
Neural Network and Statistical Modeling of
Software Development Effort

Ruchi Shukla, Mukul Shukla and Tshilidzi Marwala

Abstract Many modeling studies that aimed at providing an accurate relationship
between the software project effort (or cost) and the involved cost drivers have been
conducted for effectivemanagement of software projects. However, the derivedmod-
els are only applicable for a specific project and its variables. In this chapter, we
present the use of back-propagation neural network (NN) to model the software
development (SD) effort of 18 SD NASA projects based on six cost drivers. The
performance of the NNmodel was also compared with a multi-regression model and
other models available in the literature.

Keywords Neural network ·Software development ·Effort estimation ·Regression

R. Shukla (B)

Department of Electrical and Electronic Engineering Science, University of Johannesburg,
Johannesburg, South Africa
e-mail: ruchishuklamtech@gmail.com

M. Shukla
Department of Mechanical Engineering Technology, University of Johannesburg,
Johannesburg, South Africa

M. Shukla
Department of Mechanical Engineering, MNNIT, Allahabad, UP, India
e-mail: mukulshukla2k@gmail.com

T. Marwala
Faulty of Engineering and Built Environment, University of Johannesburg,
Johannesburg, South Africa
e-mail: tmarwala@uj.ac.z

B. V. Babu et al. (eds.), Proceedings of the Second International Conference on Soft Computing 189
for Problem Solving (SocProS 2012), December 28–30, 2012, Advances in Intelligent Systems
and Computing 236, DOI: 10.1007/978-81-322-1602-5_21, © Springer India 2014



190 R. Shukla et al.

1 Introduction

Software companies today are outsourcing a wide variety of their jobs to offshore
organizations, for maximizing returns on investments. Estimating the amount of
effort, time, and cost required for developing any information system is a critical
project management issue. In view of the above, long-term, credible, and optimum
forecast of software project estimates in the early stages of a project’s life cycle is
an almost intractable problem. Often, key information of real-life projects regarding
size, complexity, system documentation, vocabulary, annual change traffic, client
attitude, multilocation teams, etc. is unavailable. In spite of the availability of more
than 100 estimation tools in the market, experience-based reasoning still remains
the commonly applied estimation approach owing to some fundamental estimation
issues which software developers have struggled with [1].

2 Literature Review

A review of studies on expert estimation of SD effort was presented by [2, 3]. An
exploratory analysis of the state of the practice on schedule estimation and software
project success prediction is presented in [4]. It was found that the data collection
approach, role of respondents, and analysis type had an important impact on software
estimation error [5]. Soft-computing- or artificial intelligence (AI)-based approaches
are of late being used for more accurate prediction of software effort/cost. Artificial
neural networks (ANN) offer a powerful computing architecture capable of learning
from experimental data and representing complex, nonlinear, multivariate relation-
ships [6, 7]. Kumar et al. compared the effectiveness of the variants of wavelet
neural network (WNN) with many other techniques to forecast the SD effort [8].
Genetic algorithms (GAs) were used for the estimation of COCOMO model para-
meters of NASA SD projects in [9] while different fuzzy logic-based studies have
been conducted [10–12]. Many hybrid schemes (neuro-GA, neuro-fuzzy, grey-GA,
fuzzy-grey, etc) have also been investigated [13–15]. Many studies on software pre-
diction have focused on the development of regression models based on historical
data [16, 17].

3 Statistical Modeling

This modeling study is based on the SD effort dataset of Bailey and Basili [18]
(Table 1—shown partly for brevity reasons). The six input factors are the total lines
of code, new lines of code, developed lines of code (DL) (all in kloc), total method-
ology (ME), cumulative complexity, and cumulative experience, and the output is
effort (in man months). Preliminary statistical analysis of the dataset was conducted



Neural Network and Statistical Modeling of Software Development Effort 191

Ta
bl

e
1

SD
ef
fo
rt
da
ta
se
t[
18

]

Pr
oj
ec
tn

o.
Pr
oj
ec
ta
ttr
ib
ut
es

R
es
po
ns
e

To
ta
l

lin
es

(k
lo
c)

N
ew

lin
es

(k
lo
c)

D
ev
el
op
ed

lin
es

(k
lo
c)

To
ta
l
m
et
ho
d-

ol
og
y

C
um

ul
at
iv
e

co
m
pl
ex
ity

C
um

ul
at
iv
e
ex
-

pe
ri
en
ce

E
ff
or
t
(m

an
m
on
th
s)

1
11
1.
9

84
.7

90
.2

30
21

16
11
5.
8

2
55
.2

44
46
.2

20
21

14
96

–
–

–
–

–
–

–
–

17
14
.8

11
.9

12
.5

27
23

18
23
.9

18
11
0.
3

98
.4

10
0.
8

34
33

16
13
8.
3

C
or
re
la
tio

n
C
oe
f-

fic
ie
nt

0.
94

0.
97

0.
96

0.
03

0.
65

-0
.0
2

C
ov
ar
ia
nc
e

15
93
.7

13
19
.3

14
56
.3

6.
98

13
4.
4

−2
.8
2

K
ur
to
si
s

−1
.2
5

−0
.3
8

−0
.7
3

−0
.8
3

−0
.2
7

3.
55

−1
.2
6

R
-S
qu
ar
e

0.
88

0.
95

0.
92

0.
00

0.
42

0.
00



192 R. Shukla et al.

beforehand including the following: (1) correlation coefficient, (2) covariance, (3)
kurtosis, and (4) R-square as presented in Table 1. Initially, fromMinitab [19]-based
ANOVA, a multivariable linear regression model (Eq. 1) has been fitted. The good-
ness of this developed model is validated with two other models (Eqs. 2 and 3)
given by Sheta and Al-Afeef [15] in Table 2. Based on the high T (or low P) values,
the following ranking (in a decreasing order) of the 6 effort drivers has been es-
tablished: (1) methodology, (2) new LoC, (3) total LoC, (4) cumulative experience,
(5) developed LoC, and (6) cumulative complexity. The high R-squared value of
98.3% and R-Sq(adjusted) values of 97.4% justify the correctness of the ANOVA.

Effort = 41.6+ 0.314 T ot_LoC + 0.986 New_LoC + 0.116 Develop_LoC

− 1.57 Meth − 0.112 Cum_Complex + 0.376 Cum_Exper

(1)

E = 1.75992× DL − 4.56× 10−3 × DL2 (2)

E = 2× DL − 0.59× 10−3M E2 × DL (3)

The main effect plots for the 6 effort drivers are shown in Fig. 1.

11
1.9

11
0.389

.5
85
.4

75
.4

55
.2

50
.9

32
.8

14
.9

14
.8

14
.3

10
.29.75.55.24.52.1

150

100

50

0

98
.4

84
.7

76
.9

62
.0

49
.3

45
.3

44
.0

20
.1

18
.7

12
.2

11
.99.67.44.94.22.52.1

10
0.897

.5
90
.2

78
.6

54
.5

46
.5

46
.2

31
.1

21
.5

12
.8

12
.5

10
.59.77.85.04.23.12.1

35343130292827262019

150

100

50

0

3329272523211918 2120181614126

Tot_LoC

M
ea

n
 E

ff
o

rt

New_LoC Develop_LoC

Meth Cum_Complex Cum_Exper

Fig. 1 Main effects plot



Neural Network and Statistical Modeling of Software Development Effort 193

4 Neural Network Modeling

Back-propagation (BP)NNmodeling for effort estimation has been carried out in this
work using the MATLAB (2007b) NN toolbox options. Initially, a simple two-layer
BP (6-6-1) NN was employed. The number of hidden nodes in the hidden layer was
kept equal to the number of inputs (6 here). The number of hidden neurons was then
suitably increased in an orderly hit and trial manner, to decide the final structure of
the NN by keeping a check on the convergence rate of training, testing, and validation
errors as well as the average percentage error. The learning rate and momentum can
also be adjusted for the above purpose (although not varied in the present work).

Before the network is made ready to make estimates, we input the combinations
of data inputs and outputs [18] through the network for training (60%), validation
(20%), and testing (20%). In our case, the activation functions of both the hidden and
output layers were initially chosen to be tan-sigmoid. The same was later changed to
the purelin(ear) function in the output layer. We used the two most popular training
algorithms i.e., the Levenberg-Marquardt (LM) and the Bayesian regularization (BR)
algorithms. The training performance and linear regression analysis (between the
network outputs and the corresponding targets) are shown in Figs. 2 and 3. For
the LM algorithm, the output tracks the targets reasonably well, and the regression
coefficient (R) value is over 0.97 mostly. Similarly, for the BR algorithm-based
training with purelin output function, the R values are over 0.99 in nearly all the
cases (Fig. 3).

Fig. 2 Levenberg-Marquardt training with tansigmoid function in output layer



194 R. Shukla et al.

Fig. 3 Bayesian regularization training with purelin(ear) function in output layer

4.1 NN Modeling Tips

Listed underneath are some practical tips for efficient NN modeling.

• NNs are rather sensitive to the number of neurons in the hidden layers. Too few
neurons often lead to underfitting, while too many neurons can contribute to over-
fitting. In this case, inspite of all the training points being well fitted, the fitted
curve oscillates largely between these points [20].

• The NN dataset is generally divided in the following ratios: training (50–60 ),
validation (20–25 ), and testing (20–25 ).

• Learning rate (alpha) represents how quickly an NN learns ranges from 0 to 1 and
is initialized randomly. As with linear networks, a learning rate that is too large
leads to unstable learning. Contrarily, a too small learning rate results in much
longer training times. Typical values are 0.01–0.05.

• Momentum is a variable, which helps NN to break out of local minima. It may
range from 0 to 1. Typical values are around 0.5.

• The threshold function (logsig, tansig, purelin, etc) selection is critical and de-
termines when a node fires propagating a value further through the network. The
choice is essentially based on the range and sign of inputs/outputs.

• The BR algorithm which is a modification of the LM algorithm is often used, as
it generalizes well and reduces the difficulty of determining the optimum network
architecture.

• LM training would normally be used for small- and medium-size networks, if
enough memory is available. If memory is a problem, then there are a variety of
other fast algorithms available. For large networks, one would probably want to
use trainscg (conjugate gradient) or trainrp (resilient BP) algorithms.



Neural Network and Statistical Modeling of Software Development Effort 195

• Overfitting is one of the most common problems that occurs in NN training. The
training set error becomes a very small value, but the error turns to a large value
when new data are presented to the network. An attempt at collecting more data
and increasing the size of the training set must be made to prevent the situation of
overfitting [20].

• One suggested method to improve network generalization is the use of a just large
enough network that provides an adequate fit. Larger is the network used, more
complex can be the functions the network can create. A small enough network
will not have enough power to overfit the data. The two methods for improving
generalization and implemented in MATLAB NN toolbox are regularization and
early stopping [20].

5 Results and Discussion

The degree to which a model’s estimated effort (MMest) matches the actual or target
effort (MMact) is estimated by a percentage relative error. Magnitude of relative error
(MRE), which accounts for under and overestimates along with its mean magnitude
of relative error (MMRE) is often used in effort estimation analysis.

M RE =
∣
∣
∣
∣

M Mact − M Mest

M Mact

∣
∣
∣
∣

(4)

Table 2 (in brief) presents a comparison of the empirical models (Eqs. 1–3) fitted
effort and NN effort (for different configurations) with the target effort of [19]. It
can be concluded that the present NN framework is able to successfully model the
dataset with nearly the following percentage relative error and percentage mean
relative error:

1. −10.58 to 8.36 and 4.68%, respectively, for trainlm with tansig function in
output layer and hidden neurons varied from 6 to 20.

2. −12.5 to −9.62 and −10.3%, respectively, for trainbr with tansig function in
output layer and hidden neurons varied from 6 to 20.

3. 0.65 to−3.12 and 0.79%, respectively, for trainbrwith purelin function in output
layer and hidden neurons varied from 6 to 20.

The relative error obtained from the developed multi-regression model (Eq. 1)
is comparable to other models (Eqs. 2 and 3). A comparison between the mean
relative error of the developedNNand regressionmodels and theMMREofHalstead,
Walston-Felix, Bailey-Basili, and Doty models are shown in Table 3 [16].



196 R. Shukla et al.

Ta
bl

e
2

C
om

pa
ri
so
n
of

em
pi
ri
ca
lm

od
el
fit
te
d
an
d
N
N
ef
fo
rt
w
ith

ta
rg
et
ef
fo
rt

Pr
oj
ec
t

nu
m
be
r

Ta
rg
et

ef
-

fo
rt
[1
8]

Pr
ed
ic
te
d

ef
fo
rt

(E
q.

1)

Pe
rc
en
ta
ge

er
-

ro
r
=
(1
-C
3/
C
2)

*1
00

Pr
ed
ic
te
d

ef
fo
rt

(E
q.

2)

%
er
ro
r

=
(1
-C
5/
C
2)

*1
00

Pe
rc
en
ta
ge

er
ro
r

(P
re
di
ct
ed

ef
fo
rt

fr
om

E
q.

3)

Pe
rc
en
ta
ge

er
ro
r
N
N
ou
tp
ut

L
M

B
R

ta
ns
ig

pu
re
lin

1
11
5.
8

12
7.
28

−9
.9
1

12
1.
64

−5
.0
5

−1
4.
42

17
.8

19
.2

−1
.1

— 6
98
.4

98
.6
3

−0
.2
3

12
8.
24

−3
0.
33

−4
9.
01

9.
0

−5
4.
2

−2
.8

— 18
13
8.
3

13
3.
89

3.
19

13
1.
07

5.
23

3.
94

31
.2

31
.9

10
.0

Pe
rc
en
ta
ge

m
ea
n
er
ro
r

−5
.4
1

−8
.6
6

−2
.7
6

4.
68

−1
0.
3

0.
79



Neural Network and Statistical Modeling of Software Development Effort 197

Table 3 Comparison of different models

Model name Model equation MMRE

Halstead E = 5.2(DL)1.50 0.1479
Walston-Felix E = 0.7(DL)0.91 0.0822
Bailey-Basili E = 5.5+ 0.73(DL)1.16 0.0095
Doty (for DL > 9) E = 5.288(DL)1.0 0.1848

Mean relative error
Present work—(1) LM-based BPNN – 0.0468
(2) BR-based BPNN – 1 −0.1030
(3) BR-based BPNN – 2 0.0079
(4) Multilinear regression Eq. 1 −0.0541

6 Conclusions

Effort estimation is a complex task, and research studies indicate that results in gen-
eral vary a lot. The market potential for SD and maintenance is huge and constantly
growingmainly for financial and online applications. In thiswork, a twofold approach
based on NN and multilinear regression has been carried out for more accurate SD
effort estimation

Acknowledgments The authors would like to acknowledge the financial support extended by the
Faulty of Engineering and Built Environment, University of Johannesburg.

References

1. Shukla, R. Misra, A.K.: Estimating software maintenance effort - a neural network approach.
1st India, Software Engineering Conference. 107–112 (2008).

2. Jorgensen, M.: A review of studies on expert estimation of software development effort. J Syst.
Software. 70(1–2), 37–60 (2004)

3. Jorgensen, M., Shepperd, M.: A systematic review of software development cost estimation
studies. IEEE T. Software Eng. 33(1), 33–53 (2007)

4. Verner, J.M., Evanco,W.M., Cerpa,N.: State of the practice: an exploratory analysis of schedule
estimation and software project success prediction. Inform. Software Tech. 49(2), 181–193
(2007)

5. Jorgensen, M., Ostvold, K.M.: Reasons for software effort estimation error: impact of respon-
dent role, information collection approach, and data analysis method. IEEE T. Software Eng.
30(12), 993–1007 (2004)

6. Huang, X., Ho, D., Ren, J., Capretz, L.F.: A soft computing framework for software effort
estimation. Soft Comput. 10, 170–177 (2006)

7. Tronto, I.F.B., Silva, J.D.S., Anna, N.S.: An investigation of artificial neural networks based
prediction systems in software project management. J Syst. Software. 81(3), 356–367 (2008)

8. Kumar, K.V., Ravi, V., Carr, M., Kiran, N.R.: Software development cost estimation using
wavelet neural networks. J Syst. Software. 81(11), 1853–1860 (2008)

9. Sheta, A.: Estimation of the COCOMO model parameters using genetic algorithms for NASA
software projects. J. Comput. Sci. 2(2), 118–123 (2006)



198 R. Shukla et al.

10. Xu, Z.W., Khoshgoftaar, T.M.: Identification of fuzzy models of software cost estimation.
Fuzzy Set. Syst. 145(1), 141–163 (2004)

11. Ahmed, M., Saliu, M.O., Alghamdi, J.: Adaptive fuzzy logic-based framework for software
development effort prediction. Inform. Software Tech. 47(1), 31–48 (2005)

12. Kazemifard, M., Zaeri, A., Ghasem-Aghaee, N., Nematbakhsh, M.A., Mardukhi, F.: Fuzzy
emotional COCOMO II software cost estimation (FECSCE) using multi-agent systems. Appl.
Soft Comput. 11(2), 2260–2270 (2011)

13. Shukla, K.K.: Neuro-genetic prediction of software development effort. Inform. Software Tech.
42, 701–713 (2000)

14. Huang, S.J., Chiu, N.H.: Optimization of analogy weights by genetic algorithm for software
effort estimation. Inform. Software Tech. 48, 1034–1045 (2006)

15. Sheta, A. F., Al-Afeef, A.: AGP effort estimationmodel utilizing line of code andmethodology
for NASA software projects. 10th International Conference on Intelligent Systems Design and
Applications. 290–295 (2010).

16. Jorgensen, M.: Regression models of software development effort estimation accuracy and
bias. Empir. Softw. Eng. 9, 297–314 (2004)

17. Shukla, R., Misra, A.K.: Software maintenance effort estimation-neural network vs regression
modeling approach. Int. J. Comput. Applic. 1(29), 83–89 (2010)

18. Bailey, J.W., Basili, V.R.: A metamodel for software development resource expenditures. 5th
IEEE International Conference on, Software Engineering. 107–116 (1981).

19. www.minitab.com (2012).
20. www.mathworks.com/access/helpdesk/help/pdf_doc/nnet/nnet.pdf (2012).

www.minitab.com
www.mathworks.com/access/helpdesk/help/pdf_doc/nnet/nnet.pdf

	21 Neural Network and Statistical Modeling of Software Development Effort
	1 Introduction
	2 Literature Review
	3 Statistical Modeling
	4 Neural Network Modeling 
	4.1 NN Modeling Tips

	5 Results and Discussion
	6 Conclusions 
	References


