nefti et al. [11]. In
this model, different sensor-based information given by the Sugeno–Takagi fuzzy
controller and output from the controller are the robot orientation. Experimental
results settle the importance of the methodology when dealing with navigation of a
mobile robot in unknown or partially unknown environment. To determine the
collision-free path of mobile robot navigating in a dynamic environment using
Neuro-fuzzy technique was presented by Hui et al. [12]. The performances of
neuro-fuzzy approaches are compared with other approaches (GA, Mamdani), and
it is found that neuro-fuzzy techniques are found to perform better than the other
approaches. Control of mobile robot based on neuro-fuzzy technique was dis-
cussed by Godjevac and Steele [13]. In this paper, they showed how neuro-fuzzy
controllers can be achieved using a controller based on the Takagi–Sugeno design
and a radial basis function neural network for its implementation. Neuro-fuzzy-
based mobile robot navigation was presented by Rusu et al. [14]. In this paper,
they discussed a neuro-fuzzy controller for sensor-based navigation in indoor
environments. A neuro-fuzzy controller for mobile robot navigation was addressed
by Kim and Trivedi [15]. In this study, they implemented neural integrated fuzzy
controller to control the mobile robot motion in terms of steering angle, heading
direction, and speed.

The objective of this paper presents a new approach toward navigation of
mobile robot in uncertain environments populated by varieties of obstacles. The
ANFIS navigational controller uses only simple information from the ultrasonic
range finders to determine whether obstacles are present or not and navigate the
mobile safely toward the target.
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2 Kinematic Modeling of Mobile Robot

The kinematics analysis of differentially steered wheeled mobile robots in a two-
dimensional plane can be carried out in one of two ways: either by Cartesian or by
polar coordinates. It is assumed that the mobile robot moves without slipping on a
plane; i.e., there is a pure rolling contact between the wheels and the ground, and
also, there is no lateral slip between the wheel and the plane. The modeling in
Cartesian coordinates is the most common use, and the discussion will be limited
to modeling in Cartesian coordinates. The robot has two fixed standard wheels that
are at both sides of mobile robot and one caster wheel that is attached to the front
and is differentially driven by skid-steer motion. The two driving wheels are
independently driven by two motors to acquire the motion and orientation. Both
the wheels have same diameter ‘2r’ (Fig. 1). The position of the robot in the 2-D
plane at any instant is defined by the situation in Cartesian coordinates and the
heading with respect to a global frame of reference. The kinematics model of this
type of mobile robot is defined by the following equations [16]:

_x ¼ vcosh ð1Þ

_y ¼ vsinh ð2Þ

_h ¼ x ð3Þ

where x and y are the coordinates of the position of the mobile robot. h is the
orientation of the mobile robot with respect the positive direction X-axis. v is the
linear velocity, and x is the angular velocity (Fig. 2).

θ

XI

YI

XRYR

O

C

Fig. 1 Mobile robot kinematic parameters
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3 Design Architecture of the Adaptive Neuro-Fuzzy
Inference System (ANFIS) for Present Analysis

ANFIS is one of the hybrid intelligent neuro-fuzzy system and it functioning under
Takagi–Sugeno-type FIS, which was developed by Jang [1]. ANFIS has a similar
structure to a multilayer feed-forward neural network, but the links in an ANFIS
only indicate the flow direction of signals between nodes, and no weights are
associated with the links. There are two learning techniques are used in ANFIS to
show the mapping between input and output data and to compute optimized of
fuzzy membership functions. These learning methods are back propagation and
hybrid. Parameters associated with fuzzy membership functions will modify
through the learning process.

As for the prediction of steering angle for mobile robot, we assume the adaptive
neuro-fuzzy inference system under consideration of four inputs, i.e., front
obstacle distance (x1), right obstacle distance (x2), left obstacle distance (x3),
heading angle (x4), and each input variable has five membership functions (MF)
A1, A2, A3, A4 and A5, B1, B2, B3, B4 and B5, C1, C2, C3, C4 and C5 and D1, D2 and
D3, D4 and D5, respectively; then, a Takagi–Sugeno-type fuzzy inference system
if–then rules is set up as follows:

Rule: if x1 is Ai and x2 is Bi and x3 is Ci and x4 is Di, then.
fn(steering Angle) = pnx1 ? qnx2 ? rnx3 ? snx4 ? un.

where i = 1-5 and pn, qn, rn, sn and un are the linear parameters of function fn, and
changing these parameters, we can modify the output of ANFIS structure (Fig. 3).

The function of each layer in ANFIS is discussed as follows.
Input layer: In this layer, nodes simply pass the incoming signal to layer-1. That is,

O0; FOD ¼ x1

O0;ROD ¼ x2 ð1Þ

O0;LOD ¼ x3

O0;TA ¼ x4

OBSTACLE

θFOD (X1)

ROD (X2)LOD (X3)

TARGET

ROBOT

Fig. 2 Initial position of the robot
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First Layer: This layer is the fuzzification layer. Neurons in this layer complete
fuzzification process. Every node in this layer is an adaptive node and computing
the membership function value. The output of nodes in this layer is presented as

O1;i ¼ lAi
x1ð Þ

O1;i ¼ lBi
x2ð Þ

O1;i ¼ lCi
x3ð Þ ð2Þ

O1;i ¼ lDi
x4ð Þ

i = 1…5. Here, O1,i is the bell-shaped membership grade of a fuzzy set S (Ai, Bi,
Ci, and Di), and it computes the degree to which the given inputs (x1, x2, x3, and x4)
satisfy the quantifier S. Membership functions defined as follows:
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Fig. 3 ANFIS model for current analysis
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lAi
xð Þ ¼ 1

1þ X1�Ci
ai

� �2
� �bi

ð2ðaÞÞ

lBi
xð Þ ¼ 1

1þ X2�Ci
ai

� �2
� �bi

ð2ðbÞÞ

lCi
xð Þ ¼ 1

1þ X3�Ci
ai

� �2
� �bi

ð2ðcÞÞ

lDi
xð Þ ¼ 1

1þ X4�Ci
ai

� �2
� �bi

ð2ðdÞÞ

ai, bi, and ci are parameters that control the center, width, and slope of the bell-shaped
function of node ‘i’, respectively. These are also known as premise parameters 5.

Second Layer: It is also known as rule layer. Every node in this layer is a fixed
node and labeled as pn. Each node in this layer corresponds to a single Sugeno–
Takagi fuzzy rule. A rule node receives inputs from the respective nodes of layer-2
and determines the firing strength of the each rule. Output from each node is the
product of all incoming signals.

O2;n ¼ wn ¼ lAi
x1ð Þ � lBi

x2ð Þ � lCi
x3ð Þ � lDi

x4ð Þ ð3Þ

where ‘Wn’ represents the firing strength or the truth value, of nth rule and n = 1,
2, 3…625 is the number of Sugeno–Takagi fuzzy rules.

Third Layer: It is the normalization layer. Every node in this layer is a fixed
node and labeled as Nn. Each node in this layer receives inputs from all nodes in
the fuzzy rule layer and determines the normalized firing strength of a given rule.
The normalized firing strength of the nth node of the nth rule’s firing strength to
sum of all rules’ firing strength.

O3;n ¼ wn ¼
w

P625

n¼1
wn

ð4Þ

The number of nodes in this layer is the same the number of nodes in the previous
layer that is 81 nodes. The output of this layer is called normalized firing strength.

Fourth Layer: Every node in this layer is an adaptive node. Each node in this
layer is connected to the corresponding normalization node and also receives
initial inputs x1, x2, x3, and x4. A defuzzification node determines the weighted
consequent value of a given rule define as

O4;n ¼ wnf n ¼ wn pn x1ð Þ þ qn x2ð Þ þ rn x3ð Þ þ sn x4ð Þ þ un½ � ð5Þ
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where wn is a normalized firing strength from layer-2 and [pn;qn;rn;sn;un] are the
parameters set of this node. These parameters are also called consequent
parameters.

Fifth Layer: It is represented by a single summation node. This single node is a
fixed node and labeled as

P
. This node determines the sum of outputs of all

defuzzification nodes and gives the overall system output.

O5;1 ¼
X625

n¼1

wf n ¼
P625

n¼1 wnf nP625
n¼1 wn

ð6Þ

4 Simulation Results

To prove the effectiveness of the proposed navigational controller, a series of
simulation experiments were conducted on various unstructured environments.
Various reactive behaviors such as obstacle avoidance, wall following, and target
seeking were active based on the sensory information related to relative position of
the various obstacles with respect to mobile robot as well as the relative position
of the goal with respect to the mobile robot in terrain. In order for mobile robot to
reach at the target position without colliding with obstacles, a particular behavior
needs to be select according to situation around the mobile robot. When an
obstacle located in front of the mobile robot, the mobile robot must need to change
its steering angle in order not to collide with them. In general, behaviors of
obstacle avoidance and target seeking mainly depend on the distances between the
position of the mobile robot and the obstacles to the front, left and right positions,
on the other side wall following behavior depends on the target angle between the
mobile robot and an identified target. Figs. 4, 5, and 6 show the path created for
mobile robot motion in a cluttered environment with considering different start and
goal positions. It can be observed that, using sensory information, the mobile robot
can reach successfully at the target object by efficiently using multiple types of
reactive behaviors with proposed navigation algorithm (Table 1).

Fig. 4 Obstacle avoidance
and target steering
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Fig. 6 Corridor following
with single-target tracking

Fig. 5 Wall following,
obstacle avoidance, and
target steering

Table 1 Training data for current analysis
Sl No. FOD ROD LOD HA SA Examples of training pattern

1 18 18 100 0 -90

Steering Angle

Heading Angle

SL No.1 SL No.2

SL No.3 SL No.6

SL No.14 SL No.8

Target

Mobile Robot

2 18 100 20 0 90
3 100 100 10 30 30
4 100 100 18 0 0
5 100 15 100 0 0
6 15 100 100 0 90
7 100 15 15 0 0
8 15 15 15 0 180
9 85 15 15 0 0
10 25 10 12 -15 10
11 100 15 17 0 0
12 30 10 10 0 -10
13 100 100 15 -30 0
14 100 15 15 0 0
15 100 100 100 -20 -20
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5 Concluding Remarks

A sensor-based navigation technique utilizing ANFIS has been presented in this
research paper. The proposed navigational strategy consists of various reactive
behaviors such as obstacle avoidance, wall following, target seeking. In order to
show the effectiveness of the proposed controller, a series of simulation experi-
ments has been performed under various environmental scenarios. It has been
observed that the mobile robot can be reached safely at the target without colliding
with obstacles present in the environment. The current algorithm has also adapt-
able to any type of complex environments. As a further work, the proposed
technique is to be tested on multiple mobile robots with dynamic obstacles instead
of a single mobile robot.
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