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Abstract In order to increase the probability of finding optimal solution, GAs must
maintain a balance between the exploration and exploitation. Maintaining popula-
tion diversity not only prevents premature convergence but also provides a better
coverage of the search space. Diversity measures are traditionally used to analyze
evolutionary algorithms rather than guiding them. This chapter discusses the applica-
bility of updation phase of binary trie coding scheme [BTCS] in introducing as well
as maintaining population diversity. Here, the robustness of BTCS is compared with
informed hybrid adaptive genetic algorithm (IHAGA), which works by adaptively
changing the probabilities of crossover and mutation based on the fitness results of
the respective offsprings in the next generation.

Keywords Genetic algorithm - Multidimensional knapsack problem - Diversity
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1 Introduction

Genetic algorithms (GAs) have been successfully applied to various optimization
problems where one intends to find an optimum or approximate solution to a prob-
lem that has a huge size of solution space. However, one of the major concerns
in using evolutionary algorithms to search a complex state space is the problem
of premature convergence, especially for combinatorial optimization problems like
multidimensional knapsack problem (MKP), where the landscape is multipeaked; the
probability of search sticking to local optima is all the more high. Because genetic
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programming is highly stochastic, we do not expect to obtain clear rules about exact
levels of diversity. We aim to draw general conclusions and “rules of thumb” from
the investigation of evolving populations with different measures of diversity. Given
a specific landscape structure—defined by the search space, objective function, then
relying on problem-specific knowledge for navigating this structure in order to extract
helpful information from the search space, would make the optimization faster and
more effective. This paper investigates the characteristic issues of BTCS [1] (which
incorporates this strategy) and compares it with IHAGA [2] for solving test instances
of combinatorial optimization problem on MKP. The simulation results show that
the proposed strategy significantly improves the computational efficiency of GAs.
The rest of the chapter is organized as follows. In the section that follows, a brief
review of the BTCS scheme and the research work going on in the field of using adap-
tive crossover and mutation operators for achieving diversity is provided. Section 3
describes the BTCS bucket updation phase vis-a-vis population diversity. Experi-
mental results are presented in Sect. 4. Section 5 summarizes the main contributions
of the chapter.

2 Related Work

2.1 Binary Trie Coding Scheme

Binary trie coding scheme [BTCS] creates and maintains a diverse population of
highly fit individuals capable of adapting quickly to fitness landscape change [1].
BTCS provides three major contributions related to duplicate elimination and prema-
ture convergence in a steady-state GA. The first contribution of BTCS is the virtually
compressed binary trie structure (VCBT). VCBT when integrated with GA proves
to be beneficial in determining duplicates among all the generations and replacing
them with unique individuals [1, 3]. The second contribution is to demonstrate that
preventing duplicates results in improved performance. It effectively avoids what is
usually a difficult trade-off between achieving fast search and sustaining diversity
and thereby provides means to avoid premature convergence. The third contribution
of BTCS is that it relies on problem-specific knowledge in fragmenting the search
space into feasible and infeasible regions and then pruning the infeasible regions.
This chapter discusses as to how bucket updation phase of BTCS incorporates the
effective measures pertaining to population diversity without using adaptive crossover
and mutation operators.

2.2 Adaptive Crossover and Mutation Rate

The significance of crossover operator in controlling GA performance has long been
acknowledged in GA research which can be dated back to 1980s [4]. A number



Diversity Maintenance Perspective 33

of guidelines exist in the literature for setting the values of crossover probability
[5]. Some studies particularly focused on finding optimal crossover rates [6]. These
heralded the need for self-adaption of the crossover or mutation rates. In [7], an adap-
tive genetic algorithm was proposed, in which crossover and mutation probabilities
were varied according to the fitness values of the solutions. There were also works on
devising adaptive crossover operators instead of varying the crossover rates [8]. Sev-
eral operators were employed, and the probabilities of applying each operator were
adapted according to the performance of the offsprings generated by the operator.
Since then, several similar works have also been done [9].

The choice of mutation rate is also critical to GA’s performance [10]. Various
researchers have come up with novel approaches to implement the adaptive mutation
into a GA. Some approaches to adaptive mutation control employ parent fitness in
determining mutation probability [11]. If selected, highly fit individuals undergo low
levels of mutation (minimal disruption), while low-fitness individuals are subjected to
large rates of disruptive mutation. A measure of population diversity is employed by
[12] and [13] in adapting mutation probabilities. In a similar vein, Zhang et al. [14]
adapt crossover and mutation according to parameters extracted from a K-means
clustering algorithm. Thus, many researchers have emphasized on using adaptive
mutation so as to improve GA’s performance as it facilitates the finding of global
optimum more efficiently [15].

Although the adaptive crossover and mutation rates are hot spots in the study of
genetic search, the BTCS scheme proposed by us [1] does not explicitly employ any
scheme to adaptively mutate or crossover. For analyzing the robustness of BTCS, we
compare it with informed hybrid adaptive genetic algorithm (IHAGA). This scheme
works by adjusting its cross-adaptive rate and mutation rate according to the situation
surrounding the fitness of the individual [2]. In the course of crossover and mutation,
the probabilities of crossover and mutation are adjusted adaptively according to the
following formulas:

Pcmax — Pemin
2(f —
Pc=11 +exp<Ax(% — 1))
max avg
PCmin f/ < favg
Pmmax — Pmnin

L Pmmin f/ = favg

+ PcCmin f/ = favg

+ Pmmin f/ = favg

where Pcmax and Pcpin denote the lower limit and the upper limit of probability
of crossover, respectively. f,,« and faye denote the maximal fitness and the average
fitness of population, respectively, f° denotes the higher fitness of two crossover
individuals, f denotes the fitness of the individuals, and A = 9.903438 [2].
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3 BTCS Bucket Updation Phase

3.1 Buckets and Their Significance

The buckets correspond to the leaf nodes in a VCBT [1, 3]. The aim of buckets is
to maintain a continuous presence on as many peaks as possible. Population’s spa-
tial information is obtained with computationally inexpensive buckets. It provides
important information in addition to the address of the trie structure existing under it.
This information is used to identify potentially local convergence. Buckets are signif-
icant in dividing the population into an exploration section and exploitation section.
It monitors and measures diversity at synchronized time intervals and accordingly
attempts to control or promote diversity during the evolution. Identifying such mea-
sures allows better prediction for run performance and improved understanding of
the population and enables the design of efficient operators.

3.2 Bucket Updation

The contribution of updation phase in the BTCS scheme is twofold [1, 3]. The first
contribution of updation phase is to manage the size of VCBT structure. The size of
VCBT structure can be kept small by pruning fully explored regions of the search
space. The second contribution is to monitor convergence and introduce diversity so
as to avoid local entrapment.

3.2.1 Guided Crossover Operator

The proposed procedure works by randomly selecting buckets with criterion value
1, and then exchanges information by copying their best strings [1, 3]. The copying
of best feasible boundary solution of one to another is done only if (new bucket_sum +
old bucket_best_sum) are feasible and new bucket_sum is greater than old bucket_sum.
Doing this restricts the copying of strings between any two selected buckets randomly.
Bucket_sum and bucket_best_sum are two variables that are unique to each bucket.
They are used for storing the sum of included objects from root to bucket_position
and sum of bucket + 1 position till n (the number of objects), respectively. GA with
the proposed method distributes the individuals more widely compared to simple
GA, where the individuals represent the local optima for that region. The aim is to
identify feasible regions in the landscape that could replace less fit individuals by
more promising samples from the unexplored sections of the search space. This pre-
vents entrapment in local optima by including new individuals from the unexplored
regions of the search space.
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Table 1 Average execution time of BTCS in comparison with IHAGA

n m o Simple GA BTCS_IMO IHAGA
ABS.T AET ABS.T AET ABS.T AET
100 5 0.25 9.6 3459 10.85 109.47 8.14 31.13
0.5 235 347.3 26.32 120.23 19.92 76.41
0.75 26.9 361.7 33.36 123.02 23.19 90.43
10 0.25 97.5 384.1 104.20 115.12 83.33 192.05
0.5 97.3 418.9 111.90 143.6 84.61 129.86
0.75 16.8 462.6 19.15 159.56 14.36 129.53
30 0.25 177.4 604.5 198.69 202.68 150.00 199.49
0.5 118 782.1 130.98 247.74 113.90 218.99
0.75 90 904.2 80.10 315.34 80.10 253.18
250 5 0.25 50.7 682 34.19 216.03 34.48 265.98
0.5 276.7 709.4 191.59 257.54 185.39 333.42
0.75 195.9 763.3 127.12 241.78 137.13 534.31
10 0.25 359 870.9 258.16 290.65 290.43 566.09
0.5 3422 931.5 249.91 295.06 281.63 596.16
0.75 129.1 1011.2 95.91 320.3 104.44 455.04
30 0.25 582.9 1499.5 332.51 493.45 472.73 794.74
0.5 901.5 1980 601.20 643.14 720.30 1207.80
0.75 1059.3 2441.4 754.22 815.23 840.02 1440.43
500 5 0.5 291.3 1345.9 142.10 416.09 236.83 969.05
0.75 386.2 1412.6 188.40 499.32 317.84 974.69
10 0.5 562.2 1728.8 274.20 615.35 490.24 1383.04
0.75 937.6 1931.7 457.40 715.34 792.27 1564.68

30 0.5 1121.6 3198.9 547.10 1334.56 923.08 2600.71
0.75 1903.3 3888.2 928.40 1231.49 1545.48 3110.56

3.2.2 Adaptive Selection Parameter Control

This takes place when there is some form of feedback from the search that serves
as input to the mechanism used to determine the change in the strategy parameters.
During this phase, the avg corresponding to the worst and best individuals within
that bucket is checked. It is computed as the average of all the individuals within that
bucket. The new avg value will drop if more boundary solutions between the worst
and average interval are generated and would increase if more boundary solutions
between average and best interval are generated. During this phase, that bucket is
selected, whose new avg has increased and at least approximately more than 60 % of
the region within that bucket has already been explored. The aim of phase 2 in bucket
updation is to prevent the unnecessary delay caused in exploring those regions of
search space where the probability of best solution to exist is very limited. The phase
2 describes the buckets’ solution space diversity from a fitness perspective, i.e., a
measure of diversity of healthy individuals. BDS Bucket Updation employs ASPC



36 S. Gupta and M. L. Garg

Table 2 Percentage gaps for BTCS and IHAGA

n m o GA BTCS_IMO THAGA
100 5 0.5 0.4564 0.4613 0.46200
0.75 0.3212 0.2884 0.32119

10 0.5 0.7982 0.7774 0.79838

0.75 0.4813 0.4697 0.48100

30 0.5 1.3457 1.3145 1.36953

0.75 0.8321 0.8296 0.81546

250 5 0.5 0.1253 0.1183 0.12525
0.75 0.0811 0.0752 0.08759

10 0.5 0.2543 0.2362 0.25429

0.75 0.1572 0.1513 0.15710

30 0.5 0.5321 0.5267 0.54877

0.75 0.3112 0.2972 0.32431

500 5 0.5 0.0441 0.0443 0.04631
0.75 0.0378 0.0429 0.04271

10 0.5 0.1134 0.0946 0.11907

0.75 0.0712 0.0501 0.07903

30 0.5 0.2635 0.2387 0.26908

0.75 0.1747 0.1738 0.17905

to regulate selection pressure. ASPC’s objective is to create a diversity of health in
the population, i.e., the diversity of high-fitness individuals.

4 Experimental Results

Tables 1 and 2 illustrate the comparison of results of BTCS with those of IHAGA [2]
for solving the MKP. The results of BTCS and IHAGA are based on our own com-
putations. Table 1 provides the average best solution time (ABST) and the average
execution time (AET) for both BTCS and IHAGA. The bold highlights in Table 1
show the optimal average execution time among the two for varying n and m values,
where n is the number of objects and m is the number of constraints. It is clear from
Table 1 that IHAGA outperforms BTCS computationally, for smaller values of n.
The cost of constructing VCBT results in an increase in the average execution time.
However, for larger instances, despite the time utilized in the construction of VCBT
structure, BTCS is effective in reaching the optimal solution in comparison with
IHAGA. The ability to work with unique boundary individuals facilitates faster con-
vergence. The probability of recurrence of individuals in the subsequent generations
results in deviation from path, leading to optimality, for larger set of individuals in
the case of IHAGA despite its ability to guide the search. Table 2 further provides the
average percentage gaps for the two approaches. For both, the BTCS and IHAGA,
the percentage gaps (100 x (optimum LP — optimum GA)/optimum LP) relative to
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the solution of LP relaxation were computed. Here GA refers to special cases of GA,
i.e., BTCS and IHAGA. It can be inferred from the results of Table 2 that BTCS
outperforms IHAGA for all test instances under consideration. BTCS has provided
better coverage of the search space and has been found to be successful in providing
solutions of better quality in comparison with [HAGA.

5 Conclusion

The aim of updation phase in the BTCS scheme has been the exploring of promising
regions while concentrating the search on hyperplanes that are likely to contain good
solutions. The GCO and ASPC focus on extracting information about the selected
buckets before deciding on the introduction of diversity. Its advantage is that at the
point of near convergence, late in a GA run, such diversion reduces the probability
of GA to entrap in local convergence and thus provides better solutions.

In our approach, we have not used a mutation parameter, which should be adapted
explicitly. Instead, it is the principle of working with unique chromosomes (or indi-
viduals) in the VCBT structure, which guarantees automatic mutation. Furthermore,
our approach still concentrates on using one-point crossover operator with a fixed
probability of 0.70. This is attributed to the deeper nature of BTCS scheme, which
permits only good optimal solutions from the search space to participate in the
process of evolution. Working with unique boundary solutions assists in maintaining
an optimum level of diversity among the individuals.
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