A Partial Backlogging Inventory Model for Decaying Items: Considering Stock and Price Dependent Consumption Rate in Fuzzy Environment

S. R. Singh and Swati Sharma

Abstract In this article, an inventory model is developed to deal with the impreciseness present in the market demand and the various cost parameters. The presented model is developed in crisp and fuzzy environments. Signed distance method is used for defuzzification. In most of the classical models, constant demand rate is considered. But in practice purchasing deeds of the customers is affected by the selling price and inventory level. In this study, we have considered demand rate as a function of stock-level and selling price. Two parameters Weibull distribution deterioration is considered. It is assumed that shortages are allowed and are partially backordered with the time dependent backlogging rate. A numerical experiment is provided to illustrate the problem. Sensitivity analysis of the optimal solution with respect to the changes in the value of the system parameters is also discussed.

Keywords Inventory model · Triangular fuzzy numbers · Signed distance · Partial backlogging · Stock and price dependent demand rate

1 Introduction

In most of the inventory models, it is assumed that the inventory parameters like demand rate and ordering cost, etc., are precisely known. But in actual living situations, the nature of these parameters is imprecise, so it is important to consider them as fuzzy numbers. The concept of fuzzy set theory first introduced by Zadeh [\[1](#page-11-0)], after that Park [\[2](#page-11-1)] extended the classical EOQ model by introducing the fuzziness

S. R. Singh \cdot S. Sharma (\boxtimes)

Department of Mathematics, D.N. College, Meerut, India e-mail: shivrajpundir@gmail.com

S. Sharma e-mail: jmlashi0@gmail.com

of ordering cost and holding cost. Recently, Chang [\[3](#page-11-2)] and Wang et al. [\[4\]](#page-11-3) presented an inventory model under fuzzy demand.

Deterioration is a natural phenomenon in many real situations so it plays an important role in developing an inventory model. Generally, deterioration is defined as damage, spoilage, decay andobsolescence, vaporization, etc., that result in decrease of value of the original one. The first model for decaying items was presented by Ghare and Schrader [\[5](#page-11-4)]. It was extended by Covert and Philip [\[6\]](#page-11-5) considering Weibull distribution deterioration. A complete survey for deteriorating inventory models was presented by Raafat [\[7\]](#page-11-6). Some other papers relevant to this topic are Teng et al. [\[8\]](#page-11-7) and Bakker et al. [\[9\]](#page-11-8).

Various researchers considered the situation in which shortages are either completely backlogged or completely lost which is not realistic. Many practical experiences disclose that some but not all customers will wait for backlogged items during a shortage period, such as for fashionable supplies and the products with short life cycle. According to such phenomenon, backlogging rate should not be disregarded. Thus, it is necessary to consider the backlogging rate. Researchers, such as Park [\[10\]](#page-11-9) and Wee [\[11](#page-11-10)] developed inventory models with partial backorders. Some recent work in this direction is done by Singh [\[12](#page-11-11)] and Hsieh et al. [\[13\]](#page-11-12).

In many classical research articles, it is assumed that demand rate is constant during the sales period. In real life, the demand may be inspired if there is a large pile of goods displayed on shelf. Gupta and Vrat [\[14](#page-11-13)] developed the first models for stock-dependent consumption rate. Mandal and Phaujdar [\[15\]](#page-11-14) then developed a production inventory model for deteriorating items with uniform rate of production and linearly stock-dependent demand. Other papers related to this research area are Ray et al. [\[16](#page-11-15)], Goyal and Giri [\[17\]](#page-11-16), and Chang et al. [\[18\]](#page-11-17).

All the above-cited papers reveal that many research articles are developed in which demand is considered as the function of stock level or selling price, shortages are allowed and partially backlogged, but there is no such research paper which is partially backlogged assuming demand rate as the function of selling price and inventory level in fuzzy environment. In lots of business practices, it is observed that several parameters in inventory system are imprecise. Therefore, it is necessary to consider them as fuzzy numbers while developing the inventory model.

In this study, we have developed a partial backlogging inventory model for deteriorating items considering stock and price sensitive demand rate in crisp and fuzzy surroundings. A numerical example to prove that the optimal solution exists and is unique is provided and the sensitivity analysis with respect to system parameters is discussed. The concavity is also shown through the figure (Fig. [1\)](#page-2-0).

2 Assumptions and Notations

The notations and basic assumptions of the model are as follows:

(1) The demand rate is a function of stock and selling price considered as $f(t) =$ $(a + bQ(t) - p)$ where $a > 0$, $0 < b < 1$, $a > b$ and p is selling price.

- (2) Holding cost *h*(*t*) per item per time-unit is time dependent and is assumed to be $h(t) = h + \delta t$ where $\delta > 0, h > 0$.
- (3) Shortages are allowed and partially backlogged and rate is assumed to be $1/(1 + nt)$, which is a decreasing function of time, $\eta > 0$.
- (4) The deterioration rate is time-dependent.
- (5) *T* is the length of the cycle.
- (6) Replenishment is instantaneous and lead time is zero.
- (7) The order quantity in one cycle is *Q*.
- (8) The selling price per unit item is *p*.
- (9) *A* is the ordering cost per order.
- (10) c_1 is the purchasing cost per unit per unit time.
- (11) c_2 is the backordering cost per unit per unit time.
- (12) c_3 is the opportunity cost per unit.
- (13) *c*⁴ is the deterioration cost per unit.
- (14) $P(T, t_1, p)$ the total profit per unit time.
- (15) The deterioration of units follows the two parameter Weibull distribution (say) $\theta(t) = \alpha \beta t^{\beta-1}$ where $0 < \alpha < 1$ is the scale parameter and $\beta > 0$ is the shape parameter.
- (16) During time *t*1, inventory is depleted due to deterioration and demand of the item. At time t_1 the inventory becomes zero and shortages start going on (Fig. [2\)](#page-6-0).

3 Mathematical Formulation and Solution

Let $Q(t)$ be the inventory level at time $t(0 \le t \le T)$. During the time interval [0, t_1] inventory level decreases due to the combined effect of demand and deterioration both and at *t*¹ inventory level depletes up to zero. The differential equation to describe immediate state over $[0, t_1]$ is given by

$$
Q'(t) + \alpha \beta t^{\beta - 1} Q(t) = -(a + bQ(t) - p) \quad 0 \le t \le t \tag{1}
$$

Again, during time interval $[t_1, T]$ shortages stars occurring and at *T* there are maximum shortages, due to partial backordering some sales are lost. The differential equation to describe instant state over $[t_1, T]$ is given by

$$
Q'(t) = -\frac{(a-p)}{[1+\eta(T-t)]} \quad t_1 \le t \le T \quad t_1 \le t \le T \tag{2}
$$

With condition $Q(t_1) = 0$. Solving Eqs. [\(1\)](#page-3-0) and [\(2\)](#page-3-1) and neglecting higher powers of α , we get

$$
Q(t) = (a-p)\left[t_1 - t + \frac{b}{2}(t_1^2 - t^2) + \frac{\alpha}{(\beta+1)}(t_1^{\beta+1} - t^{\beta+1})\right]e^{-bt - \alpha t^{\beta}} 0 \le t \le t_1
$$
\n(3)

$$
Q(t) = \frac{(a-p)}{\eta} [\log 1 + \eta (T-t) - \log 1 + \eta (T-t_1)] t_1 \le t \le T \tag{4}
$$

At time $t = 0$ inventory level is $Q(0)$ and is given by

$$
Q(0) = (a - p) \left(t_1 + \frac{bt_1^2}{2} + \frac{\alpha t_1^{\beta + 1}}{\beta + 1} \right)
$$

At time T maximum shortages (Q_1) occurs and is given by

$$
Q_1 = \frac{(a-p)}{\eta} [\log \{1 + \eta (T - t_1)\}]
$$

The order quantity is *Q* and is given by

$$
Q = (a - p) \left(t_1 + \frac{bt_1^2}{2} + \frac{\alpha t_1^{\beta + 1}}{\beta + 1} + \frac{1}{\eta} \log \left(1 + \eta (T - t_1) \right) \right) \tag{5}
$$

The purchasing cost is

$$
PC = c_1(a - p) \left(t_1 + \frac{bt_1^2}{2} + \frac{\alpha t_1^{\beta + 1}}{\beta + 1} + \frac{1}{\eta} \log \left(1 + \eta (T - t_1) \right) \right) \tag{6}
$$

Ordering cost is given by

$$
OC = A \tag{7}
$$

Holding cost during the period $[0, t₁]$ is given by

$$
IHC = \int_{0}^{t_1} (h + \delta t) Q(t) dt
$$

=
$$
\int_{0}^{t_1} (h + \delta t) (a - p) \left[t_1 - t + \frac{b}{2} (t_1^2 - t^2) + \frac{\alpha}{(\beta + 1)} (t_1^{\beta + 1} - t^{\beta + 1}) \right]
$$

$$
\times e^{-bt - \alpha t^{\beta}} dt
$$
 (8)

Deterioration cost during the period $[0, t₁]$ is given by

DC =
$$
c_4 \left\{ Q(0) - \int_0^{t_1} (a + bQ(t) - p) dt \right\}
$$
 (9)

Shortage cost due to backordered is

$$
BC = c_2 \int_{t_1}^{T} [-Q(t)] dt
$$

= $-c_2 \int_{t_1}^{T} \frac{(a-p)}{\eta} \left[\log \{1 + \eta (T-t) \} - \log \{1 + \eta (T-t_1) \} \right] dt$ (10)

Lost sales cost due to lost sales is

LS =
$$
c_3(a - p) \int_{t_1}^{T} \left[1 - \frac{1}{(1 + \eta(T - t))} \right] dt
$$
 (11)

Sales revenue is given by

$$
SR = p \int_{0}^{t_1} (a + bQ(t) - p) dt + p \int_{t_1}^{T} \frac{(a - p)}{[1 + \eta(T - t)]} dt
$$
 (12)

From Eqs. (6) , (7) , (8) , (9) , (10) , (11) , and (12) total profit per unit time is given by

$$
P(T, t_1, p) = \frac{1}{T}SR - OC - PC - IHC - BC - LS - DC
$$
 (13)

Let $t_1 = \gamma T$, $0 < \gamma < 1$. Hence we get the profit function is

$$
P(T, p) = \frac{1}{T} \left[p(a - p)\gamma T + b(a - p)pK_1 - b(a - p)pK_2 + p(a - p)K_3 - A \right.
$$

$$
-c_1(a - p)K_4 - \frac{c_2(a - p)K_5}{\eta} - c_3(a - p)K_5 - c_4(a - p)K_6 - (a - p)K_7 \right]
$$

(14)

Where,

$$
K_{1} = \left(\gamma T + \frac{b\gamma^{2}T^{2}}{2} + \frac{\alpha\gamma^{\beta+1}T^{\beta+1}}{\beta+1}\right)\left(\gamma T - \frac{b\gamma^{2}T^{2}}{2} - \frac{\alpha\gamma^{\beta+1}T^{\beta+1}}{\beta+1}\right)
$$

\n
$$
K_{2} = \left[\frac{\gamma^{2}T^{2}}{2} + \frac{b\gamma^{3}T^{3}}{6} + \frac{\alpha\gamma^{\beta+2}T^{\beta+2}}{(\beta+1)(\beta+2)} - b\left\{\frac{\gamma^{3}T^{3}}{3} + \frac{b\gamma^{4}T^{4}}{8}\right\}
$$

\n
$$
+ \frac{\alpha\gamma^{\beta+3}T^{\beta+3}}{(\beta+1)(\beta+3)}\right\} - \alpha\left\{\frac{\gamma^{\beta+2}T^{\beta+2}}{\beta+2} + \frac{b\gamma^{\beta+3}T^{\beta+3}}{2(\beta+3)} + \frac{\alpha\gamma^{2\beta+2}T^{2\beta+2}}{2(\beta+1)^{2}}\right\}
$$

\n
$$
K_{3} = \frac{\{\log\left\{1 + \eta(T - \gamma T)\right\}\}}{\eta}, \quad K_{4} = \left(\gamma T + \frac{b\gamma^{2}T^{2}}{2} + \frac{\alpha\gamma^{\beta+1}T^{\beta+1}}{\beta+1}\right.
$$

\n
$$
+ \frac{1}{\eta}\log\left(1 + \eta(T - \gamma T)\right), \quad K_{5} = \frac{1}{\eta}\left\{\eta(T - \gamma T) - \log\left(1 + \eta(T - \gamma T)\right)\right\},
$$

\n
$$
K_{6} = \left(\frac{b\gamma^{2}T^{2}}{2} + \frac{\alpha\gamma^{\beta+1}T^{\beta+1}}{\beta+1} - b\left(\frac{\gamma^{2}T^{2}}{2} + \frac{b\gamma^{3}T^{3}}{6} - \frac{b^{2}\gamma^{4}T^{4}}{8} - \frac{2\alpha\gamma^{\beta+2}T^{\beta+2}}{(\beta+1)(\beta+2)}\right).
$$

\n
$$
- \frac{b\alpha\gamma^{\beta+3}T^{\beta+3}}{2(\beta+1)} - \frac{\alpha^{2}\gamma^{2\beta+2}T^{2\beta+2}}{2(\beta+1)^
$$

Our objective is to maximize the profit function $P(T, p)$. The necessary conditions for maximizing the profit are

$$
\frac{\partial P(T, p)}{\partial T} = 0 \text{ and } \frac{\partial P(T, p)}{\partial p} = 0
$$

Using the software Mathematica-8.0, from these two equations, we can determine the optimum values of T^* and p^* simultaneously and the optimal value $P^*(T^*, p^*)$ of the average net profit can be determined by (14) provided they satisfy the sufficiency conditions for maximizing $P^*(T^*, p^*)$ are

$$
\frac{\partial^2 P(T, p)}{\partial T^2} < 0, \frac{\partial^2 P(T, p)}{\partial p^2} < 0 \quad \text{and} \quad \frac{\partial^2 P(T, p)}{\partial T^2} \frac{\partial^2 P(T, p)}{\partial p^2} - \left(\frac{\partial^2 P(T, p)}{\partial T \partial p}\right)^2 > 0
$$

4 Numerical Example

To illustrate the theory of the model, we consider the following data on the basis of the previous study.

 $A = 200, a = 100, b = 0.02, c_1 = 12, \gamma = 0.6, c_2 = 8, c_3 = 15, c_4 =$ 0.4, $\alpha = 0.1$, $h = 0.6$, $\beta = 0.01$, $\eta = 0.5$, $\delta = 0.02$.

Based on these input data, the findings are as follows: $p^* = 57.2434$, $t_1^* =$ 0.896826, $Q^* = 64.8475$, $T^* = 1.49471$ and $P^*(T^*, p^*) = 1612.65$.

5 Sensitivity Analysis

See Table [1.](#page-7-0)

6 Fuzzy Mathematical model

In this study, we consider *a*, *A*, c_1 , c_2 , c_3 and c_4 as fuzzy numbers, i.e., \tilde{a} , \tilde{A} , \tilde{c}_1 , \tilde{c}_2 , \tilde{c}_3 and \tilde{c}_4 . Then $\tilde{P}(T, P)$ is regarded as the estimate of total profit per unit time in the

Table 1 Sensitivity analysis is performed by changing (increasing or decreasing) the parameters by 10 and 20% and considering one parameter at a time, keeping the left over parameters at their original values

Changing parameter	% change in system	Change in T^*	Change in p^*	Change in t_1^*	Change in Q^*	Change in $P^*(T^*, p^*)$
\boldsymbol{A} \boldsymbol{a}	-20	1.30930	57.1406	0.785580	53.1966	1641.20
	-10	1.40364	57.1932	0.842184	61.1014	1626.45
	$+10$	1.58302	57.2914	0.949812	68.4592	1599.65
	$+20$	1.66899	57.3376	1.001390	71.9558	1587.35
	-20	1.89826	47.4582	1.138960	62.1062	896.308
	-10	1.67136	52.3388	1.002820	63.6073	1229.32
	$+10$	1.35289	62.1650	0.811734	65.8912	2046.22
	$+20$	1.23631	67.0994	0.741786	66.7825	2529.98
\boldsymbol{b}	-20	1.48084	57.2373	0.888504	64.2087	1610.57
	-10	1.48771	57.2403	0.892626	64.5252	1611.61
	$+10$	1.50184	57.2464	0.901104	65.1760	1613.70
	$+20$	1.50910	57.2496	0.905460	65.5101	1614.76
c ₁	-20	1.45761	55.9485	0.874566	65.2108	1718.40
	-10	1.47591	56.5958	0.885546	65.0308	1665.12
	$+10$	1.51403	57.8912	0.908418	64.6609	1561.00
	$+20$	1.53389	58.5394	0.920334	64.4704	1510.15
c ₂	-20	1.53379	57.1790	0.920274	66.5816	1619.58
	-10	1.51388	57.2115	0.908328	65.6983	1616.09
	$+10$	1.47623	57.2747	0.885738	64.0271	1609.25
	$+20$	1.45842	57.3054	0.875052	63.2361	1605.88
c ₃	-20	1.53126	57.1831	0.918756	66.4694	1619.14
	-10	1.51266	57.2135	0.907596	65.6442	1615.88
	$+10$	1.47737	57.2727	0.886422	64.0778	1609.46
	$+20$	1.46061	57.3016	0.876366	63.3334	1606.30
α	-20	1.49451	57.1739	0.896706	64.1849	1618.36
	-10	1.49461	57.2086	0.896766	64.5166	1615.50
	$+10$	1.49480	57.2781	0.896880	65.1776	1609.80
	$+20$	1.49488	57.3128	0.896928	65.5067	1606.95
\boldsymbol{h}	-20	1.50387	57.2314	0.902322	65.2491	1614.03
	-10	1.49926	57.2374	0.899556	65.0318	1613.34
	$+10$	1.49020	57.2493	0.894120	64.6499	1611.97
	$+20$	1.48574	57.2552	0.891444	64.4543	1611.28

(continued)

fuzzy sense. In this study, we considered the signed distance method as proposed by Chang [\[3](#page-11-2)].

 $\tilde{a} = (a - \Delta_1, a, a + \Delta_2)$ where $0 < \Delta_1 < a$ and $\Delta_1 \Delta_2 > 0, A =$ $A - \Delta_3$, A , $A + \Delta_4$ where $0 < \Delta_3 < A$ and $\Delta_3 \Delta_4 > 0$. $\tilde{c}_1 = c_1 - \Delta_5$, c_1 , $c_1 + \Delta_6$ where $0 < \Delta_5 < c_1$ and $\Delta_5\Delta_6 > 0$, $\tilde{c}_2 = c_2 - \Delta_7$, c_2 , $c_2 + \Delta_8$ where $0 < \Delta_7 < c_2$ and $\Delta_7 \Delta_8 > 0$.

Changing parameter	$%$ change in system	Change in T^*	Change in p^*	Change in t_1^*	Change in Q^*	Change in $P^*(T^*, p^*)$
η	-20	1.59373	57.2295	0.956238	69.6239	1634.32
	-10	1.54094	57.2358	0.924564	67.0794	1623.19
	$+10$	1.45381	57.2518	0.872286	62.8699	1602.62
	$+20$	1.41731	57.2609	0.850386	61.1021	1593.04

Table 1 (continued)

 $\tilde{c}_3 = c_3 - \Delta_9, c_3, c_3 + \Delta_{10}$ where $0 < \Delta_9 < c_3$ and $\Delta_9\Delta_{10} > 0, \tilde{c}_4 =$ $c_4 - \Delta_{11}$, c_4 , $c_4 + \Delta_{12}$ where $0 < \Delta_{11} < c_4$ and $\Delta_{11}\Delta_{12} > 0$.

And the signed distance of \tilde{a} to $\tilde{0}$ is given by the relation $d(\tilde{a}, \tilde{0}) = a +$ $1/4(\Delta_2 - \Delta_1)$ where $d(\tilde{a}, 0) > 0$ and $d(\tilde{a}, 0) \in [a - \Delta_1, a + \Delta_2]$. Similarly, for other parameters signed distance can be defined as above.

Now, by the fuzzy triangular rule fuzzy total profit per unit is FP $(\tilde{a}, \tilde{A}, \tilde{c}_1, \tilde{c}_2, \tilde{c}_3,$ \tilde{c}_4) = (F_1, F_2, F_3).

And F_1 , F_2 , F_3 are obtained as

$$
F_1 = \frac{1}{T} \left[p(a - \Delta_1 - p)\gamma T + b(a - \Delta_1 - p)pK_1 - b(a + \Delta_2 - p)pK_2 + p(a - \Delta_1 - p)K_3 - (A + \Delta_4) - (c_1 + \Delta_6)(a + \Delta_2 - p)K_3 - \frac{(c_2 + \Delta_8)(a + \Delta_2 - p)K_5}{\eta} \right]
$$
\n
$$
- (c_3 + \Delta_{10})(a + \Delta_2 - p)K_5 - (c_4 + \Delta_{12})(a + \Delta_2 - p)K_6 - (a + \Delta_2 - p)K_7 \right]
$$
\n(15)

$$
F_2 = \frac{1}{T} \left[p(a-p)\gamma T + b(a-p)pK_1 - b(a-p)pK_2 + p(a-p)K_3 - A \right.
$$

- $c_1(a-p)K_4 - \frac{c_2(a-p)K_5}{\eta} - c_3(a-p)K_5 - c_4(a-p)K_6 - (a-p)K_7 \right]$
(16)

$$
F_3 = \frac{1}{T} \left[p(a + \Delta_2 - p)\gamma T + b(a + \Delta_2 - p)pK_1 - b(a - \Delta_1 - p)pK_2 + p(a + \Delta_2 - p)K_3 - (A - \Delta_3) - (c_1 - \Delta_5)(a - \Delta_1 - p)K_4 - \frac{(c_2 - \Delta_7)(a - \Delta_1 - p)K_5}{\eta} \right]
$$
\n(17)

$$
-(c_3 - \Delta_9)(a - \Delta_1 - p)K_5 - (c_4 - \Delta_{11})(a - \Delta_1 - p)K_6 - (a - \Delta_1 - p)K_7]
$$

Now, defuzzified average profit using the signed distance method is given by

$$
\tilde{P}(T, p) = (F_1 + 2F_2 + F_3)/4 \tag{18}
$$

Also, the defuzzified order quantity is Q and is given by

$$
Q = \left(a + \frac{(\Delta_2 - \Delta_1)}{4} - p\right) \left(t_1 + \frac{bt_1^2}{2} + \frac{\alpha t_1^{\beta+1}}{\beta+1} + \frac{1}{\eta} \log\left(1 + \eta(T - t_1)\right)\right)
$$
\n(19)

The necessary conditions for maximizing the average profit are $\partial P(T, p)/\partial T = 0$ and $\partial P(T, p)/\partial p = 0$.

Using the software Mathematica-8.0, from the above two equations, the optimum values of \tilde{T} and \tilde{p} can be determined simultaneously and the optimal value of the average net profit $(\tilde{P}(T, p))$ can be obtained by [\(18\)](#page-8-0).

7 Numerical Example

 $A = 200, \Delta_3 = 10, \Delta_4 = 20, a = 100, \Delta_1 = 5, \Delta_2 = 10, b = 0.02,$ $c_1 = 12, \Delta_5 = 0.60, \Delta_6 = 1.2, c_2 = 8, \Delta_7 = 0.4, \Delta_8 = 0.8, c_3 = 15, \Delta_9 = 0.5$ $0.75, \Delta_{10} = 1.5, c_4 = 0.4, \Delta_{11} = 0.02, \Delta_{12} = 0.04, \alpha = 0.1, \beta = 0.01, \gamma =$ 0.6, $h = 0.6$, $\eta = 0.5$, $\delta = 0.02$.

Based on these input data, the findings are as follows: $p_f^* = 58.0034, T_f^* = 1.48131, t_{1f}^* = 0.888786, Q_f^* = 65.0234$ and $P(p_f^*,$ T_f^*) = 1646.53.

8 Sensitivity Analysis

See Table [2.](#page-10-0)

8.1 Observations

- (1) When $\Delta_1 > \Delta_2$, i.e., demand parameter **a** decreases then the optimal profit $P(p_f^*, T_f^*)$ decreases and when $\Delta_1 < \Delta_2$ i.e., **a** increases then $P(p_f^*, T_f^*)$ increases.
- (2) When $\Delta_3 > \Delta_4$, i.e., ordering cost **A** decreases then $P(p_f^*, T_f^*)$ slightly increases and when $\Delta_3 < \Delta_4$ i.e., A increases then profit decreases. Similarly, profit increases and decreases as $\Delta_5 > \Delta_6, \Delta_7 > \Delta_8, \Delta_9 > \Delta_{10}$ and $\Delta_5 < \Delta_6$, $\Delta_7 < \Delta_8$, $\Delta_9 < \Delta_{10}$ respectively.
- (3) There is a small decline in profit $P(p_f^*, T_f^*)$, as $\Delta_{11} < \Delta_{12}$ i.e., deterioration cost c_4 increases and profit increases as $\Delta_{11} > \Delta_{12}$ i.e., c_4 decreases.

Changing parameter	Change in parameter in T_f^*	Change	Change in p_f^*	Change in t_{1f}^*	Change in Q_f^*	Change in $\tilde{P}(p_f^*, T_f^*)$
$\Delta_1, \, \Delta_2$	(40, 20)	1.57895	54.9325	0.947370	64.0666	1387.46
	(10, 5)	1.52093	56.7755	0.912558	64.7378	1545.21
	(5, 10)	1.48131	58.0034	0.888786	65.0234	1646.53
	(20, 40)	1.42152	59.8449	0.852912	65.2461	1792.81
Δ_3, Δ_4	(80, 40)	1.42603	57.9725	0.855618	62.7247	1655.13
	(20, 10)	1.45933	57.9912	0.875598	64.1103	1649.93
	(10, 20)	1.48131	58.0034	0.888786	65.0234	1646.53
	(40, 80)	1.51398	58.0216	0.908388	66.3780	1641.53
Δ_5, Δ_6	(4.8, 2.4)	1.47188	57.5999	0.883128	65.2270	1670.29
	(1.2, 0.6)	1.47660	57.8415	0.885960	65.0666	1660.11
	(0.6, 1.2)	1.48131	58.0034	0.888786	65.0234	1646.53
	(2.4, 4.8)	1.49085	58.2477	0.894510	65.0577	1615.99
Δ 7, Δ 8	(3.3, 1.6)	1.49001	57.9809	0.894006	65.4258	1648.17
	(0.8, 0.4)	1.48605	57.9957	0.891630	65.2357	1647.42
	(0.4, 0.8)	1.48131	58.0034	0.888786	65.0234	1646.53
	(1.6, 3.3)	1.47002	58.0139	0.882012	64.5295	1644.42
Δ 9, Δ ₁₀	(6, 3)	1.48900	57.9833	0.893400	65.3794	1647.98
	(1.5, 0.75)	1.48576	57.9961	0.891456	65.2228	1647.36
	(0.75, 1.5)	1.48131	58.0034	0.888786	65.0234	1646.53
	(3, 6)	1.47135	58.0124	0.882810	64.5881	1644.67
Δ_{11}, Δ_{12}	(0.16, 0.08)	1.48134	58.0018	0.888804	65.0271	1646.63
	(0.04, 0.02)	1.48133	58.0028	0.888798	65.0252	1646.59
	(0.02, 0.04)	1.48131	58.0034	0.888786	65.0234	1646.53
	(0.08, 0.16)	1.48128	58.0044	0.888768	65.0206	1646.41

Table 2 Sensitivity table with respect to system parameters

9 Conclusion

In this study, the model is proposed in the following two senses: (1) crisp and (2) fuzzy. In fuzzy situation, demand rate, ordering cost, purchasing cost, deterioration cost, backordering cost, and opportunity cost are considered as triangular fuzzy numbers. It is assumed that the demand rate is a function of price and stock both, shortages are allowed and are partially backlogged. The proposed model is more practical as real life businesses are affected by the stock and price dependent demand. If there is a large pile of stock and a suitable selling price of the products is sustained in a business then it attracts the customers to buy more. In real life situations, all the shortages cannot be fully backlogged as some sales will be lost due to interruption of time, therefore partial backlogging is more realistic. In today's market due to the impreciseness of the inventory costs and demand, it is more useful to consider them as fuzzy numbers since the business strategy will be able to face the upper and down conditions of the market. Moreover, from sensitivity table, it is observed that the model is enough stable toward the changes in the system parameters.

Acknowledgments The second author wish to thank to Council of Scientific and Industrial Research (New Delhi) for providing financial help in the form of JRF vide letter no. 08/017(0017)/2011- EMR-I.

References

- 1. Zadeh, L.: Fuzzy sets. Inf. Control **8**, 338–353 (1965)
- 2. Park, K.S.: Fuzzy-set theoretic interpretation of economic order quantity. IEEE Trans. Syst. Man Cybern. SMC-**17**, 1082–1084 (1987)
- 3. Chang, H.C.: An application of fuzzy sets theory to the EOQ model with imperfect quality items. Comput. Oper. Res. **31**, 2079–2092 (2004)
- 4. Wang, J., Fu, Q.L., Zeng, Y.R.: Continuous review inventory models with a mixture of backorders and lost sales under fuzzy demand and different decision situations. Expert Syst. Appl. **39**, 4181–4189 (2012)
- 5. Ghare, P.M., Schrader, G.F.: A model for exponential decaying inventory. J. Ind. Eng. **14**, 238–243 (1963)
- 6. Covert, R.P., Philip, G.C.: An EOQ model for items with Weibull distribution deteriorating. AIIE Trans. **5**, 323–326 (1973)
- 7. Raffat, F.: Survey of literature on continuously deteriorating inventory model. Eur. J. Oper. Res. Soc. **42**, 27–37 (1991)
- 8. Teng, J.T., Chang, H.J., Dye, C.Y., Hung, C.H.: An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging. Oper. Res. Lett. **30**, 387–393 (2002)
- 9. Bakker, M., Riezebos, J., Teunter, R.H.: Review of inventory systems with deterioration since 2001. Teunter. **221**, 275–284 (2012)
- 10. Park, K.S.: Inventory models with partial backorders. Int. J. Syst. Sci. **13**, 1313–1317 (1982)
- 11. Wee, H.M.: A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Comput. Oper. Res. **22**, 345–356 (1995)
- 12. Singh, S.R., Singh, T.J.: Perishable inventory model with quadratic demand, partial backlogging and permissible delay in payments. Int. Rev. Pure Appl. Math. **1**, 53–66 (2008)
- 13. Hsieh, T.P., Dye, C.Y., Ouyang, L.Y.: Optimal lot size for an item with partial backlogging rate when demand is stimulated by inventory above a certain stock level. Math. Comput. Model. **51**, 13–32 (2010)
- 14. Gupta, R., Vrat, P.: Inventory model with multi-items under constraint systems for stock dependent consumption rate. Oper. Res. **24**, 41–42 (1986)
- 15. Mandal, B.N., Phaujdar, S.: An inventory model for deteriorating items and stock-dependent consumption rate. J. Oper. Res. Soc. **40**, 483–488 (1989)
- 16. Ray, J., Goswami, A., Chaudhuri, K.S.: On an inventory model with two levels of storage and stock-dependent demand rate. Int. J. Syst. Sci. **29**, 249–254 (1998)
- 17. Goyal, S.K., Giri, B.C.: The production-inventory problem of a product with time varying demand, production and deterioration rates. Eur. J. Oper. Res. **147**, 549–557 (2003)
- 18. Chang, C.T., Chen, Y.J., Tsai, T.R., Wu, S.J.: Inventory models with stock-and price dependent demand for deteriorating items based on limited shelf space. Yugoslav J. Oper. Res. **20**, 55–69 (2010)