
Engineering Optimization Using SOMGA

Kusum Deep and Dipti Singh

Abstract Many real-life problems arising in science, business, engineering, etc. can
bemodeled as nonlinear constrained optimization problems. To solve these problems,
population-based stochastic search methods have been frequently used in literature.
In this paper, a population-based constraint-handling technique C-SOMGA is used to
solve six engineering optimization problems. To show the efficiency of this algorithm,
the results are compared with the previously quoted results.
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1 Introduction

Constraint handling is considered to be challenging and difficult task in optimiza-
tion.Many real-life problems in engineering can bemodeled as nonlinear constrained
optimization problems. In view of their practical utility, there is a need to develop
efficient and robust computational algorithms,which can numerically solve problems
in different fields irrespective of their size. These days a number of probabilistic tech-
niques are available for obtaining the global optimal solution of nonlinear optimiza-
tion problems. Though GAs are very efficient at finding the global optimal solution
of unconstrained or simply constrained (i.e., box constraints) optimization problems
but encounter some difficulties in solving highly constraint nonlinear optimization
problems, because the operators used in GAs are not very efficient in dealing with the
constraints. Several methodologies have been developed to handle constraints when
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GAs are used to solve constrained optimization problems refer Kim and Myung
[12], Michalewicz [13], Myung and Kim [14], Orvosh and Davis [15]. Deep and
Dipti [8] proposed a penalty parameter free hybrid approach C-SOMGA for solving
the nonlinear constrained optimization problems. It is not only easy to implement
but also does not require any parameter to be fine-tuned for constraint handling. It
works with a very low population size, hence uses low function evaluations where
the term “function evaluations” represents the number of times an objective function
is evaluated in the entire run. In this paper, six engineering optimization algorithms
has been solved using C-SOMGA. The results obtained are compared with the pre-
viously quoted results. On the basis of the results, it is concluded that the C-SOMGA
is efficient to solve these problems.

The paper is organized as follows: in Sect. 1, introduction is given; in Sect. 2,
methodology of C-SOMGA is presented; in Sect. 3, mathematical models of the
problems are given and results obtained using C-SOMGA are discussed and com-
pared with the previously quoted results; and Sect. 4 summarizes the conclusions
based on the present study.

2 Methodology of C-SOMGA

The algorithm C-SOMGA is an extension of SOMGA [7] for solving the constraint
nonlinear optimization problems in which SOMGA is combined with constraint-
handling tournament selection scheme, and as a result of this, C-SOMGA has been
proposed. The methodology of C-SOMGA algorithm is as follows:

First, the individuals are generated randomly. These individuals compete with
each other through constraint tournament selection method: Create new individuals
via single-point crossover and bitwise mutation. Then, the best individual among
them is considered as leader and all others are considered as active. For each active
individual, a new population of size N is created, where N is the ratio of path length
and step size. This population is nothing but the new positions of the active individual
proceeds in the direction of the leader in n steps of the defined length. The movement
of this individual is given by

xMLnew
i, j = xML

i, j,start +
(

xML
L , j − x M L

i, j,start

)
tPRTVector j (1)

where t ∈< 0, by Step to, PathLength>,

ML is actual migration loop.
xMLnew

i, j is the new positions of an individual.

xML
i, j,start is the positions of active individual.

xML
L , j is the positions of leader.

PRT vector is created before an individual proceeds toward leader. This parameter
has the same effect as mutation in GA. It is defined in the range <0, 1>. Then, sort
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this population according to the fitness value in decreasing order. Starting from the
best one of the new population, evaluate the constraint violation function described
by Eq. 2.

ψ(x) =
M∑

m=1

[hm(x)]
2 +

K∑
k=1

Gk [gk(k)]
2 (2)

where Gk is the Heaviside operator such that Gk = 0 for gk (x) ≥ 0 and Gk = 1 for
gk (x) < 0.

If ψ (x) = 0, replace the active individual with the current position and move to
the next active individual and if ψ (x) > 0, then move to the next best position of the
sorted new population. In this way, all the active individuals are replaced by the new
updated feasible position. If no feasible solution is available, then active individual
remains the same. At last, the best individuals (number equal to population size)
from the previous and current generations are selected for the next generation. The
computational steps of this approach are given below:

Step 1: Generate the initial population.
Step 2: Evaluate all individuals.
Step 3: Apply tournament selection for constrained optimization on all individuals

to select the better individuals for the next generation.
Step 4: Apply crossover operator on all individuals with crossover probability Pc

to produce new child individuals.
Step 5: Evaluate the new child individuals.
Step 6: Apply mutation operator on every bit of every individual of the population

with mutation probability Pm .
Step 7: Evaluate the mutated individuals.
Step 8: Find leader (best fit individual) of the population and consider all others

as active individuals of the population.
Step 9: For each active individual, a new population of size N is created. This

population is nothing but the new positions of the active individual toward
the leader in n steps of the defined length. The movement of this individual
is given in Eq. (1).

Step 10: Sort new population with respect to fitness in decreasing order.
Step 11: For each individual in the sorted population, check feasibility criterion.
Step 12: If feasibility criterion is satisfied, replace the active individual with the new

position, else move to next position in sort order, and go to Step 11.
Step 13: Select the best individuals (in fitness) of previous and current generation

for the next generation via tournament selection.
Step 14: If termination criterion is satisfied go to 15 else go to Step 3.
Step 15: Report the best chromosome as the final optimal solution.
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3 Mathematical Models of Engineering Optimization Problems

In this section, mathematical model of six engineering optimization problems has
been given and the results obtained usingC-SOMGAare comparedwith the available
results. These models have been taken from the literature to see the performance
of the C-SOMGA on constrained optimization problems. Many researchers used
these models to demonstrate the performance of their techniques [2, 16–18]. The
experimental setup for C-SOMGA is given in Table 1.

3.1 Gas Transmission Compressor Design

This problem is taken from Beightler and Phillips [2]. This is a real-life problem in
which the values of design parameters P1, x1, x2, x3 are to be determined that will
deliver 100 million cu. Ft. of gas per day with minimum cost for a gas pipe line
transmission system. Here,

P1 Compressor discharge pressure,
Q Flow rate,
x1 Length between compressor stations (in miles),
x2 Compressor ratio = P1/P2,
x3 Pipe inside diameter (in inches).

The mathematical model of the problem is

Minimize g0 = 8.61 × 105x1/21 x2x−2/3
3 x−1/2

4 + 3.69 × 104x3 + 7.72 × 108

× 108x−1
1 x0.2192 − 765.43 × 106x−1

1

subject to x4x−2
2 + x−2

2 ≤ 1, where x1, x2, x3, x4 > 0.
Bounds on the variables are as follows:

20 ≤ x1 ≤ 50, 1 ≤ x2 ≤ 10, 20 ≤ x3 ≤ 50, 0.1 ≤ x4 ≤ 60

Table 1 Experimental setup Population size 20
Pc 0.85
Pm 0.009
Step size 0.31
Path length 3
String length 20
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Table 2 Optimal solution to the design of a gas transmission compressor

Value of objective Values of variables

Solution obtained by C-SOMGA 296.490 × 104 x1 = 49.9996, x2 = 1.17834,
x3 = 24.5996, x4 = 0.388482

Solution given in Pant [16] 296.528 × 104 x1 = 50.000, x2 = 1.183,
x3 = 24.347, x4 = 0.339

Solution given in Beightler and Phillips [2] 299 × 104 x1 = 28.760, x2 = 1.109,
x3 = 25.030, x4 = 0.230

The problem turns out to be a constrained geometric programming problem. This
problem is earlier solved by Beightler and Phillips [2], Verma [18], Thanh [17],
and Pant [16]. The results obtained using C-SOMGA and those given in source are
shown in Table 2. It is evident with the Table 2 that the cost obtained by C-SOMGA
in deliver the gas per day that is 2964900 is lesser than the cost obtained by Pant, i.e.,
2965280 and by Beightler and Phillips, i.e., 2990000. In other words, C-SOMGA
provides far better results than previously quoted results.

3.2 Optimization of a Riser Design

This problem is taken from Gaindhar et al. [9]. The objective of this problem is to
determine the optimal volume of the riser. Any metal will shrink in volume when it
is allowed to cool and solidify from a molten state. A riser is a device by which the
location of a shrinkage cavity is shifted from within the casting to the riser, which
is an extraneous portion cast as an integral but distinct portion of the casting. After
the casting is solidified, all extraneous parts are cut off leaving behind the desired
casting free of any shrinkage cavity.

The basic requirement for the riser design is that the solidification time of the riser
must not be less than the solidification time of the casting. From the practical point of
view, it is considered advantageous to have top riser connected to the casting through
a neck. The molding sand in the neck region gets up more heated as compared to the
rest of the region surrounding the riser. This ensures molten metal in the region of
the neck. This also facilitates cutting off of the riser from the casting after the casting
has been solidified.

The mathematical modal of the problem, as given in Gaindhar et al. [9] is

Minimize f (x) = (1/4)πx1x22 + (1/12)πx4
(
3 − 3x4/x3 + x24/x33

)
x2

subject to 2E

(
5 + (x4/x3) (2 − x4/x3)

(
1 + x23

)1/2)
x + 4Ex−1

2

− (x4/3)
(
3 − 3x4/x3 + x24/x23

)
≤ 1
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x1, x2, x3, x4 > 0.
where

x1 height of riser
x2 diameter of the riser
E riser modulus constant (E = 10 / 7)
x3 tanθ and
x4 height of the neck riser.

The variable bounds are as follows:

1 ≤ x1 ≤ 8; 1 ≤ x2 ≤ 10; 0 ≤ x3 ≤ 1; 0 ≤ x4 ≤ 1

This problem is earlier solved by Gaindhar et. al [9] and by Pant [16]. The numer-
ical results obtained are compared with the available results and are presented in
Table 3. It is evident with the Table 3 that the result obtained by C-SOMGA that
is 290.78142 is better than the result obtained by Pant [16] i.e 290.8532 and by
Gaindhar et al. [9] i.e. 290.8069.

3.3 Optimum Design of a Welded Beam

Optimum design of a welded beam problem is a well-known problem. The for-
mulation of this problem is available in literature with two models. In model (a),
the number of constraints is six and in model (b), it is seven. Both the models are
described below:

Model (a):
This problem is taken from Beightler and Phillips [2]. In this problem, the assembly
of the welded structure as is being considered for mass production. Outside con-
siderations fix the material of the bar A as well as the design parameters F
and L. Assuming that the design engineer has fixed the specifications, F = 6,000 lb, L
=14 in and barA =1,010 steel; the objective function is to find a feasible combination
of x1, x2, x3 and x4 such that the total cost assembly construction is minimum.

Table 3 Optimal design of a riser

Value of objective Values of variables

Solution obtained by C-SOMGA 290.78142 x1 = 4.276, x2 = 8.7510,
x3 = 1, x4 = 0.1001

Solution given in Pant [16]. 290.8532 x1 = 4.2233, x2 = 8.6055,
x3 = 1.0000, x4 = 0.1000

Solution given in Gaindhar et al. [9] 290.8069 x1 = 4.266, x2 = 8.5710,
x3 = 1.000, x4 = 0.1000
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The mathematical model of the problem is
Minimize g0(X) = 1.1047x21 x2 + 0.6735x3x4 + 0.04811x2x3x4
Subject to

g1(X) = 16.8x−1
4 x−2

3 ≤ 1, g2(X) = x1x
−1
4 ≤ 1, g3(X) = 0.125x−1

1 ≤ 1,

g4(X) = 9.08x−3
3 x−1

4 ≤ 1, g5(X) = 0.09428x−1
3 x−3

4 + 0.02776x3 ≤ 1

g6(X) =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

F2
2 x

−2
1 x−2

2 + F2x−1
2 (L+x2/12)

2

(
x22
12 + (x3+x1)

2

4

)−1

+
F2(L+x2/2)2

(
x22+(x3+x1)

2

4

)

2x21x
2
2

(
x22
12 + (x3+x1)

2

4

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

1/2

≤ 13, 000

(x1, x2, x3, x4) > 0.
The variable bounds are as follows:

0.1 ≤ x1 ≤ 1; 5 ≤ x2 ≤ 7; 7 ≤ x3 ≤ 9; 0.1 ≤ x4 ≤ 1

Model (b):
This model is taken from Xiaohui et al. [19]. The objective is to minimize the
cost of a welded beam subject to constraints on shear stress, bending stress in
the beam, bucking load on the bar, end deflection of the beam, and side constraints.
The problem can be stated as follows:

Minimize f (X) = 1.10471x21 x2 + 0.04811x3x4 (14.0 + x2)

subject to

g1 (X) = τ (X) − τmax ≤ 0

g2 (X) = σ (X) − σmax ≤ 0

g3 (X) = x1 − x4 ≤ 0

g4 (X) = 0.10471x21 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0

g5 (X) = 0.125 − x1 ≤ 0,

g6 (X) = δ (X) − δmax ≤ 0

g7 (X) = P − Pc (X) ≤ 0

where

τ (X) =
√
(τ ′)2 + 2τ ′τ ′′ x2

2R
+ (τ ′′)2

τ ′ = P√
2x1x2

, τ ′′ = M R

J
, M = P

(
L + x2

2

)
, R =

√
x22
4

+
(

x1 + x3
2

)2
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J = 2

{√
2x1x2

[
x22
12

+
(

x1 + x3
2

)2
]}

,σ (X) = 6P L

x4x23
, δ (X) = 4P L3

Ex33 x4

Pc (X) =
4.013E

√
x23 x64/36

L2

(
1 − x3

2L

√
E

4G

)

P = 6,000 lb, L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi,

πmax = 13,600 psi, σmax = 30, 000 psi, δmax = 0.25 in

The following ranges of the variables were used:

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

Both the models are solved by C-SOMGA. The numerical results obtained and
the results given in source are presented in Table 4 for model (a) and Table 5 for
model (b).

In Table 4, although the results available in source are lesser than the results
obtained byC-SOMGA, but the solutions are not satisfying the feasibility conditions.
Hence, these solutions cannot be accepted. The result obtained by C-SOMGA is a
feasible solution. Therefore, C-SOMGA is best in this problem.

In Table 5, the result attained by C-SOMGA is superior to Coello [5] and Deb [6]
but slightly inferior at fifth place to Xiaohui et al. [19]. It shows that the results are
comparable.

3.4 Optimal Capacity of Gas Production Facilities

This problem is taken fromBeightler andPhillips [2]. This is the problemof determin-
ing the optimum capacity of production facilities that combine to make an oxygen

Table 4 Optimal design of a welded beam based on model (a)

Value of objective Value of variables Feasibility

Solution 2.45694 x1 = 0.244241, x2 = 6.4712, Satisfied
obtained by
C-SOMGA

x3 = 8.43726, x4 = 0.244364

Solution given in 1.9786 x1 = 0.1489, x2 = 5.000, Not Satisfied
Pant [16] x3 = 8.2736, x4 = 0.2454

Solution given in 2.3860 x1 = 0.2455, x2 = 6.1960, Not Satisfied
Beightler and
Phillips [2]

x3 = 8.2730, x4 = 0.2455
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Table 5 Optimal design of a welded beam based on model (b)

Value of objective Value of variables

Solution obtained by C-SOMGA 1.72486 x1 = 0.205731, x2 = 3.47048,
x3 = 9.03669, x4 = 0.20573

Solution given in Xiaohui [19] 1.72485084 x1 = 0.20573, x2 = 3.47049,
x3 = 9.03662, x4 = 0.20573

Solution given in Coello [5] 1.74830941 x1 = 0.2088, x2 = 3.4205,
x3 = 8.9975, x4 = .2100

Solution given in Deb [6] 2.43311600 x1 = 0.2489, x2 = 6.1730,
x3 = 8.1739, x4 = 0.2533

Table 6 Optimal capacity of gas production facilities

Value of objective Value of variables

Solution obtained by C-SOMGA 169.844 x1 = 17.500, x2 = 600.000,
Solution given in Pant [16] 169.844 x1 = 17.500, x2 = 600.000,
Solution given in Beightler and Phillips [2] 173.760 x1 = 17.500, x2 = 465.000,

producing and storing system. Oxygen for basic oxygen furnace is produced at a
steady-state level. The demand for oxygen is cyclic with a period of one hour, which
is too short to allow an adjustment of level of production to the demand. Hence, the
manager of the plant has two alternatives:

1. He can keep the production at the maximum demand level; excess production is
lost in the atmosphere.

2. He can keep the production at lower level; excess production is compressed and
stored for use during the high demand period. The mathematical model of the
problem is

Minimize g0(X) = 61.8 + 5.72x1 + .2623
[
(40 − x1) ln

x2
200

]−0.85

+ .087 (40 − x1) ln
x2
200

+ 700.23x−.75
2

subject to x1 ≥ 17.5, x2 ≥ 200, x1, x2 > 0.
The variable bounds are as follows:17.5 ≤ x1 ≤ 40; 300 ≤ x2 ≤ 600
The numerical results obtained using C-SOMGA and the numerical results given

in source are presented in Table 6. In this problem, C-SOMGA produced better
results than Beightler and Philips [2] but similar results as obtained by Pant [16]
using GRST.
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Table 7 Minimization of the weight of a tension/compression Spring

Value of objective Value of variables

Solution obtained by C-SOMGA .0126656 x1 = .0516216, x2 = 0.355094,
x3 = 11.385

Solution given in Xiaohui [19] 0.0126661409 x1 = 0.05147, x2 = .35138394,
x3 = 11.60865920

Solution given in Coello [5] .0127047834 x1 = .051480, x2 = .351661,
x3 = 11.632201

Solution given in Arora [1] .127302737 x1 = .053396, x2 = .399180,
x3 = 9.185400.

3.5 Minimization of the Weight of a Tension/Compression Spring

This problem was described by Arora [1] and Belegundu [3]. The problem consists
of minimizing the weight of a tension/compression spring subject to constrains on
minimum deflection, shear stress, surge frequency, limits on outside diameter and
on design variables. The design variables are the mean coil diameter D, the wire
diameter d, and the number of active coils N. The problem can be expressed as
follows:

Minimize f (X) = (N + 2) Dd2

subject to

g1 (X) = 1 − D3N

71785d4 ≤ 0

g2 (X) = 4D2 − d D

12566
(
Dd3 − d4

) + 1

5108d2 − 1 ≤ 0

g3 (X) = 1 − 140.45d

D2N
≤ 0

g4 (X) = D + d

1.5
− 1 ≤ 0.

The following ranges of the variables were used:

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2.0 ≤ x3 ≤ 15.

The numerical results of the solution obtained usingC-SOMGAand the numerical
results given in source are presented in Table 7. The result attained by C-SOMGA is
superior to Coello and Mezura [4] and Arora [1] at the fourth place and at the sixth
place to Xiaohui et al. [19]. Hence, the results are comparable.
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3.6 Himmelblau’s Nonlinear Optimization Problem

This problem has been taken from Xiaohui [19]. This problem was proposed by
Himmelblau [10], and it has been used before as a benchmark for several evolutionary
algorithm-based techniques. In this problem, there are five design variables, six
nonlinear inequality constraints, and ten boundary conditions. The problem can be
stated as follows:

Minimize f (X) = 5.3578547x23 + 0.8356891x1x5 + 37.2932239x1 − 40792.141

subject to

0 ≤ 85.334407 + .0056858x2x5 + .00026x1x4 − .0022053x3x5 ≤ 92

90 ≤ 80.51249 + 0.0071317x2x5 + 0.00026x1x2 + 0.0021813x23 ≤ 110

20 ≤ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 ≤ 25

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ x3 ≤ 45, 27 ≤ x4 ≤ 45, 27 ≤ x5 ≤ 45.

The results obtained by C-SOMGA and available from the other source are
presented in Table 8. C-SOMGA gives better results than Coello andMezura [4] and
Homaifar et al [11] and results are comparable to Xiaohui et al. [19].

Table 8 Himmelblau’s Nonlinear Optimization Problem

Value of objective Value of variables

Solution obtained by C-SOMGA −31025.6 x1 = 78, x2 = 33.0001,
x3 = 27.071, x4 = 45,
x5 = 44.969

Solution given in Xiaohui [19] −31025.56142 x1 = 78.0, x2 = 33.0,
x3 = 27.070997, x4 = 45,
x5 = 44.96924255

Solution given in Coello [5] −31020.859 x1 = 78.0495, x2 = 33.0070,
x3 = 27.0810, x4 = 45,
x5 = 44.9400

Solution given in Homaifar et al. [11] −30665.609 x1 = 78.0000, x2 = 33.0000,
x3 = 29.9950, x4 = 45,
x5 = 36.7760.
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4 Conclusions

In this paper, six real-life constrained optimization problems arising in various fields
of engineering have been solved. For solving these constrained optimization prob-
lems, a population-based hybridized algorithm C-SOMGA has been used. In four
problems, C-SOMGA provides better results than the previously quoted results, and
in two problems, results are comparable. The algorithm requires only 20 popula-
tion size for solving these problems. It is therefore concluded that C-SOMGA is
well suited for obtaining the global optimal solution of engineering optimization
problems.
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