
Chapter 8
Statistical Approximation of Positive Linear
Operators

In this chapter, we present some Korovkin-type approximation theorems for func-
tions of two variables via statistical convergence, A-statistical convergence, and
statistical A-summability. We also study rates of A-statistical convergence of a
double sequence of positive linear operators. Through some concrete examples,
we show that the results present in this chapter are stronger than the classical re-
sults.

8.1 Introduction

Let F(R) denote the linear space of all real-valued functions defined on R. Let C(R)

be the space of all functions f continuous on R. We know that C(R) is a normed
space with the norm

‖f ‖∞ := sup
x∈R

∣
∣f (x)

∣
∣, f ∈ C(R).

We denote by C2π (R) the space of all 2π -periodic functions f ∈ C(R), which is
a normed spaces with

‖f ‖2π = sup
t∈R

∣
∣f (t)

∣
∣.

The classical Korovkin first and second theorems are stated as follows [59, 60].

Theorem I Let (Tn) be a sequence of positive linear operators from C[0,1] into
F [0,1]. Then limn ‖Tn(f, x) − f (x)‖∞ = 0 for all f ∈ C[0,1] if and only if
limn ‖Tn(fi, x) − ei(x)‖∞ = 0 for i = 0,1,2, where e0(x) = 1, e1(x) = x, and
e2(x) = x2.

Theorem II Let (Tn) be a sequence of positive linear operators from C2π ([0,1])
into F([0,1]). Then limn ‖Tn(f, x)−f (x)‖∞ = 0 for all f ∈ C2π ([0,1]) if and only
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if limn ‖Tn(fi, x) − fi(x)‖∞ = 0 for i = 0,1,2, where f0(x) = 1, f1(x) = cosx,
and f2(x) = sinx.

Several mathematicians have worked on extending or generalizing the Korovkin
theorems in many ways and to several settings, including function spaces, abstract
Banach lattices, Banach algebras, Banach spaces, and so on. This theory is very use-
ful in real analysis, functional analysis, harmonic analysis, measure theory, proba-
bility theory, summability theory and partial differential equations. But the foremost
applications are concerned with constructive approximation theory, which uses it as
a valuable tool. Even today, the development of Korovkin-type approximation the-
ory is far from complete. Note that the first and second theorems of Korovkin are
actually equivalent to the algebraic and trigonometric versions, respectively, of the
classical Weierstrass approximation theorem [5]. For some recent work on this topic,
we refer to [76].

8.2 Korovkin-Type Theorem via Statistical A-Summability

By C(K) we denote the space of all continuous real-valued functions on any com-
pact subset of the real two-dimensional space. Then C(K) is a Banach space with
the norm ‖ · ‖C(K) defined as

‖f ‖C(K) := sup
(x,y)∈K

∣
∣f (x, y)

∣
∣

(

f ∈ C(K)
)

.

Before proceeding further, we recall the classical and statistical forms of
Korovkin-type theorems studied in [37] and [124].

Theorem 8.1 [124] Let {Lij } be a double sequence of positive linear operators
acting from C(K) into itself. Then, for all f ∈ C(K),

P - lim
m,n

∥
∥Lij (f ) − f

∥
∥

C(K)
= 0

if and only if

P - lim
m,n

∥
∥Lij (fr) − fr

∥
∥

C(K)
= 0 (r = 0,1,2,3),

where f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y, f3(x, y) = x2 + y2.

Theorem 8.2 [37] Let A = (amn
ij ) be a nonnegative RH-regular summability ma-

trix. Let {Lij } be a double sequence of positive linear operators acting from C(K)

into itself. Then, for all f ∈ C(K),

SA- lim
m,n

∥
∥Lij (f ) − f

∥
∥

C(K)
= 0
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if and only if

SA- lim
m,n

∥
∥Lij (fr) − fr

∥
∥

C(K)
= 0 (r = 0,1,2,3),

where f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y, f3(x, y) = x2 + y2.

By using the concept of statistical A-summability for single sequences, Korovkin-
type theorems are proved in [35] and [36]. Now, we prove the following.

Theorem 8.3 Let A = (amn
ij ) be a nonnegative RH-regular summability matrix

method. Let {Lij } be a double sequence of positive linear operators acting from
C(K) into itself. Then, for all f ∈ C(K),

S- lim
m,n

∥
∥
∥
∥
∥

∞,∞
∑

i,j=1,1

amn
ij Lij (f ) − f

∥
∥
∥
∥
∥

C(K)

= 0 (8.1)

if and only if

S- lim
m,n

∥
∥
∥
∥
∥

∞,∞
∑

i,j=1,1

amn
ij Lij (fr) − fr

∥
∥
∥
∥
∥

C(K)

= 0 (r = 0,1,2,3) (8.2)

where f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y, f3(x, y) = x2 + y2.

Proof Condition (8.2) follows immediately from condition (8.1) since each fr ∈
C(K) (r = 0,1,2,3). Let us prove the converse. By the continuity of f on the
compact set K , we can write |f (x, y)| ≤ M , where M = ‖f ‖C(K). Also, since f ∈
C(K), for every ε > 0, there is a number δ > 0 such that |f (u, v) − f (x, y)| < ε

for all (u, v) ∈ K satisfying |u − x| < δ and |v − y| < δ. Hence, we get

∣
∣f (u, v) − f (x, y)

∣
∣ < ε + 2M

δ2

{

(u − x)2 + (v − y)2}. (8.3)

Since Li,j is linear and positive, from (8.3) we obtain that, for any m,n ∈ N,

∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f ;x, y) − f (x, y)

∣
∣
∣
∣
∣

≤
∞,∞
∑

i,j=1,1

amn
ij Lij

(∣
∣f (u, v) − f (x, y)

∣
∣;x, y

)

+ ∣
∣f (x, y)

∣
∣

∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f0;x, y) − f0(x, y)

∣
∣
∣
∣
∣
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≤
∞,∞
∑

i,j=1,1

amn
ij Lij

(

ε + 2M

δ2

[

(u − x)2 + (v − y)2];x, y

)

+ ∣
∣f (x, y)

∣
∣

∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f0;x, y) − f0(x, y)

∣
∣
∣
∣
∣

≤ ε + (ε + M)

∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f0;x, y) − f0

∣
∣
∣
∣
∣

+ 2M

δ2

⎧

⎨

⎩

∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f3;x, y) − f3(x, y)

∣
∣
∣
∣
∣

+ 2|x|
∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f1;x, y) − f1(x, y)

∣
∣
∣
∣
∣

+ 2|y|
∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f2;x, y) − f2(x, y)

∣
∣
∣
∣
∣

+ (

x2 + y2)
∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f0;x, y) − f0(x, y)

∣
∣
∣
∣
∣

≤ ε +
(

ε + M + 2M

δ2

(

C2 + D2)
)

∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f0;x, y) − f0(x, y)

∣
∣
∣
∣
∣

+ 2M

δ2

∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f3;x, y) − f3(x, y)

∣
∣
∣
∣
∣

+ 4MC

δ2

∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f1;x, y) − f1(x, y)

∣
∣
∣
∣
∣

+ 4MD

δ2

∣
∣
∣
∣
∣

∞,∞
∑

i,j=1,1

amn
ij Lij (f2;x, y) − f2(x, y)

∣
∣
∣
∣
∣
,

where C := max |x| and D := max |y|. Taking the supremum over (x, y) ∈ K , we

get

∥
∥
∥
∥
∥

∞,∞
∑

i,j=1,1

amn
ij Lij (f ) − f

∥
∥
∥
∥
∥

≤ ε + B

3
∑

r=0

∥
∥
∥
∥
∥

∞,∞
∑

i,j=1,1

amn
ij Lij (fr ;x, y) − fr(x, y)

∥
∥
∥
∥
∥
,
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where

B := max

{

ε + M + 2M

δ2

(

C2 + D2),
2M

δ2
,

4MC

δ2
,

4MD

δ2

}

.

Now for a given σ > 0, choose ε > 0 such that ε < σ and define

E :=
{

(m,n) ∈ N
2 :

∥
∥
∥
∥
∥

∞,∞
∑

i,j=1,1

amn
ij Lij (f ;x, y) − f (x, y)

∥
∥
∥
∥
∥

≥ σ

}

,

Er :=
{

(m,n) ∈ N
2 :

∥
∥
∥
∥
∥

∞,∞
∑

i,j=1,1

amn
ij Lij (fr ;x, y) − fr(x, y)

∥
∥
∥
∥
∥

≥ σ − ε

4B

}

,

r = 0,1,2,3.

Then E⊂⋃3
r=0 Er , and so δ2(E) ≤ ∑3

r=0 δ2(Er). By considering this inequality
and using (8.2) we obtain (8.1), which completes the proof. �

Example 8.4 Now we will show that Theorem 8.3 is stronger than its classical and
statistical forms. Let A = (amn

ij ) be a four-dimensional Cesàro matrix, i.e.,

amn
ij =

{

1/mn if i ≤ m and j ≤ n,

0 otherwise,

and let x = (xij ) be defined as

xij = (−1)j for all i.

Then this sequence is neither P -convergent nor A-statistically convergent, but
S- limAx = 0.

Now, consider the Bernstein operators (see [119]) defined for f ∈ C(K) by

Bij (f ;x, y) =
i

∑

k=0

j
∑

l=0

f

(
k

i
,

l

j

)

C(i, k)xk(1 − x)i−kC(j, l)yj (1 − y)j−l (8.4)

for (x, y) ∈ K = [0,1] × [0,1]. By using these operators, define the following pos-
itive linear operators on C(K):

Lij (f ;x, y) = (1 + xij )Bij (f ;x, y), (x, y) ∈ K,f ∈ C(K). (8.5)

Then observe that

Lij (f0;x, y) = (1 + xij )f0(x, y),

Lij (f1;x, y) = (1 + xij )f1(x, y),

Lij (f2;x, y) = (1 + xij )f2(x, y),
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Lij (f3;x, y) = (1 + xij )

(

f3(x, y) + x − x2

i
+ y − y2

j

)

,

where f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y, f3(x, y) = x2 + y2. Since
S- limAx = 0, we obtain

S- lim
m,n

∥
∥
∥
∥
∥

∞,∞
∑

i,j=1,1

amn
ij Lij (fr) − fr

∥
∥
∥
∥
∥

C(K)

= S- lim
m,n

1

mn

∥
∥
∥
∥
∥

∞,∞
∑

i,j=1,1

Lij (fr) − fr

∥
∥
∥
∥
∥

C(K)

= 0

for r = 0,1,2,3. Hence, by Theorem 8.3 we conclude that

S- lim
m,n

∥
∥
∥
∥
∥

∞,∞
∑

i,j=1,1

amn
ij Lij (f ) − f

∥
∥
∥
∥
∥

C(K)

= 0

for any f ∈ C(K).
However, since the P -limit and the statistical limit of the double sequence (xij )

are not zero, it follows that, for r = 0,1,2,3, ‖Lij (fi) − fi‖C(K) is neither P -
convergent nor statistically convergent to zero. So, Theorems 8.1 and 8.2 do not
work for our operators defined by (8.4).

8.3 Korovkin-Type Theorem via A-Statistical Convergence

Boyanov and Veselinov [17] have proved the Korovkin theorem on C[0,∞) by
using the test functions 1, e−x , e−2x . In this section, we first extend the result of
Boyanov and Veselinov for functions of two variables by using the notion of P -
convergence and further generalize for A-statistical convergence.

Theorem 8.5 Let (Tj,k) be a double sequence of positive linear operators from
C(I 2) into C(I 2). Then, for all f ∈ C(I 2),

P - lim
j,k→∞

∥
∥Tj,k(f ;x, y) − f (x, y)

∥
∥∞ = 0 (8.6)

if and only if

P - lim
j,k→∞

∥
∥Tj,k(1;x, y) − 1

∥
∥∞ = 0, (8.7)

P - lim
j,k→∞

∥
∥Tj,k

(

e−s;x, y
) − e−x

∥
∥∞ = 0, (8.8)

P - lim
j,k→∞

∥
∥Tj,k

(

e−t ;x, y
) − e−y

∥
∥∞ = 0, (8.9)

P - lim
j,k→∞

∥
∥Tj,k

(

e−2s + e−2t ;x, y
) − (

e−2x + e−2y
)∥
∥∞ = 0. (8.10)
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Proof Since each of the functions 1, e−x , e−y , e−2x + e−2y belongs to C(I 2), con-
ditions (8.7)–(8.10) follow immediately from (8.6). Let f ∈ C(I 2). There exists a
constant M such that |f (x, y)| ≤ M for all (x, y) ∈ I 2, where M = ‖f ‖∞. There-
fore,

∣
∣f (s, t) − f (x, y)

∣
∣ ≤ 2M, 0 ≤ s, t, x, y < ∞. (8.11)

It is easy to prove that for given ε > 0, there is δ > 0 such that

∣
∣f (s, t) − f (x, y)

∣
∣ < ε (8.12)

whenever |e−s − e−x | < δ and |e−t − e−y | < δ for all (x, y) ∈ I 2.
Using (8.11), (8.12) and putting ψ1 = ψ1(s, x) = (e−s − e−x)2 and ψ2 =

ψ2(t, y) = (e−t − e−y)2, we get

∣
∣f (s, t) − f (x, y)

∣
∣ < ε + 2M

δ2
(ψ1 + ψ2) ∀|s − x| < δ and |t − y| < δ,

that is,

−ε − 2M

δ2
(ψ1 + ψ2) < f (s, t) − f (x, y) < ε + 2M

δ2
(ψ1 + ψ2).

Now, operate Tj,k(1;x, y) to this inequality. Since Tj,k(f ;x, y) is monotone and
linear, we obtain

Tj,k(1;x, y)

(

−ε − 2M

δ2
(ψ1 + ψ2)

)

< Tj,k(1;x, y)
(

f (s, t) − f (x, y)
)

< Tj,k(1;x, y)

(

ε + 2M

δ2
(ψ1 + ψ2)

)

.

Note that x and y are fixed, and so f (x, y) is a constant number. Therefore, by
simple calculations we get

∣
∣Tj,k(f ;x, y) − f (x, y)

∣
∣

≤ ε + (ε + M)
∣
∣Tj,k(1;x, y) − 1

∣
∣ + 2M

δ2

∣
∣e−2x + e−2y

∣
∣
∣
∣Tj,k(1;x, y) − 1

∣
∣

+ 2M

δ2

∣
∣Tj,k

(

e−2s + e−2t ;x, y
) − (

e−2x + e−2y
)∣
∣

+ 4M

δ2

∣
∣e−x

∣
∣
∣
∣Tj,k

(

e−s;x, y
) − e−x

∣
∣ + 4M

δ2

∣
∣e−y

∣
∣
∣
∣Tj,k

(

e−t ;x, y
) − e−y

∣
∣

≤ ε +
(

ε + M + 4M

δ2

)
∣
∣Tj,k(1;x, y) − 1

∣
∣

+ 2M

δ2

∣
∣Tj,k

(

e−2s + e−2t ;x, y
) − (

e−2x + e−2y
)∣
∣
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+ 4M

δ2

∣
∣Tj,k

(

e−s;x, y
) − e−x

∣
∣ + 4M

δ2

∣
∣Tj,k

(

e−t ;x, y
) − e−y

∣
∣. (8.13)

Since |e−x |, |e−y | ≤ 1 for all x, y ∈ I , taking sup(x,y)∈I 2 , we get

∥
∥Tj,k(f ;x, y) − f (x, y)

∥
∥∞

≤ ε + K
(∥
∥Tj,k(1;x, t) − 1

∥
∥∞ + ∥

∥Tj,k

(

e−s;x, y
) − e−x

∥
∥∞

+ ∥
∥Tj,k

(

e−t ;x, y
) − e−y

∥
∥∞ +∥

∥Tj,k

(

e−2s + e−2t ;x, y
)− (

e−2x + e−2y
)∥
∥∞

)

,

(8.14)

where K = max{ε+M+ 4M

δ2 , 4M

δ2 , 2M

δ2 }. Taking P -lim as j, k → ∞ and using (8.7)–
(8.10), we get

P - lim
p,q→∞

∥
∥Tj,k(f ;x, y) − f (x, y)

∥
∥∞ = 0, uniformly in m,n. �

In the following theorem, we use the notion of almost convergence of double
sequences to generalize the above theorem. We also give an example showing its
importance.

Theorem 8.6 Let (Tj,k) be a double sequence of positive linear operators from
C(I 2) into C(I 2). Then, for all f ∈ C(I 2),

SA- lim
j,k→∞

∥
∥Tj,k(f ;x, y) − f (x, y)

∥
∥∞ = 0 (8.15)

if and only if

SA- lim
j,k→∞

∥
∥Tj,k(1;x, y) − 1

∥
∥∞ = 0, (8.16)

SA- lim
j,k→∞

∥
∥Tj,k

(

e−s;x, y
) − e−x

∥
∥∞ = 0, (8.17)

SA- lim
j,k→∞

∥
∥Tj,k

(

e−t ;x, y
) − e−y

∥
∥∞ = 0, (8.18)

SA- lim
j,k→∞

∥
∥Tj,k

(

e−2s + e−2t ;x, y
) − (

e−2x + e−2y
)∥
∥∞ = 0. (8.19)

Proof For a given r > 0, choose ε > 0 such that ε < r . Define the following sets:

D := {

(j, k) ∈ N×N : ∥∥Tj,k(f ;x, y) − f (x, y)
∥
∥∞ ≥ r

}

,

D1 :=
{

(j, k) ∈ N×N : ∥∥Tj,k(1;x, t) − 1
∥
∥∞ ≥ r − ε

4K

}

,

D2 :=
{

(j, k) ∈ N×N : ∥∥Tj,k

(

e−s;x, y
) − e−x

∥
∥∞ ≥ r − ε

4K

}

,
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D3 :=
{

(j, k) ∈ N×N : ∥∥Tj,k

(

e−t ;x, y
) − e−y

∥
∥∞ ≥ r − ε

4K

}

,

D4 :=
{

(j, k) ∈ N×N : ∥∥Tj,k

(

e−2s + e−2t ;x, y
) − (

e−2x + e−2y
)∥
∥∞ ≥ r − ε

4K

}

.

Then by (8.14) it follows that D ⊂ D1 ∪D2 ∪D3 ∪D4. Hence, δ(2)
A (D) ≤ δ

(2)
A (D1)+

δ
(2)
A (D2) + δ

(2)
A (D3) + δ

(2)
A (D4). Using (8.16)–(8.19), we get δ

(2)
A (D) = 0, i.e.,

SA- lim
j,k→∞

∥
∥Tj,k(f ;x, y) − f (x, y)

∥
∥∞ = 0. �

In the following example, we construct a double sequence of positive linear oper-
ators that satisfies the conditions of Theorem 8.6 but does not satisfy the conditions
of Theorem 8.5, that is, Theorem 8.6 is stronger than Theorem 8.5.

Example 8.7 Consider the sequence of classical Baskakov operators of two vari-
ables [48]

Bm,n(f ;x, y) :=
∞
∑

j=0

∞
∑

k=0

f

(
j

m
,
k

n

)(
m − 1 + j

j

)(
n − 1 + k

k

)

× xj (1 + x)−m−j yk(1 + y)−n−k (8.20)

for 0 ≤ x, y < ∞.
Take A as in Example 8.4. Define a double sequence z = (zmn) by

zmn =
{

1 if m and n are squares,
0 otherwise.

Let Lm,n : C(I 2) → C(I 2) be defined by

Lm,n(f ;x, y) = (1 + zmn)Bm,n(f ;x, y).

Since

Bm,n(1;x, y) = 1,

Bm,n

(

e−s;x, y
) = (

1 + x − xe− 1
m
)−m

,

Bm,n

(

e−t ;x, y
) = (

1 + y − ye− 1
n
)−n

,

Bm,n

(

e−2s + e−2t ;x, y
) = (

1 + x − xe− 2
m
)−m + (

1 + y − ye− 2
n
)−n

,

we have that the sequence (Lm,n) satisfies conditions (8.16)–(8.19). Hence, by The-
orem 8.6 we have

SA- lim
m,n→∞

∥
∥Lm,n(f ;x, y) − f (x, y)

∥
∥∞ = 0.
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On the other hand, we get Lm,n(f ;0,0) = (1 + zmn)f (0,0) since Bm,n(f ;0,0) =
f (0,0), and hence,

∥
∥Lm,n(f ;x, y) − f (x, y)

∥
∥∞ ≥ ∣

∣Lm,n(f ;0,0) − f (0,0)
∣
∣ = zmn

∣
∣f (0,0)

∣
∣.

We see that (Lm,n) does not satisfy the conditions of Theorem 8.5 since P -
limm,n→∞ zmn does not exist.

8.4 A-Statistical Approximation for Periodic Functions and Rate
of A-Statistical Convergence

In this section, we present a Korovkin-type approximation theorem for periodic
functions via A-statistical convergence and also study the rate of A-statistical con-
vergence of a double sequence of positive linear operators defined from C∗(R2) into
C∗(R2), where C∗(R2) is the space of all 2π -periodic and real-valued continuous
functions on R

2 (see Demirci and Dirik [34] and Duman and Erkus [38]).

Theorem 8.8 Let A = (ajkmn) be a nonnegative RH-regular summability matrix,
and let (Lmn) be a double sequence of positive linear operators acting from C∗(R2)

into C∗(R2). Then, for all f ∈ C∗(R2),

SA- lim
m,n→∞

∥
∥Lmn(f ) − f

∥
∥

C∗(R2)
= 0 (8.21)

if and only if

SA- lim
m,n→∞

∥
∥Lmn(fi) − fi

∥
∥

C∗(R2)
= 0, i = 0,1,2,3,4, (8.22)

where f0(x, y) = 1, f1(x, y) = sinx, f2(x, y) = siny, f3(x, y) = cosx, and
f4(x, y) = cosy.

Proof Since each of the functions f0, f1, f2, f3, f4 belongs to C∗(R2), the ne-
cessity follows immediately from (8.21). Let conditions (8.22) hold, and let f ∈
C∗(R2). Let I and J be closed intervals of length 2π . Fix (x, y) ∈ I × J . By the
continuity of f at (x, y) it follows that for given ε > 0, there is a number δ > 0 such
that, for all (u, v) ∈R

2,
∣
∣f (u, v) − f (x, y)

∣
∣ < ε (8.23)

whenever |u − x|, |v − y| < δ. Since f is bounded, it follows that

∣
∣f (u, v) − f (x, y)

∣
∣ ≤ Mf = ‖f ‖C∗(R2) (8.24)

for all (u, v) ∈R
2.
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For all (u, v) ∈ (x − δ,2π + x − δ] × (y − δ,2π + y − δ], it is well known that

∣
∣f (u, v) − f (x, y)

∣
∣ < ε + 2Mf

sin2 δ
2

ψ(u,v), (8.25)

where ψ(u,v) = sin2(u−x
2 ) + sin2(

v−y
2 ). Since the function f ∈ C∗(R2) is 2π -

periodic, inequality (8.25) holds for (u, v) ∈ R
2. Then, we obtain

∣
∣Lmn(f ;x, y) − f (x, y)

∣
∣

≤ Lmn

(∣
∣f (u, v) − f (x, y)

∣
∣;x, y

) + ∣
∣f (x, y)

∣
∣
∣
∣Lmn(f0;x, y) − f0(x, y)

∣
∣

≤
∣
∣
∣
∣
Lmn

(

ε + 2Mf

sin2 δ
2

ψ(u,v);x, y

)∣
∣
∣
∣
+ Mf

∣
∣Lmn(f0;x, y) − f0(x, y)

∣
∣

≤ ε + (ε +Mf )
∣
∣Lmn(f0;x, y)−f0(x, y)

∣
∣+ Mf

sin2 δ
2

{

2
∣
∣Lmn(f0;x, y)−f0(x, y)

∣
∣

+ |sinx|∣∣Lmn(f1;x, y) − f1(x, y)
∣
∣ + |siny|∣∣Lmn(f2;x, y) − f3(x, y)

∣
∣

+ |cosx|∣∣Lmn(f3;x, y) − f3(x, y)
∣
∣ + |cosy|∣∣Lmn(f4;x, y) − f4(x, y)

∣
∣
}

< ε + K

4
∑

i=0

∣
∣Lmn(fi;x, y) − fi(x, y)

∣
∣, (8.26)

where K := ε + Mf + 2Mf

sin2 δ
2

. Now, taking sup(x,y)∈I×J , we get

∥
∥Lmn(f ) − f

∥
∥

C∗(R2)
< ε + K

4
∑

i=0

∥
∥Lmn(fi) − fi

∥
∥

C∗(R2)
. (8.27)

Now for a given r > 0, choose ε′ > 0 such that ε′ < r . Define the following sets:

D = {

(m,n) : ∥∥Lmn(f ) − f
∥
∥

C∗(R2)
≥ r

}

,

Di =
{

(m,n) : ∥∥Lmn(fi) − fi

∥
∥

C∗(R2)
≥ r − ε′

5K

}

,

where i = 0,1,2,3,4. Then, by (8.27),

D ⊆
4

⋃

i=0

Di,

and so

∑

(m,n)∈D

ajkmn ≤
4

∑

i=0

∑

(m,n)∈Di

ajkmn,
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i.e.,

δ
(2)
A (D) ≤

4
∑

i=0

δ
(2)
A (Di).

Now, using (8.22), we get

SA- lim
m,n→∞

∥
∥Lmn(f ) − f

∥
∥

C∗(R2)
= 0. �

Remark 8.9 If we replace the matrix A by the identity matrix for four-dimensional
matrices in Theorem 8.8, then we immediately get the following result in Pring-
sheim’s sense.

Corollary 8.10 Let A = (ajkmn) be a nonnegative RH-regular summability matrix,
and let (Lmn) be a double sequence of positive linear operators acting from C∗(R2)

into C∗(R2). Then, for all f ∈ C∗(R2),

P - lim
m,n→∞

∥
∥Lmn(f ) − f

∥
∥

C∗(R2)
= 0 (8.28)

if and only if

P - lim
m,n→∞

∥
∥Lmn(fi) − fi

∥
∥

C∗(R2)
= 0, i = 0,1,2,3,4. (8.29)

Example 8.11 Now we present an example of double sequences of positive linear
operators, showing that Corollary 8.10 does not work but our approximation theo-
rem works. We consider the double sequence of Fejér operators on C∗(R2)

σmn(f ;x, y) = 1

(nπ)
.

1

(nπ)

∫ π

−π

∫ π

−π

f (u, v)Fm(u)Fn(v) dudv, (8.30)

where

Fm(u) = sin2(m(u − x)/2)

sin2((u − x)/2)
and

1

π

∫ π

−π

Fm(u)du = 1.

Observe that

σmn(f0;x, y) = f0(x, y), σmn(f1;x, y) = m − 1

m
f1(x, y),

σmn(f2;x, y) = n − 1

n
f2(x, y), σmn(f3;x, y) = m − 1

m
f3(x, y), (8.31)

and σmn(f4;x, y) = n − 1

n
f4(x, y).

Now take A = (C,1,1) and define the double sequence α = (αmn) by

αmn =
{

1 if m and n are squares,
0 otherwise.
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We observe that α = (αmn) is not P -convergent but

S(C,1,1)- limα = 0. (8.32)

Let us define the operators Lmn : C∗(R2) → C∗(R2) by

Lmn(f ;x, y) = (1 + αmn)σmn(f ;x, y). (8.33)

Then, observe that the double sequence of positive linear operators (Lmn) defined
by (8.33) satisfies all hypotheses of Theorem 8.8. Hence, by (8.31) we have that, for
all f ∈ C∗(R2),

SA- lim
m,n→∞

∥
∥Lmn(f ) − f

∥
∥

C∗(R2)
= 0.

Since (αmn) is not P -convergent, the sequence (Lmn) given by (8.33) does not con-
verge uniformly to the function f ∈ C∗(R2). So, we conclude that Corollary 8.10
does not work for the operators (Lmn) given by (8.33) while Theorem 8.8 still
works. Hence, we conclude that the SA-version is stronger than the P -version.

Definition 8.12 Let A = (ajkmn) be a nonnegative RH-regular summability ma-
trix. Let (βmn) be a positive nonincreasing double sequence. We say that a dou-
ble sequence x = (xmn) is A-statistically convergent to the number L with the rate
o(βmn) if for every ε > 0,

P - lim
j,k→∞

1

βjk

∑

(m,n)∈K(ε)

ajkmn = 0,

where K(ε) := {(m,n) ∈ N×N : |xmn − 
| ≥ ε}. In this case, we write xmn − L =
st

(2)
A − o(βmn) as m,n → ∞.

Now, we recall the notion of modulus of continuity. The modulus of continuity
of f ∈ C∗(R2), denoted by ω(f, δ) for δ > 0, is defined by

ω(f, δ) = sup
{∣
∣f (u, v)−f (x, y)

∣
∣ : (u, v), (x, y) ∈ R

2,

√

(u − x)2 + (v − y)2 ≤ δ
}

.

It is well known that

∣
∣f (u, v) − f (x, y)

∣
∣ ≤ ω

(

f,

√

(u − x)2 + (v − y)2
)

≤ ω(f, δ)

(√

(u − x)2 + (v − y)2

δ
+ 1

)

. (8.34)

Then we have the following result.

Theorem 8.13 Let A = (ajkmn) be a nonnegative RH-regular summability matrix,
and let (Lmn) be a double sequence of positive linear operators acting from C∗(R2)

into C∗(R2). Let (αmn) and (βmn) be two positive nonincreasing sequences. Sup-
pose that
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(i) ‖Lmn(f0) − f0‖C∗(R2) = SA-o(αmn),
(ii) ω(f,λmn) = SA-o(βmn), where λmn = √‖Lmn(ϕ)‖C∗(R2) with

ϕ(u, v) = sin2
(

u − x

2

)

+ sin2
(

v − y

2

)

for (u, v), (x, y) ∈R
2.

Then, for all f ∈ C∗(R2),
∥
∥Lmn(f ) − f

∥
∥

C∗(R2)
= SA-o(γmn), (8.35)

where γmn = max{αmn,βmn}.

Proof Let f ∈ C∗(R2) and (x, y) ∈ [−π,π]× [−π,π]. Let δ > 0. We have follow-
ing cases.

Case I. If δ < |u − x| ≤ π , δ < |v − y| ≤ π , then |u − x| ≤ π | sin u−x
2 | and

|v − y| ≤ π | sin v−y
2 |. Therefore, by (8.34) we have

∣
∣f (u, v) − f (x, y)

∣
∣ ≤ ω(f, δ)

(

π2 sin2(u−x
2 ) + sin2(

v−y
2 )

δ2
+ 1

)

. (8.36)

Case II. |u−x| > π , |v−y| ≤ π . Let k be an integer such that |u+2kπ −x| ≤ π .
Then

∣
∣f (u, v) − f (x, y)

∣
∣ = ∣

∣f (u + 2kπ, v) − f (x, y)
∣
∣

≤ ω(f, δ)

(

π2 sin2(u+2kπ−x
2 ) + sin2(

v−y
2 )

δ2
+ 1

)

= ω(f, δ)

(

π2 sin2(u−x
2 ) + sin2(

v−y
2 )

δ2
+ 1

)

.

Similarly, in other two cases where |u − x| ≤ π , |v − y| > π and |u − x| > π ,
|v − y| > π , we obtain (8.36).

Now, using the definition of modulus of continuity and the linearity and positivity
of the operators Lmn, we get

∣
∣Lmn(f ;x, y) − f (x, y)

∣
∣

≤ Lmn

(∣
∣f (u, v) − f (x, y)

∣
∣;x, y

) + ∣
∣f (x, y)

∣
∣
∣
∣Lmn(f0;x, y) − f0(x, y)

∣
∣

≤ ω(f, δ)Lmn(f0;x, y) + π2 ω(f, δ)

δ2
Lmn(ϕ;x, y)

+ ∣
∣f (x, y)

∣
∣
∣
∣Lmn(f0;x, y) − f0(x, y)

∣
∣.

Taking the supremum over (x, y) on both sides of the above inequality and

δ := δmn =
√∥

∥Lmn(ϕ)
∥
∥

C∗(R2)
,
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we obtain

∥
∥Lmn(f ) − f

∥
∥

C∗(R2)
≤ ω(f, δmn)

∥
∥Lmn(f0) − f0

∥
∥

C∗(R2)

+ (

1 + π2)ω(f, δmn) + M
∥
∥Lmn(f0) − f0

∥
∥

C∗(R2)
,

(8.37)

where M := ‖f ‖C∗(R2). Now, for a given ε > 0, define the following sets:

D = {

(m,n) : ∥∥Lmn(f ) − f
∥
∥

C∗(R2)
≥ ε

}

,

D1 =
{

(m,n) : ∥∥Lmn(f0) − f0
∥
∥

C∗(R2)
≥ ε

3

}

,

D2 =
{

(m,n) : ω(f, δmn) ≥ ε

3(1 + π2)

}

,

D3 =
{

(m,n) : ∥∥Lmn(f ) − f
∥
∥

C∗(R2)
≥ ε

3M

}

.

Then D ⊂ D1 ∪ D2 ∪ D3. Further, defining

D4 =
{

(m,n) : ω(f, δmn) ≥
√

ε

3

}

,

D5 =
{

(m,n) : ∥∥Lmn(f ) − f
∥
∥

C∗(R2)
≥

√
ε

3

}

,

we see that D1 ⊂ D4 ∪ D5. Therefore, D ⊂ ⋃5
i=2 Di . Therefore, since γmn =

max{αmn,βmn}, we conclude that, for every (j, k) ∈ N×N,

1

γjk

∑

(m,n)∈D

amnjk ≤ 1

αjk

∑

(m,n)∈D1

amnjk + 1

βjk

∑

(m,n)∈D2

amnjk

+ 1

αjk

∑

(m,n)∈D3

amnjk + 1

βjk

∑

(m,n)∈D4

amnjk.

Letting j, k → ∞ and using conditions (i) and (ii), we get

∥
∥Lmn(f ) − f

∥
∥

C∗(R2)
= SA-o(γmn). �

8.5 Exercises

1 Prove a Korovkin-type approximation theorem via A-statistical convergence of
double sequences by using the test functions 1, x, y, x2 + y2.
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2 Prove Theorem 8.3 by using the test functions 1, x
1−x

, y
1−y

, ( x
1−x

)2 + (
y

1−y
)2.

3 Prove Theorem 8.3 by using the test functions 1, x
1+x

, y
1+y

, ( x
1+x

)2 + (
y

1+y
)2.

4 Prove Theorem 8.5 via statistical A-summability of double sequences.

5 Prove Theorem 8.6 via statistical A-summability of double sequences.

6 Prove Theorem 8.8 via statistical A-summability of double sequences.
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