
Floating Point-based Universal Fused
Add–Subtract Unit

Ishan A. Patil, Prasanna Palsodkar and Ajay Gurjar

Abstract This paper describes fused floating point add–subtract operations and
which is applied to the implementation of fast fourier transform (FFT) processors.
The fused operations of an add–subtract unit which can be used both radix-2 and
radix-4 butterflies are implemented efficiently with the two fused floating point oper-
ations. When placed and routed using a high-performance standard cell technology,
the fused FFT butterflies are about may be work fast and gives user-defined facility
to modify the butterfly’s structure. Also the numerical results of the fused imple-
mentations are more accurate, as they use rounding modes is defined as per user
requirement.

Keywords Floating point · Fused · Addition · Subtraction · Universal · Different
types of rounding

1 Introduction

Traditionally, most DSP applications have used fixed-point arithmetic to reduce
delay, chip area, and power consumption. Fixed-point arithmetic has serious prob-
lems of overflow, underflow, scaling, etc. Single-precision floating point arithmetic
is a potential solution because of no overflow or underflow, automatic scaling [3].

I. A. Patil (B) · P. Palsodkar
Electronics Engineering Deparment, Yeshwantrao Chavan College of Engineering,
Nagpur, Maharashtra, India
e-mail: ishanpatil29@gmail.com

P. Palsodkar
e-mail: palsodkar.prasanna@ieee.org

A. Gurjar
Electronics Engineering Department, Sipna College of Engineering Amravati,
Amravati, Maharashtra, India
e-mail: prof_gurjar1928@rediffmail.com

B. V. Babu et al. (eds.), Proceedings of the Second International Conference on Soft Computing 259
for Problem Solving (SocProS 2012), December 28–30, 2012, Advances in Intelligent Systems
and Computing 236, DOI: 10.1007/978-81-322-1602-5_29, © Springer India 2014

260 I. A. Patil et al.

Two new fused floating point element implementation: (1) fused dot product
contains multiplies two pair of floating point data, add (or subtract) the product (2)
fused add–subtract contains add a pair of floating point data, and simultaneously
subtract the same data [1].

It is traditional floating point adder which consist only addition of only valid
floating point numbers. They work inefficiently when given data are not a floating
point number and also it has some limitation that they can perform only programmer-
defined rounding method due this reason if other rounding method we have use then
again we have to edit program and change the data for new rounding method, so it
can be neglected in proposed floating point adder.

All research is related to Xilinx SPARTAN 6 kit [5, 7] by using compilation
software Xilinx version: 13.2. Xilinx is FPGA stimulator to estimate output of from
Verilog code in terms of input–output buffers, maximum delay (longest path execu-
tion of circuit), area in terms of lookup table (LUTs).This software is used for VHDL
and Verilog code implementation, stimulation and generating program for dump on
FPGA kit.

2 Basic of Floating Point

The Institute of Electrical and Electronics Engineers (IEEE) Standard for Floating
Point Arithmetic (IEEE 754) [4] is a technical standard established by the IEEE.
This standard specifies the basic types of representation.

• Half Precision (16-bits or 2-bytes)
• Single Precision (32-bits or 4-bytes)
• Double Precision (64-bits or 8-bytes).

The format of a floating point number comprises 3 types of bits presented in the
following Fig. 1.

• Recall that exponent field is 8 bits for single precision

– E can be in the range from 0 to 255
– E = 0 and E = 255 are reserved for special use (discussed later)
– E = 1 to 254 are used for normalized floating point numbers
– Bias = 127 (half of 254), val(E) = E−127
– val(E=1) = −126, val(E=127) = 0, val(E=254) = 127.

IEEE 754 standard specifies four modes of rounding

31 3
0

2
3

2
2 0

±(s)
Exponent (E)

8 bits
Mantissa (M)/Fraction(F)

23 bits

Fig. 1 Single-precision floating point format

Floating Point-based Universal Fused Add–Subtract Unit 261

1. Round to nearest even: default rounding mode increment result if: rs = “11” or
(rs = “10” and fln = ‘1’). Otherwise, truncate result significant to 1. f1f2…fln

2. Round toward +∞: result is rounded up Increment result if sign is positive and
r or s = ‘1’

3. Round toward −∞: result is rounded down Increment result if sign is negative
and r or s = ‘1’

4. Round toward 0: always truncate result.

3 Normal Addition–Subtraction Rule

+1.1234 −1.1234
+1.2456 −1.2456
+2.4690 −2.4690

If we take normal addition or subtraction, consider a two numbers [Greater (G)
and Lesser (L)] magnitude wise then only 4 combination are possible which are given
in Table 1 [2].

After watching all examples, we came to conclusion that in addition and sub-
station when there same sign number added or substrate then only add or subtract,
respectively. Similarly, when two numbers have different signs, then we can use
opposite function, i.e., subtract or add.

4 Study of FP Arithmetic Algorithms

Floating Point addition steps
Assume 32 bit binary number and then by applying algorithm for normal addition

by calculator and by using FP addition algorithm stepwise.

A = 32′b0__0111_1000__1011_1010_0000_1111_0110_110;
B = 32′b0__0111_0011__0101_0000_0000_0011_1111_111;

Table 1 Signed addition or subtraction rules

Sr. no Numbers Operations Sign used

1 +G +L (+G) + (+L) ⇒ G + L +
2 −G −L (−G) + (−L) ⇒ −G − L ⇒ − (G + L) +
3 +G −L (+G) + (−L) ⇒ G − L −
4 −G +L (−G) + (+L) ⇒ L − G OR − (G − L) −
1 +G +L (+G) − (+L) ⇒ G − L −
2 −G −L (−G) − (−L) ⇒ −G + L ⇒ − (G + L) −
3 +G −L (+G) − (−L) ⇒ G + L +
4 −G +L (−G) − (+L) ⇒ −G − L OR − (G + L) +

262 I. A. Patil et al.

A = 1.3490607*E−2, B = 3.2044944*E−4.

4.1 Calculation From Calculator

1st step align decimal point
2nd step add

1.3490607 * E−2
+0.032044944*E−2
+1.381105644*E−2

3rd Normalize result

4.2 Detailed Bitwise Example

S E X P Mantissa(M)

0 01111000 1011_1010_0000_1111_0110_110
0 01110011 0101_0000_0000_0011_1111_111

(1)

Find Greater no. and lesser no. and assign it [6].

G = 0 01111000 1011_1010_0000_1111_0110_110
L = 0 01110011 0101_0000_0000_0011_1111_111

• 1st step

Align radix point by using True exponent value difference
G_exp_t = 0111_1000(120) − 0111_1111 = 1111_1001(−7)
L_exp_t = 0111_0011(115) − 0111_1111 = 1111_0100(−12)
Ed = G_exp-L_exp = 5
Shift Lesser no. to right by Ed value
Shift_L_m = 1.0101_0000_0000_0011_1111_111(0)
Shift_L_m = 0.10101_0000_0000_0011_1111_111(1)
Shift_L_m = 0.010101_0000_0000_0011_1111_111(2)
Shift_L_m = 0.0010101_0000_0000_0011_1111_111(3)
Shift_L_m = 0.00010101_0000_0000_0011_1111111(4)
Shift_L_m = 0.0000_1010_1000_0000_0001_111_111(5)

• 2nd step addition of mantissa depend on signs of both no. (Table 1) and store last
bits for rounding

1.1011_1010_0000_1111_0110_110
+0.0000_1010_1000_0000_0001_111_111
01.1100_0100_1000_1111_1000_101_111
Result_m = 01.1100_0100_1000_1111_1000_101_111

Floating Point-based Universal Fused Add–Subtract Unit 263

• 3rd step normalize mantissa result

n_Result_m = 01.1100_0100_1000_1111_1000_101_111
(For if result is m = 00.0010_0100_1000_1111_1000_101_111
Normalize now m = 01.0010_0100_0111_1100_0101_111_000)
(For if result is m = 10.0010_0100_1000_1111_1000_101_111
Normalize now m = 01.00010_0100_1000_1111_1000_101_111)

• 4th step Rounding (Round toward 0: always truncate result)

Round_Result_m = 01.1100_0100_1000_1111_1000_101

• 5th Step After rounding normalize

n_Result_m = 01.1100_0100_1000_1111_1000_101
Final Result sig_G, G_exp, n_Result_m
Sum = 0 0111_1000 1100_0100_1000_1111_1000_101

+1.3811056 * E − 2
+1.381105644 * E − 2 (From actual calculation)

5 Floating Point Adders

This contains original floating point adder and proposed floating point adder. Due
three limitations like it will also work on invalid floating point, rounding mode,
inefficient swap in greater and lesser number when both number have same sign and
same exponent. To remove all limitations, we can see their proposed model satisfied
in all three manners.

5.1 Traditional Floating Point Adder

Basic Floating Point Addition Algorithm [1, 3, 8]: The straightforward basic float-
ing point addition algorithm requires the most serial operations. It has the following
steps: (Fig. 2)

1. Exponent subtraction: Perform subtraction of the exponents to form the absolute
difference |Ea − Eb| = d.

2. Alignment: Right shift the significant of the smaller operand by d bits. The larger
exponent is denoted Ef .

3. Significant addition: Perform addition or subtraction according to the effective
operation. The result is a function of the op-code and the signs of the operands.

4. Conversion: Convert a negative significant result to a sign-magnitude repre-
sentation. The conversion requires a two’s complement operation, including an
addition step.

264 I. A. Patil et al.

Fig. 2 Traditional floating point adder

5. Leading one detection: Determine the amount of left shift needed in the case of
Subtraction yielding cancellation. For addition, determine whether or not a 1-bit
right shift is required. Then priority-encode the result to drive the normalizing
shifter.

6. Normalization: Normalize the significant and update Exponent appropriately.
7. Rounding: Round the final result by conditionally adding as required by the

IEEE standard. If rounding causes an overflow, perform a 1-bit right shift and
increment Ef.

5.2 Proposed Floating Point Adder

Proposed Floating Point Addition Algorithm: The straightforward derived floating
point addition algorithm requires the most serial operations. It has the following steps:
(Fig. 3)

1. Check given number is floating point number or invalid floating point enable
other operation or enable not a FP no to show given data is invalid.

Floating Point-based Universal Fused Add–Subtract Unit 265

Fig. 3 Proposed floating point adder

2. If given number is valid floating point number then sort out greater and lesser
number from data comparing its magnitude.

3. Exponent subtraction: Perform subtraction of greater exponents to lesser expo-
nent EG − EL = d.

4. Alignment: Right shift the significant of the lesser mantissa by d bits and store
last 3 shifted bits.

5. Significant addition: Perform addition according to their signs take decision.
6. Normalize result: check result is overflow or not and then according to condition

adjust exponent.
7. Rounding: Check the rounding mode and perform rounding on the result with

the help of last 3 stored bits.
8. Normalize result: Check result is overflow or not and then according to condition

adjust exponent and Display the result.

To remove all limitation in this, we have use 1st check valid floating point or not
then for selective rounding, we have given choice to user mode, i.e., user-defined
rounding modes to select round mode by giving signals to round_mode pins, and

266 I. A. Patil et al.

Fig. 4 Adder

Fig. 5 Subtracter

finally, we have to check exact greater or lesser number by comparing all 31 bits.
Similarly, we can create substrater module referring Table 1 and then, we serially
and parallel combination of adder and substrater finally we made fuse model of one
adder and one substrater and we have advantage that fused required less numbers of
LUT’s and less delay to get final output as if we use both different models of adder
and subtract.

6 Proposed Floating Point Work Result

This shows all main modules implementations in RTL and outputs waveforms with
respect to Xilinx SPARTAN 6 kit [7] stimulation on Xilinx software.

6.1 Proposed Models RTL View

Figures 4, 5 and 6.

Floating Point-based Universal Fused Add–Subtract Unit 267

Fig. 6 Add–subtracter

Fig. 7 Adder output waveform

Fig. 8 Subtracter output waveform

6.2 Proposed Models Output Waveform

Figures 7, 8 and 9.

7 Comparisons of all Modules

See Table 2.

268 I. A. Patil et al.

Fig. 9 Add–subtracter output waveform

Table 2 All modules details of implementations

Types No of LUT used(Area %) IOBs % Delay (ns)

FP adder 381 of 9112 (4.18) 99 of 232 (42.67) 35.418
FP subtracter 381 of 9112 (4.18) 99 of 232 (42.67) 35.513
FP Serial AS 762 of 9112 (8.36) 131 of 232 (56.47) 70.518
FP parallel AS 808 of 9112 (8.86) 131 of 232 (56.47) 37.213
Fused FP add–subtract unit 678 of 9112 (7.44) 131 of 232 (56.47) 39.876

Table 3 All modules comparisons in terms of percentage w.r.t. adder

Types No of LUT used (Area %) IOBs (%) Delay (ns)

FP adder 100 100 100
FP subtracter 100 100 100.27
FP serial AS 200 132.32 200
FP parallel AS 212 132.32 105
Fused FP add–subtract unit 177.95 132.32 112.58

Table 4 Basic comparison of
programming styles in
Verilog on demo floating
point adder

Types of programming Time (ns) LUTs

Normal adder 26.468 254
Task adder 27.727 308
Function adder 24.533 249

8 Conclusions

In proposed floating point adder have two different functions from traditional floating
point adder to provide user-defined adder. First is to check the given data are valid
floating point number or not. Second is to give privilege to select rounding modes (i.e.,
user-defined rounding mode selection and default is truncating). While programming,
we used different methods like by using TASK, function, and normal programming.
After comparing all types of models of floating point adder, we came to conclusion
that we modified traditional adder and able to prove that when we use functions in
programming has good result at cost of saving 2 % number of LUTs and 7.8 %

Floating Point-based Universal Fused Add–Subtract Unit 269

Fig. 10 LUT

Fig. 11 IOB

Fig. 12 Delay

270 I. A. Patil et al.

Fig. 13 Comparison in percentage

reduce delay (referring Table 4 Basic comparison of programming styles in Verilog
on demo floating point adder). So we finally decided that we are using functions in
all Verilog design programs to give best output.

After watching results from Tables 2, 3 and Figs. 10, 11, 12, 13, we came to know
that we are saving in proposed floating point add–subtract model is 68 % decrease in
IOBs, saving 23 % number of LUTs and 88 % reduce delay as compared to the single
adder, single subtracter, serial adder and subtracter, Parallel adder and subtracter.

References

1. Swartzlander Jr, E.E., Saleh, H.H.: FFT Implementation with Fused Foating-Point Opera-
tions.IEEE Transactions on Computers, Feb (2012)

2. Jongwook Sohn and Earl E. Swartzlander, Jr., “Improved Architectures for a Fused Floating-
Point Add-Subtract Unit” IEEE Transactions on circuits and systems-I, Vol. 59, no. 11, 2012

3. H. Saleh and E.E. Swartzlander, Jr., “A Floating-Point Fused Add-Subtract Unit”, Proc. IEEE
Midwest Symp. Circuits and Systems (MWSCAS), pp. 519–522, 2008

4. IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754–2008, Aug. 2008
5. http://www.xilinx.com/FPGA_series
6. Lecture notes - Chapter 7 - Floating Point Arithmetic: http://pages.cs.wisc.edu/smoler/x86text/

lect.notes/arith.flpt.html
7. All o/p are w.r.to XILINX Spartan-6 XC6SLX16 -CSG324C
8. Stuart Franklin Oberman: Design Issues in High Performance Floating Point Arithmetic Units.

Stanford University, Ph. D. Dissertation (1996)

http://www.xilinx.com/FPGA_series
http://pages.cs.wisc.edu/smoler/x86text/lect.notes/arith.flpt.html
http://pages.cs.wisc.edu/smoler/x86text/lect.notes/arith.flpt.html

	29 Floating Point-based Universal Fused Add--Subtract Unit
	1 Introduction
	2 Basic of Floating Point
	3 Normal Addition--Subtraction Rule
	4 Study of FP Arithmetic Algorithms
	4.1 Calculation From Calculator
	4.2 Detailed Bitwise Example

	5 Floating Point Adders
	5.1 Traditional Floating Point Adder
	5.2 Proposed Floating Point Adder

	6 Proposed Floating Point Work Result
	6.1 Proposed Models RTL View
	6.2 Proposed Models Output Waveform

	7 Comparisons of all Modules
	8 Conclusions
	References

