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Abstract This paper presents theoretical investigations of the rheological effects
of lubricant on the performance of the Journal bearing system under steady state
condition including squeezing. Runga Kutta Fehlberg method is employed to solve
the Reynolds and the energy equations governing the flow of power law fluids
simultaneously. Those equations are coupled due to the consistency which is a
function of pressure and temperature both. The results show that this simple
innovative model can reasonably calculate delta profile and hence the pressure and
the temperature. The obtained results that the pressure and the temperature both
increase with the power law flow index n and decrease with the increase of the
squeezing parameter q. These results are found to be similar to the results available
in the literature.
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c Radial clearance
h Oil film thickness
m Consistency index
n Flow behaviour index
p Hydrodynamic pressure
Q Flow flux
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1 Introduction

The squeeze is an important issue from many tribological aspects. This feature
significantly affects minimum film thickness, pressure and temperature distribu-
tions in concentrated contact film mechanism. During squeezing, the surfaces
come closer to each other so it can also increase the risk of wear, scuffing and
pitting if the surfaces are not enough smooth. Further, it is commonly observed in
the bearings of automotive engines, aircraft engines, machine tools, turbo
machinery, and skeletal joints. There are several investigations done on squeezing
and some of them are Lin, Oliver and Scot [1–3].

Conventionally, the prediction of squeeze film motion assumes that the lubri-
cant behaves as a Newtonian viscous fluid. However, experimental results show
that the addition of small amounts of long-chained additives to a Newtonian fluid
minimizes the sensitivity of the lubricant to change in shear rate and provides
beneficial effects on the load-carrying and frictional characteristics [2, 3]. More-
over, a base oil blended with additives can stabilize the behavior of lubricants in
elasto hydrodynamic contacts and reduce friction and surface damage, which
describe the rheological behavior of non-Newtonian lubricants [4].

In addition, high pressure in concentrated contact can influence the temperature
rise there, and hence it introduces the field of thermo hydrodynamic lubrication
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which measures the performance of journal bearings with thermal effects in the
lubrication process. Since it can naturally yield the peak bearing temperature, then
the bearing failure can be predicted at the design stage when the maximum tem-
perature exceeds a certain limit. The research into THD lubrication has drawn
research effort. For example, Ferron [5] solved Dowson’s [6] generalized Reynolds
equation simultaneously with the energy equation and reported excellent results.
Khonsari and Beaman [7] obtained THD solutions under severe boundary condi-
tions considering the mixing of the recirculating fluid and the supply oil.

On the line of non-Newtonian fluid model, Power law lubricant model has got
attention in the recent years because of its simplicity and potential to describe
many lubricants such as silicon fluids, polymer solutions Chu et al. [8], Suneetha
et al. [9]. In fact, this power law model characterizes two different types of non-
Newtonian fluids i.e. Viscoelastic and dilatants plus Newtonian as well when index
n of the power law model is unity [10]. Dein and Elrod [11] examined the analysis
of lubrication of journal bearing with the same non-Newtonian fluid model and
developed a new numerical technique based on perturbation expansion for velocity
under Couette dominated flow condition.

Xiong and Wang [12] investigated a steady state problem of smooth surface
hydrodynamic lubrication of a pocketed pad plain journal bearing based on Pay-
var—Salant mass conservation model leaving the importance of thermal effect.
Balasoiu et al. [13] presented a 3D analysis of cylindrical porous journal bearing
characterized by a self circulating lubricating system that eliminates the necessity
of external pump. However, the thermal effect was also ignored. Further, in
contrast to the heavy loaded system it has been believed that in conformal contact
such as in journal bearings and thrust bearing elastic deformation can be ignored
under low load because the fluid pressure is insufficient to cause large deformation
of the surfaces Yagi and Sugimura [14].

Hence in this paper, hydrodynamic lubrication of rigid journal bearing with the
power law is studied including thermal and squeezing effects. The consistency of
the lubricant is assumed to vary with pressure and fluid film mean temperature.
The last assumption and the condition of rigidity of the bearing surfaces in fact
provide us the solution in almost closed form.

2 Mathematical Formulation

2.1 Fluid Flow Governing Equations

The fluid flow governing equations of the hydrodynamic lubrication with some
usual assumptions are [15] (Fig. 1).
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ou

ox
þ ov

oy
¼ 0 ð2Þ

where

m ¼ m0eap�bðTm�T0Þ ð3Þ

with

Tm ¼
1
h

Zh

0

T dy ð4Þ

and

h ¼ c ð1� e cos hÞ ð5Þ

Let y = h1 be the height where the velocity gradient ou
oy ¼ 0

The boundary conditions for the above governing equations are:

u ¼ 0; at y ¼ 0; and u ¼ 0 at y ¼ h ð6Þ

The velocity boundary conditions for the geometry under consideration are:

ou1

oy
� 0; 0� y � h1 ð7Þ

ou2

dy
� 0 ; h1 � y � h; ð8Þ

Using the sign of the velocity gradient and integrating Eq. (1) twice for
0 � y � h1; one may obtain

Fig. 1 Journal bearing
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And similarly for h1 � y � h
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At y ¼ h1 the velocities are continuous so from Eqs. (9) and (10) one can get

h � h1ð Þ
nþ1

n ¼ h1ð Þ
nþ1

n which gives h1 ¼ h=2; Thus the flow is symmetrical about
the middle point of the film thickness.

Hence we can write the equation (9) and (10) as
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Now the volume flux Q of the fluid is defined as

Q ¼
Zh

0

u dy ð13Þ

or

Q ¼
Zh=2

0

u1 dy þ
Zh

h=2

u2 dy ð14Þ

or

Q ¼ 2n

2nþ 1

� �
� 1

m
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� �1=n h

2
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ð15Þ

Now the equation of continuity ou
ox þ ov

oy ¼ 0 can be solved with respect to the

boundary conditions for v which are v ¼ �V at y ¼ 0 and v ¼ 0 at y ¼ h we get

o Q

o x
¼ �V ð16Þ

Using Eqs. (15) into (16) it comes over to be

Power Law Fluid Film Lubrication of Journal Bearing 77



o

ox

2n

2nþ 1

� �
� 1

m

dp

dx

� �1=n h

2

� �2nþ1
n

" #

¼ �V ð17Þ

Assuming x ¼ R h and dx ¼ R dh Eq. (17) can be written as
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where h ¼ c 1� e cos hð Þ and V ¼ �c
de
dt
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Substituting for V in Eq. (18) we get
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Integrating Eq. (19) we get
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2.2 Heat Fluid Flow Equation

The heat energy equation with usual assumptions is taken as [15]
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This is modified for the problem under consideration is [19]:
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The boundary conditions for the above equation are:

T ¼ T11 at y ¼ 0 ;T ¼ T12 at y ¼ h ð22Þ

Now the values of T1 and T2 are calculated in the region 0 � y � h=2 and
h=2 � y � h respectively and are obtained as

T1 ¼ A
h

2

� �nþ1
n y2

2
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h
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Use of the temperature matching condition T1 = T2 at y = h/2 and the
matching heat flux condition

one may get c1 ¼ c2 ¼ c sayð Þand d1 ¼ d2 ¼ d sayð Þ ð25Þ

Using the last temperature boundary conditions (22) and (25), in (23) and (24)
one can get
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and
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Thus, T11, T12 are explicitly known functions of x and y analytically. Finally,
the mean temperature Tm defined as in (4) is obtained as

Tm ¼
1
h
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0
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64
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We can write Eq. (30) using x = Rh as
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nþ 1ð Þ 2nþ 1ð Þ 4nþ 1ð Þ �
n
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2.3 Dimensionless Schemes
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The dimension less equations
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2.4 Load
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2.5 Result and Discussion

Theoretical aspects of numerically computed results for various bearing charac-
teristics are elaborated through figures and tables which follow. These character-
istics are functions of the flow behavior index n. Results are calculated by the
following behavior of n i.e., in between 0.4 and 1.15. For numerical calculation
following sets of values are used:

�R ¼ 14:96; a ¼ 1:6 � 10�6 dyne�1 m2; �c ¼ 0:4;

e ¼ 0:252; de=dt ¼ 1:0;Pe ¼ 2:0

In order to study the qualitative behavior of consistency variations of the
incompressible lubricant, pressure and temperature must be computed first. This is
achieved by solving the simultaneous Eqs. (33) and (34) numerically for dimen-
sionless pressure �P and temperature �T by Runge–Kutta fourth order method. The
variation of �P and �T are shown in Figs. 2 and 3 respectively. All these cases have
one feature in common that the variation in n does not change the general shape of
the profile.

2.6 Pressure Distribution

The pressure distribution �P versus h for various values of n have been depicted in
Fig. 2. �P decreases continuously when h from 0 to p increases. The pressure
profile �P against h for each n is similar to that of Peng and Khonsari [16] and
Singh et al. [17]. Xiong and Wang [12], Chen et al. [18]. The pressure imposition
in this Fig. 2 i.e. instead of 0� h� p, if we take �p� h� p profile becomes very
similar to [13, 19, 20].

Fig. 2 Pressure profile
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2.7 Temperature Distribution

The temperature distribution for various value of n is presented in Fig. 3. It is
interesting to note that �T decreases with respect to h increase except in the vicinity
of zero where the trend is reversed. The similar trend has been found by Liu et al.
[21]. The difference is however not very significant both for Newtonian as well as
non-Newtonian fluid.

2.8 Load Ratio

A ratio WR = Wp/Wp/2 of load capacities is used to study the variation in the load
with n. Fig. 4 shows the load ratio WR is a function of n for various values of e.
This indicates that for the low value of e (epsilon) the load ratio is higher than the

Fig. 3 Temperature profile

Fig. 4 Load ratio
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load capacity ratio at higher value of e.; this indicates that for low values of e the
load in a full journal bearing is much greater than the load in a half journal bearing.
Figure 4 shown that the load ratio decreases as n increases; this indicates that a
decrease in actual load capacity of both the full and half journal bearing. The same
has been reported by Singh and Sinha [22].

3 Conclusion

As it is difficult to non dimensional zed pressure and temperature in case of power
law lubricant Singh and Sinha [22], an attempt has been made to complete this
assignment further it is concluded that the load ratio decreases with increase in n.
It also shown that there is a significant change in pressure and temperature for non
Newtonian lubricants.
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