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Abstract Vehicle routing problem with time window constraints (VRPTW) is an
extension of the original vehicle routing problem (VRP). It is a well-known NP-hard
problem which has several real-life applications. Meta-heuristics have been often
tried to solve VRTPW problem. In this paper, an attempt has been made to develop
a suitable version of Ant colony optimization heuristic to efficiently solve VRPTW
problem. Experimentation with the developed version of Ant colony optimization
has shown that it succeeds in general in obtaining results obtainedwith earlier version
and often even better than the results that are better than the corresponding results
available in literature which have been obtained using even previously developed
hybridized versions of ACO. In many cases, the obtained results are comparable
with the best results available in literature.

Keywords Vehicle routing problem · Ant colony optimization · Heuristics ·
Optimization

1 Introduction

Vehicle routing problem (VRP) [21, 22] lies at the heart of logistics and distribution
management that is presently being used by the companies engaged in delivery and
collection of goods. Since the conditions and constraints vary from one situation
to another, several variants [3, 11, 18] of basic problem have been proposed in
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literature. This paper addresses itself to developing an efficient Ant-colony-system-
based heuristic for solving VRPTW.

VRPTW [23, 26] problem consists of finding the minimum set of routes for
identical capacity vehicles originating and terminating at a central depot such that
each customer is served once and only once, given that the exact number of customers
and their demands are known. There are also constraints of timewindows in that each
customermust be served in a specified slot of time. Objective ofVRPTW is to find the
minimumof total distance travelled and/or theminimumnumber of vehicles required
which can accomplish this job. It is a NP-hard problem where the number of feasible
solutions grows exponentially as the number of customer’s increases. The work on
this problem available in literature can be divided into two classes: exact optimization
techniques and heuristic-based (approximate) algorithms. In the first category, the
works by [21, 24, 27] can be cited. The methods developed in these papers have been
able to efficiently solve some of the Solomon benchmark problems [5, 20, 31]. In
the second category, a very large number of heuristic approaches such as tabu search,
genetic algorithms, ant colony algorithms, simulated annealing, large neighborhood
search, variable neighborhood based algorithms, and multi-phase approaches have
been tried [6, 7, 20, 26, 29].

Among heuristic-based optimization techniques, ACO is a more recent optimiza-
tion heuristic proposed by Dorigo et al. [4, 12–16]. ACO imitates real ant behav-
ior to search for optimal solutions. ACO-based optimization techniques tried thus
far for solving VRPTW problem generally use distance and pheromone as search
guide parameters. This paper proposes a version of ACOwhich incorporates besides
these two parameters waiting time, urgency to serve and the bias factor also as
search guide parameters. Our objective has been to see whether inclusion of these
additional parameters can further improve the performance of ACO algorithm for
solving VRPTW.

The rest of the paper is organized as follows. Section 2 presents mathematical
model of VRPTW problem. Conventional use of ACO heuristic in solving VRPTW
problem is presented in Sect. 3. Proposed modifications in this algorithm are pre-
sented in Sect. 3.2. Computational experimentation using the modified ant colony
system (ACS) algorithm is presented in Sect. 4. Comparison of the obtained results
with those earlier available in literature obtained through is done Sect. 5 and certain
conclusions drawn.

2 Mathematical Description of VRPTW

In this section, we briefly describe the mathematical model of VRPTW.
The VRP is a complicated combinatorial optimization problem. It has received

considerable attention in the past decades because of its practical importance in
the fields of transportation, distribution, and logistics. VRPTW is a generalization
of the classical VRP with the additional restriction of time window constraints. The
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VRPTWcan bemodeled inmathematical terms through a completeweighted digraph
as follows.

Let G = (V, A) where V = {v0, v1, v2 . . . vn} be a set of nodes, where v0
represents the depot that holds a fleet of vehicles and v1, v2 . . . vn denote a set
of n customers which are to be served by these vehicles. Each customer has
an associated demand qi , service time si , a service time window [ei , li ]. Also
A = [{vi , v j }(i, j = 0, 1, 2, . . . n, i �= j)] is the set of arcs connecting various
nodes, having distance dij as weights. If a vehicle reaches a customer vi before spec-
ified time ei , it needs to wait until ei in order to service the customer. The service has
to be provided before close time of window at li . The depot has also time window
[e0, l0]. No vehicle is to leave the depot before e0 and all should come back before
l0. The load-carrying capacity of all vehicles is same and all travel with identical
constant speed. The objective of the VRPTW is to service all the customers without
violating vehicle capacity constraints and time window constraints using minimum
number of vehicles that travel minimum possible total distance.

Mathematically, the problem is usually expressed as:
Minimize
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N∑

i=0

N∑

j=0

V∑

K=1

cijx
v
ij (1)

Subject to:

V∑

v=1

N∑

j=1

xv
ij ≤ V for i = 0 (2)

V∑

v=1

xv
ij =

N∑

j=1

xv
ji ≤ 1 for i = 0 and v ∈ {1, . . . , V } (3)

V∑

v=1

N∑

j=0

xv
ij = 1 for i ∈ {1, . . . , N } (4)

V∑

v=1

N∑

i=0

xv
ij = 1 for j ∈ {1, . . . , N } (5)



42 S. Bansal et al.
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t0 = w0 = s0 = 0 (9)

xij = 1 if vehicle k travels from customer i to customer j, and 0 otherwise (i �=
j; i, j = 0, 1, . . . , N ).

Here,

V denotes total number of vehicles,
N total number of customers,
ci customer i(i = 1, 2, . . . , N ) and c0 delivery depot,
dij traveling distance between customer i and customer j,
tij travel time between customer i and customer j,
qi demand of customer i,
qv loading capacity of each vehicle, (loading capacity of all vehicles are identical).
ei earliest permitted arrival time of vehicle at customer i ;
li latest permitted arrival time of vehicle at customer i ;
si service time of customer i ;

This is an optimization problem in which, (1) is the objective function of the
problem which is to be minimized subject to constraints (2)–(9).

In this optimization model, decision variables are as follows:

V total number of vehicles required;
ti arrival time of vehicle V at customer i ;
wi waiting time of vehicle at customer i before service can be started;

Objective function (1) ensures that total distance travelled by all the vehicles is
minimized. The first constraint (2) specifies that there are at the most V vehicles
going out of the depot. The set of constraint (3) ensures that every vehicle starts from
and ends at the delivery depot. The next two sets of constraints (4) and (5) restrict the
assignment of each customer to exactly one vehicle route. The next set of constraints
(6) ensures that the loading capacity of no vehicle is exceeded. The constraints of
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set (7) are the maximum travel time constraint. Remaining constraints (8) guarantee
schedule feasibility with respect to time windows.

In formulating the above mathematical model, the following assumptions have
been made:

• Identical vehicles with known capacities Q are used.
• All vehicles travel with identical constant velocity.
• Every vehicle leaves the depot and returns to the depot within specified time
window [l0, s0].

• Demand of each customer is qi is known.
• Each customer is serviced by one and only one vehicle.
• The total demand of any customer is not more than the capacity of the vehicle.

3 Use of ACS in Solving VRPTW

VRPTWbeing anNP-hard problem, its exact solution is not known in general. There-
fore, large numbers of alternative algorithms have been proposed for solving it. In
this section, we first present conventional ACS-based approach for solving VRPTW
problem and then present our proposed modification in it. The basic philosophy of
ACS approach is to use a suitable positive feedback mechanism to reinforce those
arcs of the graph that belong to a good solution. This mechanism is implemented
associating pheromone levels with each arc which are then updated in proportion to
the goodness of solutions found.

While presenting ACS-based algorithm, for solving VRPTW, we shall use the
term ‘tour’ to denote a set of routes followed by all ants (vehicles) which are able to
serve all the nodes of the graph as per their requirements under specified conditions.
Our problem is to determine an optimal tour. The ACS algorithm commonly used
for solving VRPTW is given below.

3.1 ACS Algorithm for Solving VRPTW:

Step 1. Construction of an initial feasible route:

(a) Each ANT starts from the depot and the set of customers included in its
route is empty.

(b) The ant selects the next customer to visit from the list of feasible customers
based upon the probabilistic formula (10).

(c) After serving the customer storage capacity and the time used thus far of
the Ant is updated and the process continued. Ant returns to the depot when
either of the capacity constraint or time window constraint of the depot is
satisfied.
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(d) We next check whether all the customers have been served or not. If all the
customers have been served, stop else send a new ant (vehicle) to visit the
remaining destinations.

(e) Continue till all customers served.
(f) Calculate total distance travelled and the number of vehicles used and com-

pute the objective function value for the complete route using (1) (which
gives total distance travelled by all used vehicles).

Step 2. Construct a specified number of feasible tours as in step 1.
Step 3. From among these constructed feasible tours, choose the tour which uses

minimum number of ants (vehicles). In case of a tie, choose the tour in
which total travelled distance is minimum (or vice-versa depending upon
whether greater priority is to be given to minimize the number of vehicles
used or total distance travelled).

3.1.1 Selection of Next Customer

In setting up of a feasible tour, each ant constructs a path that visits certain customer
before returning back to depot. In the previous studies using ACO/ACS for solving
VRPTW, the ant (vehicle), currently located at node i, selects the next node j to
move to using the transition rule,

j =
{
argmaxj∈φi

{
τα
ij η

β
ij

}
if q ≤ q0

J otherwise
(10)

where

ηij = 1/dij is aheuristic-basedparameter. (11)

and J ∈ φi is randomly chosen according to the probability

pk
iJ = τα

iJη
β
iJ∑
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τα
iuη

β
iu

(12)

Here, set φi contains the cities not visited so far.
In (10), q ∼ U (0, 1) , and qo ∈ [0, 1] is a user-specified value of parameter q.

In (11),dij is Euclidian distance between i and j and τij is the amount of pheromone
on the path between current location i and next possible location j. Also α, β are
the positive constants that determine the importance of η verses τ.

The transition rule (10) creates a bias toward customers connected by short dis-
tances andhaving large amount of pheromone.The parameterqo balances exploration
and exploitation. if q ≤ qo, the algorithm exploits (favoring the best nearest cus-
tomer). Otherwise if q > qo, the algorithm explores selecting node j ∈ φi randomly.
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3.1.2 Pheromone Update for New Tour

After construction of a complete feasible route, the pheromones are laid for the
next path depending upon the total traveled distance (L) of that route. For each arc
vi → v j that was used in the previous feasible route, the pheromone trail is increased
by �τij. Furthermore, part of existing pheromone is also allowed to evaporate
[4, 11, 14, 17, 34]. Thus in the next route, pheromones are updated according to the
following

τij = τij (1 − ρ) + �τij (13)

where �τij = Q/L (14)

Here, ρ is parameter that controls rate of evaporation of pheromone.

3.2 Proposed Modifications in ACS Algorithm

Following modifications have been introduced in the conventional algorithms for
solving VRPTW problem using ACS heuristics.

1. Whereas earlier approaches using ant colony technique for solving VRPTW
problem have primarily given importance to distance and pheromone only to
guide the heuristic [3, 32, 34], we in our present study have used besides these
two parameters such as urgency to serve, waiting time and bias parameter also
for this purpose. In (11), heuristic-based parameter ηij only gives importance to
the distance in determining the heuristic parameter. However, it was observed
on experimentation that in addition to the distance waiting time, urgency to
serve, and biasing should also be given importance in deciding the choice of
next customer [11, 32].
As a result in our present study choice of ηij defined in (11) has been modifies
as:

ηij = 1

(dij + wj )λ
∗ 1

(lj − aj )γ
∗ 1(

Imax − I j
)
δ

(15)

In (13), aj is arrival time of vehicle at customer j and wj defined as

wj =
{

ej − aj if ej > aj

0 otherwise
(16)
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is thewaiting time at customer j before service can be started.Also lj −a j, aj < lj,

is the difference between the latest arrival time lj and actual arrival time aj at
customer j. It is a measure of urgency of customer j to be served, emphasizing
that those customers whose time window is going expire soon be given priority.
Also Imax− I j , (where I j is the number of consecutive times the customer j who
could be next visited from the present customer has not been visited and Imax is
a user-specified maximum permissible value of I j (I j < Imax) is a measure of
bias factor).

2. In order to prevent the slow convergence of the algorithmwhen specified number
of initial tours have been generated, we update the pheromone for the next tour
using the best solution among the solution provided by m feasible routes [17].
In order to prevent local optimization and increase the probability of obtaining
higher quality of solution upper and lower values of pheromone have been spec-
ified as 1/

∑
2d0i and 1/min(dij) respectively, where d0i is distance from the

depot to the customer.
3. In conventional studies, total travelled distance has been minimized irrespective

of vehicles needed. However keeping in view the fact that cost of obtaining a
vehicle and its maintenance is generally much more than fuel cost we have tried
tominimize total number of vehicles required as a first priority and total travelled
distance as a second priority.

4 Implementation of the Modified ACS Algorithm

In this section, we summarize our computational experience of using the modified
ACS algorithm for solving some of the Solomon benchmark [5] problems.

Solomon generated a set of 56 problems which have been frequently used in
literature to check the performance of the developed algorithm. This set is divided
into three categories namely C, R, and RC. In C category problems, customers are
clustered either geographically or according to the timewindows.R types of problems
have uniform distribution of customers. Category RC is hybrid of problems of R
and C set. In our present study, we have chosen 15 problems of 25 customers, 10
problems of 50 customers, and 10 problems of 100 customers from all these three
sets. To solve these problems, the proposed algorithm was coded in MATLAB 7.0 at
Intel Core 2 Duo 2.0 GHz. After experimentation, it was observed that the following
values of parameters proved most suited for solving these problems. The number
of initial feasible tours = 10, α = 1, β = 1, λ = 5.5, γ = 3.5, δ = 1, Q = 250
and q0 = 0.9. All problems were run for maximum of 2,500 iterations, Tables 1, 2
and 3 present a summary of our results and their comparison with the best-known
routing solutions compiled from different heuristics available in literature as per our
information.

It may be noticed that whereas in our study, we have used only ACS, most of the
earlier studies with ACO/ACS usually are hybrid in the sense that after completion
of search with ACO/ACS, search is further carried out with some other optimization
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Table 1 Comparison of best-known results with the results generated by proposed algorithms for
Solomon’s 25 customers set problem

Problem Best Worst Using conventional ACO’s Best known [Ref.]

C201 215.54/2 215.54/2 222.53/2 214.7/2 [10]
R101 618.33/8 619.17/8 625.23/8 617.1/8 [20]
R102 563.35/7 573.15/7 605.45/7 547.1/7 [20]
R105 556.72/5 556.72/5 600.13/5 530.5/6 [20]
R109 442.63/5 448.54/5 510.31/5 441.3/5 [20]
RC101 462.15/4 462.15/4 507.87/4 461.4/4 [20]
RC105 416.16/4 416.88/4 435.97/4 411.3/4 [20]
RC106 346.51/3 346.51/3 402.11/3 345.5/3 [20]
RC201 432.30/2 432.30/2 412.34/3 360.2/3 [10]
RC202 376.61/2 381.75/2 400.72/2 338.0/3 [18]
RC203 433.94/1 433.94/1 454.78/2 326.9/3 [19]
RC204 331.29/1 333.36/1 370.56/1 299.7/3 [8]
RC205 386.15/2 386.15/2 413.37/3 338.0/3 [23]
RC207 358.92/2 367.92/2 387.16/2 298.3/3 [19]
RC208 309.85/1 309.85/1 313.76/1 269.1/2 [8]

Table 2 Comparison of best-known results with the results generated by proposed algorithms for
Solomon’s 50 customers set problem

Problem Best Worst Using conventional ACO’s Best known [Ref.]

C101 363.25/5 363.25/5 363.25/5 362.5/5 [20]
C201 444.96/2 444.96/2 402.43/3 360.2/3 [20]
C205 444.57/2 444.57/2 407.58/2 360.2/3 [20]
R101 1053.04/12 1054.84/12 1107.18/12 1044/12 [20]
R201 882.32/2 893.56/3 900.72/3 791.9/6 [20]
R202 869.42/2 870.06/2 898.68/3 791.9/6 [20]
R203 741.3/2 764.3/2 612.32/5 605.3/5 [20]
R206 711.6/2 711.6/2 645.56/4 632.4/4 [20]
R209 722.24/2 735.20/2 619.23/4 600.6/4 [20]
RC101 951.07/8 962.80/8 987.97/8 944/8 [20]

heuristic also (such as local search, genetic algorithm [7, 21, 27]). In order to compare
our present results with performance of earlier versions of ACO only (without use
of any hybrid), we repeated our experimentation with those versions without using
any other add on optimization heuristic. The results of this study are also presented
in the Table 1 (column 4) for comparison.

The proposed algorithm has produced some improved results with lesser number
of vehicles used (however, with some increase in routing length compared to the best
available in literature. This is due to the priority that we assigned to minimize the
total number of vehicles used visa vis total distance travelled).
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Table 3 Comparison of best-known results with the results generated by proposed algorithms for
Solomon’s 100 customers set problem

Problem Best Worst Using conventional ACO’s Best known [Ref.]

C101 828.94/10 828.94/10 830.37/10 (828.94/10)∗ [9] 828.94/10 [30]
C102 874.20/10 875.36/10 917.53/10 (828.94/10)∗ [34] 828.94/10 [30]
C105 828.94/10 828.94/10 830.37/10 (828.94/10)∗ [9] 828.94/10 [30]
C106 856.18/10 857.91/10 875.71/10 (828.94/10)∗ [9] 828.94/10 [30]
C107 830.60/10 838.42/10 842.67/10 (828.94/10)∗ [34] 828.94/10 [30]
C201 591.56/3 591.56/3 594.23/3 (591.56/3)∗ [34] 591.56/3 [20]
C205 591.5/3 595.33/3 598.28/3 (588.88/3)∗ [25] 588.88/3 [20]
R101 1714.26/19 1725.65/19 1845.12/19 (1670.66/19)∗ [25] 1645.79/19 [30]
R102 1558.19/17 1575.69/17 1613.34/18 (1535.52/17)∗ [25] 1486.12/17 [30]
R105 1519.55/14 1544.86/14 1853.45/18 (1365.23/15)∗ [25] 1377.11/14 [30]

Note * indicates results available in literature using hybrid versions of ACO’s

5 Conclusions

In this paper, a modified version of ACS is proposed.
In our proposed algorithm, we have modified the heuristic-based parameter and

pheromone updation rules, used in conventional ACO for solvingVRPTW.An exten-
sive computational study on a set of benchmark test problems has been conducted.
The experimental results show that the proposed algorithm even when used by itself
is competitive with the earlier versions of ACO even when these are hybridized with
certain other heuristics. We have obtained certain results in which lesser number
of vehicles are needed than those reported in literature. However, in most of such
cases, total distance travelled is slightly greater. Lesser number of vehicles means
less initial investment in purchase of vehicles and less maintenance cost. (However,
there is slight increase in fuel cost if total distance travelled is more).

The results are encouraging and we propose to direct further study toward use of
proposed algorithm for solving the dynamic VRPTW
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